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INTRODUCTION 

In contrast with the advances in the theory of Fano threefolds, their 

intermediate Jacobians have been studied far less than expected, since the 

beautiful paper [8] of Clemens and Griffiths on the cubic threefold was 

published, now nine years ago. The basic tool in the study of the interme

diate Jacobian J(X) of a threefold X being the Abel-Jacobi map for fa

milies of curves on X, the problem lies in our bad understanding of the 

latter ones. Already for X = lP 3 , the most simple threefold, very little 

is known in general about its Chow varieties'of curves - for instance about 

their dimension, irregularity, Kodaira dimension, etc. 

From a more optimistic viewpoint however, to establish their results 

about the cubic threefold, Clemens and Griffiths needed only one such fami

ly of curves, in fact the most simple ones: the two-dimensional family of 

lines of X, parametrized by the Fano surface F of X. Their main re

sults - Torelli and non rationality Theorems - rely heavily on their analo

gue of the Riemann parametrization Theorem, giving a description in geome

trical terms (by means of an Abel-Jacobi map) of the theta divisor of J(X). 

A basic ingredient of the latter result is their so-called Gherardelli-Todd 

isomorphism Theorem stating that, with the above notations, the Abel-Jacobi 

map 

Alb(F) - J(X) 

is an isomorphism of abelian varieties. 

In studying the intermediate Jacobian of other Fano varieties, it is 

therefore natural to start looking at the Abel-Jacobi map for the most 

simple curves - lines, conics - on these varieties and ask whether similar 

results hold. This has motivated our study. 

Among the results we have gotten, there is an extension of the last 

mentioned theorem to two other Fano varieties. More exactly: 

I) Let X be a smooth double cover of lP 3 with quartic discrimi

nant locus Sc lP 3 • We shall call this henceforth the quartic double so

lid - or, shortly, the double solid - after [7] . This is a Fano variety 

of index 2 and its lines (curves of degree with respect to the posi-
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tive generator of Pic(X)) are parametrized by a surface F which we 

shall call also the Fano surface of X This surface is smooth exactly 

when S doesn't contain lines of JP 3 The result is now: if X has 

smooth Fano surface F, then the Abel-Jacobi map Alb(F)--+ J(X) is an 

isomorphism of abelian varieties. 

II) Take now X to be the smooth complete intersection of three 

quadrics in JP 6 • This Fano variety is of index and its lines are pa-

rametrized by a curve, so they dont cover the variety X. The conics of X 

(i.e. curves of degree 2 with respect to the positive generator of 

Pic(X)) are parametrized by a surface which again is called the Fano sur

face of X, being smooth if X is sufficiently general. We shall prove: 

if X has smooth Fano surface F, then Alb(F)--+ J(X) is an isogeny 

of abelian varieties. We dont know yet if it is, or not, an isomorphism. 

Let us add.inmediately that the surjectivity of the above maps is not 

a surprising fact: if non zero, an Abel-Jacobi map 

Alb(B)--+ J(X) 

(for a smooth projective variety B parametrizing a family of curves on 

X) can be seen to be surjective, by standard monodromy arguments, if, for 

example, 

i) X moves in a Lefschetz pencil of hypersurfaces of a fourfold W 

with vanishing 3d Betti number, and 

ii) the family of curves parametrized by B survives as X moves 

in that pencil. 

However, the property of being isomorphic (resp. at least isogenous) still 

escapes to a common interpretation, Accordingly, the proofs which we pre

sent are very different from each other. 

The work is divided into two independent parts, each one dealing with 

one of the two cases, and being quite asynnnetric in their construction and 

further purposes. 

Part One is devoted to the double solid. We carry out an exhaustive 

study of the corresponding Fano surface in the smooth case, by using coho

mological methods. On the other side we specialize the yoga of the tangent 

bundle sequence to this situation, and both things together yield the Iso-
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geny Theorem. As a consequence we get that the threefold can be recovered 

from its Fano surface. A topological argument largely inspirated from [SJ 

finally gives the main result of this part. 

As a first application, we prove that the intermediate Jacobian of 

our threefold is a generalized Prym variety in the sense of Tyurin (cf 

[28J , [SJ) • This implies, as in [SJ , that the underlying abstract group 

of the intermediate Jacobian can be identified with the Chow group of ra

tional equivalence classes of algebraic I-cycles algebraically equivalent 

to zero. 

Section 6 is devoted to the second application of the Isomorphism 

Theorem. Still far from being complete, it aims to make more transparent 

the relevance of Abel-Jacobi isomorphisms in the study of the theta divisor 

of intermediate Jacobians, towards analogues in this case of the Riemann 

parametrization Theorem for curves. Basically, we study the traces of the 

theta divisor ex on the Fano surface, getting in this way some insight 

in the (seemingly difficult) question of finding families of curves on X 

parametrizing 0x. 

In Part Two we prove our second main result, stated in II) above, 

and which was conjectured by Tyurin in [27J, p,103. Inspirating on his 

suggestions, the question is translated into a problem dealing only with 

irreducible etale (2: I) coverings of smooth plane septic curves and the 

linear system of linear sections of these. It is solved within the frame

work of curves, in absence of any further reference to threefolds. More ex

plicitly, the theory of intermediate Jacobians and the theory of Prym va

rieties are known to overlap above the intermediate Jacobians of conic bun

dles (we are dealing only with threefolds) • Underlying this relationship 

there is a similar one at the level of cycles: curves on conic bundles 

yield - generally speaking - divisors on the covering curve of the associa

ted Prym situation. The isogeny question we are looking at translates in 

this way into a problem concerning a certain variety of divisors on that 

curve. This new problem extends naturally beyond the range of those varie

ties of divisors which come from Chow varieties of curves on the threefold, 

and seems to have an affirmative answer in many cases, at least in suffi

ciently many as to settle our original question by an inductive argument. 

The groundfield will be taken always to be the field a of complex 

numbers. 
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We notice that several of the results of Part One until the Isogeny 

Theorem and its consequences have been got independently by A.S. Tikhomirov 

(The geometry of the Fano surface of the double cover of ]P3 branched in 

a quartic, Izv. Akad Nauk SSSR 44 (1980) (russian), Maths. of the USSR Izv. 

~(1980)) Also, a quite different method to get the results on the Fano 

surface of the double solid consists in using the degeneration methods of 

Clemens ([7]). In Section 6 we shall use these in an essential way. 

Finally, the contents of Part One appeared previously, with exception 

(mainly) of Section 6, in the Preprint Series of the Math. Inst. of the 

University of Utrecht (The Fano surface of lines on a double lP 3 with 

4th order discriminant locus, Part I, prep. n° 123, August 1979 ; idem, 

Part II, prep. n° 164, July 1980) . Similarly, Part Two is: Divisor varie

ties, Prym varieties and a conjecture of Tyurin, prep. n° 139, January 1980, 

of the same series. 
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PART ONE THE QUARTIC DOUBLE SOLID 

0. PRELIMINARIES 

Generalities on the quartic double solid 

With the aim of fixing notations, we start recalling briefly some ele

mentary facts we will be concerned with. We denote by X the double so

lid and by S its discriminant locus, writing f for the projection map 

onto lP 3 • Thus X is a double cover of lP 3 by means of f , and 

S c lP 3 is the discriminant locus of f , a smooth quartic surface by hy-

pothesis. As usual for double covers, we identify branch and discriminant 

loci, hence S C X will make sense too. We denote by cj,4 = 0 a fixed 

equation for s in lP 3 
' 

and the covering involution of X will be writ-

ten i One has an embedding 

where E = Spec(SlP 3 (OIP 3 (-2))) - IP 3 is the line bundle over IP 3 

with fibre at a point P E IP 3 the vector space of 2-forms at P . Deno

ting by 

the tautological section of f*OIP3 (2) ' 
X is identified with the zero 

scheme of T2 - cj,4 E H0 (E,f*OIP3 (4)) in E • This presentation of X as 

an embedded variety will be r1eeded later on. 

The sheaves f*OIP3 (n) on X and E will be denoted respectively 

by Ox(n) and 

""OE(4) and S 

Ox(S) "" Ox(2) 

OE(n) • In particular, we have an isomorphism 0 (X) "" 
E 

is given inside X by the equation T = 0, that is, 

We shall use also the standard sequences: 

(O. I) o - f*nlP1 3 - n 1 - n 1 3--+ o E E/IP 
on E 
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(0.2) on X 

together with the identifications 

(O. 3) and 

There are several ways to get the known facts about X, and we just 

choose one of them. Below we shall recall the proof of the unirationality 

of X; in particular, this gives Hi(x,OX) = 0, i > 0 . From (0.2),(0.3) 

we get an exact sequence 

By the formulae of Bott, both ends of this sequence are zero, hence 

H2(x,n½) ~ H2 (s,0s(-2)) . By Kodaira-Serre duality and the fact that Ks 

= 0 , we have on.the other side that 

Thus H2 (X nl) ~ a:10 ' X - In the same way 

Hodge numbers of X are hi,i = I 
' 0 

except hi, 2 = h2, I = 10 

one gets 

~ i ~ 3 
' 

H1 (x,n½> ~ a: 

and hi,j = 0 
' 

hence the 

if ij j ' 

Next, Pic(X) ~ 2Z holds. This goes as follows ([14], Section I) 

from the exponential sequence 

together with GAGA and H1(x,0X) = H2 (x,0X) = 0 we derive Pic(X) ~ 

~ H2 (X,?Z) ; on the other hand, if JP2 c JP 3 denotes for a moment a gene

rally chosen 2-plane in JP 3 , Lefschetz' weak theorem gives H2 (X,?Z) c 

c H2 (f- I (JP2 ) ,?Z ) • The surface f-1 (JP2 ) is a Del Pezzo one, isomorphic 

with the blowing up of a 2-plane at a finite number of points (cf e.g. 

[12], p.549); Therefore H2(f-l(JP2 ),?Z) is a direct sum of copies of ?Z, 

hence has no torsion, and the same holds now for H2(X,?Z) . Since h 1, 1 

= I , h2,0 h0,2 = 0 , we have H2 (X,<I:) ~ <I: , hence H2(X,?Z) ~ 2Z , as 

claimed. 

We write 
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h E Pic(X) 

the class of the divisor C 1 (lP2 ) of X . Being clearly (h) 3 = 2 , this 

is a generator of the Picard group. Remark that, by our choice of notations, 

one has 0X(nh) = OX(n) . 

Taking first Chern classes in (0.2) and using (0.3) we get Kx = 

-4h + ci (rli/lP3 ) = -2h . This formula shows X to be a Fano variety of 

index 2 (cf [JS] , for a general study of Fano varieties) . 

We define the "lines" of X to be the curves of degree with 

respect to the generator h of Pic(X) , i.e. such that their intersec-

tion product with h yields . Equivalently, lines of X are the cur-

ves mapping isomorphically onto lines of lP3 by f. To get some in

sight, we look for the possible shapes of the inverse images in X of the 

lines L of lP 3 Assuming first L ¢. S , the intersection cycle S·L on 

L is defined and f- 1(L) is completely described as the double covering 

of L"" lP 1 with discriminant divisor o = S·L . The shape of this divi

sor therefore determines that of f- 1(L) , according to the following des

cription: 

If o P1 + P2 + P3 + P4, f- 1(L) is a smooth elliptic curve; if 

o = P1 + P2 + 2Q , it is a rational curve with a node, and, if o = P + 3Q, 

a rational curve with a cusp. For o = 2P + 2Q we get two copies of lP 1 

intersecting transversally at two points and, if o = 4Q , two copies of 

lP 1 meeting tangentially at a single point, like a conic and a tangent 

line in the plane. 

If L c S then f- 1(L) ""Spec(<t-[T]/T2) is a line counted twice. 

We see therefore that the lines of X are exactly the components of the 

inverse images of the bitangent lines to Sc lP 3 ; here we define a line 

L c lP 3 to be bitangent to S if and only if the equation q>4 of S 

restricts to a perfect square in HO(L,°i:"(4)) . There are thus three pos

sible types of bitangents: proper bitangents (meeting S twice with mul

tiplicity 2), hyperflexes (meeting S once with multiplicity 4) and 

lines contained in S. 

(0.4) In connection with the above, we notice already that, being A2(lP 3 ) = 
= 0, full inverse images are irrelevant as far as the Chow group of X is 

concerned. Therefore our interest concentrates on "halves" of inverse ima

ges, and we may ask therefore: given an arbitrary curve Cc lP 3 , when 
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does it happen that CI (c) = C' + C" with C" = i (C') ? Since CI (C) 

is given inside the line bundle OC{2) (see (O.6.b) below) by the equa-

tion T2 = ¢4 where ¢4 is the restriction of ¢4 , the splitting is 

obviously equivalent with the existence of a rational section of OC(2) 

such that T 2 = ¢4 holds (clearly, this section will be defined at every 

smooth point of C in that case). Writing N for the normalization of 

C , this means that there exists a (regular) section T of ON(2) with 

T 2 = ¢4 • Thus the splitting is equivalent with S·N = 2D, with D be

longing to \ON(2)\ . Notice that, if N is rational, the latter condi

tion is superfluous. 

A slightly different question, which is nevertheless the same if C 

is smooth, is: when does there exist a curve C in X mapping isomorphi

cally onto C? The answer is clearly that there has to be a globally de

fined section T of Oc(2) such that T2 = ¢4 • A relevant example for 

our later purposes is the following one: 

(0.5) Let Cc JP3 be the plane curve consisting of four coplanar bitan

gents to S and assume for simplicity that these yield eight distinct 

points of contact. Then a necessary and sufficient condition for the exis

tence of a configuration of four lines in X mapping isomorphically onto 

C is that these eight points ly on a conic. Furthermore, all such confi

gurations are complete intersection curves in X, hence are rationally 

constant. 

In fact, if JP2 c JP 3 is the supporting plane, one has clearly 

H0OJP2 (2) ""' HO°c(2) . Therefore, if a T as above exists, it is T = iJ!2 \C 

for a well-determined 2-form 1)! 2 on JP2 , and 1)! 2 0 passes through 

the 8-ple of contact. Conversely, if a conic 1)! 2 = 0 contains these eight 

points, the 4-forms (1)! 2 ) 2 and ¢4 of JP2 induce the same divisor on 

C, hence differ there by a constant factor, say ¢4 = c(-;j;°2 ) 2 • Then T = 
I 

= c 2-;j;°2 satisfies T2 = ¢4 • The two configurations produced in this way 

are the complete intersections of f- 1(JP2 ) with each one of the surfaces 
l 

T ± c 2 1)! 2 = 0 of X (the 2-form 1)! 2 having been previously extended to 

the whole of JP 3 ) , q.e.d. 

For completeness sake, we recall a proof of the unirationality of X. 

Fix a line L c JP 3 bi tangent to S , and a line L' in X above L 

(Figure I) . The variety 
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Y { (P,1) T is a line in lP 3 meeting L at P } 

is a lP2 - bundle over L • We will be done if we exhibit a dominant ra

tional map ~ : Y - -» X • Take a general (P,1) E Y ; let {p'} = 
= L' n f-l(I) and {P"} = i{P'} = L" n rl(T) , where L" iL' By Rie-

mann-Roch, there is a unique Q E f- 1(T) such that P" + Q - 2P' on 

f- 1(1) . We put ~(P,1) = Q, and notice that the definition still makes 

sense when T is simply tangent to S at a point other than T n L. 

Figure I. 

It remains to show that ~ is dominant. Take Q EX sufficiently 

general as to have, if Q = f(Q) E JP 3 : Q ,/. S , Q ,/. L and, putting 

lP2 = L v Q c lP 3 , the tangent lines from Q to the quartic lP2 n S are 

simple tangents, at points outside L n S. Consider the lP 1 of lines in 

lP 2 through Q and define a morphism ~• : JP 1 --+ r 1(lP2 ) as follows: 

~•(T) = x E f-l(f) such that x + Q - 2P' on f-l(T) , where again {P'} 

= L' n r 1(T). The image of ~• is either a curve in f-l(JP 2 ) or a 

point. In the latter case, it ought to be ~• (lP 1 ) = Q or ~• (lP1 ) = iQ 

If ~'(lP1 ) iQ , we would have on each f-l(T) : 2P' - Q + iQ = P' + P" 

hence P' - P" always, which is impossible. If ~• (lP 1 ) Q we get that 

2P' = 2Q on each f- 1(f) . Taking a line joining Q with one of the two 

points of L n S we have, on f- 1(T) : 2P' = Q + iQ. Hence Q = iQ 

there, i.e. : Q = iQ. But this is impossible, since Q ,/. S. 
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So <l>' (JP1 ) is a curve in C 1 (JP2 ) • If this curve meets L" we 

are done. But <l> 1 (JP 1 ) meets certainly r- 1(L) = L' + L", and has empty 

intersection with L' if x + Q = 2P' on f- 1(f) and x EL' , we would 

have x = P' , hence P' - Q, i.e. P' = Q; but Q ¢ L by hypothesis. 

This finishes the proof. 

We recall that, in [2], Theoreme 5.6, Beauville has shown that a 

general quartic double solid is non rational. As far as we know, it is 

still an open question as whether this is true for all (smooth) quartic 

double solids. 

Remarks and conventions 

To end this preliminary section, we make some conventions and recall 

a few basic facts for easier reference. 

(0.6) Conventions 

a) If lPE -> Y denotes a projective bundle, OlPE (I) will stand 

for the fundamental sheaf of lPE . We follow Grothendieck's notation for 

projective bundles, hence the points of lPE above y E Y are the codirnen

sion one subspaces of E(y) . 

b) If F is a locally free sheaf on Y, we shall identify F, for 

geometrical purposes, with its associated vector bundle on Y, i.e. with 

V(Fv) = Spec(Sy(Fv)) . 

c) Distinct mappings will be sometimes denoted by the same symbol, 

if they are deduced from one of them by base extension or by restriction. 

The context will decide about the precise meaning in each case. 

d) Idem as inc) , with cycle classes, cohomology classes, etc. 

e) The pullback of vector bundles is denoted by subscripts, i.e. 

the inverse image of E --+ Y to Y'-> Y is written Eyr-> Y' . 

f) Unless otherwise specified, the terms 'general' , 'generally' 

and 'sufficiently general' , referred to objects parametrized by a certain 

variety V, mean: "for all such objects parametrized by a certain Zariski 

open and dense subset v0 of V 11 • 

(0.7) If g: Z--+ Y is a (2:1) covering, we say that it is given by 

µ E Pic(Y) if it is isomorphic with Spec(0y e 0y(-µ)) , the algebra 

structure coming from a choice of a non vanishing section of Oy(2µ) . 
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The scheme of zeros of the latter is then the discriminant locus of g 

If F is a coherent sheaf on Y, a degenerating Leray spectral se

quence yields 

(0.8) 

for all i, and this is also the invariant-antiinvariant part decomposi

tion of Hi(z,g*F) under the action of the covering involution. 

(0.9) Consider a commutative diagram 

where z is a divisor of lPE 
' 

y being smooth and complete, g : z --➔ 

finite and surjective, and lPE a ]Pl - bundle over y • We interprete 

this situation as a moving set of points Z(y) on a moving line (lPE) (y) 

y E y If m is the cardinality of that set, i.e. the degree of the map 

g z- y 
' 

the equations of these sets are the (non zero) elements of 

a well determined sub-bundle L c sm(E) , which we shall call "bundle of 

equations of the fibres of Z -->- Y in the fibres of lPE --+ Y ". The 

ideal defining the sub scheme Z c lPE is isomorphic with g* L ® OlPE (-m) 

To justify the last statement we remark that, by the structure of 

Pic(lPE), we have OlPE (-Z) "" (g*L') (r) for some L' E Pic(Y) and some 

y 

r E 2Z . Restriction to a fibre yields r = -m . Then, taking direct images 

by g in the exact sequence O -➔ g* L' -➔ OlPE (m) -➔ Oz (m) -+ 0 , we get 

L' "" L 

The following is also easily seen: 

(0.10) If m = 2 in the above, the class µ E Pic(Y) giving the covering 

g: Z-+ Y is µ = c1(E) - c1(L) 

Our last remarks concern bitangents of smooth plane quartics; such a 

curve has exactly 28 bitangents (the odd theta characteristics) . The fol

lowing can be found in several classical books, for example in [26], p.p. 

321-322, or reproved in terms of theta characteristics. (Compare also with 

(0.5).) 
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(0.11) Given a pair (a1,b1) of distinct bitangents there are exactly 6 

pairs of bitangents (ai,bi) , i=l, ... ,6, yielding 12 distinct lines, 

such that for each ijj the 8 points of contact of the bitangents ai, 

bi, aj , bj ly on a conic (of course, if a pair of contact degenerates, 

we ask the conic for tangency to the corresponding line) . Moreover, the 

above 10 lines a. , b. , i=2, ... ,6 are the only bitangents c, dis-
1. l. 

tinct from a1 , b1 , such that a1 , b1 , c have their 6 points of con-

tact on a conic. 

The following is an easy exercise: 

(0.12) Given a pair (a1,b1) as in (0.11) , the other 5 pairs of the 

6-tuple intersect on each line a1 and b1 5 pairs of points which be

long to a unique linear pencil of degree 2 on the line a1 (resp. b1) 

Moreover, this pencil includes the pair of contact of a1 (resp. b1) . 

Thus, if we take a bitangent a1 , the choice of a second one b1 induces 

a pencil g½ on. a1 which contains the pair of contact of that line. 

1. THE SURFACES F, Fo INFINITESIMAL STUDIES 

The surfaces F, Fo 

We start with the following remarks: 

a) There are 00 2 bitangent lines to the smooth quartic surface 

S C JP 3 

b) If S is sufficiently general, it contains no lines of lP3 

The first one follows from the fact that any 2-plane of lP 3 con

tains only a finite number of bitangents (28, if the corresponding plane 

section of S is smooth) . As for b) there are 0029 quartic surfaces 

through any given line of JP 3 , hence at most 0033 quartics containing 

lines. Since the quartics are parametrized by a JP 34 , this proves the 

claim. 

We define 

F Hilbert scheme parametrizing the lines on X. 

Fo Hilbert scheme parametrizing the bitangents of S c lP 3 . 



There is an obvious morphism 

11 F-+ Fo 

which is (2:1) except for points of Fo corresponding to lines contai

ned in S, where the fibre consists of a single point. Let LE F and 

L = 11(1) ; one has: 

(I.I) LEMMA. If L ¢ S then F is smooth at L ' Fo is smooth at L 

and the mapping 1T is etale there. 

PROOF. We choose a 2-plane ]P2 C ]P3 containing L and cutting s 
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along a smooth quartic; the inverse image f-1 (JP2 ) is then a smooth sur-

face which contains L Consider the sequence of normal bundles 

Being Nf-1 (JP2) /X = Of-I (lP2) (I) , the last term equals 01 (I) ; on the 

other side, having on f-l(JP2) : I= L•(L + iL) = 12 + 2 it is 1 2 -I 

hence N1/f-!(JP2) = 01(-I) . By the associated cohomology sequence we get 

therefore ho(L,N1 ;x) = 2, h 1 (L,N1;x) = 0 Hence F is smooth at L 

Next, identifying L with L by f, the exact diagram 

0 -: lL ~ TX f 01 ~ I1" ~ 0 

0-+ T--+ T 3@0--+ N-/ 3-+ 0 L lP L LlP 

yields an injection NL/Xe..__,. Nr;JP3 . Hence, by taking global sections of 

this morphism we get TF(L)c..__.. TG(L) , where we have put 

G Grassmann variety of lines of JP 3 . 

So, the composite map F --->· F0 L-+ G is an inmersion in the differen-

tial-geometric sense, both at L, iL E F Since in a neighbourhood of L 

it remains exactly (2:1) onto its image Fo , the latter has to be smooth 

at L and 11 is etale there, as claimed. 

(1.2) If instead L c S, then F is singular at L. 
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To see this, we consider the following exact connnutative diagram: 

Being Ns/x"" Ox(2) 

pute NL/S ""01(1) 

0 0 

f i 

0 0 

(cf Section 0) , it is Ns/X ® 01 ""01 (2) • To com

take a 2-plane in IP 3 through L this cuts S 

along L + C with C a plane cubic, hence we get, on S L2 + 3 = L·(L + 

+ C) = I So L2 = -2 and NL/S ""01 (-2) . By the first row above we get 

therefore NL/X"" 01 (-d) e 01 (d) with d = 0,1 or 2. We claim that d = 2 

holds in this case. In fact, since T1 ""Ot(2) , we have TS® 01 "" 

""01 (2) e 01 (-2) by the first column above. Next, since the middle row 

splits by taking df: Tx ® 01 -+ Ts® 01 , we derive an isomorphism 

Tx@ 01 ""01(2) e 01(2) e 01(2) • From this it follows that hO(L,NL/X) 

= 3, by using the second column; hence NL/X"" 01 (-2) e 01 (2) as claimed. 

In particular we see that dim TF(L) = 3, and F is singular at L, q.e.d. 

From now on, and unless otherwise specified, we shall asswne that S 

contains no lines. Therefore: 

(1.3) COROLLARY. F and Fo are smooth surfaces and the projection map 

n: F--+ Fo is (2:1), etale. 

The curve 6 of hyperflexes 

Among the most relevant curves on Fo and F we have, respectively, 

the curve of hyperflexes and the curves of incidence; we put (LE F) : 

(1.4) 6 c Fo 6 curve of hyperflexes of Sc IP 3 
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(J.5) DL c F , DL = closure, in F, of {lEF I lnL ~ ~, l~L} 

We want to study these curves infinitesimally. We start with t, ; fix 

a hyperflex L of S c lP3 and call P its (unique) point of contact 

with s . Let 11 be the tangent plane of s at p • We may choose coordi-

nates in ]P3 in such a way that 11 = {x0 = o} , L = {xo = X1 = o} and 

P = {xo = x1 = X3 = o} • The intersection of s with the plane IT is a 

quartic curve with a singular point at P and cutting out on L the divi

sor 4P; therefore it will be given in 11 by an equation 

Hence the equation cp 4 = 0 of S in lP3 reads 

and we put, more explicitly: 

B = boXi + b1X2X3 + b2Xf 

C = coxi + c1XiX3 + c2X2Xf + c3Xi + ( ••• )Xo + (. • .)X1 

A general (linear) infinitesimal deformation LE of L inside lP3 is 

given by equations 

with E2 = 0 and where 

nates in the vector space 

with S is given by the 

(a2,a3,B2,B3) € ¢4 can be regarded as coordi-
- 0 -TG(L) ""H (L,Ny:-/lP3 ) • The intersection of LE 

4-form on LE : 

cf>~ X34 + X3(62X2 + 63X3)(b0Xi+ b1X2X3 + b2Xf)E + 

+ (a2X2 + a3X3) (coX23 + c1XiX3 + c2X2Xf + c3X33) E 

In order that LE be a hyperflex of S, one has to have: 

for suitable y,o € ¢4 • Equating both expressions we derive: 
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C3CL3 + b283 y 

C3CL2 + C2CL3 + b282 + b183 3cr 

C2CL2 + C1CL3 + b182 + bo83 0 

C1c:t2 + coa3 + bo82 0 

CQCL2 0 

The last three ones are therefore the equations of the tangent space 

T~(L) c TG(L) • Remark that c0 # 0 by smoothness of S at P. Hence, 

in order that the last three equations become dependent, i.e. that ~ be 

singular at L, it is necessary and sufficient that b0 = b 1 O. 

We next count constants. Consider the Schubert variety M of triples 

(P,L,II) where P E L c II c lP 3 are a point on a line, in a plane of lP 3 • 

Clearly M is smooth of dimension 6 Let N c M x lP34 be the subvariety 

of pairs ((P,L,II),S) such that S is a smooth quartic surface of lP3 

and L is a hyperflex of S with contact point P, II is the tangent 

plane of S at P and furthermore the curve of hyperflexes of S is sin

gular at L We claim that N has dimension 33 • In fact, if we take 

(P,L,II) EM, the surfaces S occurring in the fibre of the projection map 

N-->- M above that triple are given by equations 

in a coordinate system as above; hence the fibre has dimension 6+1+20 = 27, 

whence dim N = 33. The projection mapping N--+ lP 34 fails to be sur

jective, and we get finally: 

(1.6) If X is sufficiently genePal, the aUPVe of hypePflexes ~ c Fo is 

smooth. 

The incidence curves DL infinitesimal study 

The infinitesimal study of the curves DL (cf (1.5)) can be carried 

out like that of F, by using Grothendieck's deformation theory, since DL 

is a Chow component of curves of the threefold X gotten from X by blow

ing up along L c X. Alternatively, one may use methods like the above 

ones applied to the projection of DL in Fo, namely 
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Di:;"= closure, in F0 , of {T e: Fo 

We shall follow the second method but omitting the details, these being si

milar to the former ones. 

