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PREFACE 

In this book we are concerned with aspects of the general evolution 

of mathematics and thus it is connected with the history. However, it ip 

not the most common way of studying the history of mathematics. A study 

of the general progress, the evolution of mathematics as a whole, should 

well be distinguished from the history of mathematics as the science in 

which historical facts, developments of more or less special areas and 

their mutual relations are studied. Reflections on the general process 
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of the evolution can be considered as a study of the I.deas that are behind 

the historical facts. It concerns the study of the underlying theoretical 

and structural aspects of the history of mathematics and in some way this 

domain can be seen as a "theory" of the history. For these reasons we 

prefer here the term "evolution" rather than "history". This standpoint 

can perhaps best be explained by saying that we look at the developments 

in mathematics from a point outside, observing the great lines of what 

has been going on inside in the course of the centuries. Not the factual 

developments themselves come on the first place, but the conclusions that 

can be drawn from them with respect to the general ideas on which the facts 

are based. We study trends in methods, the evolution of concepts, causes 

and reasons of the progress. It is one of the aims to find structures in 

the way of mathematics, to discover characteristic aspects in the various 

periods of history. In particular we consider the way of the development 

from what is called "classical mathematics" towards "modern mathematics". 

In this framework we will study the growing influence of algebra and 

algebraic methods, an aspect that is called the "algebraization", we will 

treat the evolution of the fundamental concepts of existence and existence 

theorems and finally we shall make some more general remarks about the 

evolution, for instance with regards to external influences on the 

developments. Some philosophical coloured aspects find a place in this 

framework. 

It will be clear that reflections of this kind must be based on 

historical facts. But it should be kept in mind that when we consider 

factual developments in a somewhat greater detail, they are intended to 

illustrate structures and aspects of the evolution. Ultimately studies 

like these should lead to standpoints on the place and function of 

mathematics among sciences. 
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PART I THE ALGEBRAIZATION OF MATHEMATICS 

INTRODUCTION 

It is undisputable that the notions and the methods of modern algebra 

are of a continually growing importance in modern mathematics. One meets 

this phenomenon in nearly every part of mathematics. Group structures, 

vector spaces, homomorphisms, ••. seem to penetrate everywhere to such a 

degree that one. can speak of an algebraization of mathematics. Several 

questions can then be posed. What are the reasons of this development? 

Is it only a mathematical fashion? If it should only be a mode a change 

in this phenomenon, as in any fashion, could be expected. Perhaps some 

waves can be observed in the application of parts of algebra. But aspects 

of algebraization, can be traced back to the 17th century. Such a long 

development can not be explained as a fashion, which is always a temporary 

phenomenon. Mathematics has always profited from the application of 

algebraic methods. Is it in some way inherent to the progress of mathema

tics? 

These are questions which belong to the domain of philosophy of mathematics 

and a definite answer can scarcely be expected. We shall give examples 

of the phenomenon of algebraization in history. They may be useful to find 

the roots of this development and they may aid to understand better the 

way of mathematics. There may be subjective conclusions and points of view. 

But it is difficult to avoid them in studies of this kind. 
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CHAPTER 1 PRELIMINARY REMARKS ON ALGEBRAIZATION 

At the international congress of mathematicians at Paris in 1900 

Volterra called the 19th century the century of the theory of functions. 

Is it possible to give some characterization of the 20th century? 

In our century the great influence of modern algebra is apparent. Although 

there are earlier indications this trend is in particular evident since 

the twenties of our century; these are the years in which the explosive 

development of what was called " modern algebra" began its course. Clearly, 

this is not the only characteristic of modern mathematics. There is, for 

instance, also the influence of topology. Were these independent trends? 

Algebraization is found in geometry, in analysis and there is also 

something like "algebraization of algebra". One has only to have a view 

in modern books and papers to observe the difference with works of the 

"classical" period. In this chapter we shall give some first examples and 

there are some general remarks on the phenomenon. 

In 1938 Caratheodory published a paper "Entwurf fur eine 

Algebraisierung des Integralbegriffes" 1). This paper was followed by a 

book of the same author in 1956 "Mass und Integral und ihre 

Algebraisierung". In this theory Boolean algebras are important. 

Numerous are the papers on function algebras. This is perhaps not an 

example of strict algebraization, but in any case methods and results of 

modern algebra are fundamental in this area. There are also many papers in 

which results of real or complex analysis are generalized to more general 

fields (local fields, algebraically closed fields, .... ). 

We mention an article by S. Vasilach "Algebraic method for solving linear 

differential equations whose coefficients are functions of one variable" 2); 

one finds there references to some papers of the same author indicating 

the application of algebraic methods. 

A conclusion in a paper of Akeman 3) is curious. The author studies a 

generalization of the theorem of Stone-Weierstrass for certain non

commutative algebras. There is no need to precise his result, but it is 

the author's conclusion which is remarkable : "This is a satisfying result 

because of its high algebraic content". Why is this satisfying? 

References to algebraic methods are frequent in modern literature. 



In a review of a book on Clifford algebras one reads : "The construction 

of Clifford algebras by purely algebraic means can be seen in ••• ". 4). 

Perhaps this is not so curious because it concerns Clifford algebras. But 

in the next example there is more reason for reflection. We quote some 

passages from a paper of Varadarajan on the work of Harish-Chandra 5) : 
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"Harish-Chandra' s initial effort was to develop algebraic methods for the 

study of infinite dimensional representations of an arbitrary semisimple 

Lie group. He was able to obtain a close link between purely algebraic 

representations of the Lie algebra and the topologically significant 

representations of the Lie group". And : "The algebraic approach has 

acquired new life ••• ". It concerns here an area related to Fourier analysis. 

This are only examples but merely the fact that passages like these are 

written, that it seems to be worthwile to make such remarks, is an 

indication that apparently algebra - i.e. "modern algebra"- plays a 

especially important role. A more careful analysis of the intrinsic 

meaning of such statements is ·scarcely necessary for such a conclusion. They_ 

illustrate that behind modern mathematics there is a world of mathematical 

concepts -algebraic concepts- quite different from the concepts of 

classical mathematics. Do they come from algebraization (and set-

theoret ical, considerations)? 

In connection with these examples there are some questions. Is it 

an aim of greatest value in mathematics to present the results in an 

algebraic form, an aim that is worthwhile to strive for? And if this 

would be the case, why? Is algebra -provided one can define what it is

more easy, more simple, than the traditional classical analysis? Or are 

the methods of algebra a better means for a good understanding of the 

results? 

With respect to the question whether algebra should perhaps have a more 

easy structure, one can in defense of such a statement remark that 

analysis as far as concerns existence theorems consists of more complicated 

results than algebra (for any •••• there exist ••• such that ••• ).One could 

observe that the theory of algebraic equations is more simple than the 

theory of transcendental equations, for instance the equation of 

Kepler y - a sin y = x, a E ~.a~ 0 6). It is difficult to compare 

them and to give an answer. What means "easy"? 
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In the following chapters we shall treat in some detail and in a more 

systematic way aspects of the history of the process of algebraization. 

This may be a contribution to a better understanding of the reasons and 

the real significance of the penetration of algebra and algebraic methods 

in mathematics. This shall be an attempt to give in some way a coherent 

description of the way of algebraization. But a description of the develop

ments which we resume under this name is difficult. The phenomenon has 

various and sometimes opposite aspects and it is difficult to analyze 

them and to discover the mutual relations. We mention some of the aspects 

which present themselves and will be a point of discussion in historical 

context. 

1. Algebra itself has several aspects which should be distinguished: 

the algebraic notation, arithmetic and arithmetization; algebra as a sub

discipline of mathematics. One should carefully distinguish between what 

is commonly called classical algebra and the study of sets provided with 

structures, called "algebras", for instance algebras of continuous 

functions. 

2. Modern theories can lead to the idea of considering algebra mainly 

as a theory of structures. However there are also algorithmic aspects. 

3. The role of topology in algebra (for instance the real numbers). 

4. The relation between "classical" and "modern algebra" 

5. The aspect of algebraic theories in relation to axiomatic theories. 

6. Questions around "descriptive definitions" and "constructive 

definitions", a point of many discussions in the first years of our 

century (Borel, Lebesgue). In some way descriptive definitions seem to be 

connected with algebraization. How is the connection with axiomatic 

methods? 

7. There is a historical controverse between "pathok>gical"md "normal". 

Can methods of algebraization not be applied to pathological theories? 

The theory of real functions is a domain that was developed in the 

beginning of our century and then was a point of many discussions with 

respect to its pathological character. 

It is difficult to discuss these aspects in an abstract sense. 

Therefore examples of algebraization shall be treated in the following 

chapters. Before proceeding in this way a remark must be made with regards 

to the significance of the phenomenon. When we speak of algebraization 

this suggests that it concerns a systematic aim of mathematicians or at 

leat of some of them. Certainly there seem to have been mathematicians 
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who in parts of their work had this aim. See the preceeding remarks on 

Caratheodory. And perhaps there were some in older centuries (Descartes). 

But if we consider history from this point of view some caution is 

necessary. It is very well possible that from our point of view we consider 

certain older developments as an algebraization of the subject. But are 

we sure that the mathematicians who were concerned with it had also 

this aim? It should not be forgotten that algebraization -provided it 

exists- is a notion of our years. Interpretation of works of the past 

according to our standards, our ideas and norms, may be dangerous. The 

remarks we shall make in the following pages may thus be controversial 

because they concern a matter where opinions may differ. 
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CHAPTER 2 WHAT IS ALGEBRA? 

Before treating algebraizations, some remarks must precede on the 

question what algebra is. 

As concerns the history one knows that is was a development of many 

centuries which has lead to algebra of our years. Until the middle of the 

19th century algebra consisted mainly of a theory of equations. The 

ordinary arithmetic of the mathematicians of the middle ages, where calcu

lations were made with numbers, gradually grow out to a theory where 

letters were used. In this development the mathematicians of the East 

played an important role. First, theories were interpreted by means of 

geometrical considerations. The difficulties which were connected with it 

were overcome by Viete, Descartes and their successors. For literature on 

this point see [Novy, 1973]. 

Several mathematicians have written about the question what algebra 

of our century is. It seems that there is no common opinion. We mention 

the opinion of some authors. 

In a lecture "Sur la relation de l'algebre al'analyse mathematique", 

given at the international congress at Rome in 1908, P. Boutroux made an 

interesting comparative study of algebra and analysis. Considering the 

history of mathematical analysis (Leibniz, Newton, Euler and their 

successors) Boutroux comes to the conclusion that the analyst tries to 

translate his results -correspondances between variables -into the language 

of algebra. His opinion is as follows : l'algebre, ou science du calcul, 

n'est, en somme, qu'un instrument. Comme le physicien fait de la physique 

avec les mathematiques, l'analyste fait de l'analyse avec l'algebre". 

One is inclined to say that Boutroux gives here a characterization 

of algebra from the point of view of mathematical analysis. However, in 

his book from 1920 "L'ideal scientifique des mathematiciens" he returns 

to the problem in a more general framework. This book contains a study of 

the history of mathematics, in particularalgebra and analysis, from the 

hellenistic period on. In the chapters "La conception synthetiste" and 

"Apogee, declin de la conception synthetiste!'he comes after a detailed 

analysis of the developments to the conclusion that pure algebra, that is 

disregarding its applications, consists of a method. He says that algebra 

"est l'art de combiner des signes literaux (representant des grandeurs) au 

moyen d'operations connues". In the beginning there were only the 

operations of arithmetic (addition, multiplication etc.), but in the 



course of the development one studied extensions of the domain of the 

operations, leading to the theory of groups. 

This was the opinion of the author as concerns algebra of the 18th 
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and 19th centuries. But it seems that this is also his opinion with respect 

to algebra of the first years of our century (on this point the author is 

not very clear). Thus, in this opinion algebra would be a somewhat 

mechanical method, a process resembling the idea of the middle ages when 

algebra was the "methode par excellence", the "ars magna" (Raymond Lulle). 

It is here the place to remark that the denomination analysis for 

that part of mathematics which we design by that name has historical 

reasons. In the early years a problem was studied as follows. One designed 

the various quantities that appeared in the problem by letters a,b, .•. , 

x, •.•. The relations between these letters led to equations and thus to 

values of x, .••• It was an algebraic method, the so called analysis of 

the problem. Because one did not trust such a deductive method, it was 

followed by a reasoning, the synthesis, which had the purpose to give an 

exact demonstration of the result. Observe that it is only half a century 

ago that at the secondary level problems in geometry were presented in 

this way ("let x be the object that should be found"; at this point 

analysis was started and finally, to obtain the definitive solution, a 

demonstration had to follow). Later on, the synthesis got lost and only 

the name analysis remained. Thus the denomination "analysis". 

Let us now consider more recent studies. The book "Studies in Modern 

Algebra" [Albert, 1963] contains two papers of Saunders MacLane. The first 

"'Some Recent Advances in Algebra" is the text of a lecture given by the 

author in 1938. The author tries to resume the state of algebra at that 

moment. He then poses the question: "What is algebra?". He tries the 

following characterization: "Algebra tends to the study of the explicit 

structure of postulationally defined systems closed with respect to one 

or more rational operations". However, he observes that in this definition 

not all aspects of algebra are justified, for instance topological 

operations in algebra and among them the theory of valuations. 

In 1962 MacLane returned to the problem in a paper published in the same 

book, "Some additional advances in algebra". The last section concerns 

"The nature of algebra". As a consequence of the developments since 1938 

he rejected his answer from 1938 that algebra would be a theory of the 

structures of systems defined by certain postulates. He mentions, for 
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instance, the theory of finite groups and certain algebraical systems 

which result from the application of algebra in geometry, topology, 

analysis. 

But is is not the end of the story. In a more recent paper "Topology and 

logic as a source of algebra" (1946) MacLane posed again the question 

"What is algebra?", refering to his previous papers. Now his answer is: 

"But no formal definitions hold valid for long, since algebra and its 

various subfields steadily change under the influence of ideas and problems 

coming not just from logic and geometry, but from analysis, other parts 

of mathematics, and extra mathematical sources". 

One may wonder what would be the sense of attempts to give a 

definition of such a steadily growing and changing subject. The question 

is more general: can an answer, valuable for all time, be given on the 

question what mathematics essentially is? It is perhaps better to ask 

what, from a philosophical point of view, mathematics constitutes, which 

are the elements by which it is composed, how these things have changed 

in the course of the evolution: definitions and concepts, analogies, 

problem solving, properties of various kinds, special or general, state

ments that are proved, deductive reasonings, development of theories 

around and about concepts •.• Such a study should not have the intention 

to give details about theories but should concern the theories themselves 

and the mutual relations between the various mathematical theories. 

Examples serve as illustrations of developments. The kind and form of the 

assertions can then be compared to those in other sciences, thus making 

more clear the position of mathematics among the sciences. The difference 

between these two ways of approaching the fundamental question will be 

clear. Algebraization is one of the tools by which the building was 

gradually constructed. One may perhaps say that it is one of the corner

stones in the presentation of mathematics as a unity; it is some expla

nation of this unity. We shall not make an attempt of such a study here. 

We return to algebra and algebraization. 

We already made remarks on aspects of algebra. For a good understanding 

of the phenomenon of algebraization some more detailed information 

with regards to these points will be useful. 

1. First about the algebraic notations and "calculation with letters". 

Just as ordinary arithmetic, the algebraic notations have been associated 

to mathematics, in particular to mathematical analysis, since a long time. 



It can be said that this is the very beginning of all algebraization, 

although we understand by it a deeper aspect than "calculation with 

letters". 

2. The preceding aspect is connected with an other aspect which can 

be called algebraic manipulation. Evidently algebra should not be 

identified with manipulations. The latter are found in any case where 

calculations are made and it is not an aspect characteristic for algebra. 

It is interesting to mention what Lebesgue said on this point. 
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In his "Notice de candidature a la Faculte des Sciences de Paris" (1918) 

Lebesgue gave comments on his work on "Theorie generale des fonctions de 

variables reelles", his main domain in the preceding years; see Lebesgue, 

1972]. He observed that there is an essential difference between operations 

on numbers, which in his opinion belong to the domain of arithmetic and 

algebra, and operations on functions which belong to analysis. By way of 

example he considers two operations, working on a function f of the 

variable x: 

F(x) = f(x)+1 and G(x) 
x 
f f(t)dt. 
0 

For calculating the value of F for a value x0 of x it is sufficient to 

know f(x0), the other values off are not necessary. It is an operation 

to be executed on numbers; it is an algebraic manipulation. For knowing 

G(x0), however, it is necessary to know all the values off in the 

interval [O,x0]. It is a functional operation. Lebesgue observes an 

essential difference between these two cases. To introduce new functions 

in analysis we need operations which work on functions. Without them, 

according to Lebesgue, one proceeds algebra with the different values of 

the function, but the function as object for itself is not introduced. 

Evidently Lebesgue mentions integration and differentiation as operations 

belonging to the domain of analysis. There would be some reason to say 

that even these functional operations belong to algebra, more exactly to 

an algebra, but then it is an algebra of a higher level, namely an 

algebra of operations on a class of f.unctions (later on we shall make 

remarks on a notion of axiomatic integral). Following Lebesgu.e it is the 

finitary character that distinguishes the manipulations of algebra from 

those of analysis. It is the distrust in reasonings of continuity which 

has been an early source of "algebraization" : only finitary operations 

can be trusted. 

In this context it is of interest to mention here a paper of Dedekind 
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"Uber die Einfiihrung neuer Funktionen in der Mathematik" (1854) ; see 

[Dedekind, 1932]. Dedekind discussed the way by which new functions and 

new operations are introduced in mathematics.He explains that this is done by 

an appropriate extension of already existing definitions, justified by the 

results of the theory based on the latter. With regard to analysis he 

considers from this point of view a formal definition of integration as 

inverse operation of differentiation and he gives a discussion of the 

evolution of this method. The comparison between analysis and the elemen

tary operations in arithmetic which he gives is interesting. Arithmetic 

and analysis are considered from the same point of view. 

3. We considered aspects of algebra. There is an other aspect that 

must be mentioned: the algorithmic methods . Algorithms were introduced 

from the beginning of arithmetic and algebra. There are many examples and 

theories in mathematics where algorithms are used. They are from history, 

but also from recent times. In the following we shall give examples. In a 

sense that perhaps is somewhat broader than is customary, we shall call 

algorithmic any method and theory by which results are obtained by means of 

in some way mechanical operations. These are rules that can be applied in 

certain cases in such a way that one can be sure to find the solution of 

a problem. 

Algorithmic methods are to some extent inherent to the character of 

algebraic operations. But not only in algebra: there are algorithmic 

aspects in analysis. Why does one not find them in "modern algebra" 

(Bourbaki)? There are perhaps reasons : 1° algorithms depend too much on 

special structures, having thus a lack of generality; 2° there is some 

preference in studying subsets, subgroups, ideals, ••. , objects for which 

algorithms are difficult. A fortiori there are difficulties when the 

axiom of choice is used. 

4. There is still an other important aspect of algebraization. It 

is connected with developments in algebra which can be called the study of 

structured systems. 

Since the middle of the 19th century algebra developed itself in a 

direction which led to forms quite different from algebra as a "discipline 

of calculations". By the work of Grassmann, Cayley, Dedekind, Frobenius, 

Clifford and many others the study of structured systems became important. 

First there were hypercomplex numbers, groups and vector spaces in concrete 

sense, etc., but gradually one began to study, under the influence of 

Emmy Noether, Artin,and othersgroups, rings, fields in an axiomatic way. 
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In the first decades of our century this direction became dominating. One 

studies sets, provided with structures defined by means of systems of 

axioms, and the various notions which are associated with them, for 

instance homomorphisms, isomorphisms, •••• One is interested in the set 

as a totality, more than in the properties of the individual elements. 

This has been of profound influence in all parts, also in analysis and 

it is a development continuing to our times. It is a highly important 

aspect of algebraization. These are many examples of this tendency in the 

history. 

Speaking of "modern algebra" one should carefully distinguish between 

algebra as a discipline, as a totality of theories, and the notion of 

algebra as a set provided with a structure. In the second sense there are 

infinitely many algebras, with finite or infinite dimension; algebras of 

functions, real or complex, etc. 7). This reflects itself in the aspects 

of algebraization. 

5. Finally we. must consider the role of topology. 

The standpoint to consider in algebra only finitary theories can be 

considered as abandoned. Infinite sets are nowadays indispensable: 

infinite groups and fields and even a non-constructive apparatus as Zorn's 

lemma are accepted. See for instance the Artin-Schreier theory of formally 

real fields which is incorporated in algebra. But the notion of a limit, 

should it be accepted in algebra? How with the theory of real numbers and 

the theory of p-adic numbers based on the theory of valuations? Perhaps 

the standpoint might be taken that for reasons of principle the theory of 

real numbers should not be a subject of modern algebra because it is 

just one of the aims of modern algebra to treat abstract and general 

systems. From this point of view the real and the p-adic numbers play a 

role in illustrating the general theory, not as a subject for itself. 

Think for instance on the general Galois-Theory (for finite fields etc.). 

There is an other example. The theorem of Hahn-Banach on the extension 

of linear functionals in a vector space is fundamental in functional 

analysis. Thus, one should say that it belongs to the domain of analysis. 

However, reading the demonstration, one can observe that the theorem is 

valid in vectorspaces without any topology defined on them. Only 

properties of the real numbers and Zorn's lemma are used. The standpoint 

that it is an algebraic theorem can be defended. Is there an essential 

difference between this theorem and some properties of homomorphisms and 

isomorphisms in algebra and their applications? However, from the stand-
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point of Lebesgue I mentioned before, it should be a theorem of analysis. 

On the other hand, if it is considered as analysis, it is an example of the 

penetration of algebraic methods in analysis. It is then an example of the 

algebraic tendencies in modern mathematics. 

All these remarks justify a historical study of the phenomenon and the 

roots of algebraization, whether this has been and still is a systematic 

aim, or is a more or less unconscious fact in the evolution. We study these 

aspects in the following pages. 



CHAPTER 3 GEOMETRY AND ALGORITHMIC METHODS 

We will consider the developments in the 17th century, in particular 

with regard to analytic geometry. This discipline is connected with the 

name of Descartes and his book "Geometrie'; published in 1637 as an 

appendix to his "Discours de la methode". This book is often considered 
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as the beginning of analytic geometry. However, our analytic geometry -that 

is the traditional analytic geometry with axes, systems of coordinates- can 

not be found in this book. The value of it is in the application of algebra 

to classical geometric problems. Before Descartes "algebra" properly 

speaking did not exist. If, for example, a designed a segment of a line, 
2 a was a square and could not be considered as a one dimensional quantity, 

a rectilinear segment. According to Descartes' theory a 2 was also a recti

linear segment. An algebraic equation in x and y signified an equation 

between one dimensional quantities, segments for instance and this opened 

the possibility of studying curves by means of algebra. The step to base 

this concept of a quantity on the concept of a number was only done in the 

middle of the 19th century (Weierstrass, Dedekind and some other). 

Traditional analytic geometry -geometry with axes and coordinates-

was gradually developed under the influence of Descartes' book. In this 

respect should be mentioned the clutch mathematicians F. van Schooten,the 

"Raadpensionaris" Jan de Wit and the great scholar Christiaan Huygens. By 

means of technical calculations, an algebraic calculation in accordance 

with the rules of algebra, geometrical properties could be found and 

purely geometrical reasonings were nearly eliminated. It concerns thus an 

algorithmic method as we mentioned before. This is analytic geometry as a 

kind of automatism; for more details see [Boutroux, 1920] and [Boyer, 1956] 

It is just againstthis automatism for treating geometric problems that 

there came a reaction, even only half a centrury after Descartes' creation. 

The criticism came from Leibniz. This is a rather curious fact because 

algorithmic methods played an important role in the works of Leibniz: his 

work on a universal mathematics and, more philosophical, a General Science 

(Characteristica Universalis). Leibniz criticized the Cartesian method 

in so far as it was practiced by the disciples: all imagination was 

eliminated and there was no question of an application of algebra to 

geometry; geometry was reduced to algebra. 

The next passages of this critisism are interesting. In his "Projet 

d'un art d'inventer" he criticized the place attributed to algebra as 
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follows [Couturat, 1903]: 

"On s'etonnera peut estre de ce que je dis icy, mais il faut s.;;avoir que 

(l'Algebre) l'Analyse de Viete et des Cartes est plus tost l'Analyse des 

Nombres que des lignes: qouy qu'on y reduise la Geometrie indirectement, 

en tant que toutes les grandeurs peuvent estre exprimees par Nombres; mais 

cela oblige souvent a des grands detours, et (quelques) souvent les 

Geometres peuvent demonstrer en peu de mots, ce qui est for long par la 

voye du calcul. Et quand on a trouve une equation, dans quelque probleme 

difficile, il s'en faut beaucoup qu'on aye pour cela une [demonstration 

courte et belle] construction du probleme telle qu'on desire. La voye de 

l'Algebre en Geometrie est asseuree mais elle n'est pas la meilleure, et 

c'est comme si pour aller d'un Lieu a l'autre on voulloit toujours suivre 

le cours des rivieres, comme un voyageur italien que j'ai connu, qui 

alloit toujours en batteau quand il le pouvait faire, et quoy qu'il ait 12 

lieues d'Allemagne de Wurcebourg a Wertheim en suivant la riviere du Mayn, 

il aima mieux de prendre cette voye, que d'y aller par terre en 5 heures 

de temps. Mais lorsque les chemins par terre ne sont pas encor ouverts et 

defriches, comme en Amerique, on est trop heureux de pouvoir se servir de 

la riviere: et c'est la meme chose dans la Geometrie quand elle passe les 

Elemens; car l'imaginationsy perdroit dans la multitude des figures, si 

l'Algebre ne venait a son secours jusqu'a ce qu'on etablisse une 

characteristique propre a la Geometrie, qui marque les situations comme 

l'Arithmetique marque les grandeurs"[l.c.,p.181]. 

This objection of Leibniz was directed towards an automatic use of 

algebraic methods. But it was not only the method which was criticized, 

there was also an objection with respect to the efficiency of these 

methods. In a letter to Tschirnhaus (1684) he made the following remark 

about Malebranche, an adept of the cartesian method: 

" .•. ,et je ne pouvais pas m'empecher de rire, quand je voyais qu'il 

[MalebrancheJcroit l'algebre la premiere et la plus sublime des sciences, 

et que la verite n'est qu'un rapport d'egalite et d'inegalite, ...•. que 

l'arithmetique et l'Algebre sont ensemble la veritable logique". 

In an other letter he writes that he has shown "combien la geometrie 

de M. Descartes est bornee". The method was not even sufficient for 

analytic geometry because there are infinitely many transcendental 

problems which are beyond its scope. Descartes considered only algebraical 

equations. Now there are transcendental equations which can not be 



expressed in a purely algebraic form (for instance the exponential 

functions). Remark that the cycloidal curve belonged to mechanics. By way 

of example Leibniz mentions the equation xx + x = 30, in which the degree 

itself is the unknown. It is a curious equation. Evidently 3 is a root. 
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But are there any others? And what can be said about the equation xx+x = a? 

Does it belong to analysis or to algebra? Or perhaps to arithmetic if the 

condition is put that x must be an entire number? And what if x is supposed 

to be a complex number? 

One must look at these criticisms in the light of the fundamental 

creation of Leibniz (infinitesimal calculus) which furnished more powerful 

methods, applicable to more general curves. For more details on the 

controversies between Leibniz and the cartesians see [Couturat, 1961]and 

[Brunschvig, 1912]. 

REMARK. In history there is somewhat confusion in the use of the terms 

"algebra" and "analysis". When infinitesimal calculus and calculus with 

series were created one believed (in particular Newton) that this concerned 

an extension of algebra, thus leading to the name "algebra of the infinite" 

('algebre de l'infini"). Later this became "infinitesimal analysis" and 

eventually "analysis". 

As soon as the method of Descartes was introduced it was further 

developed rapidly, taking an important place and neglecting non-algebraic 

methods in geometry. At the beginning of the 19th century some counter

direction was produced in the works of Monge and especially Poncelet. In 

his "Traite de proprietes projectives des figures" (1822), which contains 

his researches from 1813 on, Poncelet writes: 

"C'est done cette Geometrie particuliere qu 1 il faut chercher actuellement 

a perfectionner, a generaliser, a rendre enfin independante de l'Analyse 

algebrique". 

And further: 

"En effet, tandis que la Geometrie analytique offre, par la marche qui lui 

est propre, des moyens generaux et uniformes pour proceder a la solution 

des questions qui se presentent, a la recherche des proprietes des 

figures; tandis qu'elle arrive a des resultats dont la generalite est pour 

ainsi dire sans bornes, l'autre procede au hasard; sa marche depend tout a 
fait de la sagacite de celui qui l'emploie, et ses resultats sont, presque 

toujours, bornes a l'etat particulier de la figure que l'on considere". 
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Poncelet proposed to remedy this defect of analytic geometry. 

Projective geometry was the result of his research. It is a synthetic 

geometry. One of the basic principles of this geometry was the principle 

of continuity. This principle allowed Poncelet to derive properties of a 

figure from those of an other figure (compare the later.enumerative geometry). 

Several mathematicians continued this work of Poncelet. Especially Von 

Staudt studied the foundations of this new geometry. It is a remarkable 

fact in history that already in the first decades of the 19th century an 

algebraic method for treating projective geometry was developed next to 

the synthetic method which just originated from the desire to develop a 

theory independent from algebra. It is a direction especially studied by 

Mobius and Plucker. There are reasons to say that the algebraic method has 

shown to be superior to the synthetic method. The algebraic method has led 

to the creation of still other geometries, euclidean and non-euclidean 8). 

Is this the power of algebraic methods? 

With respect to the synthetic direction J. Steiner must be mentioned. He 

was a violent representative of synthetic methods in geometry. He is known 

as a pure geometer with a high aversion of algebraical methods 9). For 

details in these developments see [Freudenthal, 1968, 1974]. 

Much later Poincare made some remarks which resemble the criticism of 

Leibniz. He made these remarks in his Preface in the works of Laguerre 

(1898). He wrote as follows: 

"Daus le programme d'admission a cette Ecole [l'Ecole Polytechnique], la 

place d'honneur appartient a la Geometrie analytique. Cette Science se 

renouvelait alors par unerevolution en quelque sorte inverse de la reforme 

cartesienne. Avant Descartes, le hasard seul, ou le genie, permettait de 

resoudre une question geometrique; apres Descartes, on a pour arriver a un 

resultat des regles infaillibles; pour etre geometre, il suffit d'etre 

patient. Mais une methode purement mecanique, qui ne demande a l'esprit 

d'invention aucun effort, ne peut etre reellement feconde. Une nouvelle 

reforme etait done necessaire: Poncelet et Chasles en furent les 

initiateurs. Grace a eux, ce n'est plus ni a un hasard heureux, ni a une 

longue patience que nous devons demander la solution d'un probleme, mais 

a une connaissance approfondie des faits mathematiques et de leurs rapports 

intimes. Les longs calculs d'autrefois sont devenus inutiles, car on peut 

le plus souvent en prevoir le resultat" 10). 

This remark can be considered as an argument in favour of methods not 

using coordinates, that is direct methods. However, it should not be 
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correct to consider it as a refusal of the use of algebraic methods. In later 

developments of analysis, especially in functional analysis, direct methods 

appeared to be very important and it is just algebra which pushed these 

methods. There is, for instance, the notion of a vector space, one of the 

fundamental concepts of this theory which is connected with the development 

of algebra. But it is not the algorithmic aspect of algebra which plays a 

role here, it is structural aspects that are fundamental in this 

development. This shows once more the complexity of the phenomenon of the 

influence of algebra. 

Note that also Lie had some reserves with regard to automatic methods; see 

[Monna, 1973bJ. 

It is of interest to make at the end of this chapter a general remark 

on the algebraization of geometry. The algebraization of Descartes concerns 

a translation from geometry into the language of algebra, that means an 

interpretation of one theory into an other. Formerly one distinguished 

between the "cartesian plane" and the "euclidean plane". The theory of 

Descartes concerns in some way an external algebraization. 

The algebraization of geometry by means of the theory of lattices (Birkhoff, 

Von Neumann) is to some extent more of an intrinsical character, because 

no internal structures are imposed on points and lines (mention couples 

of numbersin cartesian geometry). 

In the next chapter aspects of analysis will be considered from the 

point of view of algebraization. It is an algebraization of an other 

character: it concerns internal algebraization. 
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CHAPTER 4 INFINITESIMAL CALCULUS AND ALGEBRA 

In this chapter the relations between algebra and fundamental 

concepts in analysis will be considered: the notions of limit, derivative 

of a function and integral • 

. 4.1 Algorithmic aspects 

After the invention of infinitesimal calculus by Leibniz and Newton 

(the wellknown controversary standpoints will not be discussed here) and 

the work of the great mathematicians who continued in this domain, it was 

Lagrange who had the idea to give a foundation of the theory of analytic 

functions by means of algebraic methods, avoiding the concept of a limit; 

there was not yet a clear concept of this notion. In his book "Theorie 

des fonctions analytiques" (1779) Lagrange tried to reduce the theory of 

these functions to "analyse algebrique". The complete title is: "Theorie 

des fonctions analytiques, contenant les principes du calcul differentiel, 

degages de toute consideration d'infiniments petits, ou d'evanouissans, de 

limites OU de fluxions,et reduits a l 1 analyse algebrique des quantites 

finies"11). Lagrange still understood the concept of function in the 

classical sense: "on appelle fonction d 'une ou de plusieurs 

quantites, toute expression de calcul dans laquelle ces quantites entrent 

d'une maniere quelconque, melees ou non avec d'autresquantites qu'on 

regarde comme ayant des valeurs donnees et invariables, tandis que les 

quantites de la fonction peuvent recevoir toutes les valeurs possibles". 

Analysis was considered as an extension of the "algebra of the finite", it 

was "algebra of the infinite"; compare the remarks on p. 15. 

Lagrange defined the derivatives of a function in an algebraic way. 

He started from the Taylor series and showed that any function is 

represented by such a series. The successive derivatives of a function f 

are defined as the coefficients of the development of f(x+h) as a power 

series in h. Thus, it concerns a definition in order to avoid the 

difficulties connected with a passage to the limit.There is some reason 

to say that this method found its continuation in the theory of Weierstrass 

who based his theory of the functions of a complex number on power series 



however without eliminating limit problems. Note that even in our time 

this way is followed in algebra when it concerns the definition of the 

derivatives of apolynomial. See for instance in the book of Van der 
Waerden "Algebra". 

Having thus defined the successive derivatives, the theory was then up 

19 

to our time further developed by means of algebraic manipulations, that is 

an algebraic calculus with functions. This is an internal algebraic aspect 

of the elementary infinitesimal calculus, such as it was gradually 
developed in the course of time until our days. One starts with defining 

the general notion of the derivative of a function by means of a limit 
process and the general properties are then proved: the derivative of a 

sum of functions, a product and quotient of functions, the derivative of a 
composed function etc. The derivative of the elementary functions, 

exponential functions, trigonometrical functions etc. is determined by 
means of a limit process. And then it is only a question of a correct 

application of the rules to determine the derivative of a given function, 
at least for the functions which usually appear in the applications. 

