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CHAPTER 1 

INTRODUCTION 

In this paper we treat a method for the formal definition of syntax and 

semantics of programming languages. As an important application, a com­

plete formal definition of ALGOL 60 is given. 

We can distinguish between two aspects of the formalization of a pro­

gramming language: 

1. Formalization of the syntax: Given an alphabet, i.e. a finite set of 

symbols, to exhibit a set of rules which define which sequences of 

symbols over this alphabet constitute a program in the language con­

cerned. 

2. Formalization of the semantics, i.e. introduction of a formal system 

which defines the meaning of a (syntactically correct) program. 

A fairly satisfactory solution to the first problem was given in the 

ALGOL 60 report [as], in which the syntax of ALGOL 60 was defined by 

means of a formalism due to Backus [2]. 

The notation of Backus has been used subsequently for the definition of 

several other programming languages and also for the syntactical defini­

tion of related formal systems. As was proved later ~3], Backus notation 

is equivalent to a concept which had been introduced previously by 

Chomsky [11], viz. that of context free grammar, which is a specializa­

tion of the notion of phrase structure grammar, also due to Chomsky [10]. 
However, Backus notation is not entirely sufficient for the definition of 

the syntax of programming languages, such as ALGOL 60. In fact, the ALGOL 

60 report contains, besides the rules formalized in Backus notation, 

several others, expressed in English, which impose further restrictions 

on the class of syntactically correct programs. It can be proved that it 
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is impossible to include these further restrictions in a context free 

grammar [20]. 

A generalization of the notion of context free grammar, which still 

needs some rules stated in English, but which allows considerably more 

formalization of the syntax, has been given by van Wijngaarden Go]. 
Another extension of context free grammars, which also makes it possible 

to formalize rules which cannot be expressed in Backus notation, has 

been proposed by Caracciolo di Forino [6]. 

After the problem of the formalization of the syntax had been (partly) 

solved, it seemed natural to try and find a formalism for the definition 

of the semantics of programming languages. In the ALGOL 60 report, the 

semantics is described entirely in English. However, there exists a fair­

ly general agreement that this is unsatisfactory and that it is desirable 

to formalize the semantics (maybe only a part of it) as well.In fact, it 

soon appeared that the description in English shows several defects, 

mainly apparent from the fact that various constructions may be thought 

of, for which the ALGOL 60 report does not give an unambiguous interpre­

tation. A list of these ambiguities (which is not even complete) has 

been given by Knuth [21]. 
In the past few years, several systems for the formalization of the seman­

tics of programming languages have been proposed. However, there exists 

no agreement at all on what one means by a semantical description of a 

programming language. In September 1964, a conference on "Formal Language 

Description Languages" was held, organized by the technical committee on 

programming languages of the International Federation for Information 

Processing. The proceedings of this conference [41] show clearly how 

much the ideas of the several authors diverge. 

Landin [30, 31, 32], Bohm [4, s] and Strachey [43] use the A-calculus of 

Church as the basis of their formalisms. Essentially, this means that they 

try to describe a program by means of a functional notation. However, in 

our opinion this conflicts with the dynamic structure of a program, which 

consists of a number of instructions executed successively. (This criti­

cism has also been given by Wirth [47] .) In defence of the use of the 
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A-calculus it should be mentioned that it can be used to describe the 

locality concept of ALGOL 60 in a way which is more elegant than in any 

other system of which we know. Assignment statements and goto statements 

on the other hand can be included in the system only with considerable 

difficulty. We may add to this that the paper of Landin [32] forms the 

most completely worked out system for the definition of ALGOL 60 which 

has been proposed up to now. 

Steel [40, 42] has given the foundations for his way of formalizing 

semantics, without, however, showing how fundamental concepts in program­

ming languages can be described with his system. 

McCarthy [34, 35] also gives only simple examples, from which it is 

difficult to conclude whether his mechanism is sufficient for the more 

complicated concepts of a programming language such as ALGOL 60, e.g. 

the meaning of declaration, of recursive procedures, or the call by name 

concept. McCarthy introduces the notion of a state vector, the components 

of which are: the current values of the variables which occur in the pro­

gram, and the number of the statement which is to be executed. He admits, 

however, that the above mentioned concepts will require a more complicated 
1) 

state vector . 

Wirth [47] lets the semantical description of a programming language run 

parellel to its syntactical definition. Whenever a syntactical rule is 

applied during the analysis of a program, a corresponding semantical rule 

is applied which changes the values of zero or more entities in a so­

called environment. The semantical rules are formalized in a language 

which is said to correspond closely to the elementary operations of a 

computer. It is assumed that the concepts of this elementary language do 

not need further formal definition. As possible objections to his approach 

we might mention: As Wirth himself admits, it is applicable only to pro­

gramming languages whose syntax is less general than that of a context 

free grammar. Also, it appears that the system is not entirely sufficient 

for the treatment of the main example he gives, namely of the language 

EULER, a generalization of ALGOL 60 (see also [46]). First, he has to 

extend his elementary notation with a number of operators and types, the 

l) A combination of the formalisms of Landin and McCarthy has been used 

for the formal definition of PLII, see [s3]. 
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meaning of which is in our opinion not so obvious that they belong in 

this elementary system. Furthermore, the definition of the meaning of 

an EULER program is given in two phases, the second of which does not 

have the structure as described above, since in this phase the seman­

tical rules are not applied in parallel to the syntactical ones. 

When we compare Wirth's method to the system we propose in this paper, 

it appears that his degree of formalization is considerably less than 

ours, Concepts which he considers too elementary to need further formal 

definition, have been treated formally in our system. On the other hand, 

his mechanism is of greater practical importance, since a definition 

of a programming language with his method can be used as the basis for 

a compiler for that language. We shall see that it is not at all easy 

to do the same with our system. 

Analogous considerations hold for the work of Feldman [19]. The "Formal 

Semantic Language" which he uses to define the semantics of programming 

languages, has been designed for the purpose of constructing compilers. 

For these practical problems, FSL has proven to be of much use. However, 

we feel that FSL is too complicated a language to be considered a solu­

tion to the problem of the formalization of semantics. 

Garwick [21] wants to define programming languages by means of their 

compilers, which are supposed to be machine independent. An abstract 

computer must be introduced, the code of which is used to write this 

compiler. The output of the compiler must also be in this code. However, 

he omits all details of the properties of this code. Moreover, it is 

doubtful whether the concept of translation, however great its impor­

tance be in practice, should be used for the definition of a formal 

language. 

Nivat and Nolin [39] define the semantics of ALGOL 60 in several steps. 

First an ALGOL 60 program is translated into a program written in so­

called ALGOL E, The result is translated into an ALGOL n program. ALGOL 

n resembles an assembly language so much that further definition is 

unnecessary. 

Finally, we mention some investigations of a more theoretical nature 

which have been inspired by problems concerning the semantics of pro-



5 

gramming languages: El got [11], El got and Robinson [18], Igarashi [25, 

26] , Thiele [44] and Yanov [s1}. 

The system that we treat in this paper is based on two papers by van 

Wijngaarden [48, 49]. We quote from [48]: 
"The definition of a language should be the description of an automa­

tism, a set of axioms, a machine or whatever one likes to call it, that 

reads and interprets a text or program, any text for that matter, i.e. 

produces during the reading another text, called the value of the text 

so far read. This value is a text that changes continuously during the 

process of reading and intermediate stages are just as important to 

know as the final value". 

This idea is worked out as follows l). 

An abstract machine is introduced, which in the sequel will be called 

"processor". A text which is offered to the processor for evaluation 

is called a "name". A number of symbols have the property that their 

occurrence in a name causes a special reaction of the processor. Such 

a special symbol is e.g. the so-called metacomma, denoted by~· A name 

will consist in general of a sequence of so-called simple names, which 

are separated by these metacommas. The evaluation of a name is perform­

ed by successive evaluation of the simple names which constitute it, The 

value of a simple name is determined by consulting a list of rules, the 

so-called "list of truths", which list will be called V in the sequel. 

This list, V, is initially empty and is filled during the evaluation of 

a name with the values of the simple names which constitute it. The way 

in which V is consulted to determine the value of a simple name may 

provisionally be summarized as follows: The list of truths has essentially 

the same structure as a Markov algorithm [33], i.e. it is a list of rules, 

consisting of a left and right part, separated by the symbol is. These 

rules are applied in the same way as with a Markov algorithm. However, 

an important extension has been introduced, namely the possibility of 

using metalinguistic variables (in the sense of Backus) in these left 

1) The following description is intended to give only a first impression 

of the system. Precise definitions will be given in the next chapters. 
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and right parts l). Moreover, the definition of the values which may be 

assumed by these metalinguistic variables is done by means of rules 

which also form part of V. Another new feature is the possibility of 

having the application of a truth in V depend on a condition, also 

belonging to this truth. 

The formalism, of which we have sketched some principles above, may 

itself be considered as a formal language. Since this language is used 

for the definition of other languages, we shall call it in the sequel 

"the metalanguage". 

A complete description of the metalanguage is given in chapter 2, 

Comparison with [.4s, 49] will show that some changes have been introduced. 

First of all, the idea of a preprocessor has been done away with. This 

was used in [48, 49] to reduce, by means of a non-formalized process, 

concepts which are logically redundant, to more fundamental ones. Since 

we wish to give a complete formal definition of ALGOL 60, we cannot use 

the preprocessor. Also, there no longer appear any "loose remarks concern­

ing locality and so on", which were supposedly present in V in [49]. 

Some changes in the notation have been adopted, to avoid confusion be­

tween symbols in the language which is to be described (e.g. the symbols 

"="and"," in ALGOL 60) and symbols in the metalanguage (e.g. i~ and co), 

Furthermore, we have defined the meaning of a condition in a truth some­

what more precisely than in GtsJ or [40]. Concerning this definition it 

should be remarked that it is certainly the least elegant concept of the 

metalanguage. However, we use it extensively in the definition of ALGOL 60 

and we have not succeeded in replacing it by another one which fits better 

with the other concepts. 

Chapter 2 starts in section 1 with a description of the syntax of the meta­

language, by means of a context free grammar. Section 2 gives some syntac­

tical examples. In section 3 the semantics of the metalanguage is described 

1) 
A combination of Markov algorithms and context free grammars has been 

proposed subsequently also by Caracciolo di Forino [7, 8 1 9] and 

Cohen and Wegstein [1s]. Similar concepts occur in the language AMBIT 

[14]. The first application of Markov algorithms to programming seems 

to be due to Yngve, in his design of Comi t [s2]. 
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in English. Section 4 contains some simple examples, such as the defi~ 

nition of the Euclidean algorithm for the greatest common divisor of 

two natural numbers. 

In chapter 3 we derive some properties of the metalanguage. In section 

1 we consider three definitions of effective computability, i.e. Markov 

algorithms, Turing machines and recursive functions. We prove for each 

of these concepts that it can be defined by means of the metalanguage. 

We do not treat the reverse problem, i.e. we have not investigated 

whether it is possible to define the metalanguage in terms of one of 

these three systems. 

In section 2 we consider the relation between the metalanguage and a 

few concepts of the theory of phrase structure grammars. From a theorem 

of Chomsky, namely that each phrase structure language is a recursively 

enumerable set ~1], and the results of section 1, it follows directly 

that each phrase structure language can be defined by means of the meta­

language. The relation between context free grammars and a concept from 

the metalanguage is then studied in more detai • An example is given of 

the use of the metalanguage for the definition of a context sensitive 

grammar. The classification of Chomsky of phrase structure grammars in 

four types and their defining abstract machines are introduced. Each of 

these abstract machines is defined in terms of the metalanguage. 

The formal definition of the metalanguage follows in chapter 4, section 

There the processor is defined by means of an ALGOL 60 program which acts 

both as a definition and as an implementation of the metalanguage. The 

description in English of the metalanguage in chapter 2 should therefore 

not be considered to be its definition proper. Thus, the metalanguage is 

defined on the one hand by an ALGOL 60 program, and on the other hand it 

is used (in chapter 5) to define ALGOL 60, 

One might imagine the following picture of this situation: We introduce 

a "language space", the elements of which are the possible interpretations 

of ALGOL 60 Suppose one wants to use our system to learn the semantics 

of ALGOL 60. We assume that he has a provisional knowledge of it, based 

on the ALGOL 60 report. This means that he finds himself in a certain 
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point in the language space, say P0 • With this knowledge he can under­

stand the working of the processor, and hence also the definition of 

ALGOL 60 in chapter 5, After the study of this definition, he will have 

obtained a new idea of the semantics of ALGOL 60, i.e., he finds him­

self now in a point P1 , Next he again reads the program for the proces­

sor, and chapter 5, after which he. will have reached a point P2 , etc. 

Suppose one finds oneself after i steps in point Pi (i.::._ 1). We dis­

tinguish three cases: 

l Pi= Pi-l' Th:i.s means that Pn = Pi-l' for n >i. 

The process converges, i,e, it yields a fixed interpretation of 

ALGOL 60, Generally, this fixed point Pi will depend upon the initial 

point P0 , 

2 • pi= pi-k' k > 1 • pi-/:. pi-1' 
The process diverges; it is not possible to obtain a fixed inter-

pretation of ALGOL 60. 

3, Neither 1, nor 2 occurs. No decision can be taken, and a next step 

has to be performed, 

It is not possible to describe this iteration process more formally. 

This is caused by the fact that the ALGOL 60 program which defines the 

processor contains input/output operations which are not treated in the 

formal definition of ALGOL 60 in chapter 5 •. since they do not form part 

of it 

In section 2 of chapter 4 the working of the processor is demonstrated 

by several examples. Some of these examples have been discussed already 

in chapters 2 and 3. Also, some very simple parts from the definition 

of ALGOL 60 in chapter 5 are treated. Both time and space restrictions 

of present day computers prohibit the running of larger parts of the 

ALGOL 60 definition, let alone the whole of it, 

Chapter 5 gives the complete formal definition of ALGOL 60; explanations 

of this definition follow in chapter 6, In chapter 6 we first treat some 

shortcomings of the definition. Then in sections 2 to 6 we give a 

general survey of its structure. The remaining sections of chapter 6 

comment upon each of the sections of chapter 5. The main difficulties 
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in the definition of ALGOL 60 proved to be: the locality concept and 

the goto statements. Assignment statements, on the other hand, fit in 

very naturally with the metalanguage. 

A judgment on the merits of the metalanguage as a means of describing 

the semantics of programming languages will depend on the requirements 

which one. imposes upon such a description. If one wants a mechanism 

from which a compiler for the language concerned can easily be derived, 

then our system is certainly not the solution. The value of the meta­

language consists in its ability to give a complete and precise defi­

nition of the whole language, containing all concepts, from the addition 

and subtraction of integers to the treatment of procedures. Such a com­

plete definition will always be rather large. It should be added here 

that several aspects of the semantics of ALGOL 60, which are of no 

essential importance, have complicated and lengthened the definition 

in chapter 5 considerably. If a programming language were designed with 

the metalanguage as the presupposed tool for semantic description, then 

such a description could be substantially shorter. 

Recently, suggestions have been made for the introduction of programming 

languages which allow the programmer to include modifications or ex­

tensions of the language in his program. Such an interaction between 

language and program may also be described very well by the metalanguage. 



CHAPTER 2 

DESCRIPTION OF THE METALANGUAGE 

In section l of this chapter we define the syntax of the metalanguage .. 

In section 2 we give some syntactical examples. Section 3 describes the 

semantics of the metalanguage, some concepts of which are explained by 

means of a few simple examples in section 4. 

2.1. Syntax of the metalanguage 

The syntax of the metalanguage is defined by means of a context free 

grammar written in Backus notation. 