Fix T e: Di:" ' I;& L • We may choose a coordinate system in 1P3 such 

that the line I is given by the equations Xo = 0 ' X1 = 0 • The tangent 

space of G at I 
' TG (1) "" Hll (1,Nf /JP3 ) ' 

can be identified then (by dif-

ferentiation of PlUcker coordinates) with the vector space of differential 

operators spanned by Xi•(a/aXj) , i =2,3, j =0,1 , i.e. : 

At T e: Di:;- , the curve Di:;- is the intersection, in the Grassmann variety 

G, of F0 and VL, the latter being the Schubert variety of lines of IP3 

which meet L. Hence 

To describe TFo (1) c TG(l) , introduce the scheme of contact y c I 
of I, given by T = 0 on this line. With the above identifications one 

gets 

TFo (1) {ve: TG(l) I v•cf>i+ yields zero in HO ( y, 0 ( 4))} 
y 

Similarly, if 1/1 = 0 is the 2-plane Iv'i:" of 1P3 

Tvy;(l) {v e: TG (1) V•lji vanishes at In L} . 

The curve Di:;- is singular at I if and only if TF0 (T) is contained 

in Tv_(l). With the descriptions of these spaces this can be worked out in 
L 

coordinates, getting 

(1.7) If Te: Fo is a singular point of the curve Di:;", I;' L, then (at 

least) one of the following things takes place: 

i) T and L have~ point of contact in common. 

ii) The plane spanned by I and L in IP 3 is tangent to S at 

both points of contact of I if I is a pure bitangent; if I is a hyper

flex, this plane is tangent to Sat the point of contact P of I and cuts 
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on S a curve having 21 as tangent cone at P or a triple point there. 

(1.8) A general choice of L allows us to assume that case ii) above 

doesn't occur; it suffices to avoid the lines of the 001 2-planes which 

are either tangent to S at the point of contact of a hyperflex or tangent 

to S at two distinct points at least. 

(1.9) Assume for a moment the surface Fo allowed to be singular. Taking 

LE Fo smooth, the whole of (1.7) goes through, by adding: 

iii) T is contained in S. 

Completing (1.8) , a general choice of L allows us to avoid cases ii) 

and iii) above, since a smooth quartic S contains at most a finite num

ber of lines. 

The infinitesimal study of the incidence curves will be pursued by 

geometrical means in Section 5 below, where a fairly complete picture of 

the general case will be given. 

2. INFINITESIMAL ABEL-JACOBI MAPPINGS 

Ordinary and infinitesimal Abel-Jacobi mappings 

We start recalling some well known facts on Abel-Jacobi mappings ([8], 

[9],[10],[11],[17],[28], etc.) , restricting ourselves to the case of curves 

on threefolds. Let Y denote a smooth projective threefold; the Griffiths 

intermediate Jacobian of Y is defined as the complex torus 

- where H3(Y) = H3(Y,7l)/(torsion) is embedded in the above vector space 

by integration of forms along cycles - , together with the "principal po

larization" stennning from the Poincare pairing on Y (cf [8] , for ins

tance). If Y is a Fano threefold, i.e. ([15]) a threefold with ample anti

canonical class, one has in particular H310 (Y) 0 and J(Y) becomes a 

principally polarized abelian variety. 

The Abel-Jacobi map is a group homomorphism from 0(Y) , the group of 
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algebraic I-cycles on Y which are homologous to zero, into J(Y} . Given 

s E 6(Y) , one writes s = ar 
linear form 

for a 3-chain r of Y and considers the 

w I--+ f w r 

the image of the latter in J(Y} is independent of 

the particular choice of r and is, by definition, the image of s by the 

Abel-Jacobi map. 

If B is a connected variety parametrizing a family {Zi,} bEB of al

gebraic I-cycles on Y, there is an evident map from B to 6(Y) gotten 

after the choice of a base point BE B. By composition one gets a set

-theoretical map from B into J(Y) which is also called Abel-Jacobi map. 

If B is smooth, this is known to be a morphism of analytic varieties (cf 

[9], II, p.826, [22], p.9, [17]) . 

In the latter case it is shown in [9] (II, Theorem 2.25} that, if the 

family is effective and Z = z8 is a smooth curve, the differential of the 

Abel-Jacobi map B--+ J(Y) at BE B is given by the composition of the 

characteristic map of Kodaira 

(2. I) 

with the following one, which we shall call the infinitesimal Abel-Jacobi 

map at Z: 

(2.2) 0( ) 0( 3)v 1( 2)v H Z,NZ/Y --+ H Y,ny $ H Y,ny TJ(Y)(O) 

whose transpose 

(2.3) 

is described as follows. On the first sunnnand it is the zero map; on the 

second one it is the composition of three morphisms: 

(2.4) 

Hl(Y,~)--+ H1(Z,~ © Oz) 

Hl(z,n~ ©Oz)--+ H1(z,ni © N~/Y) 
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where the first one is the obvious restriction map and the third one is the 

Kodaira-Serre duality isomorphism. The second one is derived from the exact 

sequence 

gotten by exterior squaring from the sequence 

The vanishing of reflects the fact that the image 

of B in J(Y) is contained in the "abelian part" of this torus, i.e. 

inside 

With the same hypotheses on B (or, more generally, if B is irre

ducible - by taking first a non singular model of B) the above Abel

-Jacobi map B - J(Y) induces a morphism of complex tori 

Alb(B) - J(Y) 

which is again referred to as Abel-Jacobi morphism. 

The infinitesimal Abel-Jacobi map, which by the above may be conside

red as a morphism 

is far from being well understood. One should compare this with the codimen

sion one case; if W is an-dimensional variety, the preceding considera

tions are the analoga of those concerning the Picard variety of W, 

Here the infinitesimal Abel-Jacobi map for an effective (but otherwise ar-
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bitrary) divisor D of W 

is the differential of a well defined morphism from the corresponding com

ponent of the Hilbert scheme of W to the Picard variety Pic0w , whose 

infinitesimal structure at D is given exactly by the first part of the 

cohomology sequence of the standard sequence 

in particular, the first connecting homomorphism H0(o,00 (D))--+- H1(w,OW) 

coincides with w0 

Back to the case of curves on threefolds, we shall use a method of 

analyzing (2.3) · which is less intrinsic than the above but sufficiently 

explicit in the cases we are interested in. Namely, given an embedding of 

Y in a smooth - but non necessarily complete - fourfold, one constructs 

natural exact sequences involving respectively H1(Y,ni) and HO(z,NZ/Y)v 

and a mapping between them which extends (the essential part of) w~. The 

second one appears to be, in various cases, the pointwise sequence associa

ted with an analogous exact sequence of vector bundles which in the folklo

re is unanimously called (co)tangent bundle sequence, by generalization 

of the tangent bundle isomorphism of [8], p.338. 

The method of the pointwise TBS 

Assume given an embedding yC:- W in a smooth (non necessarily com

plete) fourfold, and Z c Y a smooth curve. The announced exact sequence 

involving HO(z,NZ/Y)v is constructed as follows : First, take the exact 

sequence of normal bundles 

and tensor it with ~; then consider the associated cohomology sequence, 

and use the canonical isomorphism 
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gotten from the chain of isomorphisms 

(the first one coming from rk(NZ/Y) = 2 , and the second one from the ad

junction formula) , and using Kodaira-Serre duality. The final result is 

the exact sequence 

az 

(2.5) 
Bz 

----=+ 

(2.6) Under the same hypotheses as above, the exact sequence involving the 

space H1 (Y,Q{) is gotten from the standard one 

by taking exterior cubes first, 

twisting then with NY/W and taking the cohomology sequence. We are mainly 

interested in the first connecting homomorphism 

(2.7) 

(2.8) LEMMA. We use the above notations and hypotheses. The following dia

gram is commutative: 

HO(Y,NY/W ® ~) 

rz J 
HO(z,NY/W ®~®Oz) 

where rz is ordinary restriction. 



PROOF. This follows at once from the definitions and the existence of a 

commutative diagram 

o--+ n 2 ® o --+ n3 ® y z w 0 --+S13 ® z y 

i 

with as first vertical arrow the composition of the map 

used to define (2.4) , with the canonical isomorphism 

The claimed diagram comes from 

0 0 

t J 
0 V V 

z - 1ziw-rz/Y - 0 

0 ----+ S1 1 ® z y 02 --+ O 

i 
====nl 

z 

t 
0 0 

by taking exterior cubes; in the so obtained diagram 

0 0 

t t 

25 
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the two lower rows yield the desired result after twisting with NY/W, and 

using obvious identifications, q.e.d. 

(2.9) REMARK. As the proof shbws~ the above square extends in fact to a 

morphism between the sequence of (2.6) and the sequence (2.5) • 

EXAMPLES. 

a) Take y = Y§ ' w = ]Pl+ (cf [8]) Here NY/W "" 0yC3) and ri3 "" y 

""0 (-2) y ; one sees easily that R is an isomorphism. We put (2.5) and 

(2.7) together, getting for z C y a smooth curve on the cubic threefold: 

b) Consider our case Y = X, W = E (cf Section O) . Here (ibid) one 

has NX/E ""0X(4) , ri¾"" Ox(-2) 

here, for a smooth curve Z c X 

we claim that (2.5) and (2.7) yield 

Only the square needs to be explained; it is gotten from (2.8) 

tion with HOO]P3(2) c_____.. H00x(2) • Furthermore, the sequence of 

yields in this case 

by composi

(2.6) 

for, by using (O.l) and (0.3) , one has H1(X,rli ® OX(4)) = 0. The in

jection of the above sequence can be identified with the natural map 

from which one easily deduces that the image of the former one is the sub

space <T> c H0 (x,OX(2)) • The result now follows, since 
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(2.12) The following proposition is an application of (2.11) above. For 

expository reasons, at this point - and only in connection with this propo

sition - we make the assumption that F is connected. This will be proved 

to be true in (3.57) (cf also (3.58)) . The reader will notice that (2.13) 

is not used in the sequel, before the proof of the connectedness of F, in 

(3.57) 

(2.13) PROPOSITION. 

iJ Let LE F be a line in X and consider the Abel-Jacobi ma:p 

F - J(X) (with arbitrary base point Lo E F). The codifferential of this 

ma:p followed by translation to the origin of J(X) is described by the fol

lowing commutative diagram: 

(2. 14) 

the left hand side arrow being the obvious ma:p. In particular, F - J(X) 

is an inmersion in the differential-geometric sense. 

ii) The Abel-Jacobi ma:p F5 - J(X) is onto, hence generically 

finite to one. In particular, the Abel-Jacobi ma:p Alb(F) - J(X) is sur

jective. 

PROOF. i) Consider (2.11) with Z = L. As shown in the proof of (I.I), 

H1NL/X = 0. On the other side H1NL/E(-2) = 0, which is seen as follows: 

by means of the standard sequence O-+ OE(2) -+TE-+ f*T1P3-+ 0 , we cons

truct the diagram (identifying L with its image L in 1P3 ) 



28 

The third column yields, after tensoring with 01 (-2) , 

0 - 0 - N / (-2) - 0 (-1) e O (-1) --+- 0 L LE L L 

from whose cohomology sequence our claim follows at once. 

By (2,9) and the proof of (2.11) we get a morphism of exact se

quences 

(2. 15) 

giving the desired diagram, since the characteristic map (2.1) is the 

identity in this case. The remainder of i) is clear, by the surjectivity 

of the vertical arrows in (2.14) 

ii) By i) , the kernel of the codifferential of F5 - J(X) at 

L = (11, ••• ,Ls) e: F5 consists of the 2-forms on JP 3 vanishing at the 

10-ple of contact of the bitangent lines on which project these L.'s . It 
l. 

suffices to show that this kernel vanishes for at least one 5-tuple of bi-

tangents; taking for example three of these in a general plane and two more 

in general position we are done. 

The surjectivity of Alb(F) - J(X) is now clear. It could have 

been gotten alternatively from the commutati.ve diagram 

(2. 16) 

the left hand side being the corresponding cotangent map at the origin. Its 

injectivity then comes from the fact that there are obviously no quadrics 

in JP 3 containing all the points of contact of all bitangent lines to 

s c JP 3 , q.e.d. 



3. THE SURFACES F , Fo GLOBAL STUDY 

Preliminaries 

Write M c JP 3 x G the natural correspondence between JP3 and the 

Grassmann variety of lines on JP3 , consisting on the pairs (P,L) with 
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P e: L . The variety M is a JP2 -bundle over JP3 and a JP1 -bundle over 

G. We denote the corresponding projections by p and q respectively. 

Writing 

(3.)) 

the standard sequence of JP 3 , we may identify (M,p) 

let 

(3. 2) R-G 

lPK • Also, if we 

be the rank two bundle on G with fibre at L e: G the linear forms on L , 

HO(L,~(1)) , we identify (M,q) = lPR • The fundamental sheaf of lPR can 

be written as 

(3.3) 

and the fundamental sequence of lPR yields 

(3.4) 

(cf e.g. [I] for more details) • 

Take next the standard sequence of differentials 

and twist it by OS(l) ; we get, putting 

(3.5) H 
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the sequence 

(3.6) 0 --+- 0 (-3) --+- K --+- H--+- 0 s s 

The latter provides us with an embedding lPH c..__.. lPKS of projective bun

dles over S; one checks easily that these subvarieties of M can be descri

bed respectively as follows: 

lPKS {(P,L)EM PES} 

lPH { (P,L) E M L is tangent to S at P 

The following diagram gives a survey of the varieties we shall be main

ly concerned with in this section: 

(3. 7) 

lPH '-----+ lPK 

lp tp 
s ----- jp3 ( lPK M lPR ) 

where we have put 

B = { (P,L) EM IL is a bi tangent of S and P is a point of contact } . 

This is a (2:1) covering of F0 , branched above the curve of hyperflexes 

~ c Fo . By (1.6) , the surface B is smooth if X is sufficiently gene

ral. Our way of carrying out, later on in this section, cohomological com

putations on F consists in dropping things to F0 , then lifting them to 

B and using finally the embeddings B c....__.. lPH ~ JPK . The first two 

steps use systematically (0.8) ; we need therefore the classes in Pic(F 0) 

giving these coverings (cf (0.7)) . 

Let O c S2R be the bundle of equations of the pairs of contact of 
Fo . Fo 

the bitangents inside these (cf (0.9)) • Equivalently, by using the embed-



ding B c:.__.. lPRFo , where B intersects each fibre of lPRFo -4 Fo 

along its pair of contact, 

(3.8) 

We define also 

(3.9) 

(3.10) 

K E Pic(Fo) 

p E Pic(_Fo) 

(3.11) PROPOSITION. 

a) The etale covering ~ : F--+ Fo is given by KE 2Pic(F0 ) • 
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b) The branched covering q: B--+ Fo is given by p +KE Pic(Fo) 

PROOF. a) The bundle QFo@ QFo c S4 RFo has an everywhere non vanishing 

section (because . S doesn't contain lines, cf p, 16) , given by the 4-form 

~4 • Thus the subvariety Y c QF0 

y 

yields an etale (2:1) covering of Fo with class K . The following map 

is now easily seen to be an isomorphism between F and Y over F0 , set

tling thereby part a) ; if L E F and L E F0 is its projection in JP 3 , 

0 - ,, we map L into the image of TJL in H (L,~(2)) . 

b) This follows at once from the definition of QFo above together 

with (0.10) , and the fact that 2K 0, q.e.d. 

Notice that it is not clear, a priori, that K # 0 

later on, in (3.56) 

this will follow 

Another preliminary result will be needed, too. We define first: 

(3. 12) 

(3. 13) 

h E Pic(lPH) 

cr E Pie ( lPH) 

h c1p*08 (t) 

cr = c10lPH (I) 

(3.14) PROPOSITION. In Pic(lPH), [BJ= 6cr + 2h holds. 

We give two different proofs of this fact. 

1st PROOF. We get B as scheme of zeros of a suitable line bundle on lPH 
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a line of JP 3 parametrized by lPH meets S at 4 points, twice the 

point of contact plus a residual pair. The latter one is a quadric of dimen

sion O and we ask for the locus where it degenerates. 

Let Uc S2RlPH be the bundle of equations of the residual pairs on 

their respective lines (cf (0.9)). Let V c RlPH be the bundle of equa

tions on the lines of their point of contact with S • Clearly: 

To compute V, we notice that it is the restriction to lPH of the 

bundle of equations of the tautological section of lPRM . By (3.4) the 

latter bundle equals OlPK(I) , hence V = OlPH(I) = OlPH(cr) . Therefore U = 

= 0lPH(-2cr) 

Thinking now of u c s2R 
lPH 

as the equation of a 0-dimensional qua-

dric on a moving line, we have a natural morphism U--+ RlPH ® RlPH giving 

the matrix form o'f these equations ; equivalently, a morphism 

The locus B c lPH where the quadrics degenerate is given by 

hence it is the scheme of zeros of a section of the bundle 

Hence [BJ= -2c1(U) + 2c1(RlPH) 

= G + h (cf (3.4)) • 

6a + 2h , by using the relation c1 (RlPH) = 

2d PROOF. For a general quartic surface s in Pic(S) "" 7l holds 

(by Noether's theorem, [I6J, p.108; here the term 'general' means: outside 

a countable union of proper subvarieties of the JP 34 parametrizing all 

quartic surfaces in JP 3 ). It will suffice to prove the formula in this 

case. Since Pic(JPH) = Pic(S) Ell 7la , we have Pic(lPH) = 7lh Ell 7la • So, 

[BJ = nh + ma with m,n E 7l • 

We use the elementary facts that through a general point of S there 

pass 6 bitangents to S and that a general plane of JP 3 contains 28 
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bi tangents . Intersection of B with a fibre of JPH gives: 

6 [B]•p*(x) n(h•p*(x)) + m(o·p*(x)) m 

Secondly, if Cc S is a general plane section, the variety of pairs 

(P,L) with PE C and L the tangent line to C at P yields a section 

of JPH above C , according to the diagram 

JP (rl ~ ® 0 C (I)) c._____... JPH 

~1 l 
C ~--- S 

We look for the intersection number [JP (rlt ® Oc(l))J •[B] . On one side, 

this is the number of pairs (P,L) with L bitangent to C, hence yields 

2·28 = 56 Secondly, [JP (rlc'.; ® Oc(l))] ·h is the number of tangent lines to 

C at all of the 4 points of intersection of C with a general plane, 

thus it equals 4 Furthermore, since the section corresponds to a projec-

tive subbundle of JPHC , we have 

and the intersection number [JP (nb ® Oc(l))J·o is the degree of this sheaf. 

The section being a projective bundle of projective dimension O, its fun

damental sequence degenerates into 

therefore deg(nb ® Oc(l)) 

we have gotten 

56 4n + 8m 

hence n = 2, q.e.d. 

""' OJP (nl ® 0 (1)) (I) 
C C 

8. Putting it all together, 

The tangent bundle sequences (TBS) 

Our next step is to globalize (2.5) to the Fano surface F. While 
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(2.5) is thought to analyze the infinitesimal Abel-Jacobi map, its global 

version (the tangent bundle sequence) is used to get information about the 

global geometry of the Chow variety of curves itself. 

(3.15) PROPOSITION.(TBS) There are natural exact sequences 

i) on F 

ii) on Fo 

0--+ OF --14- S2Rp--+ n}--+ 0 

0 --+ QFo~ 82RFo--+ r2}0 ®QFo- 0 

a being multiplication by TE H0(F,S 2RF) and a 0 being the natural in

clusion map (cf (3.8)). 

PROOF. i) This is a globalized copy of the proof of (2.5). We start with 

the inclusion X c:____.. E (cf Section O) and consider the following situa

tion, fibered above F: 

where EF = Ex F , ~ = Xx F and (recall) 1PRF is the universal line on 

X. Next, we take the exact sequence of normal bundles, twist it by the re-

lative dualizing sheaf w = and take the exact sequence of higher 

direct images; this gives, on F: 

0 - ROq*(N1PR /X ® w) - ROq*(N1PR /E @ w) 
F F F F 

(3.16) - ROq*(NX /E @ 01PR ® w) - Rlq*(N1PR /X ® w) 
F F F F F 

__,_ R1q*(N1PR /E ® w) - R1q*(NX /E ® 01PR ® w) -->- 0 
F F F F F 

The bundle N / being of rank 1PRF XF 2 , one has 

and hence 



By duality one has therefore, for i = 1,2 

i 
R q* (NlPR /X ® w) 

F F 

J-i V 
C,!. [R q* (NlPR /X ) ] 

F F 

hence finally, by the fact that H1 (L,NL/X) = 0 for all LE F (cf the 

proof of (I.I)) and Grothendieck's deformation theory ([14]) 

(3.17) 0 

Secondly, since H1 (L,NL/E(-2)) 

of (2.13.i)) we have 

( 3. 18) 0 

0 for all LE F (cf the proof 
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and, using NxF/EF 

(3. 3) , 

Ox (-2h) together with (3.12) and 
F 

(3. 19) 

Putting (3.16) - (3.19) together we obtain an exact sequence 

whose pointwise fibre sequence at LE F is given by the bottom row of 

(2.15) • The first term being an invertible sheaf with an everywhere non 

vanishing section T (ibid) , it has to be 

and this finishes the proof of i) . 

ii) We have the identifications 

Moreover, 
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by (0.8) , (3.11) , this being the decomposition in invariant and antiin

variant morphisms. Call 

the composite arrow in the diagram above. We shall show below (cf (3.21)) 

that S is antiinvariant, hence S is the inverse image of a well defined 

morphism Bo : S2 RF - nE1 ® QE . The sequence 
0 0 0 

o - QFo ~ s2~0 ~ nio ® QFo - o 

is exact, since so is its inverse image by u , q.e.d. 

(3.20) REMARK. Part ii) above can be restated by saying that the direct 

image of the sequence i) by u 

decomposes into two sequences, namely ii) and its twist by QF • 
0 

(3.21) LEMMA. The morphism S above is antiinvariant. 

PROOF. Let L E Fo and call L 1 , L" E F the two lines in X above L 

Consider the diagram 

The claim iB = - S amounts to say that tha bottom hexagon is anticonunuta

tive. By (2.14), the face n}(x)(O), n}(L"), Jil(L",OL11(2)), Jil(I,01(2)), 

Ffl (lP 3 ,OlP3(2)) is conunutative, and similarly for the opposite one. Hence 

all is reduced to show the anticounnutativity of the face involving the four 

vertices n1J(X)(O) , n}(L') ,n}(L") , n~0(L) • Otherwise said, the sum of 

both composite arrows of that face has to be zero; this sum is the cotan-
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gent map at L of the mapping Fo----+- J(X) attaching to each LE Fo the 

sum of the images of L' and L" under the Abel-Jacobi map for F. Since 

the I-cycles L' + L" are all rationally equivalent in X as L descri

bes Fo , the above map is constant and so its codifferential is zero, q.e.d. 

Numerical data 

We shall get next some numerical results about F and Fo. Recall the 

already defined classes (cf (3.10) , (3.12) , (3.13) , (0.6.d)) 

(3.22) 

p 

h 

We put moreover 

(3.23) II 

c1 (R) E Pic(G) 

c1 (p*OJP3(1)) E Pic(M) 

and notice that, on G, 

(3.24) 

(3.25) 

p 

II 

Putting also 

(3.26) 

class of 

class of 

lines in JP 3 meeting a given line } 

lines in JP 3 lying on a given 2-plane 

class of { lines in JP 3 through a given point } , 

there is a well known relation in G 

(3.27) II + p 

Furthermore, from (3.4) we get, on M, 

(3.28) 

(3.29) 

p 

II 

a + h 

cr·h 

We need a set of basic formulae on Fo 
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(3.30) LEMMA. The following holds in Fo 

40 deg(Il) 28 deg(p) 12 

PROOF. By (3.27) it suffices to compute deg(p 2 ) and deg(Il) . For 

all ~ E CH2 (G) one has (cf (3.7)) : 

deg(~IFo) 

To work in IPH we use 

CH(IPH) 

together with c(H) =I+ 2h + 7h2 (cf (3.6)) . Using the relations 

deg(h 3) = 0, deg(oh 2 ) = 4, we get in this way two other ones: deg(o2h) 

= 8, deg(o 3) = ~12 . 

The result now follows from these data together with (3.14) , (3.28) 

and (3.29) , q.e.d. 

(Of course, there are several more elementary ways to get these for

mulae.) 

In order to introduce the following important algebraic equivalence 

class on F, we assume for a moment that F is connected. This assum

ption ranges until (3.33) below, including also the statement in brackets 

in Proposition (3.34) and the conclusion concerning the curves D1 in 

(3.36) . We do so (again) by expository reasons, observing that neither of 

these facts is used before the connectedness proof of F in (3.57). We put 

(3.31) \J E NS 1 (F) 

Clearly, in NS 1 (F) the relation p 2u holds. From this one derives 

(3.32) 20 

(3.33) Therefore, through a general point of X there pass 12 lines; two 

lines of X in general position meet 20 other lines. Notice that, if 

x ES is general, the 12 lines through x are pairwise mapped onto the 



6 bitangents of S through x (Figure 2) . 

Figure 2. 

(3.34) PROPOSITION. In F we have the forrrrulae 

¾, = 3p in Pic(F) 

E(F) = 384 

x(OF) = 92 , 

¾,2 = 720 

[= 6u in NS 1 (F)] 

PROOF. From the TBS (3.15.i) we get 

39 

(cf (3.22) , (3.23)) . From this KF , E(F) and hence KF2 follow, by 

using (3.30) (and deg(~)= 2) • The Noether formula then yields x(OF) , 
q.e.d. 

(3.35) PROPOSITION. In Fo we have the forrrrulae 

KF0 = 3p + K in Pic(F 0) 

E(Fo) = 192 , 

x<OF0 ) = 46 , 

¾,~ = 360 
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PROOF. From (3.15.ii) one has 

since 3K = K • The remainder is now clear, e.g. from (3.34) , q.e.d. 

(3.36) Furthermore, the virtual genus of D1 yields, by the adjunction 

formula, pa(D1 ) = 71 . In a similar way, the curve of hyperflexes 

yielding [ti]= 2p in Pic(F0 ) by (3.11) (cf (0.7)) , one has 

= 201 . 

Cohomological study 

ti c Fo 

p (ti) = 
a 

We turn to the cohomological computations on F and Fo. As said be

fore, we use (0 .. 8) and (3.11) to reduce things to questions on B ; by 

(3.14) we reconduct them to JPH and, by the exact sequences (cf (3.6)) 

(3.37) 

(3.38) 

we are finally concerned with cohomological computations in JPK . The re

sults we shall need hereabout are contained in Proposition (3.40) below. 

Recall that, for a projective bundle lPE - Y with rk(E) = k , the re-
k 

lative and absolute dualizing sheaves are : wlPE/Y = A EJPE 181 OJPE (-k) 

= OJPE(-k + c1(E)) and wlPE = wlPE/Y ®wy respectively, hence 

(3.39) 

(3.40) 

by the 

wlPK = OlPK (-Sh -3o) 

wlPK /JP3 = OJPK (-h -3o) 

WJPK/ G = OJPK (p - 2h) 

PROPOSITION. The cohomology 

f o Uowing tab le : 

of the sheaves 

i) If n :,:: 0 [hiOlPK (mh + no) = hi(S~) (m)] 

OJPK (mh 

if m > n-2 then h O = ½ (m;3) (n;2) (m-n+ 1) and hi= 0 ' i 

+ no) 

"f 0 

is given 



0 , i ;l 3 _; 

ii) if n = -1,-2 then hi= O for aZZ i 

(If n < -2 we a:ppZy duality, using (3.39)). 
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; 

PROOF. The class p c1(R) 

in JP 3 ; therefore mh + np 

variety lPK c JP 3 x G , if 

is ample in G and h = ciOlP3 (I) is ample 

is ample in JP 3 x G , hence also in the sub

m,n > 0. So, by (3.28) , mh + ncr is ample 

in lPK if m > n > 0 By Kodaira's vanishing theorem and (3.39) we 

have therefore if i > 0 and m > n-2 , n > -3 . 

This is ii) and the first part of i) , except for the statements about 

ho To get the latter ones, if n = -1,-2 we use Rip*OlPK (mh + ncr) = 0 

Vi (because on the fibres of p the induced sheaves have no cohomology at 

all) • This gives ii) 

and Rop*OlPK (mh + ncr) 

The standard sequence 

If n ;;, 0 we have Rip*OlPK (mh + ncr) 0 if i > 0 

= (S~) (m) ; therefore h 001PK (mh + ncr) = ho (S~) (m) . 