There is in general no need to determine any more limits. One knows what 

one has to do in order to determine a derivative. Up to large extent it is 
an algorithm that must be applied in order to find the desired result. 

In fact it is algebra. 

The same can be said about integral calculus. Having defined the 
notion of an integral one proves the properties: the additive property of 

the integral with respect to finite sums, substitution of a new variable 

and, important in practice, the relation between differentiation and 
integration (but remind the difficulties connected with this relation). 

Now, if an integral must be calculated, one starts with trying to find a 
primitive function of the function which must be integrated. One tries 

substitutions, transformations and algebraic manipulations and for a large 
class of functions - but not for any integrable function - this leads to 
the desired result. And again, it is algebra. And even if there is no 

primitive or if this can not be determined, an integral can sometimes be 
calculated by algebraic 

1T 
? 

methods. For instance 

r log sin x dx. 
0 
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There is an other example in the integration of differential equations. 

Gradually one has found classes of equations which can be integrated by 

means of elementary functions: linear equations, equations of Bernoulli 

and of Riccati etc. When there is the problem to integrate an equation, 

one often tries to reduce the equation to one of a well known type by means 

of algebraic manipulations. 

All these are methods of an algorithmic character. It can be said that 

during two centuries infinitesimal calculus was to a large extent reduced 

to algebra. This changed gradually in the 19th century by the works of the 

great analysts (Cauchy, Weierstrass). Studying, for instance the general 

differential equation 

dy 
dx f(x,y), 

this is analysis. This leads to assertions of an other type. It is the 

domain of existence theorems. They are the subject of the next chapters. 

It may be said that"desalgebraization"of infinitesimal calculus came in. 

In our century, however, algebra has taken again an important place in 

analysis, but it is a kind of algebra of a character different from 

classical algebra. 

4.2 Derivation and structures 

There is a study of the French mathematician Bourlet (1879) 

concerning the introduction of the notion of the derivative of a function 

which is much more profound [Bourlet, 1879]. There are good reasons to 

discuss this work, which is not very well known, in more detail because 

there are indications in it of a new direction of research in analysis 

which is important for later developments. This is the tendency to detach 

the internal structure of theories andrrotions. It is connected with the 

structural aspects of algebra as mentioned before. It was the aim of 

Bourlet to give an internal analysis of the notion of derivat.ive, he 

wants to give a characterization. 

He considers a family F of functions, called "fonctions regulieres", 

and studies maps T (Bourlet calls them "transmutations") F + F verifying 



the following conditions 

T(u+v) = Tu + Tv, 

T(Au) A.Tu, 

T(uv) uTv + vTu, 

u,v E F, A. Ea:. 
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( 1) 

(2) 

(3) 

Bourlet finds the general form of these maps and he succeeds in giving 

conditions which T must verify in order that T is identical with the 

classical derivative. To obtain his results he needs a condition on 

continuity, expressed in a certain form of convergence (in later develop

ments in algebra an analogous notion is introduced, but then, evidently, 

there is no such a condition). Thus, it concerns here an analysis of the 

structure of the classical notion of the derivative with respect to 

characteristic properties and it is an attempt to represent this structure 

in a form as simple as possible. The philosophy is to detach the different 

parts of the operation "derivation", in particular to separate the 

algebraic aspects, expressed in the conditions (1), (2), (3), from the 

topologic aspects, expressed in the form of limits. In following this 

way, there might be some hope of the possibility of applying classical notions, in 

this case the derivative, to more general domains than those for which they 

were originally defined. There are some reasons to support this idea in 

the way by which Bourlet formulated his problem; Bourlet considered some 

general applications; see [Manna, 1974]. 

The later developments give the following picture. The idea of such a 

generalization reflects itself in modern mathematics in the concept of 

derivation in an algebra, evidently without any condition on continuity 

because there is no topology in that situation. But this development 

took place much later. This notion of derivation was introduced by 

Jacobson in 1937 in the theory of Lie algebras; see [Monna, 1974]. The 

definition is as follows. Let A be an algebra over a field K. A derivation 

D of A is a map A + A such that 

D(x+y) = Dx +Dy, 

D(ax) aDx, 

D(xy) x. Dy + Dx. y. 
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This definition is evidently taken from analysis. 

Historical note. At his time Bourlet could not give a definition of the 

concept of a derivation for such a general situation because the notion 

of an algebra, axiomatically defined, was only introduced in our century. 

The delay in the introduction of algebras as axiomatic systems is rather 

curious. This concept is connected with the definition of vector spaces. 

Now, already in 1888 Peano gave a definition of the concept of a vector 

space in a nearly modern form as an additive group with scalar multi

plication. Even Grassmann had this concept in a somewhat less abstract 

form; he even defined multiplication of the elements (hypercomplex 

systems). See [Monna, 1979]. Now, the step to come to the introduction of 

an algebra over a field, axiomatically defined, seems not so difficult. 

Nevertheless, the definition was given not earlier than in the twenties of 

our centry. This was a very important progress for the development of 

analysis under the profound influence of algebra. 

This form of algebraization, or the influence of algebra, differs in 

an essential way from the tendenci~s towards algorithmic methods. It 

concerns here attempts to detach structures, the tendency to reduce a 

theory to its most simple and fundamental form. The aim is a unification of 

theories, the tendency to discover the same structures in theories which at 

first seem to be very different and it is then hoped to come to a better 

and more profound understanding of theories. Can it be expected that these 

aims can be reached by reducing a theory to an algebraic form or, less 

rigorous, by applying algebraic methods as much as possible? An example is 

functional analysis which could not have existed without the influence of 

algebra • 

These formal considerations of Bourlet concerning the concept of 

derivation found a continuation in analogous considerations in a paper 

by Drach from 1898. In the framework of algebraization this is an 

important work in the domain of analysis because Drach studies analogies 

between certain parts of algebra and the theory of functions which are 

defined by differential equations, but it is still more important for the 

formal algebraic methods he used. It is his aim to give a classification 

of transcendental functions which are solutions of algebraic differential 

equations or systems of partial differential equations. 

His point of departure are the rational relations which exist 
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between a solution and its derivatives. As a simple example he mentions 

the logarithmic function. This function verifies the differential equation 

and the relations 

xy' 

xy" + y' = 0, 

xy"' + 2:y" = O, 

are necessay consequences. However, with these relations it is not 

possible to distinguish between y and y+c, where c is an arbitrary 

constant. Here Drach mentions the parallels with the theory of algebraic 

equations and the algebraic relations with rational coefficients between 

an algebraic number and its conjugates. He compares this with the rational 

relations between the functions of a fundamental system of solutions of a 

differential equation or a system of equations and the transformation 

group which operates on these functions and their derivatives in such a 

way that these relations are invariant. Here is the analogy with Galois 

theory in algebra and this analogy is the guide of the work of Drach. He 

remarks that Picard (1883,1887) and Vessiot (1892) had earlier done some 

work of this type with respect to linear differential equations; see 

[Vessiot, 1892]. In his introduction Vessiot remarks that he wants to give 

a theory of integration of linear differential equations with analogy to 

the theory of Galois in the theory of algebraic equations. Vessiot and 

Drach refer to the theory of transformation groups of Lie which is, to 

some extent, the foundation of the theory (later on this theory of Lie 

has led to the theory of groups and algebras of Lie and the theory of 

algebraic groups, theories with high algebraic character). So, Drach's 

theory was not entirely new. 

However, it is the philosophy behind the work of Drach by which it 

differs for reasons of principle from the theory of Picard and Vessiot; 

it is just this philosophy which plays a role in certain works of Lebesgue 

and Frechet; that will be a point of discussion in following sections. 

The idea to put in the foreground the algebraic relations between a 

function and its derivatives suggests an algebraic method for introducing 

the concept of a derivative. Drach tries to characterize solutions by 

algebraic means and he wants to give a formal theory, guided by 
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algebraicanalogies. His purpose is "une etude pure logique" and he speaks 

if "l'integration logique" of differential equations. This denomination has 

been chosen in oppositio.n to the term''integration geometrique", which can be 

used to design the problem of Cauchy, in which the transcendental nature 

of the solutions is not taken into account. Drach wants to formulate his 

theory for systems of elements which are determined by their mutual 

relations. The following quotation ·has been taken from his Chapter I: 

"Nous definirons tous les elements sur lesquels nous raisonnerons dans la 

suite, c'est a dire les nombres et les fonction algebriques, les 

differentielles et les derivees de ces fonctions, et, d'une maniere 

generale, les fonctions d 1une OU de plusieurs variables qui Verifient des 

relations differentielles algebriques, par leurs liaisons avec les 

elements d'un premier systeme, dont nous allons d'~bord preciser les 

proprietes. 

Nous supposerons que ce systeme satisfait aux conditions suivantes: ..• " 

These conditions are the usual rules of composition of the theory of 

groups; Drach used them for introducing entire and rational numbers. 

Considering "elements indetermines", the notion of a variable element 

is also introduced by means of its rules of composition: 'Un element 

variable x se compose avec lui-meme et avec les nombres rationels 

suivant deux modes qui possedent les proprietes de l'addition et de la 

multiplication des nombres rationnels, et ce sont la toutes ses 

proprietes" (l.c.p. 263). 

These remarks must be seen as a program for his work. 

Polynomials are introduced in a formal way. Ify = f(x) is a 

polynomial, a new variable dx -not depending on x- is introduced and then 

there is the formal development 

f(x+dx) 
2 

f(x) + dx f'(x) + dx f"(x) 
1 2! + ••• ' 

with coefficients depending on f. Drach call dx a differential. A new 

function of x and dx, represented by dy and called the differential of y, 

is defined by the identity 

dy f'(x)dx. 

f' is called the first derivative of y. This process is continued to 

define the derivatives of higher order. All this resembles the method of 
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Lagrange. 

Drach continues these formal considerations in a more general sense. 

He introduces in a formal way the concept of a differentiable function of 

one or more variables. Drach speaks then of an algebraic definition of the 

notion of derivative. Differentiable functions in this sense form the 

subject of this work.These are elements (functions) which satisfy the 

following conditions: 

"1. Ils se composent entre eux et avec les polynomes a coefficients 

rationels suivant deux modes distinct qui possedent les proprietes 

generales de l'addition et de la multiplication de ces polynomes 

proprietes qui ont servi a definir les variables. 

2. A chacun d'eux u, peut etre associe un element du, qu'on appelle sa 

differentielle, de telle sorte que l'on ait 

d(u+v) 

d(uv) 

du + dv, 

udv + vdu. 

La differentielle d'une constante est nulle. 

Les differentielles des variables independantes sont de nouvelles 

independantes. 

3. Lorsque z designe une fonction derivable des n variables x1,x2 , ••• ,xn, 

on a identiquement 

The coefficients a. are called the first derivatives of z and 
l. 

designed by ~z • There is still a fourth condition on the permutability of ox. 
derivatives of 1 higher order. 

All this resembles the method of Bourlet. But there is an essential 

difference which will be clear from the following passage: 

"Nous avons ete amenes ainsi a definir d'une maniere extremement precise 

tous les elements du raisonnement : nombres, variables, fonctions, 

derivees, etc. avec les moyens les plus simpleset a partir de'theoremes 

generaux sur les fonctions derivables pour determiner et classer toutes les 

transcendantes du Calcul integral, ou du moins celles que nous pouvons 

definir algebriquement". 

Bourlet considers a certain family of transformations (transmutations) 

working on a certain class of functions and it is his aim to find those 
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properties of these transformations which are characteristic for the 

crdinary derivative. He needs a condition on continuity. 

Drach gives an algebraic definition of the derivative by means of 

certain conditions. He remarks that these conditions are not contradictory 

because they are verified by the polynomials. He shows that there exist 

functions which are differentiable in this sense but different from 

the polynomials. It is essential that here objects are defined by means of 

properties which are imposed; probably this was new at that epoch. It is a 

theory of an axiomatic character; Drach was led to it by algebraic 

analogies. In a more explicit form there are analogous considerations in 

the works of Lebesgue and Frechet. Drach finds a justification for his 

ideasin some remarks of Weierstrass: 

"Je mehr ich iiber die Principien der Functionentheorie nachdenke -und ich 

thue dies unablassig- um so fester wird meine Ueberzeugung, dass diese auf 

dem Fundamente algebraischer Wahrheiten aufgebaut werden muss, und dass es 

deshalb nichtder richtige Weg ist, wenn umgekehrt zur Begriindung einfacher 

und fundamentaler algebraische Satze, das "Transcendente" um mich kurz 

auszudriicken in Anspruch genommen wird, so bestechend auch auf den ersten 

Anblick z.B. die Betrachtungen sein mogen, <lurch welche Riemann so viele 

der wichtigsten Eigenschaften algebraicher Funktionen entdeckt hat". 

(1.c.p.254). 

One may wonder, however, whether the principles which served 

Weierstrass as guide can be considered as an example of the tendency 

towards algebraization or, perhaps better, a form of axio.matization as 

meant here. It can scarcely be said that in the direction of Weierstrass 

there is the idea to detach structures by following the algebraic-axiomatic 

way. His preference for using algebraic methods -however without excluding 

the use of limits- found its base in a mistrust of the more towards 

.geometry directed methods of Riemann, which in his view had a lack of 

exactness. The theory of Weierstrass can better be considered as a 

continuation of the ideas of Lagrange with their algorithmic aspects 12). 

The philosophy of Drach, with its reference to the theory of groups and 

analogies with the theory of Galois differs from it on essential points. 

The influence of algebra is still more clear in the later developments. 

One has succeeded to formulate the theory of Picard-Vessiot on algebraic 

differential equations, as was continued by Drach, entirely in terms of 

algebra. The theory which resulted is called "differential algebra". The 

point of departure are differential fields.These are fields in which 



there is next to addition and multiplication a third operation, called 

derivation (compare Bourlet). To any element a of the field is associated 

an element a' of the field verifying 

(a+b)' =a'+ b' 

(ab) ' = ba' + ab' • 
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Any element of the field whose derivative in 0 is called a constant. There 

are easy examples. 

Differential polynomials with coefficients in such a field are 

introduced. If P is such a polynomial an algebraic "differential equation" 

in the sense of this theory is an equation P = 0 and a solution is a set 

of elements -if necessary in an extension of the field- verifying this 

equation. In this way it is possible to apply methods of algebra, in 

particular the theory of Galois, to obtain properties. Parts of the theory 

of ordinary differential equations can be transformed into algebra. Ritt 

(1950) remarks that this abstract theory is useful to detach algebraic and 

analytic methods. There are, for instance, relations between the Galois 

group of the equation and the possibility of obtaining solutions by means 

of quadratures. Especially Kolchin has done work in this area. See 

[Ritt, 1932], [Kaplansky, 1957; 1976]. 

For the rest there are connections of this algebraic differential 

theory with an older theory which are worthwhile to be mentioned here. 

It concerns the integration of algebraic functions. Before we already 

mentioned some algorithmic aspects of elementary integral calculus. For 

a class of algebraic functions the indefinite integral can be determined 

by means of methods which can be called algorithmic. The integral can then 

be expressed by means of elementary functions: algebraic functions, 

exponential functions, trigonometrical functions, logarithmic functions 

and their finite combinations. But it is not possible for every algebraic 

function. Liouville worked on this problem in the period from 1833 until 

1841. His aim was to find the form of the indefinite integral of an 

algebraic function if this integral can be expressed in terms of elementary 

functions. He proved the following theorem: 

Let y be an algebraic function of x; suppose that the integral of y is an 

elementary function. 
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Then 

fydx = u0 (x) + c 1 log u 1(x) + ••. +en log un(x), 

where u 1, •.• ,un are algebraic functions, ci constants, n entire. 

Liouville studied more problems of this type: integration of transcendental 

functions, integration of differential equations by means of quadratures. 

He proved that the elliptic integrals are not elementary. See [Ritt, 1948]. 

Just as the theory of Picard, Vessiot and Drach this theory of 

Liouville was further developed in an algebraic direction 13). 

For differential fields analogous theorems can be proved and the theorem 

of Liouville appears then as a special case. The theory is reduced to 

algebra. There is the following theorem: 

Let F be a differential field; suppose that the field of constants is 

algebraically closed. 

Let f E F and suppose g is elementary 14) over F and g' 

exist u0 ,u 1, ... ,un E F and c 1,c2 , .•• ,cn EK such that 

u! 
f = U I + L C, ]_ 

0 ]_ u. 
]_ 

f. Then there 

When this relation is "integrated" then one obtains the theorem of 

Liouville. For some generalizations see [Rosenlicht, 1969]. 

This is the way of the algebraization of analysis. 

4.3 Limits and algebra 

In the preceeding sections we considered the aspects of the 

algebraization of the concept of derivative. They can be summarized by 

stating that one wanted to avoid the notion of a limit, replacing it by 

concepts of algebra. The notion of a map came in the foreground, in 

particular the concept of a homomorphism, completed by some condition on 

products. 

In this section we shall consider the historical developments around 

the underlying general concept of a limit. 

In the 19th century an exact theory of the for analysis fundamental 

concept of a limit was developed (method of(E,o) ). In the first decade of 

our century a formal theory of the concept of a limit was developed by 

Frechet. To some extent his theory was comparable with the algebraization 



of the derivative. In his thesis Frechet (1906) studied, with reference 

to the works of Volterra and Arzela on "fonctions de lignes", a form of 

analysis in which the variables are "elements indetermines", illustrated 

by examples as curves, functions etc. Nowadays this would be expressed by 

saying that it concerns elements of an arbitrary set. 

For the introduction of a general notion of a functional operator and a 

theory of such operators he was obliged to give a general definition of 

the notions of limit and continuity. He remarked that up to that time it 

was customary to give a definition for every special case, adapted to 

this special situation. Frechet announced that, in order to be able to 

give a general theory, he wanted to follow a way which had some analogy 

with the road which is followed in the definition of an abstract group. 

There the theory is based on a composition of the elements of the group 

that is not explicitly given 15). 
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Proceeding in this way Frechet introduced the limit as a primitive notion. 

He supposed that, given a set, there are certain sequences of elements of 

this set, to which corresponds a certain element of this set, called the 

"limit" of the sequence. This correspondance should satisfy some 

conditions: 

1) To any sequence with identical elements this same element is associated 

as limit. 

2) To any subsequence of a sequence having a limit this same limit 

element is associated as limit. 

Later on some more axioms were added because this system of two axioms 

appeared to be too weak to base a theory upon them; the details shall 

not be given here. Sequences having such a "limit" are called "convergent 

sequences". It is a method avoiding the classical E and o. Frechet used 

the following terminology: E is said to be of class (£) when on a given set 

E a notion of limit is defined according to this axiomatic method. 

Later on he used the term "espaces-limites", "space (£)". By means of this 

notion of a limit he introduced the fundamental topological notions 

(closed sets, compact sets). He gave a definition of metrical spaces and 

he proved that the limit, defined by means of the metric, satisfies the 

axioms. On the other hand, he gave an example showing that the axiomatic 

definition of a limit is not equivalent to the metrical definition. 

The example is easy: Let Ebe the space of the real functions on [0,1] 

with pointwise convergence. It is impossible to define this concept of 

convergence by means of a metric on E. Later on there was an other 
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example of almost everywhere convergence of measurable functions. In more 

recent years there are examples in the theory of distributions. But 

topological considerations were not the first purpose in this work. 

Topology was still young in those years and further developments in 

topological direction came later. The directive of Frechet was an idea of 

unification and from that point of view should be understood the analogy 

with the theory of abstract groups which was his point of departure. 

In principle this is an axiomatic theory. Frechet refers to the papers 

of Bourlet and Drach. There is also a reference to a fundamental work of 

Lebesgue. In this framework there are reasons to say something about this 

last paper. 

It concerns a book which has been very important for the development of 

analysis: "Le)'.ons sur l'integration et la recherche des fonctions 

primitives" (first edition 1904; second edition 1928). In this book 

Lebesgue proposed to give an axiomatic definition of the concept of an 

integral, without using, however, this axiomatic terminology. An integral 

is defined as a map of the set of all bounded real functions into the set 

of real numbers verifying certain conditions which,with the exception of 

one condition, are all of algebraic character (additivity of the integral 

etc.) It is well known that Lebesgue could not realize this program. 

Lebesgue called such a definition descriptive. As an example Lebesgue 

mentions the definition of primitive functions. Frechet used the same 

method in his definition of a limit. In such a definition characteristic 

properties of the object one wants to define are announced. One formulates 

the conditions one thinks to be necessary for founding a theory and these 

conditions must be compatible and independent. Lebesgue writes: "Le 

procede jusqu'ici toujours employe pour demontrer que ces conditions sont 

compatibles est le suivant: on choisit clans une classe d'etres 

anterieurement definis des etres jouissant de toutes les proprietes 

enoncees. Cette classe d'etres est generalement la classe des nombres 

entiers; on admet que la definition descriptive de ces nombres ne contient 

pas de contradiction"(firsted.p.100) • 

Lebesgue remarks that besides descriptive definitions there are 

constructive definitions, which are mostly used in analysis. For the last 

one must formulate the operations that have to be executed in order to 

obtain the subject one wants to define and it must be proved that these 

operations are possible. Hilbert used the descriptive method in his 
11Grundlagen der Geometrie". Lebesgue added an interesting note as to forms 
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of definition: 

"C'est parce que l'on peut demontrer la compatibilite des conditions 

enoncees dans les definitions descriptives des premiers termes de la 

Geometrie a l'aide du systeme des nombres entiers qu'il est legitime de 

dire que la Geometrie peut etre tout entiere construite a partir de l'idee 

de nombre. Au point de vue de l'arithmetisation de la science, l'interet 

principal de la definition precise de l'integrale,telle que l'a posee 

Cauchy, c'est qu'elle ramene les diverses notions de grandeurs qui 

interviennent en geometrie (aire, volume, 1011gueur descourbes, etc.) a 

celle de la longueur d'un segment, c'est a dire de difference de deux 

nombres. Cette definition de Cauchy paracheve l'oeuvre de Descartes qui, 

par l'emploi de coordonnees, ramenait toutes les geometries a celle de la 

droite". 

Was the "arithmetization of science" the philosophy of Lebesgue? These 

last remarks belong perhaps more to the domain of axiomatization than to the 

domain of algebraization. But there are some formal correspondances. 

Comparing descriptive definitions and constructive definitions, I think 

the former, considered from the point of view of modern algebra, belong 

to the algebraic side because of their more formal ·structural character. 

All the more, the phenomenon of axiomatization is complicated. In 

the second edition of Lebesgue's book there are some interesting remarks 

in this respect (partially they occur already in the first edition): 

"L'emploi des definitions descriptives est indispensable pour les premiers 

termes d'une science quand on veut construire cette science d'une fa~on 

purement logique et abstraite. ( ••• )La definition est dite alors 

axiomatique, parce qu 1elle enumere les axiomes necessaires. Elle se suffit 

ainsia elle-meme et forme un tout complet. 

Au contraire, les definitions descriptives posees au cours du 

developpement d'une theorie, la definition de l'integrale par exemple, ne 

pretendent pas enumerer tous les axiomessur lesquels elles s'appuient; 

elles ne forment pas un tout complet et ne sauraient etre isolees de 

l'expose du reste de la theorie". 

Frechet (1906) also made some remarks concerning these questions. 

The theory of abstract groups was developed "en s'abstenant de donner une 

definition generale du mode de composition, mais en recherchant les 

conditions communes aux definitions particulieres et en ne retenant que 

celles qui etaient independantes de la nature des elements consideres". 

In a slightly modified form this idea is also in descriptive definitions. 
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But there is a difference. In descriptive definitions one formulates 

characteristic properties of the objects one wants to define. However 

"Au contraire, clans la theorie des groupes abstraits, le mode de 

composition est suppose defini a l'avance clans chaque cas particulier; 

mais on ignore volontairement cette definition pour ne retenir que 

certaines conditions generales qu'elle remplit mais qui ne la determinent 

pas". (Le. p.5). 

So there are various forms of axiomatization in mathematics. Some 

examples may be of interest. 

The axiomatization of geometry givenby Hilbert and many other geometries. 

In algebra there is the theory of groups, rings and fields. 

In analysis there is the example of the so called axiomatic theory of 

harmonic functions. By means of a system of axioms a subclass of the set 

of all real functions is defined and the functions of this subclass are 

called harmonic. The differential equation of Laplace does not play any 

role in this definition. But these are more definitions than axioms. In 

this theory the influence of algebra is apparent (vector spaces, theory 

of sheaves). For a global resume see [Monna, 1975]. 

In functional analysis the methods of algebra and axiomatization are 

indispensable. 

Some historical remarks about descriptive definitions may be of 

interest. Already in 1898 E. Borel [1898] followed the descriptive method 

to introduce the concept of measure on a set by imposing the condition 

(axiom) of additivity. However, for proving the existence he followed the 

constructive way. In the same year Hadamard introduced the concept of 

area in elementary geometry as a map of elementary figures into the set of 

real positive numbers (see Oeuvres 4, 2179-2180). There is also the intro

duction of an integral as a primitive function. See [Lebesgue (1903)] 16). 

From all this it appears that, as seen from the historical point of 

view, there are connections between algebraization, axiomatization and 

descriptive definitions. And for the rest, these questions are related to 

the fundamental problem of definitions in mathematics. What shall we 

understand by defining? It is a philosophical question which ·has been a 

subject of many discussions at the beginning of our century [Monna, 1972]. 

The remarks in the preceding pages concerned aspects of the history 

of the notion of limit in the most general situation where sets without 

any special structure are considered. The influence of algebra appears 



more clearly when one considers limits on sets provided with a structure. 

In that situation the notion of homomorphism becomes important when 

structural aspects -in particular linear structures- are used to define 

limits. Thereare developments of somewhat more recent times. 
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In the framework of his research in the domain of functional a~alysis 

Banach studied limits and integrals in the twenties from a fundamental 

point of view. Thesewere applications of functional analysis in its first 

stage. He proved that it is possible to associate to every bounded 

sequence of real numbers a real number having the traditional 

properties of the limit such as it is defined in classical analysis. This 

number is called the "limit" of the sequence (!;; ) and Banach used the 
n 

notation 

Lim l; , 
n.._ n 

to distinguish it from the classical lim l; • 
n 

This "limit" verifies the following properties 

Lim (al; +bn ) 
n n 

a Lim l; + b Lim n , a,b E lR; 
n.._ n n.._ n 

Lim l;n ;;i: 0 if l;n ;;i: 0 for n 1 ,2' ••• ' 
n.._ 

Lim l;n+1 = Lim l; , 
n.._ n.._ n 

L.im 1, 
n.._ 

I,im l; is called the generalized limit of the sequence (l;n), sometimes 
n.._ n 

the Banach limit [Banach, 1932]. From these conditions follows that. Lim is 

identical to the classical limit if thislatterlimit exists. The concept of 

a limit is here introduced as a homomorphism (with some supplementary 

conditions) of the additive structure of the set of all bounded sequences in

to the set of real numbers, the latter considered as additive ordered 

structure. It is an algebraic limit. Banach obtained this result as an 

application of the theorem of Hahn-Banach on the extension of linear 

functionals. The proof is non-constructive because the theorem of Hahn-



34 

Banach is non-constructive. It is based on Zorn's leuuna (Banach applied the 

theorem of Zermelo stating that every set can be well-ordered). This 

generalized limit is not unique because the extension according to the 

theorem of Hahn -Banach is not unique. By an adequate application of the 

extension theorem it is still possible to prescribe this generalized 

limit for a certain set of sequences which are not convergent in the 

classical sense (provided the value is chosen between tim and Lim). But 

t~is is only a weak improvement of the result. The theorem is not effective, 

this means that there is no constructive method for Lim. Notwithstanding 

these defects the theorem is an interesting example of algebraization. The 

problem can be posed whether there are any practical applicationsof this 

generalized limit. 

The Limit can be applied to the classical theory of divergent series. 

It is the old problem to associate to any divergent series -this means 

divergent in the classical sense- a number in such a way that in calcu

lations the series may be replaced by this "sum". It is the idea of 

"algebra of the infinite". This problem will be treated in some more 

details in chapter II, but it is of interest to make already here some 

remarks. The generalized limit gives the solution: it is sufficient to apply 

the Limit to theseqeuence of the partial sums of the series. This gives 

the solution for series for which this sequence is bounded. This is the 

algebraization of the problem from analysis •. But what is the sense of this 

solution? Given an arbitrary divergent series there are no means to 

calculate this "generalized sum" or to determine approximations. And still 

worse : the "sum" is not uniquely determined. One may have some doubt 

whether this "algebraic" solution has more than theoretical significance. 

From this point of view the problem shall be treated in Part II 

where it concerns existence theorems. 

There is an other application. There is a note of Banach, added to 

the book of Saks "Theory of the integral" (1937), where the author used 

the generalized limit to prove the existence of a Haar-measure on every 

locally compact group. But this result can also be proved without this 

Limit. In an analogous way von Neumann made use of it (see Collected Works 

II, p. 445). There are some application;to the theory of amenable groups. 

The situation is rather curious. The existence of this Limit is 

founded on the theorem of Hahn-Banach. Now, this theorem is. frequently 

used in analysis although it is a non-constructive result, which has not 

the property of uniqueness. Why are there no useful applications of the 



generalized limit? This leads to the following questions: 

Which are the properties of the classical concept of a limit which 

cause that it takes such an important place in mathematics? 

One should think on properties that the Banach limit has not. Is the 

technique of £ and o an essential aspect? 

It is all the more curious because calculations with limits in 

analysis are usually performed in an algorithmic way. 

35 

REMARKS. There are some more recent studies on Banach limits. The set of 

all Banach limits of sequences has been a subject of research (see[Jerison, 

1957), [Raimi, 1959)). Luxemburg (1962) proved the existence of Banach 

limits with the means of methods of non-standard analysis. It is also a 

non- constructive method. Can non-standard analysis be considered as an 

algebraization of classical analysis (algebraization of infinitesimals)? 

4.4 Integrals 

In the same way as in the case of the generalized limit Banach proved 

that to any bounded real function a real number can be associated, called 

"the integral" of the function, in such a way that the elementary properties 

of the classical integral are satisfied. This "integral" is identical with 

the Riemann-integral if this integral exists. One can even arrange that 

this "integral" coincides with the Lebesgue integral for L-integrable 

functions. This result is, just as the Limit, proved by means of the Hahn

Banach the theorem. It is an algebraic integral. 

To some extent this result gives an answer on an old question posed by 

Lebesgue: to attach to every function an integral. For more about this 

subject see Part II. It is most remarkable that the Banach limit -and 

summability of divergent series- and the concept of an integral appear to 

have the same background. 

What about the utility of this algebraization? 

One should be inclined to think that with this result all the difficulties 

of integral calculus are eliminated: all functions are integrable and all 

is reduced to algebra. However, this is an illusion; it seems that there 

are no applications of this integral. One might think that this is due to 

the lack of constructivity and the fact that it is not possible to fix 

such an "integral" in a concrete way: there is no unicity. But perhaps 

there is a deeper reason. For this Banach-integral there is no theorem 



36 

analogous to the important convergence theorem of the Lebesgue integral 

(dominated convergence) for L-integrable functions. It is just this 

theorem which makes that the Lebesgue integral prevails over the Riemann 

integral, a fortiori over the Banach integral. For the generalized limit 

there seems not to be such a defect. Perhaps non-constructivity is not 

such a serious objection. The introduction of the Lebesgue ·integral is 

based on methods which can scarcely be calledconstructive. And all the 

more: what is a constructive method? Does it mean algorithmic methods? Is 
' algebra constructive, for instance the Artin-Schreier theory on ordered 

fields? For constructive analysis see [Bishop, 1967]. 

In Part II we will return to this subject in the framework of the 

developments with regards to the existence of universal measures satis

fying several conditions. Research has led there to the domain of the 

foundation of mathematics. All these problems are related to fundamental 

problems on existence in mathematics, which shall be treated in the 

Parts II and III. 

From the remarks on generalized limits, derivations, integrals may be 

concluded that strict algebraization is an extreme standpoint and there may 

be doubt whether this is a good program. It is from the combination of 

algebra and topology that the progress is realized. 

Nevertheless the principal question remains: what are the deeper reasons 

of the tendency towards algebraization? 

In the next chapter we treat some special topics to illustrate the way 

of algebraization. 



CHAPTER 5 ALGEBRAIZATION IN SPECIAL AREAS 

In the foregoing algebraization was illustrated by developments 

concerning fundamental mathematical notions: the general concepts of a 

limit, derivative of a function, the concept of an integral. From these 

examples one may get the idea that algebraization consists mainly in the 

study of homomorphisms of structures. Indeed, it is an important aspect 
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of the phenomenon. But is is not the only one. There are examples of 

theories in various areas of mathematics which show the importance of 

algebraic methods of an other character. In this section several examples 

will be given. The information must mostly be short. A detailed description 

of the developments would take too much place and, for the rest, would 

necessitate a profound knowledge of each of these domains. The only aim 

can be to show the deep influence of algebra. 

5.1 Geometry 

We already mentioned algorithmic aspects of geometry; they were connected 

with the work of Descartes and his successors. In a development of nearly 

three centuries this line of mathematical research has led to modern 

algebraic geometry. Several famous mathematicians have contributed to this 

development: Dedekind, Weber, Frobenius in the 19th century, and in our 

century Emmy Noether, Artin etc. In the first stage it was a study of 

algebraic curves and surfaces, studied by means of coordinate systems 

(Descartes). In a development of many centuries the theory grew out into 

an algebraic-geometric theory of an abstract character where often only 

the specialist in this area can recognize the classical geometric 

properties. Under the profound influence of the developments in algebra 

the theory is developed over algebraically closed fields where even 

figures can not be traced. The whole of modern algebra plays a role: the 

theory of rings, ideals, the theory of valuations ••.• But the classical 

theories are still present, often in a hidden form: birational trans

formations, resolution of singularities, leading to deep theories. Is it 

algebra with geometric and topological notations, or is it still geometry? 

Or is it simply a convention how it is called? What is geometry? See a 

study of Dieudonne (1974). 

This development followed the way from algorithmic aspects towards 

the introduction of structures. But there are some other aspects that must 
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be mentioned. 

First there is the classical aspect of constructions with only the ruler 

and the compass. Later on there were studies in which only the compass was 

allowed. To some extent this is an algorithmic aspect, not coming from 

algebra. 