1. <NAME>::= <SIMPLE NAME>\<SIMPLE NAME> co <NAME> 

2. <SIMPLE NAME>::= tr!<METASTRING>!<SIMPLE TERM> 

3 <METASTRING>: := {<LIST OF METAEXPRESSIONS>{ 

4. <LIST OF METAEXPRESSIONS>: := <METAEXPRESSION> 

<METAEXPRESSION>co<LIST OF METAEXPRESSIONS> 

5. <SIMPLE TERM>::= <SIMPLE FACTOR> !<SIMPLE FACTOR>in<SIMPLE METAJARIABLE> 

6. <SIMPLE FACTOR>::= <TERMINAL SYMBOL> \va{<TERMINAL SEQUENCE>} I 
<TERMINAL SYMBOL><SIMPLE FACTOR> I 
va {<TERMINAL SEQUENCE>} <SIMPLE FACTOR> 

7. <METAEXPRESSION >: := <cONDITION> im <LEFT PART· is <RIGHT PART> i 

<CONDITION> im <LEFT PART' I 

8. <CONDITION>::= tr !<METASEQUENCE> 

<LEFT PART> is <RIGHT PART>; 

<LEFT PART" 
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9. <LEFT PART>::= <METASEQUENCE>J<METASEQUENCE> in 

<SIMPLE METAVARIABLE> 

10. <RIGHT PART>::= <SIMPLE RIGHT PART>J{<LIST OF SIMPLE RIGHT PARTS>} 

11. <LIST OF SIMPLE RIGHT PARTS>::= <SIMPLE RIGHT PART>J 

<SIMPLE RIGHT PART> co <LIST OF SIMPLE RIGHT PARTS> 

12. <SIMPLE RIGHT PART>::= trJ<METASTRING>J<INDEXED METATERM> 

13. <INDEXED METATERM>::= <INDEXED METAFACTOR>J 

<INDEXED METAFACTOR> in <SIMPLE ME'i'AVARIABLE> 

14. <INDEXED METAFACTOR>: := <INDEXED METASEQUENCE> I 
~{<INDEXED METASEQUENCE>}J 

<INDEXED METASEQUENCE><INDEXED METAFACTOR>J 

~{<INDEXED METASEQUENCE>}<INDEXED METAFACTOR> 

15 . <TERMINAL SEQUENCE>: : = <TERMINAL SYMBOL> I 
<TERMINAL SYMBOL><TERMINAL SEQUENCE> 

16. <METASEQUENCE>: == <TERMINAL SYMBOL> !<METAVARIABLE> I 
<TERMINAL SYMBOL><METASEQUENCE>J 

<METAVARIABLE><METASEQUENCE> 

17. <INDEXED METASEQUENCE>::= <TERMINAL SYMBOL>J<INDEXED METAVARIABLE>J 

<TERMINAL SYMBOL><INDEXED METASEQUENCE>J 

<INDEXED METAVARIABLE><INDEXED METASEQUENCE> 

18. <METAVARIABLE>::= <NON INDEXED METAVARIABLE>J<INDEXED METAVARIABLE> 

19. <NON INDEXED METAVARIABLE>::= <SIMPLE METAVARIABLE>J 

<OPTIONAL METAVARIABLE> 

20. <INDEXED METAVARIABLE>::= <INDEXED SIMPLE METAVARIABLE> I 
<INDEXED OPTIONAL METAVARIABLE> 

21. <TRUTH>:== tr J <METAEXPRESSION> 

22. <LIST OF TRUTHS>: : = <TRUTH> I <TRUTH> ~ <LIST OF TRUTHS> 

23. <DERIVED CONDITION>::= trJ<METASEQUENCE> 

24. <DERIVED SIMPLE RIGHT PART>::= <SIMPLE NAME> I <EMPTY> 
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25. <DERIVED RIGIIT PART>::= <DERIVED SIMPLE RIGHT PART>l{<NAME>} 

26. <SIMPLE PRIMARY>::= ,Y!{<TERMINAL SEQUENCE>} 

27. <SIMPLE SEQUENCE>::= <TERMINAL SEQUENCE> I 
<TERMINAL SEQUENCE> in <SIMPLE METAVARIABLE> 

For the denotation of the syntactic entities in this grammar we have 

used sequences of (capital) metametaletters, enclosed between the 

metametabrackets "<"and">", Whenever we use these sequences in the 

sequel they will refer to the corresponding syntactic definitions. It 

is understood that the use of the English language may lead to deviations 

from these words; for example, the use of lower case letters or of plural 
forms. 

The entities in the left hand sides of 21 to 27 are introduced for 

reference purposes only. 

<EMPTY> denotes the empty sequence. 

A simple or optional metavariable is denoted by a sequence of meta-

letters, enclosed between the metabrackets 

"_:::' respectively. 

ft ft 

< and " " > , or " tt < and 

An indexed simple metavariable or an indexed optional metavariable is 

denoted by a sequence of metaletters, followed by a sequence of meta-
digits, the whole enclosed between the metabrackets "<" and 

and ">" respectively. · 

tt " > , or "<" 

The set of terminal symbols is given in chapter 4, Essentially, one may 

choose for this set any finite, non empty set of symbols which is dis­

joint from the set of metaconstituents (see below). 

However, in chapter 4 we define the set that is accepted by the ALGOL 60 

program that defines the processor, 

The set of metaconstituents consists of: 

a. The metasymbols im, in, is, .Y!• ~. tr, {, }, {, f. 
b. The metavariables. 

We introduce the following terminology which is used in the next sections: 

a. Small Greek letters stand for syntactic entities (i.e. metametalinguis­

tic variables), capital Roman letters for metavariables or terminal 

symbols, and small Roman letters for terminal symbols. 
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b. For any metavariable A, A is the non indexed metavariable which 

results from A by deleting the metadigits, if any, in the denotation 

of A. 

For any (indexed) optional metavariable A, A is the (indexed) simple 

metavariable which results from A by replacing in its denotation the 

metabrackets ".::,'.' and ".::.'.' by "<" and ">". 

Example: Let A be the indexed optional metavariable <identifier!>, 

Then A is .::_identifier.::, A is <identifier!> and A is <identifier>, 

c. Two indexed metavariables are called similar, if their denotations 

differ at most in the enclosing metabrackets. 

Example: .::_expression2~and <expression2~ are similar, but <expressionl> 

and <expression2> are not similar. 

d, A simple sequence can have the form <TERMINAL SEQUENCE> or 

<TERMINAL SEQUENCE> in <SIMPLE METAVARIABLE>. In both cases we call 

the terminal sequence "the terminal sequence of the simple sequence". 

In the second case we call the simple metavariable "the simple meta­

variable of the simple sequence". Similarly, we define the metasequence 

and the simple metavariable of a left part. 

Example: The terminal sequence of 11 abc in <identifier>" is 11 abc11
, and 

its simple metavariable is "<identifier>". 

The metasequence of "<primary> in <factor>" is "<primary>" and its 

simple metavariable is "<factor>", 

2.2. Syntactical examples 

In this section we use the set of terminal symbols given in chapter 4. 

Name: 

fl + 1 is 2 co 2 + 1 is 3l co 1 + 1 co 2 + 1 co f3 + 1 is 4l 
Simple name: 

tr 

f2 - 1 is 1 l 
2 - 1 

Metastring: 

fl + 1 is 2 co 2 + 1 is 3 l 



Simple term: 

,!'.!{4 + 3} - .!'.!{3 + 4} 
abc in <identifier> 

Simple factor: 

- .!'.!{a + b} 
3 + 2 

Metaexpression: 

<letter> in <identifier> 

a is { b is { c is d H 
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.::_tapel.::. 1 : 1 .::_tape2.::.~ <tapel> a 1 <tape2> 

<statel><symboll><symbol2><state2> im 

~tapel.::.<statel><symboll>~tape2.::_ is 

~tapel.::_<state2><symbol2>~tape2.::_ 

<letterl> pre <letter2> im 

<letterl>~ord.::_ pre <letter2>~word.::. 

(note that the underlined symbol ~ is not 

a metasymbol, but a terminal symbol) 

Condition: 

<letterl> pre <letter2> 

tr 

Left part: 

<letterl><Word> pre <letter2>.::_word.::_ 

<block> in <program> 

Right part: 

a 

~tapel.::.<state2><symbol2>.::_tape2.::_ 

{R ~ S ~ T} 
{ta is {bis {tc is {d~ e}:t co f}H~ g} 

Indexed metaterm: 

<letterl> in <identifier> 
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Indexed metafactor: 

~{<digitl><pml>l}<pml> ~{<digit2>-1} 

Terminal sequence: 

a + be - d 

Metasequence: 

<letterl><word> 

Indexed metasequence: 

<statel><symboll> L <state2> 

Simple metavariable: 

<identifier> 

Optional metavariable: 

<identifier> 

Indexed simple metavariable: 

<identifier21> 

Indexed optional metavariable: 

<identifier8> 

2.3. Semantics of the metalanguage 

We introduce an abstract machine, called the processor, which is defined 

by its properties, described in the sequel of this section. 

A name in the metalanguage is said to be evaluated by the processor. This 

evaluation process is determined by the application of: 

a. A fixed set of built-in rules. These rules are described below. 

b. A dynamically varying list of rules, called the list of truths V, 

which is initially empty and which is filled during the evaluation 

of a name with the results of the evaluations of the simple names 

which constitute the name concerned. 

2.3.1, The evaluation of a name. 

The evaluation of a name is performed by the following process: 

Step 1: The first simple name of the name is considered; 
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Step 2: The value of the considered simple name is determined (2.3.2); 

Step 3: If the considered simple name is followed by the metasymbol ~. 

then its value is added to V, preceded, unless Vis empty, by 

co as a separator, and the remaining name is evaluated; 

Step 4: Otherwise, the value of the considered simple name is added to 

V, preceded, unless V is empty, by co as a separator. 

2.3.2. The value of a simple name. 

The value of tr is tr. 

The value of a metastring is the list of metaexpressions which is ob-

" 1" and tained by deleting the outermost 1 "..f." . 1 from the metastring. 

The value of a simple term is determined by the following process: 

Step 1: If the simple term contains a simple primary (2.1, rule 26), then 

step 2 is taken, otherwise step 3 is taken; 

Step 2: The simple primary is replaced by the value of the terminal 

sequence of the simple primary, If the resulting sequence is a 

simple term, then step 1 is repeated with this simple term; 

otherwise, its value is undefined; 

Step 3: V is applied to the determination of the value of the simple 

term (2.3.5). 

For the definition of the application of V we need two concepts, viz. 

that of envelope and that of applicability. 

2.3.3. The concept of envelope, 

A left part can be an envelope of a simple sequence. This concept is 

defined in two stages. 

First the case is considered that the left part is a metasequence µ and 

the simple sequence is a terminal sequence T. 

Let µ = ~ A2 •• , Am, m .::_ 1, and T = a1 a2 an, n .::_ 1 • Let m0 be the 

number of (indexed) optional metavariables and let m = m - m0 • 

A partition of T, T T1 T2 ••• Tm' is defined by a selection of m-1 

integers jl, j 2 , ••. , jm-l' with O = j 0 .::_ j 1 .::_ .•. .::_ jm-l .::_ jm = n, 

such that Ti aj. 1+1 ••• a., for i = 1, 2, ... , m. If ji_1+1 > ji' 
i- Ji 
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then Ti is defined to be the empty sequence. An ordering < is defined 

on the partitions as follows: Let n., i = 1,2, be two partitions with 

. t d . t . (i) . (i) l. . (i) Th < . f d 1 . f associa e in egers Jl , J 2 , .•. , J _1 . en n1 n2 1 an on y 1 

m .ll) .(2) 
there exists an integer p, 1 < p < m, such that J < J and 

- - p p 
j(l) = j(2) for all q < p. 
q q 

The following process is now applied in order to establish whether µ 

is an envelope of T· 

Step 1: If n < m, thenµ is not an envelope of Tj 

Step 2: Otherwise, the first partition of T in the given ordering is 

considered; 

Step 3: Let T = T1 T2 Tm be the considered partition. Ti is said to 

correspond to Ai. The following relations are verified for all 

i,j = 1, 2, ... , m: 

a. If A. is a terminal symbol, then T =A.; otherwise, 
l. i l 

if A. is a (indexed) simple metavariable, then T in A. has 
l. i - l 

the value tr; otherwise, 

if A. is an (indexed) optional metavariable, then either T 
l i 

is empty, or Ti in Ai has the value tr. 

b. If Ti and Tj correspond to similar indexed metavariables, 

then they are equal. 

If both relations hold thenµ is an envelope of Ti otherwise, 

if there is a next partition of T, then this is considered and 

step 3 is taken again; otherwise, µ is not an envelope of T. 

Next the general case is considered. 

A left part A is an envelope of a simple sequence o if either 

a. A is a metasequence, o is a terminal sequence and the above given 

definition holds, 

or A and o have the following properties: 

bl. A is not a metasequence and T is not a terminal sequence, 

b2. the metasequence of A is an envelope of the terminal sequence of o, 

b3. the simple metavariables of A and o are equal, 

If A is an envelope of o, then o is called a specific case of A. 
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2.3.4. The concept of applicability. 

A truth can be applicable to a simple sequence. 

tr is applicable to no simple sequence. 

The general form of a truth e different from tr, 

<CONDITION> im <LEFT PART> is <RIGHT PART>. 

Truths of the form 

<CONDITION> .!!!! <LEFT PART>, 

<LEFT PART> is <RIGHT PART> or 

<LEFT PART> 

are treated respectively as: 

<CONDITION> im <LEFT PART> .!! ,.!!:, 
tr im <LEFT PART> is <RIGHT PART> or 

tr im <LEFT PART> is tr. 

e is applicable to the simple sequence a if both 

a. the left part A of e is an envelope of a; 

b. the condition Y of e is satisfied. 

is: 

In order to establish whether Y is satisfied, the "derived condition" 
* Y is constructed as follows: Letµ be the metasequence of A, and T the 

terminal sequence of a 

Each indexed metavariable in Y which is similar to some indexed meta­

variable in µ is replaced by the subsequence of T which corresponds to 

that indexed metavariable. Then Y is satisfied if either 
* a. Y = ,.!!:, or 
* b. Y is a terminal sequence which has the value ,.!!:, or 
* c. Y is a metasequence which is an envelope of a truth e0 in V (here 

the truths in V are searched in the order defined in 2.3.5). 

* Suppose 0 is indeed applicable to a. The "derived right part" p is 

constructed from the right part P of e as follows: Each indexed meta­

variable in P which is similar to some indexed metavariable in µ or 
* in Y is replaced by the corresponding subsequence of T or e0 respec-

tively. 
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2.3.5, The application of V. 

The truths in V are ordered in the following way: 

Let V be 81 co 82 co ... co en. Then ei ~ 8j if and only if i > j. 

The list of truths V is applied to the determination of the value of a 

simple sequence o as follows: 

Step 1: If Vis empty, then the value of o is o; otherwise, step 2 is 

taken; 

Step 2: The first truth in the given ordering is considered; 

Step 3: If the considered truth 8 is applicable to o then the value of 

o is the result of the simple evaluation (see below) of the 

derived right part of 8; otherwise, step 4 is taken; 

Step 4: If there is a next truth in the given ordering, then it is 

considered and step 3 is repeated; otherwise, the value of o 

is o 

The result of the simple evaluation of the empty sequence is undefined. 

The result of the simple evaluation of a simple name is the value of 

that simple name. 

The result of the simple evaluation of a derived right part of the form 

{<NAME>} is equal to the result of applying the process defined in 2.3.1 

to the name concerned, where step 4 of that process is omitted, 

Remark: In the sequel, we shall not always strictly adhere to the termi­

nology which has been introduced in this section. 

By 2.3.1, the word "evaluate" refers to a process consisting of two parts: 

a. The determination of the values of a list of simple names. 

b. The addition of these values to V. 

However, we shall use the word "evaluation" also for the determination 

of the value of a simple name, which is not followed by the addition of 

this value to V. 