O-K-0 4 3 -0 3(1)-0 1P 1P 

yields 

(3.41) 

from whose cohomology sequence we obtain (knowing already h1(S~)(m) 0) 

the formula for ho . 

Assume now that n;;, 0 and n-2 ;;cm;;, -3. We keep the above sequence 

(3.41) . The last two sheaves being acyclic for i > 0, it suffices to see 

that hO(s~)(m) = 0 in this case. But Riq*01PK (mh + ncr) = Riq*OIPK ((m-n)h + 

+ np) = [Rl-iq*OIPK ((n-m-2)h + (1-n)p)]v , which gives zero if i = 0 and 

(Sn-m-2R)v(n-l) if i =I. Hence H00lPK(mh + ncr) = H- 1( ... ) = 0, as we 

wanted to see. 

Finally, if m < -3, the cohomology sequence of (3.41) is explicit 

enough to give the expected result, q.e.d. 

Using the above, we .get the following list of cohomologies [ho, h 1, 

h 2 , h 3] on IPH : 

[ I ,0, I ,OJ 
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(3.42) 

0 (-2h - 6cr) IPH 
0 (-h - 5cr) IPH 
OIPH (h + cr) 

OIPH (2h + 2cr) 

OIPH (-4cr) 

OIPH (-2cr) 

0 (-h - cr) IPH 
0 (-2h - 4cr) IPH 

[0,0,0,170] 

[0,0,10,66] 

[6, 10,0,0] 

[21,15,0,0] 

[0,0,15,21] 

[0,0,0, 10] 

[0,0,0,0] 

[0,0,0,126] 

By (3.14) , this implies inmediately: 

(3.43) h20 = 171 
B 

(3.44) COROLLARY. hoO = I h 10 = 0, h20F0 = 45 • In particular, the sur-
Fo ' Fo 

face Fo is connected and regular. 

PROOF. The first two assertions follow from (3.43). The third one then 

comes from (3.35) , q.e.d. 

We look next for the cohomology of OB(K) • To this end we rewrite 

the class K in terms of divisor classes which extend to bigger spaces 

(with more transparent structure than B) • Introduce therefore 

whose points can be thought of as triples (P,L,x) where L is a tangent 

line to S c IP 3 at P and x E L . A fibre of the above projection map 

being identified with such a tangent line, the residual pair of the inter

section of that line with S (after dropping the point of contact counted 

twice) describes a well defined subvariety Z of P as the fibre moves. 

This subvariety is mapped (2: I) onto IPH and branched exactly above B 

We have a commutative diagram 

(3.45) 

B '-------~ IPH 

Introduce furthermore the class 
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(3.46) I; € Pic(P) 

By the first proof of (3.14) , the bundle of equations of the fibres 

of Z--+- lPH in those of y is OlPH (-20) • Hence ((0.9)) , in Pic(P) 

(3.47) [Z] 20 + 21; 

and the covering Z --+- lPH is given by p + 20 h + 3CJ (ibid) , hence, 

in Pic(Z) : 

(3.48) h + 3CJ 

(3.49) LEMMA. In B1 we have K = h + 2CJ - I; 

PROOF. Since B parametrizes bitangent lines with a distinguished point 

of contact, we have QB~ QB® QB , where Qi is the bundle of equations 

of the distinguished contact points and QB that of the second contact 

points. The bundle Qi is the restriction to B of the bundle V of 

(3.14) 
' 

hence c1(Qp,) = CJ 

To compute QB ' 
take the fundamental sequence of p 

and notice that the punctual fibre of L at a point (P,L,x) of p is the 

vector space of equations of x in L Therefore the restriction L ® OB 1 
is the lifting, by the isomorphism B1 ~ B, of the bundle QB Since 

c1(L) = c1(Rp) - I;= p - I;= h + CJ - I; , we finally get, in B1 : 

h + 2CJ - I; 

q.e.d. 

To get hiOB(K) 

write the sequences 

, we use (3.47) and (3.48) 

(3.50) 

(3.51) 

(3.52) 

0--.- 02 (-CJ-/;)--.- 02 (2CJ+h-l;) --.- OB1 (2CJ+h-l;) --.- 0 

0--.- OP(-3CJ-3/;) --+- OP(-CJ-1;) --+- 02 (-CJ-I;) --+- 0 

0--.- OP(h-31;) --.- OP(2CJ+h-l;) --+- 02 (2CJ+h-l;) --,. O 

to 
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We work them out backwards, starting with the last one. The presence 

of -~ in the middle term gives already Riy*Op(2cr+h-~) = 0 for all i. 

Secondly, since Wp/JPH = Op(cr+h-2~) , we derive by duality that 

Therefore the direct image sequence of (3.52) gives ROy*Oz(2cr+h-~)"" 

""Rii,H ® OIPH (-a) and R1y*Oz(2cr+h-~) = 0 • Hence, for all i , one has 

an isomorphism Hi(Z,Oz(2cr+h-~)) ""Hi(IPH, R]PH ® OIPH (-a)) . To get fur

ther, we use sequence (3.4) , which reads, on !PH : 

(3.53) 0 --+ OIPH (a) --+ RIPH --+ OIPH (h) --+ 0 

Dualizing and twisting by OIPH (-a) we deduce 

From the corresponding cohomology sequence, together with (3.42) , one 

obtains finally: 

(3.54) The cohomology of OZ(2cr+h-~) is [0,0,0,10] • 

In a completely similar way, (3.51) leads to the less precise state

ment: 

(3.55) The cohomology of Oz(-a-~) is [0,0,a,b] with a and b inser

ted in an exact sequence O -+ a-+ 10 -+ 126 -+ b -+ 66 -+ 0 

Combination of (3.50) , (3.54) and (3.55) gives finally the essen-

tial 

(3.56) LEMMA. The cohomology of OB(K) is [O,a,172+a] with a~ 10. 

The cohomology of the surface F can be written down now: 

(3.57) THEOREM. The following foT'mUlae hold on F: 

i) hOOF = I h10F = 10 h20F = IOI 

ii) h 1n} = 220 , and the dist'l'ibution in inva:r-iant and antiinva:r-iant 

part of the (essential) Hodge numbers is: 



(h0rl)+ Q 

(ho,1)- 10 

(3. 58) REMARKS. 

45 

56 

100 

120 

45 

a) tells us that the surface F is connected this jus-

tifies the assumptions of (2.12) and p.38. 

hj,i both for F and Fo . 

PROOF OF (3.57). By (3.1 I) we have, for all i 

Therefore, by (3.44) and (3.56) , we derive hOOF = I • 

Next, by Kodaira's vanishing theorem, since p is ample on Fo : 

hiOF0 (-p) = O if i < 2. By the Riemann-Roch Theorem, xOF0 (-p) !(P 2 + 

+ KFo·P) + xOF0 = !(40 + 120) + 46 126 (cf (3.30) , (3.35)) , hence 

OF0 (-p) has cohomology [O,O, 126] 

Together with (3.56), this tells us that OF (K) has cohomology 
0 

[O,a,46+a] with a~ 10. The above therefore yields, by (3.44) , that 

OF has cohomology [l,a,91+a], with a~ 10 . On the other side, 

a= q(F) 2: 10 

by (2.13.ii) (sic) , hence a = 10 and i) is proved. 

The value hlrl(F) = 220 then follows from this and (3.34) ; simi-

larly h1' 1 (Fo) = 100 follows from (3.44) and (3.35) This finishes 

the proof. 

(3.59) COROLLARY. The Abel-Jacobi map Alb(F) ___.. J(X) is an isogeny. 

PROOF. Follows from (2.13.ii) and i) above, q.e.d. 

We end this section with a further result on the cohomology of F, 

which will play a major role in Section 6 below (cf Proposition (6.1)). 

We recall that in [8] it is shown that the Fano surface F' of the cubic 

threefold satisfies A2H1(F',~) ""H2 (F',~) (loc.cit., p.326) . In the pre

sent case the image of A2H1(F,~) in H2(F,~) consists of invariant co-
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homology classes, since the whole of H1(F,~) is antiinvariant. More pre

cisely, one has: 

(3.60) PROPOSITION. The natural map yields an isomorphism A2H1 (F,~) ~ 

~ H2(F,~)+. 

(3.61) 

(3.62) 

Equivalently, this says that the natural mappings 

A2H0Q1--+ (H0Q2)+ 
F F 

H0Ql 0 HlO --+ (HlQl)+ 
F F F 

are isomorphisms. Remark that the dimensions on the left and on the right 

hand sides coincide, by (3.57) The proof of (3.60) will occupy the re-

mainder of the present section. We shall use freely the identifications de

duced from (3.15) with aid of (3.57). 

(3.63) LEMMA. The map (3.61) is an isomorphism 

PROOF. As remarked above, only injectivity needs to be proved. Identifying 

HOQ½ with HO (S 2RFo ) , and (HOQf) + with HOQf0 , this map is the composi

tion 

where n comes from the sequence 

0--+ Ql 
Fo 

gotten by exterior squaring from (3.15.ii) . Since H 0 Q1 0 , the map n 
Fo 

is injective; it remains to prove the injectivity of the map 

and this is an easy consequence of the following observation: an element 

<li E A2HOOJP3 (2) vanishes, as soon as it vanishes at five 2-planes in ge

neral position; and <li vanishes at a given 2-plane, as soon as it vani-
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shes at five lines in general position in that plane, q.e.d. 

(3.64) LEMMA. The kernel of the morphism (3.62) has dimension ::;; 1 • 

PROOF. Our argument is quite long; we divide it into several parts, for the 

sake of clearness. To begin with, we introduce some notations to be used 

only during this proof: we put W = HOO:n,3 (2) for shortness; J will de

note the rank 9 bundle on F 3 defined as the kernel of the natural map 

W ® OF 3 - OlP3 (2) • Also, I stands for the rank 7 bundle on G de

fined as the kernel of the natural inap W ® 0 G --+ S 2R . 

i) The map (3.62) can be identified with the cup-product morphism 

which in turn can be included in the following commutative diagram: 

the remaining morphisms being the obvious ones. The statements of injecti

vity, etc. which it contains are easily checked. The assertion of the lel!DDa 

is therefore equivalent with the same assertion for the upper horizontal 

arrow. 

The latter one comes from the sequence 

hence the lemma is equivalent with being the rank of the morphism 

at most 

and it is sufficient to prove that 

(3.65) 
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holds. This will be done in the remainder of this proof. 

ii) We proceed along the lines of the proof of (3.56) accordingly , 

we omit the most evident details. It will be more convenient to replace 
V V 

JB ® QB by JB ® QB 0 wB, both sheaves having mutually dual first coho-

mology spaces. 

By (3.35) and (3.11) , wB = OB(4p) . Using also (3.49) , the above 

sheaf yields on B1 (cf diagram (3.45)) the bundle 

(3.66) D 

By using (3.48) we get a resolution of D 

(3.67) 

whose direct image sequence by y (cf lac. cit.) gives 

(3.68) 

the R1y* of all terms of (3.67) being zero.' This is seen by means of re

solutions of the first two Op-modules (using (3.47)) and writing down 

the corresponding sequences of direct images. In particular, the cohomology 

of D is the same as that of ROy*(D) • 

iii) Call the first two terms of (3.68) respectively (3.68) 1 and 

(3.68)r1 • We look for the cohomology of these sheaves. 

Term (3.68) 1 offers no difficulty. By using (3.53) we get 

The third term of this sequence is clearly acyclic; we see that the first 

one has cohomology [99,1,0,0] , by using the defining sequence of Jv in 

JP3 . Therefore: 

(3.69) The sheaf (3.68) 1 has cohomology [99,1,0,0] 

As for (3.68)n , we are less fortunate, since the above method yields 

no sufficiently explicit sequences. Instead we use (3.37) and (3.38) to 

work things back to lPK (cf (3.7)) . 
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iv) Consider the sequence 

dedeuced from (3.37) . The cohomology of the second sheaf can be computed 

by using the OlPK-resolution deduced from (3.38) and applying to each of 

the two OlPK-modules gotten in this way analogous arguments as with (3.68) 1 

above (i.e. using (3.4) and the defining sequence of Jv in lP 3 ). We 

get: 

(3.71) The sheaf (3.70)II has cohomology [1920,0,0,0,0] 

Term (3.70)r cannot be settled in this way; however, an 

tion being, by (3.38) , 

(3. 72) 

the following observation will be useful: 

0 -resolulPK 

Proof. Since OlPK(a) ® RlPK is the vector bundle on M = lPK with fibre 

at (P,L) the vector space of 2-forms on L vanishing at P, we have an 

exact sequence 

and the result follows from 

fibrewise) , q.e.d. 

for all i (as easily checked 

vi) By v) , the direct image sequence of (3.72) by p yields, in 

and Rip*(3. 70) I = 0 if i > 0 . Since the cohomology of Jv ® J equals 

[J,0,0,0] and (hence) that of Jv®J(-4) is [0,0,0,I], we get: 

(3.73) Term (3.70) 1 has cohomology [J,0,I] 
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Combination of (3.71) and (3.73) now gives: 

(3.74) The cohomology of (3.68)n is [1919,1,0] • 

By (3.68) , (3.69) and (3.74) we obtain finally dim H1(ROy*D) ~ I , 

hence (3.65) holds and Lemma (3.64) is proved. 

(3.75) END OF THE PROOF OF (3.60), By (3.63) and (3.64) we know the res

triction map 

(3.76) 

to have a kernel of dimension ~ I , and our purpose is to see that Ker 0 

holds. Assume this is not so; we shall derive a contradiction. 

The kernel is gotten by ®zz¢ from the kernel of the restriction map 

hence the latter would be ?lw "" ?l for a certain w € H2(J(X) ,l'l) • The 

module ?lw being invariant under the action of the monodromy (as X va

ries, its Fano surface staying smooth) , we get Tw = ±w for each monodro

my transformation T. We want to show that w is a multiple of [0] € 

€ H2(J(X),l'l) , and this will be contradictory, for then [0]•[F] = 0 in 

J(X) , contradicting ampleness of 0 or effectiveness of F. Identifying 

H2(J(X),¢) with the vector space of skew-symmetric bilinear forms on the 

vector space H1(J(X),¢) ""H3(X,¢) , there exists certainly a constant c € ¢ 

such that 

w+ w + c[0] 

is degenerate. If w+ 0, we are done. Otherwise, observe that each mono

dromy transformation T satisfies either Tw+ = w+ or Tw+ = w-, with 

Hence, denoting for a moment W = H3(X,¢) , w+ = Ker(w+) and w~ = Ker(w-), 

we have O, w+, W, and T satisfies Tw+ = w+, TW- = W- or TW+ = W-, 

TW"" = w+ By (4.3) below, Wis spanned by the vanishing cycles (we apo

logize for the double use of the symbol W; the reader will notice that 



the proof of (4.3) 1s independent of our previous arguments). Therefore, 

by the irreduc.ibility of the monodromy action on W we obtain W = w+ t w 
by the same reason, w+ n w either is zero or equals W , but the latter 

case is impossible. So W = w+ew- . 

Next we take a Lefschetz pencil of double solids (cf Section 4) and 

restrict ourselves to that situation. The monodromy transformation Ti asso-

ciated with a vanishing cycle 6· 1 is given by the Picard-Lefschetz formula 

Tia a ± (a,oi)oi 

Decomposing 0. 1 along w+ and w 6. 1 o! + c: 1 ' 
we get, for each 

a € w+ : 

Tia (a ± (a,oi)o!) ± (a,oiHI 

If it were T.w+ = w- • we would get w+ = <ot> • w- = <oI> , which is im--
l 

possible. Therefore both spaces w+ and w- are invariant under monodromy, 

hence w+ = 0 or w+ = w But both cases have been ruled out by assumption, 

so this is a contradiction. 

Therefore the kernel of the restriction map (3.76) is zero, and 

this is (3.60) , q.e.d. 

APPENDIX TO SECTION 3 

This appendix contains some geometrical aspects related with the pre

ceding theory which, being perhaps interesting for themselves, will not be 

used in the sequel. 

The Gauss map for F 

Consider the Albanese map F --+ Alb(F) , for some fixed r-a!'e point. 

By (3.59) , the associated Gauss map can be identified with that of the 

Abel-Jacobi map F--+ J(X) and, .by (2.13), we have an identification, 

for each L < F, writing P, Q for the points of contact of the projec

tion L c lP 3 of L : 
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If ]Pg stands for the projectivization of the vector space H0(lP 3, °iE,3 (2))", 

a: for the Grassmann variety of lines in that lPg , and V : lP 3 - lPg 

denotes the Veronese embedding, the above says that the Gauss map 

G F-o: 

is given by G(L) = V(P) v V(Q) . (If P = Q , G(L) is the tangent line to 

the conic V(L) at V(P)) • In particular, G factors as 

(A. I) 

Fo 

where G0 is a well defined morphism. 

Let L1, L2 E F and 11 , 12 their respective projections in lP 3 • 

Then: G(L1) = G(L2) if and only if L1 = L2; secondly, the lines G(L1) 

and G(L2) of lPg intersect at exactly one point if and only if L1 and 

12 do so. In the latter case, the intersection of G(L1) and G(L2) is 

the image of that point by the Veronese embedding. 

(P1,Q1) , (P2, Q2) are the pairs of contact of L1 and 

G(L1) G(L2) means that the linear system of quadrics 

11 at P1 + Q1 coincides with the system of quadrics 

meeting L2 at P2 + Q2. This can happen only if {P1,Q1} = {P2,Q2} , i.e. 

if L1 = L2 

In fact, if 

L2 respectively, 

of ]P3 meeting 

On the other side, G(L1) nG(L2) to be a single point means that the 

system of quadrics of .IP3 meeting Li at 

has dimension 6. This is equivalent with 

exactly one point. The rest is now clear. 

P• + -Q· for each i = 1,2 
l. l. 

{P1,Q1} and {P2,Q2} sharing 

Furthermore, as L varies over Fo , the line Go(L) c lPg descri

bes a threefold in ]Pg. Any point of this threefold meets exactly one of 

these lines, except the points of the Veronese image of Sc lP3 , which 
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meet exactly six lines in general (cf (3,33)). Summarizing, we have gotten 

thus: 

(A.2) PROPOSITION. The Gauss map G assoaiated with the Albanese mapping 

of F faators as in (A.I), with G0 injective. Moreover, if Y c lP9 

denotes the image of the composite map 

JPn 1- JPn 1 ""Alb(F) x JP9 ---R:.... JP 9 
F Alb(F) 

then lPrlff maps everywhere ( 2: I) onto Y , except above a certain sur

f aae in Y, where it is generically (12:1); this surface can be identi

fied with the Veronese embedding of the discriminant locus S c lP3 of the 

double solid X. In particular, X is determined by F. 

(A.3) COROLLARY. The Abel-Jacobi map F - J(X) is generically injecti

ve. 

PROOF. Assume it is (k:I) onto its image. Then G has to be at least 

(k:1) too. Hence k = I or 2. If k = 2, a general fibre ought to con

sist of a conjugate pair under the involution i. Calling the above map ~ 

for a moment, we would have, for each x E F: ~(x) = ~(ix) . But ~(x) + 

+~(ix)= const. for all x E F , hence 2~(x) = const. , which is impos

sible. Therefore k = I , q.e.d. 

(A.4) As first remarked to us by Collino, the results of Clemens im

ply that F - J(X) is injective if X is sufficiently general. We dont 

know whether it is injective for all X. 

To end our remarks about the Gauss map of F we describe geometri

cally the canonical map for Fo . 

(A.5) PROPOSITION. The map G0 : F0 - © followed by the Plucker embed

ding © c___.. lP44 is the canonical map for F O • 

PROOF. The composition of these maps is given by 

sending LE Fo to 
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{wEA2 (H0n1 ) I w vanishes at (one of) the LEF above L }l.. 
F 

With the identification (3.63) this is the same as 

q.e.d. 

In particular, if we take a pencil of quadrics in JP 3 , the curve of 

bitangents of S c JP3 such that their pair of contact lies on some qua

dric of that pencil yields a canonical divisor of Fo • 

The geometry of the projective tangent bundle isomorphism 

A geometric version of the TBS 

zation: the projective tangent bundle 

the subbundle of 

(3.15.i) is gotten by projectivi

lPf!1 of F can be identified with 
F 

whose fibre at 1 E F consists on those g} 's which contain the divisor 

S•l of 1. A natural question raises: given a direction of F at 1 E F, 

describe the associated g} of 1. We give an answer to this question: 

(A.6) PROPOSITION. Let 1 E F be given, and Zet LE F be a suffiaientZy 

general Zine af X meeting 1. The aUPve n1 then has 1 as a smooth 

point ((1.7) , (1.8)) , hence provides us with a tangent direation of F 

at 1 The aorresponding g½ on 1 is the one induaed on the projeation 

1 c lP 3 of 1 by the proje.ation I of L , as in (O. 12) 

PROOF. The main point is that the curve n1 is the Chow component, in the 

blown-up X of X along the line L, of the proper transform 1 of 1. 

Hence 

Call E 
formulae 

T (1) ""HO(l N~ ~) 
DL '1/X 

the blowing-up of E (cf Section 0) along L. We recall the 

(ibid) : wx"" Ox<-2) , wx"" Ox<-z+n) , Nx/E ""Ox(4) , Nx/E"" 



""OX:(4-D) , where D denotes here the exceptional divisor of the blowing

-up. We have an exact connnutative diagram 

0 

l 
k 

i 
(A. 7) 

0 0 

where the top "k" 's mean skyscraper sheaves with stalk k = a: at the 

point PE l where l meets the exceptional divisor D The diagram is 
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completely described by telling that its restriction to 1, P is the na

tural identification between the middle and the bottom rows and furthermo

re that its existence (i.e. the extension of the identification maps near 

P E 1) follows from a straightforward local computation. 

The injection morphism of the left hand side column yields, taking 

first cohomology: 

H1N~ ~@w~ 1/X X "" T~(l)v 

i f r 
HlNl/X@ wX "" TF(l)v 

where r is the ordinary restriction map of cotangent vectors. Taking the 

cohomology sequences of the two lower rows in (A.7) we get an exact com

mutative diagram 

0 

t 
a: 
t 

(A.8) 0 ->- HON~ ~@ ~ ->- H0O~(2) 
1? X II 1 

0 - <T Jl> -+ H0ol (2) 

t 
0 

--+ To (1) v --+ o 
L t r 

- T (l)V--+ 0 
F 
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where the following has been used: 

i) The bottom row is the bottom row of (2.15) 

ii) The middle column of 

homology, since H1Nl/E®wx = 0 

(A.7) yields a short exact sequence in co

(cf the proof of (2.13.i)) . 

iii) 1 is a smooth point of DL (by assumption) , hence dim TnL(l)v = 

= I , i.e. h 1 (N'l/x 0 w3c) = and so, by the first column of (A. 7) , we get 

h O (Nl /x 0 wx) = 0 • Thus the second row begins and ends with a zero term. 

From (A.8) we learn that the gi we are looking for is made up by 

the loci on 1 of the 2-forms of the subspace H0Nl/E 0 Wx of H001 (2) 

Observe that Tll = 0 yields the pair of contact of 1 as a member of 

that pencil. It suffices now to exhibit an element of HONl/E 0 W3{ having 

as zeros one of the pairs of points as mentioned in (0.12) . 

To produce that section, take 11 ' 12 to be two lines in X such 

that (L,1,11,12) are a configuration as described in (0.5) (cf (0.11)) 

By (lee.cit.) there is a 2-form ijJ2 on ]P3 such that L + 1 + 11 + 12 

is the complete intersection in X of the surfaces T - ijJ2 0 and ¢1= 

= 0 , the latter one being the pullback to X of the 2-plane IT C ]P3 span-

ned by the projections L and I. 
The threefold V c E given by T - ip 2 = 0 maps isomorphically onto 

lP 3 the inverse image of IT in E is a threefold W c E defined by the 

equation ¢ 1 = 0 ; hence the intersection surface M = V n W c E maps iso-

morphically onto the plane IT and, by construction, Mn X = Lu 1 u 11 u 12 

Let M be the proper transform of M in E, M"" M; we have an obvious 

injection 

On the other side, Nl/M"" 01(1) , the situation being that of a line in 

the plane. Hence 

and this bundle has a non zero section, providing us with a section of 

NJ'./E 0 wx • We consider the. image of the latter in the bundle Nx/E 0 w5c ® Oy "" 
""01(2) and ask for its locus of zeros. If Q1 , Q2 denote the intersec

tions of 11 , 12 respectively with 1, it is clear that M is tangent 

to X at Q1 and Q2 , hence the above image section vanishes at these 
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points and, since it doesn't vanish identically, this is its locus of zeros, 

q.e.d. 

p 

Figure 3. 

4. THE ISOMORPHISM THEOREM 

(4.1) THEOREM. The Abel-Jacobi map Alb(F) - J(X) is an isomorphism of 

abelian varieties. 

The proof of this statement will occupy the whole of this section. We 

use mainly ideas from [28] (which seem to go back in some aspects to 

ideas of Clemens) and [SJ 

The sheaves defined by singular homology (as X varies, together 

with F) being locally constant, it suffices to prove the statement for a 

single X; hence we may choose it in appropiate way. By [SJ, Proposition 

I.I , there exists a quartic threefold Tc JP 4 such that the lines on T 

are parametrized by a smooth (connected) curve. We fix such a T and call 

f W - F 4 the double hypersolid with discriminant locus T Finally, 

X is chosen as inverse image of a sufficiently general hyperplane of F 4 

under the map f 

By (3.59) , the proof of (4.1) will be complete if we show the 
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surjectivity of the induced morphism in homology: 

Hence it suffices to see that the natural map 

(4.2) 

induced by the correspondence between F and X (the cylinder map, in 

Tyurin's terminology) is surjective. This will be done in the remainder of 

this section. 

PROOF. We mimic the proof of Lennna 1.23 of [7] . (We drop the reference 

to the coefficient group Zl in all our notations, during this proof). One 

certainly may assume that 

x04+x/++x24+x34+X44= o in 

w is the hypersolid with discriminant surface 

JP4 We take X c W as the inverse image of 

the hyperplane Xo = 0 of JP 4 Take a tubular neighbourhood U of X 

in W, and consider the following piece of the Gysin sequence of the s1-

-bundle p: au---+ X 

Here ijl' , ijl" is intersection product with the first Chern class of the 

normal bundle Ox(I) of X in W; thus with the class of a surface in 

IOx(l)I . By the mentioned lemma of [7] , H2(X) ""Zl with generator the 

class of a line L of X • Since L·ciOx(I) = I , ijl" is an isomorphism, 

and so p~ 0. On the other hand, H1(X) = 0 (e.g. [7]) hence H2(au) = 0 

follows, and also that p} is surjective. We shall need these two facts 

in a moment. 

Consider next the Mayer-Vietoris sequence for the decomposition 

W (W-.... U) u U ; the piece we shall need is 

We know that H2(au) = 0 • On the other hand, w,x is isomorphic with the 

hypersurface of ~5 given by 
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By [23], p.19, this has the homotopy type of a bouquet of 4-spheres, 

hence H3(W'-X) = 0. So, the first map of the above sequence can be iden

tified with p*, hence is surjective. Therefore H3(W) = 0, as claimed. 

As for H5 (W) , we use the foregoing. By Poincare duality and univer

sal coefficients for cohomology, this group has the same rank as H3(W) 

and the same torsion as H2(W). By Lefschetz' theorem, H2(W)""' H2(X) , 

and this has already been noticed to be isomorphic with 2'l • Therefore 

H5(W) = 0, q.e.d. 

Define, as usual, the "lines" of W to be the curves mapping iso

morphically onto lines of :JP4 by f • One has : 

(4.4) LEMMA. The lines of W are parametl'ized by a smooth aonneated fou'l'

fold F(W) . 

PROOF. Connectedness follows from the connectedness of our Fano surface F 

As for smoothness, consider first a line L c W such that L ¢ T. Take a 

smooth hyperplane section X' c W (i.e. a hypersurface of the linear system· 

I Ow(}) I ) containing L , and write the standard sequence 

Byusing (I.I) and NX'/W®OL""'OL(I) wegetinmediately hoNL/W=4. 

Assume now that L c T; we consider the sequence 

By our choice of T we have hoNL/T = I and, since NT/W ® OL ""' OL (2) , it 

follows that hoNL/W = 4. From this the lemma follows, q.e.d. 

The graph of the correspondence between F(W) and W will be deno

ted by P(W) ; this is a lP 1 -bundle over F(W) . Consider the diagram 

(4.5) pi~•<~ 
x~w 
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~ where p and q are the natural projections and X is defined as the in-

verse image of X by p. This is a 4-dimensional variety and the map q 

exhibits it as the blowing-up of F(W) along F. 