Then there are the investigations on the foundation of geometry. In 

his Grundlagen der Geometrie (1899) Hilbert studied axiomatic-structural 

aspects of geometry in connection with algebraic structures. In this study 

Hilbert used several algebraic concepts, for instance "complexe Zahlen

systeme", the concept of a field. He considered geometries over fields 

different from the field of real numbers and proceding in this way he 

could, for instance, give interpretations of certain geometric properties 

(Pascal, Desargues) in terms of the algebraic operations of the field 

(commutativity, associativity, questions on ordering, archimedean or non

archimedean). The evoloution has then led to several geometries and 

theories of algebraic-geometric character at a great distance from the 

old traditional geometry : finite geometries, geometries based on special 

groups of transformations (reflections), non-desarguesean geometries and 

several more. These geometries are very different from geometries which 

find their base in algorithmic methods. Descartes and his successors were 

concerned with properties of "classical" geometry. Now the structures of 

geometric theories are studied with the apparatus of modern algebra. The 

foundations of geometry are connected with structural aspects of algebra. 

Such results could not have been obtained with the old algorithmic 

methods. For recent results see [Szmielew, 1983]. 

5.2 Topology 

In modern topology algebra became gradually more and more important 

and it has now a dominating role. Algebraic: topology is then placed 

next to set theoretic topology. From the last decades of the 19th century 

on groups have taken an important position in topology. The Betti numbers 

of a variety were introduced, later on replaced by the Betti groups. The 

work of Poincare have then led to the nowadays fundamental concepts of 

homology and homotopy. Set theoretic topology goes in some way back to 

Riemann and was afterwards in particular developed on the base of the 

work of Cantor. The classical book of Hausdorff "Grundziige der Mengenlehre!', 

edited in 1914 with several new editionsin a somewhat changed presen-



tation of the material under the new title "Mengenlehre", was a first 

culminating-point in this direction. Several definitions of the concept 
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of a topological space were given. Topological structures can be defined 

by taking the notion of an ·open. set as primitive notion. There is an 

other point of departure by taking an operation of closure X+ X as 

primitive concept; X designs then the closure of the set x. In this second 

approach the analogy with algebraic methods becomes apparent. The axiom 

X U Y =XU Y, imposed on the operation of closure, can be considered as 

a homomorphism into the family of subsets. There is the axiom X = X, which 

expresses that the operation is idempotent. Here is the connection between 

axiomatic topology and algebra. In the first chapter of the well-known 

book of Kuratowski on topology -that is set-theoretic topology- the author 

considers "le calcultopologique". For a long period -probably until 1940-

it was customary to use algebraic notations to design the fundamental 

operations in the theory of sets, and therefore in topology. The union of 

the sets A and B was denoted by A+ B, this was the addition(su~ofA and B. 

The intersection was called the product. Thus, Kurat.owsky said that it 

concerned "l'Algebre de la theorie des ensembles".These are algebraic 

analogies in set theoretic topology and set ·theory. 

Considered from algebraic standpoint, algebraic topology has very different 

aspects with respect to the influence of algebraic concepts and methods. 

They are of a more intrinsic character. In algebraic topology the aspects 

of the theory of groups are of first importance. We mention homology and 

cohomology theories, homotopy theory, also in axiomatic form, methods 

using sequences of maps. As subject there are problems on classification 

of topological spaces, characterization of spaces, invariants etc. Here it 

is not the question of analogy, here algebraic concepts are of an 

intrinsic value. They are at the base and it is not only the analogy of a 

formal apparatus. There are reasons to defend the standpoint that algebraic 

topology has surpassed set theoretic topology. What are the reasons of 

this development? Could it be that set theoretic topology has been 

developed in a direction which can be called "pathologic"? All kinds of 

topological spaces and their properties were studied. Research in this 

area led to more and more detailed concepts and definitions. Special 

problems were posed for which specific methods were necessary not adapted 

to algebraic methods. The journal"Fundamenta Mathematica" contains 

interesting information on this point. Although results have been useful 

in other domains (even in logic), it seems to be a more special direction 
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of research which is no more very popular as it was formerly. Topological 

vectorspaces and algebras and their refinements are of a high value in 

modern mathematics, but they are already under the influence of the 

developments in algebra. Set theoretic topology was important until the 

twenties or thirties but then the algebraic direction began to take its 

dominating position in this area of mathematics. 

Now, the same questions can be posed as three centuries ago with 

regards to geometry of Descartes. Considering modern algebraic topology, 

does it concern an application of algebra to topology or should it be 

said that topology is reduced to algebra? Is algebraization here a way 

of presentation of a theory, or should the standpoint be taken that it 

concerns an intrinsic aspect of the theory? 

For the history of topology, in particular algebraic topology, see 

[Bollinger, 1972(, [Dieudonne 1977). 

5.3 Lie groups and Lie algebras 

The modern theory of Lie groups and Lie algebras can be considered 

as a classical example to demonstrate how a theory can change its form 

under the influence of algebraic methods. At the beginning the theory of 

groups of transformations of Lie belonged to the domain of differential 

equations. Later on the theory was developed in an algebraic direction 

(Lie algebras), that is to say in connection with the concepts of 

topology. Now it is grown out into a theory of high algebraic character: 

problems of classification treated by means of an algebraic apparatus, 

development of the theory over fields different from the field of real 

numbers, the theory of algebraic groups. The evolution has thus led to 

deeper theories. For a historical exposition see a paper of[Freudenthal 

(1968)1 For topological algebra, which is in the same area, see [van der 

Waerden, 1975). 

5.4 Operational calculus 

The history of the theory of operators is another interesting example 

of the utility of formal methods. The formal method, used by Lagrange in 

1797 to define in a formal way the derivative of an analytic function, 

was already mentioned before. 

But earlier in 1772, he had studied the algebraization of infinitesimal 



41 

calculus. It is a development in the direction of operators.Withafunction 

f he associated an operator /J. , defined by 

(!J.f) (x) f (x+a) - f (x) • 

Lagrange developed an algebraic calculus with this operator introducing 
2 3 -1 

/J. ,!J. , ••• ,but also /J. , which evidently represents "integration". Then 

Arbogast must be mentioned. Frechet called Arbogast "le pere du calcul 

fonctionnel (11). Frechet remarked that the directive in Arbogast's book 

"Du calculdes Derivations" (1820) was the idea to develop a formal calculus 

with operators. It is observed that already Leibniz studied such formal 

theories. Leibniz's formula for the derivative of a product constitutes 

one of the first propositions of an operational calculus. 

Formal methods were especially developed in England in the 19th 

century: Gregory, De Morgan, Boole. But in particular Heaviside must be 

mentioned. About 1887 he developed an important formal calculus with 

operators. It is a formal method to obtain solutions of differential 

equations. If D designs a differential operator the problem is to find 

solutions of the differential equation Df = g by means of methods of 

algebra; g is a given function. The idea is to represent the solution 

in the form 

f 
-1 

D g, 

-1 
where D design the inverse of D. 

Heaviside developed such an algorithmic method, without, however, giving 

a justification of this method. It is a symbolic method by means of which 

correct solutions can be obtained. But it was not clear what is really 

going on; the real signification was obscure. Some might have remarked 

that this does not matter if only the solutions are correct. Others felt 

the need to understand the method really. The situation resembles the 

creation of the algebraic-geometric method by Descartes and the reaction 

which came against these automatisms. Much later a solid foun<lation for 

this theory was developed but for this classical analysis was necessary 

(Laplace transformation). But evidently just the advantage of symbolic 

methods is get lost. 

About 1950 Mikusinski returned to the theory of operators of algebraic 
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character. In his theory the ring of complex continuous functions on [0,00 ) 

takes an important place; the product of two functions is then defined in 

an appropriate way (convolution). See[Freudenthal, 1959]. 

The modern theory of operators is incorporated in functional analysis. 

In particular the theory of linear operators in Banach spaces is developed 

in great detail. The algebraic notion of a vector space is at the basis of 

the theory. Without the influence of the modern concepts of algebra 

functional analysis could scarcely have been created. There are, for 

instance, the notions of subspace, quotient space (in algebraic form), 

eigenvalues, spectral theory, inverse of an operator etc. It is a domain 

of high activity, penetrating in nearly every domain of analysis. Here the 

notion of a distribution (Schwartz) must be mentioned. It is a concept that 

can be considered, at least for the moment, as an end of the evolution of 

the concept of a function as analytical expression to the idea of a 

function as a map from one set into an other . 

It should well be understood, however, that in this theory there is no 

strict algebraization. It is from the combination of algebra and topology 

that progress comes. 

5.5 Logic 

The case of logic is rather curious, the subject is as old as 

mathematics itself. But whereas mathematics developed more or less 

continuouslythrough the ages, logic remained stationary untillthe 

nineteenth century. Although no mean inventiveness was displayed in the 

antiquity and in the middle ages, logic was seriously hampered by a lack 

of notation. The impulses that mathematics received from the notational 

innovations in algebra did not touch logic and only in the nineteenth 

century Boole,c.s.Peirce,Frege, to mention the main contributors, created an 

artifical symbolism for logic. 

The curious aspect of the development of logical symbolism is the 

premature introduction of algebraic notation. George Boole observed the 

regularities of the logical connectives 'end', 'or' and 'not', and created 

in his 'Laws of Thought' (1854), what now is called Boolean algebra, or 

the algebra of logic. 

The algebraization of logic had set in, but too early! Boolean algebra, 

excellent as it was for the purpose of propositional logic, could not 

handle predicate logic. Peirce suggested a method for variable blending 



operators, but his proposal did not catch on. In fact Boolean algebra 

hampered the development of logic, it was, at the time, a red herring, a 

poignant example of a premature algebraization. 

The practice of the algebra of logic blurred the finer distinctions of 

logic or even made them invisible. E.g. syntactical matters and the 

problem of meaning, not to mention truth versus derivability, appeared in 

the light of Boolean algebra as marginal or even imaginary issues. 

Boolean algebra opened up an algebraic practice in the old tradition, a 

theory of equationsbut without interesting polynomials (x.x=x and x+x=x). 

Schroder wrote a three volume monument 'Die Algebra der Logik"(1890) that 

captured all the benefits that the new algebra had to offer. 
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In the mean time Gottlob Frege had created a formal language for predicate 

logic (even including higher orders),[the Begriffschrift (1878)],Frege 

introduced a two-dimensional notation which was doomed to failure. Although 

its merits have been claimed by some, the notation was too wieldy to 

compete with the more flexible and natural notation of Peano (and later, 

Russell).If we ignore matters of symbolism, we must give Frege due credit 

for creating modern symbolic logic. In a sense the, let us say 'standard'-, 

formalization of predicate logic was an instance of algebraization. The 

usual presentation of the basic expressions of algebra as equations between 

polynomials, here is replaced by equivalences, A# B. The link between 

this kind of algebras and the traditional algebras was pointed out by 

Lindenbaum and Tarski, who associated with a propositional theory T a 

Boolean algebra AT' the so-called Lindenba~malgebra. The particular algebra 

of logic -tradition surfaced after a period of neglect in Poland, where 

after Tarski and Mostowski's work in the thirties Boolean algebra was 

updated and the framework extended in order to incorporate predicate logic, 

of H.Rasiova, R. Sikorski,[The mathematics of metamathematics, Warsaw, 

1963].In particular research since the fifties took into account the newer 

aspects of algebra that lifted it from a mere science of equations. 

Ideals, filters, ultrafilters, etc. were connected to properties of 

formal theories. 

In the meantime Boolean algebra had become an independent discipline with 

connections with many fields in mathematics, and the algebra of intuition

istic logic had been introduced (Stone 1937; Tarski 1938). Nowadays it is 

usually called Heyting algebra but terms like Brouwerian algebra or pseudo

Boolean algebra have also been used. 

The logical step from Boolean algebra to an algebra that would reflect 
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the nature of predicate logic was taken by Tarski, who introduced 

cylindrical algebras (1950), and Halmos, who introduced polyadic algebras 

(1955). So far these algebras have not caught on, and it remainsto be seen 

what and how they contribute to logic or mathematics. It is safe to say 

that the mathematico-logical community has stayed conspicuously .aloof. 

Perhaps the most exciting incursion of algebra into the domain of 

logic is the introduction of category theory into logical theory and 

semantics. It had already been observed by Dana Scott that Boolean valued 

logic (or rather Boolean valued models) was perfectly suited for an 

independence proof of the continuum hypothesis (1967), but mathematics 

in a Boolean valued universe did not seem to hit the right note. The final 

generalization came from the side of category theor~ W. Lawvere discovered 

that logic and semantics could neatly be handled in a topos, i.e. a 

cartesian closed category with subobject classifier (and usually a natural 

number object). In particular all kinds of notions from logic turned 

naturally up as adjoint functors. The price to pay was the loss of 

classical logic (and the axiom of choice), in a topos the principle of the 

excluded third mostly fails. Moreover, one has to consider in general 

partial objects. A more mundane version of categorical logic, the logic 

of sheaves was developed at the same time (Scott,etal.). 

The development illustrates a well-known phenomenon in mathematics, a 

suitable generalization unifies many hitherto unconnected notions (in this 

case Boolean models,Kripke/Beth models, Cohen-forcing, Robinson forcing, 

sheave theory, Grothendieck sites, intuitionistic logic (mathematics)), and 

it brings out those points in the parent notions that could not be 

properly distinguished in the special circumstances.Also there is a certain 

amount of unexpected dividend for mathematics, e.g. in suitable topoi one 

can develop a synthetic differential geometry, much as Lie and Cartan 

practised it, complete with (nilpotent) infinitesimals. 

Summing up:.thealgebraization of logic has after a light hearted youth 

turned into a promising and solid discipline that might very well be 

termed the algebra of mathematics. 



5.6 The theory of numbers 

It seems that there are tendencies of a development in an opposite 

direction in the history of the theory of numbers. It is in the nature 

45 

of the problems in this area that in the beginning it was a theory of 

arithmetic, algebraic character. There was the classical number theory 

(Fermat and several others), the theory of algebraic numbers (Frobenius, 

Kronecker, Dedekind, Hilbert). Later on other methods for treating the 

problems were developed, especially in the domain of analysis (Dirichlet, 

followed by many other famous mathematicians). We may perhaps suppose that 

this was due to the fact that in those years new types of problems were 

formulated for which new methods appeared to be necessary. A classical 

example is the problem of the distribution of the prime numbers and its 

connections with the theory of the Zeta-function of Riemann and Riemann's 

hypothesis concerning the zeros of this function. It is curious to observe 

that later developments led to study certain functions analogous to the 

Zeta-function of Riemann, but now defined over some fields different from 

the field of the complex numbers. Apparently this development took place 

under the influence of the new concepts in algebra. This was the analytic 

theory of numbers which had a culminating point in the years of Landau, 

Hardy, Littlewood and other famous mathematicians. 

Unless one wants to consider autonomous research on Zeta-functions, 

the theory of automorphic and modular functions and forms, Dirichlet 

series and what there is more in this domain as belonging to the area of 

analytic number theory -as is done in the classification of Mathematical 

Reviews- one may wonder whether analytic number theory still has the 

interest it had in these golden years. In his report "Getaltheorie 

1946 - 1971" (1973) Van der Blij remarks that in these 25 years there has 

been not much progress in this field. Nevertheless he indicates the p-adic 

methods, coming from algebraic side (compare Hensel). Should we conclude 

that after all the methods of classical analysis were insufficient to 

attack these number ·theoretical problems? Or is it simply because there 

is something like a mathematical mode? We refer to a report of H.M. Stark 

about a book of Rademacher on analytic number theory where he writes: 

"Topics in analytic number theory;by Hans Rademacher covers all the 

classical aspects of a subject which is presently undergoing a revolution" 

[Stark, 1975]. 



46 

5.7 The theory of functions 

In this section we shall consider general aspects of the theory of 

functions from the point of view of algebraization. 

As opposed to the examples treated in the preceding sections the 

aspect of algebraization is not apparent in this domain of analysis, at 

least does not present itself in an equally pronounced way as in the 

preceding examples.Should we speak of a failure of algebraization in this 

special area and might this be the reason of some decline? 

(i) The theory of real functions 

Under this title the strict theory of real functions will be considered, 

not real analysis in a general sense, but the theory which is now generally 

designed by this name (see the classification in Mathematical Review$). 

From the last decades of the 19th century until the twenties or 

thirties of our century it was a domain of great productivity, especially 

in the "Ecole Fran~aise" and the "Ecole Polonaise". This theory was 

realized under the influence of the theory of sets and set theoretical 

topology. These were the years in which many bookswere published in the 

series "Collection de monographies sur la theorie des fonctions, publiee 

sous la direction de H. Emile Borel", well known as the "Collection Borel". 

In this series a great variety of subjects in this area was published ; in 

Part II some more will be said about them. Many of these books, especially 

the books of the first years, contained an introduction to the theory of 

sets and topology, then just beginning their course. The theory of real 

functions was in close connection with these subjects (see the later books 

of Kuratowski on topology). In this domain special properties of the 

general notion of a real function were studied, for instance forms of 

discontinuity, existence of derivatives -left or right- properties of the 

set in which there exists no left or right ~erivative, properties of the 

set of the values of a function, problems on classification (Baire), 

topological properties of real functions etc. It is a curious fact that 

in these problems closed or perfect sets had a more important place than 

open sets, which later on came in the foreground under the influence of 

developments in topology. To some extent these problems can be considered 

as more or less pathologic. In a later stage some of these problems were 

again studied with the new methods of functional analysis. There are 

scarcely reasonings of an algebraic character. The area was somewhat 



isolated and the applications were scarce. In the first years of the 

century important mathematicians had some difficulties with this theory. 

Among them was E. Borel himself. He opposed against the study of such 

artificial objects and he considered them as "monstruosit.es". For infor

mation on these problems see [Monna, 1972). 

From the thirties on, perhaps after World War II, one observes a 

decline of the research in this domain. The number of publications is 

rather small, compared with the situation in the first decades. In the 

introduction of the "Lecture Notes":"Variation Totale d'une Fonction", 

edited in 1974, Bruneau writes that it is his aim to restore with this 

book an "air de jeunesse a l'etude des fonctions d'une variable (ou 

plusieurs) variable(s) reelle(s) et plus precisement aux remarquables 

travaux consideres a ces fonctions par A.$. Besicovitch, A. Denjoy, A. 

Khintchine, A Kolmogoroff, N. Lusin, J. Marcinkiewics, F. Riesz, S. Saks, 

W. Sierpinski, etc •••• ". It is an indication in the same direction. 
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Here two remarks should be made. The first concerns the situation 

around the measure theory. At first there was a close relation between 

this theory and the theory of real functions as described before. One has 

only to mention the works of Borel and Lebesgue. But in measure theory 

there has been great progress, partly under some influence of the theory 

of probability. But in modern measure theory it are just algebraic aspects 

which are important. There are, for instance, the Boolean algebras and the 

modern theory of integration, connected with functional analysis. The 

theory of measures and the strict theory of real functions are now at a 

greater distance from each other. 

The second remark concerns the broader field of real analysis : 

differential equations, harmonic analysis, the theory of distributions 

etc. Just in these domains, where is high activity, the influence of 

algebra is important. 

Now the crucial problem should be posed. What are the reasons that 

there is less interest in the strict theory of real functions? Is it a 

question of mathematical mode or are there deeper reasons? Does it 

concern an area that must be considered as closed, as sufficiently 

elaborated? There are problems connected with this area which seem to be 

closed. For instance the old problem of the existance of primitive 

functions. The solution is included in the Denjo.y integral; there are also 

results around the Perron integral. In 1917 Caratheodory [Caratheodory, 

1918) wrote already that the domain was closed after the revolution 
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caused by Lebesgue. 

There may indeed be deeper reasons for this diminishing interest. In 

this strict theory of real functions one has always studied special 

problems, often of pathological character, for which specific methods 

appeared to be necessary and there was not much coherence in this area. 

On the contrary, in modern mathematics one is more interested in structures, 

more or less general, to which general algebraic methods can be applied. 

There is less interest in the properties of the individuals for itself. 

The situation is comparable with the developments around set

theoretic and algebraic topology where the latter has a dominating 

position. Thus, it may be that the classical theory of real functions is 

not so much suited to the application of algebraic methods and this 

might be the deeper reason of the decline. 

But would it not be possible to consider the collection of these 

special problems from a higher point of view and to bring them on a 

higher level, leading to some structure in the area by means of the 

methods of functional analysis with its algebraic, topologic foundation? 

See for instance the results on the spaces of continuous functions. See 

also a paper of Chernoff (1975) on quasi analytic functions, which contains 

a new exposition on this subject. Or should it be observed that E. Borel 

was after all right when he wrote in his book "Methodes et problemes de la 

theorie des fonctions" [Borel, 1922, p. 146] : "Il faut done se resigner 

a faire systematiquement ce que les mathematiciens ont ete conduits a 

faire spontanement et sans esprit de systeme, c'est-a-dire se borner a 

etudier les fonctions qui se presentent naturellement, ce que nous pouvons 

appeler "les etres reels et normaux", par opposition aux monstres 

artificiellement crees OU meme simplement con~us abstraitement. La 

demarcation est delicate et, en certaines regions, ne serait pas 

actuellement a preciser; c'est neanmoins dans cette direction seulement 

que l'on arrivera a faire de la theorie des fonctions une discipline 

entierement coherente. Les fonctions anormales doivent etre etudiees et 

connues dans une certaine measure, mais seulement dans la mesure necessaire 

pour les exclure ou plutot pour reconnaitre qu'elles s'excluent elle-meme 

du systeme coherent " 

(ii) Analytic functions 

It seems that the same question can be posed with regards to the classical 

theory of the analytic functions of one complex variable. In the first 



decades of our century beautiful theories were developed. Many mathema

ticians worked in this domain: Borel, Julia, Montel, later Nevanlinna, 

Koebe, Bieberbach. The Collection Borel contains books in this area. One 

studied, for instance, the properties of entire functions, meromorphic 

functions, the behaviour of functions in the neighborhood of a singular 

point, the distribution of the values of an analytic function etc. 
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These results are perhaps for the greater part on the way which Weierstrass 

followed in this domain. 

There are still many publications in this field. Nevertheless it 

seems that there is less interest in this field than before. The situation 

is quite different with respect to the approach of Riemann, but then one 

comes soon in the domain of Riemann surfaces with its topological conse

quences, problems on classification etc., with some algebraic backgrounds. 

It can not be said that all these problems in the direction of 

Weierstrass are solved. On the contrary, there are important open problems. 

Are they too difficult, or is it simply that research went an other 

direction? Or are there too less possibilities for the application of 

algebraic methods? The foreword in[Proc. Seminar (1976)Jis of some 

interest: 

"The past decade has been a period of remarkable activity for complex 

function theory, ( •••• ).At the same time, new techniques of exceptional 

power continue to be developed( •.•. ). An optimist will see in these 

developments indications of a renascence of function theory, the achievements 

of which may ultimately rival the great triumphs of the past". 

The authors, are they optimistic or pessimistic? 

An example may be instructive. Hadamard (1892) observed that to define 

an analytic function means essentially to give a sequence (a ) of complex 
n 

numbers such that La zn is not divergent for all z [Hadamard, 1892]. 
n 

The problem is to determine the properties of the analytic function which is 

generated by this series by means of analytic continuation, that is, for 

instance, to determine the singular points, to calculate the value of the 

function in a given point in terms of the coefficients an. It is the central 

problem in the sense of Weierstrass. From the theoretical point of view this 

problem must have a solution, but it seems to be very difficult. Even a 

great analyst as Hadamard could only give the solution in some more simple 

cases. Later on there were some more results (the theorems of Fabry). It 

should be noted that this problem depends on the totality of the numbers 

an' not on the an individually. A change of a finite number of the 
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coefficients means the addition of a polynomial to the analytic function. 

This has no influence on the singular points and the influence on the 

value in a point is reduced to a simple calculation. Thus, it is an 

infinite dimensional problem. Probably special methods will be necessary 

for its solution. Methods of functional analysis? 17). Are there 

algebraic approaches to this problem? Or is it difficult just because there 

are no algebraic ways?. 

Thus, if there may be some reasons to think that the theory of functions of 

a complex variable is no more a field of primary interest for mathema

ticians, two exceptions at least must be mentioned. 

The first is the theory of algebraic functions, in particular in its 

algebraic presentation (Dedekind). It is connected with algebraic geometry 

(elliptic functions, elliptic curves). This is a domain of great activity. 

Is it just because of the algebraic connections? 

The second is the theory of functions of several complex variables. 

There are great differences between this theory and the theory of analytic 

functions of one complex variable.Also in this domain there is a great 

activity. It is not the place here to give details about the aspects of this 

theory: analytic spaces, holomorphic functions on these spaces, algebras 

of holomorphic functions etc. But it is noteworthy that just in this 

theory the concepts of modern algebra and topology are important. The 

theory has structural aspects. more than aspects of properties of the 

individual objects. It is an essential aspect of mathematics of our years. 

The theory of functions in a strict sense like we considered before 

is evidently only a special area of the broad field of analysis, one of 

the main domains of mathematics : differential equations, integral equation~ 

harmonic analysis, functional analysis, analysis on Lie groups, theory of 

distributions etc. The concepts and methods of algebra are indispensable 

in these fields: function algebras, rings, ideals, maps, operations in 

analysis which find their origins in algebraical analogies, •.. Can these 

domains flourish so much just because of algebraization? A detailed 

description of these developments is beyond the scope of this book. 

5.8 Algebra 

In algebra itself the trend towards "algebraization" in the 

development can be traced. Therefore classical algebra has to be compared 

with what in the twenties -and perhaps still form.ore years- was called 



modern algebra (a name which does not make sense anay longer). In the 

foregoing it was already observed that until the middle of the 19th 
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century algebra consisted mainly in the theory of algebraic equations. One 

studied properties of the roots, methods for solving equations etc. There 

were the theory of determinants, continued fractions with their algorithmic 

aspects. Some subjects which now are said to belong to analysis were 

treated in algebra. For instance the theory of real numbers, the theory of 

infinite series, convergence and divergence. Also the classical theorem 

of d'Alembert ascertaining that every algebraic equation has roots in the 

field of the complex numbers(evidently not in the modern form of algebraic

ally closed fields). 

In the second part of the 19th century the ~icture changed. Special 

problems came in the background and the interest was directed towards 

structural problems in algebra, where more general systems than the real 

numbers came to play a role. It is the period of introduction of the 

concept and theory of groups, rings, fields. It was the way towards 

"modern algebra". For the rest, research here advanced to large extent the 

teaching programs. 

Is "classical algebra" nowadays superfluous? Evidently not; but it can 

not be said that the classical theory forms a center of interest. The old 

problems are represented in a new form, where the structural aspects are 

in the foreground. For example the theory of Galois, which contributes 

to throwing new light on classical problems. This is a trend which can be 

called the "algebraization of algebra" 

Concluding remarks 

In the foregoing several aspects of the phenomenon of algebraization 

are treated. Is it possible to attach some conclusions with them with 

respect to the way of mathematics? 

Resuming the following aspects can be distinguished. 

1. Introduction of algebraic methods in existing domains, leading to an 

expansion of the area (Descartes). 

2. Attempts to give a sharper foundation of theories by means of a 

reduction to algebra (Lagrange). 

3. Aspiration to get more and deeper insight in theories by considering 

structural aspects (Bourlet, Drach; Galois; Lie and his successors). 

4.Introduction of set theoretic and algebraic structures and application 
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to existing areas (the young functional analysis). 

5. The stage in which algebraic structures are studied for itself. 

This is a description of phases in the development of mathematics. 

Some fundamental questions can be associated with it. The answer depend 

up to a high measure on the standpoint that one takes with respect to the 

scientific place of mathematics. 

First there is the question how to judge these developments. What is 

their value? An other question should precede a discussion. Can 

algebraization be considered as an issue from mathematics itself, coming 

from inside and therefore a purpose in itself? If one has the opinion 

that a positive answer must be given, then the question of the value has 

scarcely any sense. Then it concerns a factual situation. 

It one does not see the development in this way, there is quite an 

other situation. Algebraization in a broad sense should perhaps be 

considered as only a way gone by mathematicians. Is it the only possible 

way? Considering mathematics as a whole there is a tendency to incorporate 

special problems and theories in more general theories of a higher level 

in which structures take an important place. This tendency led to the 

introduction of sets in various domains. Structures on these sets were 

introduced, leading to rings, fields etc. This is the way of algebraization. 

But examples from history show that the methods of algebra are not 

sufficient for any situation. It appears that one can not do without 

topological structures. In general it is in vain trying to force all in 

the form of algebraic structures. And there are no good reasons to judge 

the value of a theory according to the criterion whether it has been 

presented in a purely algebraic form pr not. 

The way of algebraization has contributed to the image of 

mathematics as a unity. It appears to be possible to draw lines of 

development between areas which apparently are at great distance from 

each other: lines between geometry and analysis and between algebra and 

geometry, lines inside analysis etc, It seems that the algebraization 

-connected with topology- fulfilled a role in this. 

Thus, it seems that the way of algebraization is a way of high value. 

It is an other question whether algebra and algebraization are the 

most recommended waysfor approaching new domains. It is difficult to give 

an answer, but it is likely that the answer depends largely on the subject. 

The question can even be posed whether algebra itself has always had the 



advantage of "algebraization". In an interesting paper [Birkhoff, 1973], 

the author mentions new directions where there is less emphasis on 

structural methods. 
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A second question concerns the way by which algebraization is reached. 

What are the sources of algebraization? In the preceding we have treated 

several examples of mathematicians who in their creation of new areas and 

new theories were led by arguments of analogy: Bourlet, Drach in the domain 

of differential ·equations; L~ouville and Ritt ;Frechet and his theory of limits; ways 

in topology. Analogies can contribute to observe common structures; there 

is a connection between the aspects of analogy and equivalent structures. So 

there is the question: is the method of analogy one of the basic tools of 

algebraization? Can the source of algebraization be found in the desire 

to discover equivalent structures by means of the method of analogy? 

Perhaps algebra, as fundamental discipline, can then be considered as the 

most obvious apparatus on the way of analogy. Does the method of analogy 

means a contribution to the image of unity of mathematics? 

These are questions which should be treated in a more general framework. 

What has been the role of analogies as creative apparatus in mathematics? 

This question asks for a historical study on the function of the method 

of analogy in the evolution of mathematics. 

This subject shall not be treated here. 
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NOTES 
1. S.B. Bayer, Akad. Wiss. 1938, 27-69. 

2 Siam J. Math. Anal., Vol. 6, 295-311 (1975). 

3. Journal of Functional Analysis 4, 277-294 (1969). 

4. Bull. Am. Math. Soc. 11, no.1, p.228 (1984). 

5. The Mathematical Intelligencer 6, no.3 (1984). 

6. Compare [Rosenlicht, 1969]. It is proved that this equation has no 

solution in any field of meromorphic functions of x which is a 
"Liouville extension" of (t(x). 

7. In his concept of a Universal Algebra Leibniz already had the idea of 
the possibility of infinitely many algebras. They were characterized 

by their fundamental laws, i.e. their fundamental operations. An 

example is the classical algebra, the algebra of the numbers, which 
is based on the relation of equality. He also considered algebras in 
which a relation aa =a is possible. See [Couturat, 1961] in particu
lar Chapter VII "La mathematique universelle". 

8. In [Boutroux, 1920] Boutroux considers the backgrounds of the principle 
of continuity. From the way in which Poncelet and his successors used 
this principle for developing his geometry, making fully abstraction 

from the figures and considering only laws and conditions, he 
concludes that the geometry of Poncelet "etait., au fond, une algebre 
deguiseee". 

9. In a paper [Geiser, 1872-73] it is observed that this is perhaps not 

quite correct. Some mathematicians had the opinion that Steiner knew 
more about analysis than he wanted to admit. 

10. Laguerre contributed to these developments. See [Monna, 1973]. 

11. Earlier the french mathematician Arbogast (1759-1803) considered 

a formal definition of the derivative of a function in a treatise 
"Essai sur de nouveaux principes du Calcul differentiel et integral 

independant de la theorie des infiniment petits et de celle des 
limites". This treatise from 1789 was not printed but it is mentioned 
by Lagrange. See Frechet, "Biographie du mathematicien Alsacien 
Arbo.gast" in Frechet "Les mathematiques et le concret" (Paris 1955). 

12. Meschkowski (1967) expressed this by saying that it concerns the 

"arithmetization de !'analyse". 

For connnents on the works of Drach see : "Elements pour une etude sur 

Jules Drach" in Cahiers du Seminaire d'Histoire des Mathematiques, 

2 (1981) Paris. 



13. Ritt (1948) mentions the possibility that Liouville found his 

inspiration in the work of Abel on the impossibility of solving the 

general algebraic equation of the 5th degree in terms of radicals. 

The classification of radicals resembles in some way Liouville's 

classification of elementary functions. 

14. A definition of the term "elementary" is given. See the literature. 

15. The theory of abstract groups was developed from the middle of the 
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19th century on. Several mathematicians contributed: Cayley, Frobenius, 

Dedekind etc.[See Wussing, 1969). 

16. In his proof of the existence of an integral -the integral of Lebesgue

Lebesgue could not avoid the used of limits. Thus, it is not a strict 

algebraic process. An algebraic program for the introduction of an 

integral was much later on realized by Banach. This shall be a point 

of discussion in 4.4. 

17. In view of these difficulties there have been attempts to use other 

forms of representation of analytic functions: infinite products, 

series of polynomials, divergent series etc. 

In this framework one has studied properties which are independent of 

the kind of representation, for instance the "mode de croissance" of 

Borel. See:[Boutroux, 1908),[Hadamard, Mandelbrojt, 1926). 





PART II THE EVOLUTION OF EXISTENCE PROBLEMS 

INTRODUCTION 

In Part I we considered the general trend in mathematics towards 

algebraization and we studied its historical roots. 
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Part II also concerns general aspects of the evolution of mathematics 

but they are of a more special type. We will consider the evolution of the 

concept of existence, in particular its place in analysis. Existence and 

existence theorems are among the fundamental concepts in mathematics. 

We will compare the meaning of existence in classical and in modern 

mathematics. Especially the last decades of the 19th century and the first 

of the 20th century are important for the development of modern mathematics, 

to some extent a period comparable to the time of Descartes and the 

invention of infinitesimal calculus. In this period the ideas about 

mathematical existence changed considerably. The new image it got is one 

of the points that is characteristic for modern mathematics in comparison 

to classical mathematics. We will treat several examples of this evolution 

in detail. 

In the following considerations we will consider developments in pure 

mathematics. The developments in applied mathematics and in numerical 

analysis form another subject of research. The situation in these areas 

may be very different; see [Goldstine, 1977]. 
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CHAPTER 1 EXISTENCE IN CLASSICAL AND MODERN MATHEMATICS 

1.1 Classical mathematics 

What are the points - or at least some points - in which modern 

mathematics differs from classical mathematics? Before trying to give an 

answer, we will say something about classical mathematics. Every 

mathematician has some idea of what is meant by "classical". Nevertheless, 

some global remarks are useful for a good understanding of what follows. 

We shall not try to give a more or less complete description of the 

domain of "classical mathematics". Moreover, a sharp border between 

"classical" and "modern" can not be traced. "Classical mathematics" is not 

a closed subject. 