From the above given definitions it follows that the addition of the 

value of a simple name to V is omitted in the following four cases: 

a. The simple name is a derived condition. 

b. It is a terminal sequence of a simple primary. 

c. It is generated in 2.3.3, step 3, case a. 
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d, It is the first (in the order given in 2,3,5) element in the list 
of simple names of a derived right part, 

Therefore, it will be clear from the context which use of the word 
"evaluation" is meant. 

Also, we will use "evaluation", where we mean "simple evaluation", 

2,4. Semantical examples 

2.4.l, Examples of the concept of envelope" 

Suppose V has at a given moment the following content: 
91: a in <letter> co 

92: b in <letter> co 

93: <letter> ,!,!! <identifier> co 

94: <identifier><letter> in <identifier> 
In this and subsequent examples we have numbered the truths in order 
to make it easier to refer to them in our comments, Actually, however, 
these numbers do not occur in V. 

Clearly, the above given list of truths is nothing but a transcription 
of the following grammar in Backus notation: 
<letter>::= a / b 

<identifier>::= <letter>j<identifier><letter>. 
Given this content of V, the following relations hold: 
<identifier> is an envelope of aba, 

<identifier> + <identifier> is an envelope of ab + ba, 
<identifierl><ident:i.fierl> is an envelope of abab but not of abba, 
<identifierl><identifier><identifierl> is an envelope of abab and of 
abaaab (in the first case, the partition which gives this result is: 
T = Tl T2 T3' where T = abab, Tl = ab, T2 is the empty sequence and 

T3 = ab, and in the second case r = Tl T2 T3' With T = abaaab, T = 
1 

T2 = aa, T3 = ab). 

<identifier><identifier><identifier> is an envelope of abaaab (here 
"succesfulH partition is T = T1 T2 T3 , T1 =a, T2 = b, T3 = aaab). 
<identifierl><identifier2> is an envelope of abab and of abba. 
<identifier><letter> in <identifier> is an envelope of bbb in 

ab, 

the 
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<identifier>, but not of bbb in <letter>, since in the second case the 

simple metavariables after in, i.e. <identifier> and <letter>, are not 

equal. 

We treat the first example in more detail. <identifier> is an envelope 

of aba, if aba in <identifier> has the value tr. Thus, V is applied to 

the evaluation of aba in <identifier>. 64 is considered. T = aba is 

first partitioned into T = Tl T2 , Tl a, T2 = ba. a in <identifier> 

has the value tr, by applying 63 and 61 • In fact, the truth 03 : 

<letter> in <identifier> is treated as: trim <letter> in <identifier> 

is tr, the left part of this truth is an envelope of a in <identifier> 

(since a in <letter> has the value tr by 61, and the simple metavariables 

after in are equal), and the condition is satisfied. Thus, the value of 

a in <identifier> is the value of tr, and the value of tr was defined 

to be tr. However, ba in <letter> does not have the value tr (03 and 64 
are not applicable, since the simple metavariables after in are differ­

ent from <letter>; that 62 and 01 are not applicable follows from step 

1 in the definition of 2.3.3). Thus, we conclude that the partition 

T1 =a, T2 = ba, is not succesful. Therefore, the next partition is 

considered: Tl = ab, T2 = a. ab in <identifier> has the value tr by 

applying 64, 03, 01 and 02. a in <letter> has the value tr by 61. 
Consequently, 04 is applicable to aba in <identifier>, and we find 

that aba in <identifier> has the value tr, which means that <identifier> 

is an envelope of aba. 

2.4.2. Examples of the evaluation of a name (see also section 4.2). 

2.4.2.1. The Euclidean algorithm for the greatest common divisor 

(4.2, example 1). 

Let V consist of the following list of truths: 
6 . 
1' 

0 : 
2 

0 . 
3' 

0 . 
4' 

1 ~integer.'.'._ in <integer> co 

(<integer!>, <integerl><integer2>) is (<integer!>, <integer2>) co 

(<integerl><integer2>, <integer2>) is (<integer!>, <integer2>) co 

(<integer!>, <integer!>) is <integer!> 
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Then for each pair of natural numbers (n,m): 

The result of app;ying V to the e;ialuation of (n,'i;;) is gcd(n,m), where 
n stands for a seqt'en 'e of n symbols 1. 

Example!> <in an obvious 

(42,105i =~> (42,p> 
--· 3 ~- 3 (9,2) "''> (7,2) ==> 

~otation): 63 
2 --==> (42,21) ==> 
- - 63 (5,2) =;;.;, (3,2> 

-- 64 -pi, '>1) ==>6 21 
3 - - 2 ==> (1,2) ==> (j ,1) 

V defines the Euclidean algorithm with repeated subtraction instead of 
division, The subtraction is automatically performed by t~;e partitioning 
mechanism of the envelope concept as a result or the requirement that 
subsequences corresponding to similar indexed m,.iavariables be equal • 

. 4.2.2. Definition of lexicographical ordering (4.2, example 2). 

Let V consist of the following list of truths: 

61 a in <letter> co 

62 b in <letter> co 

63 c in <let~er> co 

64 d in <letter> co 

65 e in <letter> co 

66 <letter><word> in <word> co 

67 <word> pre <word> i:; false ~ 
68 <letterl> pre <letter2> im <letterl>.:_word.:_ pre <letter2><word> co 
69 <1etterl <word!> pre <letterl><word2> is <wordl> pre <word2> ~ 
610. <ietterl><word> pre <letter!> ~ false ~ 

611· <letter!> pre <.etterl><word> co 

612: <letter2> pre <:1.etter3> im <letterl> pre <letter3> 

is <letter!> pre <letter2> co 

613. <letter> pre a ~ ~ ~ 

614 a pre b co 

615 b pre c co 

616 c pre d co 

617: pre e co 

618: <letter!> pre let erl> 
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For each two words w1 , w2 over the alphabet {a,b,c,d,e}, w1 pre w2 has 

the value tr if w1 lexicographically precedes w2 , otherwise w1 pre w2 
has the value false. 

Example: the evaluation of dbc pre dee. 

By the first applicable truth, 09 , the value of dbc pre dee is the 

value of be pre ee. The left part of 08 is an envelope of be pre ee. 

Therefore, 08 is applicable to be pre ee, provided the derived condition, 

viz. b pre e, has the value tr. The left part of 012 is an envelope of 

b pre e. Thus, 012 is applicable to b pre e, if the derived condition, 

<letter2> pre e, is satisfied. This derived condition is not a terminal 

sequence. Consequently, the list of truths is searched for a truth which 

is enveloped by <letter2> pre e. 017 is such a truth.Hence, application 

of 012 to b pre e leads to the evaluation of the derived right part 

b pre d, where b is the subsequence corresponding to <letterl> and d 

the subsequence corresponding to <letter2>. By the same process it is 

found that the value of b ~ d is the value of b pre c, which has the 

value tr by 015 • Thus, 68 is found to be applicable to be pre ee, and 

the value of be pre ee is tr. The final result is therefore that 

dbc pre dee has the value tr. 



CHAPTER 3 

PROPERTIES OF THE METALANGUAGE 

In this chapter we give some basic results on the relation between the 

metalanguage and two subjects in the theory of formal languages. 

In section 1 we consider several definitions of computability, viz. 

Markov algorithms, Turing machines and recursive functions, and we prove 

that every function which is computable by means of one of these systems 

is computable in terms of the metalanguage (a more precise formulation 

is given below). Since it is well known that the three systems are equi­

valent, it would have been sufficient to give this proof for anyone of 

the definitions. However, we treat each case separately in order to have 

more examples to illustrate the various concepts of the metalanguage. 

In section 2 we make some remarks on the connection between the meta­

language and a few aspects of the theory of phrase structure languages. 

In the sequel, it will be convenient to use the following terminology: 

If a name in the metalanguage has the form 

f<LIST OF METAEXPHESSIONS>i ~ <SIMPLE TERM>, 

then we consider the list of metaexpressions as a "metaprogram" for the 

simple term. This is explained by the fact that the list of metaexpres­

sions is left unchanged when it is added to V, whereas in the evaluation 

of the simple term we use the list of metaexpressions. When we apply the 

list of metaexpressions, say V0 , to the simple term o, we say that a is 

evaluated by means of v0 and we denote the result by v0 (o). 

Moreover, we introduce the following notation: An "alphabet" A is any 
.tt u ~ finite non empty set; the elements of A are called symbols • A denotes 

the set of all finite sequences of elements of A, including-the empty 

sequence. The elements of A'¥.; are called "words" over A, the empty word 
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n 
is denoted by £. For any a E A, and for any integer n .:._ 0, a denotes 

the sequence of n·symbols a. 

3.1. Definitions of computability 

3.1.1. Markov algorithms (for notations see [37]; cf. also 4.2.2, 

example 5). 

Theorem: Let A {al, a2, ... ' a } be an alphabet and let ot: pl + ( •)Ql, n 
p2 + ( •}Q2, • • • I 

p + ( •)Q 
n n be the scheme of a normal algorithm in A. 

(+ (.) stands for either+ or+•). Let a be an arbitrary symbol not in 

* A. Then there exists a metaprogram v0 such that for each word w0 EA 

to which ot is applicable: a OC(w0 ) = V 0 (aw0 ). 

Proof: We define three lists of metaexpressions, V1 , V2 and v3 • For the 

set of terminal symbols we choose Au {a} l). 

1. vl is the list 

a1 in <symbol> co a2 in <symbol> co co an in <symbol> 

2. v2 is the list 

<symbol >.::_tape.:_ in <tape> 

3. For each substitution formula Pi +Qi of oi.we define an associated 

truth T. as: 
1 

Cl .::_tapel.:._ Pi .::_tape2.:._ is Cl .::_tapel.:._ Qi .::_tape2.:._. 

For each substitution formula Pj +• Qj we define an associated Tj 

as: 

a ~tapel.:._ Pj <tape2> is fa.::_tapel.:._ Qj .::_tape2.:._f 

v3 is defined as Tn ..££ Tn-l ..££ ••• co T1 • 

Then we define v0 as v1 _££ v2 co v3 . The proof of the assertion now 

follows from the following points: 

1. According to Markov's definition, a left hand member Pi of a 

substitution formula P. + ( • )Q. enters into a word w EA* if and only 
1 1 * 

1) 

if w has the form w = uPi v, with u, v EA • This is equivalent to our 

This set is not a subset of the set of terminal symbols, given in 

chapter 4. However, it is easy to define a mapping from Au {a} into 

this set, for example, a1 corresponds to al, a to alpha, etc. 
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definition of envelope, where we require that there exist a partition 

of w, w = w1 w2 w3 , such tha: ~tapel~ is an envelope of w1 , Pi = w2 , 

and ~tape2~ is an envelope of w3 • 

2. Markov's requt ement of selecting the first entry corresponds to our 

requirement of sel octing the smallest partition. 

3. Markov's defini tio -, of the way ;; n which V is applied to the trans­

formation of a word w, i.e. by first trying to app· y P1 -+ (o)Q1 in 

case of success continuing with the transformed word, wh~re P1 is 

replaced by Q1 , otherw' se by try11 g to apply 2 -+ ( ·)Q2 , etc., is 

the same as our way of applying V 

4. In Markov's definition the process is stopped .· f one meets the 

symbol -+•. whi e in our defin' fion the value of a metastring is also 

found immediately and not by appying V again 

5. In Markov s def nition, 1_f none' f the substitution formulae is 

applicable tow, he result of app ying ot.to w is w itself. The same 

holds for tie evaluation of w by means of v0 • 

6. From 3,4 and 5 it follows that the evaluation of w by means of t7t 

terminates if and only if the evaluation of w by means of v0 terminates. 

7, We have introduced the extra symbol a in order to ensure that the 

length of the sequence which is evaluated is always .:_1. This is 

necessary because in Markov's def.nition it is possible that w0 or 

one of its transforms is empty, whereas the evaluation of the empty 

sequence in the metalanguage is undefined. 

Apparently the metalanguage can be considered as an extension of Markov 

algorithms in the sense that every basic concept of Markov's system is 

contained in the metalanguage. The main extra features of our sy .. tern are: 

1 The use of metavariables. 

2. The possibility o dynamically adding new truths 

3 The use of a condition in the truths. 

3 1.2. Turing machines 

In this section we use the terminology of Davis [ta] except for his 

use of the term "int rnal configuration', which we replace by state' 

Cf. also 4.2.2, example 6. 
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Theorem: Let Z be a simple Turing machine. There exists a metaprogram 

v0 such 'that for each instanteneous description a, v0 (a) = Resz(a), 

where Resz(a) is the resultant of a with respect to Z. 

Proof: Let E = {s0 , s1 , ••• , sn} be the alphabet of Z, and Q = 

= {qi " q2 ' •• • ' qm} the 

{q. S. Pk ql' ••• , 
1 1 Ji 1 1 

Pk E E U { R, L} , for p 
p 

set of states 

qi s. Pk ql 
r Jr r 

1, 2, . . . , r • 

of z. Let Z be the set of 

}, with s. EE, qi ,ql EQ 
r Jp p p 

quadruples 

and 

We define five lists of metaexpressions v1 , v2 , ••• , V5 • (In this and the 

following proofs we do not explicitly list the set of terminal symbols, 

since this can be obtained easily from the construction of v0 .) 

1. vl is the list 

so in <symbol> co sl in <symbol> ~ co Sn in <symbol> 

2. v2 is the list 

<symbol>_::.tape.::_ in <tape> 

3. v3 is the list 

qi in <state> co q2 in <state> co .•• ~ qm in <state> 

4. v4 is the list T4 l co T4 2 ~ T4 3 co T4 4 co 
• • • • 

T4 1 is <state1><symbol1><symbol2><state2> im 
J 

_::.tapel .::_<statel ><symboll >_::.tape2.::_ is 

_::.tapel.::_<state2><symbol2>_::.tape2.::_ 

T4 2 is <statel><symboll> R <state2> im 

' 

T4 3 is 
' 

T4 4 is 

' 

_::.tapel.::_<state1><symboll><tape2> is 

.:_tapel.::_<symboll><state2><tape2> 

<statel><symboll> R <state2> im 

.:_tapel.::_<statel><symbol1> is 

_::.tape1.::_<symboll><state2> so 

<statel><symbol1> L <state2> im 

T4 5' 
J 

.:_tapel .::_<symbol2 ><state! ><symboll >2_tape22_ is 

T4 5 is 
J 

.:_tape! .::_<state2 ><symbol2 ><symboll >.:_tape2 .::_ 

<state1><symbol1> L <state2> 

<statel><symbol1>.:_tape1.::_ is 

<state2> s 0 <symbol1>.:_tape1.::_ 

im 

where 

5. v5 is defined to be the list of quadruples of z, separated by meta­

commas. 
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v0 is defined as v1 E2 V2 E2 , , • E2 V5 • 

Let a, B be two instantaneous descriptions, The proof of the assertion 

now follows from Davis' definition of the relation a -- B ([is], Ch .1, 

def :;. , 7), 

There are five possibilities~ 

* 1. There exist tape expressions P,Q € E such that a = PqiSjQ, 

B = Pq1skQ' and Z contains qiSjSkq1 , This means that T411 is appli­

cable to a, since 

a. :.tapel~ is an envelope of P by applying the truths in v1 and v2 , 

b, <statel> is an envelope of q1 , by v3 , 

c. <symboll> is an envelope of Sj, by v1 , 

d, ~tape2~ is an envelop'' of Q, by v1 and v2 , 

e. The derived condition is qiSj <symbo12><state2>, 

f, qiSj <symbol2><state2' is an envelope of the truth qiSJ kql' 

which is one of the truth·; in v5 

Thus, the condition of T4 1 .is satisfied and the value of 
• 

Pq1 SjQ is the value of the* derived right pa:t of T4 1 ; i e., 

the value of Pq1SkQ, where this derived right part is constructed 

as follows: 

a. ~tapel~ which also occurs in the left part of T4 1 is replaced , 
by P, 

b <State2>, which also occurs in the derived condition. is replaced 

by ql. 

c, <Symbol2> which also occurs in the derived condition is re­

placed by 
k 

d. <tape2>, which occurs in the left part, is replaced by Q, - -
2. a= PqiSjSkQ, B = PSjqlSkQ, and Z contains qiSJRql. By apply.ng T412 

it follows in the same way that the value o· a is the value ;f B. 
3, 4, and 5 are treated similarly. 