This yields a natural decomposition 

where H3 (F(W) ,2'l) is included in H3 (X,2'l) by means of the transfer mor

phism q* , and the inclusion of H1 (F ,2'l) in H3 (X,2'l) is given by com

position of the transfer morphism H1(F,2'l) --+ H3(q- 1F,2'l) with the na

tural map H3(q-lF,2'l) --+ H3(X,2'l) • The cylinder map (4.2) is the res

triction of 

to H1 (F,2'l) But on the other side p*H3(F(W) ,2'l) 0 , since this is the 

restriction to X of p*q*H3(F(W) ,2'l) c H5(W,2'l) = 0 (cf (4.3)) . It suf

fices therefore to show the surjectivity of P* itself. 

This will follow, as in [5] , from Lelllllla (7.15) of that paper, 

which we quote without proof, with a slight change in notations: 

(4.6) LEMMA ([5], Le= (7.15)). Let w be a smooth projeative variety de

fined over a: , dim W = d+I , p : P --+ W a proper map, generiaal:ly fi

nite ( P irreduaible), X~ W a smooth hyperplane seation, X = p-l(X) 

Then the image of p* : Hd(X,2'l) --+ Hd(X,2'l) aontains the vanishing ay

ales. 

We apply this to our situation, with P = P(W) • Notice that Lelllllla 

(4.6) goes through for a proper surjective p without the finiteness as

sumption, for it suffices to take an irreducible P' cP such that the res

triction of p to P' is proper and generically finite onto W. 

Since by (4.3) and Lefschetz theory H3(X,2'l) is spanned by vani

shing cycles, the above yields the surjectivity of p*, and Theorem (4.1) 

is proved. 
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5. THE INTERMEDIATE JACOBIAN AS A GENERALIZED PRYM VARIETY 

The incidence curves PL 

Consider again the incidence curves Dr, c F (cf (1.5)) • Some re

sults of local infinitesimal type have been quoted already in (1.7) - (1.9) 

and we want to give now a more complete picture of these curves in the ge

neral case. 

The Dr, are ample curves of F and [D1 J = u by definition. From 

Section 3 we get hOODL = 1 , h10DL = 71 • However, these curves are not 

smooth, as we shall see now. 

Fix a sufficiently general line LE F and consider .the curve D1 • 

Calling L the projection of L in JP3 , it is clear that the curve D1 
projects onto the curve Di;" c Fo • In fact, we have 

(5. 1) 

We call furthermore p Q the contact points of L 11 , ... , Ls are the 
- -remaining bitangents to s with contact point p • and M1 • • • •, Ms those 

with contact point Q The lines in X above these bitangents are written 

respectively L! , L'.' and M' M" i - 1 5 (cf (3.33)) • With i i i. i. - •...• 
these notations one has: 

(5.2) PROPOSITION. The auz>Ve 

aorresponding to L, L. (i 
i 

Di;- has exaatly 11 

= 1, ••• ,5) and M. 
i 

ordinary double points 

(i = 1, ••• ,5) • The aur-

ve D1 is the no:t'TTlalization of Di;- at the latter 10 double points, re-

maining singular at iL E D1 . 

~- Clearly the projection n: D1 - Di;- is (2:1) above Li, Mi, 

i= 1, ••• ,5 and (1:1) above the remaining points of Di;- except possibily 

above LED[. But there it is in fact (1:1) too, since otherwise we 

would have L ED 1 ; however, since D1 ·DiL = 20 by (3.32), the inter

sections are already exhausted by L! , L'.' , M! , M'.' , i = 1, •.• ,5 , and 
i i i i 

therefore, being LE DiL, it cannot happen that LE D1 • 

This shows also that D1 is smooth at these 20 points, and that 

L. , M. , i = 1, ••• ,5 are ordinary double points of D::-1 • It remains to 
i i 

study D1 at iL. The fact that L € Di;- is a point of multiplicity 2 
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can be seen as follows: if we take two bitangents L, M which meet but 

otherwise are in general position, there can be counted 28 - 2 = 26 other 

bi tangents meeting L and M and lying in the 2-plane L v M , and 

12 - 2 = 10 bitangents passing through the intersection point of L and 

M. We know on the other side that ~-~ = P2 = 40, hence 4 multiplici

ties have to be distributed among the intersection points L and M them

selves. By symmetry, there correspond 2 to each one, as we wanted to show. 

----- L" 1 

Figure 4. 

, ..... ___ ,,,,, 

To see that the double point iL E DL is an ordinary one, take a 

sufficiently general 2-plane IT c JP 3 through L and consider the dia

gram (analogue of (4.5)) 

,..__., 

~r~• 
c 1rrc- x 

with f'.:1rr = p-l(f-lrr) . The map q exhibits 0n as the blown-up of F 

at the 56 lines of f-lrr lying above the 28 bitangents on IT. Set

-theoretically, Mn is described as 
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£-=--in { ( x, 1) I 1 E F , x E 1 n f- I II } 

and the exceptional locus above iL is identified with the line iL it-

self. The proper transform of DL C F in Fin has to meet iL with mul-

tiplicity two, as we already know. Since the points p and Q belong to 

this intersection and are distinct, iL is an ordinary double point of ~, 

and this finishes the proof of Proposition (5.2) . 

(5.3) REMARK. The above identification of the projective tangent space of 

F at iL E F with the line iL itself suggests the question as whether 

it would be possible to get an identification (like for the cubic three

fold, cf [8]) between the projective tangent bundle of F and the univer

sal line lPRF . The answer is negative, as shown by the insolvability of 

the equation Q} <>< L ® RF for L E Pic(F) which is an easy exercise con

cerning Chern classes (cf Section 3) . 

To complete the above description we show the irreducibility of the 

curve DL for general LE F and make a remark about the degeneration of 

DL as L tends to a line Lo above a hyperflex Lo . 

Suppose that L tends to a (sufficieutly general) hyperflex Lo 

Then, in (5.2) 
' 

the two 5-tuples 

into a single 5-tuple N1 , ... , N5 

L and M. , i = 1, ... ,5, collapse 
i l. 

, while the contact points P and Q 
tend to the unique contact point R of Lo . The curve D.Lo has six dou-

ble ponts, at N1 , ... , N5 and Lo The first five points are tacnodal 

ones, each tacnode being the limit of two nodes of Dr:-. The singularity 

at Lo will be shown in a moment to be a cusp, and the curve DL0 has 

the cusp at iLo as only singularity. Furthermore, the curves DLo and 

DiLo meet tangentially at the IO points N ! , N'.' , i = I, ... , 5 lying 
l. l. 

above N 1 , •.. , N s 

To see that iLo is a cusp of DLo , observe first that, as L 

tends to Lo , the pair of distinct tangent lines at iL E DL tends to a 

double tangent line at iLo E DLo , by the proof of (5.2) . So, DLo has 

either a cusp or a tacnode at iLo . To see that the first case holds, it 

suffices (e.g.) to exhibit a curve meeting DLo with multiplicity exactly 

3 at iLo • For example, take the curve C of lines of X meeting 

f-1 (1) , where I c JP 3 is a sufficiently general line through R . Each 

of the remaining 27 bi tangents of the 2-plane Lo v I c 1P3 yields a 

single line of X meeting both Lo and f-l(i) . On the other side there 
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are 5 other bitangents, besides Lo , through R, and each of them 

yields two lines of X meeting Lo and f-l(T) . We get in this way 37 

intersection points of DLo with C. Being DL0 •C = u•p = 2u 2 = 40, one 

easily concludes that the three remaining multiplicities have to correspond 

to Lo , q.e.d. 

The curve DLo being connected and having a cusp as only singulari

ty, it must be irreducible; hence DL is irreducible, too, for general 

LE F. We summarize our conclusions in the following 

(5.4) COROLLARY. For general choice of LE F, the incidence curve DL is 

irreducible and has an ordinary double point at iL as only singularity. 

This double point degenerates into a cusp, as L tends to a sufficiently 

general line Lo E F above a hyperflex of S c JP 3 • The effective genus of 

DL is 70 • 

J(X) as a generalized Prym variety 

Our next purpose is to prove that J(X) is isomorphic with a genera

lized Prym variety in the sense of Tyurin ( [28], Lecture 5) . This will be 

the case for any smooth X, without the usual restriction about S con

taining no lines. Its interest lies in the fact that it yields, by work of 

Bloch and Murre [SJ , an isomorphism A2(X) ""J(X) between the Chow 

group of rational equivalence classes of algebraic I-cycles of X al

gebraically equivalent with O, with the underlying abstract group of J(X) 

We start with the following description, which is a consequence of 

(0.5) , (O.II) , (3.32) and (3.33) (Figure 5) : 

(5.5) Let L and 1 be meeting lines of X, but otherwise in general 

position. The 20 lines meeting both L and 1 are divided into IO 

lines m(k) , k = I, •.. , IO through the intersection L n 1 and IO other 

lines. The latter ones are divided into 5 groups of two meeting lines 

u(k) , n(k+S) , k 1, ..• ,5, with no other incidences. In the Chow group 

CH2 (X) we have the equalities (h = c 10x(l) , cf Section 0): 

L + iL = 1 + il = h 2 

(5.6) iL + i1 

6h 2 = L + 1 + m( 1) + .•. + m(lO) . 



In particular, to any pair of meeting lines 

rally 5 other meeting couples (n( 1),n(6)) 

(L, 1) 

' ... , 
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one can associate natu

(n(s), n(l0)) . The 5-

-tuple associated with anyone of the pairs (n(k), n(k+5)) can be described 

in terms of these data: it consists of (L,l) plus the conjugates (in(r), 

, in(r+s)) of the (n(r), n<r+s)) , r,'k . 

(1) (10) 
m m 

Figure 5. 

We fix now a sufficiently general LE F, and let N be the norma

lization of the curve DL, a smooth curve of genus 70, by (5.4) . The 

curve N parametrizes a family of lines of X, hence there is an Abel

-Jacobi morphism 

cj> J(N) - J(X) 

Together with its transpose tcp , these maps fit into a commutative diagram 

where K and µ are repectively the Albanese and Picard morphisms indu-
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ced by the map N __,_ F , the isomorphisms of the right hand triangle 

coming from (4.1) • 

For all 11 , 12 E F we have: . p· 0 
in __2:E_ F 

(cf [8], p. 301 , or also (6.8) below) . We put: 

p J(N) __,_ J(N) p 

By the foregoing we get, for all 11 , 12 EN 

where D1IN means the divisor class of N gotten by pullback of D1 by 

the map N --+ F . 

(5.7) LEMMA. The following relation holds in J(N) : p2+ 6p = 0 

11 - 12 E J(N) with 11 ' 12 suf-PROOF. It suffices to check this for 

ficiently general in N. Write m.(a), 
1 

n. (S) 1 :s: a,S :s: 10 the lines 

which meet both L and 1. , for each 
1 

tions introduced in (5.5)) Then 

(5.8) 

1 

i = 
' 

1,2 (here we follow the nota-

the sums ranging from to 10 • As recalled in (5.6) , the cycles 

Im1 (a) + L + 11 and Im/a) + L + 12 of X are rationally equivalent, 

hence ¢(Im1 (a) - Im2(a)) + ¢(11 - 12) = 0 and therefore 

(5.9) P(Im1(a) - Im2(a)) + p(l1 - 12) 0 

Similarly, for f3 = 1, .•. ,5, i = 1,2, the cycles ni(S) + ni(S+s) + L + 

+ li are rationally equivalent, hence Hn1 ( S) + n1 (S+ 5) - n2 ( S) - n2 ([3+S)) + 

+ ¢(11 - 12) = 0 and so 

(5. 10) 0 

Relations (5.8) - (5.10) imply finally: 

q.e.d. 
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The second fact we shall need is: 

(5.11) LEMMA. µ is a closed inrnersion. 

PROOF. This will follow if we show that the natural map 

is surjective, for then the transfer map H3(F,?l)/(torsion)->- H1(N,?l) 

will be an embedding as a direct su1111Dand, from which the injectivity of µ 

follows at once. 

To rpove the surjectivity of h we remark that, Dr. being an ample 

curve of F with an ordinary double point as only singularity, the condi

tion of [6] at the bottom of p. 215 , lines -8/-6 , i.s fulfilled; hence, 

by the results of that paper, the morphism n1(Dr,)--+ n1(F) is surjec

tive, and the same holds for H1 (DL,?l) --+ H1 (F ,?l) 

On the other hand, we can write a direct sum decomposition H1(DL,?l) = 

H1 (N,?l) e ?lo , where o is a singular I-cycle on DL which vanishes 

as L tends to a line over a hyperflex (cf (5.4)) . So, the image of o 
in Hi (F ,?l) is zero, and h is surjective, q.e.d. 

Here we could stop and refer to [5], Section 7. Namely, we are in 

the situation of that paper by putting 

cr=p-1 q 6 

This is Assumption I of (loc.cit.) ; Assumption II follows from P =•tp 

and Assumption III is essentially given by (5.11) together with (4.1) 

For completeness sake however, we work it out until the isomorphism state

ment. 

Putting P =Im(µ)= Im(P) (the map K is surjective) this is an 

abelian subvariety of J(N) , isomorphic with J(X) • We have a commutative 

diagram 
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and the following formulae hold: 

i) (1/IKo)*ex ~ 6(eNIP) • 

In fact, if a,f3 E H1(P,2'Z) we have (cf e.g. [8]) 

{(1/JKo)*ex· (axf3))P = <ex· «1/IK0)*a x (1/JK 0)*f3)) J(X) = 

- ( 1/l*(K0*a) • 1/J*(Ko*f3))x = -(Ko*a • n*(Ko*f3))F 

- (a• µ*n*Ko*f3)N = - (a•(-6f3))N = 6(a•f3)N 

6(eN·(axf3))J(N) = (6(eNJP)•(axf3))p 

where the standard identifications between the various homology groups have 

been used, as well as the definition of the polarizations of J(X) and 

J(N) in terms of the Poincare pairings of X and N respectively. 

ii) If is an effective divisor of P with the property that 

Combining i) and ii) we get 9NIP ~GE, i.e.: the abelian subva

riety Pc J(N) carries a natural principal polarization _, being f of 

the restriction of the polarization of J(N) , and such that (P , E) is 

isomorphic with 

Since by 

(J(X) , ex) • 

(1.9) the description (5.4) goes through without change 

in the case where S is allowed to contain lines of :o:> 3 , an obvious ri

gidity argument allows us to state finally (compare [SJ, Theorem 7.16) : 

(5.12) THEOREM. Let X be a double solid with smooth quartia disariminant 

S c :o:> 3 (but otheruise no aonditions on SJ and let L c X be a suffi

aiently general line. Calling N the no~alization of the inaidenae aurve 

DL , the transpose of the .Ahel-Jaaobi map 

t~ : J(X) - J(N) 

induaes an isomorphism of (J (X) , ex) with the prinaipally polarized gene

ralized Prym variety (P , E) assoaiated to the inaidenae aorrespondenae 

on N • 

As already mentioned, this yields, by using the same methods as in 

[SJ, Section 8: 
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(5.13) COROLLARY. The natural map A2 (X)--+ J(X) is an isomorphism of 

A2(X) with the underlying ahstract group of J(X) 

6. ON THE THETA DIVISOR OF J(X) 

Selected traces of e on F 

Looking at the theory of curves, the Riemann parametrization theorem 

for the theta divisor of the polarized Jacobian can be viewed as a corolla

ry of the study of the intersection behaviour of the translates of eC 

with the curve C itself, embedded in its Jacobian. In the present case 

we have a principal polarization of the Picard variety of a surface whose 

geometry is fairly well understood. One may expect therefore to get infor

mation about ex· by inspecting the traces of its translates on this sur

face. We devote the present section to a study in this direction. The Abel

Jacobi map F--+- J(X) will be denoted ~ . 

The first step in the case of curves was to compute the degree(= the 

genus of the curve) of the traces of ec on C 

king for the cohomology class of the traces of 

[8] • To begin with, the classes of 

Similarly, we start loo

ex on F. This is done 

~*ex ' u E NS1 (F) in following 

H2 (F,(t) are proportional. This is the standard invariant-theoretic argu-

ment, used in (lee.cit.) , p.p. 335-336 ;we sketch it briefly, keeping the 

above symbols to denote the corresponding cohomology classes. These belong 

both to H2(F,a:)+; for u it is obvious (cf (5.1)) , and for ~*ex it 

follows from the fact that H2(J(X),a:) = A2H1(J(X),(t) A2H1(F,(t) and the 

elements of H1(F,(t) being antiinvariant. Therefore, by using the non

-degeneration of the intersection product on F, together with (3.60) , 

it is equivalent to prove the proportionality of the bilinear forms B1 

and B2 on the vector space H1 (F,(t) defined by sending (a1,az) respec

tively to 

and 

The variety X belongs to a Lefschetz pencil of hypersurfaces of a 
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fourfold W with H3(W,~) = 0 (cf (4.3)) . The monodromy therefore acts 

irreducibily on H3 (X,~) and hence on H1(F,~). The above bilinear forms 

clearly are invariant under the induced action. Taking a suitable constant 

c E ~ the form B1 + cB2 is degenerate; its kernel is a non-zero inva

riant subspace of H1 (F,~) , hence equals the whole space, i.e. B1 + cB2 

= 0, q.e.d. 

To get the proportionality factor, we use the formula 

J wAw' ~ -...!...J 1/J*wAijJ*w'Ap 
X 12 F 

which is established exactly in the same way as the analogous formula of 

(loc,cit.), (11.4), by using the correspondence JPRF between F and X 

(cf the diagram in the proof of (5.2)) . Next, if we let w1,,,,,w10 (resp. 

wi, .. ,,wio) be a basis of H2, 1 (X) = H1,0(J(X)) (resp. H1, 2 (X) = H0, 1(J(X))) 

such that 

then one has, in H2(J(X),~) 

10 
0 =I w•Aw! 

X 1 l. l. 

Combining these expressions we get 

Since on the other side it is 

J \J A p 40 
F 

we conclude that i)!*e = 3u 
X 

V i,j 

-12 I10 J W• Aw! 
1 l. l. 

X 
120 

To finish this computation, as well as in a moment, in the proof of 

Proposition (6.3) , we shall use Clemens' 

([7]) • Letting degenerate the discriminant 

a linear pencil into 2Q , where Q c JP 3 

degeneration of the surface F 

surface S c JP 3 of X inside 

is a (sufficiently generally 

chosen) quadric, the Fano surfaces of the smooth double solids above a 



small punctured disk around the critical value t = 0 fit into a variety 

which can be smoothly compactified above the origin with singular fibre 

Flim described as follows: 

If C c lP3 denotes the smooth complete intersection curve Q n S , 

one takes two copies of c(2) ; each of them contains two disjoint smooth 

curves r 1,r2 defined as the curves of pairs (x,y) such that the line 
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xy belongs to one of the two rulings of the quadric Q. Since such a line 

meets C at 4 points, the curves rk carry natural fixed point free in

volutions. The surface Flim is gotten by glueing the two copies of c(2) 

along r 1 and r 2 by means of their respective involutions. 

As mentioned in the introduction, this yields an alternative way of 

getting the results of sections 3 and 4. We use it here to prove that 

the surface F has no torsion. (If we have well understood, the proposition 

below is a particular case of a more general result of Clemens, to appear.) 

PROPOSITION. The group H2(F,2Z) is torsion free, henae NS 1(F) erribeds 

into H2(F,G:) 

PROOF. We show, equivalently, that H1(F,2Z) has no torsion. We use freely 

some standard facts from the theory of degenerations of algebraic surfaces 

(cf e.g. [24]) as well as the above facts from [7]. For simplicity we 

skip the coefficient group 2Z in our notations in this proof. 

Notice that the curves r 1 and r 2 are algebraically equivalent in 

c< 2) : if gt, ht are the special series induced on C by the rulings 

of the quadric Q, we may write r 1 = {(x,y)€c(2)lx+y:5some member of gt} 

and similarly for r 2 • Hence, by choosing fixed divisors D1 € IKc-gtl and 

D2 € I Kc-ht I , we obtain the algebraic equivalences in c( 2) : 

r 1 + 12C ~ 
{ (x,y) € C (2) x+y :5 some member of the pencil D1+gtc IKcl} 

{ (x,y) € c< 2) x+y :5 some member of the pencil D2+hl c IKcl} ,._, 

r2 + 12C 

(Here C stands for the curve of c(2) defined as { (x,P) Ix E c} for some 

fixed P € C). Hence r1 ~ r2 as claimed. 

Therefore, since r 1·r2 = 0 ' it is r/ = rl = 0 ' 
and the normal 

bundles of r. 
1 ' i = I, 2 in c<2) are topologically trivial. This allows 
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one to describe F topologically with aid of Flim in a similar way as 

done in [8], p.p. 319-320. 

By using the mapping cylinder of a degeneration map F-->- Flim to

gether with the Thom isomorphism Theorem, one gets a long exact sequence 

and, in particular 

Identifying the second term with 72 2 , one finds that, for classes a E 

E H2(F1i.m) coming (by one of the two inclusion mappings) from classes a E 

E H2(c( 2)) it is f(a) = (a-r 1,a-r2) , the intersection products being ta

ken in c< 2) . 

We show in the first place that there exists a E H2(c< 2)) such that 

a•f1 = I • By the unimodularity of the intersection product in c< 2) , it 

suffices to see that H2(c( 2))/72y is torsion free, where y = class of 

the curve r1 . Embedding C in c< 2) as Cc,,{(x0 ,x)\xEC} we have c•r1 = 
= 3 • If it were ny = mo with n,mE 72 , (n,m) = I , and o E H2(c< 2)) , 

one would get 3n = m(o.c) , hence m divides 3. On the other hand, ta

king direct images by the Albanese mapping 1/J : c( 2) -->- J(C) , one has 

in J(C) : ni/J*(y) = mi/J*(o) . By the theorem of Recillas ([25]) , J(C) is 

the Prym variety of the curve r1 with its involution, hence the theory 

of Prym varieties tells us that 1/J*(y) is twice the class of 0C8 / 8! . 

If n1, •.. ,n1s is a basis of H1(C) such that ni·ni+9 = -ni+9•ni = I , 

I ~ i ~ 9 and ni ·nj = Q_ otherwise, the above class is written 

in H2(J(C)) . Since the nix nj , i < j form a basis of H2(J(C)) we fi

nally deduce that m = ±1 , as was to be shown. 

Therefore, the image of Ho(f1) ©Ho(f2) in H1(F) is a cyclic sub

group. In a moment we shall see that H1(Flim)"" 72 19 holds. This will 

force the above cyclic group to be isomorphic with 72 , and H1 (F)c,, 72 20 

will follow (notice that we have not used our former computations of Sec

tion 3 - but, of course, the theory of [7]) . 
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To compute H1(Fli.n) , consider the Mayer-Vietoris sequence 

The bottom part of this sequence shows that the upper one can be completed 

with --,.. 7l--+ 0 at the right hand side. It suffices then to show that 

the cokernel of g yields 7l18 . Writing uk rk~ c<2) , k = 1,2 

the natural inclusions and ik: rk--+ rk, k = 1,2 the involutions, 

the map g has matrix 

The maps uk* are also gotten by taking H1 from the Albanese morphisms 

But, as noticed earlier in this proof, these can be identified with the na

tural projection maps 

Therefore, by the theory of Prym varieties, the maps are onto; 

moreover, -uk*ik* = uk* . Thus the image of g is the diagonal of 

H1 (c(2)) eH1 (c( 2)) and the cokernel of g is isomorphic with H1 (c( 2)) 

Since Pa(C) = 9, the desired result follows, q.e.d. 

The injectivity of the natural map NSl(F)---+ H2(F,~) allows fi

nally to conclude: 

(6.1) PROPOSITION. The relation ~*ex= 3u holds in NS 1(F) . 

(6.2) REMARK. In the case of the cubic threefold Y§ c 1P4 and its Fano 

surface of lines F' one has ([8]) ~ calling u' E NS 1 (F') the class of 

the curve of lines incident with a given one: ~*e = 2u' in NS 1(F') y 
This will be used throughout in the sequel, for comparison. 
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We denote by !3u! the variety of effective divisors on F with al

gebraic equivalence class 3u (cf [20], [13]) . Fixing a copy 0 of the 

theta divisor of J(X) , the dual statement of (4.1) implies that the map 

from J(X) to Pic3U assigning to a E J(X) 
-F 

the linear equivalence class 

¢*c0 + a) is an isomorphism between these varieties. As a consequence, the 

natural map 

is surjective; its fibres are the complete linear systems inside {3ut . 

Clearly, there is exactly one irreducible component of }3u~ dominating 

Pic 3~. We claim that this component maps birationally onto the latter va

riety; this will follow from the next 

(6. 3) PROPOSITION. If X is sufficiently general and li , i = 1 ,2 ,3 are 

sufficiently general lines in X, then h 0OF(ED1i) = 1 holds. 

PROOF. If a line 1 E F specializes to 1 1 E Flim , the curve D1 degene

rates into the curve n1, of "lines" (cf [7]) in the limit threefold, 

which meet l' . If we show that there exist 1\ , 12 , 113 E Flim such 

that h oaplim (LDri) = 1 

micontinuity. 

then the proposition follows by flatness and se-

The curves Dl' are easily seen to consist of two halves, say a 

and S, each one lying on one of the two copies of c( 2) , and being des

cribed as follows. Call o the pair of points of C where the bisecant 

which underlies l' meets this curve; then S (o,C) , where we define, 

if p EC : (p,C) = {(p,x) Ix EC} c cC 2) , and, if Exi is an effective divi

sor of C , (Exi , C) = L (xi , C) • Part a is described as a = { (x,y) I 

x+y+o ~ some member of the linear sys tern I Oc ( 1) I } . Part a meets each 

curve rk, k = 1,2 at six points, which are transformed by the involu

tion of rk into the six points where S meets rk. 

We take 1'1 , 112 • 113 sufficiently general and in such a way that, 

calling aj , Sj the respective parts of the curves D1j , the distribu

tion of these parts among the two copies of C (2) yields a 1 + a2 + s3 on 

one of them and S1 + S2 + a3 on the other one. This means exactly that the 

"non exceptional" parts of the "lines" l'• 
J 

are dsitributed (2, I) among 

the two copies of the blowing-up of JP 3 in the limit threefold. Consider 

the standard exact sequence 
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where I; is the trace of I:Dl'· on r = r1 + r2 • If x e: C is general, 
J 

the curve 131 + 132 + a3 of c( 2) cuts out on (x,C) a divisor which 

is linearly equivalent with 01 + 02 + c10c(l) - 03 - x, where 

the pairs of contact of the bisecants associated with the lj , j 

o • 
J 

are 

I, 2, 3 

By Riemann-Roch and the generality ass1llllption on the l'j we have .f_ (01 + 

+ oz+ciOc(I)-03) = 2, hence f.(o 1 +o2 +ci0c(I)- o 3 -x) = I for gene

ral x e: C . So, the curve 131 + 132 + a3 is linearly isolated in c( 2) , 

since so is its intersection with a general (x,C) , on that curve. I.e. 

hOOc(2) (131 + 132 + a3) = • By the exact sequence 

the proof will be complete if we show that H00c(2) (a1 + az + 133 - r) = O . 

Taking again a general x e: C , the divisor a1 + az + 133 - r cuts out 

on (x,C) adivisorequivalentwith 2ci0c(I)-01-02+03-g-h ,where 

g and h are members of the two 4th degree series of C respectively, 

hence (being g +h = ciOc(l)) this is the same as c10c(I) - 01 - oz+ 03 

By the previous computations in this proof, .f_ (c10c(I) -01-02+03) = 0 , 

hence, a fortiori, h 00c(z) (a1 + a2 + 133 - r) 0 , q.e.d. 

(6.4) REMARK. One proves in a similar way, by using the degeneration ex

hibited in [8], p.319 : If 11,12 are sufficiently general lines of a 

sufficiently general cubic threefold Y Y~ c JP4 , then h 00F, (D11 + D1} = 

= I • 

(6.5) Therefore, the general fibre of the map f3uj--+ Pic3~ consists 

of a single point, and the traces on F of the translates of 0 describe 

a dense subset of a component of {3ui which is birational with J(X) . 