First on algebra. Until the middle of the 19th century algebra mainly 

consisted in the theory of algebraic equations and subjects that in some 

way are connected with it. That is what I call classical algebra. The 

theory of groups gradually developed, first in concrete situations, much 

later in abstract form. It is the development of "modern algebra". See 

Part I and [Birkhoff, 1976]. 

In geometry we mention traditional analytic geometry: conic sections, 

"microscopic" theory of ellipsis, hyperbolas etc., quadratic surfaces, 

algebraic curves and algebraic geometry treated with the means of 

cartesian geometry over the reals (The "elementary" theory), theory of 

invariants. Elements of projective geometry, descriptive geometry. Then 

differential geometry of curves and surfaces; curvature, curves on 

surfaces (Gauss). Some initiations to the theory of varieties and topology 

(Riemann, Poincare), but that is nearly "modern". 

In analysis - the main subject here - there is infinitesimal calculus 

For example: the theory and calculations of integrals, infinite series, 

elementary theory of Fourier series, integral transformations and 

problems on inversion (Laplace), special functions (B-and f-function), 

etc. The theory of analytic functions of a complex variable: entire 

functions, meromorphic functions, elliptic functions, elliptic and 

hyperelliptic integrals. Theory of conformal representation (Riemann). 

Calculus of variations. The theory of differential equations, 
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in particular explicit solutions; singular points of differential 

equations. There were some results on the problem of the existence of 

solutions of differential equations; Cauchy treated the existence problem 

for the equation 

dy 
dx f(x,y). 

We shall treat this problem in Part III. 

In the classical period there was also a theory on the integration of 

certain classes of partial differential equations (Green, Lagrange, 

Cauchy, G. Kowalewski). Special cases were studied, the problem was to 

find explicit solutions, there were examples and counterexamples - but 

this is still a subject of our time. It was the period in which the 

construction of solutions, concrete theories, took an important place. 1) 

To get an impression of what this all means one may for example as 

concerns analysis read the book "Whittaker and Watson, A course of Modern 

Analysis", edited in 1902 (Last edition 1977). The meaning of "modern" is 

fluctuating! See also the various "Cours d'Analyse" (Picard, Jordan, 

Goursat, de La Vallee Poussin). 

As concerns classical analytic geometry we mention the books of 

Salmon-Fiedler. These are new editions of books originally written by the 

Irish theologian - mathematician Salmon. In 1848 Salmon published "A 

treatise on Conic sections, containing an account of some of the most 

important modern algebraic and geometric methods"; more editions followed. 

Then followed "A treatise on the higher plane curves" and "A treatise on 

the geometry of three dimensions". Salmon used new methods in algebra, for 
2) 

which he refers to Cayley and Sylvester • These books were adapted and 

extended by Fiedler about 1860, in the twenties of our century by 

Dingeldey, Brill, KoIIllllerel 1 and then they became known as "Salmon-Fiedler"; 
3) 

they were much studied by students in these years; now they are forgotten • 

These are examples of subjects of what is called "Classical mathe

matics". Half a century ago, and even in later years, these were nearly 

the principal subjects that constituted the university-curricula, with 

exception of special courses and more advanced seminars. This although 

research was much more advanced. It may be interesting for students of 

our time to read sometimes in these classical books. 
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1.2 Modern mathematics 

What is not found in classical mathematics are statements about 

properties of collections, classes or spaces of functions or of any other 

objects, provided with an algebraic or topological structure or both. 

Results of this kind were reserved for a later period; they are typical 

for modern mathematics. Classical mathematics had a strong constructive 

character. In modern mathematics, however, theories which concern pure 

existence take an important place, perhaps a dominating place in pure 

mathematics. Theorems which express the existence of a certain object, a 

function etc., satisfying certain conditions are frequent. Statements 

in which there is no need to give an explicit form of the object; Often 

this is even for several reasons impossible. The problem of the existence 

of certain solutions seems often to be more important than the solutions 

themselves. The problem of finding a solution is replaced by the problem 

of solvability. Information on the collection of the solutions is asked. 

Are there "many" solutions, where the meaning of "many" has to be stated 

precisely? It is a kind of problem, posed long years before. But the 

essential point is now that one demands to determine the "quantity" of the 

individual solutions and the notion of "quantity" has become much more 

abstract: it is expressed in terms of category, measure, cardinal 

number, dimension. 

Certain functions, having certain properties which first are 

considered to be "pathological", are they exceptions, or do they represent, 

after careful study, a normal situation? In this way old problems, coming 

from the classical period, can present themselves in a new strongly 

modified form. It is not the right question to ask which way should be 

preferred, the classical way or the modern way. Indeed, it is a 

question of evolution 4). First of all it must be remarked that, 

evidently, the periods are not disjoint. On the other hand, the second 

way, the way of pure existence, considered from a philosophical point of 

view, may be a contribution to a better understanding of mathematical 

theories. This may be considered as a subjective conclusion. ·However, it 

is based on experience in a time when university programs were in general 

still highly constructive. The situation now is very different. One may 

ask what, from didactic point of view, is the best way. Is it desirable 

to start directly with abstract theories, for example to treat Banach 

spaces in its abstract axiomatic form without saying something about the 
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origins which were very concrete? It seems that some historical information 

on the way that was gone is highly desirable. 

In the next chapter we will treat several subjects from analysis 

to illustrate these developments. These different subjects will be 

considered from the same point of view, namely the transition from the 

constructive phase into the existential phase. The difference between the 

standpoints manifests itself in these examples. It is a historical study, 

but not of the most usual kind. It concerns the penetration and 

influence of new ideas. Thus, it is a study in the area of the history of 

ideas. For a much older study of this type see [Boutroux, 1920]. It is a 

general study; the author considers the whole domain of mathematics. 

For a special study on historical developments about construction and 

existence in algebra we refer to a publication of [E. Schillemans,1975-76]. 

The author considers the ancient problem of the solution of algebraic 

equations, in particular the role of Galois theory. He distinguishes two 

periods in the history of this problem. In the first period mathematicians 

considered as the main problem in algebra the effective calculation of the 

roots of algebraic equations, that is methods allowing to construct the 

roots. The author calls the concept - the point of view - according to which 

the mathematical objects in question (in this case the roots) must 

effectively be calculated the constructional concept. As far as concerns 

algebraic equations this point of view changed gradually after the works 

of Galois (there were earlier initations by Lagrange). But the penetration 

of new ideas took much time and only after some decades the concept was 

arrived that not the calculations are of first importance, but the 

notions and structures which are at the base of the theory. Schillemans 

calls this second period the existential concept. 

This distinction between points of view in algebra resembles the 

developments in analysis mentioned before and which will be treated in 

the next chapter. It is curious that in analysis the transition in the 

points of view came much later than in algebra. These developments in 

analysis began after the works of Cantor on the theory of set-s and even 

much later. They depended essentially on the way created by Cantor. Thus, 

there is some difference in the situations in algebra and analysis. This 

is connected with the relations between the creation of modern algebra 

and the first developments in the theory of sets 5) 
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We shall make some general remarks as an introduction to the 

examples of the next chapter. 

The examples find their origin in classical theorems and theories. 

But in the new point of view they appear in a very different form. They 

are all of the same character. They concern theorems which, for example, 

express that nearly all functions of a certain class have a certain 

property. Or it is asked whether all elements of a certain set have some 

well defined property and, if not, one wants information on the set of 

elements which have that propriety and on the set of elements which do not 

have it. These theorem are not associated to constructive methods. There 

are reasonings that concern the entire collection, without the need to 

consider the individuals. Essential here is the concept of a totality of 

functions or other mathematical objects, provided with a certain structure. 

In classical analysis there are, evidently, also theorems which concern 

all functions of a certain class. For example the theorem that every 

differentiable function is continuous. But such a theorem is proved by 

taking an arbitrary function of that class and giving a proof for that 

function without any regard to the collection itself. The reasonings we 

have in view are entirely different. There is an other example in classical 

analysis. In the theory of integration of partial differential equations it 

was formerly customary to say that the solution depends on an "arbitrary 

function". In an exact formulation such a statement is insufficient: 

"arbitrary" needs more precision. It must be added to what collection or 

function space these functions belong. 

This development was in the first place possible as a consequence of 

the works of Cantor. The theory of sets furnished the possibility to study 

phenomena of a collective character, to distinguish from phenomena of a 

special character. One may suppose that theories which concern properties 

of structured totalities could scarcely have been created before Cantor 

because there was not yet an abstract idea of a set 6). 

On the other hand there was the influence of the development of 

modern algebra. We mention, for instance, the methods of functional 

analysis which heavily depend on algebraic methods. The concept of a vector 

space, important as a tool in functional analysis, comes from algebra. 

Also topological developments must here be mentioned. Our examples are 

connected with functional analysis and topology. Some of them concern 

problems on classification, in more direct relation to the theory of sets. 

But they are all in some way characteristic for the transition from the 



63 

. h . . 1 h 7> constructive to t e exi.stenti.a p ase 

1.3 The introduction of set theory 

As these new ideas in mathematics were essentially based on the 

introduction of set theory and the developments in topology related, it is 

worthwhile to consider the way in which set-theory entered in analysis, in 

particular in the the theory of functions. These remarks shall be of 

bibliographic character. We will make some remarks about books that have 

playd a role in this process. In the examples of the next chapter some of 

these books have to be mentioned again. Compare Part I, 5.7. 

In the ancient theory of real functions problems of a special 

character were treated. Let us mention, for instance, the long history of 

the representation of continuous functions by means of infinite series 

(Fourier series; approximation by polynomials-Weierstrass). These were 

theorems of constructive character. There were the long discussions on the 

nature of the concept of a function and the questions on continuity and 

discontinuity. Continuous functions without derivative were for a long 

time considered as pathological. Only when there was a clear insight in 

such fundamental questions theories of existential type could be created 

on the base of set theory: the spaces L2 ,LP, •••• S) 

From the end of the 19th century till the twenties, thirties, of the 

20th century there was great activity in this domain. In particular 

"l 'Ecole Francaise" and later "l 'Ecole Polonaise" playd an important role. 

In these years set theory and the first notions of topology came gradually 

into analysis. 

In 1901 Emile Borel took the initiative to publish a series of books 

in this domain under the name "Collection de monographies sur la theorie 

des fonctions", better known as the "Collection Borel". But before 1901 

some books of this type had already been published in France. It is a long 

series and it is evidently not the place to mention them all. Borel him

self wrote several books in htis Series and after him several generations 

of mathematicians contributed to it. Often series of lectures were the 

cause to write these books and then they were edited by mathematicians 

who later on, contributed themselves to this domain. Also mathematicians 

of other countries contributed. The subjects are of various kinds. There 

are books in this Series which still must be called classical, not so much 

under the influence of set theory. For example Borel's book "Le~ons sur 
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les fonctions entieres" (1900). But it can be said that in general these 

books live under the light of the theory of sets. The steadily growing 

influence of set theory and topology is apparent. In many of these books 

especially in those of the first years, there are introductions to the 

theory of sets and set theoretical topology. There are several notes on 

the principles of set theory, often of polemic character because the dis

cussions in this domain were not yet finished. Looking at this Series as 

a whole one perceives the evolution of the ideas. We will give some details 

to illustrate this aspect. 

The first book in this Series can be considered as a classical book 

with respect to the introduction of sets in analysis: 

E. Borel, Le~ons sur la theorie des fonctions (1898). The influence of 

Cantor is evident in this book. We shall not review this book; some remarks 

may suffice. Chapter I contains an exposition of the new theory of sets: 

"Notions generales sur les ensembles". In chapter II "Les nombres 

algebriques et l'approximation des incommensurables" one finds Cantor's 

theorem stating that the set of algebraic numbers is denumerable. Of 

special interest is chapter III "Les ensembles parfaits et les ensembles 

mesurables". On the one hand there is a "constructive" theory of measure 

theoretical concepts; we will treat this subject in the next chapter 

from the existential point of view. On the other hand it is interesting 

for topological reasons. Borel proves the following theorem: 

"Si l'on a sur un segment limite de droite une infinite denombrable 

d'intervalles partiels, tels que tout point de la droite soit interieur 

a l'un au moins des intervalles, il existe un nombre limite d'intervalles 

choisis parmi les intervalles donnes et ayant la meme propriete (tout 

point de la droite est interieur a, au moins, l'un d'eux)". (l.c.p. 42). 

Borel added the following note: "On trouvera dans ma these une autre 

demonstration de ce theoreme, demonstration qui donne un moyen theorique 

de determiner ef fectivement les intervalles en nombre limite dont il est 

question". 

This theorem states a property which, later on, will be called local 

compactness. The influence of set theory is evident when this theorem is 

compared with the ancient theorem of Bolzano-Weierstrass stating that 

every bounded sequence contains a convergent subsequence. Apparently Borel 

had an idea of the difference between constructive methods and theories 

which only state the existence of certain objects. 



We must add that we don't understand here - as we shall always 

do is the sequel - constructive in a too limited sense of finite 

computations. Procedures which permit approximation in connection with a 

passage to the limit will be considered as constructive. 

At the end of this book there is an interesting note "La croissance 

des fonctions et les nombres de la deuxieme classe". This note concerns 
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a theory of Du Bois-Reymond on a certain classification of real functions, 

connected with asymptotic properties. We will consider this in chapter 2. 

Borel studied this theory also in his book "Lec;;ons sur la theorie de la 

croissance" (1910). 

It is worthwhile mentioning some other books in connection with the 

considerations in the next chapter. 

E. Borel, Le~ons sur les seriesdivergentes (1901) 

H. Lebesgue, Le~ons sur l'integration et la recherche des fonctions 

primitives (1904). 

R. Baire, Lecons sur les fonctions discontinues (1905). 

This last book contains a long introduction to the theory of sets with the 

purpose to give a characterization of the real functions which are the 

limit of sequences of continuous real functions. This subject is connected 

with a general classification of real functions (Baire-classes). We return 

to this in chapter 2 in relation with transfinite numbers. See for this 

subject: 

C. de la Vallee Poussin, Integrales de Lebesgue, Fonctions d'ensembles, 

Classes de Baire (1916). 

Volterra published two books in this Series on "fonctions de lignes" and 

integral equations (1913). They are initiations to the general concept of 

a functional and thus to abstract functional analysis. We shall consider 

this in Part III in an other context. 

As to functional analysis there is: 

P. Levy, Lesons d'analyse fonctionelle (1922). 

This is a treatise on analysis in function spaces, essentially a subject 

of the new period. 

A book of F. Riesz contains an excellent illustration of the trans

formation of the constructive phase into the existential phase: 

F. Riesz, Les systemes d'equations lineaires a une infinite d'inconnus 

(1913). 

It is concerned with the theory of systems of equations 
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Riesz treated also the history of this subject. First special cases were 

studied and the problem was to find explicit solutions. In the beginning 

of the 20th century the standpoint changed and the interest turned to the 

problem to give necessary and sufficient conditions in order that a 

solution of the general equation exists. It must then be specified in which 

space the solution exists. It is the problem of solvability [Monna, 1973b]. 

In the thirties of the 20th century this problem was again treated in the 

general framework of the theory of Banach spaces. The standpoint is then 

totally changed: one is no longer interested in explicit solutions (see in 

[Banach, 1932]). 

Even yet in 1922 Borel published a book in this Series: "Methodes et 

problemes de theorie des fonctions". Then there had appeared 26 books in 

this series. Borel collected here "un certain nombre de Notes et Memoires 

qui n'avaient pas trouve place dans les Ouvrages anterieurs et dont 

certains me paraissent cependant etre le point de depart de recherches 

nouvelles". There is a strong emphasis on questions related to set 

theoretical problems. 

Buth this is not yet the last book. There are books of Carleman, 

Frechet, Montel, Julia. Some are of a "classical" type. Others treat 

problems tending into a more modern direction, for instance the intro

duction of normal families of holomorphic functions, to be considered as 

a generalization of the ancient theorem of Bolzano-Weierstrass, but now 

formulated in terms of sets of functions, see [Monna, 1978]. 

We shall not continue the review of this series any further. Most of 

these books are worthwhile to be read by any mathematician who is 

interested in the development of analysis in the first decades of our 

century. They contain important information on the growing influence of set 

theory and topology on the process of transformation from the constructive 

to the existential period. But evidently there are more indications for 

this evolution of ideas. Some other sources have to be mentioned. 

In the first place the fundamental work in the Polish School must be 

mentioned. Several mathematicians contributed: Steinhaus, Banach, Schauder, 

Mazur, Ulam, Tarski, Kuratowski, Sierpinski, Mazurkiewicz. Many of their 

results were published in the Polish journal Fundamenta Mathematicae, 

founded in 1920 (Warszawa). This journal contains many papers which are 

interesting for our point of view. Another journal, founded in 1929 (Lwow), 
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Studia Mathematica, contains also much information. Both Banach's book 

Theorie des operations lineaires (1932) and C. Kuratowski's, Topologie, I, 

II, contain examples and passages which illustrate the changing points of 

view. 

Finally there is: 

F. Hausdorff, Grundzuge der Mengenlehre (1914). Especially some results in 

the last chapter "Inhalte von Punktmensen" will appear to be interesting 

for our purpose. There are two editions of this book but the second edition 

differs considerably from the original edition. In the first edition 

Hausdorff took a topological point of view. In the second edition, however, 

the considered mainly the theory of metric spaces. In this last edition he 

omitted furthermore the chapter on measure theory, motivating this by 

the argument that at that time there were already sufficiently many books 

on measure theory. However, it are just some results in the first edition

the existence of a universal measure - that we need in the following and 

most of the books on measure theory do not contain these results 9) 

1.4 Some basic results 

In Chapter 2 we shall need some results that are based on the axiom 

of choice or on statements that are equivalent to it. It seems to be use

ful to give a short review. 

(i) The axiom of choice 

Let W be a nonempty family of nonempty sets. Then there exists a 

function f wich associates with very VE Wan element f(V) E V. 

This axiom was formulated for the first time by Zermelo in 1904. It 

is an axiom in the domain of the foundation of mathematics and it was 

a point of many discussions in axiomatic set theory. There are several 

equivalent formulations. We mention some. 

Every set can be well ordered. 

This goes back to Cantor. 

Zon1' s lemma. 

Let W be a partially ordered set. Let a chain in W be every subset V 

of W which is totally ordered with respect to the induced partial 

order on V. Then Zorn's lemma reads: 

If every chain in W has an upper bound in W, then W contains a 

maximal element. 

This maximal element is not necessarily unique. We shall not prove 
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these equivalences. See [Jech, 1973] 

These are non constructive statements: in general a well ordering or a 
maximal element cannot be determined effectively. A well ordering of 

the real numbers is not known. They are frequently used in analysis. 

(ii) Existence of a base for vectorspaces 

In 1905 G. Hamel proved the following theorem for the field of real 

numbers [Hamel, 1905]: 

"Es existiert eine Basis aller Zahlen, d.h. es gibt eine Menge 

von Zahlen a,b,c, ••• derart dass sich jede Zahl x in einer und auch 
nur einer Weise in der Form 

x aa +Sb+ ye + .•• 

darstellen lasst, wo die Zahlen a,S,y, ••• rational sind, aber in 

jedem einzelnen Falle nur eine endliche Anzahl von ihnen von Null 

verschieden ist". 

To prove this Hamel used a well ordering of 1R. Later on this 
theorem was generalized for vectorspaces. Hamel's theorem appears 

then as a special case, if we consider lR as a vectorspace over ~. It 
is the following theorem: 

Let E be a vectorspace over a field K. Then there exists a set 

where I is a set of indices, such that every x E E can be represented 
in a unique way in the form 

x 

where only a finite number of the elements aa is different from zero. 

This is an algebraic base, known under the name Hamel base. It is 
a simple consequence of Zorn's lemma. 

(iii) The theorem of Hahn-Banach 

This is a fundamental theorem in functional analysis concerning the 

extension of linear functionals. In its simplest form it is the 



following theorem: 

Let E be a vectorspace over 1R • Let p be a real function on E 

satisfying the follwoing conditions 

p(x+y) ~ p(x) + p(y), x,y ~ E, 

p(ax) = ap(x) for all x E E, a~ 0. 
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Let V be a subspace in E and f a linear functional on V with values 

in JR. verifying f(x) ~ p(x), x E V. Then there exists a linear 

functional F on E verifying 

f(x) F(x), x E V, 

F(x) ~ p(x), x EE. 

Banach gave a proof using well ordering. Now it is customary to use 

Zorn's lemma. In this form it is a theorem of algebraic character. 

The existence of linear continuous functionals on normed spaces is a 

consequence of it. We refer to textbooks on functional analysis. 

Some remarks 

The results on the existence of a base and the theorem of Hahn-Banach are 

non constructive. No method, an algorithm for instance, is known to 

determine a base in the general case. Neither there is a general method to 

determine in explicit form the extension meant in the theorem of Hahn

Banach. And there are no means to calculate approximations. These 

theorems are ineffective. 

During the first decades of our century there were long discussions 

about the value of results of this type, especially among the mathema

ticians of the Ecole Francaise. A point of discussion was the problem what 

should be the meaning of "to define a function". Is definition sufficient 

to be sure of the existence? Or should only effective definitions be 

accepted? Emile Borel defended the standpoint that only c~lculable objects 

are really important in mathematics, aside of purely theoretical consider

ations. Baire also took this extreme point of view. Nevertheless he 

defined a transfinite classification of real functions. The effectivity of 

this classification has been a point of discussions. These discussions 

concerned questions on existence. The second edition (1914) of Borel's 
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"Le~ons sur la theorie des fonctions" contains interesting notes. lO) 

See [Monna, 1972]. We shall treat this subject in a more detailed way in 
the next chapter (section 2.7 (ii)). 

Furthermore, constructivity and effectiveness are, from historical 
point of view, somewhat dangerous concepts. Denjoy, for example, introduced 
a concept of integral, which now bears his name, by means of a method that 
he called constructive. However, he used transfinite methods which can 
scarcely be considered as appropriate for approximations.Here we come on 
problems of "constructive" and "descriptive" definitions which we already 
discussed in Part I, 4.3. We refer to [Saks, 1937]. 
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CHAPTER 2 EVOLUTION OF CLASSICAL PROBLEMS 

In this Chapter we will consider examples of the evolution of problems 

in classical analysis. In these examples the transformation of the ideas 

under the influence of developments in the theory of sets and topology 

is quite clear. Some of these classical problems were presented in a new 

form as a consequence of functional analysis. These are for instance 

(i) The theory of divergent series. 

(ii) The problem of universal measure. 

(iii) The existence of continuous functions without derivative. 

(iv) Convergence and divergence of Fourier series. 

Abstract functional analysis, the theory of Banach spaces, was created 

in the twenties of our century expecially by the mathematicians of the 

Polish School. From the outset they applied the abstract theory to 

classical problems of analysis. They realized that the abstract methods 

were appropriate to consider certain classical problems from a new point 

of view and thus to place these problems in a broader framework where the 

attention is directed towards problems of the existence of certain 

mathematical entities. Functional analysis had not been created without 

direct thoughts on possible applications. Banach's fundamental paper 

"Sur les operations dans les ensembles abstraits et leur application aux 

quations integrales" (thesis 1920 Lw6w; Fundamenta Mathematicae 3), where 

he introduced normed spaces in abstract sense, contains an introduction 

in which he explains the motivations to introduce this notion. The reasons 

were to avoid special reasonings for any special case; Banach gave examp

les. ll) See [Monna, 1973 b]. 

However, several years before functional analysis in abstract sense 

was introduced, there were already investigations where problems of 

existence, apart from constructions, were the point of interest. I have 

in view some work of Hamel, which is independent from functional analysis. 

2.1 The functional equation f(x+y) f(x) + f(y) 

Already Cauchy studied this equation (1821). He proved that if a real 

function f satisfies the relation 

f(x+y) f(x) + f(y) 
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for all x,y E IR and if f is supposed to be continuous, then 

f(x) ex, 

where c is a constant. 

Evidently there is no reason that in this equation f should be 

continuous. Therefore in later years there were attempts to weaken this 

condition. There are results of Darboux (1880), Sierpinski (1920), 

Kurepa (1956). We mention only that the condition "f is measurable" is 

sufficient to prove: f(x) = ex. [Aczel, 1969]. 

In 1905 G. Hamel succeeded in giving the general solution. He used 

his result on the existence of a base for IR and stated "Es existieren 

unstetige Losungen der Funktionalgleichung 

f(x+y) f(x) + f(y) 

und wir konnen sie alle angeben". 

Indeed, let (sa)aEI' sa E IR be a Hamel base of IR, considered as a 

vectorspace over ~· Then any a E lR can be written in a unique way as 

where the sum is finite. Define a function on I by 

Then the general solution is given by 

f(x) = ~ C p (x). 
a a a 

This solution is ineffective: a base for lR is not known in an 

explicit way and therefore it is impossible to calculate effectively a 

discontinuous solution of the functional equation. We can say· that the 

solution is either a linear function, or is extremally discontinuous. One 

must be cautious in interpreting Hamel's term "angeben". 
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2.2 The theory of divergent series 

We are concerned here with the old question whether it is possible to 

give a sense to divergent series and whether it is permitted to give them 

a place in mathematics, that is to say whether they can be accepted in 

rigorous reasonings. It is a subject with a long history. Remind for 

instance the numerous discussions about the series 1-1+1-1+ ••• , connected 

with the names Bernoulli, Leibniz, Euler, ••• Is there a "sum"? 

The problem arose whether it is possible to assign to any numerical 

divergent series a number, or a function when it concerns series which 

contain a variable, in a suitable way, that is: not being an addition of 

the terms. Several methods for summation were developed. For the history 

we refer to a paper by Tucciarone (1973). To give an idea we give some 

examples. 

There are methods based on mean values. Like in the classical case 

one begins with considering the sequence (Sn) of partial sums. Cesaro 

studied 

s1+ ••• +sn 
lim-----
n-too n 

Also iterations of this procedure were considered. In a more general way 

one studied weighted means 

To any summation procedure one imposed the condition that any series which 

is convergent in the classical sense should also be summable with respect 

to this new process and then give the same "sum". About 1900 Borel 

introduced infinite means. 

Let ~ be an entire function 

~(x) 

Borel studied the expression 

~c S xn 
n n 

lim -~-:-(.,.-x..,...)
x-too 

and, if this limit exists, he defined this as the "sum" of the divergent 
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series. In particular he considered the case where 

<jl(x) 

In this case one has 

s 

x 
e • 

lim 
X-7«> 

This method is stronger than Cesaro's. Borel also used this method in the 

form of an integral. Put 

There he defines 

u(x) 

00 

S f e-xu(x)dx 
0 

if this integral has a sense. He also studied the case in which not only 

this integral has a sense but also all the integrals 

00 -x I o.> , f e u (x)Jdx, 
0 

h (A) . 
w ere u is a derivative of u of arbitrary order. In this case he 

said that the series is absolutely summable. We shall not insist on this 

theory. We refer to the paper of Tucciarone. See also Borel's "Lec;ons sur 

les series divergentes" (1901) where one finds several summation procedures 

and their mutual relations; there is also an interesting introduction to 

the history of analysis. Borel considered also power series and he showed 

that the method of analytic continuation may furnish a summation method. 

Consider the series 

<P (z) 

and suppose it is not everywhere convergent. Suppose the series diverges 

for z = z0 • Then Borel proposed to agree that the sum of the series 
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+. ••• 

is equal to ~(z0), where~(z0) is the value in the point z = z0 of the 

analytic function defined by the given series, except in the case where 

z0 is a singular point. This gives a method for numerical divergent series. 

If 

is ~uch a series, put 

v 
n 

0,1,2, ••• ) 

where z0 is an arbitrary constant, and therefore 

Borel remarks that the result is independent of the choice of z0 • The 

summation problem for divergent series is then "Determiner la valeur 

numerique de ~<zo) en fonction des valeurs numeriques de ses termes" 

(Borel 1.c. p. 22). He remarked that "la theorie du prolongement analytique 

fournit d'ailleurs theoriquement une methode pour resoudre cette 

question; mais cette methode n'est guere pra:tiquement applicable". We shall 

not continue Borel's remarks about this problem; he refers to the works of 

Mittag - Leffler on the theory of analytic continuation. Some passages 

in the introduction of his book are of interest here. Borel states that 

the fundamental problem in the theory of divergent series is the following: 

"Faire correspondre a chaque serie divergente numerique un nombre 

tel que la substitution de ce nombre a la serie, dans les calculs usuels 

OU elle peut se presenter, donne des resultatsexacts, OU du moins presque 

toujours exacts" ( l.c.p. 14). 

As concerns "les calculs usuels" there are addition and muU:iplication of 

series. The question had already been studied (Cesaro). Borel observed 

"qu'on ne peut guere esperer de resoudrE> ce probleme precedent pour toutes 

les series divergentes; !'infinite non denombrable des modes de divergence 

paratt etre un obstacle insurmontable; mais ce serait deja un resultat 

fort important de l'avoir resolu pour les series divergentes que l'on 

peut etre effectivement amene a rencontrer dans les applications". 
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He also made the following interesting remark: 

"On pourrait d'ailleurs etre amene, connne nous en verrons des exemp

les plus loin, a attribuer plusieurs sonnnes differentes a une serie 

' 12) f ' A d' b d , d 1 
divergente ; ce ait peut paraitre tout a or etrange et para oxa ; 

il n'aurait pas paru moins etrange a un geometre du XVIIIe siecle 

d'entendre affirmer que l'integrale definie 

2 
f dz 
1 z 

n'a pas seulement pour valeur log 2, mais doit etre consideree connne 

egale a 

log 2 + 2kni, 

k etant un nombre entier quelconque". 

Later on Borel returned to this in a discussion about analytic 

continuation. He considered the series 

2 3 4 
ljl(z) log(1+z) z z z z 

= - - - + ---+ 
1 2 3 4 ... ' 

which gives for z 

log 2 

and he remarked that "d' apres la theorie du prolongement analytique on 

doit admettre que cette serie convergente a pour sonnne, non seulement la 

valeur arithmetique de log 2, qui est sa sonnne arithmetique, mais toutes 

les valeurs de log(1+z) pour z = 1, c'est-a-dire 

log 2 + 2k'rri, 

ou k est un nombre entier quelconque". 

We shall return now to Borel's fundamentalproblem. Functional analy

sis gives the solution of this problem, at least, to use Borel's words, a 

theoretical solution under certain restrictions. In Part I 4.3 "Limits 

and algebra" we treated the notion of a Banach limit. To every bounded 

sequence of real numbers (sn) there can be assigned a real number, denoted 
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by Ll.m ~ , verifying the traditional properties of the ordinary limit lim 
n n.._ 

and Lim= lim for every sequence for which lim exists. This Banach limit 

is not uniquely determined. The existence is a simple consequence of the 

theorem of Hahn-Banach. The solution of Borel's problem is then given by 

at least for any divergent series for which the sequence of partial sums 

is bounded. Reminding Borel's remark that he would be content to have the 

solution for some important classes of sequences, this restriction is not 

very serious. Perhaps more serious is the objection that this solution does 

not satisfy an other condition of Borel, namely the multiplication of 

series and it seems to be difficult to surmount this difficulty. Neverthe

less with any divergent series is associated a number and it verifies 

additivity. 

One may suppose that Borel has been acquainted with Banach's result 

on the existence of Lim; Borel died in 1956 and Banach's theorem dates from 

about 1932. However, supposing this, it is not very likely that he would 

have accepted it as a real solution of his problem. He asked for a method 

of summation which permits calculation of the "sum" for any given divergent 

series, at least a method that makes approximation possible. This in 

accordance with his standpoint on. the foundation of mathematics. Now, 

Banach's result is non-constructive and there are no means for calculation. 

The theorem expresses existence and nothing more. It says only that the 

problem is solvable. There are several passages in Borel's book on diver

gent series which support the idea that he wanted constructive methods. 

There is for instance a passage where he considered the criteria to decide 

whether a given series is convergent or divergent: 

"En effet, bien que Paul du Bois-Reymond ait fourni un exemple d'une 

serie convergente dont la convergence ne peut etre demontree par aucun des 

criteres de Bertrand, ou peut dire qu'en pratique ces criteres suffisent, 

c'est-a-dire permettent d'etudier toutes les series que l'on rencontre 

effectivement. Des lors, si l'on a demontre une proposition pour toutes les 

series dont la convergence peut etre prouvee par l'un de ces criteres, •.• , 

on pourra appliquer cette proposition a toutes les series sauf peut-etre 

quelques rares exceptions, de sorte que cette proposition, en apparence 

tres particuliere, ne sera pas loin d'etre tout a fait generale" (l.c.p.72). 
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I don't know whether Banach has considered an application of his 

theorem to the problem of Borel. He refers to some work of Mazur from 

1929 ("O metodach sumowalnosci") which was difficult to consult. Anyhow 

he does not mention it in his book from 1932. On the other hand, Banach 

occupied himself with methods of summation in the framework of his work on 

functional analysis. In his book there is a section "Quelques theoremes 

sur les methodes de sommation". There he proves some theorems on summation 

methods by means of certain matrices (there are references to Toeplitz and 

Mazur). 

2.3 The problem of universal measure and paradoxical decompositions 

One finds the same situation - i.e. the evolution of a problem of 

constructive character towards a problem of pure existense - when one 

studies the problem of defining a measure for sets. 

We shall not treat here the traditional measure theory with subjects 

as a-algebras of sets, measures on a-algebras. For these topics we refer to 

the textbooks (for instance Halmos). Here we are interested in fundamental 

existence theorems. First we consider the problem of assigning to~very 

bounded subset of lR.n a measure which satisfies some suitable conditions. 

There will also be some remarks on measure on arbitrary sets, not necess

arily lRn. Thus, we are concerned here with the problem of the existence 

of universal measures. 

The origins of the universal problem are the same as in the 

traditional theories where the problem is to attribute a measure to 

certain classes of sets. This goes back to the classical problem of 

calculating the area or volume of elementary figures. But in the general 

form to attribute a real non negative number - a measure ·- to sets, it i.s a 

typicall a post-Cantorian problem. Cantor himself gave definitions. Later 

there were Jordan, Borel, Lebesgue. Their definitions were constructive: 

by means of coverings a measure was attributed to certain sets in such 

a way that at least theoretically approximations of this measure could 

be calculated. These developments led to the Lebesgue measure and to the 

Lebesgue integral. Next to this in the first decades of the 20th century 

theories were developed in which certain systems of axioms were the point 

of departure. Then problems of existence enter and constructivity comes 

in the background. Several problems, still studied in our time, resulted 

from the problem of universal measure or are connected with it: problems 



in set theory (paradoxical decompositions); certain problems in the 

domain of the foundation of mathematics, existence of measurable cardinal 

numbers; in analysis the theory of amenable groups, groups provided with 

an invariant mean; relations with harmonic analysis; group theoretical 

problems (existence of certain free groups). It is not the place here to 

treat these problems in detail. 
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The problem of the existence of a measure begins with Lebesgue in 

1904 in his work on the concept of an integral. He posed the problem to 

attribute to every bounded real function a real number, called the integral 

of this function, verifying some postulates among them the additivity 

f(f+g) =ff + Jg, 

and a condition on invariance with respect to translations (a postulate 

concerning convergent sequences of functions is of an other character). 