Finally, if a is terminal, then none of the truths in v0 s applicable 

·to it 

3.1.3 Recursive functions. 

In this section we use the terminology of Mendelson [37]. 
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Theorem: There exists a metaprogram v0 such that for each partial 

recursive function f of n arguments and for each n-tuple (x1 ,x2 , ..• ,xn) 

for which f is defined the following holds: Let ~be the notation in the 

metalanguage for the function f, and ~ for the integer list 

x1 , x2 , ... , xn. (This notation is introduced in the proof.) 

Then: v0 (~(~)) = f(x1 , x2 , ... , xn). 

Proof: We define nine lists of metaexpressions: 

1. Syntactic definition of integer and integer list (V1): 

1 2_integer..::_ ~ <integer> ~ 

<integer> in <integer list> co 

<integer>, <integer list> in <integer list> 

A sequence of n symbols 1 denotes the integer n-1. 

2. Syntactic definition of the initial functions (V2): 

Z in <function> co 

N in <function> co 

U <integer> 1 in <function> 

3, Syntactic definition of the rules for obtaining new functions from 

given functions by means of substitution, recursion, and the µ­

operator (V3): 

<function>(<function list>) in <function> co 

p <function><function> 

µ <function> 

in <function> co 

in <function> 

4. Syntactic definition of function list (V4): 

5. 

<function> in <function list> co 

<function>, <function list> in <function list> 

Definition of the value of the initial functions 

Z (<integer list>) is 1 co 

N(<integerl >) is <integerl> 1 co 

U <int~gerl> 1 {<integerl>, <integer listl>) is 

U <integerl> (<integer listl>) co 

(V5): 

U 11 (<integerl>) is <integerl> ~ 

U 11 (<integerl>, <integer list>) is <integer!> 
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6, Definition of the result of substituting a list of functions in a 
function (V6): 

<functionl>(<function listl>) {<integer listl>) is 

<functionl>(va{<function listl>(<integer listl>)}) co 

<functionl>, <function listl>(<integer listl>) is 

.Y!,{<functionl>(<integer listl>)}, .Y!,{<function listl>(<integer listl>)} 
7, Definition of recursion (V7): 

p <functionl><function2>(<integer listl>, <integerl> 1) is 

<function2>(<integer listl>, <integerl>, 

.Y.!{p<functionl><function2> (<integer : istl>, <integer!>)}) co 
p <functionl><function>(<integer listl>, 1) is <functionl>(<integer list!>) 

8. Definition of equality to zero (V8): 

1 = 1 co 

<functionl>(<integer listl>) = 1 is va{<functionl>(<integer list!>)}= 1 

9. Definition of the µ-operator \V9): 

V9 = T9 l ~ T9 2 ~ T9 3 , where . ' ' 
T9 l is 

' µ <functionl>(<integer listl>) is µ <functionl>(<integer list!>) 1, 

T9 2 is 
' µ <functionl>(<integer listl>) <integer!> is 

µ <function! >(<integer list!>) <integer!> 1 1 

T9 3 is 
' <functionl>(<integer list!>, <integer!>) = 1 im 

µ <functionl>(<integer list!>) : <integer!> is <integer!> 

T9 3 tests whether <integer list!>, <integer!> is a zero of <function >, 
' If this is not the case, then <integer!> is increased by one by apply-

ing T912 , and T913 is tried again. This process must terminate since 

f was defined for (x1 , x2 , ••• , xn). 

v0 is defined as the list v1 co V2 ~ •.• ~ V9 • 

The proof now follows from the construction of v0 
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3.2. Phrase structure languages and the metalanguage 

In this section we first recall the definition of a phrase structure 

language, we define Chomsky's type 3, type 2, type 1, and type 0 

languages and we introduce the various abstract machines which define 

the different types of languages. Then we prove that for each type 0 

language there exists a metaprogram which generates this language. Next 

we investigate the ressemblance between our notion of envelope and the 

way in which one recognizes whether a word belongs to a context free 

language. Then we give a simple example of the recognition of a context 

sensitive language and finally we exhibit definitions in terms of the 

metalanguage of the above mentioned abstract machines. 

3.2.1. Definition of phrase structure languages. 

The definitions in this section follow Ginsburg [22]. 

A phrase structure grammar is a 4-tuple G = (V, E, P, o), where 

1. Vis an alphabet, 

2. l: c V is an alphabet (the set of terminal symbols), 

* 3. P is a finite set of ordered pairs (u, v), u E (V \ E) - {d , 

The elements of V - E are called (metalinguistic) variables. The elements 

(u,v) of Pare usually written u + v. 

Let G = (V, E, P, o) be a phrase structure grammar. 

* * For w,ye:V, we write w ==> y, if there exist z1 , z2 , u, ve:V, such 

that w = Zi u z2 , y = z1 v z2 , and u + v E P. 
* .... For w,ye:V, we write w ==> y, if either w = y, or there exist w0 = w, 

If G 

L(G) 

==> wi+l for i = o, 1, ... , r-1. 

(V, E, P, o) is a phrase structure grammar then the subset 

{w e:E* I o ~=> w} of E* is called a phrase structure language. 

A phrase structure language is called £-free if it does not contain the 

empty word. 

Remark: In the remainder of this chapter we restrict ourselves to £-free 

languages. This is only a matter of convenience, since, by using a device 

as in theorem 3.1.1, it would have been easy to avoid it. 
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Each phrase structure grammar is called "of type 0 '. 

A phrase structure grammar G = (V, E. P, o) is called of type 1 or 

context sensitive if all elements of P have the form u~v • uyv, 

1 u, v E (V - I:)*, ~ E v - I: and y E v* - { e:}. 
G is called of type 2 or context free if all elements of P have the 

*' form ~ -+- v, ~ E V - I:, v E V 

G is called of type 3 if it is either left linear or right linear; it 

is left linear (right linear if all elements of P have the form ~ -+- u 

*" or ~ -+- w ( ~ -+- u v), with ~. v E V - E, u EE • 

A phrase structure language L is called of type i, i = o, 1 2, 3, if i 

is the largest number such that there exists a grammar G of type i such 

that L = L(G), 

A finite automaton is a 5-tuple A= (K, E, o, q0 , F), where 

1. K is a finite non empty set (of "states"), 

2. E is an alphabet (of "inputs"), 

3, o is a mapping from K E into K (the "next state function') 

4, q0 EK (the "initial s11!ite"), 

5, F c K (the set of "final tates"). 

o is extended to K x ( E *' - { e: h as follows: 

o(q. aw) O(O(q,a),w), whereqEK. aEI;andWEI:*'- {e:}. 

Let A be a finite automaton Then 

T(A) = {wE I:* - {e:} I O(q0 ,w) E F}. 

T(A) is the set of words "accepted' by A. 

A pushdown automaton is a -tuple M = (K, E, r, o, z0 , q0 , F), where 

1. K, E, q0 , Fare defined as for finite automata, 

2, r is a finite non empty set (of "pushdown symbols"), 

3, ZO E f (the 11 ini tial pushdown symbol"), 

4. o is a mapping from K x E x r into the set of all finite subsets 
*' of K x r . 

We define the relations f- and ~ as fol lows: 
*' *' *' 

For ql 'q2 E K. a E E' w E E • Cl E r ' z E r. y E r ' 
(q1 , aw, za) f- (q2 , w, ya), if o(q1 , a, z) contains (q2 , Y). 
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(q, w, a) [=- (q, w, 

33 

* ai El: (1 < i .::.. k)' a, B E r ' 

a) and 

(p, a1 a 2 ... ak w, a) \= (q, w, B) if there exist p1 

* = q EK, and a1 = a, a2 , ..• , ak+l = B E r such that 

(pi, ai ai+l 

1 < i < k. 

ak w, ai) f- (pi+l' ai+l ai+2 ••• ak w, ai+l)' for 

Let M be a pushdown automaton. Then 

T(M) = {w El:* - {t:} I (q0 , w, z0 ) j= (q, E, a) for some q EF and a Er*}. 

T(M) is the set of words "accepted" by M. 

The following theorems are known: Let i: be an alphabet. 

* 1. A subset L of l: is a type 3 language if and only if it is accepted 

2. 

3. 

by some finite automaton [13]. 
* 

A subset L of l: is a type 2 language if and only if it is accepted 

by some pushdown automaton [12]. 
* 

A subset L of l: is a type 1 language if and only if it is accepted 

by some linear bounded automaton 

(for the definition of linear bounded automata and the proof of this 

theorem see Kuroda [29]) . .,.. 
4. A subset L of /. is a type 0 language if and only if it is generated 

by some Turing machine (see 3.2.2). 

3.2.2. Type 0 and type 2 languages. 

Theorem: Each type 0 language can be defined by means of the meta­

language. 

Proof: Follows immediately from theorem 3.1.3 and the fact that each 

type 0 language is a recursively enumerable set riJ. 

Since context free languages form a subclass of the class of all phrase 

structure languages, this theorem also holds for context free languages. 

However, we give a separate proof of this special case, because 

a. This case can be proved directly, i.e., without using recursive 

functions. 

b. The proof illustrates the relation b~tween the concept of envelope 

and the way in which one recognizes whether a word belongs to a 

context free language. 
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Theorem: Let L be an £-free context free language. Let G = (V, E, P, o) 

be a grammar for L. Then there exists a metaprogram v0 such that for 

each w E r* - { E} : 
w EL if and only if v0 (w in <o>) = .E.!· 

Proof: We construct a grammar G' = (V', E, P', o) such that 

1. L(G') = L(G). 

2. The rules of P' have either the form A +BC or D + d 

(A, B, C, DEV' - E, dEE). 

For this construction see e.g. [11]. 

With each rule in P' we associate a truth as follows: 

If the rule has the form A + BC, then the associated truth is 

<B><C> in <A>. 

If the rule has the form D + d, the associated truth is d in <D>. 

v0 is defined as the list of truths which are associated with the 

rules in P'. 
* 

{ E 1. We now prove: For each A EV' - r. and each WEE - it follows 

that A * ==> w if and only if v0 (w in <A>) = tr. By considering the 

special case A a, the theorem follows immediately from this equivalence. 

1. Let A E V' - r. and w Er.* - {E}. Suppose A :=> w. We prove that 

v0 ( w in <A>) = tr, by induction on the length of w. 
* a. Suppose w h11-s length 1, i.e. w a E E. A ==> w is necessarily 

* a derivation of length 1, i.e. A ==> w is simply A ==> w(=a). 

This means that A +a E P', whence a in <A> E v0 • Therefore, 

a in <A> has the value tr. 

b. Suppose the assertion has been proved for any B E V' - E with a 

* word w of length < n. Suppose A ==> w where w has length n. 

* Then there exists C,D EV' - E such that A ==> CD ==> w. 

(This follows from the special form of the grammar G',) 

There exist u,v Er* - {E}, such that C :=> u, D :=> v, and 

w = uv <[22], lemma 1,4.6). By the induction hypothesis 

v0 (u in <C>) = tr, and v0 (v in <D>) = tr. Moreover, <C><D> in <A> 

is a truth in v0 ; hence, it follows that win <A> has the value tr 

by the definition of envelope. 
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2. Suppose v0 (w in <A>) = tr. We prove A 

on the length of w. 

* ==> w, again by induction 

a. If w has length 1, i.e. w = a E i:, then a in <A> E v0 ; hence, 

* A -+a E P', Therefore, A ==> w. 

b. Suppose the assertion has been proved for each BE V' - i: with w 

of length < n. Suppose v0 (w in <A>) = tr. According to the defini­

tion of envelope there is a truth in v0 of the form <C><D> in <A>, 

and a partition of w, w = uv, such that v0 (u in <C>) =!E. and 

* v0 (v in <D>) = tr. By the induction hypothesis, C ==> u and 

D ~=> v. A-+ CD is a rule in P' by the definition of v0 . Thus, 
* * 

from A -+ CD, c ==> u, D ==> v and w = uv it follows that 
* 

A ==> CD ==> UV = w. 

3.2.3, A type 1 language (cf. 4.2.2, example 7). 

{ n n n I l r. J The set a b a n > 1 J is not a type 2 language (L22 ). Therefore, 

we cannot use the second theorem of 3.2.2 to recognize whether a word 

belongs to this set. However, by using more of the mechanism of the 

metalanguage, it is possible to construct a metaprogram v0 which does 

perform this recognition. 

Let v0 be defined as: 

a <as> in <as> co b <bs> in <bs> co 

aba in <ABA> co 

<asl> a <bsl> b <asl> a in <ABA> is 

<asl> <bsl > <asl> in <ABA>. 

It is easy to see that: 

1. v0 (ap bp ap in <ABA>) tr, for each p > 1. 

<ABA>, where 

p1 = p + 1 - min(p,q), q1 = q + 1 - min(p,q). 

3. v0 (w in <ABA>) =win <ABA> for each other word wE {a,b)* - E. 

3.2,4. Definition of abstract machines. 

In this section we show how to define each of the four abstract machines 

that define the type 3, 2, 1, and 0 phrase structure languages in terms 

of the metalanguage, 
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3,2,4,l. Finite automata (cf. 4.2.2, example 8), 

Theorem: Let A= (K, r., o, q0 , F) be a finite automaton. 

There exists a metaprogram v0 such that for each wEr.'*- {e:}: 
v0 Cq0w) =.!!if and only if wET(A). 

~:Let K = {q0 , q1 , ••• , qn}' E = {a1 , a2 , ••• ,am}' and 

F = {qi ' qi ' ' ' ' ' qi } ' 
We defi~e si~ lists ofrmetaexpressions: 

1. vl, v2, and v3 are defined as in the proof of theorem 3.1.2 

2. v4 is defined as 

q. in <final state> co q. 

3. v~1 is the list 12 
in <final state> co 

<statel><symboll><state2> im 

<statel><symboll>.::_tapel.'.'.._ is <state2>.::_tapel.'.'.._~ 

<final state> 

in <final state> 

4. For each o(qi,aj) = qk, we define an associated truth qi aj qk. v6 is 

the list of these truths. 

Let v0 be V1 ~ V2 co ••. co v6 • The proof now follows from an argument 

similar to that used in the proof of theorem 3.1.2. 

Remark: The notation used in 4.2.2, example 8, differs slightly from the 

one used in this proof. 

3.2.4.2. Pushdown automata (cf. 4.2.2, example 9). 

Theorem: Let M = (K, I., r, o, z0 , q 0 , F) be a pushdown automaton. There 

exists a metaprogram v0 such that for each wi;r.*" - {e:} we have: wi;T(M) 

if and only if v0 (q0 w z0 ) contains the metasymbol tr. 

Proof: Let K = {q0 , q1 , .•• , qn}, r. = {a1 , a2 , ... , amL r {z0 , z1 , .•• , 

z } and F = {q . , q . , ... , q . } . 
p 11 12 l 

v0 is constructed from ten lists of metaexpressions (we assume that K, f. 

and rare disjoint sets): 

1. vl, v2, v3 and v4 are defined as in the proof of theorem 3.2.4.1. 