However, we can make a stronger use of (6.3) by means of the following 

(6.6) PROPOSITION. If Te: ~3u~ 

trace of a translate of 0. (*) 

satisfies then T is the 

PROOF. Writing [T] = ¢* (0 + EQ) in Pic3U , it suffices to show that 1/J (F) 
-F 

is not contained in 0 + £o • Ass1lllle on the contrary that 1/J(F) c 0 + £0 

Consider the divisor 0 c J(X) x J(X) , 

(*) It was C.H. Clemens' suggestion, to exploit the j1llllping phenomena of 

the linear systems l1/J-1(0+a)I, as the theta divisor contains ljJ(F). 
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Its inverse image by the map I x ij, J (X) x F _.., J (X) x J (X) is the di vi -

sor 

Call W = { e: € J(X) I ij,F c 0 + e: } c J(X) ; by our assumption, e:o € W • As 

e: € J(X), w tends to e: 0 , the curve w- 1 (0 + e:) tends to a representative 

of w*(0+e:0 ) hence, by our hypothesis, to the curve T. Thus {e: 0 } xF 

is not contained in the closure of 0F'- (W x F) • This implies that 0F is 

reducible and that W x F contains a component of this divisor, hence that 

W contains an irreducible subset of dimension 9 • Being ij,(1)-W c 0, VlE 

€ F , we conclude that 0 has an irreducible component M such that ij,(l) + 

+ M = M , Vl € F • By the theory of principally polarized abelian varieties 

we may write J(X) = Ax B with (A,0A) , (B,0B) in this category and 

M = 0A x B , 0A being irreducible and B eventually zero. Writing ij,(1) 

= (ij,A(l), 1pB(l)) it is ij,A(l) +0A = 0A , hence WA(l) = 0 for each 1 € F. 

Thus ij,(F) c Ox B , contradicting the fact that F generates J(X) , there

by finishing this proof, q.e.d. 

Combination of (6.3) and (6.6) gives: 

(6.7) COROLLARY. Assume that X is suffiaiently general. Then there e:x:ixts 

a translate 0 of the theta divisor suah that, in F 3 , 

PROOF. Fix a sufficiently general X and choose a 0 in J(X) • By (6.3) 

and (6.5) , there is a well defined morphism h: F 3 - J(X) such that, 

for general 1 € F 3 : 

I P . 0 
n _!£ F we get therefore, for all .!. , _!_0 € F3 
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= w*(0 + I:1/J(l.0 )) - w*(0 + I:1/J(l.)) 
i i 

(cf (6.8) for the last equality) • Hence h(l) -h(1°) = I:1/J(l.0 ) - I:1/J(l.) 
- - i i 

and the corollary follows by replacing 0 by 0 +h(l0 ) +I:1/J(l.0 ) , q.e.d. 
- i 

(6.8) ~- In the proof of Corollary (6.7) we used that the class 

[DniJ + 1/J*(0+I:1/J(li)) of Pic(F) is independent of 1 = (l1,l2,l3) E F 3 

This is a particular case of the property, for the polarization of J(X) , 

of being an incidence polarization (compare [2], (3.4.2)) . More general

ly, if X is any smooth projective threefold defined over ~ such that 

h3 , 0 (x) 0 - hence its intermediate Jacobian yielding a principally po

larized abelian variety - , the following holds: 

Let S, T be smooth projective varieties and Zs (resp. Zr) an 

algebraic cycle of codimension 2 on S x X (resp. T x X) • Define the in

cidence divisor class I(S,T) in Pic(S x T) as the projection in S x T 

of the cycle class (Zs x T) • (S x tzr) on S x Xx T • Let furthermore 

1/Js : S--+ J(X) 1/Jr T - J(X) 

be the Abel-Jacobi maps induced by Zs and Zr , and a : S x T --+ J(X) 

their sum. Then, if 0 c J(X) is a copy of the theta divisor, one has, in 

Pic(S x T) : 

cr*[0] - I(S,T) (mod Pic(S) EBPic(T)) 

For convenience of the reader, we give a proof of this fact, although 

this is essentially contained in Part One of [ 8] • By the Seesaw principle 

and the Theorem of the square ([18], p.p. 54, 59) this can be stated 

equivalently as follows. 

For any s ES , -we call Ds E Pic(T) the projection, in T , of the 

cycle class I(S,T) • (s x T) of S x T ; this is the same as the projection 

in T of the class (Zs x T) • tzT of Xx T • Then: 

is independent of s E S • 

We prove it in this second form. Put n = dim S, m = dim T • By 
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[17], p. 1192, there is a commutative diagram 

where AP( •. ) denotes the Chow group of algebraic cycles of codimension p, 

algebraically equivalent to zero, modulo rational equivalence; the vertical 

arrows are the Abel-Jacobi maps. The morphisms cJ> 0 ,s , Ao,T are defined 

respectively as 

(prxh ((z x X) •Zs) 

(prTh ((z x T). tzT) 

for z E An(S) 

for z e: A2 (x) 

The morphisms cp 5 , AT are characterized by the maps which they induce on 

the first homology groups; these maps are respectively 

<cJ>sh H1 (S) ----+ H3 (X) (cJ>s)* (a) = (prxh ((ax X) •[ZsJ) 

(ATh H3(X) ----+H2m_ 1(T) (ATh(S) = (prTh((SxT)·[tzTJ) 

where H1(S) , H3(X) , Hzm-1(T) are the homology groups with coefficients 

in 2'l , taken modulo torsion. 

Fix any so E S ; our aim is to show that, for all s ES , 

holds, in Pic0 T Clearly, identifying A1(T) with P . 0 

_2:£T 

Since w;(e +1/ls(so)) - 1/1;(0 +1/ls(s)) = 1/1;([0 - (1/ls(s) - 1/ls(so))J - [0]) , 

we will be done by showing that, for all a e:J(X) , AT(a) = wf([0 - a] - [0]) 

holds. This expresses that. AT coincides with the composition 



p being derived from the principal polarization of J(X) • Notice that, 

defining 

¢T: Alb(T)-+ J(X) 

in a similar way as ¢s above, the morphism wf is identified with the 

transpose t¢T, identifying Pic0 Alb(T) with Pic0 T. So, the equality 

AT= WtP roughly says that ¢T and AT are transposes of each other. 
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To prove this equality, we merely have to check that both terms yield 

the same maps on the first homology groups. We have ([8], (I.I)) , for all 

a€ H1 (T) , S € H3 (X) : 

It suffices to see that the same relation holds, replacing (AT)* by 

(Wt)*p* • The induced morphism Cwt)* is the transfer map deduced from WT 

where we have put g = dim J(X) • So, by the projection formula 

The result then follows from the fact that, for all y,S EH3(X) 

The latter is a restatement of the definition of the polarization of J(X) 

in terms of Poincare duality on X • More explicitly, there are identifica

tions 

p* 
H1(J(X)) - H2g_ 1(J(X)) 

"'l PJ(X) 

Hl(J(X)) 

II 
Hom(H1(J(X) ,7l) 

II 
H3(X) 
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where the symbol P stands for Poincare duality (all homology and cohomo

logy groups being taken with integral coefficients, modulo torsion) • Using 

this one derives, for all y ,13 E H3 (X) 

(y•p*i3)J(X) = -(p*i3•y)J(X) = - JPJ(X)P*i3 

= - f Px13 = -(i3•y)x = (y•i3)x 'Y 
y 

q.e.d. 

In our applications T will be the Fano surface of lines and S a 

family of curves on the threefold, and the classes Ds will be representable 

by the incidence curves Dzs on the Fano surface, the latter ones being 

equal, for general sE S , to the sum of the codimension one components of 

the suvariety of lines meeting Zs • 

(6.9) REMARK. It is quite clear that 

threefoid Y = Y~, repiacing ~3u5 
(6.6) hoids sirmiariy for the cubic 

by ~2u'f (cf (6. 2)) . By using (6.4) 

one derives in this way a similar statement as that of (6.7) , namely: If 

Y is sufficientiy generai, then 3 0y such that, if (11,12) E (F') 2 is 

sufficientiy generai, then w- 1 (8y - 1)!( 11) - 1)!(1 2)) = D11 + D12 • We claim that 

this yieids the parametrization of 8y as given in [8], p. 348 

In fact, it implies that 

for all (l1,l2) E (F') 2 • Recall next that the sum of three (distinct) co

planar lines of Y is a rationally constant I-cycle of Y. Therefore, 

taking any (1' ,l") E (F') 2 , if we choose two other lines 1 and m yiel

ding together with l" a plane section of Y , thus 1)!(1") +1)!(1) +ijJ(m) = 
= const. , we have 

1)!(1 ') -1)!(1") 1)!(1') +1)!(1) +i)J(m)-const. E 8y-const. 

This shows that the image of the map (F') 2 --rJ(Y) sending (1',1") 

to 1)!(1') -1)!(1") is contained in a translate of the theta divisor. By the 

infinitesimal theory (cf (2.10)) we see that this map is generically fi

nite onto its image, hence the latter is a divisor of J(Y) • By invariance 

under monodromy, this divisor has to be homologous with a multiple of 8 y 



(cf e.g. the proofs of (3.75) , (6.1)) hence, being contained in 0y, 

they coincide. By continuity, the conclusion holds for any smooth cubic 

threefold, q.e.d. 
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For the double solid however, the above doesn't yield a parametriza

tion of 0, but only describes a 7-dimensional subvariety of the theta 

divisor. For its extension to this case, it is perhaps more interesting to 

consider the following somewhat sharper statement than (6.9) . Call Iij c 

c (F') 3 , I s i < j s 3 , the c1i visor of triples such that the i th and the 

jth members are incident. Then, if ~3 : (F') 3 ---+ J(Y) denotes the 

Abel-Jacobi map, one can show that there exists a copy of 0 such that the 

scheme theoretic inverse image yields (~3)- 10 = l . . I ..• We shall 
1Sl.<JS3 l.J 

prove the similar statement for the double solid: 

(6.10) PROPOSITION. If X is sufficiently general and ~4 denotes the 

Abel-Jacobi map (for a given choice of a base point) of F4 , there is a 

unique translate -of the theta divisor yielding (scheme theoretically) the 

inverse image l I by ~4 • lSi<jS4 ij 

PROOF. Uniqueness is clear. As for the existence, we compute first the co

homology class of the pullback of 0 to pk , k ~ I Call this class l;k E 

E H2 (Fk,~) , and put I·· c pk as above. Put also D1.· c pk, divisor of l.J 

the k-ples of lines with the ith member incident with a given (fixed) 

line. Denoting the cohomology classes of these divisors by the same symbols, 

we claim: 

(6. 11) 

This is clear for k = I ; we prove it by induction on k. We know that 

l;k+l E H2 (Fk x F, ~) is congruent, modulo inverse images from pk and F , 

with the incidence divisor I c pk x F consisting of the codimension one 

components of the subvariety of pairs (.!_,lk+l) 1 = (11, ••• ,lk) such 

that lk+l meets at least one of the lines li, i = I, ... ,k (cf (6.8)) 

With the preceding notations one may write thus 

Restriction to pk shows l;k = l~Di + a. hence a. x F 

+ (3-k)L~Di • Similarly, restriction to F yields /;1 

l 1si<jsk Iij + 

k~+l + S , and so 
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Fk x 8 = (3-k) Dk+1 

by proving (6.11) 

This yields the expected expression for ~k+l , there-

Following with the proof of (6.10) , we get from (6.7) that 

for suitable choice of 0. Hence there is an equality of divisors in F4 

(ij,4 )-10 = I: I.. + D , with D ;;,: 0 • By (6. 11) the cohomology class of D 
J.J 

is zero, hence D = 0, q.e.d. 

(6.12) REMARK. The above theta divisor depends on the choice of the base 

point for ij,4 • If we take (11 ,12 ,il1,il2) or a permutation of it (noti

ce that ij,4 , hence 0, doesn't depend then on the particular choice of 11 

and 12) , the uniqueness statement of (6 .• 10) implies that the correspon

ding theta divisor is a syunnetric one. Thus (as happens for the aubic three

fold, cf (6. 9)). the variety X distinguishes canonically a syrronetric 

theta divisor of its intermediate Jacobian. 

A general geometric approach 

The preceding considerations of this section are based on the philo

sophy that a point of departure in the search for a parametrization of the 

theta divisor is the geometrical description of sufficiently many traces of 

it on the Fano surface. In the above, a common description pattern for the 

cubic threefold and the quartic double solid yeld enough such traces in the 

first case but not in the second one - notice that, even in the case of 

the cubic threefold, these are not all of them. One is naturally suggested 

to ask whether it is possible to describe geometrically broader families in 

some other way. We devote the remainder of the present section (and hence 

of Part One) to this question. 

There exists a seemingly quite standard method of description which, 

roughly spoken, produces all the traces for both varieties and leads con

sequently to a very primitive sort of parametrization of 0. However, this 

seems to leave no practicaf use, unless one is able to translate it into more 

natural terms. As an example, we shall carry out this translation in the 

case of the cubic threefold, getting the parametrization of 0 by means of 
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the rational twisted cubics. (Below we give also a short alternative proof 

of this fact. The existence of the latter parametrization is already known; 

we learned it from Beauville and from Clemens.) There are indications that 

a better knowledge of certain curves of higher degree on the double solid 

could lead to a similar argument in this case, but we shall not deal with 

this question here. 

The idea comes from (6.8) : Suppose that r is a curve on X, moving 

in a family parametrized by - say - a smooth, complete, connected variety 

W. Then, in Pic(F) : 

where Dr is the curve of incidence with r , lying on the Fano surface, 

the symbol 0 stands for any fixed copy of the theta divisor and ~W is 

the Abel-Jacobi map for W with arbitrarily chosen base point. Assume fur

thermore that W dominates the intermediate Jacobian J(X) . Fix any ra

tional equivalence class y E Pic(F) yielding (d+3)u in NS 1 (F) , where 

d is the degree of the curves parametrized by W. The curves Dr are 

homologous with dD1 (1 E F) , hence they have class du in NS 1 (F) . 

Therefore y- [Dr] belongs to Pic3U(F) and, by our hypothesis on W 

together with (6.13) , it describes this set completely. 

Using (6. S) , we obtain therefore that the linear eqivalence equation 

on F 

(6. 14) Dr + Tr = Y 

has always an effective solution in Tr , and that this solution is unique 

if r E W is general enough, being then a trace of the theta divisor on F 

Our aim is to choose W and y in such a way that the general solution Tr 

can be described in geometrical terms. A choice in this sense will be sug

gested by the following considerations. 

Let Mc H00x(k) be a vector space of dimension k+I of forms of de

gree k on X. The variety of lines of X which ly on at least one of the 

surfaces '¥ = 0 with '¥ E M is either F itself or underlies a divisor of 

class c1 (Ak+l (SkRF)) = c1 (SkRF) 

assuming furthermore that d+3 

!k(k+l)p in Pic(F) . In the latter case 

k(k+I) , if the forms of M vanish on a 
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certain curve r E W , then , (at least) if Dr is reduced., Dr will be a 

part of the former divisor and the residual part is a solution Tr of 

(6.14) with y = !k(k+l)p 

Proposition (6.17) below contains a precise formulation of our con

clusions. We shall need two lemmas before. 

(6.15) LEMMA. Let 0 c J(X) be a copy of the theta divisor, S c J(X) the 

closed subset defined as S = { a E J(X) 1/J (F) c 0 +a} , and V = J(X)' S 

its ( open) comp Zement. For any a E U , we write Ta for the trace di vi

sor 1/J-I (0 + a) on F • The following holds: for any 1 E F , the divisor 

U1 = {aE U \ lE Ta} of U yields a dense subset of 1/J(l) -0 

PROOF. Clearly u 1 = Un (l/i(l)-0) • Assume now that M is an irreducible 

component of 1/i(l) -0 which doesn't meet U . Then Mc S , i.e. for all 

a EM ljJ(F) c 0 + a • Writing M = ljJ(l) -N with N an irreducible compo-

nent of 0 , this means that, for all b EN , b +1/J(F) c 0 +1/J(l) ; hence 

N + 1/J (F) c 0 + 1/J ( 1) Thus N + 1/J (F) is an irreducible component of 0 + 1/J (1) 

and, since N+ljJ(l) c N+ljJ(F), a fortiori N+ljJ(F) = N+ijJ(l). As at the 

end of the proof of (6.6) , this yield,; a contradiction, q.e.d. 

(6.16) LEMMA. We keep aU the notations of the preceding lemma. Let VcU, 

V # ¢ be an open subset; one has: for aU 1 E F , the divisor Vi = {a EV 

\ 1 E Ta} of V is contained in 1/J(l) - 0 and, if 1 EF is sufficiently 

general, then v1 is dense in 1/J(l) - 0 

PROOF. This amounts to see that v1 is dense in u 1 if 1 E F is suffi

ciently general. Write the closed complement of V in U as union of ir

reducible components: U, V = Y 1 u ••• u Yr • We show that, for general 1 E F , 

U1 has no component contained in y. 
l. ' i = I, ... ,r Fix any i ; if 

dim Yi< 9 this is clear. Otherwise y. 
l. 

is a divisor of u To say that 

Ul has a component inside Yi is the same as to say that Y. is a com-
l. 

ponent of U1 The subset X· l. {l E F I Ul has y. 
l. as a component } is 

closed in F Suppose that X· l. equals F Taking any a EYi ' 
this im-

plies a E ul for all 1 EF 
' 

i.e. 1 E Ta for all 1 EF 
' 

a contradiction. 

Therefore Xi #F ' 
and this proves the lemma. 

(6. 1'7) PROPOSITION. Let w be a smooth connected (non necessarily complete) 

variety parametrizing a family {r w \ w E W} of reduced curves of degree d = 
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k(k+I) - 3 on X with the following properties: 

i) The Abel-Jacobi map ~W: w--,. J(X) is dominant; 

ii) for all w E w , the linear system I Ox(k) - rw I of surfaces of 

!Ox(k)! containing rw has dimension k and the surfaces of that system 

dont contain all the lines of X ; 

iii) the incidence divisor between the family of lines F and the fa

mily W is reduced. (This condition is put for simplicity; it is not in

mediately clear to us, as whether it is superfluous or not.) 

Then the foll01;)ing holds: 

I) Let V be the subvariety of F x W of those pairs (1,w) such 

that 1 + rw lies on a surface of degree k in X • There exists an effec

tive divisor V' on F x W whose underlying variety is V and such that 

V' = I+ T with I the incidence divisor and T an effective reduced di

visor satisfying the properties bel01;). 

Put, for any w E W , Tw = (prFh(T• (F x w)) , effective divisor on 

F • The set w1 c W of those w € W such that h 0 OF(Tw) = I is open, dense. 

For all w E W1 , Tw is a trace of the theta divisor on F , and this dec-

cr1'.bes a dense subset of these. 

II) For any 1 E F the subvariety of W deffaed as w1 = prw(Tn(lxW)) 

is mapped into a copy of the theta divisor and, if 1 E F is sufficiently 

general, w1 dominates the latter. 

In particular, for any 1 E F , the curves of the family W which 

dont meet 1 and ly in a surface of degree k through 1 are mapped into 

a copy of the theta divisor. 

PROOF. Consider the obvious rank (k+I) vector bundles E1 and E2 on 

F x W whose fibres above (1,w) are given respectively by the space of 

k-forms on X vanishing on rw, and the space of k-forms on the line 

1. Restriction of forms yields a morphism E1-->- E2 , hence a morphism 

/\.k+lE1-->- /\.k+lE2 , i.e. a section of the line bundle (f\.k+lE1t ® (Ak+ 1E2 ). 

The scheme of zeros of this section yields a divisor V' of F x W whose 

underlying variety obviously coincides with V • Clearly, Is V' hence 

V' = I + T with T::: 0 . By the definition of V' together with our hypo

theses and the discussion preceding (6.15) , the classes of the divisors 

Tw describe a dense subset of Pic 3~. Therefore, by (6.5) , the points 

w € W with h 0OF(Tw) = I yield a non-empty open subset w1 c W • From (6.6) 

we get that, for all w E w1 , Tw is a trace of the theta divisor on F • 

Since a general trace is reduced, the divisor T has to be reduced, too, 
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It remains to prove the first part of II) , the second one being an 

obvious consequence. To begin with, there is a copy 0 of the theta divi

sor such that, for each wEW1 , T00 = iji-1(0 +ijiw(w)) In fact, as w moves 

in W1 , the class of T00 +Dr00 is constant in Pic(F) and, by (6.13) 

the same holds for iji*(0+1jiw(w)) + Drw. Therefore T00 - iji*(e+~(w)) is 

· p· o 1 . 0 b 1 h" constant in ___!£ F. Rep acing - ya trans ate, we may assume tis cons-

tant to be zero, hence T00 _ iji-l(e+~(w)) , i.e. T00 = iji-l(e+~(w)) 

With this choice of 0, the map 

Fxw- J(X) 

sends T n (F x w1) into 0 • By continuity, the same holds for T itself 

and, for all 1 E F , the Abel-Jacobi map ~ : W - J(X) sends W1 = 

= prw(T n (1 x W)) into iji(l) - 0 . It remains to see that the image is dense 

in iji(l) - 0 if 1 E F is sufficiently general. By condition i) , the res

triction of ijJW ·to w1 is dominant; hence we find a non-empty open subset 

V c J(X) contained in the image of w1 . But then the image of prw(Tn (lxW 1)) = 
= {w E W1 I 1 E T00 } contains a subset Vi like in Lemma (6.16) , and the re

sult follows from that lemma, q.e.d. 

As mentioned before, we shall not deal here with applications of 

(6.17) • Instead, we shall see how the slightly modified version of (6.17) 

works in the case of the cubic threefold. However, before doing so, we owe 

a proof that the hypotheses of (6.17) are non empty. This will be done in 

the following (boring) note, which is purely technical and adds nothing 

relevant to the foregoing. 

(6.18) NOTE. Conditions i) , ii) , iii) of (6.17) are non empty. 

PROOF. We consider the cheapest case; in order that the family W domina

tes J(X) one needs d::?: 5 , hence k::?: 3 • Take thus k = 3 and d = 9 . 

For a smooth connected curve rcX of degree 9 and genus 8 one gets, 

by Riemann-Roch, that hOO (3) = 20 r hence, being lies 

on at least 003 cubic surfaces of X. So these are natural candidates for 

our purposes. However, for convenience, we choose here a certain degenerate 

type of such curves and, moreover, the existence claim will be proved mere

ly for general X. 

To begin with, consider the smooth irreducible curves of degree 7 

and genus 4 in JP 3 • The system of hyperplane sections being non special, 
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these curves yield an irreducible variety V of dimension 28. For acer

tain open subset Uc V , any f E: U is gotten by considering two skew lines 

L' and L" and two smooth cubic surfaces through them, and taking the re

sidual intersection curve of these surfaces. The lines L' and L" are 

then the only 4-secants of f. If Xis a (smooth) quartic double solid 

and r c X maps isomorphically onto r E: U - a situation whose existence is 

quickly verified - , the curves r + C 1 (L') and r + f-1 (L") are both of 

degree 9 and virtual genus 8; observe that they are rationally equiva

lent, since rl(line) is rationally constant in X. We claim that, at 

least for general X, an irreducible component of the family of these cur

ves yields an open subset satisfying i) , ii) , iii) of (6.17) . 

Introduce the family UE of curves on E = OJP3 (2) (cf Section O) 

which map isomorphically onto curves of U Being h00y(2) = II for all 

f E: V , the variety UE is irreducible (of dimension 39). In a similar' way, 

since each r E: U • lies on exactly 009 quartic surfaces of JP 3 , the varie

ty of pairs (r ,X) with r E: UE , X c E a smooth subvariety given by an 

equation T2 = cj>4_ (cj>4 E: H0OJP3 (4) ) , and r c X , is irreducible (of dimen-

sion 49). 

Back to our claim, condition i) is equivalent with the fact of J(X) 

being dominated by the corresponding irreducible component of the variety 

Ux = {r E: UE I r c X} . Furthermore, the condition on the dimension in ii) 

is easily verified for a general choice of (r,x) as above (compare with 

the discussion below). As for condition iii) , this follows at once from 

the reducedness of for a general choice of (r ,X) 

Therefore our task can be reduced to show that: 

a) there exists (r ,X) as above such that r is a smooth point of 

Ux and the Abel-Jacobi map Ux--+- J(X) is submersive at r and 

b) there exists (r ,X) with r" ux and a line L in X such that 

no cubic surface of X contains r + f-1 (L') + L nor r+rl(L")+L , where 

L' and L" are the 4-secants of the projection curve f c JP 3 . 

Consider b) in the first place. Take an arbitrary r E: UE and call 

r c JP 3 its projection in JP 3 and L', L" the 4-secants of r . The 

latter curve is contained in exactly 001 cubic surfaces of JP 3 , since 

H0OJP3 (3) maps onto H0Oy(3) ; call <1/J', 1/J"> the vector space of 3-forms 

yielding this pencil. The vector space HOO JP 3 (3) Ell T• HOO lP 3 (I) c HOOE (3) 

maps onto H0O (3) ; therefore the subspace of those forms which vanish on r r 
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has dimension 6, and can be written as <XoT-·1/Jo, ... ,X3T-1P3,1/J',ij, 11 > where 

Xo, ••• , X3 is any coordinate sys tern of 1P3 and 1/J i , i = 0, .•. , 3 are sui

table cubic forms on JP3 We may assume that the line L' (resp. L") is 

given by Xo = Xi = 0 (resp. X2 = X3 = O) If Xe E is any smooth subvarie

ty T2 = c/,4 , c/,4 E H001P3 (4) , through r such that the discriminant surface 

¢,4 = 0 doesn't contain L' (resp. L") then the subspace of H00X(3) of 

those 3-forms which vanish on f+f-1(1') (resp. f+f-1(111 )) is easily 

seen to be given by H' =<XoT-1Jo,X1T-1/J1,1/J',1/J 11 > (resp. H" =<X2T-1/J2, 

X3T -1/!3 ,1/J' ,1/J" >) • The above condition on the discriminant surface is satis

fied if, for instance, the points of r projecting onto the points of 

'f n (L' u 1 11 ) dont meet the section T = 0 of E • We assume that r satis

fies this property, and look at the 7-dimensional irreducible variety of 

all lines on E , i.e. curves on E which map isomorphically onto lines of 

1P 3 • There is an open set parametrizing lines which live in a smooth X 

through r , as above. But also an open set parametrizing lines such that 

no cubic form of· H' or H" vanishes there. Hence a choice of X and L 

can be made such as to satisfy, together with our r, condition b) above. 

As for condition a) , we use the infinitesimal theory of Section 2. 

Take an arbitrary pair (r ,X) with r E Ux ; we have to show that the compo

site map B2 r 2 of (2.11) with Z = r is injective if (f,X) is suffi

ciently general. To analyze this map we use the following exact diagram, as

suming furthermore that r c X doesn't ly on the branch surface T = 0 : 

0 0 

(6.19) 0 - Nr/X(-2) --+ Nr/E(-2) --+ Or(2) ---+- 0 

II ! t 
0 --+ Nr /X(-2) --+ Ny/1P3(-2)---,. F --+ O 

1 J 
0 0 

It is fully described as the twist by Or(-2) of the exact diagram gotten 

in the obvious way from the middle row (which is the standard sequence for 

the triple r c X c E) and the left hand side square, of evident definition. 
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The upper right hand side morphism is given by the (by assumption) non va

nishing section Te: HO Or (2) • From the cohomological display of (6. 19) we 

consider 

0 0 

t t 
<T> <T> 

We know already that hOO (2) = 11 r 
to H0°r(2) if r e: U . Identifying 

and, clearly, HOOlP3(2) is injected in

H0Or(2) with H 0y(2) , the subspace 

<T> of the latter can take almost any preassigned position, by moving X 

with r in E • In particular, a general choice yields <T> and H0OlP3(2) 

as complementary subspaces there. In this case the injectivity we want to 

prove is equivalent with Ker f3r = <T> . By the diagram above, this equality 

will be a consequence of the following 

(6.20) LEMMA. If r is a sufficiently general smooth irreducible curve of 

JP 3 of degree 7 and genus 4 , then H0Ny/lP3(-2) = 0. 

PROOF. It suffices to exhibit one such curve, the family being irreducible. 

If L' and L" are two skew lines and r is the residual intersection of 

two general cubics V 1 , V 2 through these lines, we write r n L' = { Pi, .• , 

P~ } and r n L" = { P'{, •• ,P4 } . Consider the following exact sequence, of 

evident definition, 

After twisting by Oy(-2) one gets an exact sequence 

o--+ Nr/JP 3(-2) --+ °r<I) eOy(I) ------+ rop! erOP'-' --+ o 
l. l. 

By using the Euler sequence one checks. that the morphism which the third 

map induces at the H0-1evel, 
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can be described as follows: fix an equation </>3 (resp. ljl3) of the cubic 

V1 (resp. V2 ) • At each Pi, Pi both cubics have the same tangent plane, 

hence there exist constants cI , ci such that d<f>3(PI) = cI •dljl3(PI) , 

d<t> 3(Pi'.) = ci'. •d w3(Pi) for each i = I, .. ,4 • Then y (A,B) = (( (A- cIB) (PI)), 

((A-ciB)(Pi))) , the latter being an element of I:0p!(l)e!:0p•,'(I)"" a:'+e a:'+, 
l. l. 