See [Lebesgue, 1903], Considering the characteristic function of a set 

Lebesgue showed that this problem is equivalent to the problem to attribute 

to every bounded set of lR an additive measure invariant with respect to 

translations. Lebesgue could not give the solution of this problem. An 

analysis of the problem led him to follow the constructive way and he could 

only define a measure for a certain family of sets (L-measurable sets). 

In 1905 Vitali proved, using the axiom of choice, that there exist sets 

which are not measurable in the sense of Lebesgue. 

In 1914 Hausdorff turned to this problem, refering to Lebesgue. He 

posed the following problem, called the problem of measure. 

It is asked to associate to every bounded set of lRn a real 

number satisfying the following conditions: 

1 • µ (A) ~ 0 , A c lR n, 

2. A~ B ~µ(A) = µ(B). 

Here ~ means congruence with respect to isometric maps. 

3. µ (E) = 1, where E is the unit cube. 

This condition serves to eliminate the trivial solution. 

4a. µ(A u B) = µ(A) + µ (B) if A n B = <P ' 

either 
00 

4b. µ(UA.) = I: µ(A.) if A. n A.= <fi (i +' j). 
i l. i=1 l. l. J 

If 4b is verified the measure is said to be completely additive. 
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Hausdorff postulated the invariance with respect to isometries. Later 

on the problem was studied when only invariance with respect to trans

lations is postulated. This gives some differences in the theory; we refer 

to [Hadwiger, 1957]. 

Let us consider now Hausdorff's results. Hausdorff proved that the 

problem has no solution when the condition is imposed that the measure 

shall be completely additive. 

He proved this for 1R 1 and then a fortiori there is no solution for Bn. 

Let s1 be a circle of radius in· Consider the map mod 7l which maps IR 

onto s 1• Then there is a 1-1 map between s1 and the interval I= [0,1). 

Ac s1 and A+ a c s1 (obtained by a rotation u) are congruent on s1 • On 

I there corresponds a decomposition in congruent parts. Consider x E 1R 

and let a be irrational. Then consider P x = x + all. With the decomposition 

on 1R corresponds on s1 an inscribed polygon with infinitely many sides 

which is not closed. One has either P = P or P n P = ~- Using the 
x y x y 

axiom of choice choose a number in any Px and let A0 be the set of all 

these numbers. Put 

One has 

I UA,AnA 
mE7l m n m 

~. n "- m. 

Suppose µ is a completely additive measure and suppose µ(I) 

I 
n 
u 

i=l 
A.] U J. 

l. 

Finite additivity gives 

µ(I) = 
n 
E 

1=i 
µ(A.) + µ(J), 

l. 

n 

1 = µ(I) ~ L µ(Ai) = nµ(Ao) 
i=l 

for all n E 1N • Then follows µ(A0) = 0 which contradicts complete 

additivity. 

This is a sketch of Hausdorff's proof. 

1. One 



Now remains the possibility of impossibility of a finitely additive 

measure. Hausdorff considered also this problem. He proved: 

The finitely additive measure problem is unsolvable in IR.3 . 

The proof is based on a theorem in the theory of sets, also proved 

by Hausdorff in 1914. Later on this theorem became known as the paradox 

of Hausdorff. It is the following result: 
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There exists a decomposition of the sphere s2 in R3 in four disjoint 

sets A, B, C, Q, where Q is denumerable, such that 

A= B = C = (B UC), 

s2 A U B U C U Q. 

The unsolvability of the finitely additive measure problem in IR.3 follows 

from this result. First, Hausdorff proved, using finite additivity, that 

µ(Q) = 0 and then 

µ(A) 

hence 

µ(B) 

2µ(A), 

3µ(A), 

µ(B UC), 

thus a contradiction. The measure problem on s2 is therefore unsolvable. 

The unsolvability in :R.3 follows easily. Supposing that there is a solution 

in IR.3 , the problem on s2 would also have a solution: to see it associate 

to E c s2 the volume of the cone generated by E and the center of s2 . 

We will only give a rough sketch of the proof that Hausdorff gave of 

the paradox. Design by cjl and 1jJ two rotations around axes through the origin 

respectively 2 of TI and 3n radians. The axes intersect in an angle ~ which 

will be chosen in a suitable way. The rotations cjl and 1jJ generate a non commutative 

group G: 

I 2 2 2 I {1 m,1jJ,1jJ [cjiijJ,cjlijJ ,1jJcjl,1jJ cjl etc.} 

The elements of G can be arranged in four classes: 
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with N = { 1,2,3, ••• } 

The essential point is to prove that it is possible to choose the angle <P 
in such a way that the only non-trivial relations between the elements 
of G are cp 2 = ~3 = 1. 

Then the transformations of the classes a,S,y,o are all different. One 
defines a partition of G into three disjoint classes T1,T2,T3 ; we 
shall not give the rather complicated definition. Q is defined as a certain 
set of fixed points of G; Q is denumerable. Consider on s2 the equivalence 
relation y ~ x as follows: "there is a E G such that y ox". Choose in 
each of the induced equivalence classes a point and let V be the set of 
these points (axiom of choice). Then the following decomposition satisfies 
the conditions: 

Indeed: 

cjlA B u c and A - B U C, 

~A B and A - B, 
~2A = c and A - c, 
s2 - Q A U B U C. 

For a detailed proof see [Sierpinski, 1954]. There is a compact proof in 
[Jech, 1973]. 

This decomposition is non constructive and seems to contradict any 
physical picture. There are more such decompositions and they are called 
paradoxical decompositions. One may wonder how Hausdorff came to this 
result and its complicated proof. There are no indications about it 



in his book. Later on we will return to some other paradoxical decompo

sitions. 
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We consider first some more developments in the theory of measure 

Hausdorff remarked that the problem of measure (finite additive) was still 

open for lR 1 and :JR2 and he could not give the answer. He remarked however 

that 
Rl 

the structure of the group of transformations (isometric maps) in 

and :JR2 made it impossible to treat these cases in the same way as in 

:JR3 • Perhaps Hausdorff had already the idea that certain aspects of the 

theory of groups play a role in the solution of this problem. Later on 

(1929) Von Neumann studied these relations in an important paper; we 

shall come back to it. 

These results of Hausdorff's were followed by a long series of papers 

on the measure problem. Especially in the Polish school this problem was 

studied. Many studies by Banach, Kuratowski, Tarski, Ulam. 

Their results were in close connection with paradoxical decompositions. 

Many of them have been published in Fundamenta Mathematicae. 

First there is a paper by Banach in 1923. He proved the existence 

of a universal integral (an integral defined for every bounded real func

tion), which is identical with the Riemann integral for every function 

for which this last integral exists, but which is not necessarily identical 

with the Lebesgue integral when this exists. He remarked that it is a 

consequence of this result that from the six conditions Lebesgue imposed 

on the integral the condition no. 6 (expressing a certain convergence) 

is independent from the five other conditions (this was an old problem). 

Furthermore it follows that Hausdorff's problem concerning the existence 

of a universal measure on R1 is thus also solved: a universal measure 

exists - in non constructive sense. He obtained the same result for 

bounded sets in R2 . Hence, Hausdorff's open problems were solved in an 

affirmative sense. Banach's proof was long and complicated; he used 

transfinite induction. Banach returned to this problem in R1 in his 

classical book from 1932. There he considers s1, which evidently is not 

a restriction. He proved that the existence of a universal measure on s1 

is a simple consequence of the theorem of Hahn-Banach; the proof is given 

in the same way as the existence of the generalized limit had been proved. 

It is a non constructive result: 

"A tout ensemble A de la classe K on peut attribuer un nombre µ(A) 

de fa~on que les conditions suivantes (ou A et B sont des ensembles 

arbitraires de la classe K) soient remplies 
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1) µ(A+B) =µ(A) + µ(B), lorsque AB 0, 

2) µ(A) ) 0, 

3) µ(A) µ(B) pour A - B, 

4) µ(A0) = 1. 1113) 

In 1923 the so called theorem of Hahn-Banach was not yet known (Hahn 
1927, Banach 1923). 14) 

In 1929 Von Neumann published important results on the measure problem. 
Hausdorff already considered a group, generated by rotations, and this led 
him to the paradox, but he did not analyse the aspects of the theory of 
groups in connection with the fact that the problem of measure has a 
solution for lR 1 and JR2 but not for lRn, n ) 3. One may perhaps say that 
there is not much reason to be astonished about this difference because 

. . 3 . 1 . 1 2 the transformation group in lR is arger then the groups in lR and IR 
and so therefore the condition on invariance in m3 is stronger than in 
JR1 and JR2 • These aspects were analyzed by von Neumann. He studied the 
measure problem in abstract groups and he introduced the concept of a 
measurable group. A group G is called measurable when there exists on G a 
universal measure (finite additivity) which is invariant with respect to 
the transformations on G. He formulated conditions in order that a group 
G is measurable. Abelian groups, for instance, are measurable, and also 
are solvable groups. He proved that G is not measurable if G contains a 
free non-abelian subgroup; this is the situation of Hausdorff's paradox. 
It is not the place here to review all the results of this large paper. 
It is however important to mention that he introduced the concept of a 
"mean" (allgemeiner Mittelwert) on an abstract group G in the following way: 
Consider the family F of bounded real functions f,g, .•. on G. It is 
defined 

af: (af)(a) = af(a), a E G, a E lR, 

f+g: (f+g) (a) = f(a) + g(a), 

f,: fT(a) = f(rn), a, T E G. 

A map M: F -+ lR is called a mean if the following conditions are satisfied 

aM(f), M(af) 

M(f+g) M(f) + M(g), 

M(f1 ) l1(f), 

f ) ll => M(f) ) 0, 

f 1 => M(f) 1. 
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Von Neumann formulated conditions in order that a mean exists. It is a 

theory on discrete groups. Later on means on topological groups were 

studied. Then one studies the Banach space of the bounded continuous func

tions on the group. This leads to "amenable groups", a subject studied 

untill our time. It is a theory of axiomatic character where there is no 

problem of constructivity [Greenleaf, 1969]. 

Tarski studied the problem of the existence of a universal measure in 

a still more general situation [Tarski, 1938]. He considered a metrical 

space S and studied maps f : X c S -+ lR, satisfying certain conditions in 

some analogy to those of measure theory; it is an algebraization of the 

problem. He proved, in a general way, that there are relations between the 

existence of universal measures and paradoxical decompositions. He. proved 

the theorem: a universal measure exists if and only if a certain fixed set 

(the unit set) admits no paradoxical decompositions. See the comments in 

"Oeuvres de Banach" (1967) and [Dekker, 1958]. 

In view of the negative results on the existence of a completely 

additive universal measure for all lRn and the same situation as to 

finitely additive measures in lRn , n > 3, the problem was studied when 

there is no condition on invariance. It is a subject studied till now, 

leading into the theory of sets and the foundation of mathematics. 

Banach and Kuratowski (1929) proved that the universal problem 

(without invariance), completely additive, with the condition that every 

singleton has measure 0, admits only the trivial solution (identically 0). 

This was proved under certain set theoretical conditions, concerning 

cardinal numbers. Banach (1930) and Ulam (1930) generalized this result. 

When there is only additivity for finite families there is a 

different situation. Tarski proved (1930) that there is a non-trivial 

solution for any arbitrary set. He proved that there is even a solution 

taking only the values 0 and 1. Compare [Manna, 1946]. 

Considering measures which only take the values 0 and 1 leads to 

characteristic functions of sets and then to set theoretical problems and 

questions in the domain of the foundation of mathematics. Ulam introduced 

the notion of a measurable cardinal number as follows. 

Let S be an infinite set. The problem is whether there exists a map 

µof the family of all subsets of S into {0,1} such that 

(i) µ ({x}) = 0 for all x E S, 

(ii) µ(S) = 1, 
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00 

(iii) µ( u v ) 
1 n 

00 

~ µ(Vn) for any sequence (Vn)' 
n=1 

Vn c s, Vn and Vm disjoint if m ~ n. 

If cardinal a is called measurable if there is a set S of power a on which 

there exists such a measure. If there is no such set, a is called non 

measurable. 

It is clear that one is then far away from a constructive theory of area, 

volume and measure. It is an open problem whether there exist measurable 

cardinals but one knows that, if they exist, they must be extremely large. 

It is a problem that is related to problems on the consistence of axiomatic 

systems in the theory of sets. We shall not treat this here. See [Luxem

burg, 1962] 

We already mentioned that there are relations between the measure 

problem and paradoxical decompositions.We mention some results which are 

rather spectacular. 

In 1914 there was the first example of Hausdorff. His proof needed 

3 pages. Sierpinski did much research in this domain. He proved Hausdorff's 

result in his book "On the congruence of sets and their equivalence by 

finite decomposition" (1954). He followed the way of Hausdorff but he 

needed 18 pages. See [Jech, 1973]; he needed again 3 pages. Jech gave it 

as an example of what can be reached with the axiom of choice. One obtains 

results that are far away from any intuition. They are called "paradoxical 

d . . " 15 ) f . bl h . f ecompositions • It concerns, or instance, pro ems on t e existence o 

proper subsets of a given set which are congruent to the whole set. There 

is also the problem of the decomposition of two sets in an equal finite 

number of disjoint parts mutual congruent. There is for instance the 

theorem: a ball can be decomposed in two disjoint parts such that each of 

these parts is congruent to the given ball. 

It is trival that there are sets which are congruent to a proper 

subset: for instance a halfline. But for a bounded subset of a line this is 

impossible. However, in the plane there are such bounded sets. 

One defines the notion "equivalent by finite decomposition" as 

follows: 

The sets A,B c lRk are said to be equivalent by finite decomposition in n 
k 

parts if there exist Ai' Bi' i 1, .•. ,n, Ai,Bi c lR such that 



(i) 

(ii) 

(iii) 

A = UAi' B = UBi' 

A. n A. =cjl(i,:. j), B. n B. =cjl(i,:. j), 
i J i J 

Ai; Bi' i = 1, ••• ,n. 

Notation 

A B. 
f 

Remark. This notion of decomposition in disjoint parts should well be 

distinguished from the decompositions that are introduced in elementary 

geometry to define area and volume. There the condition that the parts 

should be disjoint is not imposed (square and triangle etc.). This is an 

ancient theory, studied by Hilbert, Dehn. See [van Dalen, Monna, 1972], 

[Hadwiger, 1957]. 

This notion of equivalence was defined by Banach and Tarski in 1924. 

They also considered denumerable decompositions. The results are 

curious. Two bounded polyhedra are always equivalent by finite decompo

sition, even if they have not the same volume. For polygons, in JR.2 the 

situation is different: two polygons are equivalent in this sense if and 

only if they have the same area. A ball is always equivalent to a cube. 

This difference between IR2 and JR.3 is in close relation with the fact 
2 

that the maeasure problem has a positive answer in JR. , but a negative 

answer in IR.3 • This is used in the proof for JR.2 • The culmination is the 

paradox of Banach and Tarski: 
2 The sphere S can be decomposed in 10 disjoint parts such that by 

means of rotations 4 of these parts can be composed to form a sphere of 

the same radius, and the other 6 parts can be composed to form another 

sphere of the same radius. 
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There is an analogous result for a ball. There are several results of this 

kind in [Sierpinski, 1954] 

Some comments. 

We have treated the evolution of three subjects in mathematics: 

discontinuous solutions of a functional equation, the existence of a 

universal summation method for divergent series, the existence of 
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universal measures. For each of these subjects the evolution has led to 

non-constructive results, there are no effective examples. 

Perhaps the paradox of Banach-Tarski-connected with measure theory -

is the most impressive because the decomposition contradicts all geometric 

intuition. But is there reason to be more astonished at this result than 

at Cantor's result, proved by him at the beginning of his fundamental 

work, on the existence of a 1-1 correspondance between a segment and a 

cube ("equal number of points"), a result that is familiar to any 

mathematician? And is it more mysterious than the nature of the real num

bers, about which we have some intuition? Perhaps one is less astonished 

at the existence of discontinuous solutions of the functional equation than 
2 

at the paradoxical decomposition of S • Is geometric intuition of another 

level? However, the origin of these results is the same: they are 

consequences of the axiom of choice or one of its equivalents. 

Is there a reason not to accept the axiom of choice in view of such 

results? It is a question that should be answered in the framework of 

axiomatics and the philosophy of mathematics. We will not treat it here. 

The axiom of choice is generally accepted as a mathematical method 

- except in constructive theories - and its consequences must then be 

accepted too. But in history there was a different situation. In the first 

decades of our century there were many discussions about the axiom of 

choice. In particular in the "Ecole Fran~aise" objections were raised: 

Baire, Borel, Lebesgue. They concerned the question as to the real meaning 

of such ineffective results. There were questions on "definir un objet", 

"nommer un objet", "l'existenced'unobjet". In books of the Collection 

Borel one finds notes on this subject; [Monna, 1973]. In the fourties 

Lebesgue formulated objections. In his paper "Les controverses sur la 

theorie des ensembles et la question des fondements" (Les entretiens de 

Zurich sur les fondements et la methode des sciences mathe~atiques (1941); 

see Oeuvres scientifiques de Lebesque, Vol V, p. 287) he wrote, when discussing 

the theory of Artin, Schreier on formal real fields (where Zorn's lemma is used): 

"S'il etait vrai que, clans le cas particulier en question, le resultat 

depende effectivement de cet axiome [axiom of choice], que signifierait 

le resultat? On pretend avoir demontre la possibilite de faire certaines 

constructions a l'aide de tels instruments, mais on ne nous dit pas 

comment faire ces constructions. Il reste possible qu'aucun homme ne sache 

jamais les faire; on peut meme imaginer que l'on demontre que jamais aucun 

homme ne pourra indiquer la loi de succession des constructions a eff ectuer 



pour resoudre le probleme, pour realiser cette construction dont on a 

dit avoir demontre la possibilite". 

Such a criticism is directed towards results that are obtained by 

certain mathematical methods, and therefore also towards these methods 

itself. 
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When we discussed universal summation methods we wondered what would 

have been the attitude of Borel with respect to the solution by means of 

the generalized limit. Now we can ask the same question as to the univer

sal measure problem. Would the non-effective solutions we treated before 

have satisfied Lebesgue? Were they acceptable for Borel and Lebesgue as 

semi-intuitionists? [Bockstaele, 1949]. 

In Part I we mentioned the criticism of Leibniz on the work of 

Descartes; also Poincare criticized it. But there it concerned some 

objections against too automatical methods, not against the results. The 

criticism on the axiom of choice and the results which are proved by means 

of it, is of a very different kind: here fundamental objections are 

concerned. They are connected with standpoints on the foundation of 

matheamtics. 

In the next sections we will consider some more examples of the 

evolution of problems in analysis. They also concern problems on existence, 

but there is some difference with the preceding examples. We consider the 

existence of certain functions with some singular properties, for instance 

continuous without having a derivative, functions in relation to Fourier 

series etc. They have all in common that effective examples were known, 

sometimes already before the creation of the theory of sets and functional 

analysis. When these theories were introduced, one could ask for informa

tion on the totality of such more or less singular functions. The 

properties of these spaces of functions were studied and this resulted in 

non-effective existence theorems, and the questions if some special 

property is normal or exceptional? 

2.4 Continuous functions without derivative 

After long years of discussions on the relation between continuity 

and existence of a derivative for real functions, Weierstrass was the 

first to give an example of a continuous function without derivative. In 

the course of time several other examples were given. For example 
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f : f (x) 

Riemann gave 

f : f (x) 

2: 2-nsin(2n1Tx). 
0 

00 

-2 2 
2: n sin(n x). 

n=l 

See also the interesting article [Neuenschwander, 1978]. 

Even in the period when such problems were studied with the modern 

methods of topology and functional analysis, more examples were given. In 

1942 Lebesgue gave the example 

f : f (x) 
oo -n . n2 
2: 2 Sill 2 x, 

n=l 

and for the proof of the non-existence of a derivative he needed only one 

page. 

A geometrical construction of such a function was given by Von Koch 

l.Il 1904. 16 ) 

In the twenties of our century a new direction of research developed 

under the influence of topology and in particular of functional analysis 

which was in its first years. The problem changed. The question was posed 

to prove the existence without refering to special examples. In this way 

one could hope to find an answer to the question whether continuous 

functions without derivative are "exceptional" or in some way "normal". 

The problem, thus modified, must be studied in the framework of the theory 

of the space of all continuous functions. Topology and functional analysis 

are the means. 

As to topology the notion of category plays a role in this develop-

ment. A set V of a topological space is called of first category if it 

can be represented as a countable union of nowhere dense sets. If it can 

not be represented in this way it is said to be of the second category. 

These notions were introduced by Baire in his research on certain 

classifications of real functions. There are certain analogies between 

sets of first category and sets of measure zero; see [Oxtoby, 1971]. The 

notion of category is used in some fundamental questions in functional 

analysis. For the work of Baire see [Dugac, 1976]. 

From functional analysis certain theorems on sequences of linear 

operators are called in aid. 

One considers the Banach space C of the real continuous functions on 
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[O, 1] with the norm 

II f II max i f(x) \ • 
x 

Then the problem is to study the subspaces of C the elements of which are 

the functions that have or have not a certain supplementary property: 

existence or non-existence of a derivative (right or left) etc. In particu

lar Polish mathematicians studied in this area. We mention some of the 

results. 

Using theorems on linear operators Banach proved in 1926 the existence 

of a continuous function which has no derivative on a set of positive 

measure. He considered a sequence of linear operators (T ) 
n n 

T (f) 
n 

f(x+h )-f(x) 
n 
h 

n 
f E C 

where lim h = O, and then applied some general theorems. See [Banach, 1932] 
n->oo n 

where one finds more applications. 

This first paper was followed by several others. There is an inter

esting paper from Steinhaus "Anwendungen der Funktionalanalysis auf 

einige Fragen der reellen Funktionentheorie" (1929a). In this paper the 

author is not only concerned with the existence of a derivative. There is, 

for instance, the section "Nichtdifferenzierbare Functionen mit vorge

schriebenem Stetigkeitsgrad". There are nec~ssary and sufficient 

conditions for the existence of continuous functions x(T) such that a 

certain integral 

1 
!\x(s+T)-x(s) \.w(T)dT 
0 

is infinite for nearly all s and a given function w. Integrals of this 

kind play a role in the theory of Fourier series (for W(T) = T- 1). 

Steinhaus proved that a certain class of continuous functions without 

derivative is a set of second category in C. 

There are several papers of this kind in the journal Studia Mathematica. 

Mazurkiewicz (1931) proved the following theorem, using only topological 

methods in the Banach space C: 

"Seit C l'espace des fonctions continues de periode 1. L'ensemble 

N de fonctions de C, qui n'admettent pas de derivee (finie) a droite dans 

aucun point, est de seconde categorie dans C, son complementaire etant de 
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de premiere categorie". 

Banach generalized this result, using the theory of linear operators 

[Banach, 1931]. 

For those who are interested in the evolution of the theory of real 

functions in this period there are several interesting papers in the above 

mentioned journal ("Uber die Holdersche Bedingung"; Integrale vom 

Dinischen Typus"; etc.). 

In his book on topology Kuratowski (1933,1958) treated this problem 

as an application of topological and set theoretical methods. He proved 

the existence of a continuous function such that in no point the two 

right derivatives (lim, lim) are finite. He used a theorem of Baire's which 

he formulated as "Tout ensemble de premiere categorie est un ensemble 

frontiere" and then remarks that the existence in a point of two finite 

right derivatives is equivalent to the existence of a number n E JN such 

that 

jf(x+h)-f(x) 
h 

< n for all h > O. 

Some further considerations led him to say that the continuous func

tions which have a derivative are "exceptions clans la totalite des 
• • 11 17) fonctions continues • 

Kuratowski proved some more theorems an the totality of continuous 

functions. For example: "l'ensemble des fonctions continues qui possedent 

la derivee droite infinie clans une infinited~nombrable de points est 

analytique". 

The strong influence of the modern methods in functional analysis 

- algebraical and topological aspects - is evident in these developments. 

2.5 Fourier series 

We will consider only one aspect of the long history of the theory 

of Fourier series, problems on the divergence of certain series and we will 

only make some remarks because it is difficult to detach this· subject from 

the history of Fourier series in his totality. 

Given a function f, one has studied since Fourier series of the form 

L (ak cos kx +bk sin kx), 
k=l 



where the coefficients '\• bk are derived in the well known way from f. 

In particular one studied continuous functions. For a given function f the 

problem is to find conditions on f such that the corresponding Fourier 

series converges to f. Dirichlet gave some conditions under which 

such a representation is true; they concern conditions on piecewise 

monotonicity. He already considered the case where f has an infinite 

number of maxima and minima. In particular it was believed that for any 

continuous function f the corresponding Fourier series was convergent 

to f; however no proof had been given. Riemann studied this problem and 
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he published his results in a fundamental paper. In his opinion it was 

sufficient to study functions with only a finite number of maxima and 

minima in the interval under consideration because other functions did not 

present themselves in nature. It was a physical argument, insufficient from 

the side of mathematics, but insufficient too from the standpoint of 

physics. 

At this point du Bois-Reymond attacked the problem. We will take his 

work as a point of departure to illustrate also in this domain the 

evolution from the constructive phase (examples) into the existential 

phase. In a paper from 1873 [du Bois-Reymond, 1873 a] he remarked that 

Riemann, with his remark on functions that are met in nature, certainly had 

not in view functions which, with an infinite number of oscillations, 

tend asymptotically to O. He came to the conclusion that a general theorem 

on the possibility of the representation of an arbitrary continuous 

function by means of its corresponding Fourier series could not be true. 

His efforts aimed to find conditions under which such a representation is 

true. He wrote: 

"Einige Ueberlegung ergab bald die Bedingungen, unter welchen die 

Fourierschen Reiche bei durchgangicher Endlichkeit und Stetigkeit der 

darzustellenden Funktion fur einzelne Argumentwerthe keine endliche 

bestinnnte Sunnne haben kann". 

He proved the following result: 

"Die nicht darstellbaren stetigen Funktionen sind also in dieser ihrer 

einfachsten Erscheinung Funktionen der Form 

f(x) p(x) sin 1jJ (x) 

wo p(x) mit x ohne maxima verschwindet, und ijJ(x) bei gegen Null abnehmen

dem x mit unendlich vielen Maximis stetig unendlich wird". 
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This was the first example of a continuous function whose 
. . . . h 18) corresponding Fourier series is not every were convergent. 

Du Bois-Reymond continued this work in 1876 in "Abhandlung iiber die 
Darstellung der Funktionen <lurch trigonometrische Reihen". The subject 

of the research is "Untersuchungen iiber die Konvergenz und Divergenz der 
Fourierschen Darstellungsformeln". It is a complicated work of 123 pages 

and it is impossible to review it in a few lines. The problem of 

convergence and divergence of Fourier series is reduced to problems 

concerning convergence and divergence of certain integrals. We quote a 

passage: 

"Die Aufgabe, den 

a . 
Limes f da f(x) sinah 
h= 0 a 

fiir f(x) = p(a) cos ~(a), zu untersuchen, fiihrt, wie viele andere 

Konvergenzprobleme auf die Aufgabe, die Starke des Null - oder Unendlich
werdens nicht explizite gegebener Funktionen zu bestimmen". (l.p. 18). 

To perform this du Bois-Reymond developed a systematic theory of the in

creasing and decreasing of functions which he called "Infinitarkalkul". 
It is a study of asymptotic properties of functions. In the following 

we will come back to it. 

In the chapter IV "Darstellung der Bedingungen, unter denen die 
Fourierschen Reihen divergieren" he gave examples, even an example of a 

function whose Fourier series diverges on a dense set. We quote this 

passage: 

"Mann kann iibrigens aus der Funktion p(x) sin ~(x) noch andere 

nicht darstellbare Funktionen erhalten, deren Entwicklung nach Fourier

schen Reihen oder deren Ausdruck <lurch ein Fouriersches Integral in jedem 
kleinsten Interval! unendlich wird. Dann bilden wir die Funktion 

f(sinpx) p(sinpx) cos ~(sinpx) 

mit der Bestimmung f(O) = 0, so ist diese Funktion fiir jedes x stetig. 

Gleiches gilt von dieser: 

F(x) 

Setzt man endlich 

00 

L µ p(sinpx) cos ~(sinpx). 
p=l p 



H(x) lim 
h~ 

B 
J 
-A 

daF(a) sinh(a-x) 
(l-x 

so hat die Funktion in jedem kleinsten Intervall einen Punt, in dem sie 

unendlich ist, oder genauer, die µ konnen stets so bestinnnt werden, dasz 
p 

dies der Fall ist". (l.c. p. 101) 

After du Bois-Reymond several more, and more simple, examples of 

continuous functions were given, whose Fourier series is not always 

convergent. 

Lebesgue gave the following example in his book "Lei;ons sur les 

series trigonometriques" (chapter "Existence de series de Fourier diver

gentes"; Collection Borel), referring to du Bois-Reymond: 

"Soient c 1 ,c2, ..• des nombres tendant vers zero; soient n0,n1 ,n2, •.• 

des entiers impairs croissant indefiniment, posons 

et designons par Ik l'intervalle [a(:-l)' a~k)]. 
Definissons une fonction continue par la condition que 1 1 on ait 

f(x) = f(-x) et, dans Ik, en conservant les relations des nos 33 et 
. 19) 

suivants, 

cjJ( t) 
. sin t 

ck sin[a(k)t]~t~ 

f(x) est ainsi entierement determinee pour x assez petit, on la definira 

ailleurs par la condition qu'elle soit partout continue et de periode 

2TI11 • (l.c .p. 85). 
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Lebesgue proves by the approximating of certain integrals that ck and 

nk can be chosen in such a way that the Fourier series of f diverges for 

x= 0. 

He then posed the following questions: 

"Existe-t-il des fonctions continues dont la serie de Fourier est 

divergente partout? 

"Existe-t-il des fonctions continues dont la serie de Fourier est 

partout convergente, sans etre uniformement convergente dans aucun 

intervalle?" (l.c.p. 89). 

In contrast to later developments where such problems were studied 

in the sense of pure existence with the methods of functional analysis, 
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in the year in which Lebesgue posed these questions (1906) this can only 

mean that one asked for effective, concrete, examples. 

A very simple example of a continuous function whose Fourier series 

diverges in 0 was given by the Dutch mathematician [Wolff, 1931). 

Widom (1969) gave also an example of such a function. But he also gives 

a proof of the existence of such a function, using the theory of linear 

operators in Banach spaces (theorem of Banach-Steinhaus); it is then a 

non constructive method. 

Zygmund gave in his book on trigonometrical series [Zygmund, 1968) 

several examples of functions whose corresponding Fourier series has certain 

singularities, not only in one point but much more complicated singulari

ties. These effective examples are complicated. For a general theory of 

Fourier series Zygmund used the theory of linear operators. 

After Lebesgue's fundamental work, the Lebesgue integral was intro

duced in the theory. Instead of pointwise convergence one studied the 

aspects of convergence or divergence almost everywhere. Other concepts of 

convergence were studied, for instance convergence in mean, introduced by 

the works of Fischer and Riesz. 

In the twenties the methods of the theory of linear operators in 

Banach spaces were applied to the problem of the existence of divergent 

Fourier series. In these years function spaces were introduced and point

wise convergence was replaced by convergence in norm. With these methods 

the existence of not everywhere convergent Fourier series was proved. It 

concerns pure existence, not demonstrations of the existence by means of 

examples. It is the way from construction to solvability. 

In this period there are many papers on this subject in Studia 

Mathematica and Fundamenta Mathematicae. There are works of Banach, 

Steinhaus, Orlicz, Zygmund. Often the theorem of Banach-Steinhaus on 

sequences of linear operators in Banach spaces is applied: in a suitable 

way such a sequence is defined and it is then proved that there is a 

function f for which one of these operators is not bounded. 

By means of a general form of the principle of the condensation 

of singularities in Banach spaces - originally from Hankel (S.ee [Monna, 

1973 a]) - the case of divergence in one point could be extended to 

divergence on larger sets (See [Yosida, 1968); for a simple proof see 

[Wilanski, 1964), p. 118). There are generalizations to orthogonal systems 

of functions which are more general than the trigonometrical system (See 

Orlicz, "Beitrage zur Theorie der Orthogonalentwicklungen"). Banach 



considered orthogonal systems in some function spaces. He proved, for 

instance, "l'existence d 1 une fonction integrable x(t) telle que l'on ait 

s 
limlf S (t)dtj=oo 

n n-.oo a 

dans tout intervalle [a,S] c [0,2n]", where (S ) is the sequence of 
n 

partial sums. 

Still another problem is the existence of functions f in connection 

with convergence or divergence of series of the form 

"' A A 
L: ( [ a i n + I b [ n) , 

n=l n n 

where a and b are the Fourier coefficients of f and (A ) is a certain 
n n n 

sequence of numbers ~ 0 (there are relations with theory of lacunary 

trigonometrical series). The theory of linear operators is here an 

apparatus. 

In a paper of 1923 ("Une serie de Fourier-Lebesgue divergente 

presque partout"; Fund. Math. 4) Kolmogoroff gave "un example d'une 

fonction sommable (c'est-a-dire: integrable au sens de M. Lebesgue) dont 

la serie de Fourier diverge presque partout (c'est-a-dire: partout sauf 

aux points d'un ensemble de mesure nulle)". It is an effective example 
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in sofar as one wants to call statements "presque partout" really effective). 

He did not use the theory of linear operators and he remarked that "les 

methodes employees ici ne permettent pas de construire une serie de 

Fourier divergente partout". 

In 1926 [Kolmogoroff, 1926] he succeeded in proving that there exists 

a function f E L1 whose Fourier series is everywhere divergent. He gave an 

effective example of such a function. 

There is a relation with the concept of category in the sense of 

Baire (see 2.4): 

The set of functions f E L1 whose Fourier series is divergent in L1 

is a residual set in L1• 

A residual set is defined as follows. A topological space E is called 

a Baire space if every nonempty open set of E is of second category. In 

a Baire space the complement of a set of first category is called residual. 

For this result see [Banach, 1967, p. 311]. 

In 1966 Carlson proved that the Fourier series of any f E L2 is 



98 

almost everywhere convergent. Here problems on convergence than of 

d . 1 · t t role.ZO) ivergence, p ay an impor an 

2.6 Analytic continuation 

We will discuss some points in the theory of analytic continuation 

for analytic functions of a complex variable. 

In 1880 Weierstrass gave the first example of a function f, defined 

by a power series with finite radius of convergence for which any point 

of this circle is a singular point. In this situation the function can not 

be continued outside the circle; the circle of convergence is a limiting 

circle for this function (in French a "coupure"). It is the series 

where o< b < 1, a entire;;;. 2, ab;;;. 10. 