2. v5 is the list 

z0 in <Pd symbol> co ••• co z in <pd symbol> 
p-

11pd11 is an abbrevation of "pushdown". 
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3. v6 is the list 

<pd symbol>_3>d tape.::_ in <pd tape> 

4. v7 is the list 

<pd tape> in <pd tapelist> ~ 

~d tape.::_, _3>d tapelist.::_!_!! <pd tapelist> 

5, v8 is the list 

<state><statelist> in <statelist> 

6, v9 = T9 1 ~ T9 2 ~ T9 3 ~ T9 4 , where 
J • ' ' 

T9 l is 
' <statel><symboll><pd symboll><statelistl>~d tapelistl.::_ im 

<statel><symboll>~tapel.::_<pd symboll>~d tapel.::_ is 

<statelistl>~tapel~d tapelistl.::_, ~d tapel.::_ 

T9 2 is 
• 

<statel><statelistl><tapel>~d tapel.::_, ~d tapelistl.::_, ~d tape2.::_ is 

{<statel><tapel>.'.: . .Pd tapel~d tape2.'.'._~ 

<statelistl><tapel>~d tapelistl.::_, ~pd tape2.::_} 

T9 3 is 
• <statel><tape1>2,Pd tapel.::_, 2,Pd tape2.'.'._ is 

<statel><tape1>2,Pd tapel~d tape2.::_ 

T9 4 is 
• <statelist><final state>~statelist><pd tapelist.::_ 

7. v10 is constructed as follows: 

With each o(qi, a., zk) = { (q. , u. ) , ... , (qi , ui ) }, where 
J 1 1 1 1 1 *-1 

q1 ,qi, ••• ,qi EK, ajE r., zkE r, u. , •.. , u. Er, 1 .::_1, we 
1 1 1 1 1 1 

associate a truth qi a. zk qi q. . .• qi ui , u. , 
J 1 1 2 r 1 1 2 

v0 is the list of these associated truths, separated 

Then v 0 is defined as vl ~ v2 ~ ••• ~ v10' 

• • •' ui • 
r 

by metacommas. 

The proof is again similar to the proof of theorem 3,1.2. The non-deter­

ministic character of the pushdown automaton is represented by T9 2 : as 
• 

a result of this truth the different courses of action which the push-

down automaton can take, corresponding to the different choices from the 

sets 0(q, a, z), are all treated successively. If one of these combina­

tions leads to the value tr (by application of T9 4> then it follows that 
• 
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Remark: Again there are some inessential differences with 4~2.2 1 

example 9. 

3.2.4.3. Linear bounded automata. 

Kuroda (?9] has proved that a phra~e structure language is a type 1 

language if and only if it is accepted by a linear bounded automaton .. 

Essentially this is a non deterministic "Turing machine", with a finite 

memory; i.e., an equivalent metaprogram can be constructed for a linear 

bounded automaton by modifying the metaprogram which was constructed 

in the proof of theorem 3.1 2 as follows· 

a T4 3 and T4 5 are deleted, since these truths give the possibility , , 
of extending the tape indefinitely to the left and right. 

b. Some truths are added which represent the fact that one now has a 

choice from different states for the next state. This can be done 

in a manner similar to the one used in T9 .2 in the metaprogram of 

3.2.4.2. 

3.2.4 4. Turing machines. 

A set is a type 0 language if and only if it can be generated by a 

Turing machine. The construction of a metaprogram, equivalent to a 

given Turing machine, was given in 3.1.2. (Cf. also the first 

theorem of 3.2 2.), 



CHAPTER 4 

DEFINITION OF THE METAIANGUAGE 

In this chapter the processor is defined by an ALGOL 60 program. After 

this, several examples are exhibited of the evaluation of a name by 

the processor. 

4.1. The ALGOL 60 program for the processor 

First we give a general survey of the program. 

We distinguish six groups of procedures: 

1. The input procedures 

InitO, Init, RFS, symbol, read metavariable and read underlined 

symbol. 

The input/output medium used is paper tape, punched in MC flexowriter 

code. Heptads from the input tape are read by means of the code 

procedure REHEP (see group 6), 

The input procedures are defined in such a way that: 

a. A terminal symbol of the metalanguage is either a flexowriter 

symbol (these are listed below), or an underlined sequence of 

flexowriter symbols, different from each of the metasymbols. 

b. A metavariable is defined as in chapter 2, section 1. 

Thus, a metavariable is denoted by the symbol "<" or ".::.'.', a 

sequence of metaletters, possibly a sequence of metadigits, and 

the symbol ">" or ">" respectively. 

Due to the restricted character set on the flexowriter, we have 

no way of distinguishing between metaletters (metadigits) and 

letters (digits) which occur in the language we want to define 

(e.g. ALGOL 60), In ALGOL 60 this causes no special problems, 

since a combination like "< 
' 

sequence of letters, >" will not 
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occur in a syntactically correct program If one should want 

to define a language Le which this combination ; ·ay indeed occur, 

one should use another denotation for the metavariables 

c. Terminal symbols, metasymbols and metavariables ·re represented 

uniquely by integers. 

d. Each name is required to end with a stopcode pun :'.:ing (a stopcode 

is a punching symbol that leaves no visible mark on the type­

writer sheet) 

2. The output procedure outputO 

Heptads are punched on the ~utput tape by means of the code proce­

dure PUHEP (see 6). 

3. The procedures 

SIMPLE NAME, LIST OF METAEXPRESSIONS, SIMPLE TERM, SIMPLE FACTOR, 

METAEXPRESSION, LEFT PART_ RIGHT PART, LIST OF SIMPLE RIGHT PARTS, 

SIMPLE RIGHT PART. IND METAT'i.RM, IND METAFACTOR TERMINAL SEQUENCE, 

METASEQUENCE, IND METASEQUENCE, and SIMPLE METAVARIABLE. 

These procedures check the syntax of the name which is offered to 

the processor They reflect the rules for the syntax of the meta­

language of chapter 2, sect on l, 

(The technique used here was inspired by [2s]), 

4, The auxiliary procedures 

Terminal symbol, Simple metav, Metav, Ind metav, Opt metav, Ind 

simple metav, Ind opt metav, Non ind metav, s.milar, metaletter, 

metadigit, error, and add to Sequence. 

5. The procedures 

NAME, add to V, envelope, evaluate, derive condit~on, derive simple 

right part, and derive right part. 

These procedures contain the definition proper of the processor. 

A call of the procedure NAME results in the determination of the 

value of the first simple name of the name which ".s off.c.red to 

the processor by means of a call of the procedure '.;'.Valuate the 

addition of this value to V by means of a call of ;, .e procedure add 

to V, and, if necessary, a recursive call of NAME to treat the rest 

of the name. 
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6. The following library routines which are available without declara­

tion in the MC ALGOL system: 

read: 

REHEP: 

PUHEP(f): 

PUNLCR: 

a function designator, assigning to its identifier 

the next number on the input tape. 

an integer procedure, assigning to its identifier 

the value of the next heptad on the input tape. 

a procedure, punching the value of f (0 < f < 127) 

as a heptad on the output tape. 

a procedure, punching a new line carriage return 

symbol on the output tape. 

ABSFIXP(n,0,x): a procedure, punching the absolute value of x, 

rounded to an integer, using n digits and replacing 

leading zeroes by spaces. 

PUTEXT(string): a procedure that punches the actual string on the 

output tape. 

RUNOUT: a procedure that punches a piece of blank tape. 

Remarks: 

1. The left and right metaparentheses which are defined here to be 

denoted by Jandl• are denoted in the explanatory chapters (i,e, 

chapters 2, 3 and 6) by { and }. 

2. No restriction is imposed on the length of a sequence of metaletters 

in a metavariable. However, we have not bothered to include a mecha­

nism to allow arbitrary length of a sequence of metadigits, At most 

five metadigits are permitted in an indexed metavariable. 

List of flexowriter symbols: 

a, b .. ., z, A, B, .. ., Z, O, 1, .. ., 9, 

A v x I = ; [ J ( ) < >" '+?:.., - • 10. 

For the separation of underlined sequences of flexowriter symbols the 

lay-out symbols space, tab and new line carriage return are used. 



42 

comment Definition of the processor, de .Bakker,R1111,21:066; 

integer bowid V, bowid Sequence, bowid Im, bcwid M, bowid Commas, 
bowid auxu, bowid awan, bowid Metava, bowid Underlined symbol,; 
bowid Im:= read; bowid M:= read; bowid V:= read; 
boun:::t Sequence:= read; bow:d Commas:"' read; bowid auxu:= read; 
bowid awan:= read.1 bowid Metava:= read; 
bowid Underlined symbol:= read,; 

befin 
nteger space, tab,newline, blank .• erase, bar,widerlining1 less9 more, 

u11per case; lower case, lef't par, right par, stopcode; 
integer im,in,is,va,co,tr,leftmetapar,rightmetapar, 

leftquote, rightquote,optc<pen, optclose, terminator; 
:Lr.,teger ca 0:e,next RFS,next symbol,index; 
in',eger s, ,,,number of metavarlables,number of widerlined ymbols, 

k. l;number of truths,c,m.:. 
booJe•n fit.first; 
integer arr~y V[ O:bowid V L Seque ice[ O:bowid Sequence], 

Me ·t;a va[ 0: bowid Meta va J , 
Underlined symbol[O:boUnd Underlined symbol], 
awan[ 0: bowid awan J, auxu[ 0: bowid auxu], Im, Is, Comma, 
Length1 1 Length2[0:towid Im ,Comrnas[O:bowid Comma .. ], 
M1,M2,M3,M4(0:bowid M] 

comment V is the list of truths,Sequence the sequence that. is 
evaluated.Metava,Underli11ed symbol,auxm and auxu are u·,;ed 
for the representation of metavariables and underlined 
symbols by integers.Im,Is,Comma,Length1,Length2 are used 
for the administration of v.commas is used for non-simple 
right parts.M1,M2,M3,M4 are used to store information 
about similarity of indexed metavariables; 

procedure .LnitO ; 
begin comment Initialization of some e:lobal variables.The array 
~ Underlined symbol is filled with the underlined 

metasymbols~::;, and 2: , 

integer i,m, n, s, v, a, C.i o, t~ r; 
space read; lower case .- read; erase ·= read; 
tab .- read; upper Ci::l.Se .- read; blank .- read; 
newline - read; undeL Lining read, bar .- read; 

less .= read; right .r-ar read; 
more - read; left par read; 
stopcode = read; 



im .- 1; 
in := 2; 
is := 3; 

optopen 
optclose 

va 
co 
tr 

:= 9; 
:=10; 
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:= 4; 
:= 5; 
:= 6; 

leftmetapar := 7; 
rightmetapar := 8; 

leftquote : = -1,; 
rightquote := -2; 

terminator := -10; 

i:= read; m:= read; n:= read; s:= read; v:= read; 
a:= read; c:= read; o:= read; t:= read; r:= read; 

1:= number of underlined symbols:= O; 

for Underlined symbol[!]:= O,i,m,i,n,i,s,v,a,c,o,t,r, 
- left par,right par,less,more 

~ 1:=1 + 1; 

1:= 16; Underlined symbol[!]:= more; 

for auxu[number of underlined symbols]:= 0,2,4,6,8,10,12, 
- 13,14,15, 16 do 
number of underlined symbols:= number of underlined ~ 

symbols + 1; 
number of underlined symbolu:= 10; 
auxu[number of underlined symbols]:= 16 

~ InitO; 

procedure Init; 
begin cormnent Initialization of the ev~luation of a name; 
-- case:= next RFS:= next symbol:= s:= v:= number of metavariables:= 

number of truths:= c:= m:= auxm[O]:= O; 
Comma[ OJ:= -1; 
first:=~; 

for k:= 0 step 1 until bound Im do 
- Im[k] := Is[k]:=-1ength2[k] :=O; 
for k:= 0 step 1 ~bound Commas ~ Commas[k] := O; 

k:= o; 

number of underlined symbols:= 10; l:= 16; 
RFS{true); symbol 

end Init;-
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integer procedure RFS (f); value f; boolean f; 
begin comment RF~ reads a fie'XOW:riter symbol.The parameter f determines 

whether the symbols space, tab and newline are skipped; 
integer heptad; RFS:= next RFS; 

if next RFS = stopcode then goto end; 
L: heptad:=REHEP; -- --

if heptad = blank V heptad = erase V 
- f A (heptad = tab V heptad = space V heptad = newline) 
then goto L; 
If"'iie'P't'iid = lower case then begin case:= O; goto L end; 
if heptad = upper case then begin case:= 128; goto L end; 

next RFS:;- heptad + (if heptad ;;-"S'topcode V heptad = space V -
heptad = tab V heptad = newline 

end: 
~HFS; 

then 0 else case); 

procedure symbol; 
begin comment To the global variable next symbol an integer is 
~-- assigned, representing: 

one of the symbols for t,or 
a metavariable,or 
an underlined terminal symbol,or 
an underlined metasymbol,or 
a non-underlined terminal symbol; 

integer temp; index:= O; 

start:temp:= RFS(true); 
if temp = bar-
- then begin if next RFS = less then 

-- --- begin RFS( true); 
~--next symbol:= leftquote 
end else 
if next RFS = more then 
begin RFS (true); 
~--next symbol:= rightquote 
end else 
goto terminal 

end eISe" 
if temp = les_s_ 

then begin temp:= read metavariable(less,start,open); 
-- --- RFS (true); 

next symbol:= temp 
end else 
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if temp = underlining 
- then begin next symbol:= read underlined symbol; 

-- Q'j?e'il:" if next symbol = optopen then 
begin temp:= read metavariable(optopen, 
~~- start, open); 

next symbol:= temp + 200 
end 

end eI'Se 
if temp = stopcode tilei1 

next symbol::;;-:terminator else 
terminal: 

next symbol:= temp + 300 
end symbol; 

integer procedure read metavariable(f,start,open); 
value f; integer f; label start,open; 

begin coiiiiileiit The metavariable is represented by an integer. 
Complications are caused by the possibility of the 
occurrence of sequences such as: < ab12 >. 
This is not a metavariable, but a sequence of six 
terminal symbols; 

integer i,j,kl,k2,aux,length; 
aux:= read metavariable:= O; 
kl:= k; 
for i:= next RFS while metaletter(i) du 
begin RFS(true); k!7k + 1; Metava[k]!= i end; 
k2:= k; --
for i:= next RFS while metadigit(i) do 
begin RFS(true); k!7k + 1; Metava[k]!= i ~; 
If!iext RFS = underlining then 
awe:= read underlined symbol; 
if kl = k2 V (if f = less then next RFS t more 
- - else aux t optclose) then 
begins:= s + 1; Sequence[s]:= if f =less then less+ 300 

end; 

- else optopen; 
for i:= kl + 1 step 1 until k do 
'begins:= s + 1; Sequence[s]:="t:Ietava[i] + 300 ~; 
k:= kl; 
if aux t ·o then 
begin next symbol:= aux; ~ open end~ 
goto start 

fOr i:= k2 + 1 step 1 until k do 
Index:= index X~+ MetaYa[i]T°"index:= index+ 1000; 
k:= k2; 
length:= k - kl; 



end: 
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for i:= 1 step 1 until number of metavariables do 
begin if awan[ i ] ::-a:uim[ i - 1 ] = length then 
-- begin for j: = 1 step 1 until lengthdO 

out: 
end; 

-- IfMetava[awan[i =--iT+ j] + -
-:--- Metava[k1 + j] then goto out; 
read meta variable: ';;"""i" + "'""500 + (if 

index> 1000then 100 else O); 
k:= k1; goto end 

number of metavariables:= number of metavariables + 1; 
read metavariable:= number of metavariables + 600 + 