It is now easy to verify that there are choices of <f, 3 and $ 3 such 

that y yields an isomorphism between these vector spaces. If L' 
by X2=X3=0 and L" is given by Xo=X1=0, and furthermore 

bl :0:0) , P'.' = ( 0 :0 :a'.' :b'.') , i = I, ••. ,4 , the determinant of y 
l. l. l. 

ken as the product 

a' 1 b' 1 ci ai cibi al_' bi' ct'ai' cl_'bl.' 

a' b' Cza2_ Czbz a2 b2 C2 a2 c2b2 det 2 2 . det 
a' 3 b3 C3a3 C3b3 a" 3 b" 3 C3a3 C3b3 

a' I+ b' I+ C4a4 C4b4 a" I+ b" I+ c4a4 c4b4 

Figure 6. 

is given 

P:l_ = (aI: 

can be ta-

A cubic form <f> yielding a surface through 1 1 and L" is a combination 

of XoX2, XoX3, X1X2, X1X3 with I-forms as coefficients. It is equiva

lently determined by the f°ollowing 2-forms, which can be preassigned arbi

trarily: 
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C D 

In these terms, if the above ~3 and W3 are given respectively by the 

2-forms A1 , B1, C1, D1 and A2, B2, C2, D2, the points P:l_, i= 1, ..• ,4 

and P'i'. , i = 1, ..• ,4 are gotten respectively as 

Specific choices of ~3 and w3 can be made now, yielding det(y) 'f O , 

q.e.d. 

The example of the cubic threefold 

(6.21) We turn finally to the cubic threefold, as an example to illustrate 

the preceding discussion. We repeat that the result which will be deduced 

in this way - namely, that the variety ~ of smooth twisted cubics in 

the cubic threefold Y = Y~ cJP4 dominates 0y - is a known one, and can be 

gotten alternatively from (6.9) Let us see this in the first place. 

Any curve RE Ry belongs to a unique hyperplane section Y n JP 3 of 

Y. There it moves in the 2-dimensional linear system of residual intersec

tions of Y with the net of quadrics in JP 3 through a certain fixed twis

ted cubic R' on Y n JP 3 . If L is a line in Y n JP 3 meeting R' , there 

exists certainly a reducible curve of the form L + y (with y a conic) in 

that system. Hence R is rationally equivalent with L + y and, if y + 

+ 1 1 = (const.) is a plane section of Y, we get, on Y R = L - 1 1 + 

+ (const.) . One concludes now easily, by using (6.9) 

We notice also that the variety Ry is irreducible and smooth. To 

see this, observe that for each RE Ry one has H0NR/JP4(-2) = 0 , as fol

lows from NR/<R> ""'OlP1 (5) El> OlP1 (5) with the identification Rc,eJP 1 , and 

<R> denoting the span of R in JP 4 Therefore, by (2. 1 O) , Ry is a 

smooth variety of dimension 6 and the Abel-Jacobi map Ry--+ J(Y) has 

everywhere rank 4, hence its fibres are (smooth) of pure dimension 2. 

On the other side, it is not difficult to see that the only hyperplane sec

tions of Y which carry an infinity of lines are cones over smooth plane 

cubics. Therefore, by the former arguments, the contribution in J(Y) of 

the smooth twisted cubics in a fixed hyperplane section of Y consists of 
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a finite number of points. This implies, by the above, that the dimension of 

the subvariety {RE Ry J <R> is tangent to Y } is 5 . Thus it suffices to 

prove the irreducibility of the open subvariety R~ = { RE Ry J <R> n Y is a 

smooth cubic surface} of Ry . To this end, we consider the variety descri

bed as 

{ L , ) Ro F , F , I L , L I c <R> n Y and R = L - L ' + (ct . ) } R L € X X • ( ' ' Y in the smooth surface Y n <R> • • 

(Here (ct.) denotes the class of a hyperplane section of the cubic surface 

Y n <R>) • This variety maps onto R~ ; on the other side, it maps onto the 

irreducible variety (F' )2,{meeting couples} , with open subsets of JP2 as 

fibres. From this its irreducibility follows at once, and therefore that of 

Ry too, q.e.d. 

Our aim is now to proceed exactly in the same way as has been done 

for the quartic double solid in the preceding subsection. We refer to (6.2), 

(6.4) and (6.9) (or, of course, to [8]) for details about the cubic 

threefold Y and its Fano surface F' 

The traces of 0y on F' have class 2u' in NS 1 (F') 

denotes the class of an incidence curve DL, L a line on Y 

where u' 

As before, 

we have: if the lines on Y which ly on some surface of degree k belong-

ing to a fixed k-dimensional linear system on Y dont fill the whole F' 
' 

they underly a divisor of class !k(k+l)p' in Pic(F') , where p' is 

here the class of D~ with ~ a plane section of Y. Thus p' = 3u' in 

NS1 (F') and, if r is a curve of degree d lying in the basis locus of 

that system, the former divisor splits into Dr plus a part yielding the 

class 0k(k+I) - d)u I in NS1(F') - here again we assume, for simplicity, 

that Dr is reduced - . If we want this to be equal to 2u' , the re I ation 

3k(k+I) =2d+4 must hold. 

It is clear now, that 

(6.22) The statements of Proposition (6.17) continue to hold if we replaae 

X, F by Y F' respectively and the relation d=k(k+l)-3 by 2d= 

3k(k+I) - 4 

We look agin for the cheapest case where this applies. Since W has 

to dominate J(Y) , we need d;:,, 3 , hence k;:,, 2 . Choose k = 2 and hence 

d = 7 , looking therefore, in the first place, for smooth curves of degree 7 
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ting J(Y). 
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By Riemann Roch, natural candidates are the smooth curves of degree 7 

and genus 3 in Y. Consider the twisted curves of this kind in lP4 . The 

system of hyperplane sections being non special, they yield an irreducible 

variety, of dimension 33. A general such curve r is gotten by taking 

sufficiently general nets of quadrics through lines of lP4 The basis lo-

cus of such a net is a curve of degree 8 and virtual genus 5 which de-

composes as f+L , with r smooth of degree 7 and genus 3 ' 
and L a 

line. The latter is then the only 3-secant of r and the quadrics of the 

net are the only quadrics of ]P4 through r We shall need the following 

(6.23) LEMMA. With the ahove notations, a general r satisfies H0Nr/JP4(-2)= 

= 0 • 

PROOF. This is similar to the proof of (6. 20). We assume that the line L = 
= { Xo = X1 = X2 = 0 } meets r at three distinct points P1 , P2 , P3 and 

that L + r is the complete intersection of three quadrics in lP4 . As in 

(loc. cit.) , we write down the standard sequence 

which yields, after twisting by Or(-2) : 

The associated cohomology sequence starts with 

where, by using the Euler sequence, the morphism y can be seen to be iden

tifiable with 

y 

c" 1 

c" 2 

c". 
3 

cJ'.' I c'" 2 

c"' 3 

with the entries chosen as follows: if 1jl' , ijl" , ijl"' are equations of 

three independent quadrics through r, the relation 
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c!di'i' + c'.'dijl" + c'."dijl'" 0 
1 ' 1 1 

holds at Pi, i = 1,2,3. 

A quadric through L can be written uniquely as 

where the I-forms :\o ,A1 ,:\2 , and hence their restrictions to L : :\o = 

= :\o(O,O,O,X3,X4), I1=A1(0,0,X3,X4), I2=A2(0,X3,X4), can be prescri

bed arbitrarily. If the above quadrics are given respectively by :\~,:\{,:\; , 

:\0,:\1,:\~ , :\0',A1' ,A~' , then the points P1,P2 ,P3 are the locus 

Io Ia ~··1 det Ii Iy A"' 0 1 
Iz I2 I2' 

on L . The existence of choices yielding det(y) f, 0 can be checked easily 

now, q.e.d. 

Denote by U the irreducible variety of smooth twisted curves r of 

degree 7 and genus 3 in JP 4 such that HONr /JP4 (-2) = 0 and such that 

r is gotten by dropping a line from the basis locus of some net of quadrics 

in JP 4 . (This last condition is put for simplicity). Call furthermore T 

the irreducible variety parametrizing the smooth cubic threefolds of JP 4 , 

and consider the subvariety V c U x T defined as V = { (r ,Y) I r c Y} . The 

latter is certainly non empty and, since H00lP4 (3) maps onto H00r (3) for 

any r EU , V is irreducible (of dimension 48) . Moreover, it contains an 

open dense subvariety v0 such that, for any (r, Y) E v0 , 

a) there exist lines 1 c Y with no quadric of JP4 containing 1 + r , 

and 

b) the divisor Dr of F' is reduced (This may be somewhat weak, 

but is sufficient for our purposes; one merely has to exhibit a single such 

pair. (r, Y) , which is easily done) 

If Y is a smooth cubic threefold, we put Uy= {fEU I (f,Y) EV0 }. 

By using (2.10) together with (6.23) we get that, if non empty, Uy is 

smooth of dimension 14 and the Abel-Jacobi map Uy-+ J(Y) is every

where submersive. This will be the case for all Y belonging to a certain 



open dense subset T0 of T We conclude therefore: 

(6.24) If YE T0 and W is an irreducible component of Uy , the condi

tions of (6.17) (modified by (6.22)) are satisfied. 
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(6.25) So far, the development has been similar to that in the case of the 

double solid. We shall sketch now how to use (6.24) to derive again the 

result that, for any smooth cubic threefold Y, the variety Ry dominates 

the theta divisor of J(Y). For the sake of clearness, we give first an out

line of the idea. 

Fix an YE T0 and a line 1 c Y • Then, by (6. 24) , a suitable copy 

of 0y will contain the images of the curves r E Uy which ly on some sur

face of IOy(2)1 together with the line 1, and dont meet this line. If 

r is such a curve and v1 , v2 E IOy(2)1 are two sufficiently general sur

faces through r with V1 containing also 1 , one "could expect" (cf 

(6.26)) the intersection of V1 with V2 to consist, besides r of a 

curve ~ of degree 5 and virtual genus meeting the line 1 at two 

points. And conversely, given such a curve ~ and two surfaces Vi and 

V2 of I Oy(2) I through ~ , and V1 containing also 1 , their residual in

tersection with respect to ~ "should yield" generally (ibid) a curve 

r as earlier described. 

Given such curves r and ~ , with r + ~ = V1 ·V2 in Y , the sum 

of their images in J(Y) (with some fixed choice of the base points) is 

constant. Therefore, if the above guesses are right, the curves ~ will 

map into some copy of the theta divisor. Now, given a general twisted cu

bic R c Y , we may use it to construct in a natural way such a curve ~ as 

follows (Figure 7) • The linear projection of lP 4 from the line 1 maps 

R birationally onto a singular plane cubic; hence there is exactly one 

2-plane through 1 meeting R twice. This plane intersects Y along the 

curve 1 + y , where y is a conic meeting both R and 1 twice. Hence 

the curve ~ = R + y is a quintic of virtual genus which intersects 1 

twice, as claimed. The curves R + y have their image in J(Y) inside some 

copy of the theta divisor, and we observe that, since 1 has been fixed, 

the curves y are rationally constant in Y (plane sections minus 1) 

and have therefore constant image in J(Y) So, always assuming that the 

above hypotheses are right, this would imply again the twisted cubics map

ping into a translate of 0y. 
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Figure 7. 

(6.26) ~- The guessses in the preceding discussion are suggested by 

the following fact, which can be easily verified. Let Z be a smooth com

plete threefold and s1 , s2 c Z two surfaces such that their complete in

tersection yields S1 •S2 = C1 + ••• + Cr , the Ci being smooth curves and 

the intersections of the different components yielding only ordinary double 

points. Denote by ui the number of intersection points of Ci with the 

remaining components, by gi the genus of Ci and by Kz the canonical 

class of Z; one has the following relation: 

Back to rigorous arguing, we recall first (cf (6.21)) that Ry is 

irreducible and dominates a divisor of J(Y) for any smooth cubic three

fold Y. This divisor will move continuously with Y, a priori for gene

ral Y at least. To get this statement for all Y we ought to start for 

instance with a compactification of the Ry's yielding a proper family, 

and so on. However, according to our purposes we shall not care about these 

aspects knowing that, a posteriori, the statement is true. If wanted, one 

can use the already proved fact that the divisor dominated by Ry is the 

image of (F') 2 in J(Y) by the difference mapping (cf (6.21)). 
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From its continuous variation we deduce, by the usual monodromy argu-

ment, that the divisor of J(Y) dominated by Ry is homologous with a mul-

tiple of 0y It suffices therefore to show that Ry maps into a copy of 

the theta divisor for some y 

Take for a moment a fixed smooth cubic threefold Y and a line lcY, 

and consider the open subvariety RicRY consisting of those RE Ry which 

dont meet 1 and yield a cubic with a node by linear projection from 1. 

As described in (6.25) there is exactly one conic y c Y which meets both 

R and 1 twice (Figure 7) . The subsystem A1 c IOy(2)1 of surfaces 

through y + R has dimension 4 , and the subsystem A2 c A1 of surfaces 

through l+y+R (i.e., through R and the supporting plane of y) has 

dimension 3 . If V1 E A1 and v2 E A2 have no common component, their re

sidual intersection with respect to y + R is a curve r c Y of degree 7 , 

lying on a quadric of JP4 together with 1 . The image of r in J(Y) (with 

respect to a fixed base curve r 0 ) is independent of the specific choice of 

V1 and V2 • 

Suppose that for some Vi and 

mily Uy above (cf after (6.23)) 

are open conditions and the variety 

V2 the curve r belongs to the fa

and doesn't meet 1. Then, since these 

{(R,V1,V2) ERix IOy(2)1 x JOy(2)1 

V1 E A1 , V2 E A2 , and V1, V2 without common component} is irreducible, 

such a choice will be possible for a general RE Ry . Therefore, by 

(6.25) , the image of Ry in J(Y) will ly in some translate of 0y, as 

we want to deduce. 

In this way things are finally reduced to checking the following fact, 

whose proof we shall omit (Figure 7) : 

There exists a smooth cubic threefold Y and two quadrics Q' , Q" in 

lP 4 such that Y•Q'•Q" = y +R+r with y a conic, R a twisted cubic and 

r an irreducible septic such that: a) the curves y , R , r are smooth and 

r E Uy , b) the supporting plane of y meets R transversally at exactly 

two points, and c) there is a line 1 c Q" n Y in the plane of y , which 

doesn't meet r + R . (As a matter of fact, Q" has to contain then the sup

porting plane of y and 1 is the residual intersection of Y with this 

plane.) 
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PART TWO THE INTERSECTION OF THREE QUADRICS 

7. INTRODUCTION 

In his paper [27], Tyurin pointed out a relationship between the 

surface which parametrizes the conics lying on the smooth complete inter

section X of three quadrics in JP 6 and a certain surface of divisors 

of degree 7 on the curve C which parametrizes the Chow components of 

the 3-planes living inside the degenerate quadrics of the net with basis 

locus X. In view of this relation and further remarks (ibid, p. 103) , 

he conjectured that the Albanese variety of the former surface is isoge

nous to the Prym variety of the covering of the discriminant curve C of 

the net by C and hence to the intermediate Jacobian of X. 

In this part we give a proof of Tyurin's conjecture (cf (10.2)) • 

In the context of double covers and nets of divisors the isogeny considered 

here seems to hold more generally. It has been found to be actually an iso

morhism in various cases, among which the well-known isomorphism between 

the intermediate Jacobian of the cubic threefold in lP 4 and the Albanese 

variety of its (Fano) surface of lines (cf [BJ , an.d (8.22)) • 

Being mainly interested in (10.2) , we have ignored several more 

general questions which arise in this context, using instead ad-hoc methods 

to settle our particular cases. 

Throughout, the term 'double cover' means etale irreducible (2:1) 

covering. 

8. THE VARIETY OF DIVISORS ATTACHED TO A LINEAR SYSTEM ON A SMOOTH 

CURVE WITH AN ETALE DOUBLE COVER 

Connectedness 

(8.1) We start recalling some well-known facts and easily derived conse

quences ([21] , [22] , [29]) • Consider a double cover 
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7[ C --+ C 

of a smooth curve C. The kernel of the induced morphism 

J(C)--+ J(C) 

has two connected components. The neutral component ker(7r*) 0 is a (na

turally principally polarized) abelian variety called the Prym variety 

of the covering, usually denoted Pr(C/C) . We shall write it also Pr, 

the other component being written Pr' • The covering involution of C 

is written as usual 

-i C--+C 

Fix an integer d ~ 0. It follows from the above that the fibres of 

the map 7r* : J(C)d--+ J(C)d consist of two connected components, the 

fibre of ~ E J(C)d being the disjoint union (i + Pr) u (g + Pr') 

For later purposes, we reformulate Lenuna I of [22], p. 187, as 

follows: 

(8.2) LEMMA. Ker(7r*) is the set of elements of J(C) of the fo1'171 ~ 

= l :=I [Pk - i(Pk)J and ~ E Pr or ~ E Pr' depending on whether N - 0 

or I (mod 2) . A set of generators of Pr is given by the elements 

2 [P - i(P)] , PE C. 

The last statement follows from the fact that Pr= 2 Pr. Take next 

a linear system A of dimension ~ I of divisors of degree d on the 

curve C 

-(8.3) DEFINITION. The variety X of divisors on C lying above A is de-

fined as the pullback 

X (7r(d))-JA c____.. C(d) 

JI 1 t 7r(d) 

A ~-c(d) 

The map JI is a ramified covering, etale above smooth divisors of 

the system A. It follows that the irreducible components of X have di-
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mension equal to dim (A) . A look at the diagram 

X~ C(d) -t JI ! 1r(d) 

A~ C(d) -

shows - the horizontal mappings being the obvious ones and (therefore) the 

image of A in J(C)d being a single point - that X breaks up naturally 

into two disjoint subvarieties. We shall call them the halves of the va

riety of divisors X. 

(8.4) Put X = Y' u Y" Y' and Y" being the halves of X . We want to 

know how the elements of a fibre of JI are distributed with respect to Y' 

and Y" (cf also [ 29], p. 955) . To this end, let D E X ' D = Q1 + . .. + 

+ Qd and write D' E X for the divisor gotten by replacing one of the 

points Qk by its image i(Qk) under the covering involution, D' D + 

+ (i(Qk) - Qk) . Using (8. I) 
' 

(8.2) and (8.3) we get inmediately 

(8.5) PROPOSITION. With the above notations, D and D' belong to diffe

rent halves of X. As a consequence, the fibre of JI outside the discri

minant locus has 2d-I elements lying on Y' and 2d-J. on Y" . The ele

ments of a fibre of Y' - A (resp. Y" -+ A ) are gotten from one of 

them by switching in the above sense an even number of times. 

It follows, by using the covering transformation i, 

(8.6) COROLLARY. If the degree d of the system A is odd, both halves 

Y' and Y" are naturally isomorphic. If the degree is even, each half 

carries a natural involution. 

(8.7) REMARK. The examples in (8.20) will show that the halves may be 

non isomorphic in the even case. 

(8.8) PROPOSITION. Let A be an arbitrary linear system on C, of dimen

sion ~ 1. Then both halves of the variety of divisors are connected, 

hence are the connected components of X 

PROOF. It obviously suffices to consider the case dim (A)= I , both hal

ves of X being covered by linear systems of analogous halves for the one-

-dimensional case. Thus suppose dim (A)= and let Y be a fixed half 



0f X. We assume that A has no base points, the general case being an 

easy consequence of this one. We consider the maps 

where f is the morphism giving rise to the system A ; identifying A 

with lP 1 , we have also the map 
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Fix a point to E JP 1 corresponding to a smooth divisor f- 1(to) on C. 

It suffices to exhibit a path in Y between two arbitrary elements of the 

fibre Y(t0) of Y above to . We may even suppose that they differ by 

exactly two switches, e.g. fl= P1 + P2 + ... +Pd and D' = iP1 + iP2 + 

+ .•• +Pd. 

Remark that a continuous path in y is equivalent 

Yl, ••• , Yd: [0,1] - C and a path y: [0,1] 

For each i I , ... , d and each TE [0,1] 

to a family of 

- JP 1 satis-

one has 

paths 

fying: 

a) 

y( T) • 

b) 

7fYl (T) , 

If is not a discriminant point of f, then the points 

, 1ryd(T) are all distinct points of C 

The main point in our argument to prove (8.8) is the following 

(8.9) LEMMA. Let to E lP 1 be, as above, a non-discriminant point of the 

map f and A, B two points in C above to, with 1r(A) / 1r(B) . 

Then there exists a path r in lP 1 from t 0 to a discriminant point of 

f and paths rA, rB in 

rB(O) = B. rA(I) = rB(I) 

such that f(T) is not 

C projecting onto r such that 

and furthermore 1rrA(T) / 1rrB(T) 

a discriminant point of f. 

r A (0) = A , 

for aU T 

PROOF. C being connected, there is a path in C between A and B. We 

may assume that this path projects onto a composition of paths going from 

to to a discriminant point o. and backwards to t 0 , these paths not 
]. 

meeting other discriminant points. The path from A to B in C thus 
-I 

breaks up in paths joining points of the fibre (f1r) (to) , which we shall 
-I 

call "intermediate points". We may suppose that the points of (f1r) (to) 

appear at most once as intermediate points (otherwise we drop the super-
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fluous part) • We distinguish cases: 

a) Suppose that i(B) doesn't appear as intermediate point. The 

path rA will be a part of our path from A to B, to be precised in a 

moment. The path rB goes as follows: we put 

goes from A to Q1 (Figure 8) , let rB 

above the projection of rA in 

rB(O) = B; next, while rA 

go its prescribed way - by 

lP 1 until certain point in C etaleness 

above 01 If that point was Q1 we stop things here. Else rA follows 

his travel from Q1 to the first intermediate point and rB goes back to 

B. We iterate this procedure, rA now going to the second branch point 

Q2, and so on. Obviously, the first point where rA and rB can meet is 

one of the branch points Qi, and we are shure that they meet, latest at 

Qn. We stop at the first encounter. 

The only thing to be checked for rA and rB is that rA(T) and 

rB(T) are not conjugate under the covering involution i, if fnrA(T) is 

not a discriminant point. In fact, if that wasn't the case, by etaleness 

B would be conjugate to one of the intermediate points, but this has been 

ruled out by assumption. 

Figure 8. 

b) Suppose that i(B) appears as intermediate point but that i(A) 

doesn't. We reverse the procedure, interchanging the roles of A and B. 

c) Finally, if i(A) and i(B) both appear as intermediate points, 

the procedure can be applied to these points instead of A and B, fol -
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lowing case a) . Once these paths are gotten, we apply the covering invo

lution to the whole situation, getting r A and r B as wanted. This proves 

Lemma (8. 9) • 

To finish the proof of (8.8) , apply the above lemma to A= P1 and 

B = iP2. Say Q := rA(l) = rB(l). We put Y = r, Yl = rA, Y2 = irB 

Then y1 (O) = P1 , Yl (1) = Q , and Y2(0) = P2 , Y2(1) = iQ • It is easily 

seen that we can add paths Y3 , ••• , Yd above Y. such that Yi (0) = Pi 

and Y1, Y2 , •• , Yd, y satisfy conditions a) and b) above. This 
A 

gives a path in Y between D and a certain divisor D" = Q + iQ + ••• 
-1 -1 -1 Next take the system of paths (iyz) , (iY1) , Y3 , 

-1 -1 
, Yd , y 

We have (iy2)- 1(0) = Q, (iyz)- 1(1) = iP2 , (iY1)- 1(o) = iQ (iYl)-l (1) 

=iP1 • Hence this gives a path between D" and D' . Composition of the 

above two paths yields the required one between D and D' , q.e.d. 

(8.10) REMARK. Even above a base point free penaiZ, the halves of the va

nety of divisors may be reduaibZe. For example, take a general pencil of 

canonical divisors on a hyperelliptic curve. This works, because one half 

of the divisor variety above the canonical system is mapped onto a copy of 

the theta divisor of the principally polarized Prym variety (cf [20, p. 

342) ; and, as discussed later on in Example (8.20) - and, of course, well

-known - for suitable coverings of an hyperelliptic curve the polarized 

Prym decomposes into a product of Jacobians, hence its theta divisor is re

ducible. 

Infinitesimal study 

Let D be an effective divisor of degree d on a smooth curve C. 

The standard exact sequences on C: 

0 - n1(-D) - n1 - n1 ® oD- 0 C C C 

give rise to (mutually dual) cohomology sequences, from which we recall the 

geometrical meaning with aid of the diagrams below. We denote by IDI the 

complete linear system of D and use the natural mappings 
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IDI c.....L. c(d) -.J..+ J(C)d 

(8.11) One has identifications 

and 

Here Tc(d)(D) ""'_HDOD(D) follows from Grothendieck's deformation theory 

([14]) , OD(D) being the normal bundle of the embedding of D in C as 

a subscheme; HD(ni ®OD)"" T~(d)(D) follows e.g. by duality. 

(8.12) Let A be again an arbitrary linear system on C, of degree d and 

dimension ~ I • Let X be the variety of divisors on C above A and 

DEX a fixed element, D its image in A. The Zariski tangent spaces 

yield a pullback diagram 

Tx(D) <=--- Tc(d) (D) 

dil ! t dw(d) 

TA(D) ~ Tc(d)(D) 

where j A'----+- c(d) denotes the inclusion map. The variety X will be 

smooth at D if and only if TX(D) has the same dimension as X. But 

dim X = dim A= dim TA(D) ; and dim Tc(d)(D) = dim Tc(d)(D) = d, hence 

dim TX(D) dim Ker dw(d) + dim (Im dj) n (Im dw(d)) = 

d - dim Im dw(d) + dim (Im dj) n (Im dw(d)) 

So X is smooth at D if and only if 
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the standard transversality condition. Dually, this reads 

Ker (dj*) n Ker (dn(d)*) = O in 

If the system A is complete, this can be put in a more geometrical fa

shion (not needed in the sequel) 

PROPOSITION. With the asswrrptions and notations of (8.12) , if furthermore 

the system A is complete, then X is smooth at D if and only if the 

following condition holds: For any effective canonical divisor Kc, if 

D ~ n*Kc then D ~Kc. 

PROOF. The second sequence of (8.11) can be used twice, giving a diagram 

- T;(C)d(D) - Te(d)(D) - T,ni<n) 

i (dn*)* i dn(d)* i 
- T}(c)d(D) - T~(d)(D) - Tlnl(n) 

-+-0 

-+-0 

The condition Ker(dj*) n Ker(dn(d)*) = 0 is equivalent with the square 

of the left hand side being a pullback diagram. But this square is 

from which the result follows at once, q.e.d. 

We go back to the general case, the system A containing D being 

given by a subspace E c HOOC(D) which contains the image of H00c in 

HOOC(D) . The sequence of maps 

TA (D) c:__.. TI DI (D) c:__.. TC (d) (D) 

can be identified with the following one: 

Recall also that the sheaf OC(D) is gotten as asubsheaf of RC, the 
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sheaf of rational functions on C, by putting: 

0 () ·- -vp(D)O 
CDP.-~ C,P C,P for each PE C. 

Write P' and P" for the points of C lying above P. Then, if D 

n.P. 
]. ]. 

, the points Pi being all distinct, and the divisor 

D I n!P! + I n'!P'! 
J J J J 

(n! + n'.' n. 
]. ]. ]. 

n! ~ n'.' Vi) 
]. ]. 

lies above D in X, we can identify the two diagrams below: 

Tc(d)(D) 

t d,r(d) 

TA(D)~ Tc(d)(D) and 

Here the mapping 8 is the transpose (by the residue pairing) of the na

tural map 

induced by the projection map ,r. Thus, if ti is a local parameter of 

are the local parameters induced on C at P! C at 

and P'.' 
]. 

P and t '. t'.' 
i ]. ' ]. ]. 

respectively, we have 

The mapping a 

i-th component 

m -ni O I 0 

is the obvious one: if w EE c H00C(D) c k(C) then the 

of a(iji) is the image of the element WE ~~~i.oc,P. 
]. ]. 

- C,Pi C,Pi C,Pi 

in 



107 

PROPOSITION. With the asswnpt-ions of (8. 12) and the ahove notations, the 

divisor variety X ahove A is smooth at D if and only if the following 

condition holds: For each i such that n. > n! and each q, 0 ~ q < 
l. l. 

that vp.(D) = q and V j # i 
l. 