The theory of singular points of analytic functions was developed 

and more examples of series whose circle of convergence is a limiting 

circle were given. There is a theorem of Hadamard (1892): 

"Considerons la serie 

00 

f Z:: a zn 
0 n 

Soit (~) une suite de nombres entiers telle que 

~+ 1 - ~ > c~, k 0, 1,2, ••. ' 

C'etant une constante independante de k. Alors la frontiere du 

disque de convergence de f est une coupure pour f si an = 0 pour n E (~)". 

A series of this type is called lacunary. A theory of these series has 

been developed; there are, for instance the works of Fabry. See a book 

by Bieberbach[1955],which contains an extensive bibliography. 

First there were examples, theorems of constructive character; one 

studied special situations where results on the existence of singular 

points of certain classes of analytic functions were obtained. But 

already Fabry and Borel studied the set of all power series with respect 

to the existence of power series with a limiting circle. About 1896 they 

expressed as their opinion that the property of a series to have a 
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continuation is exceptional and that the existence of a limiting circle 

is the "normal" situation. To make such a statement the concepts 

"exceptional" and "normal" must be defined. This leads to theories of a 

structure different from constructivity: they are concerned with questions 

of pure existence. One wants information of the frequency of the series 

which have a limiting circle: are there many of such series? It seems that 

such a question could only be posed under the influence of set theory. 

We quote a passage from [Borel, 1901]: 

"Pour donner une application de la methode precedente, nous allons 

demontrer qu'une serie de Taylor admet, en general, le cercle de 

convergence comme coupure. 

Cette proposition a ete enoncee pour la premiere fois par Pringsheim; 

il est d'ailleurs clair qu'elle n'a un sens precis que si l'on definit les 

mots en general qui figurent dans son enonce et qui n'ont, en eux-memes, 

aucune signification determinee. Nous adopterons la definition suivante: 

une serie de Taylor sera dite generale si la valeur du nieme coefficient 

est independante de la valeur des coefficients precedents" (l.c.p. 147). 

Steinhaus studied this problem from the point of view of probability 

in a paper from 1929 "Uber die Wahrscheinlichkeit dafiir dass der 

Konvergenzkreis einer Potenzreihe ihre natiirliche Grenze ist". The 

problem is then reduced to a theory of measure in a suitably defined space. 

There is the following result. 

Consider the series 

a 
n 

2nix 
I , n 
a 1e 

n 
x ER. 

n 

Suppose \a \, n 
n 

0,1,2, .•. are given such that 

lim I a 1 1 /n = 1 • 
n 

n~ 

The xn are supposed to be variable. Consider the torus T: x = (x0 ,x1 ,x2, ... ) 

taking xn mod 7l • Introducing an appropriate measure in T it is proved: 

the power series which admit a continuation form is T a set of measure 0. 

There are also results of a topological character. Introducing a 

suitable topology in the set of all power series with radius of convergence 

equal to 1, one proves that the subset of the series which can not be 

continued is dense in this set. 
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Remarks 

The preceding examples illustrate the evolution from the constructive 

phase into the existential phase. The concept of pure existence is one of 

the characteristics of the modern phase of mathematics. It would not be 

difficult to give more examples of this evolution. For instance the 

problem of moments (effective calculation of solutions and conditions on 

existence); there is the same situation in the theory of quasi-analytic 

functions [Carleman, 1926]. The theory of partial differential equations 

gives an other example. In the classical situation the theory was 

concerned with explicit solutions in special cases. Only later on the 

direction turned to conditions on existence in the general case. Potential 

theory - the study of the solutions of the equation of Laplace ~u = 0 -

is perhaps an exception. Here the question of pure existence - rather than 

constructivity - was already studied in an early phase. We mention the 

classical Dirichlet problem [Bertin, 1978]. 21 ) 

In linear algebra there are elementary examples. For instance 

questions on explicit solution of systems (finite or infinite) of linear 

equations and results on the dimension of the space of the solutions. 

The constructive phase should not be considered as a closed phase. 

Let us mention a problem posed by Banach in the early years of functional 

analysis. He posed the question whether every separable Banach space has 

a base (we shall not give the definition. Compare the algebraic base of 

vectorspaces; see 1.4 (ii). Here it is a topological base). The question 

has long been open. Only in 1973 (Acta Math. 13, 309-317) Enflo gave an 

concrete, effective, example of a Banach space which has no base. Thus 

Banach's problem had been answered. But then new problems follow: the 

problem to characterize by intrinsical conditions the class of Banach 

spaces that have a base and the class of those that have not. Here 

construction is no more in the foreground: there is the problem of 

solvability. Compare the base problem is non-archimedean analysis 

[Menna, 1970], [van Rooy, 1978]. 

In number theory there are also questions on solvability· - rather 

than finding solutions. There is, for instance, the problem of finding 

integer solutions of polynomial equations (quadratic forms; Fermat) or 

certain congruences. In some situations the solvability is equivalent 

with the solvability of some related equations in the p-adic numbers for 

all prime p. There are recent developments in this domain. It goes too far 



to review them here. We refer to a paper by Stephen Gelbart, "An 

elementary introduction to the Langlands program" (Bull. Am. Math. Soc. 

10, no. 2 (1984) 177-219). 

2.7 Problems on classification 
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The next two subjects are of a somewhat different character. They 

concern some problems of classification in analysis; set theoretical 

aspects of existence and construction are connected with them. These 

subjects were already studied towards the end of the 19th century. In 

particular the first subject had an important influence on mathematics of 

our time. 

Note that, in principle, problems concerning a classification of 

real functions were not necessarily reserved for the years after Cantor. 

There is, for instance, a classification in simply continuous functions, 

differentiable functions (one or more times) etc. This is a rather trivial 

classification and furthermore, considered in classical analysis, it 

concerns rather properties of individual functions than a partition in 

classes. Function spaces were reserved for the period beginning with 

Cantor. 

(i). In the section on Fourier series we already mentioned du Bois

Reymond and his "Infinitarkalkiil". We shall give some information about 

this Kalkiil and its consequences. 

On the one hand this theory can be considered as a classification of 

some classes of real functions, on the other hand it is a theory on the 

orders of magnitude for the asymptotic behaviour of functions, a measure

theoretical question. 

Consider the family of the increasing functions 1t -+ JR. such that 

for any f of this family 

lim f (x) +oo. 

x->oo 

One studies these functions with respect to their mutual asymptotic 

relations for x -+ 00 • 

Following du Bois-Reymond it is said that, for two functions f and g 

of this family, the degree of increasing of f is superior to the 

increasing of g if 
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.1 . f(x) 
l.m(X) 

x->«> g 
+oo • 

If this limit exists and is equal to zero,it is said that the degree of 
increasing of f is inferior to the increasing of g. If the limit exists 
and is ~ 00 , ~ 0, it is said that f and g have equal degree of increasing. 
Du Bois-Reymond used the following notation: 

f 'r g, f .J.. g, f ~ g. 

For typographical reasons we write with Borel f(x) > g(x), f(x) < g(x). 
If the said limit does not exist f and g are said to be incomparable with 

h . . b h . 22) . respect to t eir asymptotic e aviour. Du Bois-Reymond, and later on 
Borel, considered only functions that are comparable. In this way a 
notion of order of magnitude, types of infinity, is introduced. It is a 
classification of the family of real functions with respect to their 
asymptotic behaviour. Du Bois-Reymond developed a calculus for these 
orders of infinity and he compared it to the arithmetic of numbers: 

"In den erwahnten Untersuchungen habe ich die verschiedenen 
Unendlich der Funktionen nach ihrer Grosse unterschieden, so class sie 
ein Grossengebiet (das infinitare) bilden .•• ". [du Bois-Reymond, 1875). 
We discovered that there are, however, some essential differences and that 
a calculus of magnitudes of infinity is much more complicated. He studied 
the following problem: is it possible to define a denumerable sequence 
of increasing real functions <P 1 ,q,2, ••• verifying 

such that for any given increasing function ~ there is an index m E lN 
such that 

~(x) < <P (x)? 
m 

He proved that such a sequence (<jl) does not exist and established the 
following theorem (we quote it in the form in which Borel gave it 
(1898, Note II): 

"Etant donnee une suite denombrable quelconque (<jl) de fonctions 
croissantes, on peut trouver effectivement une fonction croissante 
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~(x), telle que l'on ait, quelque soit m 

~(x) > <P (x)." m 

Borel compared this result with the role of the axiom of Archimedes in a 

theory of modes of increasing. The theory du Bois-Reymond developed is of 

classical technical character; see the references. He created his theory 

for the needs of classical analysis: 

"Die vorliegende Untersuchung ist fast in allen ihren Theilen aus dem 

Bedurfniss entsprungen, gewisse Satze uber Convergenz und Divergenz von 

Fourier'schen Reihen allgemein und unter genauer Feststellung ihres 

Gultigkeitsbereiches zu beweisen". [du Bois-Reymond, 1875]. 23 ) 

We confine ourselves to some remarks on this work. To illustrate 

"increasing" and "decreasing", du Bois-Reymond mentions the elementary 

functions: powers, the exponential function, logarithm and their iterations. 

We quote again (1875): 

"Diese als Zahlen dienenden Funktionen erstrecken sich, dem heutigen 

Stande entsprechend, von beliebig hoch geturmten Exponential-funktionen: 

e· 
e 

x e 

bis hinunter zum unendlich beliebig oft wiederholter Logarithmen 

log(log( ••• log x) ••• ) 11. • .X. II 

The problem was whether with these functions the whole domain of asymptotic 
24) 

behaviour had been exhausted. 

Du Bois-Reymond studied the relations between a function and its 

derivatives with respect to their asymptotic behaviour. He considered 

expressions like 

f(x+a) - f(x) and f i<:r> 

A problem is "die Bestimmung des Unendlich nicht explicite gegebener 

Funktionen". Some chapters are: "Ueber Infinitartypen and infinitare 

Gleichheiten"; "Integrierbarkeit infinitarer Gleich- und Ungleichheiten". 
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Borel wrote on this subject in some of his books. He considered the 

theory from a somewhat different point of view. He asked whether it is 

possible to constitute for these types of asymptotical behaviour a theory 

in some way analogous to the measure theory for length of intervals 

("mesure des longueurs"). He remarked that du Bois-Reymond had proved that 

such an analogy is not possible. Borel posed the problem to form a scale 

for these asymptotic types ("une echelle de types croissants"). See his 

Note II "La croissance des fonctions et les nombres de la deuxieme classe" 

in (1898). Such a scale should be a set E of functions~ such that (i) 

(i) any two functions of E are comparable and (ii) given an increasing 

function ijJ there exists in E a function ~ whose increasing is superior 

to that of ijJ. It follows from du Bois-Reymond's theorem that such a scale 

cannot be denumberable. Borel writes: 

"Nous allons neanmoins chercher a en construire un, ne serait-ce que 

pour donner une idee des difficultes que l'on rencontre lorsque l'on veut 

definir un ensemble non denombrable sans faire appel a l'intuition du 

continu". This construction is a transfinite process: there are the types 
2 

1, .•. , n, ... ,w,w+1, ..• ,w ' . . . . There are transfinite difficulties in this 

process. They led Borel to introduce the concept of "fonction ideale", 

defined in the system of increasing functions. He wrote about this in his 

Note II mentioned before.LS) This passage is very interesting and it is 

worthwhile to quote it: 

"Designons par (S) la suite transfinie de fonctions que nous venons 

de definir. Cette suite a les proprietes fondamentales suivantes: 

1. Deux fonctions quelconques sent comparables entr'elles. 

2. Etant donnee une fonction quelconque de S, il y en a une qui 

la suit immediatement. 

3. Une fonction quelconque etant donnee, il y a dans S une infinite 

de fonctions qui lui sont superieures. 

Cette suite S possede ainsi quelques-unes des proprietes fondamen

tales de la suite des nombres entiers. On peut en deduire un ensemble I 

qui possedera de meme quelques-unes des proprietes fondamentales de 

l'ensemble des nombres rationnels. Il suffit pour cela de proceder exacte

ment de meme que pour obtenir ce dernier ensemble: la consideration des 

fonctionsinverses des fonctions de S donnera des fonctions croissant de 

moins en moins vite; en les multipliant par la variable x, on aura des 

fonctions a croissance plus rapide que x, mais aussi peu que possible; par 

le procede de l'iteration, repete transfiniment, on formera un ensemble I 



de fonctions a croissance plus rapide que x et mains rapide que celle de 

x2 , par exemple. Get ensemble L sera d'ailleurs de seconde puissance et 

aura les proprietes suivantes: 

1. Deux fonctions quelconques de L seront comparables entre elles. 

2. Si l'on considere une fonction quelconque, comparable a toutes 

les fonctions de L, et dont la croissance est comprise entre celle de x 

et celle de x2, la croissance de cette fonction sera entierement definie 

par la suite transfinie des fonctions de L dont la croissance est plus 

grande et la suite transfinie des fanctians de L dant la croissance est 

plus petite. 

D'ailleurs, recipraquement, tout mode de division des fanctions 

de L en deux ensembles, tels que chaque fonction du premier ait une 

croissance inferieure a toute fonctian du second definit un made de 
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croissance, mais a ce mode ne correspond pas necessairement une fonction. 

De meme que toute division en deux classes de !'ensemble des nombres 

ratiannels definit une grandeur, mais a cette grandeur ne correspond pas 

necessairement un nombre, tant que l'on n'a pas convenu d'appeler nombre 

les nombres incommensurables. 11 y aurait lieu de meme ici, pour completer 

ce continu fonctionnel, analogue au continu lineaire, d'introduire des 

fonctions ideales, analogues aux nambres incommensurables. 

Une fonction ideale, c'est un mode de division de !'ensemble Len deux 

classes telles que toute fanction de la premiere classe soit inferieure a 
taute fonction de la seconde classe et telles, de plus, qu'il n'y ait pas 

dans la premiere classe de fonctian superieure a toutes les autres, ni 

dans la secande classe de fonctian inferieure a toutes les autres. 

Par exemple, rangeons dans la premiere classe les fonctions ~(x) 

telles que l'integrale £00 ~~:) n'ai~ pas de sens et dans la seconde les 

f · 11 1 1 • ' 1 f dx · · · onctions te es que integra e 0 ~(x) ait un sens. Nous aurans ainsi 

defini une fonction ideale telle que, si an la designe par 6(x), l'integrale 

00 

dx t 6(x) 

est a la fois pourvue et depourvue de sens. Cette praprietie .est taut aussi 

absurde pour celui qui regarderait 6(x) comme une veritable fonction,que la 

suivante, pour celui qui ne considererait que de veritables nombres: il 

existe un nombre dont le carre est egal a 211 •
26 ) 

After this passage there is an exposition on "la formation des 

nombres plus grands que l'infini introduits par M.G. Cantor". Borel shows 
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the analogy between certain aspects of the theory of Cantor and the theory 
of du Bois-Reymond. There are several more interesting remarks in this note 
(on "indefiniment" and "transfiniment") on fundamental discussions about 

h . 1 . . h Zl) . . h . set t eoretica questions in t ese years. Here is again t e question we 
mentioned in some preceding sections: how to explain the introduction of 
"fonctions ideales" with the standpoint of Borel to consider only objects 
that can be calculated? 28) 

After 1898 Borel continued his research on modes of increasing. He 
studied applications to analysis. See for instance the chapter 
"Differentiation et integration des ordres de coissance" in [Borel, 1910]. 
There are relations with the theory of asymptotic series. 

But we shall not follow this direction. We prefer to mention some 
developments in contemporary mathematics. The work of du Bois-Reymond 
has connections with the concepts of infinitely large and infinitely small, 
the infinitesimals from Leibniz. From an asymptotical point of view 
decreasing functions verifying 

lim f(x) 0 
x-l<X> 

can be considered as infinitesimals. In modern mathematics the development 
has led to the so called "non-standard analysis", created by A. Robinson. 
This theory is based on an extension *IR of the field 1R which contains 
infinitely small and infinitely large elements. However, it is a 
non-effective theory, based on Zorn's lemma and ultrafilters. It is 
important in the foundation of mathematics. See [Robinson, 1966]. 

(ii). One can consider these works of du Bois-Reymond as a classification 
of a class of functionswith respect to their asymptotic behaviour. 
There may be some doubt whether du Bois-Reymond himself regarded these 
results from this point of view. His aim was to study the convergence or 
divergence of some integrals and for this he needed a study of the asymp
totic behaviour of the functions in question. 
It is quite otherwise with some works of Baire: he gave a transfinite 
classification of real functions. This classification was connected with 
the problem of the representation of functions, for example the 
possibility of representing certain discontinuous functions in the form of 
a series of polynomials. About 1899 Baire proposed the following classifi
cation: 
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the elements of class 0 are the continuous functions; the elements of 

class 1 are the functions which are limits of functions of class 0 without 

being functions of class 0. 

In an analogous way are defined the functions of the classes 2,3, ••• , and 

this is continued to define the transfinite classes w,w+1, •.• ,w2, •••• 

In later years the following problems were posed: 

1. Is the class a nonempty for any a? 

2. The problem to give an effective example of a function of any of these 

classes. 

3. Characterization of the functions of any of these classes. 

Baire succeeded in giving a characterization of the functions of the first 

class. Therefore he introduced the concepts of sets of first and second 

category (see 2.4). He obtained also some results for the functions of 

an arbitrary class. See [Baire, 1905]. 

We confine ourselves to some remarks and refer to [Dugac, 1976] for 

more information. 

It has been proved, on the one hand, that none of these classes is 

empty but, on the other hand, that there are functions which belong to none 

of these classes [de La Vallee Poussin, 1916]. This classification has some 

constructive aspects (certainly with Baire), but the problem of effectivity 

has been the subject of many discussions, where in particular Borel must 

be mentioned. There are examples of functions of class 2, e.g. Dirichlet's 

function, taking only the values 0 and 1. In note III [Borel, 1905] 

"Sur !'existence des fonctions de classe quelconque" Borel asked "si la 

classification de M. Baire n'est pas purement ideale, c'est-a-dire s'il 

existe effectivement des fonctions dans les diverses classes definies 

par M. Baire". He insisted on "ce que l' on doit appeler une fonction 

definie". It is the question of defining an object and the existence of 

this object. He remarked that it is easy to see "qu'il existe des fonctions 

de classe superieure a un nombre quelconque (fini ou transfini) donne 

d'avance". Therefore he used a reasoning on cardinals of families of 

functions, a set theoretical method. But such a reasoning did not satisfy 

Borel because it gives no means "d'en definir une, c'est-a-dire d'en 

designer une de telle maniere qu'on puisse la distinguer des autres". In 

this note Borel proved that it is possible to define effectively such a 

function. However, he remarked that the definition "exigera en general des 

operations transcendantes pratiquement inexecutables". One may wonder 

whether this satisfied Borel in view of his standpoint to use only 
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"objets calculables". 

Was such a classification possible before Cantor? This seems 

unlikely. The theory differs, for instance, essentially from the classical 

theorem of Weierstrass on the approximation of continuous functions by 

polynomials. The theory of Baire is not a subject of classical analysis 

as I tried to describe in chapter 1. Here construction and existence are 

placed in face of each other. 

Remark. We treated historical aspects in the evolution of the concept 

of existence in analysis. We mentioned some analogous developments in 

algebra (Abel, Galois). But we did not consider problems on existence 

in geometry. Existence in geometry needs further study which we shall not 

undertake in this book. 
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NOTES 

1. In his discussion of a book of Olevskii (Fourier series with respect 

to general orthogonal systems) Boas writes: "The proofs presented in 

the book are extremely "classical"; they depend, for the most part, on 

ingenious and difficult constructions". (Bull. A.M.S. 82 (1976), 

p. 854). Has "classical" to do with complicated calculations? The well 

known books of Polya and Szego "Aufgaben und Lehrsatze aus der Analysis" 

are they "classical"? 

2. Salmon also wrote an interesting book on algebra: "Lessons introductory 

to the modern higher algebra" (about 1845; see ed. 1866). In those years 

it was a curious book: linear transformations, theory of invariants, 

symbolic methods; many references to Cayley and Sylvester. For a 

review of Salmon's works see a memory of Fiedler in Salmon-Fiedler I 

(1907). 

3. This is only an example of classical books on analytic geometry. There 

were more such books, for instance B. Niewenglowski, Cours de geometrie 

analytique I,-,IV; prim. ed. 1894. 

Volume III contains a Note de E. Borel "Note sur les transformations 

en geometrie". This is an exposition of transformation groups and the 

theory of S. Lie in geometry. It is the text of lectures given by 

Borel in 1894-1895. 

For differential geometry see the classical books of Darboux, 

Theorie des surfaces, 4 volumes 1887. Also L.P. Eisenhart A treatise 

on the differential geometry of curves and surfaces (1909). 

4. See a note by Anil Nerode, The limits of effectivity in classical 

mathematics, Notices of the A.M.S. Vol. 25, no. 5 (1978) p. A 505 

5. For these developments see [Novy, 1973], [Wussing, 1969] 

6. See an interesting paper by E. Borel "La theorie des ensembles et 

les progres recents de la theorie des fonctions" (1909). In: "Emile 

Borel philosophe et homme d'action, pages choisies et presentees par 

Maurice Frechet", Paris, 1967, p. 155-175. At the end Borel writes: 

" ••• M. Georg Cantor doive etre considere comme l'un des 

mathematiciens dont l'influence a ete la plus considerable, a la fin du 

XIX siecle et au commencement du XXe". 

He began this paper by writing "La theorie des ensembles, qui fut 

d'abord la theorie des ensembles de points, est nee de la Theorie des 

fonctions". Remind the connection between the theory of functions and 
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Fourier series. 

7. It is worthwile remarking that in Whittaker and Watson, Nodern Analysis, 
there are no references to set theory. Cantor is only mentioned for his 
work on trigonometrical series. 

There is neither a reference to set theoretical methods in Picard, 
Traite d'analyse. 

However, in Jordan, Cours d'analyse, there is a section on sets. 
8. To perceive the great difference between the classical and the modern 

standpoint see: J. Schmets, Espaces de fonctions continues (Lecture 
notes in Math., Berlin 1976). 

9. The author knows only one book that contains this result; see 
[Hadwiger, 1957]· 

10. See a paper of Sierpinski "Les exemples effectifs et l'axiome du choix" 
in Fundamenta Mathematicae 2. There are several non-effective examples. 

11. Towards the end of the 19th century functional analysis in a concrete 
sense was studied. One studied totalities or classes of functions; the 
term "space" was not yet introduced here. See the books of Volterra and 
Levy in the Collection Borel. 

12. Borel added: "Et aussi a une serie convergente". 
13. The notation A + B for A U B and AB for A U B was still customary in 

these years. 

14. I don 1 t know whether there is such an elegant proof for m2 • 
15. There is a problem: can the fact that the measure problem for m3 

is unsolvable be proved without paradoxical decompositions? 
16. Compare an interesting pape;:, of Kahane "Brownian motion and classical 

analysis" (1976). 

17. His proof has some analogy with demonstrations of theorems in the theory 
of real functions where Borel-sets are used (Fa, G0 etc.). 

18. See [Bochner, 1979]. The author writes that this example was given 
"at a time when counter examples were still at premium". 

19. This concerns technioal questions. 
20. See the note by R.P. Boas: Fourier series with respect to general 

orthogonal systems by A.M. Olevskii, Bull. A.M.S. 82, no. 6 (1976) 
853-857. 

21. Compare: R.P. Boas, The heat equation, by D.V. Widder, Bull. Am. Math. 
Soc. 82, no. 5 (1976), 691-693. Boas remarks that Widder studies the 
heat equation from the non constructive point of view. 



22. Later on Borel remarked that this difficulty does not present 

itself for the "fonctions usuelles". 

23. One may wonder what was the point of view of du Bois-Reymond: 

111 

did he consider his theory as a theory of classification of functions 

with respect to their asymptotic behaviour, or was it classical 

analysis in connection with Fourier series? He was a most remarkable 

scholar; it is generally admitted that he was the first to introduce 

a process of diagonalization in his theory of increasing. See 

[van Dalen-Monna, 1972]. 

24. It is worthwile to mention that Euler already considered degrees of 

infinitely small and infinitely large. See [Bos, 1974]. 
25. Borel added: "La premiere considerations des fonctions ideales est 

due a Paul du Bois-Reymond; j'ai cherche a completer un peu ses trop 

breves indications". I could not exactly verify this remark. 

26. Compare these "fonctions ideales", with the Dedekind cuts. 

27. The notes I and III in [Borel, 1898] are also worthwile reading. 

28. Compare the note p. 124, 125 in [Borel, 1910] where Borel writes that 

all the French mathematicians who worked in this field (with the 

exception perhaps of Hadamard) agreed with some rules formulated by 

Poincare: 

"1° Ne jamais envisager que des objets susceptibles d'etre 

definis en un nombre fini de mots; 2° Ne jamais perdre de vue que 

toute proposition sur l'infini ne doit etre que la traduction, 

l'enonce abrege de propositions sur le fini". 

See also "la Conclusion" p. 145 in [Borel, 1922]. 
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PART III THE EVOLUTION OF MATHEMATICS 

INTRODUCTION 

In Part I we considered the growing influence of algebra and algebraic 

methods in mathematics and we designed these developments as the 

"algebraization" of mathematics. 

In Part II we were concerned with aspects of the evolution of the 

concept of existence in mathematics and in particular we studied its 

relations to constructivity. 

The considerations in these parts were for the greater part of a historical 

descriptive character, although general aspects are the main purpo.se. 

It is the aim of Part III to place these studies in a more general 

framework. The considerations in this Part are to be seen as a contribution 

to a study of the headlines of the evolution of mathematics. In such a 

study questions of a philosophical kind can be posed. Thus, the character 

of Part III differs somewhat from that of the preceding Parts. 

They also concern historical aspects of the evolution, but now we also 

ask for reasons and causes of developments. The significance of some 

results -for instance problems on existence- will be discussed. Further

more we shall treat connections with other domains of science. 

In this direction one can study, for instance, the evolution of 

mathematical concepts, such as the concept of existence, the introduction 

and evolution of axioms, forms of mathematical definitions etc. They will 

not all be treated here; the field is too broad to undertake here such a 

study. 

First we are concerned with the concept of existence. In particular 

we consider the historical relations with developments in physics. This 

leads in a more general sense to considerations on the mutual influences 

of mathematics and physics and mechanics in the evolution of mathematics. 

Comparing the classical period with the modern period we introduce the 

idea of external respectively internal developments. 

A study like this can scarcely expected to be objective. There are 

subjective points of view and there may be opposition. One finds many 

statements of the form "it seems that .•• ", "I think that ... ". It is 

difficult to avoid this when it concerns not only a description of facts. 

It is not always possible to give definite answers. Even the choice of the 

subjects and the references is subjective. The references are not followed 
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up to the most recent years. In some way this study should be considered 

as a program for further research. In such a study it would be interesting 

to consider the philosophical problem of the sense attributed to the 

mathematical entities in the various periods of history. Then the general 

problem of external influences should be taken into account. There are 

only some hints with respect to these problems. 
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CHAPTER 1 CONSTRUCTION AND EXISTENCE 

1.1 Strong and weak existence 

In Part II we studied the historical evolution of existence theorems 

in analysis comparing classical results with modern theorems. The aim was 

to find aspects which to some degree are characteristic for contemporary 

analysis in comparison to classical analysis. Whereas classical analysis 

was highly constructive, in modern analysis reasonings concerning 

properties of collections, classes of functions provided with an algebraic 

or topological structure are frequent, even dominating, and this leads to 

existence theorems that are non-constructive. 

Here we shall consid-er the development of the concep__!_ of "existence" 

in mathematics in particular the aspects thereof in the 18th and 19th 

centuries in comparison with the modern period. By the modern period we 

understand the period beginning with Cantor. 

First some general remarks. In the 18th and 19th centuries, anyhow 

before Cantor, analysis was to a high degree constructive. When it 

concerned theorems or theories, stating the existence of certain functions, 

for example functions satisfying a differential equation, the results 

were mainly obtained by means of methods of constructive type. The object 

was given in an explicit form or at least methods were used which allowed 

to obtain approximations, more or less useful for calculations. Existence 

theorems of this constructive type will be called strong existence theorems. 

They state the strong existence of certain objects. 

The situation in modern analysis has other aspects. Strong existence 

has still its place, but a more weak notion of existence is important, 

perhaps even dominating. When we speak of existence we think of prop

ositions such as "There exists X E S1 such that. ••• ", where S1 signifies a 

certain well defined universe or space, "For any ••• , there is X E <!l such 

that ••.. ", "Almost all X E '¥have the property A", etc. In most cases 

these are non-constructive propositions in the sense that the proposition 

does not indicate any method to calculate or to give in an explicit form 

the object which is pretended to exist. Certain results can not even be 

obtained by means of constructive proofs for reasons of principle 1). 

But in general the mathematician does not occupy himself with a con

struction in such situations, unless he is a constructivist for reasons 

of principle or he has the domain of numerical mathematics or applied 
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mathematics as his field of research. Construction is not an important 

aspect in his theory. It may be that some mathematicians prefer 

constructive proofs; it is then a question of psychology and there are 

some indications that in recent years the interest in constructive methods 

is growing. It concerns a concept of abstract existence. When we speak of 

existence we have a certain idea of it which is not associated with 

construction or methods of approximation. This notion of existence is 

independent of all constructions. It is a pure existence. Existence 

theorems of this type will be called weak existence theorems. They state 

the weak existence of certain objects. 

In Part II we treated several examples of existence theorems of this 

weak type. We considered, for instance, the functional equation of Cauchy 

f(x+y) f(x) + f(y), x,y E JR. 

and we observed that there exist infinitely many discontinuous solutions 

of this equation. This means: it concerns here weak existence. There 

are no means to give a solution in an explicit form, even not in a form 

allowing approximations. What is the significance of existence in these 

situation? Should we say that these discontinuous solutions exist in a 

certain "ideal world" whatever this might be, that is shall we find the 

answer in the standpoint of platonism? It is a problem of the philosophy 

of mathematics and the mathematician working near the frontier will 

scarcely be interested in such a question, unless his domain of research 

is the philosophy and the foundation of mathematics. His answer shall be 

that such a result, the "existence", is proved within a certain theory or 

axiomatic system (for instance Zermelo-Fraenkel) by means of the methods 

for proving theorems that are accepted in this theory. It is the way of 

proving that leads to the result and therefore the result is - or must be -

accepted. Poincare expressed this by saying that a proposition like "There 

exist X with property A" does not mean anything else than saying that it is 

impossible that there exists no object with property A. 

The proposition: "it is impossible that there exists no object with 

property A" must be understood in the following sense: "if there were 

no object with property A there would occur somewhere in Mathematics a 

contradiction". (see als Note 15). 

We shall not treat here this philosophical problem, which has been a 

subject of many discussions 2); [van Dalen, 1978], [Chandler Davis, 1974]. 
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1.2 Existence and physics 

We consider strong and weak existence from a historical point of view. The 

following questions may be posed: 

(1). When does the concept of weak existence appear for the first time 

in the history of mathematics (evidently not under this name; the term is 

introduced here)? 

In particular: 

(2). Was something like a notion of weak existence already present in the 

minds of the mathematicians of the 19th century? What was a "solution" and 

when was a problem considered as being solved? 

Our remarks on these questions shall mainly concern analysis, but a 

historical study of these questions in algebra and geometry would also be 

of interest. 

First there is reason to ask what has been the role of the works 

of Cantor in the introduction of weak existence in analysis? Indeed, it 

must be stated that theories of non-constructive character were above all 

developed in the post-Cantorian period. As to Cantor himself, one perceives 

the weak aspect in his work on algebraic numbers and the existence of 

transcendental numbers; this is considered as the start of the works on 

the theory of sets. Our concept of existence is in some way tied up with 

the notion of a totality, a certain universe or space connected with the 

problem and in this universe the problems of existence arise. The formation 

of totalities is in some way connected with the capacity of human mind to 

consider several objects together in their relation to each other, making 

abstraction from the individuals; they are then considered and studied in 

their totality from certain points of view. A next step is to study 

abstract totalities (sets). This is perhaps a general scientific 

phenomenon (for instance problems of classification). 

The question can be posed whether pure, weak, existence would have been 

possible in earlier stages. I think the conditions and means were not yet 

present then - although some exceptions will be treated later on. 

What are these means? We already mentioned some in Part II: t~e axiom of 

choice, Zorn's lemma and all the theories that are based on them. For 

instance the theorem of Hahn-Banach and some other fundamental theorems 

in functional analysis (the theorem of Banach-Steinhaus). There are 

topological reasonings, for example on compacity (existence of convergent 

subsequences). Evidently all this in combination with traditional 
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indirect proofs. This apparatus is post-Cantorian. By means of these 

tools classical constructive theories could be transformed into more 

general abstract theories. For example: the classical theory of integral 

equations and the modern theory of linear operators; the equivalence of 

the existence of solutions of a differential equation with the existence 

of fixed points of certain transformations (see the Preface in[Banach, 

1932]). Besides these existence problems there are problems on unicity. 

Already Cantor studied them in connection with trigonometrical series at 

the start of the theory of sets. However, already Cauchy studied a problem 

on unicity; we shall return to it. 

Finally there are the operators "sup" and "inf" in the field of real 

numbers. However, they are not post-Cantorianand they were used earlier to 

prove certain existence theorems. 

But I think the lack of an adequate tool is not the only reason to 

explain why pure existence, weak existence, was mainly developed only 

after Cantor. It may be that there is a more profound reason. It is well 

known that classical analysis was developed under the strong influence 

and in connection with the needs of mechanics and physics. Large parts 

of analysis found their origin in physical problems; later on such theories 

were further developed in a more autonomous way. I think that for this 

reason the question of the existence of certain objects did not present 

itself as a real problem for the analysts: the existence was sure for 

physical reasons. The problem was to give a construction. This means, 

strong existence and weak existence were not separated in the minds of the 

mathematicians. 

There is still an other argument. The conditions that were necessary 

for developing theories in a rigorous form as was required later on were 

not yet realized in the classical period. The rigour failed even in the 

definitions. In the 17th century there is no exact defininition of the 

notion of a curve, perhaps caused by the influence of mechanics. There 

are the well known difficulties, connected with the definition of the 

concept of a function. One did not feel serious difficulties with implicit 

functions. Even in books of the 20th century one reads that the solution 

of a partial differential equation depends on a "arbitrary function", 

without any more precision what this means (see for instance [Forsyth,1903], 

a well known book in the first decades of our century). Nowadays such 

existence theorems, weak theorems, are proved in a well defined universe, 

a space or an algebra of functions. The situation of analysis in the 18th 



and 19th centuries had not yet reached the level on which such theories 

could have been developed. Construction and algorithm prevailed. 

1.3. Differential equations 

The history of the theory of differential equations presents an 

interesting example of problems on strong and weak existence. 
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In the old classical period the purpose of the theory of differential 

equations was the very concrete problem to solve the equations which 

presented themselves to the mathematicians and the physicists. 