(if index > 1000 then 100 else O); 
auxm[number of metavariables]:= k; --- ---

end read metavariable; 

integer procedure read underlined symbol; 
begin comment The underlined symbol is represented by an integer; 
-- integer temp,11,i,j,length; 

boolean under; 11:= l; under:= true; 
L: if next RFS = underlining then -~ 

end: 

begin under:= true; RFS(false); goto L end; 
if next RFS = space V nextR°FS = tab V next RFS = newline then 
begin if under then error(l) else RFS(true) end; 
if under then --- -- --- --
begin l:=-:L'+ 1; Underlined syrnbol[l]:= next RFS; 
----- under:= false; RFS(false); goto L 
end; -- -- ---
:i:r-11 = 1 then error(2); 
length:= 1-=11; 
for i: = 1 step 1 until number of under lined sj"!!lbols do 
begin if awru[ i] ::a::iiXu[ i - 1] = length then 
----- begin for j:= 1 step 1 until length<iO 

-- if Underlined symbol[ auxu[ i - TI + j ] + 
- Underlined symbol[ll + j] then goto out; 
read underlined symbol:= i; 1::;;-r1; goto end 

out: 
~; read underlined symbol:= number of underlined symbols:= 

number of underlined symbols+ 1; 
auxu[number of underlined symbols]:= l; 

end reud underlined symbol; 
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procedure outputO(sw,e,f,g,h,A); value sw,e,f,g,h; 
integer sw,e,f,g,h; integer-array A; 

begin integer i, j, k, uj, vi 1 case; --
-- own integer N; 

S'Wftch switch := CD,IR,TS,SN,CV; 
procedure P(f); value f; integer f; 

if f = lower-case then 
begin if case f lower-case then 
-- begin case:= lower case; PUHEP(lower case) end 
end erse 
llf = ""'iiPPer case then 
begin if case f up~case then 
-- begin case:= upper case; PUHEP(upper case) end 
end else PUHEP( f); 

:procedure Pl (fl, f2, f3, f4); value fl, f2, f3, f4;. 
integer f1,f2,f3,~ 

begin P(s:pace); P(fl); P(underlining); P(f2); P(f3); P(f4); 
P( space); 

procedure punch metadigits(f); ~ f; integer f; 

L: 

end 

integer a,j,k; 
integer array A[1 : 5]; 
f:= f - 1000; 
k:= o; 
a:= f: 33 X 33; k:= k + 1; A[k):= f - a; 
if a >-0 then begin f:= f : 33; goto L end; 
for j:= k step-=-1until 1-do -- -­
begin P(1ower-case);-p('A[J]'T°"end 
punch metadigi ts; -

procedure punch metav(f); value f; integer f; 
begin integer k; if f < 3 then 
--- begin P(lower case);"l?[Iess) end else 

begin P(lower case); P(underlining'JTP(less) end; 
fork:= 1 + auxm[vi - 501 - 100 x f) step 1 uii.tr1 

auxm[ vi - 500 - 100 x f J do -- ---
begin if Metava[k) > 128 then -
-- begin P(upper case)TP'{"Metava.[k] - 128) end else 

begin P(lower case); P(Metava[k)) end - --
end; - --
if f = 2 V f = 4 then 
begin i:= i + 1; punch metadigits(A[i]) ~; 
ITT< 3 then 
begin P(upper case); P(more) end else 
begin P(lower case); P(underlini~P(upper case); 
-- P( more) ; P( space) 
end 

end punch metav; 
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procedure punch(f); value f; integer f; 
begin vi:=f; -----
-- if vi = leftquote then 

Pf(upper case,underifiiing,lower case,less) else 
if vi = rightquote then 
Pf(upper case,underlining,underlining,more) else 
if vi =in.then 
Pl(lower case,i,underlining,n) else 
if vi = im then 
Pl(lower case,i,underlining,m) else 
if vi = is then 
Pl(lower case,i,underlining,s) else 
if vi = va then 
Pl(lower case,v,underlining,a) else 
if vi = co then 
Pl(lower case;'C,underlining,o) else 
if vi = tr then 
Pl(lower case,t,underlining,r) else 
if vi = leftmetapar then 
Pl(lower case,underlining,upper case,left par) ~ 
.if vi = rightmetapar then 
Pl(lower case,underlining,upper case,right par) else 
if Terminal symbol(vi) then 
begin if vi > 300 A vi <"'""'1+28 then 
----- begin P(lower case); P(vi - 300) end else 

IfVI > 428 then 
begin P(upper case); P(vi - 428) end else 
begin P(space); 
----- for j:= 1 + auxu[vi - 1] step 1 until 

end 
end else 

- G:.uxu[vi] do 
begin uj:= Underlined symbol[j]; 
----- if uj > 126 then 

begin P(lowe~se); f(underlining); 
-- F( upper case); P(uj - 128) 
end else 
begin P(lower case); l'(underlining); 
-- P(uj) 
end 

end; P( spG:.ce) 

~Simple metav(vi) then punch metav(1) else 
if Ind simple metav(~then punch metav~else 
if Opt metav(vi) then puiiC'ilmetav(3) else -­
If Ind opt metav(~then punch metav~ 

end p:iinch; ----



CO: 
IR: 
TS: 
SN: 

CV: 

out: 

end: 
end 

49 

procedure punch truth(j); value j; integer j; 
begin PUNLCR; ABSFIXP(2,0~PUHEP(upper case); 
- PUHEP(107); PUHEP(space); PUHEP(case); 

for i:= Comma[j - 1] + 2 step 1 until Comma[j] do 
punch(A[i]); -- --
if j <number of truths then punch(co) 

end Plinch truth; --

procedure P2(string); string string; 
begin PUNLCR; PUTEXT(string);ABSFIXP(2,0,h);PUTEXT(f): *); 
-- for i: = e step 1 until f do punch( A[ i ] ) 
end P2; -- --- -
case:= O; go to switch[ sw]; 

P2(!o(i); goto end; 
P2( R( ); goto out; 
P2( s( ); g'OtO out; 
PUNLCR; PUTEXTt=fsN: :j-); 
for i:= e step 1 until f do punch(A[i]); PUNLCR; goto out; 
PUNLCR;PUTEXT(fcv::f);PUNLCR; --
if first then 
begin for~ 1 step 1 until number of truths do punch truth(k); 
-- first:= faIS'eT N :;-number of truths -
end else --
begin punch truth( 1); PUNLCR; PUTEXT( f .:} ) ; PUNLCR; 
-- PUTEXT( f .:} ) ; PUNLCR; PUTEXT( f .:} ) ; 

for k:= N step 1 until number of truths ~ punch truth(k) 
end; 
FUNLCR; 
ifgfOthen 
begin Pl(lOWer case,i,underlining,n); 
-- vi:':' abs(g); punch metav{l) 
end; 

outputO; 
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boolean procedure Terminal symbol(f); value f; integer f; 
Terminal symbol:= 8 < f /\ f < boo; 

boolean procedure Simple metav(f); value f; integer f; 
Simple metav:= 600 < f /\ f < 700; 

boolean procedure Metav(f); value f; integer f; 
Metav!= 600 < f /\ f <""TBOo; 

boolean procedure Ind metav(f); value f; integer f; 
Ind metav:= 700 < f /\ f < Boo v 900 < f /\ f < 1000; · 

boolean procedure Opt metav(f); ~ f, integer f; 
Opt metav:= 800 < f /\ f < 900; 

boolean procedure Ind simple metav(f), value f_ integer f; 
Ind simple metav::;.; 700 < f /\ f < Boo; 

boolean procedure Ind opt metav(f); ~ f; integer f; 
Ind opt metav:= 900 < f /\ f < 1000; 

boolean procedure Non ind metav(f); value f; integer f; 
Non ind metav:= 600 < f /\ f < 700 V 800 < f /\ f < 900; 

comment The boolean procedures Terminal symbol(f), ••• , 
Non ind metav(f),are true,if the integer f represents 
a terminal symbol, ••• ,a non indexed metavariable; 

boolean procedure similar(f,g,h); value f,g,h; integer f,g,h; 
similar:= (M1[f] = g V Ml[f] = g + 200 V 

M1[f] + 200 = g) /\ M2(f] = h; 

boolean procedure metadigtt(f); value f; integer f; 
metadigit:= 0 < f /\ f < 9VT8 < f /\ f < 26 V f = 32; 

boolean procedure metaletter(f); value f; integer f; 
begin integer temp; temp:= if f"):""l'28 then f - 128 else f; 
- metaletter:= 34 <temp/\ temp <~V 49 <temp/\ temp< 57 V 

66 < temp /\ temp < 74 V 80 < temp /\ temp < 89 V 
96 <temp/\ temp <105 V114 <temp/\ temp <122 

end metaletter; 
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procedure error(f); value f; integer f; 
begin PUNLCR; PUTEXTl-f"Trror :}) ; ABSFIXP( 3, O, f); 

goto end program 
end error; 

Sequence; procedure add to 
begin s:= s + 1; 
--- if index > 

Sequence[s]:= next symbol; 
1000 ~begins:= s + 1; Sequence[s]:= index end; 

symbol 
end add to Sequence; 

procedure add to V(A,f,g); value f,g; integer f,g; integer array A; 
begin comment The value of a simple name is added to V. The ---
--- administration of the arrays Im,Is,Comma,Length1, 

Lengtb2 is updated; 
integer par,quote,k,sk; 
boolean comma.,right of is; 
par:= quote:= O; nwnber of truths:= number of truths + 1; 
comma:= right of is:= false; 
if nwnber of truths> "f"'then begin v:= v + 1; V[v]:= co~; 
for k:= f step 1 until g"'"'(i() -
begin sk:=""'Atk]; -- -
-- if Terminal symbol( sk) 

if Non ind metav(sk) 
if Ind metav(sk) 

if sk 
If sk 
If sk 

leftquute 
rightquote 
leftmetapar 

then go to add 1 ; 
then' goto addO; 
then --
begin 
----v:;- v + 1; V[ v] := sk; 

k:= k + 1; sk:= A[k]; 
if l(Ind opt metav(A[k - 1]) V 
right of is) then goto add2 

end else -- --
then quote:= quote+ else 
then' quote:= quote - 1 erse 
then' 
begin 
--rf""par = 0 A quote = 0 then 

comma:= true; par:= par~ 
end else --

if sk rightmetapar then par:= par - 1 else 



addO: 
addl: 
add2: 
add: 
~; 

add to 

if sk = im 

if sk = is 

if sk = co 

if sk = in 
goto add; 
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then 
begin 

if quote = 0 then 
begir -

Im number of truths]:= v; 
Lengthl[number of truths]:= 

Lengtb2[number of truths]; 
Lengtb2[number of truths]:= 0 

end 
end else 
then--
begin 
--rf°"quote = 0 then 

begir --
Is number of truths]:= v; 
right of is:= true 

end 
end else 
then--
begin 
--rf'"quote = 0 A par = 0 ~ 

begin 
---CO-mrna[number of truths]:= v; 

number of truths:= 
number of truths + 1; 

right of is:= false 
end else 
if quote = 0 A par = 1 then 
beg~.n 

--rr-c0mn1a then 
begin 
~c+ 1; 

Comme:.s[ c J := -number of truths; 
comme:.: = fo,,lse 

~; 
c·= '+ 1; Commas[c]:= v 

end 
endelse 
then goto add 1 ; 

ITCipt met&v(sk) ~ goto add; 
If right of is then goto add; 
Lengtb2[nwnber of truths]:= Lengtb2[number 
v:= v + 1; V[v].= sk 
Comma[ nwnb er of tru th~3 ] : = v; 
outputo(5,1,v,o,o,v) 
V; 

of truths] + 1; 
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procedure NAME; 
begin comment See the introduction at the beginning of this chapter; 
-- SIMPLE NAME; 

if Simple metav(Sequence[s)) then 
begin s:= s - 2; ~-
~ output0(4,1,s,-Sequence[s + 2],0,Sequence); 

evaluate(fit,1,s,s + 1,Sequence,- Sequence[s + 2)) 
end else 
begiii'"OUtput0(4,1,s,O,O,Sequence); 
--.~ evaluate(fit,1,s,s + 1,Sequence,O) 
end; 
addto V(Sequence,1,s); s:= O; 
if next symbol = co then 
begin symbol; NAME end else 
i:f"'iiext symbol t terDiina:tO'r then error(3) 

end NAME; 

comment The procedures SIMPLE NAME to SIMPLE METAVARIABLE test the 
syntax of a simple name, when it is read from the input tape. 
If the simple name contains a simple primary,this is evaluated 
in the procedure SIMPLE FACTOR; 

procedure SIMPLE NAME; 
if next symbol tr then add to Sequence else 
if next symbol = leftquote then 

begin 
add to Sequence; 
LIST LJF METAEXPRESSIONS; 
if next symbol = rightquote then 
add to Sequence ~ error(4~ 

if Terminal symbol(next 
- next symbol = va 

end else 
symbol)V-

then SIMPLE TERM 
else error( 5); 

procedure LIST OF METAEXPRESSIONS; 
begin METAEXPRESSION; 
-- if next symbol = co then 

begin add to Sequence;-­
-- LIST OF METAEXPRESSIONS 
end 

end LIST OF METAEXPRESSIONS; 

procedure SIMPLE TERM; 
begin SIMPLE FACTOR; 
-- if next symbol = in then 

begin add to Sequence;-­
-- SIMPLE METAVARIABLE 
end 

end 'SIMPLE TERM; 



procedure SIMPLE FACTOR; 
if Terminal symbol(next symbol) 

then 
begin 

if next symbol va 

procedure METAEXHU•::SSIJN; 
if next symbol = tr 

--a.a.er to Sequence; 
SIMPLE FACTOR 

end else 
then--
begin 

symbol; 
if next symbol = leftmetapar then 
begin 
--:riiteger aux:2; 

symbol; aux:2:= s + 1; 
if Terminal symbol(next symbol) 
then TERMINAL SEQUENCE else 
error(6); --
evaluate(fit,aux:2,s,s + 1, 

Sequence, 0); 
if next symbol = rightmetapar 
then symbol else error(7); 
SIMPLE FACTO_R __ 

end else error(8) 
end; --

then 
begin 

add to :.·equence; 
if next ~ymbol = im then 
begin 
L1: add to Sequence; 

if Terminal symbol(next symbol)V 
- Methv(next symbol) then 
begin 
----Y:EFTPAi\T; 
l2: if next symbol is then 

begin 
L3: add to Sequence; 

RIGHTPAHT 
end 

end else error(9) 
end ei3e-er=ror(10) 

end else-



if Terminal symbol(next 
~ Metav(next symbol) 

procedure LEFTPART; 
begin METASEQUENCE; 
- if next symbol = in 

~ LEFTPART; 

procedure RIGHTPART; 
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symbol) V 
then 
begin 

MErASEQUENCE; 
if next symbol = im then 

goto Ll else 
if next symbQT;;- is then 

goto L3 else 
if next symbQT;;- in then 
begin 
--a:a:d to Sequence; 

SIMPLE MErAVARIABLE; 
goto I2 
en~ 

end 
else error(11); 

then 
begin 
--aa:a: to Sequence; 

SIMPLE MErAVARIABLE 
end 

if next symbol = leftmetapar 
then 
begin 
--a:a:d to Sequence; 

LIST uF SIMPLE RIGHTPARTS; 
if next symbol = rightmetapar 
then add to Sequence else error(12) 

en_d_ --
else SIMPLE RIGHTPi\RT; 

procedure LIST OF SIMPLE RIGHTPARTS; 
begin SIMPLE RIGHTPART; 
-- if next symbol = co then 

~ LIST OF SIMPLE RIGHTPARTS; 

begin 
--a:dd to Sequence; 

LIST OF SIMPLE RIGHTPARTS 
end 



procedure SIMPLE RIGHTPART; 
if next symbol = tr 
If next symbol = leftquote 

if next symbol = va V 

then add to Sequence ~ 
theii 
begin 
--aa:d to Sequence; 