< n. - n! there exists D in A such 
l. l. 

VP. (D) <! n. - n! . 
J J J 

PROOF. By (8.12) , Xis smooth at D if and only if the composition of 

a with the cokernel projection of 8 is surjective, i.e.: 

where the right hand sum now ranges over those i for which 

holds. Say, as before, that ti 

the vector space m -ni O / 
- C,Pi C,Pi 

is a local parameter of 
' m -ni O has basis 

- C,Pi C,Pi 

, . . . , -(n!+I) 
t. l. 

l. 

C 

n. > n! 
1. l. 

at P •• Then 
l. 

over ~. An element w EE gives a divisor D of A by taking D = 

= div (w) + D and, if the image of w in the above vector space is writ

ten 

with ck # 0 , then vp. (D) 
l. 

follows at once, q.e.d. 

n.-k. From this the result 
l. 

(8.13) Let us describe, for example, necessary and sufficient conditions 

for a net or a pencil yielding smooth d.ivisor varieties (the proofs are 

trivial). 

a) If dim A= I, smoothness of the curve of divisors above A is 

equivalent with the following two conditions: i) The system A has no 

fixed part; ii) its singular members have at most one singularity of type 

2P or one of type 3P. 

b) If dim A = 2 , smoothness is equivalent with the following three 

conditions: i) The system A is induced by a generically injective map 

cr: C--+ JP 2 ; ii) if present, the singular parts of the members of A 

have one of the following shapes: 2P, 3P, 4P, SP or 2P1 + 2P2 , 2P1 + 

+ 3P2 , 3P1 + 3P2 ; iii) in the latter three cases, cr(P1) # cr(P2) , and 
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in the case of a singularity 4P or SP, a is a local inmersion at P. 

For later use in Section 10, we distinguish a class of plane curves 

by the following 

(8.14) CONVENTION. A plane curve Cc IP 2 will be called admissible if 

and only if 

a) C is irreducible and has at most ordinary double points. 

b) If L is any line of IP 2 then C cuts out on L either a 

smooth divisor or a divisor with exactly one of the following singulari

ties: 2P, 3P or 2P + 2Q. 

Using (8.13) it is clear that if C is an admissible curve and N 

its normalization, then the system of linear sections of C induces on N 

a net A such that 

i) For any double cover of N, the surface of divisors above A is 

smooth; 

ii) for any double cover N of N, and any singular point of C, 

if P1 and P2 are the points of N lying above the latter, the moving 

part of the pencil of A determined by the base points P1 and P2 

yields a smooth curve of divisors on N 

The Albanese variety 

Notations and assumptions being as in (8.3) , let Y be one of the 

halves of X. Suppose that Y is irreducible - then it makes sense to 

speak of the Albanese variety Alb(Y) of Y. The diagram 

0 

Alb(Y)->- Alb(C(d))---=-+ J(C) 

Alb!A) ~ Alb(!(d))----=-.. J(i) 

(the morphisms being the natural ones) shows that the map Alb(Y)---+ J(C) 

factors through a well-determined morphism 

~ Alb(Y)-+ Pr(C/C) 
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Exercising with known examples (cf the next subsection) , one is lead to 

the following question: 

(8.15) Suppose that the linear system A has dimension ~ 2 and that Y 

is a smooth half of the variety of divisors X above A 

isogeny? Is it an isomorphism? 

Is then 1jJ an 

The reason for imposing dim A~ 2 is that - except a few cases -

the answer is negative if dim A= I (cf (8.20)) Smoothness of Y is 

required for technical reasons. We shall see in a moment that, if the de

gree d of A is ~ 3, 1jJ is surjective, by obvious reasons. In this 

case, the weak form of the above question is equivalent to 

with the above assumptions, q(Y) = pa(C) - I holds, with 

pa(C) = h 10C. In fact, only the inequality q(Y) ~ pa{C) -

here. 

ask whether, 

q(Y) = h 10y 

I is essential 

(8.16) PROPOSITION. Suppose that Y is an irreducible half of X. If the 

degree d of A is ~ 3 then 1jJ is surjective. 

PROOF. In view of Lemma (8.2) it suffices to show that every element of 

the form 2[P - i(P)] , PE C , lies in the image of 1jJ. Let PE C be 

given. Take an arbitrary DEY containing P in its support: D = P + 

• Then Y contains the point + P2 + P3 + 

by (8.5) and also D" i (P) + P2 + i (P3) + and D"' = P + i (P2) + 

+ i(P3) + Now ljJ{[D - D']) = [P - i(P)] + [P2 - i(P2)J and also 

ljJ{[D'" - D"]) [P - i(P)] + [i{P2) - P2J • Hence 2[P - i(P)] = 
= ljJ{[D - D'] + [D"' - D"]) q.e.d. 

(8.17) REMARK. As (8.20) shows, the conclusion of (8.16) fails to be 

true in general, if d < 3 

For systems of relative high degree, one gets quickly an answer to 

(8.15) 

(8.18) PROPOSITION. Let Tl 

C, and A a linear system on 

pose furthermore that 

C-+ C be a double cover of a smooth curve 

C , of dimension ~ 2 and degree d . Sup-

a) Y is a smooth half of the variety of divisors X above A and 

b) d ~ 4p (C) - 3. 
- a 

Then the mapping 1jJ: Alb(Y)-+ Pr(C/C) is an isomorphism. 
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PROOF. Suppose first that A is complete. In this case the diagram 

Xe__... c;(d) ii -+ 

l 1 
A c...__,,. C ( d) 

gives, if ~ E h(Y) and 

Y = £- 1(~ + Pr) • Since 

E, = h(A) , that 

p (C) = 2p (C) -
a a 

A= h-l(E,) and hence that 

, the divisors of degree d 

in C are non special, so the fibres of hare all isomorphic with ]Pk 

k = d + 1 - 2p (C) . Hence Y is a projective bundle over ~+Pr, and 
a 

Alb(Y) ~Alb(~+ Pr)~ Pr(C/C) , as claimed. 

If A is arbitrary, consider the complete linear system determined 

by A , say A . The variety Y lies in a half Y of the (smooth) divisor 

variety above A. Since A is a complete intersection of dimension ~ 2 

in A Y is a smooth complete intersection of ample divisors in Y , and 

dim Y ~ 2. Lefschetz theory then gives the required result: Alb(Y) ~ 

~ Alb(Y) ~ Pr(C/C) , q.e.d. 

REMARK. Of course, in the first part of the proof of (8. 18) , the fact 

that Y is a projective bundle over E, + Pr is not fully needed (in the 

second part this guarantees smoothness of Y) It suffices to have a mor-

phism Y-->- E, + Pr with projective spaces as fibres. Therefore (8.18) 

holds also for complete systems 

smoothness assumptions on Y. 

A of degree d ~ 2p (C) - 1 , without 
a 

We can now improve Proposition (8.18) as follows: 

(8.19) THEOREM. Let 11 : C -+ C be a double cover of a smooth cun>e C 

If A is a non special linear system of dimension ~ 2 on C, and X 

is a smooth half of the variety of divisors on C above A, then the map 

w : Alb(X)-+ Pr(C/C) is an isomorphism. 

PROOF. Put d = degree of A, g = p (C) . The fact of 
a 

being A non spe-

cial gives, for DE A : 3 ~ l(D) = d + 1 - g 

that the assertion is true if d ~ 4g - 3 by 

prove it by descending induction on d. 

We first prove the following 

, hence d ~ g + 2 Remark 

Proposition (8.18). We shall 

LEMMA. Suppose we can find a non special system A of degree d, dim A= 

= 2 , the divisor variety above A being smooth., and v1 being an isomor-
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phism for each one of the two halves. Then the assertion of (8.19) is 

tPUe for systems of degree d 

PROOF. This is entirely standard. Consider the open subvariety Vd c J(C)d 

consisting of non special classes. The inverse image of Vd in c(d) 

yields an open subvariety Ud c c(d) and the projection map Ud -+ Vd 

is a projective bundle with fibre lP d-g . The associated Grassmann bundle 

of 2-planes inside the fibres of Ud - Vd yields an irreducible va

riety Grz (Ud) , ab?ve .which there lives a scheme l.: , the fibres of the 

projection 

being the surfaces of divisors.above the 2-dimensional non-special linear 

systems of C. If necessary, we perform a base change to the Stein facto

rization of f ,.to insure finally the existence of a (smooth irreducible) 

parameter variety T and two T-schemes fi: l.:i - T, i = I , 2, the 

fibres of fi being the halves of the surfaces of divisors. For suitable 

open subvarieties Tic T, i = I , 2 we get two irreducible families 

i I , 2 

parametrizing all smooth halves of surfaces of divisors above non special 

2-dimensional linear systems of degree d Consider the natural morphisms 

i=l,2. 

By standard arguments, t~ will yield isomorphisms 

i I , 2 

for all A E Ti(a) if and only if it does so for one of them. Transposing, 

we get an analogous statement for the morphisms 

i I , 2 • 

Remark finally that for systems of dimension > 2, the statement of the 

lemma follows from the 2-dimensional case by Bertini and Lefschetz. This 
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proves the lemma, q,e,d. 

Proceeding with the proof of (8.19) , we keep all the above nota

tions. The inverse image Ud of Ud in c(d) is an open subvariety of 

the latter. The fibres of the composite map Ud--+Vd are the varieties 

of divisors above complete non special linear systems. Since Ud , Vd are 

smooth, there exists a non empty open subset 0 vd c vd such that the divi-

sor varieties above the corresponding complete systems are smooth. 

Fix a point PE C once for all in the remainder of this proof. 

Translation by P gives an isomorphism J(C)d-=-----,. J(C)d+I . The inverse 

image of 

meets vi 

0 Vd+I is a non empty open subset of J(C)d , which therefore 

In this way we reach the following situation: 

There exists a complete non special system A= IDI of degree d 

yielding a smooth divisor variety in C and such that the system A 
=ID+ Pl , of degree d + 1 , has the same properties . Take one of the 

components, say X, of the divisor variety above A. For any point x EC 

we denote by Yx the subvariety of X consisting on those divisors which 

contain x in their support. Then {Yx}xEC is an algebraic system of di

visors of X and, if P1 , P2 EC are the points in C lying above P, 

we have: 

1r*(A + P) 

Since A + p C 7i is an ample divisor of 7i ' 
so is YP1 + YP2 in X 

Hence 2Yx ' X E C 
' 

and therefore also yx ' X E C 
' 

are ample divisors of 

X Consider the two halves of the divisor variety of C above A 
' 

say 

X1 , X2 . For a suitable choice of the indexes we have obvious isomorphisms 

Xi~ Yp .. In particular, the Yp. , i = I , 2 are smooth. Since dim Yp 1. ~ 
l. l. 

~ 2, we may therefore apply Lefschetz and get 

using the induction hypothesis. A final application of Bertini and Lef

schetz gives a 2-dimensional system inside A satisfying the assumptions 

of the lemma, thereby proving the claimed assertion, q.e.d. 
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Examples 

(8.20) In (8.15) we request dim A~ 2. This is done because dim A= I 

gives a negative answer, except in two well-known cases: the presentation 

of the Prym of a double covering of an hyperelliptic curve as a product of 

Jacobians, and the result of Recillas ([25]) concerning trigonal curves. 

Let us describe the case dim A I in more detail. 

a) If the degree d of A is I , C is a rational curve, hence it 

has no double covers (in our terminology). If d = 2 then C is either 

elliptic or hyperelliptic. If C is elliptic, there are col such g} 's 

The halves of the divisor variety are smooth (2: I) coverings of ]Pl 

branched at two points, hence these curves are rational; we call them Ci 

Thus Alb(Ci) = 0 = Pr(C/C) and (8.15) holds trivially. Suppose that C 

is hyperelliptic. Then the is unique. The halves 

(8.13.a) , and they are mapped (2:1) onto A ]Pl 
C• l. are smooth, by 

Hence they are ei-

ther rational, elliptic or hyperelliptic curves. The morphisms 

lead to an isomorphism (actually as principally polarized abelian varie

ties) 

as explained in [21], p.346 • One should compare this result with (8.7) 

and (8. I 7) : if neither of the curves c. is rational, which happens for 
l. 

some cover of C if g(C) ~ 3, the mappings 1/J. are not surjective; 
l. 

moreover C1 and C2 are generally non isomorphic. 

b) Suppose still dim A = I , but d ~ 3 ,the divisor variety being 

supposed smooth. Both halves of X ' C1 and C2 ' 
are (2d-l : I) cove-

rings of ]P 1 , branched above the discriminant points of the (d I) 

mappings C--+lPl associated to A . An easy reasonning shows that above 

a discriminant point in JP 1 , corresponding to a point of multiplicity 2 

in some divisor of A , each of the maps gi : Ci --+ lP 1 axhibits 2d-3 

clusters of two points; above a point belonging to a singularity of multi

plicity 3 each map gi produces 2d-3 clusters of 3 points. Say that 

there are o discriminant points of the first type and T of the second 
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one. Then Zeuthen-Hurwitz, applied twice, yields: 

Hence 

i.e. 

2pa(C) - 2 = -2d + o + 2, 

2pa(Ci) - 2 = -2·2d-l + o•2d-3 + 2,,2d-3 

2pa(Ci) - 2 - 2d-3(2pa(C) - 2) = -2d + d·2d-2 , 

Pa<ci) = 2d-3,pa(C) + (d,2d-3 - 2d-l 2d-3 + 1) 

This yields finally 

dim Alb(Ci) - dim Pr(C/C) = Pa(Ci) - (pa(C) - 1) 

= (2d-3 _ l)pa(C) + d,2d-3 _ 2d-l _ 2d-3 + 2 

This difference is strictly positive unless d = 3 (or d = 4 and Pa(C) 

= 0, this case being dropped because no cover of C can exist) . This is 

just the case of.the theorem of Recillas ([25]) . It turns out that 

i I , 2 

is an isomorphism of principally polarized abelian varieties. 

(8.21) The following example, taken from [27], p.103, has been the point 

of departure for Part Two of this work. 

Consider a smooth complete intersection X of three quadrics in JP 6 

and look at the conics living inside X. The supporting plane of such a 

conic is characterized, among the 2-planes of JP 6 , by the property of 

being contained in the quadrics of a pencil of the net of quadrics through 

X . Identify. this net with lP 2 • The discriminant curve C of the net, 

above which the quadrics are singular, has degree 7. We suppose X gene

ral enough so that this curve will be smooth. Equivalently (cf [27], p.69), 

the degenerate quadrics of the net are ordinary cones, i.e. quadrics of 

rank 6. 

The Chow variety of 3-planes living in such a cone has exactly two 

components. The variety parametrizing these components, as the cone varies 

above C, is a smooth curve C, (2:1) etale covering of C. Further

more, if a 2-plane lies in such a cone, it is contained in precisely one 

3-plane of the latter (resp. in exactly two 3-planes, belonging to dif

ferent families) if it doesn't meet the vertex of the cone (resp. if it 
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meets the vertex) . If a conic in X is given, its plane determines a line 

in 1P 2 (the pencil of quadrics containing this plane) inducing a divisor 

of degree 7 on C. Considering for each of the cones of the pencil the 

component (resp. the components) of 3-planes determined by the fact of 

containing, one of its members, this 2-plane , determines a 7th degree -divisor of C lying above the former 7th degree divisor of C 

One obtains in this way (ibid) an isomorphism between the Fano sur-

face F of conics in X with one half S of the surface of divisors of 

C above the system of linear sections of C 

We have the following data. First, the Abel-Jacobi map 

$ Alb(F)-+ J(X) 

secondly, the map 

w Alb(S)-+ Pr(C/C) 

and finally, either from [27], p.98 or from [2], p.33, an isomorphism 

J(X) ""- Pr(C/C) (actually as principally polarized abelian varieties) Re

call that the latter can be gotten as follows: Fix an arbitrary line L in 

X ( there is a I-dimensional family of lines in X) . In each cone of the 

net there are exactly two 3-planes (one in each family) containing L 

Each such 3-plane meets X in a quartic curve, intersection of two qua

dries , which therefore has to consist of the line L plus a (eventually 

reducible) twisted cubic meeting L at two points; The curve C parame

trizes in this way a family of twisted cubics inside X; we have the cor

responding Abel-Jacobi map J(C)-+ J(X) , and its transpose map induces 

an isomorphism J(X) ~ Pr(C/C) c J(C) . (Remark: Usually one considers 

the isomorphism Pr(C/C)-=-+ J(X) transpose of the latter, which equals 

the opposite of its inverse; one is suggested to keep this in mind when 

arriving, in a moment, at an anticonnnutative diagram). 

Remark that the above isomorphism is independent of the choice of L, 

because so is the Abel-Jacobi map J(C)-+ J(X) . In fact, if L' is 

another line, and Z, Z' are the residual curves cut out on X by 

3-planes belonging to the same family of one cone of the net, one has the 

rational equivalence in X 

lows at once. 

L + Z = 1 1 + Z' ; from this our claim fol-
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We compose, with these data, the following diagram: 

Alb(F) 

~1 
Alb (S) 

We claim that this diagram is anticommutative. Before giving a proof, we 

remark that this is not strictly necessary for our purposes; in fact, using 

the surjectivity of J(C) - J(X) , one easily finds the surjectivity of 

¢ . Hence the question of ¢ being an isogeny is equivalent with the di

mension of Alb(F) being 14, i.e. with w being an isogeny. We include 

nevertheless a proof of this fact, since we consider it as the "raison <l' 

etre" of the identification between F and S 

Consider thus, for a fixed line L c X, the curve LL c F of conics 

meeting L. We shall see that, for two general conics Yl, Y2 ELL, the 

element YI - Y2 E Alb(F) has opposite images under the two possible com

posite maps of the above diagram. Since the divisor LL of F is ample 

(2LL is algebraically equivalent with the divisor of conics meeting a gi-

ven conic, which is clearly ample by Nakai-Moishezon) 
' this will settle 

the question. For, if some LL is smooth, this follows from J(LL) map-

ping onto Alb(F) ; in any case it follows from the fact that these curves 

are connected and always meeting. 

Take thus general conics Y1 , Y2 E LL . The image of Y1 - Y2 by the 

composite map Alb(F) ~ J(X)--=->- Pr(C/C) is the class of the divisor 

of C, where D· l. 
twisted cubic ZA meets 

= D! + D'.' , where D! is 
l. l. l. 

is 

Yi 
the 

the divisor of points AEC such that the 

The divisors D· l. can be written as D· l. 
divisor of points A E C such that ZA 

meets Yi at the point Pi= L n yi (Figure 9). Since Di and D2 are 

linearly equivalent (the point Pi moves on L"" 1P1 ) , it follows that the 

class of D1 - D2 in Pr(C/C) c J(C) equals the class of D1 - D2 
On the other side, the image of y1 - y2 by the composite arrow 

Alb(F)-=-.. Alb(S) -W-+ Pr(C/C) is the class of the divisor D1 - D2 , 

where Di is the divisor of points A EC such that the corresponding 

family of 3-planes of a cone of the net has a member containing the sup-

porting plane Ilyi 

Denoting by 

of the conic 
A A 

i:C--+C 
Yi 

the covering involution (sending one fami-

ly of 3-planes into the other one, for any cone) , we have i(Dk) = Dk 
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A 

for k=1, 2 • To see this, suppose that, for .>.. E C , Z.>.. and a (general) co-

nic .>..EEL meet outside P L n y. Call Q the cone of the net here

with involved. The 3-plane V spanned by the twisted cubic Z.>.. meets y 

at two different points, hence the line joining these points is common to 

V and Ily. Then V c Q says that Q meets Ily at least along y and 

this line. Therefore Ily c Q. Let V' be a 3-plane of Q containing 

Ily The intersection V n V' consists at least of the above mentioned line 

on ITY plus the vertex of Q. By the generality assumption on y , this 

vertex lies not on Ily and, a fortiori, not on the line in question. So V 

and V' meet along a 2-plane, and this tells us that they belong to diffe

rent families of Q. 

Figure 9. 

Conversely, suppose that Ily is contained in a 3-plane V' of a 

cone Q of the net. Let Z.>,_ be the twisted cubic corresponding to the 

other family of 3-planes in Q. We want to see that Z.>,_ and y meet at 

a point different from P = L n y • The 3-plane spanned by Z.>,_ meets V' 

already at P and at the vertex of Q. Being of two different families, 

V and V' have to meet either at the vertex only, or along a whole 2-plane. 

The latter has to be the case here. This 2-plane meets the conic y at P 

plus a second point which~ belonging to X, has to belong also to the 

twisted cubic Z.>.., as was to be shown. 

Therefore the second image of Yl - Y2 in Pr(C/C) is [D1 - Dz] 
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= [i(D1' D~)J = i[D1' - n;'J = - [D1' - D~] since the involution acts as 

minus the identity on Pr(C/C) , q.e.d. 

(8.22) In (8.21) it has been question of divisor varieties attached to 

the system of linear sections of a plane septic. Another important case is 

that of the plane quintics. These arise as discriminant curves of nets of 

quadrics in JP4 , in a similar way as before. More explicitly (cf [2], 

(6.23), (6.27)) , take a smooth plane curve C of degree 5 . The double 

covers C of C fall into two classes, depending on the parity of the 

theta characteristic s giving this covering. The even coverings such that 

H0 (c,0c(s)) = 0 correspond to smooth complete intersections X of three 

quadrics in JP 4 , and the odd ones with dimH0 (c,0c(O) = I correspond to 

smooth cubic threefolds X in JP 4 • 

We recall how one gets the curve C and its covering C in each case. 

In the first one, C is the discriminant curve of the net JP2 of quadrics 

in JP4 containing X , and C is, as in ( 8. 21) , the variety of Chow 

components of 2-planes lying in the cones of the net (quadrics of rank 4 

parametrized by C) . In the second case one fixes a sufficiently general 

line L in the cubic threefold X . Here JP2 is the set of 2-planes of 

JP 4 containing L . The curve C c JP 2 consists of those planes which meet 

X in a degenerate conic plus the line L. The variety of components of 

these degenerate conics (= lines in X which meet L) together with the 

natural map onto C, is the (2:1) covering C--+ C 

We describe next how, in each case, a certain variety of cycles on X 

is naturally related with one half of the surface of divisors in C above 

the system of line sections of Cc JP 2 . In the even case one proceeds as 

in (8.21) The variety X is a canonically embedded curve of genus 5. 

The variety F of "conics" on X is simply the surface x(2) . But, as 

before, a conic determines uniquely (and is determined by) a line of JP 4 

which lies on the quadrics of a pencil of the net determined by X. Such 

a line therefore determines a divisor of degree 5 on C (the families of 

2-planes on the cones, which contain a member containing this line) lying 

above a linear section of C c JP 2 ( the pencil of quadrics containing the 

line) This identifies the variety of "conics" F = x(2) with one half S 

of the surface of divisors of C above the linear sections of C 

In the odd case one considers the Fano surface F of lines on X. 

A line in X not meeting L is met, together with L , by exactly 5 li-

nes of X This yields a birational map from F to a half S of the sur-
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face of divisors of C above the linear sections of C and, more exactly, 

it can be shown that S is the blowing up of F at the point LE F . 

In both cases we have natural identifications of J(X) with Pr(C/C) 

(loc. cit.) . It turns out that these allow us to identify the Abel-Jacobi 

map cp : Alb(F) --+ J(X) with the map 1jJ : Alb(S) --+ Pr(C/C) . But in 

the even case cp is the isomorphism Alb(x(2))""' J(X) and in the odd one 

cp is an isomorphism by [8], p. 329 • Accordingly, 1jJ is an isomorphism 

in both cases. 

9. A DEGENERATION OF SURFACES OF DIVISORS 

The limit case of a curve with a node 

(9.1) Suppose that C is an irreducible curve with exactly one ordinary 

double point, and C a double cover of C. Normalizing both curves, we 

get a double cover 

N--+ N 

involving smooth curves. Call P the double point of C and P1, P2 the 

points in N above P. We suppose given a net A of degree d on N 

such that 

a) A is induced by a morphism o : C --+ IP2 

b) the surface of divisors in N above A is smooth; 

c) the curve of divisors in N above the pencil A - P1 - P2 is 

smooth; 

d) no member of A has its support contained in { P1 , P2} 

(9.2) EXAMPLE.The above conditions are fulfilled if we take C to be the 

normalization at all but one singular point of an admissible curve Cc IP 2 

(cf (8.14)) , the tangent lines at the branches of the remaining singular 

point meeting C outside this singular point again. In particular, this 

will be the case if C is an admissible curve of degree ~ 4. 

In the situation of (9.1) , fix one half of the surface of divisors 

in N above A, and call it S We want to study the image surface So 
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of s in c(d) and the 

Call P' , P" the 

Pz ) the points of N 

c ---- N 

l l 
C ---- N 

relationship between s 
points of c above p 

above P1 (resp. Pz) 

and So . 
and Pi P" , 1 

Schematically: 

P" 1 

P' 1 

l 

(resp. P' 2 

Any divisor of the family parametrized by S and passing through one of the 

four points Pi , P 2 , PY , P2 necessarily passes through a second one, other 

than its conjugate under the covering involution of N ' because any divi-

sor of the net A on N which meets one of the points P1 'P2 has to meet 

the other one too. 

We distinguish the following curves on s 

r12 curve of divisors D ~ Pi+ P2 

r21 curve of divisors fi ~ Pz + P'i 
r• curve of divisors fi ~ Pf+ P2 
r" divisors 

A pl +P2 curve of D ~ 

(9 .3) LEMMA. The following holds on s : 
a) r12 ~ r21 and r• ~ r" (algebraic equivalence) ; 

b) (r ij. r ij) (rij"rji) 0 ; 

c) the cia>Ves r12 , r21 , f I and r" a:r>e smooth and connected. 

PROOF. a) As a point x describes N , the curve fix c S of divisors mee

ting x yields an algebraic family of divisors on S. We have lip1 r' + 

+ r12 lip2 =r' + r21 lip1 r" + r 21 and lip2 = r" + r 12 . From this we get 

r12 ~ r21 and r• ~ r" as claimed. 

b) The curves f12 , f21 don't intersect. For,intersection would 

imply the existence of a divisor in the family parametrized by S , of the 

shape Pi +P~ +P'i +P~ + ..• hence, projecting into A , the existence of a 

divisor 2P 1 + 2P2 + • • • in A • But this contradicts assumption b) of 

(9.1) , by (8.13.b.iii). Hence (r 12 •r 21 ) = 0 and therefore (r12•r12) 

(r21•f21) 0, which proves b) 

c) The curves r' and r" are clearly isomorphic with one half, and 

r12, r 21 with the other one, of the curve of divisors of N above the 
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pencil A - P1 - P2 of N • Smoothness is a restatement of hypothesis c) in 

(9.1) and connectedness follows from (8.8) , q.e.d. 

(9. 4) The projection mapping f : s - s0 c c<d) identifies the curves 

r12 and r21 along the natural isomorphism between these (double switch 

above P1 and P2) into a curve r c s 0 , being bijective elsewhere. 

In fact; if two divisors D1 and fi2 of the family s are identi-

fied by the map f 
' 

their images D1 and D2 in A have to be identified 

by the map N(d) ~c(d) These two divisors of A have to belong to the 

pencil with base points P1 and P2 By condition d) of (9. 1) 'D1 and 

D2 then have at least one coIIllllon point outside { P1 'P2 } • But, by condi-

tion c) of (9. 1) , the pencil I\ - P1 - P2 is free from base points (cf 

(8.13.a.i) , hence D1 = D2 

Thus D1 and D2 ly above the same divisor of A. Since they have 

to coincide outside { Pi , P2 , P\_' , P2} , it remains only to discuss their be

haviour at this set. Using the schematical notation introduced above, the 

sums of the coefficients along the rows and columns of 

( P'i 

Pi 

are the same for D1 and for D2. As remarked in the proof of (9.3.b) , at 

least one of the columns yields a sum equal to 
A 

is the first one, and that D1 has coefficients 

Then D2 either equals D1 or has coefficients 

a-1 

b+l 

• Suppose e.g. that this 

i.e., is gotten from Di by a double switch above P1 and P2. This pro

ves the statement at the beginning of (9.4) • 

By Zariski' s Main Theorem , f is a finite morphism, hence S is the 

normalization of s0 • The curve r is smooth, and S can be viewed as the 
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blowing up of So along r , the curves r12 and r21 being the components 

of the exceptional divisor. The fact that r12•r21 = 0 in S tells us that 

r is an ordinary double curve of So ; this is the only singularity of this 

surface. 