One applied substitutions, transformations and all kind of mani

pulations of algebraic character to be able to treat large classes of 

equations, either to obtain the solution in an explicit form or to 

reduce the solution to quadratures. The concern of the mathematicians 

was to "integrate the equation". We treated these aspects in 

some detail in Part I. We conclused there that it was properly speaking 

algebra, a formal theory. Even in the first decades of the 20th century 

this side of the theory was an important purpose in the university programs 

for analysis. 

With regards to partial differential equations Lagrange wrote 3) : 

"Par cette methode on peut done integrer, en general, toute equation aux 

differences partielles du premier ordre dans laquelle ces differences ne 

paraissent que sous la forme lineaire, quelque soit d'ailleurs le nombre 

des variables; du moins !'integration de ces sortes d'equations est ramenee 

a celle de quelques equations aux derivees ordinaires; mais on sait que 

l'art du Calcul integral aux differences partielles ne consiste qu' a 
ramener ce Calcul a celui des differences ordinaires, et qu'on regarde 

une equation aux differences partielles comme integree lorsque son 

integrale ne depend plus que de celle d'une OU plusieurs equations 

differentie lles ord inaires" 4). 

In this classical period it concerned the strong existence of 

solutions. It was a theory of an algorithmic character. I believe there is 

no great risk in supposing that existence for itself, weak existence of 

solutions, did not yet present itself as a real problem. In this question 

the influence of mechanics and physics should be taken into account because 

many differential equations came from physical problems, and in such cases 

there was in a natural way a solution. 
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From about 1820 on Cauchy treated in his lectures a general existence 

theorem. In the literature it is often mentioned as "the first demonstration 

of the existence of solutions of a differential equation". It concerns the 

equation 

dy 
dx 

f(x,y), x,y E 1R • 

Under some conditions on f - which later on were improved by Lipschitz

he proved that there exists a unique solution satisfying given initial 

conditions : y(x0) = y0 . Later on Cauchy treated in the same way some 

equations of the second order. Cauchy had several methods for proving this 

result, for example: 

(i) approximation of the solution by means of polygons and the proof that 

this process converges. 

(ii) Supposing f to be an analytic function, a method of developing the 

solution in a Taylor series and the proof of the convergence in an adequate 

interval (this method is known as "Calcul des limites"). 

(iii) method of successive approximations. 

Cauchy incorporated this theorem in his "Cours donnes a l'Ecole 

polytechnique a Paris", but in those years he did not publish this result. 

Only about 1840 the world of mathematicians became more acquainted with 

these methods through the initiative of Moigno. There is reason for some 

remarks. 

In the form in which this theorem usually is formulated -at least in 

our time- it is of the kind of a weak existence theorem. We are not 

accustomed to associate this statement with something like a construction 

or method of approximation. From the point of view of philosophy we read 

it as pure existence. 

However, the proofs given by Cauchy were of constructive type; they 

are connected with methods permitting approximation. That is to say: for 

any given function f there is a possibility of approximating the solution. 

Now the question arises what was the attitude of Cauchy with regard 

to these aspects. Was there in Cauchy's mind already a notion of existence, 

pure, weak existence, separated from ideas about constructivity? This means, 

mathematical existence as a philosophical notion for itself, not attached 

to constructivity in the background. Did he have a concept of separation 

between what we have called weak and strong existence? Or should we suppose 

that in his thoughts the old algorithmic ideas prevailed, i.e. to give 
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methods of approximation, but now applicable to general situations? 

In view of this question it is remarkable that he did not publish 

his result. Why did he not? Taking into account that Cauchy used to be 

quick in publishing his results andthe large number of his publications 

one may wonder whether Cauchy has been aware of the great value of this 

result. Did he see its real significance in the evolution of mathematics? 

It should be remarked that in 1814 Lacroix had already given a solution 

of this differential equation in the form of a series, however without 

proving its convergence; apparently this was not felt to be necessary 

because existence for itself was in those years not yet a problem. 

Cauchy accomplished this defect; he felt the necessity of rigour. Was, 

from a philosophical point of view, an abstract notion, such as pure, 

weak, existence conceptually possible in the stage of the evolution of 

mathematics of those years? 5). 

Until our times the theorem of Cauchy takes a place in textbooks 

on analysis. Consulting older books it appears that often great value is 

attached to the aspects of unicity and the constructive character, perhaps 

more than to the fact of the existence itself. Should it be concluded 

that for these authors the idea of construction, approximations, has 

prevailed? 6). 

Cauchy's theorem was important for the development of the theory of 

differential equations because it can be considered as the start of a 

new period: the theorem is no more a result of the ancient formal theory, 

it is really analysis 7). Later on it was observed that Cauchy's result 

was only a local result: for analytic equations -an important case- it 

concerns a solution in a neighbourhood of the initial conditions, whereas 

in the formal theory it concerns global solutions. Thus, gradually new 

methods were developed for treating the initial value problem with the 

purpose of eliminating this objection. Differential equations in the 

complex domain were studied (there were already some studies by Cauchy), 

opening the possibility of an application of the methods of the theory of 

analytic functions. In particular, the method of analytic continuation 

furnished a tool for obtaining general results extending the local point 

of view. The names of several mathematicians are connected with this 

development: Fuchs, Poincare, Klein,[Painleve, 1897], [Boutroux, 1908]. 

One studied properties of the solutions directly from the equations, 

without knowing the solution in an explicit form: singular points of the 
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solution where one had to distinguish between singular points which depend 

on the initial conditions and those who do not, behaviour of a solution 

in the neighbourhood of a singular point, problems on classification, 

group-theoretical problems in the case of multiform solutions (monodromy). 

There were the connections with other domains, for instance elliptic 

functions and, more general double-periodic functions, domains that were 

studied earlier. Some special equations, already studied in the formal 

period, came to play a role: for example the equation of Riccati. One 

studied functions that were defined by a differential equation, for 

instance Riemann's P-function. In this way the local theory was trans

formed into a theory with quite different character. Construction, 

approximation were no more on the first place. Existence, pure, weak 

existence was important on this way. 

However, it is not this way of the history that we want to follow. 

We will consider some works of Peano and Perron which are an excellent 

illustration of the transformations of the idea of strong existence into 

weak existence. 

In 1886, that is about 40 years after Cauchy's result had got some 

famitiarity in the mathematical world, Peano proved that the equation 

dy 
dx f(x,y), x,y E lR, 

under the only condition that f is continuous, has solutions ymin and ymax 

such that any solution of the equation satisfies the inequalities 

Ymin (x) ~ y(x) ~ Ymax(x) for all x E lR. 

In a paper of 1890 he returned to this problem, studying also questions 

of unicity. 

What is interesting here is the method by which Peano proved this 

result. Cauchy used as a tool the convergence of sequences of functions, 

a method that permits approximation. The proof of Peano rests on an other 

principle: it is the introduction of the supremum and infimum of families 

of functions. These operators are applied to two families y = y(x), 

determined respectively by inequalities 
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21: < dx f(x,y) 

and 

~~ > f(x,y). 

It is the method of approximating the solution from below and from above. 

This method of approximation was earlier used in mathematics: the method 

of exhaustion, developed in Antiquity for calculating volumes and areas 

(Archimedes); approximation of real numbers with the aid of continued 

fractions; Dedekind cuts. In these cases it is a constructive method, 

appropriate for calculating approximations. But in the case of Peano it 

concerns families of functions and in this case the method is in general 

not well suited to calculate approximations. In the case of Cauchy there 

were reasons to wonder whether for him the question of existence for it

self was the main problem or if approximation was the essential point. For 

Peano however I think it concerns pure existence without side reflections 

on constructivity 8). 

With regard to the problem of the evolution of the concept of 

existence it is of interest to mention a paper of [Mie,1893] in which 

Mie is concerned with Peano's theorem on differential equations. It was 

Mie 's aim to present Peano' s results in a more customary form because in the 

original form these papers were difficult to read as a consequence of a 

rather unusual terminology. There are some passages in the introduction 

of Mie's paper which are valuable for our considerations. 

Speaking of the existence of integrals of a system of differential 

equations and the methods to determine these integrals Mie observes that 

in the research, in so far analytic equations are considered, it concerns 

always of a "rein formales Rechnen mit Potenzreihen". To be able to treat 

more general cases, one should return, in Mie's opinion, to the 

fundamental definitions: 

"Und doch kann nur durch eine Begriindung, die auf die Fundamente 

zuriickgeht, unser Causalitatsbediirfniss befriedigt werden, was man von 

jenem rein rechnerischen Verfahren, welches zuerst Cauchy fiir den Fall 

von Funktionen complexer Variablen anwandte, gewiss nicht sagen kann". 

Here several questions arise. 

May we conclude that Mie attributed not much value to calculations 
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and that it was his opinion that a formal calculus is not a contribution 

to a real understanding? What does he mean with "Causalitatsbediirfniss"? 

It seems that Mie attached more value to the non-constructive method of 

Peano than to the algorithmic method of Cauchy. May we suppose that methods, 

like that of Peano, which in some way seem to be directly connected with 

the principles of the problem and are attached to the character of the 

problem, are more valuable than procedures of calculation, algorithmic 

methods, which are perhaps used without bringing out the real significance 

of the problem? Was Mie the only one who had such opinions? It is not very 

likely. 

This are questions attached to the problem of the mutual relations 

between existence and construction in the evolution of mathematics. They 

can not only be posed with respect to Mie's remarks, but these are 

questions which ask for an answer in a broader framework. They ask for a 

general historical research on the thoughts of the mathematicians in the 

18th and 19th century (and earlier) on the character of mathematics. 

Problems on existence and construction are only part of the questions that 

then should be posed and such a study should not be limited to differential 

equations. 

In the history of the evolution of mathematics there have been more 

criticisms of this kind. In Part I we treated some objections of Leibniz, 

Monge, Poncelet, Poincare,which concerned too automatical, algorithmic, 

methods. There is some philosophy behind these questions: should 

mathematics be seen as a tool to derive properties or as the science of 

the properties of mathematical systems? 

In the course of the years Peano's work has been continued several 

times. In particular a paper of Perron (1915) must be mentioned in which 

he used the principles of Peano. The proof of the existence is given by 

means of two families of functions, majoring resp. minoring functions. In 

an introduction Perron writes that his proof "durchsichtiger scheint als 

die seither fiir diesen Fall [only continuity of f] gegebenen Beweise". 

And he remarks that this demonstration "in der Praxis gestatten wird die 

Integralkurven in ihrem gesammten Verlauf zu verfolgen". It is a rather 

confusing situation. Did Perron consider his proof as a constructive 

method or is this remark only a reference to the theory of Cauchy, being a 

local result in the analytic case? 
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Some years later (1923) Perron used the same method for treating a 

fundamental existence theorem in analysis, Dirichlet's problem. At that 

time weak existence had already found its place in mathematics since 

several years. It concerns a classical problem in the theory of partial 

differential equation, potential theory. For a given open set Q C 1Rn, it 

concerns the existence of a function u, defined in Q, called a harmonic 

function, which in Q satisfies the equation of Laplace 

Liu 
n 
L 

i=1 
o, 

which moreover takes given continuous values f on the boundary of Q. 

This problem has a long history. Because there is not always a solution, 

methods were developed by which in a suitable way to any (Q,f) a harmonic 

function is associated which is identical with the solution if it exists. 

Some of these methods are of an approximative character in the sense 

that they consist of an approximation of n. by suitable open sets and 

convergent sequences of harmonic functions (Schwarz, Kellog, Wiener). 

Perron treated the problem in a direct way, introducing in a suitable way 

two families of functions and using the operators sup and inf. His method 

leads to a weak existence theorem. There is no constructivity. 

Now, reminding of the remarks and objections of Mie, there is a 

question. Is Perron's method superior because it leads to a better under

standing of the problem? First, if the answer should be given in the 

affirmative sense, this is not because the procedure is non-constructive. 

There is no reason to reject constructivity; non-constructivity should not 

be considered as a purpose in itself. But there are deeper reasons. The 

method of Perron furnishes a better comprehension of what the problem 

is about because the problem can be placed in a broader framework: it can 

be considered as the n-dimensional generalization of the approximation 

of a line segment by convex and concave functions (curves). Furthermore, 

this method is important because there appeared to be an opportunity for 

application to the axiomatic theory of harmonic functions. It is a theory 

with still broader scope than the classical theory in 1Rn; it.is based on 

locally compact topological spaces 9). 

In this context there is a reason to mention an other approach of 

the Dirichlet problem. It is a non-classical method: the problem is 

studied from the point of view of functional analysis taking into account 

the linear character of the problem. The problem is considered as the 
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problem of studying a certain linear operator f + Hf = u. It is a non

constructive method. This way could be used in axiomatic potential theory 

and in some generalizations;[Monna, 1975], [Bertin, 1978]. 

In the preceding theory we have an example of methods of proving 

results which show their special usefulness because they can be used for 

building more general theories than the theory for which they were 

originally invented. This may be a reason to prefer the direct, non

constructive, method of Perron -and the functional-analytic approach

above methods of approximation. 

Is this a general aspect of the evolution of analysis? In Part II we 

treated several examples of the shift in the evolution from problems of 

finding a solution towards questions of solvability. As a consequence 

of this shift weak existence theorems came more to the front. To some 

extent the developments of the Dirichlet problem is another example of 

this evolution. Problems of solvability are often studied in the framework 

of abstract theories, axiomatic systems, and in such theories the notion 

of weak existence in axiomatic form is of great importance. There are 

reasons to suppose that the weak aspect is especially valuable in the 

creation of new theories as a consequence of its flexibility, which 

opens the possibility of application to new situations. It is perhaps a 

more valuable way in such situations than methods of calculation which 

are often adapted to special cases. Let us give another example. 

The abstract theory of linear operators, formulated in normed spaces, 

furnishes the framework to treat integral equations, parts of the theory 

of linear differential operators, that is the theory of differential 

equations. The abstract theory, with its weak aspects, is a means suitable 

to unification of theories which at first sight are very different. We 

already mentioned the theory of fixed points of certain transformations 

(Brouwer, Schauder) and applications to differential equations. 

We mentioned before that these weak theorems, results of an abstract 

character, are obtained by profound means, tools less simple than the 

operations of classical analysis: the axiom of choice, Zorn's lemma etc. 

These tools lead to abstract theories of great flexibility, and great 

generality. But mathematicians must pay a price, for some mathematicians 

perhaps too high a price, namely the loss of effectivity. There is a good 

reason that we mentionea above the operations sup and inf as a tool in 

these developments. In some cases these operators are of a constructive 
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type (real numbers), but in other situations they are non-constructive, or 

at least less constructive. Earlier we mentioned, for instance, the 

application to families of functions. To some extent sup and inf are more 

simple than the axiom of choice and Zorn's lenuna. And when a comparison 

is made between the discontinuous solutions of the functional equation of 

Cauchy and the method of Perron, it must be observed that in the latter 

method there is still something of an idea of constructivity. Anyhow, the 

method of Perron can be replaced by a constructive method yielding the 

same result and this is impossible for the equation of Cauchy. This 

suggests something like a measure of simplicity 10). 

1.4 Weak existence in the pre-Cantorian period 

The remarks on Perron's work and the evolution of the theory of 

harmonic functions concerned developments in the 20th century. We will 

now consider some aspects of the concept of existence in the 19th century. 

In a fundamental paper of Gauss on potential theory there is a 

passage which makes plausible that Gauss had some idea of weak existence, 

well to be distinguished from strong existence (without using these terms). 

It is a paper from 1839 and it has been of a high value for the development 

of potential theory [Gauss, 1839]. Gauss considers a surface SinJR.3 and 

continuous distributions of mass p on S. His aim is to prove the existence 

of a distribution p0 on S with a certain special property. To this end 

Gauss considered the family of all the integrals 

n J (V-2U)pds, 
s 

where V is the potential of the distribution p and U a given continuous 

function on S. The problem is to minimize Q for all possible distributions 

p of the same total mass. It is a well known fact from history that Gauss' 

reasoning to prove that n takes a minimum value for a certain distribution 

p0 was not correct. It was the start of a long series of investigations 

up to our century [Monna,1975]. Gauss' procedure was non-constructive. 

One may suppose that physical considerations have played some role in his 

thoughts about the existence of p0 because Gauss' work on potential theory 

was in close connection with his investigations on magnetism and ' 

electricity. However, Gauss pretended to give an exact proof. With respect 

to the question of strong or weak existence the following passage is of 
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interest. 

"Die wirkliche Bestimmung der Vertheilung der Masse auf einer gegebenen 
Flache fiir jede vorgeschriebene Form von U iibersteigt in den meisten Fallen 
die Krafte der Analysis in ihrem gegenwartigen Zustande. Der einfachste 
Fall, wo sie in unser Gewalt ist, ist der einer ganzen Kugelflache; ••• ". 
Gauss gave the calculation of the minimizing distribution for a somewhat 
more general case than that of the sphere. We may conclude from this 
passage that for Gauss pure existence was separated from a calculation 
(strong existence). However, there is no great risk in supposing that 
Gauss would not have understood the case of discontinuous solutions of the 
functional equation of Cauchy, even if we suppose that the difficulties 
about continuity and discontinuity would have been sufficiently clear at 
that time. May we suppose that Gauss would have rejected such solutions? 
Gauss' work was strongly based on physical intuitions. Was our abstract 
idea of existence present in the thoughts of Gauss? 

In the same area there is a fundamental paper of Dirichlet [Lejeune
Dirichlet, 1876). Dirichlet also studied problems in potential theory. 
Among them is the so called "Dirichlet's problem". It is the problem of 
the existence of a certain harmonic function we considered before. 
Dirichlet writes "Die Aufgabe, jene Function zu finden, liisst sich nicht 
losen: es kann nur von einem Existenznachweis derselben die Rede sein. 
Letztere hat keine Schwierigkeit". 

Dirichlet reduced this to the problem of minimizing a certain integral, 
which depends on a family of suitably defined functions. It is an integral 
of the same type as considered by Gauss: 

Dirichlet's proof of the existence of a minimum value contains the same 
error. It is known under the name "Dirichlet's principle". But we may 
conclude that Dirichlet apparently had some knowledge of a notion of weak 
existence, independent of calculations. 

In later years Riemann used an analogous method in conne~tion with 
Dirichlet's problem as a point of departure for his investigations on the 
theory of analytic functions of a complex variable (conformal representation). 
Thus, the foundation of the theory was not correct. But it should be 
observed that, once the solution of Dirichlets's problem was supposed to be 
known, the "minimum principle" does not play any role in the further 
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development. The theory developed in an autonomous way and in the theory 

which resulted the constructive aspect dominated. 

One may wonder to what extent physical considerations were a guide 

in the thoughts of Dirichlet and Riemann. Anyhow, physical intuitions 

played a role. Even F. Klein, continuing the works of Riemann, used 

physical images [Menna, 1975]. Was pure existence a concept that was 

in some way familiar to the contemporaries of Gauss, Dirichlet, Riemann, 

or should we suppose that these last were in advance? 

Because in these examples it concerns the existence of the minimum of 

an integral, one is inclined to think on the calculus of variations where 

the problem is to determine the minimum or maximum of an integral depending 

on a curve. At least this was the classical form of the problem, already 

studied by Euler and Lagrange; we have not in view modern developments. 

In the classical period the main problem was to give in an explicit form 

the solution of extremal problems: the brachystochrone problem, the 

isoperimetric problem etc. For a systematic theory of these problems the 

solution of such problems was reduced to the problem of determining 

maximum and minimum of functions of one variable by the introduction of a 

paraIT.eter, replacing the system of variable curves by a family of curves 

depending on this parameter. In this way the integral is reduced to an 

ordinary function. This procedure led to a differential equation (equation 

of Euler-Lagrange) and the problem was to solve this equation. In our 

terminology it was a theory of strong character. 

The way in which Gauss, Dirichlet and Riemann studied their extremal 

problems was quite different: they considered in a direct way a family of 

functions without introducing a parameter. In his work "Grundlagen fiir 

eine allgemeine Theorie der Funktionen einer veranderlichen complexen 

Grosse" Riemann was also engaged in the minimum value of a certain integral 

n, defined for a family of functions A. He wrote: 

"Die Gesammtheit der Funktionen A bildet ein zusammenhangendes in sich 

abgeschlossenes Gebiet, •.•• Fiir jedes A enthalt nun [n], einen endlichen 

Werth, •.. 11 • 

The integral n is thus considered as a function defined on the 

collection of the functions A, without intervention of a parameter. In this 

reasoning of Gauss, Dirichlet, Riemann one recognizes the concept of a 

functional, a notion that was introduced in early functional analysis 

towards the end of the 19th century, a development that was post-Cantori.an. 

In this new discipline weak concepts take an important place. From the 
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point of view of constructivity there is a difference between extremal 

problems for functionals and the problem for functions of one real variable 

The first indications of this new area are thus in the works of these 

mathematicians. But they were not sufficient to found or even to start the 

development of functional analysis. This was reserved for the period that 

begins with the works of Cantor. 

1.5 Mathematicians and the problem of existence 

We considered in the foregoing some aspects of the development of the 

concept of existence in mathematics, in particular with respect to 

developments in the area of differential equations. Existence is one of 

the fundamental concepts in mathematics. A more profound study of the signif

icance of this notion for the evolution of mathematics would be desirable and 

then other disciplines as analysis should be taken into account. In this section 

we shall make remarks on the attitude of mathematicians with respect to the 
problem of existence. First about Gauss. One knows that Gauss has given 

four proofs of the existence of roots of algebraic equations in the field of 

complex numbers (in modern terms ~ is algebraically closed). Earlier 
D'Alembert had given a proof. Taking into account that, as we mentioned 

before, Gauss had perhaps some insight in questions on weak or strong 

existence, it would be interesting to analyse these four proofs from this 

point of view. A second remark concerns the historical problems of infinites
imals. It is a subject much studied by historians and my remark is no more 

than a suggestion. Is it conceivable that the classical difficulties around 
infinitesimals found their origin in problems on existence and 

construction as a profound reason? On the one hand strong existence could 

not be explained in a satisfactory way in some connection with physical 

concepts. On the other hand there is a non-constructive aspect in the 

infinitesimals as will be clear when one considers the modern approach 

with the methods of non-standard analysis. Therefore any effort in the 

classical constructive period to incorporate infinitesimals in an exact 

way into a theory must necessarily has led to a failure, thus being a 

source of confusion. Are there any indications on constructive attempts 

in the ancient works?. 

A third remark is of a somewhat psychological character. It concerns 

the introduction of the"Riemann integral", introduced by Riemann in his 

paper "Uber die Darstellbarkeit einer Funktion <lurch eine trigonometrische 
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Reihe". He posed the following question: "Die Unbestilllllltheit, welche 

noch in einigen ~undamentalpunkten der Lehre von den bestillllllten Integralen 

herscht, notigt uns, Einigesvoraufzuschicken iiber den Begriff eines 

bestilllllltes Integrals und der Umfang seiner Giiltigkeit.Also zuerst: was hat 

man unter fb f(x)dx zu verstehen?" 
a 

What is the reason that Riemann posed his question in this formulation? 

Was he concerned with a problem on existence? Was for Riemann the concept 

of an integral something that existed a priori in some sense and which 

should be explained? Or was his main concern the extension of the integral 

in a more or less constructive way to bigger classes of functions as was 

usual at that time (the Riemann-sums)? 

I think it can scarcely be expected that we find the concept of 

abstract, pure, existence, i.e. weak existence, in the ancient classical 

period, with the exception of some indications in the works of Gauss, 

Dirichlet, Riemann as we mentioned before. I think most of the results of 

classical analysis -anyhow before Cantor- are not well adapted to the 

weak concept (infinitesimal calculus, series, special functions, explicit 

solutions etc.). 

What can be said about developments in the more recent period, let us 

say the period after Cantor? After Cantor the notion of weak existence 

gradually penetrated. But the "weak" point of view was not accepted by all 

mathematicians, although the group of those who did not accept it formed 

a minority. For those it was a question of principle to accept in 

mathematics only constructive methods. Here should be mentioned in the 

first place L.E.J. Brouwer who from the first decade of our century on 

developed systematically and in all its consequences intuitionistic 

mathematics (a discipline which is more profound than only constructivity), 

a domain studied up to our time. However, Brouwer did also fundamental 

work-on topology, an area that is not always constructive. Earlier we 

mentioned Bishop and constructive mathematics. But before Brouwer there 

were already constructivists. 

We mention Kronecker. It was his philosophy that in mathematics all 

must be based on and reduced to numbers and in particular natural numbers. 

In this context_ we refer to his_ famous words: "God made integers, all else 

is work of man". See [Kronecker ,1892] . 

For reasons of principle he only accepted the finite and demonstrations 

in a finite number of steps. From the last decade of the 19th century on there 
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were R. Baire and E. Borel, in principle also constructivists. These are well 
known episodes in history. But what is of interest here is to know whether 
Kronecker and Borel accepted in their work all the consequences of their 
philosophy. This seems by no means to be the case. 

With respect to Kronecker we refer to his "Vorlesungen iiber Zahlen
theorie". One may wonder whether his use of the results of the theory of 
infinite series (among them Dirichlet series) is in concordance with his 
philosophy. In his "Vorlesungen iiber die Entwicklung der Mathematik im 19. 
Jahrhundert" F. Klein writes, when discussing the relations between 
Weierstrass and Kronecker ,"Pain.care hat von Kronecker gelegentlich gesagt 
(Acta Mathematica, Bd.22), er habe nur deshalb so grosse Erfolge in der 
Mathematik (in der Zahlentheorie and Algebra) gehabt, weil er seine eigenen 
philosophischen Lehren zeitlich vergessen habe". 

As to Borel, for him is the difference between his philosophical point 
of view and the mathematical life in practice perhaps even more pronounced, 
although he warned several times in notes and passages that anormal objects 
-objects that are not in concordance with his philosophy- should neverthe
less be studied for theoretical reasons. To convince oneself one should 
only read passages that Borel wrote in his books in the "Collection Borel". 
We mention some examples to illustrate Borel's ambivalence in the practical 
life of doing mathematics. 

First we refer to his introduction of what is nowadays called local 
compacteness of lR in his book from 1898 "Lec;:ons sur la theorie des 
fonctions". We already mentioned this example in Part II 1.3. He introduced 
this concept in terms of coverings by intervals. The proof is non

constructive and not at all in accordance with his philosophy. Anyhow the fact 
that Borel added a note in which he says that in his thesis there is a 
"constructive" proof throws special light on this situation. There is 
scarcely need to observe how important Borel's result was for further 
developments. 

Two other interesting examples can be found in his book "Traite du 
calcul des Probabilites et ses Applications", Tome II, fasc. ·1, 
"Applications a l'arithmetique et a la theorie des fonctions" (Paris 1926). 
In chapter I, "Application de la loides ecarts a l 'etude des nombres 
decimaux", Borel applied the theory of probability to study the decimal 
development of an arbitrary real number. The problem is to find asymptotic 
properties of the frequency of a given digit in such a development. With 



regard to this frequency he defines what he called exceptional real 

numbers and numbers that are non-exceptional, the latter called normal 

numbers. The result is that the set of exceptional numbers has measure 

zero. It is a non-constructive theory and Borel was afraid that this 

theory had no use. He remarks that there are no means to decide, for 

instance, whether n,e or /2 are normal or not. 
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For our purpose the section in this book "Le principe de Zermelo et 

un paradoxe de la theorie des ensembles" is most curious. 

He is concerned there with the paradoxical decompositions of a sphere 

which we treated in Part II (paradox of Hausdorff and further developments). 

Borel did not mention Hausdorff. Here the problem of existence is apparent; 

decompositions of this type are far away from constructivity, it is a 

property on weak, pure, existence. Borel made some restriction: " nous 

avons raisonne comme si les ensembles A,B,C etaient definis, au sens 

precis du mot, alors qu'il n'en est rien". Apparently here is the question 

of existence and definition. 

It is striking that this result, later on often quoted as a 

consequence of the axiom of choice without any bindings with an impression 

of reality, can be found in a book that .had been written by a scholar 

who, from philosophical point of view, was strict in refusing non

constructive methods and results 

It seems that as far as Baire is concerned, the situation was not 

very different. And, more recently, what to say about Hermann Weyl, who 

was also a constructivist? 

Is there a great risk in supposing that most mathematicians are 

ambivalent in their conviction? 

1.6 Fundamental concepts in mathematics 

The introduction of the concept of weak existence, existence in an 

abstract form, introduced after a long constructive period must be 

considered as a capital development in the thought of mathematicians which 

profoundly changed the face of mathematics. How did mathematicians of the 

period in which this development started, experience themselves the 

introduction of such a concept? It is a historical problem with some 

psychological backgrounds. Such a question should be placed in the broader 

framework of the history of the creation and evolution of fundamental 

concepts in mathematics. Existence is only one of these concepts. There 
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are several more, for instance: 

(i) The concept of "construction" and its development from its concrete 

geometrical form in Antiquity to constructions and approximations in 

algebra and analysis in our times. 

(ii) The introduction and evolution of the concept of an "axiom" from 

its geometrical origins to axiomatic theories in modern time: the intro

duction of vectorspaces, abstract algebras, normed spaces etc. The concept 

of "existence" finds a place in this framework. 

(iii) Introduction and evolution of the concept of a function. 

(iv) Introduction and evolution of the notion of a group from concrete 

groups to abstract groups. 

Some of these subjects were studied. For the concept of a group see 

[Wussing, 1969]. For the evolution of the concept of a function see 

[Monna, 1972], [Youschkevitch, 1976]. 

For normed spaces and functional analysis see [Monna, 1973 b]. Some 

of these subjects are of a philosophical type, others are more concrete. 

Historical studies are often concerned with a mere or less chrono

logical description of certain evolutions. But we have in view studies of 

a more intrinsic character; they should be more than descriptions. One 

asks for an explanation of the facts. These are questions belonging to 

the domain of the psychology of mathematical research [Hadamard, 1949]. 

What are the causes of the evolution? How did essentially new concepts 

aro.se in the thoughts of mathematicians? What has been the influence of 

other disciplines? Were new concepts introduced gradually or should they 

be considered "discontinuities" in the line of the evolution? 

In general it is difficult to get information with respect to such 

questions from publications because mathematicians are not accustomed to 

give information on the way in which they came to their results. It is e.g. 

wellknown that Gauss only published polished work: "Pauca sed matura". 

He once referred to the fact that, once a cathedral has been finished, one 

removes the scaffolding. Usually they publish their results in a more or 

less definite form. If still possible, personal information would be 

valuable. For some recent studies see [Manna, 1983], [Monna, 1984]. 
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CHAPTER 2 CAUSES OF EVOLUTION: EXTERNAL AND INTERNAL RELATIONS 

2.1 Mathematics and physics 

Referring to the remarks in section 6.1 of the preceding chapter we 

will treat in chapter 2 some aspects of the creation and evolution of 

fundamental developments in mathematics. Problems on "existence" are a 

subject in this area but our consideration will be more general. Especially 

we propose to discuss aspects of external respectively internal causes. 

The creation of infinitesimal calculus in the 17th and 18th centuries 

by Fermat,Leibniz, Newton, the Bernoulli's, Euler, ••• took place under 

the strong influence of the developments in physics, astronomy and 

mechanics. We shall express this by saying that it concerned a development 

that was guided, even caused, by external influences. It is a terminology 

that is perhaps not entirely satisfying -anyhow for the classical period

because in that phase of the evolution there is some difficulty in 

separating mathematics and physical sciences. Nevertheless, we introduce 

it here, because this qualification is useful to be able to distinguish aspects 

in the evolution in stages where such a separation is much more apparent. 

One finds external influences in the 19th century, and also in the 

20th century there still are impulses coming from developments outside 

mathematics. They come now not only from physics, but also from other 

disciplines such as biology, economy, computer science etc. But the 

character of the external influences gradually changed and I think the 

situation now is in some way essentially different from the situation in 

the classical period: we observe a process of emancipation that has led 

to mathematicsas an autonomous science. In the 17th century and in a 

large part of the 18th century scholars were concerned with the creation 

of a new discipline; in those years mathematics and the natural sciences 

still formed a certain unicity. A norm, a certain guide for this creative 

process was found in mechanics, astronomy and physics, which supplied 

mathematical problems during the course of this process. But in the course 

of the 18th century the elements and techniques of infinitesimal calculus 

had been established in great lines and mathematics developed in a more 

autonomous way. The natural sciences still supplied problems, sometimes 

of a more incidental character and mathematicians found themselves obliged 

to develop theories for handling them. But the origins of such theories 

came soon in the background. This process has led to what is called pure 
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mathematics 11). 

There are important classical works on the border of mathematics and 
natural sciences. Lagrange's "Mecanique analytique" (1788; third ed. 1853) 
is concerned with theoretical mechanics but, although impulses from 
mechanics are apparent everywhere, it is in fact a treatise on mathematics 
which finds its culminating point in Lagrange's general equations of 
dynamics. 

The same remarks can be made with respect to the works of Laplace on 
celestial mechanics where certain transformations were introduced, later 
called the Laplace-transformation. See also his work on the theory of 
probability. 

Much later, already near modern time, there is Poincare's "Les 
nouvelles methodes de la mecanique celeste" (1893) in which he introduced 
asymptotical series 12). 

Gauss' works form an important source for works of this kind. The 
mathematical aspect of potential theory finds his origins in the study of 
terrestrial magnetism (1839) ; in fact it is mathematics. Furthermore there 
are his works on differential geometry, inspired by studies in geodesics. 
Apart from the origins it concerns pure mathematical developments 13). 
External influences can be found in the works of Dirichlet and Riemann. 
F. Klein used physical analogies to illustrate certain aspects of the 
theory of analytic functions of a complex variable. 

These are examples from the classical and the late classical period. 
We treat in more detail some examples of developments and the introduction 
of new concepts in more recent times; they are also influenced by external 
impulses. 

(i) In functional analysis, the notion of a functional is one of the 
fundamental concepts. It was introduced at the end of the 19th century by 
Volterra, who designed them by "fonction de lignes". This was the start of 
functional analysis. His studies in the areas of physics and mechanics led 
Volterra to introduce and study the "fonctions de lignes". His investi
gations covered several domains: mechanics, theory of elasticity, 
magnetism, electromagnetic theory. He posed the following question 
"Est-il possible de se horner clans la Philosophie naturelle aux fonctions 
d 'un nombre fini de variables?" [Volterra, 1913]. Volterra remarked that 
this is not sufficient: "Il est evident que si l'on regarde un phenomene 
comme l'effet d'un nombre fini de causes, on fait une abstraction, car on 
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neglige des elements qu'on considere comme tres petits par rapport a 
d'autres elements qui sont preponderants. On ne fait ainsi qu'un examen 

approximatif du phenomene, mais on entrevoit facilementqu'il y aura des 

cas, ou, pour approfondir d'une maniere convenable la question, il sera 

necessaire de passer du nombre fini au nombre infini d'elements variables". 

Volterra explained this by considering mechanical and physical systems. 