LIST OF METAEXPRESSIONS; 
if next symbol = rightquote then 
a:dd to Sequence else error(1~ 

end else --

- Ind metav(next symbol) V 
Terminal symbol(next symbol) 

procedure IND METATERM; 
begin IND METAFACTOR; 
-- if next symbol ~ in then 

then IND METATERM else error(14), 

begin add to Sequence; SIMPLE METAVARIABLE end 
end ~METATERM~ 

procedure IND METAFACTOR; 
if Terminal symbol(next symbol) V 
- Ind metav(next symbol) then 

begin 

if next symbol = va 

procedure TERMINAL rnQUENCE; 

--aa:d to Sequence; 
IND METAFACTOR 

end else 
then--
begin 
--a:dd to Sequence; 

if next symbol = left metapar ~ 
begin 
--aa:cr to Sequen~e; 

if Terminal symbol(next symbol) V 
Ind met~v(next symbol) then 
IND METASEQUENCE else error(i5); 
if next symbol = right metapar 
then add to Sequence 
else error(16); 
lNDMETAFACTOR 

end else error 17) 
end; --

if Terminal symbol(next symbol) 
then 
begin 
--a:dd to Sequence; 

TERMINAL SEQUENCE 
~ TERMINAL SEQUENCE; 
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procedure METASEQUENCE; 
if Terminal symbol(next symbol) V 
~ Metav(next symbol) then 

procedure IND METASEQUENCE; 

begin 
---aa:d: to Sequence; 

METASEQUENCE 
end METASEQUENCE; 

if Terminal symbol(next symbol) V 
~ Ind metav(next symbol) then 

begin 

procedure SIMPLE METAVARIABLE; 
if Simple metav(next symbol) 

---aa:d: to Sequence; 
IND METASEQUENCE 

end IND METASEQUENCE; 

~ then add to Sequence else error(18); 

boolean procedure envelope(l,a,b,c,A,B,p,q,para,n,nO); 
value l,a,b,c,p,q,para,n,nO; 
Integer l,a,b,c,p,q,para,n,nO; 
integer array A,B; 

begin connnent envelope is true, if the sequence in the array V, 
from V[p] to"""V['q),is an envelope of the sequence in the 
array A,from A[aJ to A[b].Otherwise,envelope is false. 
The array A has as its corresponding actual either-the 
array Sequence or the array V(the latter case occurs 
when it is tested whether a derived condition is an 
envelope of a truth in V).l is the length of the 
sequence V[pJ, ••• ,V[q],decreased by the number of 
(indexed) optional metavariables in this sequence. 
c points to the first free place in the array A. 
This is used for auxiliary evaluations,e.g.of the value 
of a derived condition.A[a], ••. ,A[b) contain the 
terminal sequence of a simple sequence.para(fO) 
represents the simple metavariable of the simple 
sequence in case such a simple metavariable is present. 
B,n,nO are used in the mechanism for testing whether 
subsequences,belonging to similar metavariables,are 
equal.envelope is defined recursively: 
V[p], ••• ,V[q] is an envelope of A[a], •.• ,A[b],if V[p] 
and an appropriate initial sequence of A[a), ••• ,A[b] 
fulfil the requirements of 2.2.3,step 3a,and 
V[p + 1], .•• ,V[q] is an envelope of the remaining 
part of A[a], ••• ,A[b]; 



integer Vp,temp; 
boolean index,opt,fit; 

integer procedure next l; 
next l:= 1 - (if opt~ 0 else 1); 

integer procedure next p; 
next p• = p + (if index then 2 else 1); - --.- ---

boolean procedure last; 
last:= p + (.!f. index then 1 ~ 0) q: 

integer procedure reduced Vp; 
reduced Vp:= Vp - (if opt A index then 300 else 

.!!, opt then 200 ~ if index then i 00 ~ 0); 

procedure add to M(f,g); value f,g; integer f,g; 
if index then ---
begin m:=lii+ 1; M1[m]:=Vp; M2[m]:= V[p + 1]; 
-- M3[m] := f; M4[ml := g 
~add to M; 

boolean procedure env(a); value a; integer a; 
env:= envelope(next l,a,b,c,A,B,next p,q,o,n,nO),; 

boolean procedure TERMINAL; 
TERMINAL:= if Vp = A[a] then (if last then a = b else 

env(a + DT"else false; 

b·•.iolean pro.cedure SIMP MEI'; 
begin 
--sfMP MEI':= false; 

if last --then evaluate(fit,a,b,c,A,reduced Vp) else 
begin temp•= temp+ 1; --
--- if 1 > b - temp + 1 then goto end; 

evaluate(fit,a,temp,c,A,reduced Vp) 
end; 

if fit A last then 
b~gin hdd to M(a,b); SIMP MET:= true end else 



if fit 

if 1 last 
end: 
~ SIMP MET; 
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then 
begin add to M( a, temp); 
---U-env( temp + 1 ) then 

SIMP MET:= true eISe" 
begin if index then m: = m - 1; 
--si'MP°MET: = SI~MET 
end 

end else 
fuenSIMP MET:= SIMP MET; 

boolean procedure OP!' MET; 
begin OP!' MET:= false; opt:= ~; 
--rr last ----uien 

~OP!' MET; 

begin if a > b then 
beginOPl' MET::;-true; add to M( o,-1) end 
eI'S'eoPr MET:= SIMPMET 

encr--
else 
begin add to M( 0,-1); 
---U-env(a) then OP!' MET:= true else 

begin if ilidei then m:= m--=-i"";-­
---U-1< b - a then OP!' MET:= SIMP MET 
end 

end 

boolean procedure IND SIMP MET; 
begin index:= ~; IND SIMP MET:= SIMILAR ~ IND SIMP MET; 

boolean procedure IND OPI' MEI'; 
begin index:= opt:= ~; IND OP!' MET:= SIMILAR ~ IND OP!' MET; 

boolean procedure SIMILAR; 
begin integer i1,i2,temp1,temp2; 
--sTMILAR:= false; 

for i1:= n-:;:-;-step 1 until m do 
If'"similar(i1,Vp,V[p +~then 
begin temp1:= M3[i1]; temp2:= M4[il]; 
---rf"b - a - temp2 + templ < next l then goto end; 

for i2: = temp 1 step 1 until temp2 a:c;-- --
if'" A[ a+ i2 - temp1] f~i1 >no""/\ nO > 0 then 
Vf i2] else B[ i2]) ~ goto end; --



end: 

60 

SIMILAR:= if last then (if temp2 > 0 then 
a + temp 2-= temp1-;;-'j) else a > b T 
else env(a + temp2 - temp1 + 1 ); 
goto end 

ena:;-
SIMILAR:= if opt~ OPT MET~ SIMP MET; 

end: 
~SIMILAR; 

envelope:= false; 
if para + otheii . 
- begin if abs(para) f V[q] V in f V[q - 1] 

~goto end~ 
begin q:= q - 2; l:= l - 2 end 

end; 
if l > b - a-+T then goto end; 
If a < b /\ 1 TerUiiilal symbol(A[a]) V q 2:. p + 2 /\ V[q - 1 ! in 
- - then goto end; 
opt:= index:=""fa'Ise;t'emp:= a - 1; Vp:= V[p]; 
envelope:= if""Teiininal symbol(Vp) then TERMINAL else 

If Simple metav(Vp) then SIMP MET clSe 
if Opt metav(Vp) then OPT MET else 
if Ind simple metav(Vp)then IND SIMP M'Ell'else 
if Ind opt metav(Vp) then IND OPI' ME,~ else ~; 

end envelope; 

procedure evaluate(fi,a,b,c,A,para); Vdlue a,c,para; 
integer a,b,c,para; boolean fi;"""iiiteger array A; 

begin cormnent Tne value of the sequence A[a],.7:-;A[b] is determined. 
c and para have the same meaning as in envelope. 
fi is used to store the result of auxiliary calls 
of evaluate in the body of envelope. 
error 19 occurs when the empty sequence is evaluated, 
and error 20 when the sequence is not simple; 

integer i,i1,temp1,temp2,temp3,temp4,n,n0,d,e,par; 
boolean metav,condition present,rightpart present; 

procedure trl; 
if A(a] = tr /\ a = b then 
begin fi:= true; goto end evaluate end; 

procedure metastring; 
if A(a] = leftquote then 
begin b:= b - 2; --
for i: = a step 1 until b ~ A[ i] : = A[ i + 1 ] ; 

goto end evaIU'ate-
end; 
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procedure apply v; 
begin ~ i: = a step 1 until b do 

if 1 Terminal symbol(A[i])then error(20)~ 
fur i:= number of truths step= 1 until 1 do 
begin consider truth(i); - - -

end 

if envelope(Length2[i],a,b,jf para > 0 then 
C-else b + 1,A,A,if condition present theii'"" 
temp2 + 2 else templ,if rightpart present'"'then 
temp3 else teiiip4,para,n,n0) then -
begin if condition satisfied ~hen 

evaluate right part 
end 

end apply V, 

trocedure consider truth(i); value i; integer i; 
egin temp 1 : = Comma[ i - 1 ] + 2;t°emp2 · = Im[ i]; 

temp3:= Is(i]; tem:p4:= Comma[ij; m' n; 
condition present:= temp2 + o; 
right part present:= temp3 + 0 

end consider truth; 

boolean procedure condition satisfied; 
begin condition satisfied:= ~; 

end: 
end 

if condition present then 
begin derive condition(metav,A,temp1,temp2,c,d,n); 

if 1 metav then 
begin 

outputO(l,c,d,O,i,Sequence); 
evaluate(fi,c1 d1 d + 1,Sequence,O); 
condition satisfied:= fi 

end 
else 
begin nO:= m; 

for il:= number cf truths step -1 
until 1 do 

begin 
g Im[il] + 0 v Is[il] + 0 ~ 
~end. il; 
If'""envelope(Lengthl[i], 
- Comma[ i 1 - 1] + 2,comma[ i 1 ], 

c,V,A,temp1 1 temp2,0,n,n0) 
then goto end; 
end"ir:-

end; 
nO:= - 1; condition satisfied:= false 

end -
condition satisfied; 
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srocedure evaluate right part; 
egin ,!! 1 right part present 

then 
begin fi:= ~; 

if para < 0 then 
begin b:;; a;Jcra']:= trend 

end else 
,!! para > 0 the~ 

goto end evaluate 

begin 
derive right part(i,a,b,c,e,A, 

temp3 + 2,temp4,par,n,n0); 
evaluate(fi,c,e,e + 1,Sequence,- par) 

end else 
begin 

derive right part(i,a,b.1>a,b»AP 
temp3 + 2,temp4,par,n9 n0); 

output0(2,a,b,par,i,A); 
evaluate(fi,a,b,b + 1,Sequence,- par) 

~; 

~ eva:Iuate right part; 

if a> b then error(19); 
ii:~ m; nO~ 1; fi:= false; 
trl; metastring; apply-y;­
if para < 0 then 
begin b:= b + 2; A[b - 1]:= in; A[b]:= - para end; 

end eva:ruate: m:= n 
~evaluate; 

procedure derive conditiun(fi,A,p,q,t,r,n); 
~ p,t,q,n; integer p,q,r,t,n; 
boolean fi; integer arryt A; 

begin comment From the condition p], •• ,,V[q] the derived condition 
~ A[tJ, •.• ,A[r] is derived, 

fi is true if the condition contains a metavariable 
which IS""Similar to no indexed metavariable in the 
left part concerned. 
Information about similarity of metavariables is kept 
in the arrays Ml to M4.n is a pointer of these arrays; 

integer i1,i2,i3,vi; 
procedure add to Seq(f); value f; integer f; 
begin r:= r + 1; Sequence[r]:= fend add to Seq; 
r:;-t - 1; fi:= ~; --
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for il:= p strp 1 until q do 
begin vi:= Vil);- -
- if 1 Ind meta.v(vi) then 

begin add to Seq(vi~ 

end 

if Non ind metav(vi) then 
fi:= true -­

end els-e-
begin for i2:= n + 1 step 1 until m do 

if siiiii'lar( i2, vi, V[ i 1 + 1]) then -
begin for i3:= M3[i2) step ltiiit'il M4[i2) do 

add toSeq(A[i3]); il:= il +-;;goto out-
end; --
fi: = true; add to Seq(vi); 
il:= ii-+ 1; add to Seq(V[il)); 

out: 
end 

end derive condition; 

procedure derive rightpart(k,a,b,t,s,A,vl,v2,par,n,n0); 
value k,a,b,t,v1,v2,n,n0; 
Integer k,a,b,t,s,vl,v2,par,n,n0; 
integer array A; 

begin cormnent From the right part V[v1), ••• ,V[v2) the derived 
- right part is constructed and the simple evaluation 

of the derived right part is performed,i.e,the 
derived simple right parts, except the last one, 
are evaluated and their values are added to V. 
The array aux is used for the temporary storage of 
the sequence that is evaluated,i.e.of A[a), ••• ,A[b). 
k is the number of the truth that is applied. 
t,s,par,n,nO are passed on to derive simple 
right part; 

integer kl; 
integer array aux[a:b); 
for kl:= a step 1 until b do aux[kl) := A(kl ]; 
IT'"v[vl) =left me~ then 
begin integer p,q,aux1,aux2; 

auxl := vl + 1; 
for p:= 1 slep 1 until c do 
ilcommas[ p = - 'k"tiien -
begin q:= p + 1; a~ Co11111bs[q); goto L end; 
derive 'simple rightpart(k, t, s,aux, vl+l, v2 - 1,par,n,nO); 
goto out; 

L: derive simple rightpart(k,t,s,aux,aux1,aux2,par,n,n0); 
output0(2,t,s,par,k,Sequence); 
evaluate(fit,t,s,s + 1,Sequence,-par); 
add to V( Sequence,t,s); 



out: 
end -
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if Commas [ q + 1 ] > 0 then 
begin aux1 := aux2 + 2TV'= q + 1; 

aux2: =Commas [ q]; goto L 
end else 
deriVe"S'imple rightpart(k, t,s,aux,aux2 + 21 

v2 - 1,par,n,nO); 

else 
derive simple rightpart(k,t,s,aux,v1,v2,pa.r,n,n0); 
m:= n 

end derive right part; 

procedure derive simple rightpart(k,t,s,aux,v1,v2,par,n,n0); 
value k,t,v1,v2,n,n0; 
'Iiite'ger k,t,s,v1,v2,par,n,n0; 
integer array auxj 

begin comment From the simple right part V[v1], •• "1 V[v2] the 
derived simple right part Sequence[t], ••• ,Sequence[s] 
is constructed. 
The array aux was used in derive right part 
for temporary storage of the sequence that is 
evaluated.If the simple right part is a simple term 
which contains the metasymbol in, then par is used to 
store the simple metavariable Of this simple term. 
n,nO are used for the administration of similarity 
of indexed metavariables.If the derived simple 
right part contains a simple primary, then this 
simple primary is replaced by the value of its 
terminal sequence; 

inte~er i1 1 i2,i3,temp,vi1,quote; 
bc,0 :ean va 1; 
prv'.cdure add to Seq(f); V'cilUe f; integer f; 
beg1n s:= s + 1; Sequence[s) := f end add to Seq; 
~ - I; va 1 := falne; par:= quote:'"' O; 
for i 1 := vl step "fliiitil v2 do 
1'<';·n vi 1 :=VITl ];-- -
--- if vil = leftquote 

if vi1 rightquote 

then 
begin quote:= quote + l; 
--a:a:d: to Seq(vil) 
end else 
ilien--
begin quote:~ quote - 1.; 
--a<fci to Seq(vil) 
end else 

if Vil 
If Vil 

va /\quote = 0 t'hen-v-ai:= true else 
leftmetapar /\ va1 then temp:=B+ l el.3e 



if vi1 rightmetapar A valthen 

if vi 1 in A quote = 0 

1!. Ind metav( vi 1 ) 

end 
end derive simple rightpart; 

begin va 1 := false; 
output0(3,temp,s,O,k, 

Sequence); 
evaluate( fit,temp,s,s + 1, 

Sequence,O) 
end else 
then-
begin i 1 := i 1 + 1; 
-pB:r:= V[i 1] 
end else 
then--
begin 
--r"Or i2:= n + 1 step 1 until 

m do 
if similar(i2,vi1,V[i1 +TT) 
then 
begin 
--r"Or i3:= M3[i2] step 1 

- until M4[ i2 ]dO 
add to Seq(if i2 :S:-no A 

nO > 0 then V[i3] else 
auxfi3]~ -

i1:= i1 + 1; goto out 
end; -
add to Seq( vi 1); 
i1:= i1 + 1; 
add to Seq(V[i1]); 

out: 
end else add to Seq(vi1) 

RUNOUT; PUNLCR; PUTEXT(f results de Bakk.er,R1111,211066:}); 

InitO; 
L: PUNLCR; PUNLCR; PUNLCR; PUNLCR; Init; NAME; goto L; 

end program: 
end 
ena: 
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4,2. Examples 

In this section we give fourteen examples of the evaluation of a name 

by the processor, 

Section 4.2.1 contains some introductory examples, section 4.2.2 examples 

related to chapter 3, section 4.2,3 examples related to the definition 

of ALGOL 60 1 and section 4,2.4 W'ang's algorithm for the propositional 

calculus, 

We have tried to make these examples better comprehensible by the in­

clusion of some intermediate results. 