(9.5) We remark, for later use, that at DE r c So it is 

because local coordinates x,y,z can be chosen such that 

phic with k[[x,y,z]]/xy. 

dim Ts (D) = 3 , 
- 0 
0 is isomor-s0,D 

(9.6) Considering again both halves S' and S" of the surface of divi--sors of N above A (see (9.1)) , and denoting by S0 , S0 their res-

pective images in c(d) , one proves in the same way as in (9.4) that, in 

c(d) , s0 n s0 = (/J holds. 

The induction step 

(9.7) In this subsection we shall consider the following situation. First, 

a diagram 

C 7[ C 

\/, 
T 

where T is a smooth (non necessarily complete) connected curve and 

f: C--+ T is a family of complete curves parametrized by T. We assume 

Ct := f-l (t) to be smooth if t 'f O € T and Co having exactly one ordina

ry double point. Toe scheme C is assumed to be smooth and 7f : C --+- C an 

irreducible etale covering of degree 2. 

Secondly, we are given a T-morphism 

such that, for each t € T , if t 'f O then at defines on Ct a net At 

yielding a smooth surface of divisors in Ct ; for t = 0 we assume that, if 

N--+- N are the respective normalizations of c0 and c0 , then the net 

induced on N by Co ·--+ JP 2 satisfies the conditions a) - d) of (9. I) 
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(9.8) REMARK. Take a I-dimensional family of admissible curves (cf (8.14)) 

having, for t f, 0 , a fixed set M clP 2 of nodes and , for t = 0 , one more 

singular point. Blowing up the plane along M yields a family C as above, 

and the projection morphism from the blowing up to lP2 induces a morphism 

a satisfying the required properties (by admissibility) • 

We call d the coDUIIOn degree of the systems At • Furthermore SJ: u St 
A 

denotes the surface of divisors in Ct for t f, 0 , and S' u S11 stands for 

the surface of divisors in N; S' and S11 are the halves of this surface 

and they are the normalizations of their respective images 

cJd) , described in (9.4) 

S' 0 and s11 
0 in 

LEMMA. Up to an etale base change in T, we may assume that there exist 

smooth schemes E ' , E II and morphisms E ' - T , E 11 - T having as fi

bres Si: and st above t e: T • 

PROOF. Consider the 

c(d) = S¥(C) (resp. 

ced from n • The map 

dth synnnetric 

c(d) = sd(C)) 
T 

a: C-+ JP.f 

A 

power of C (resp. C) above T, 

and the mapping c(d) - c(d) dedu

induces a natural one lP2 - c(d) 
T 

in the obvious way. We define a scheme E by the pullback diagram 

E-+ C(d) 

! l 
p2 - c(d) 

T 

By composition, we get a morphism E - T. It follows from the definition 

that E ( t) = S~ u St above closed points t e: T • We know that Si: n St = (/J in 

c~d) if t f, 0 and, by (9. 6) , the same holds at t = 0 

Take the Stein factorization of 1:· - T, yielding by the above an 

etale covering of degree 2 of T. Pulling back the whole situation to this 

cover, we may assume that the Stein factorization yields a trivial covering 

of T. Otherwise said: E splits there into two components E' , E11 with 

the required properties, modulo smoothness of these schemes. 

Fix one of them, and call it now E (caution) • Call also St the 

half SJ: or St now involved, and write S instead of the corresponding 

S' or S11 • Smoothness of· E at a point fi is equivalent to dim T1:(D) 

= 3. For each te:T we have, if De:St: Tst(:6) = Ker (TE(:6) -TT(t)) 

Assume t f, 0 ; since St is smooth, we have dim Tst(:6) = 2 • The curve T 
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being smooth, we get dim Ti:; (D) :,; 2 + 1 = 3 and , since dim Ti:; (D) ~ 3 , equa-

lity follows in this case. Obviously the same thing holds for DE: So not 

lying on the double locus of So 

It remains to consider Ti:; (D) for n in the double locus of so By 

(9.5) 
' dim Ts0(D) = 3 • The result will follow if we show that the map 

Ti:; (D) ----+- TT(O) is zero at such i3 Denoting by Q1 , Q2 the singular 

points of Co (i.e., the points we called P' , P" in the preceding sub·-

section) , at least one of them appears with coefficient equal to in D 

(cf (9. 3) , (9. 4)) • Suppose thus D = Q1 + D1 with Q1 not belonging to 

the support of D1 • In view of this decomposition we get a fibre product 

diagram 

Tecd)cn) ---Te(Q1) 

! ~ 1 df(Q1) 

TC(d-1) (D1) ----+- TT(O) 

The map we want to check to be zero is the composite map of this square, res

tricted to Ti:;(D) c Tc(d)(D) • By smoothness of C at Q1 we have that 

TC(Q) = TCo(Q1) , hence df(Q1) = 0 and the composite map itself is zero, 

o.e.d. 

PROPOSITION. (cf [8], p. 318) With the choice of notations made in the 

proof of the preceding lemma, the inequality 

holds for t j O • 

PROOF. This is taken from (loc. cit.) , our situation being topologically 

the same as the one dealt with there. We sketch it briefly. The normal bun

dles of f12 and f21 in S being trivial by (9.3) , a topological model 

of St can be gotten by taking tubular neighbourhoods isomorphic with 
0 

r ij x ti (ti = unit disk in <t) of the r ij , throwing r ij x ti away from S 

and pasting rij x ati together by means of the isomorphism deduced from 

r1 2 ""f21 • Fix next a parameter value t j O and take a path I from t 

to O. The restriction of the family i:: to I is topologically isomor

phic with the cylinder of a suitable degeneration map p : St----+- So cons

tructed with aid of the above presentation of St. The cohomology sequence 
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(we take coefficients in ~) associated to P leads to an exact sequence 

(r = double locus of s0 ) • Secondly, from the cohomology sequence associa

ted to the normalization map g: S - So one gets: 

Writing out the first one at q = I yields 

and the second one at q = 0,1 yields 

* 
0---+ H0(so) ~ HO(s)--+ HO(r)--+ H1(So)--+ H1(S) 

Here g* is clearly an isomorphism. hence the second sequence gives 

Computing ranks, we derive: b1(St) $ b1(So) +b0(r) $ b1 (S) +2bo(r) • By 

(9.3.c) the curve r is connected, hence b0(r) =I. Dividing by 2 we 

get the desired result, q.e.d. 

REMARK. If the weak form of Question (8.15) had an affirmative answer, we 

ought to have an equality in the formula of the above proposition. 

(9 .9) CONCLUSION. In ·the situation described in (9. 7) , suppose that we 

know for both halves of the surface of divisors deduced in the normalization 

N - N of the situation at the origin, that their irregularity is boun

ded by an integer k. Then the irregularity of both halves of the surface 

of divisors at t 1' 0 is bounded by k + I • 
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10. THE INTERSECTION OF THREE QUADRICS 

Main statement 

(JO.I) THEOREM. Let C be a smooth plane septic, C--+ C a douhle cover, 

and A the linear system of line sections of C. If S is a smooth half of 

the surface of divisors of C above A, then the natural map 

~ Alb(S)--+ Pr(C/C) 

is an isogeny. 

(10.2) COROLLARY (compare [27], p. 103). Let X be a smooth complete inter

section of three quadrics in 1P 6 • Assume that the Pano surface F parame

trizing the conics on X is smooth. Then the Abel-Jacobi mapping 

Alb (F) --+ J (X) 

is an isogeny. 

REMARKS. For the way in which (10.2) follows from (JO.I) see (8.21) or 

[27], p. 103, where the idea comes from. The smoothness assumption for the 

Fano surface is fulfilled for a general X (ibid) . We dont know whether 

the Abel-Jacobi map is an isomorphism or not. Furthermore, in view of (8.16) 

the statement of (JO.I) is equivalent to saying that q(S) = 14 , since 

Pa(C) = 15 in this case. The remainder of this section is devoted to the 

proof of this fact. 

Theta characteristics on smooth plane septics 

We recall ([22]) that a theta characteristic of a smooth curve C 

is an element ~ of the Picard group Pic(C) such that 2~ = [l(c] holds, 

the latter being the canonical class of C. Theta characteristics are re

presented by half-canonical divisors, i.e. divisors D such that 2D = Kc 
For example, if C is a plane septic and L denotes a linear section of 

C, then 21 is a naturally arising half-canonical divisor of C. 

The plane septics are parametrized by a JP 35 • We denote this space 
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by the symbol H7 and state: 

PROPOSITION. A genero"l Ce: H7 has, besides the divisors of the "linear sys

tem 1211, on"ly a. finite number of effective ha"lf-canonica"l divisors. 

PROOF. We content ourselves with an ad-hoc verification of this fact. An 

effective half-canonical divisor on a smooth Ce: H7 is an effective divisor 

D such that there exists a plane curve C of degree 4 intersecting on C 

the divisor 2D. This establishes a bijective correspondence between half

-canonical divisors on C and quartics C which meet C everywhere with 

even multiplicity. We shall say roughly that C is eVel'7fWhere tangent to 

C. The proposition thus claims that a I-dimensional algebraic family of 

quartics everywhere tangent to a general Ce: H7 must consist of double co

nics (i.e. conics counted twice) • 

Call Hi+ = lP11+ the space parametrizing plane quartics. We consider 

a correspondence r c H~ x Ht+ between smooth septics and arbitrary quartics, 

defined by 

r = { (C,C) e: H~ x HI+ IC is everywhere tangent to C } • 

Take an irreducible component Z of r projecting onto H~ , and consider 

the diagram (with obvious maps) 

If we prove that dim Z ~ 36 implies that ~(Z} c Hi+ is contained in the 

subvariety of double conics, we are done. 

We stratify Hi+ as follows: 

So = smooth quartics 

S1 irreducible quartics, with Pa= 2 

S2 = irreducible quartics, with Pa 
S3 = irreducible quartics, with Pa 0 

St+= line+ smooth cubic 

S5 line+ irreducible singular cubic 

s6 = smooth conic+ smooth conic (distinct) 
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S7 line + line+ smooth conic (distinct lines) 

Sa line + line + line + line (distinct lines) 

S9 2 line + smooth conic 

S10 = 2 line + line + line (distinct lines) 

Sn= 2 conic (smooth or not) 

S12 = 3 line + line (distinct lines) 

These sets are all irreducible, and their respective dimensions are 14, 13, 

12, 11 , 11 , 10, IO, 9 , 8, 7, 6, 5, 4. 

Assume thus dim Z ~ 36 , as said before. We want to show that w(Z) c 

c S11 holds. If this is not the case, the general member of w (Z) would 

belong to an Si , i # 11 . We shall exclude all these possibilities by coun

ting constants. 

Suppose i = 0 . Take CE w (Z) n So and suppose that C' , C" E H~ are 

such that (C',C), (C",C) E Z. Say C•C' = 2D', C·C" = 2D" on C. Then 

2(D'-D")=0 on C ' 
hence D"=D' +T with TE 2J(C) By Riemann-Roch 

applied to C we get .f (D' + T) = I 4 + I - 3 = 12 So, dimlD'+T\=11 

We consider the mapping f : w-1 (c) _ c<14) which assigns to a 

pair (C" ,C) as above D"EC(l 4) The image f(w-l(c)) is contained in 

a finite union of 1P 11 's . As for the fibres of f , suppose, with the 

C' is given in 1P2 by above notations, that D' 

'¥; = 0 and C" by '¥~ = 

form '¥7 - c'¥7 E H001P2 (7) 

o - 01P2 (3) --+ 01P2 (7) 

D" on C Then, if 

0, we have that, for a suitable constant c, the 

goes to O in C From the exact sequence 

--+ 0c(7)--+ 0 we derive the following one: 

Hence the dimension of the fibre of f is bounded by 10 . Therefore it is 

dim w-l (C) ,,; 10 + 11 = 21 . Since dim So = 14 , we would get dim Z ,,; 35 , 

contradicting our assumptions. We conclude that the general member of w(Z) 

is not contained in So 

Assume now i = I . We shall merely point out the differences with 

the above case. Here we replace C by its normalization N The curve C 

being everywhere tangent to C implies in particular that C induces a 

divisor on N which has even multiplicity outside the points of N projec

ting into the singular locus of C, i.e. a divisor which always can be put 
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in the form Dsing + 2D , where the coefficients of Dsing are O or I • 

There are therefore only a finite number of possibilities for Dsing. For 

each such choice, the degree of D is a certain constant d s 14 • If C' , 

C" E: H~ are such that (C' ,C) , (C" .c) E: Z , C' giving n;ing + 2D' and C" 
• • II 2 II I II g1.v1.ng Dsing + D , suppose that Dsing = Dsing • Then 

again to D" = D' + T , with , E: 2J(N) • Here R.R. yields 

2D' = 2D" leads 

l(D' + ,) = d + I -

- 2 = d- I s 13 (since d > 2 , the divisor D' +, cannot be special) • The 

inverse image w- 1 (C) breaks up in components depending on the nature of 

Dsing, and any such component is mapped into i(d) for suitable d, its 

image lying inside a finite union of linear systems of dimension at most 

12 • The fibres of this mapping are again bounded by JO , thus dim,ljl-1 (C) s 

s 22 • Now dim St 13 implies dim Zs 35 , contradicting our assumption. 

If i = 2 the components of w- 1(C) are shown to be of dimension at 

most 10 + 13 = 23 (the allowed dimension for the linear systems we use in 

N has increased ~Y , since Pa(N) has decreased by I) • But dim S2 = 

12 and again 12 + 23 < 36 • 

Suppose i = 4 • Write C = L +C3 where L is a line and C3 a 

smooth cubic. Say 
I 

and a divisor Dc3 

(C' ,C) E: Z ; the curve C' induces a divisor D' on L 
L 

on C3 • These divisors must have even multiplicity at 

points outside the intersection of L and C3 • If we write thus D{ = 

' ' ' ' ' D1,sing + 201 and Dc3 = Dc3 ,sing+ 2t5c3 respectively, where the multi-

p.licities of the "singular" parts are O or at each point, we reach 

again a decomposiiton of w-l(c) in components following the nature of the 

couple of "singular" parts. Take such a component, say X, and suppose 

the "cS - parts" arising from its members having degrees ~ and dc3 res

pectively. Then we map f : X - 1(d1) x c/dc3) in the obvious way. It 

is clear that d1 s 3 and <ic3 s JO • The first projection lies inside a fi

nite union of linear systems of dimension at most 3 and the second one of 

dimension at most (IO + I - I) - I = 9 • Therefore the image of X lies in a 

variety of dimension at most 3 + 9 12. The dimension of the fibres of f 

is bounded again by JO, because L and C3 can have no connnon component. 

So, dimX s 10+12 = 22, and dim ljl-l(c) s22. But dim S4 =II, hence 

dim Zs 33 would follow, which is impossible. 

We list the remaining cases, the proofs going in a similar way: 

i 3 dim w- 1 (C) s 24 dim Z s 35 
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i 5 dim iµ- 1 (C) $ 23 dim z $ 33 

i 6 dim 1/J-l (C) $ 24 dim z $ 34 

i 7 dim 1/J- 1 (C) $ 23 dim z $ 32 

i 8 dim iµ-l (C) $ 22 dim z $ 30 

i 9 dim 1/J-l (C) $ 28 dim z $ 35 

i 10 dim iµ-l (C) $ 27 dim Z $ 33 

i 12 dim 1/J- 1 (C) $ 27 dim Z $ 31 

The only remark to be added is the following, about multiple components. For 

the sake of clearness, we treat the case i = 12 

Say C = 3L1 + L2 with L1 'f L2 ' 
and suppose <c, ,c) E z Then C' 

induces a divisor D' 1 on L1 and a divisor D' 2 on L2 The condition 

to which D' 1 (resp. D2) is subjected is to have even multiplicities at 

points different from L1 n L2 • (Remark that this would not be the case for 

D{ , if L1 was counted with even multiplicity). The inverse image iµ-l(c) 

splits into components depending on the nature of the "singular" part of 

these divisors. Take such a component X and map it into L1 (d1) x L2 (d2) as 

before, where dis 3 depend on X The image of this mapping has dimen

sion bounded by 3 + 3 = 6 • To get a bound for the fibres we use the sequen

ce O-->- 0JP2(5) -->- 0JP2(7) __.. 0L1 +L2(7) --+ 0 • By the latter, the di

mension of the fibres is s dim H001P2(5) = 21 • Therefore dim iµ-1 (C) s 21 + 

+ 6 = 27, and dim Z s 31 would follow. 

This ends the proof of the Proposition. 

(10.3) A theta characteristic s is called even if H0(c,0c(s)) has even 

dimension and odd if the dimension is odd. The above proposition can be 

translated therefore in the following terms: 

(10.4) For a smooth plane septic, the following holds, if C is sufficient

ly general: Let s be a theta characteristic on C, different from [2L] . 

Then H0 (c,0c(O) = 0 if s is even and dim H0 (c,0c(O) = I if s is al,d. 

The surface of divisors on an etale double cover of a plane septic 

(10.5) Consider again the open subvariety of parametrizing smooth 

plane septics. We cover this space by a variety X consisting of the points 

of order 2 in the Jacobians of these curves. The points of X can be na-
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turally identified with the theta characteristics different from [21] of 

the curves parametrized by ~ • This is done by attaching to TE 2J(C) the 

theta characteristic i=; = T + [21] • We shall keep X identified in this way 

with the variety of theta characteristics (distinct from [ 21]) of smooth 

plane septics. We shall speak therefore of even and odd covers of such sep

tics. 

By a result of Mumford ([22], p.184) this implies that X breaks 

up •into two disconnected parts (cf also [27], p. 92) : X0 = { even covers} 

and X1 = { odd covers } • 

PROPOSITION. The varieties X0 and X1 are irreducible, hence they are the 

irreducible components of X. 

PROOF. Let C be a smooth plane septic. The even covers stem (in the sense 

of (8.21)) from the smooth complete intersections of three quadrics in lP6 

(cf [2], (6.23)) • The odd ones stem from smooth cubic hypersurfaces of F 6 

containing a lP3 ·c F6 (ibid, (6.27)) • Since smooth intersections of three 

quadrics in lP6 define an irreducible variety and similarly do the pairs 

consisting of a JP3 c lP6 and a smooth X~ c lP6 containing it, we conclude 

that the even theta characteristics I'; with Ho= 0 yield an irreducible 

subset X0 of X0 and the odd ones with dim Ho = I an irreducible subset 

X{ of X1 . We claim that X0 = X0 and X1 = X1 . In fact: otherwise we 

would get an open subset in X not meeting X0 u Xi , which would project 

onto a dense subset of H~ ; but this contradicts (10.4) , q.e.d. 

Take a smooth plane septic C . If the surface of divisors belonging 

to one cover C of C (and the system of linear sections of C ) is smooth, 

then it will be so for all double covers of C. Actually it suffices that 

one of the halves of the surface of divisors for one cover is smooth: this 

follows from (8.6) , being d 7 in our case. 

The surfaces of divisors arising from the points of Xo (resp. X1) 
fit into a scheme Eo above Xo (resp. a scheme E1 above X1) . From 

the above we derive the existence of an open subset Uc H~ such that in the 

pullback diagrams 

r ~r~t 
r 1 lu---+- x11u- u 

f1 
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the fibres of fo and f1 yield exactly all smooth surfaces of divisors 

occurring for double covers of smooth septics (with respect to the system 

of linear sections) . 

Because of the irreducibility of Xa!u and X1!u we get finally two 

irreducible families of smooth surfaces of divisors, complete in the above 

sense; one for even and one for odd covers. Remark that, a priori at least, 

the Stein factorization of fo (or of f1) could give a trivial covering 

of Xalu (resp. X1!u) The symmetry due to the odd degree case (cf (8.6)) 

allows us nevertheless to state the following 

(10.6) COROLLARY. The irregularity of a smooth half of the surface of divi

sors got in a double cover of a smooth plane septic C (with respect to the 

system of plane sections of C) depends at most on the parity of the cover, 

hut not on the particular C chosen nor on the double cover of C. 

End of the proof 

(10.7) We shall need the notions of (9.7) , (10.3) and (10.5) in a 

slightly more general setting. In order to keep things short, we just quote 

the following: 

Suppose we are dealing with plane curves C of odd degree d = 2k + I 

and stable in the sense of Deligne-Mumford. Here again, as in (10.5), we 

can identify naturally points of order 2 in J(C) with classes I; E Pic(C) 

such that 21; = [we] (here we = OC(d-3) is the dualizing sheaf for C) , 

i.e. (honest) theta characteristics of C . In particular, defining as in 

(10.3) the parity of a theta characteristic, we have the notion of parity 

of double covers of such curves. 

It follows from a result of Beauville ([3], Thm. ( 1.1)) generalizing 

an analogous result of Mumford for smooth curves ([22], p.184) , that 

this parity is invariant under deformations, i.e. if C-->- T is a family 

of curves as above, with connected base T, and C-->- C is an €tale co

vering of degree 2, then the parity of the coverings Ct-->- Ct is the 

same for all t E T 

Consider the following statement: 

(ok) : There exists an admissible (cf (8.14)) plane septic C with k 

nodes and, for each parity, a double cover C of C of this parity such 
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C have irregularity 14 - k • 
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By (10.6) , if we prove (cr 0) we are done with (IO.I) • We shall 

prove (cr10) and that, for I~ k ~ 10 , statement (crk) implies statement 

(crk-J) • Remark that by (8.16) the above irregularity is already known to 

be <'. 14 - k , so only the reversed inequality is essential in that statement. 

LEMMA. Statement (cr1 0) holds. 

PROOF. We shall show that there exists an admissible plane septic with 10 

nodes as singular locus and such that the linear system induced on its nor

malization by the line sections is non special. Before doing so, we remark 

that any such curve C satisfies the requirements of (cr1 0) . In fact, using 

for instance [3], Section I , one sees that C has double covers of both 

possible parities. Take an arbitrary double cover C of C, and consider 
~ 

the respective normalizations N and N of these two curves. By the non-

-speciality of the system A of linear sections on N, Theorem (8.19) ap

plies (caution: C and C of (loc. cit.) are now N and N respecti

vely) hence the irregularities of the halves of the surface of divisors in 

N above A equal Pa (N) - I = 4 , as was to be shown. 

To prove the claim at the beginning of this proof, consider a smooth 

curve N of genus 5, of general moduli. The variety V of all base 

point free, non special g~ on N is clearly irreducible and has dimension 

5 Any g~ EV yields a birational map of N onto a singular plane septic 

C, determined upto projective isomorphisms. We see first that a general such 

C has nodes as only singularities (of course, this is nothing new and can 

be deduced in other ways, too). 

In fact, if C has a point of multiplicity <'. 3, then there exist 

points P , Q , R on N such that dim Jg~ - P - Q - RJ , hence g~ = 
= J gl + P + Q + R J • By Brill-Noether theory , N has 001 gl 's , hence at most 

004 such g~ will exist. Secondly, if C has a cusp, then there exists 

P EN such that dim Jg~ - 2P J = I , hence g~ = Jg§ + 2P J . By Brill-Noether 

again, N has 003 g§ 's , hence there are at most 004 g~ 

curve C. Finally, if C has a tacnode, then there exist 

that dimJ g~ - P - Q J = I and Jg~ - 2P - 2Q I 1' </J • Thus g~ 

and gg + P + Q is special. Given (P ,Q) E N( 2) , there are 

yielding such a 

P , Q E N such 

I gg + 2P + 2Q I 
002 effective ca-

nonical divisors containing P + Q , hence 002 choices of gg as above can 

be made. Therefore we obtain at most .,,4 g~ for which C has a tacnode, 
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and a general g~ yields a curve C with exactly 10 nodes as singulari

ties. 

To end with, we 

tion (8.14.b) • If 

rities, but for which 

have to show that a general C satisfies also condi

g~ EV yields a septic C with nodes as only singula

(8. 14.b) fails to be true, then at least one of the 

following things happens: 

i) 3P,Q,REN suchthat lg~-2P-2Q-2Rl#</J 

ii) 3 P',P",Q,REN such that dimlg~-P' -P" I 

- 2Q- ZR I# </J 

and I g~ - P' - P" -

iii) 

for i = 1,2 

3 P I P'.' EN , i = I, 2 and Q EN 
i' l. 

and jg~-HJ_-r:Pi'.-2Q Ii </J; 

such that 

iv) 3 Pi ,Pi EN ' i = 1,2,3 such that dim j g2 - P! - P'.'j for 
7 l. l. 

i 1,2,3 and I go/ -r:P'. -H'.'I 'f 0 
l. l. 

v) 3 P,Q EN such that I g~ - 3P - 2QI 'f </J ; 

vi) 3P',P",QEN such that dim jg~-P'-P"j and either 

j g~ - P' - 2P" - 2Q I 'f </J or j g~ - P' - P" - 3Q I 'f </J ; 

vii) 3Pi,PiEN ' 
i = 1,2 

' 
such that dim lg~-P!-P'.'I for 

l. l. 

1,2 and lg~ -Pi -P1-Pz -ZP2I 'f </J ; 

viii) 3 PEN such that jg~ - 4PI 'f </J ; 

i 

ix) 3P',P"EN such that dimlg~-P'-P"I = I and lg~-P'-3P"jf</J. 

As above, one finds that the g~ EN which satisfy to anyone of these 

conditions define a subvariety of V of dimension at most 4, thereby fi

nishing the proof of this lemma. 

PROPOSITION. For I ,s;k,s; 10, statement (crk) implies statement (crk_ 1) • 

PROOF. We assume (crk) for k ,s; 10 fixed. Let Co be an admissible septic 

with exactly k nodes, say P1 , P2 , ••. , Pk , and Co a double cover of a 

given parity, such that the halves of the surface of divisors in the norma

lization of "Eo have irregularity 14 - k 

Consider a plane septic with singular points at P2 , .•• , Pk, being 

smooth elsewhere, and take the pencil that it determines together with Co 

By the open nature of admissibility, if we drop a finite set of parameter 

values, we get a family C--->- T of septics giving Co at t = 0 and, for 

t f 0 an admissible septic with exactly k-1 nodes, at P2 , • • ·, pk • 

Up to an etale base change, we may assume that the above family C has 

a section (one can use e.g. a line in ]P2 meeting Co everywhere trans-



135 

versally to get a. local multisection of C ; then one takes T' equal to the 

image of this section and pulls all back via T'---+ T). Consider the Pi-

card scheme Pie C/T ([13], or [19], p. 22) • The group scheme 

= 2 Pie C/T is etale above T . The (2: 1) covering c0 of c0 

us with a point in G(O) • We may suppose that the component of G 

G = 
provides 

through 

that point maps isomorphically onto T (by restricting T to the image of 

that component and pulling back to the component itself). Since the property 

of C--+ T having a section is not lost in this way, we get, by (loc. 

cit.), p. 23 , that the section 

provides us with an invertible 

the 

T --+ 2 Pie C/T of which we now dispose 

°c - module L such that L ® L <>< Ge . Take 

module Gee L being endowed with its natu-then C = Spec C <°c e L) , 

rally deduced °c - algebra structure. The map 

A 

1r:c-c 

yields an etale (2: 1) covering of C inducing at t = 0 the covering 

Co --+ Co we started with. Fix a parameter t f, 0 and look at the double 
A 

cover Ct--+ Ct. By (10.7) , this has the parity we have chosen at the 

beginning. 

We claim that this situation takes care of statement (ok_1) for this 

parity. In fact, Ct is an admissible septic with k-1 nodes. As for the 

condition concerning irregularities, remark that the normalization of the 

above situation, say Ct --+ Ct , is specialization at t of the following 

construction: Blowing up the plane at P2 , ••• , Pk provides us with a fa

mily C--+ T and a natural morphism C--+ C over T. Form the pull

back diagram 

C ~ C 

! l 
:::. 1T -
C-+C 

and consider the morphism over T 

1T 
C -----+ C 

\/ 
T 
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Herewith we are in the situation described in (9.7) (cf also (9.8) and 

(9.2)) . Hence Conclusion (9.9) applies. The normalization of its speciali

zation at the origin being exactly the normalization of the situation given 

by Eo--+- Co , our initial hypothesis together with (9.9) says that the 

irregularity of the halves of the surfaces of divisors in <\=(normalization 

of Ct) is bounded by ( 14 - k) + I = 14 - (k - I) , q. e. d. 

This ends the proof of Theorem (JO.I) • 

11. EPILOGUE 

Let F be the Fano surface of conics in a general smooth complete in

tersection of threee quadrics in JP 6 • The computation of the irregularity 

q = 14 settles the harder part of the study of its invariants. One may ask 

what yield the other ones. 

This question can be answered by using similar methods as in Part One. 

From the numerical study of the surface F , we merely quote some of the out

puts: 

Kp2 = 3376 

Topological Euler characteristic E(F) 1760 

Pa(F) 

Pg(F) 

427 

441 (using q(F) 14) • 
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