He referred to Picard who considered two kinds of systems. There are 

systems in which the future states of the system only depend on the actual 

state (or on those in an infinitesimal interval ~t preceding the actual 

state). According to Picard they belong to the domain of "non-hereditary 

mechanics". Such problems lead to ordinary or partial differential 

equations. On the other hand there are systems which belong to the domain 

of "hereditary mechanics". For such systems the future of the systems 

depends not only on the parameters characterizing the present state but 

also on the parameters characterizing all past states: the memory of the 

past is conserved. In this case one has to take into account functions 

which depend on infinitely many variables. They lead to integral 

equations or integro-differential equations. Volterra wrote: "On envisage 

des quantites qui dependent de toutes les valeurs qu 1une ou plusieurs 

fonctions prennentdans un champ donne". Volterra gave several examples: 

the Newtonian potential in a point, the magnetic force, examples concern

ing the temperature inside a solid in relation to the temperature on the 

border, etc. 

Making abstraction from such examples Volterra studied functions of 

infinitely many variables, or in geometric form functions which depend 

on a curve. In the first decades of the 20th century such studies led to 

the notion of a "functional". 

Here we have a concrete example of the introduction of a concept 

under external influences. It concerns a physical realization of our 

abstract notion of a functional, a strong existence, a model, of our 

abstract concept of a function of infinitely many variables. 

Were mathematicians in those years still in need, a feeling of 

necessity perhaps, of a physical realization, strong existence? Did an 

abstract introduction, as we are accustomed to(although it can scarcely be 

called abstract according to our standards), not satisfy them? An 

indication of some answer can be found in Volterra's "Le~ons sur les 

equations integrales ... " 1913). In Chapter I he considers by way of 

historical introduction the "!dee generale de fonction". With regard to 
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the evolution of the concept of function he refers to the works of 
Descartes, Leibniz, the Bernoulli's. He remarks that "la Physique 
mathematique a contribue a l'extension de l'idee de fonction". To illus
trate this he refers to the problem of the vibrating string. He observed 
that this problem, as is wellknown, is reduced to the problem of finding 
the solutions of a second order partial differential equation • Now, the 
"general integral" of this equation depends on two "arbitrary functions" 
(Volterra referred for this to D'Alembert). Writing on Dirichlet's general 
definition of a function as a map Volterra remarks: 

"L'idee de Dirichlet, qui ne definit aucune relation analytique entre les 
deux variables, descend evidemment d'une fa~on naturelle de la loi 
physique". 

It is not easy to know the thoughrn of Dirichlet on this point but 
Volterra's conclusion as to the relation with physics is at least not 
evident. Dirichlet gave the definition in a publication "Ueber die 
Darstellung ganz willkiirlicher Funktionen <lurch Sinus- und Cosinusreihen", 
which is far away from physics. Was there a need for physical realization 
even for ordinary functions? 

Volterra gives many interesting informations on relations between 
mathematics, mechanics and physics: classical mechanics, variation 
principles, Hamiltonian mechanics, hereditary mechanics, electricity, 
phenomena of hysteresis, elasticity, meteorology (Bjerknes), all this in 
connection with functions of infinitely many variables. 

On the one hand these books contain applications of the theory of the 
"fonctions de lignes", but on the other hand they should mainly be seen 
as books in which a pure mathematical theory is developed in an autonomous 
way, without further external influences, soon far away from primary 
motivations. However, it is not always easy to trace a sharp border between 
these two aspects. 

In later years, especially in the first decades of the 20th century, 
the theory of the "fonctions de lignes" was incorporated in functional 
analysis where physical origins can no longer be recognized. In modern 
books on functional analysis there are scarcely references to physical 
origins; the name "fonction de lignes" got lost and was replaced by 
functional. Other influences, algebra (groups, vector spaces) and topology 
came to play the main role: these are internal causes and influences. 
External influences were soon forgotten. 

(ii). The theory of distributions is an other example. This more recent 
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theory has some origins in physics; perhaps they are more wellknown. The 

theory begins with a paper of L. Schwartz (1945) who writes as follows: 

"Depuis l'introduction du calcul symbolique, les physiciens se sont 

couramment servis de certaines notions ou de certaines f ormules dont le 

succes etait incontestable, alors qu'ellesn'etait pas justifiees 

mathematiquement. C'est ainsi que la fonction y(x) de la variable reelle 

x, egale a 0 pour x :( o, a. 1 pour x > o, est couramment consideree comme 

ayant pour derivee la "f onction de Dirac" y' (x) = o (x) , nulle pour x 7' 0' 

egale a. +oo 
+1". +oo pour x = o, et telle que, de plus !-co o(x)dx 

It was the aim of Schwartz to eliminate this lack of exactness and 

therefore he introduced a generalization of the notion of a function. This 

generalization consists in defining in a suitable way a functional, called 

a distribution, which is a generalization of the ordinary function. The 

operations of differentiation and integration can be applied on distri

butions in a generalized sense without any limitation. Thus, this is a 

solution for the difficulties we mentioned before. The theory of distri

butions is now a theory of large extent where the methods and results of 

functional analysis are used, useful in various domains of analysis, for 

instance the transformations of Fourier and Laplace, differential 

equations. In a short time it developed to an abstract theory, without 

further references to physical origins. 

Was there a need from the side of physisists or was there the need 

of rigour from the side of mathematicians? I do not know the answer. We 

have here an example of a situation in which the physical image, the 

strong existence, is incorrect and for which the methods of pure math

ematics, abstract definitions, can give a remedy. 

(iii). The kinetic theory of gases is at the origin of a pure mathematical 

theory, known as ergodic theory. One finds the elements of the kinetic 

theory of gases in works of D. Bernoulli. Especially the work of Boltzmann 

contributed to the development of a mathematical theory of this physical 

area which ultimately led to ~tatistical mechanics. Gibbs (1901) gave 

important contributions. It is not the place here to give detailed 

information on this theory. We only give some indications. 

Studying the behaviour of a gas, one considers a gas as a dynamical 

system, composed of molecules, satisfying the equations of dynamics of 

Hamilton. By means of a system of coordinates and moments of the molecules 

this system is represented as a point in a euclidean space of a suf

ficiently large number of dimensions :JR' (the phase space). This is a 
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method to study the evolution of the system in the course of time under 

the working of the equations of Hamilton. The problem is, for instance, to 

determine the mean values of certain quantities which characterize the 

state of the system etc., using measure theory. Therefore Boltzmann 

introduced the method of considering infinetely many replica of this 

system, all with the same energy but with different initial conditions, 

representing them all in lRN 14). The Hamiltonian equations generaLe 

transformations in lRN and the problem is to study the orbits of the 

systems in lRN In the framework of his investigations Boltzmann formulated 

the so called "ergodic hypothesis". This hypothesis concerns a certain 

global geometric property of the orbits in the course of time; in later 

years this hypothesis was a point of many discussions. In this way results 

of a probabilistic character are obtained, formulated in terms of measure 
in lRN : distribution of the molecules in the course of time (distribution 

of Maxwell-Boltzmann), results concerning the tendency towards uniform 

distribution, problems about diffusion, definition and properties of 

entropy etc. Boltzmann used an old theorem of Liouville (1838) which 

expresses the invariance of measure under the working of certain trans

formations. In later years Ehrenfest continued Boltzmann's work. His 

contributions to the theory were of a fundamental character 15). 

This theory wa~ the origin of an abstract theory of mechanical systems. 
The terminology is still in some way connected with physics, but it is a 

pure mathematical theory and in the results the origin is not easy to 

recognize. One considers a group (or a semi group) of transformations on 

certain differentiable varieties, provided with a measure, and one studies 

the orbits under these transformations. This leads to results on conver-

gence, existence of certain limits, problems on the existence of certain 

mean values etc. The theory is formulated in terms of functional analysis. 

We refer to books of Hopf (1937) and Jacobs(1960). The fundamental 

contributions of Ehrenfest are not mentioned there. 

It is interesting to compare the concrete theory of Boltzmann

Ehrenfest with the modern abstract theory which found its origin in this 

physical theory. There are some interesting analogies with weak and strong 

theories as mentioned in Chapter 1. The former theory can then be 

characterized as a "strong theory", a constructive theory in the sense of 

being concrete. The latter theory is then a "weak theory". To some 

extent the strong theory is a realization, a model of the weak theory. But 

this weak theory has several more aspects. This "weak theory" is 
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connected with problems on geodesics, with the theory of probability. The 

concept of entropy plays a role in some domains of statistics, information 

theory and some more domains distinct from physics. It is the force of 

"weak theories" to furnish methods in various areas. Hopf (l.c.) already 

made a remark, mentioning a certain analogy: "Statistik is Masstheorie. 

Es ist deshalhwohl verstandlich, <lass in den folgenden Teilen die mass

theoretischen Gesichtspunkte vor den topologischen den Vorrang einnehmen. 

Den Mathematikern, die dem "fast. alle" oder "bis auf eine Nullmenge" keinen 

Geschmack abgewinnen konnen, sei entgegnet, <lass sich nur so <lass, was in 

der Natur "in der Regel" sich ereignet, mathematisch interpretieren lasst. 

Handelt es sich jedoch um die effektive Konstruktion eines mathematischen 

Objektes in einer Klasse von Objekten, so ist allerdings das "fast alle 

Objekte der Klasse" nur ein schwacher Ersatz". 

In connection with theory of gases the Brownian motion is an other 

example of a physical theory that was generalized to abstract mathematical 

theories. One knows that Einstein started the research in this physical 

theory in the first years of our century. In the twenties this theory was 

incorporated in the general framework of stochastic processes and Markov 

processes where an abstract brownian motion was defined. It is worthwhile 

mentioning that there is a very curious relation between these subjects 

and Dirichlet 1 s problem in potential theory [Lamperti, 1966]. 

(iv). More examples of such developments could be given. But we confine 

ourselves to some short remarks about typical examples of connections 

between mathematics and physics. Partly they are of bibliographical 

character. 

In Chapter 1 we already mentioned potential theory. It is a classical 

theory which found its origin in physics. A new abstract theory, called 

"axiomatic potential theory" was developed in the fifties of our century. 

It is a more general theory than the classical theory, which is a theory 

in lRn • The theory is now developed in a locally compact topological space. 

Harmonic functions are not defined as solutions of the differential 

equation of Laplace, but in an algebraic way by means of the theory of 

sheaves. This theory has a broader scope: there are applications to 

parabolic equations. This axiomatic theory is the result of modern 

internal developments in mathematics and is far away from physics. 

Hadamard found inspiration in physics to publish his wellknown book 
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"Le probleme de Cauchy et les equations aux derivees partielles lineaires 

hyperboliques" (Paris 1921; 1932). It is a sequel to his book "Lec;.ons sur 

la Propagation des 0.ndes et les Equations de l'Hydrodynamique". In the 

foreword he mentions the works of Kirchoff and Volterra on waves. There 

are several references to Huygens' theory of light. Remind that the most 

simple example of a hyperbolic equation is the equation of light 

32u 32 32 d2u 
+ ____.!:: + ____.!:: - -- = 0 

3x2 3y2 3z2 3t2 

In this book Hadamard made also some interesting remarks on relations 

between the differential equation of heat - a parabolic equation - and 

quasi-analytic functions. This class of functions was introduced without 

any connection with physics, but in some relation to analytic functions. 

Next to Hadamard they were studied by Denjoy and Carleman 16). The 

physical origins are clearly reflected in Hadamard's book. It is a treatise 

of "classical" character, giving explicit formula's for the solutions. 

In this respect it is in an essential way different from axiomatic potential 

theory, where modern tools are used. But Hadamard wrote these books several 

years earlier. 

We mention the recent developments around the differential equation 

of Korteweg-de Vries. This equation is connected with research on waves in 

canals; it is a source of pure mathematical studies. See a paper of F. van 

der Blij "Some details of the history of the Korteweg - de Vries equation" 

in "Two decades of Mathematics", 1978; see Bertin • 

The introduction of new mathematical concepts in physics, in 

particular in quantum mechanics, has been a reason for several mathema

ticians to write books, which in some way were intended to serve as 

introductions to this new apparatus. These books are concerned with 

analysis, some with subjects in algebra, for instance on groups and group 

representations. But it must be said that in most cases the references to 

physics are scarce. We mention some, not having the pretention to be 

complete. 

A. Wintner, Spektraltheorie der unendlichen Matrizen, Einfiihrung in 

den analytischen Apparat der Quantenmechanik, Leipzig 1929. 

G. Julia, Introduction mathematique aux theories quantiques, I, II, 

Paris 1931. 

B.L. van der Waerden, Die Gruppentheoretische Methode in der Quanten-
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mechanik, Berlin 1932. 

We mention these books to give an idea of what was published in these 

years in the field of the relations between physics and mathematics and 

evidently it is only a choice. A question of a somewhat fundamental character 

.character can then be posed. Such books, in particular those on the 

algebraic side, are they mainly concerned with applications of the theory 

of groups and all that is connected with it - to physical theories or, 

conversely, are they also a contribution from the side of physics to the 

creation of new concepts and theories in mathematics? In other words, do 

they concern a matter of mutual influences? Compare some recent papers 

[Mackey, 1980], [Choquet-Bruhat, 1980). 

We come to some conclusions. The external influences on the develop

ment of mathematics in modern time are of essentially other character than 

those in the classical period. There are still influences of physics, but 

now there are also impulses from other disciplines such as computer science, 

theory of programming, connected with discrete mathematics. Nevertheless 

mathematics - at least what is called pure mathematics - is more autono

mous. now. The development of pure mathematical theories finding their 

origins in such impulses goes soon in an abstract direction and I think 

the origins are soon forgotten and pushed to the background. It would be 

interesting to know how long the external influences can be observed during 

the execution of such programs of research. I think it is not for a long 

time. As soon as such subjects are born, they begin their own independent 

life. It seems that in this respect the situation was a different one in 

the classical period. 

2.2 Internal evolutions 

The situation in the 19th century was rather complicated with respect 

to the causes of the progress of mathematics. There were mathematicians 

who seem to have been far away from external influences: Kummer, Kronecker, 

Frobenius, Dedekind, Cantor. Other mathematicians worked on all domains. 

In connection with the changing character of the external influences, the 

following questions arise: 

Is it possible to specify in some measure the arguments by which the 

creation of new ideas and essentially new fields were - and still are 

directed in later periods? 
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Are it mainly the mutual influences of the various disciplines inside 

mathematics that are responsible for progress in modern time? What are the 
criteria? In other words: does it concern mainly an internal development? 

There are many examples of internal developments in the history of 

mathematics. Number theory during centuries has been an internal subject. 
In the last few years this situation has changed. Cryptography has entered 

the stage see [Lenstra, 1983) to get an impression. There are the researc1:£s 

of Lagrange on problems about the resolution of algebraic equations which 
later on were important for Abel and Galois. In Part I we mentioned his 

efforts to detach infinitesimal calculus from infinitesimals and the concept 
of limit, reducing it to algebra.Lagrange even remarked that algebra is only 

a_ branch of the t~eory of functions(see Volter~a,Le~ons sur les fonctions de 
lignes, p. 16). These are only, some examples.But it is not tlie. aim of this book to 

write a history of the mutual relations in mathematics: this would 
comprise nearly the whole history. We will only make some remarks about-
the period in which modern mathematics started its development - a part of 

the 19th century - and about mathematics of our time. 

Then we must think of the internal influence of the theory of sets. The 
concept of weak existence is mainly due to this influence. 

In Part I we described the tendency towards algebraization of mathematics. 
By means of results of modern algebra subjects of analysis were given a 
broader scope. To give an example, let us mention the applications of the 

theory of fields with a valuation, in particular the fields provided with 

a non-archimedean valuation. These are valuations in which the norm 
satisfies the sharp inequality 

Jx+yJ ~ max(JxJ,JyJ), 

instead of the ordinary inequality 

Jx+yJ ~ JxJ + JyJ. 

The p-adic fields, introduced first by Hensel in 1908, are an example. 
They were first studied in algebra and number theory. In later years they 

were introduced in analysis. In all these internal developments topology 

had to play a role; [Manna, 1970), [van Rooy, 1978), [Taibleson, 1975). 

We will make some remarks on the role of geometry, next to algebra 
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pure existence are often connected with the existence of certain objects 
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in a suitably defined universe or space. In modern analysis the term "space" 

is very commom: space of continuous functions, spaces of analytic functions, 

Lp-spaces, Banach spaces of functions etc. Theorems are formulated in 

terms of spaces. What is the significance of such a geometric denomination? 

The term "space" suggests an idea of something as "reality", of construc

tivity in the sense as is usual in classical geometry. Constructivity is 

then used in a sense that is different from constructivity like we used 

before in analysis when we discussed problems on explicit solutions, 

approximations and strong existence. The problem we have to discuss is: 

What is and has been the role of geometry as an internal influence in 

analysis? 

Before discussing this question, an other one must precede: What is 

geometry? 

We already treated this question in Part I when we discussed the 

aspects of algebraization. What is called "geometry" developed from a 

theory of curves and surfaces in the course of centuries to an algebraic

geometric theory where it is perhaps sometimes difficult to say whether 

it is really geometry or algebra provided with geometric denominations. 

Is it only a convention? Whatever this may be, an idea of construction. and 

constructivity in a naive classical sense, constructivity which is expected 

when the term "geometry" is used, is absent in a large part of the 

subjects that are studied under this name. Moreover, what do we understand 

by an idea of the perception of "reality" in mathematics, an impression 

of visualization? Remind the long history of non-Euclidean geometry. 

Subjects as Incidence geometry (linear or nonlinear), Ring geometry, Finite 

geometries, Ordered geometries, ••.. have not much to do with naive 

reality. Mathematics has its own reality. Perhaps we could say that 

geometry is a discipline which by its internal structure, the theorems and 

the objects which they concern, and the way in which the results are 

formulated, has some analogy with spatial phenomena in a naive sense as 

we perceive. Ideas of analogy are frequent in mathematics. We do not 

intend to make an attempt to give a definition which, moreover, we do not 

need. 

Geometry has played a role in analysis, and still does, although this 

is perhaps not modern abstract geometry, but parts of geometry that can be 

called "classical". We have not in mind here the trivial situation of the 
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representation of some functions of one or more variables by means of 

systems of coordinates. There are aspects of a more intrinsic character. 

Some are concrete, others are more abstract. 

Remind the controversies between Weierstrass and Riemann with respect 

to the foundation of the theory of the functions of a complex variable: 

the arithmetization of Weierstrass and the approach of Riemann with Riemann 

surfaces connected with potential theory. Riemann followed the geometric 

way. Before we mentioned that Klein used certain phenomena in the theory 

of electricity to illustrate the theory with concrete images (a strong 

theory). Such an explanation depends essentially on the geometric access. 

It is not possible in the arithmetical approach of Weierstrass. Both 

aspects are still present in our time. On the one hand there is the 

algebraic approach of the theory of algebraic functions (Dedekind and his 

successors). On the other hand there is the geometric way, for example 

in the theory of conformal representation with its connections with non -

Euclidean geometry, classification of Riemann surfaces, varieties etc. 

17). 

In modern analysis there are geometric aspects of a less concrete 

nature. They were introduced since the twenties of our century, partly 

already earlier. We already mentioned the notion of "space". In most cases 

it concerns spaces of an infinite number of dimensions. The "points" in 

these spaces are no more points in the classical, naive and trivial sense. 

Sometimes they are functions, sometimes they are elements of a set 

provided with certain structures, algebraic or topological. There are 

terms as space, subspace, projections, metrical aspects etc. This are 

concepts of a linear character, but there are also notions of a nonlinear 

character: the notion of convexity, the notion of cone when aspects of an 

ordering play a role. What is the sense of these terms? They are not 

constructive concepts in a naive classical sense. Is it only a question 

of terminology or are there deeper reasons to use them? It seems that it 

is not only a question of terminology. 

This question can best be answered by posing an other question : can 

one imagine modern analysis- or at least those parts in which the termin

ology and definitions of geometry are used, and this is a large part

without these geometric concepts? Are they indispensable? One could try, 

but there are reasons to believe that this would be in vain, and, more

over, what would be the advantage? There are, for instance, the theory of 

Banach spaces and its applications, the role of convexity in several 
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domains (in functional analysis and also in complex analysis), extremal 

points of convex sets, the theorem of Krein-Milman with its extensions and 

relations with some problems in measure theory, refinements of convexity, 

locally convex spaces, fixed points of mappings, retractions etc. 18). 

It is indeed possible to define locally convex spaces in an algebraic 

analytic way by means of families of semi-norms. But semi-norms are in 

close connection with convex sets and it is just this relation which 

explains their significance. Minkowski introduced them in his research 

in number theory and just there convex sets played a role ("Geometrie 

der Zahlen", 1893). Therefore, the algebraic-analytic definition is 

rather artificial and one does not see very well the reasons to prefer it. 

Thus, geometric methods and concepts are important, often essential, 

however, in an indispensable combination with concepts of algebra (groups, 

vectorspaces ). But this concerns perceptions of a "reality" which should 

not be taken in too strict a sense, not in a naive sense of "classical 

geometry". A contribution to geometric intuition may be very useful and 

stimulating, often in some way necessary. But it may be dangerous: one 

should not have too much confidence in such a perception of "reality". 

To give an example, consider problems of best approximation in analysis. 

These problems are of ten studied in a geometric form by considering 

the shortest distanc"! of a "point" (a function) to a certain vector

space (consisting of functions) or a convex set; the concepts of a 

metric and orthogonality are used. This is an intuitive geometric 

picture but one should be aware that certain conditions are necessary 

in order to be sure that a shortest distance exists. As often in math

ematics analogies can play an important role in the creation of 

theories 19). 

The geometric way gives us a tool to explain situations in abstract 

theories with the aid of geometric images. One can perhaps say that 

sometimes they take up the place of physical images which, as we have 

seen, were used in older periods with the aim to come to strong, 

constructive, illustrations of theories. These geometric images must then 

be interpreted in an adequate way. I think this are means which for 

reasons of analogy are scarcely dispensable. For some interesting remarks 

on the place of geometry see Hilbert 1s Pariser lecture from 1900 15). 

Next to the function of algebra and geometry as disciplines for it

self, thereis then ultimately the question of the relative significance 
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of algebraization and geometric methods in the evolution of mathematics. 

In the preceding considerations there are reasons to think that the 

aspect of algebraization comes on the first place, being of more 

intrinsic and vital value than geometric influences. Algebraization is an 

all penetrating method, which influences the form and the character of the 

results. Characterizing the evolution in a very global way, one can say 

that algebraization is a continuation of the way which was first gone 

by Descartes. The role of geometry and its methods is not like that 

because there it concerns more the way of pictures, an intuitive setting 

of theories which may be stimulating but does not lead to a deeper 

characterization. I think it has sense to speak of "algebraization", but 

not of "geometrization". On the contrary,"algebraization" applies to 

geometry • 

Final remark. 

These reflections on external and internal influences on the 

evolution of mathematics, and in a more strict sense on the mutual 

relations between algebra, geometry and analysis in the way of the 

evolution, necessarily lead to the fundamental question of the criteria 

by which mathematics is, and formerly was directed. It is a problem that 

is connected with the still deeper problem of the essence of mathematics. 

We refer to [Monna, 1984]. See remarks from Dieudonne and Cartan 20). 
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NOTES 

1. The situation can change when less general conditions are imposed. The 

proof of the theorem of Hahn-Banach, for instance, is non-constructive. 

But under less general conditions on can give a constructive proof. 

See [Bishop, 1967]. 

2. For historical documentation we mention the philosophy of H. Vaihinger, 

which he developed in his book "Die Philosophie des Als ob" (Berlin 

1911). This philosophy has some connections with the problem of 

existence. According to this philosophy certain notions of mathematics 

are only fictions, sometimes logical contradictory. But they owe their 

significance just to this fact. 

Vaihinger developed such a philosophy for several sciences and for 

mathematics he applies it to the historical problem of differentials 

(the infinitesimals, considered to be ~ 0 in calculations, but if 

necessary equal to 0). See also non-standard analysis by Robinson. 

Here it concerns weak existence. 

3. Oeuvres de Lagrange, IV, p. 625, "Sur differentes questions d'analyse 

relatives a la theorie des integrales particulieres". This passage is 

in "Sur l' integration des equations aux differences partielles du 

premier ordre". 

4. The problem of the reduction to ordinary differential equations is 

solved for partial differential equations of the first order. In 1930 

Bieberbach remarked that at time it was an open problem whether such 

a reduction is possible for equations of the second order; attempts 

had not been successful. I don't know the present state. It would be 

interesting to have the history of this problem. See: L. Bieberbach, 

Differentialgleichungen, Berlin, dritte Auflage 1930, p. 343. 

5. With respect to the attitude of Cauchy concerning such questions a 

passage in the "Note Historique" in Bourbaki, Fonctions d'une variable 

reelle, should be mentioned. Speaking on the question of the existence 

of the derivative of a function ("Sujet de foi ou non") Bourbaki 

remarks: "Cauchy, a vrai dire, ne s'y interesse guere". 

With regards to this question on the sense of existence in the thoughts 

of Cauchy, E. Neuenschwander drew my attention to a passage in the 

introduction, written by Chr .• Gilain, to a hitherto unpublished Course 

of Ordinary Differential Equations by Cauchy, now published by C.N.R.S. 
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Reading this, there are perhaps some reasons to suppose that Cauchy 

had some idea of a separation between existence and constructivity, but 

I think the question remains whether he considered both concepts as 

independent aspects. 

6. See for instance: 

(i) Ch. de La Vallee Poussin, Cours d'analyse infinitesimale(1906). 

Cauchy' s theorem is founti in the sect ion with the tit le "Calcul approche 

de 1' integr ale". 

(ii) L. Schlesinger, Einfilhrung in die Theorie der gewohnlichen 

Differentialgleichungen auf funktionentheoretischer Grundlage (Berlin, 

1922). 

In an introduction Schlesinger writes about "das Bediirfniss nach 

Nahrungsverfahren". He used a method by which the problem is reduced to 

difference equations, considering the process of convergence. He remarks 

that already Euler used this way to obtain approximations of the 

solutions "ohne sich jedoch mit der qualitativen Abschatzung des 

begangenen Fehlers zu beschaftigen". And then: "Der erste, der versucht 

hat, dies zu tun, war Cauchy in seiner (1823 gehaltenen) Vorlesungen 

an der Pariser Ecole Polytechnique". 

Did Schlesinger consider Cauchy's result mainly as a method of 

approximation? 

7. In Part I we treated some developments at the end of the 19th century 

which went just into an opposite direction. See the remarks on the 

works of Picard, Vessiot, Drach. 

8. For Peano's papers see: 

H.C. Kennedy, Selected Works of Giuseppe Peano, London 1973. 

H.C. Kennedy, Peano, Life and Works of Giuseppe Peano, Dordrecht, 

Ho Hand, 1 980. 

For other demonstrations see: 

(i) J. Walter, On elementary proofs of Peano's existence theorems 

Am. Math. Monthly, 80, 282-286 (1973). 

In this paper there are references to the problem of constructivity. 

(ii) J. Walter, Proof of Peano's Existence Theorem without using the 

Notion of the Definite Integral, J. of Math. Analysis and Applications 

59, 587-595 (1977). 

Both papers contain an extensive bibliography. 

9. In an analogous way Perron introduced a concept of integral, introducing 

in a suitable way two families of functions and applicating the operators 



sup and inf. He intrdduced this procedure to settle the relation 

between integration and differentiation as inverse operations. 
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10. See a paper by A. Kolman, The concept of "simplicity" in the physico

mathematical sciences". In: For Dirk Struik, Dordrecht 1974. 

11. I shall not discuss the problematic of pure mathematics versus applied 

mathematics. 

12. Indepently of Poincare 3symptotic series were introduced by Stieltjes 

in an other area, in this case of "pure mathematics". See 

S.C. van Veen, Thomas Jan Stieltjes (1856-1894). 

In: Chapters in the recent history of mathematics. Special issue of 

Nieuw Archief voor Wiskunde on the occasion of the Bicentennial cele

bration of the Wiskundig Genootschap 1778-1978. 

Math. Centrum, Amsterdam 1978. 

13. See: Carl Friedrich Gauss 1777-1855. Four lectures on his life and work. 

Communications of the Mathematical Institute Rijksuniversiteit Utrecht 

7-1978. 

14. Boltzmann gave the following motivation: "Wenn man irgend eine Curve 

discutieren will, deren Gleichung einen willkiirlichen Parameter enthalt, 

so pflegt man sich oft alle Curven gleichzeitig vorzustellen ( •••• ), 

fur welche dieser Parameter in continuirlicher Aufeinanderfolge 

moglichen Werthe von seinem kleinsten bis zu seinem grossten Werthe 

hat". [Boltzmann, 1895-1898]. 

15. P.u. T. Ehrenfest, Enc. der math. Wissenschaften Band IV 2, II Heft 6 

(abgeschlossen 1909), Begriffliche Grundlagen der Statistischen 

Auffassung in der Mechanik. 

It is an important study in this area, On the one hand it contains a 

review and a bibliography of earlier researches in this domain. There 

are references to E. Borel, J. Hadamard, P. Poincare. On the other hand 

there is a systematical treatment of mathematical character of the 

ideas of Boltzmann, containing a profound criticism of methods and 

results, in particular concerning the ergodic hypothesis. Questions of 

existence (weak or strong) are also a point of discussion. An ergodic 

system being defined in accordance with Boltzmann as a mechanical 

system such that, considering the phases in the course of time, the 

orbit of such a system passes through every point of the phase space 

being compatible with the total energy, Ehrenfest writes: 

"Nun ist aber die Existenz ergodischer Systeme (d.h. die Wider

spruchsfreiheit ihrer Definition) durchaus zweifelhaft: Es ist bis 
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jetzt nicht einmal das Beispiel eines solchen rnechanischen Systems 

bekannt, bei welchem die einzelne G-bahn jedem Punkt den zugehorigen 

"Energieflache" beliebig nahe kommt" (1.c.p. 31). 

May we conclude that for Ehrenfest existence meant "free of 

contradiction", that is weak existence? Compare the remark on Poincare, 

p. 116 . 

In this publication Ehrenfest treated also the problem of axiomatization 

of mechanical systems ("Das Axiomatisierungsproblem der Kinetostatik"): 

" ..• Das Schema soll in sich widerspruchsfrei sein. Diese Tendenz 

zur Axiomatisierung bildet einen wesentlichen Factor in der ganzen 

neueren Entwicklung das kinetischen Theorie" (1.c.p. 53). 

Furthermore: "Inwieweit hat Gibbs das angekiindigte Ziel erreicht, 

eine in sich widerspruchsfreie statistische Mechanik zu begriinden?" 

Is the influence of mathematical developments on physical theories 

apparent? 

Remind that Hilbert had already posed the problem of axiomatization of 

physics in his famous problems (Paris (1910). See 

(i) "Die Hilbertschen Probleme", Ostwalds Klassiker 752, Leipzig 1971. 

(ii) Proc. of symposia in pure Mathematics; Mathematical developments 

arising from Hilbert's problems I,II, Providence 1976. For axiomatics 

in physics there is the interesting book: 

R. Giles, Mathematical Foundations of Thermodynamics, Oxford etc. 1964. 

This book contains references to Bourbaki. 

16. It seems that they were first introduced by Hadamard. See: Cahiers du 

Seminaire d'Histoire des Mathematiques 1, Paris 1950, p. 66. 

17. To illustrate we mention some books, older books, and some more recent. 

The choice is rather arbitrary. 

(i) G. Julia, Principes geometriques d'analyse, Premiere partie 

1930, deuxieme partie 1932, Paris. 

(ii) L.V. Ahlfors, Conformal invariants, Topics in Geometric Function 

Theory, New York etc. 1973. In the foreword the author expresses his 

preference for the geometric approach. 

In his studies on the theory of automorphic functions Poincare 

remarked: "La geometrie non-euclidienne est la clef veritable du 

probleme que nous occupe". (Acta Math. 39, 1923, p. 100). 



Of fundamental importance is: 

H. Weyl, Die !dee der Riemannschen Flache, Leipzig 1913, 1923. 

We quote the following passage from the "Vorwort": 
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"Man begegnet noch hier und da der Auffassung, als ob die 

Riemannsche Flache nichts weiter sei als ein "Bild", als ein (man gibt 

zu: sehr wertvolles, sehr suggestives) Mittel zur Vergegenwartigung 

und Veranschaulichung der Vieldeutigkeit von Funktionen. Diese 

Auffassung ist von Grund aus verkehrt. Die Riemannsche Flache ist ein 

unentbehrlicher sachlicher Bestandteil der Theorie, sie ist geradezu 

deren Fundament. Sie ist auch nicht etwas, was a posteriori mehr oder 

minder kunstlich aus den analytischen Funktionen herausdistilliert 

wird, sondern muss durchaus als das prius betrachtet werden, als der 

Mutterboden, auf dem die Funktionen allererst wachsen und gedeihen 

konnen. Es ist freilich zuzugeben, <lass Riemann selbst dies wahre 

Verhaltniss der Funktionen zur Riemannschen Flache <lurch die Form 

seiner Darstellung etwas verschleiert hat - vielleicht nur, weil er 

seinen Zeitgenossen alzu fremdartige Vorstellungen nich zumuten wollte; 

dies Verhaltniss auch dadurch verschleiert hat, dass er nur von jenen 

mehrblattrigen, mit einzelnen Windungspunkten Uber der Ebene sich 

aubreitenden Uberlagerungsflachen spricht, an welche man noch heute 

in erster Linie denkt, .wenn von Riemannschen Flache die Rede ist, und 

sich nicht der (erst spater von Klein zu durchsichtiger Klarheit 

entwickelten) allgemeinen Vorstellung bediente, als deren Charakteris

tikum man dieses nennen kann: dass in ihr die Beziehung zu der Ebene 

einer unabhangigen komplexen Veranderlichen, sowie iiberhaupt die 

Beziehung zum dreidimensionalen Punktraum grundsatzlich gelost ist." 

18. To get an impression of the influence of geometrical concepts one has 

only to look in general treatises on functional analysis. There are 

also books on more special topics which may serve as illustration, for 

instance: 

(i) H. Bauer, Konvexitat in topologischen Vektorraumen; Vorlesung an 

der Universitat Hamburg 1963/64. 

(ii) R.R. Phelps., Lectures on Choquet' s Theorem, Prince ton .1966. 

See [Monna, 1970] for the concept of a spherically complete space, in 

geometrical as well as in algebraic context. 

19. Compare the extremal problems of Gauss, Dirichlet, Riemann we 

mentioned before. 
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20. J. Dieudonne, Orientation generales des Mathematiques en 1973, 

Gazette des mathematiciens, Soc. Math. de France, Octobre 1974. 

For some comments see: 

B. Malgrange , Apropos d'un article de J. Dieudonne, Gazette des 

Mathematiciens, Soc. Math. de France, fevrier 1975. 

See also: 

H. Cartan, Medaille d'ordre C.N.R.S. 1976. Gazette des Mathematiciens, 

Soc. Math. de France, fevrier 1977. 
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