The structure of each example is as follows: 

a. Input. 

The name which is to be evaluated is exhibited. 

b. Output. 

1. The successive simple names which constitute this name are given. 

2. The contents of V are shown after the addition of the values of 

each of these simple names to V. 

3. If a truth is applied then the number of this truth and the corre­

sponding derived right part are exhibited, 

4 The truths are numbered jn the order which is the reverse of the 

order in which they are applied (2,3.5). For the sake of easier 

readability, we have supplied each truth in the ou·<:put with its 

number. Occasionally, we omit a part of the contents of V, when 

this part has already been shown. 

5. If a derived condition is a terminal sequence, then it is exhibited. 

6, If a derived right part contains one or more simple primaries, then 

the terminal sequences of these simple primaries (i.e. the terminal 

sequences occurring after the~ symbol) are shown separately, and 

the number of the corresponding truth is given. 

The examples were run on the EL XB. They are printed directly from the 

output tape, except for the manual addition of some spaces and new line 

carriage return symbol. The time used for the fourteen examples was 

31.5 minutes. 

List of abbreviations: 

SN : simple name, 
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CV contents of V, 

IR(i): intermediate result, i.e. derived (simple) right part, found by 

applying truth i, 

TS(i): terminal sequence of simple primary, occurring in the derived 

right part of truth i, 

CO(i): derived condition of truth i. 
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4.2.1, Introductory examples. 

4.2,1.1.Example 1. 
Greatest common divisor of two positive integers 
by the Euclidean algorithm. 
This example has alreaczy been treated in 2,.4.2, 1, 

f 1 <integer> in <integer> co - - - -
(<integer1>,<integerl><:l.nteger2>) is 
(<integer 1><:1.nteger2>; <integer2>) IS 

(<integerl>,<:i.nteger2>) co 
( <integerl> ·, <integer2>) co 

(<integerl>,<integerl>) ~ <integerl> :j. ,::.£ 

(11~111) =2 (1111,11) 

Output : 

results de Bakker,Rl 111 1 211o66 

SN: 
~ l<integer> in <integer> co (<:l.ntegerl>3 <integerl><:l.nteger2>) is 
{<integer1>;<iiiteger2>) co '('<integerl><:l.nteger2>,<integer2>) is -
( <integer1>1 <integer2>) Co ( <integerl>,<integerl>) is <integerl> t - -

CV: 

1 1<:1.nteger> in <integer> co 
2 (<:integerT>,<fntegerl><:l.nteger2>) is (<integer1>1 <integer2>) co 
3 (<integerl><:l.nteger2>,<integer2>) IS (<integer1>1 <:1.nteger2>) co 
4 ( <:l.ntegerl>1 <integerl>) ~ <:l.ntegerl> 

SN: (11 1 111) 

IR( 2 ) : 
IR( 3 ) : 
IR( 4 ) : 

(11,1) 
( 1, 1) 
1 



CV: 

1SI-ntege~ ,!!! <integer> ~ 

. 
4 {<integer1>,<integer1>) ~ <:l.nteger1> ~ 
5 1 

SN: (1111,11) 

IR( 3 ) : 
IR( 4 ) : 
CV: 

(11,11) 
11 

1SI-ntege~ ,!!! <integer> ~ 

. 
4 ( <integer1>,<:l.nteger1>) ~ <:l.nteger1> ~ 
5 1 co 
6 11-

Remark: 
One should realize that a subsequent evaluation of e.g. (1111,111) 
will result in the value tr by application of truth 5.If one considers 
this result undesirable,one may avoid it by changing truth 4 into 
(<integerl>,<integerl>) is t <integer1> * . 
This is an example of a more general situation: If a metaprogram is 
applied to the evaluation of more than one simple sequence,one will 
have to take into account that the value of some simple sequence may 
be influenced by a previously added truth. 'rherefore, if we say that a 
metaprogram has a certain meaning,this is in general restricted to the 
case that only one simple sequence is evaluated.We may add to this,on 
the one hand,that it is often very useful to be able to influence 
subsequent evaluations ( see e.g. examples 12 or 13),and on the other 
hand that it is often possible to avoid such effects,by taking some 
special measures,of which we have given an example above. 
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4.2.1.2.Example 2. 
Lexicographical ordering. This example was treated in 2,4.2.2. 

fa in <letter> co 
b Iii <letter> Co 
c in <let tei·> Co' 
d In <letter> Co 
e In <letter> Co 

<letter><word> in <word> co 

<word> pre <word> is false co 

<letterl> .E!.:. <letter2> im <letterl~wor~ pre <letter~wor~ ~ 

<letterl><wordl> pre <letterl><word2> is <wordl> ~ <word2> ~ 

<letterl><word> ~ <letterl> is false co 

<letterl> pre <letterl><word> cu 

<letter2> pre <letterj> im 
<letterl> pre <letter3> IS <letterl> pre <letter2> co 

<letter> pre a is false co --- -
a E:! b co 
b E! c co 
c E! d co 
d pr2 e co 

<letterl> ~ <letter1> { ~ 

dbc pre dee co bca ~ bb 
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Output 

SN: 
f a in <letter> ~ b .:!:£ <letter> ~ c ~ <letter> ~ d ~ <letter> co 
e in <letter> co <letter><word> in <word> co <word> pre <word> is 
false co <letter1> pre <Ietter2> im <letter1><word> !>re <letter2> 
<word> co <letter1><WO'rd1> pre <letter1><wora2> is-<word1> pre 
<wora2> co <letter1><word> pre <letter1> is false co <letterl> pre 
<letter1:><word> co <letter2> pre <letter3S:.-im~terl> pre <letter3> 
is <letter1> pre""<letter2> co""<.letter> pre S.-is false C"O""a pre b 

Cob pre c cocpre d ~ d pre e ~ <letter1> pre <letterl> *-
CV: 

1 a in <letter> co 
2 b in <letter> 'Co 
3 c in <letter> Co 
4 d in <letter> Co 
5 e in <letter> Co 
6 <letter><word>--in <word> co 
7 <word> pre <word> is false co 
8 <letter1> pre <letter2> im -

<letter1><word> pre <letter2><word> co 
9 <letter1><:wordl> pre <letter1><:wora2> is <word1> ~ <word2> ~ 

10 <letter1><word> pre <letterl> is false co 
11 <letter1> pre <letter1><word> Co --
12 <letter2> pre <letter3> im -

<1etter1> pre <letter3> is <letter1> pre <letter2> co 
13 <letter> pre-a is false-co --
14 a pre b co - --- -
15 b pre c Co 
16 c pre d 'Co 
17 d pre e co 
18 <letter1S:.-pre <letter1> 

SN: dbc ~dee 

IR( 9 ) : be~ ee 
co( 8 ) : b pre e 
IR( 12 ) : b pre d 
IR( 12 ) : b ~c 
CV: 

a in <letter> co 

18 <letter1> ~ <letter1> ~ 
19 tr 



SN: bca ~ bb 

IR( 9 ) : 
CO( 8 ): 
IR( 12 ): 
IR( 13 ) : 
IR( 7 ) : 
CV: 

ea pre b 
c pre b 
c pre a 
fiiISe 
false 

a in <letter> co 

18 <letterl> pre <letterl> co 
19 tr co ~ 
20 raise 

4.2.1.3.Example 3. 
Definition of a row. 
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A row is defined as a sequence of letters,none of which 
are equal.This example is taken from [41],p. 17. 

f a in <letter> co 
b in <letter> co 
c rn <letter> co 
<letterl> el <rowl> im <letter1> el <row1><letter> co 
<letter1> er <row><letter1> co 
<letterl> er <letterl> co 

<row><letter> in <row> co 
<letterl> el <row1> im <row1><1etter1> in <row> is false co 
<letter> in <row> * co 

abc in <row> co abca in <row> 

Output : 

SN: . f a in <letter> co b in <letter> co c in <letter> co <letterl> el 
<rowT:> im <letterl> el""<rowl><letter> co <letterl>-el <row><l.etterl> 
co <letterl> el <letterl> co <row><letter> in <row> co <letterl> el 
<r"owl> ~ <roW'f><letterl> in <row>~ false ~<letter>~ <row>"* 



CV: 

1 a in <letter> co 
2 b Iii <letter> co 
3 c in <letter> co 
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4 <letterl> el <rowl> im <letter1> el <row1><letter> co 
5 <letter1> el <row><letter1> co 
6 <letter1> er <letter1> co 
7 <roW'.><letter> in <row> co 
8 <letter1> el <r0w1> im <row1><letter1> in <roW> is false co 
9 <letter> ii:l"<roW> 

SN: abc in <roW> 

co( 
co( 
co( 
co( 
CV: 

8 ): 
8 ): 
4 ) : 
8 ) : 

b el a 
c el ab 
c er a 
b er a 

a in <letter> co 

9 <letter> in <row> co 
10 tr 

SN: abca in <roW> 

CO( 8 ) : b el a 
co( 8 ) : b el a 
co( 8 ) : c el ab 
co( 4 ) : c er a 
co( 8 ) : b er a 
co( 8 ) : a el abc 
co( 8 ) : b el a 
co( 8 ) : b el a 
co( 4 ) : a er ab 
co( 4 ) : a er a 
IR( 8 ) : fii:Ise 
CV: 

a in <letter'> co 

9 <letter> in <roW> co 
10 tr co 
11 false 
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4.2.1.4.Example 4. 
Intermediate addition of tniths to V. 
This example shows how the first eV2.luation of the simple 
name a influences the second evaluation of aoThis effect of 
intermediate addition of tniths to V will be used 
extensively in the definition of ALGOL 60 in chapter 5. 
Cf. also example 13. 

Input : 

fa in <id> co 
b in <id> 'Co 

a <id> in <id> co 
b <:i. d> Iii <id> Co 

<:i.dl> is 
( f <I'd2> is 
- ( f <id3> is <id 1>0<:i.d2>0<:i.d3>0 ;j. co <:i.d2>b ) ;j. co 

-<:i.d1>b ) r co - - -- -
a co a 

Output 

SN: 
f a in <id> co b in <id> co a<:i.d> in <id> co b<:i.d> in <id> co 
<:i.d1::>is if <:i.d2> is l f <:i.d3::>is <.idl>O<:i.d2>0<:i.d3>0 *-co 
<:i.d2>b"] l ~ <:i.dl>bl -* - -

CV: 

1 
2 
3 
4 
5 

a in <id> co 
b Iii <:i. d> Co 
a<:i.--cl> in <Id> co 
b<:i. d> Iii <id> co 
<:i.d1> is i f""<id2> is ( f <id3> is <id1>0<:i.d2>0<:i.d3>0 * co 
<:i.d2>b """I l ~ <:i.dl>'hl -

SN: a 

IR( 5 ) : f <:i.d2> is i. f <id3> ~ aO<:i.d2>0<:i.d3>0 * ~ <:i.d2>b l i-



CV: 

5 

6 
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a in <id> co 

<id 1> is t f <id2> is l f <id.3> is <id 1>0<id2>0<id3>0 * co 
<id2>b) co <id 1>b ) co 
<:Ld2> is _ 'f <id.3> is-aO<id2>0<id3>0 * ~ <id.2>b l 

IR( 5 ) : ab 
IR( 6 ) : f <id.3> is aOabO<id3>0 * 
CV: 

5 

6 
7 

a in <id> co 

<id1> is t f <id2> ~ l f <id3> ~ <id1>0<id2>0<id3>0 * co 
<id2>b l co <idl>b ) co 
<id.2> is _ f <id.3> is -aO<id2>0<id3>0 * ~ <id2>b l ~ 
<id.3> is aOabO<id3>0 

IR( 6 ) : abb 
IR( 7 ) : aOabOabbO 
CV: 

5 

6 
7 
8 

a in <id> co 

<idl> is ( f <id2> ~ i f <id3> ~ <idl>O<id.2>0<id3>0 * co 
<id.2>b l :f co <id l>b ) co 
<id.2> is { f <id.3> is-ao<id2>0<id3>0 * co <:i.d2>b ) co 
<id.3> is aOabO<id.3>0 'Co - - -
aOabOabbO -

SN: a 

IR( 7 ): aOabOaO 
CV: 

5 

6 
7 
8 
9 

a in <id> co 

<id1> is t f <id2> ~ l f <id.3> ~ <idl>O<id2>0<id3>0 * co 
<id2>b l co <id 1>b ) co 
<id2> is f <id.3> is-aO<id2>0<id3>0 * co <id2>b ) co 
<id.3> is aOabO<id.3>0 'Co - - -
aOabOabbO co -
aOabOaO 



4.2.2. Examples related to chapter 3. 

4.2.2.1.Example 5. 
Markov's algorithm for the greatest common divisor. 
The construction of theorem 3.1.1 has been applied to the 
Markov algorithm for the g.c.d. which is defined in [33], 
p, 105. 
(The extra symbol a is not necessary here.) 

f 1 in <symbol>~ 
Iii <symbol> co 

a Iii <symbol> co 
b in <symbol> co 
c Iii <symbol> co 

<symbo~tap~ .!!! <tape> ~ 

<tape1> : 
<tapel> c 
<:tapel> a 
<tapet:> b 
<:tapel> 1: 
<tapel> 1: 1 
3tapel~ la 

11:111 

output 

SN: 

<tape2> is 
<tape6 is 
<:tape6 is 
<:tape6 is 
<:tape6 is 
<:tape6 is 
~tape~ is 

<tapel> 
<tapel> 
<tapel> c 
<tapel> 1 
<:tapel> :b 
<:tapel> a: 
:Stapel~ al 

<tape2> co 
<tapei> Co' 
<tape6 'Co 
<tape6 co 
<tape6 co 
<tape6 Co 
~tape~ ;rco 

f 1 in <symbol> co : in <symbol> co a in <symbol> co b in <symbol> co 
c in<symbol> co<symbol><tape> in <tape> co <tape1> :<tape2> is 
<tape1> <tape2>°' co <tapel> c<tape2> is <tapel> 1<tape2> co- -
<tapel> a<tape2> is-<tapel> c<tapeb co-<tapel> b<tape2> is 
<tape1> 1<tape6 'Co <:tapel> 1T<tape2> is-<tapel> 7b<tape2>-co 
<tape·i> 1T1<tape2>-1s <tapel> a:<tape2>-co <tapel> Ta<tape2>-is 
3tape1~ a l~pe~ r - - - :- - - - - - -



CV: 

1 : 1 in <symbol> co 
2 : : Iii <symbol> co 
3 : a in <symbol> co 
4 : b in <symbol> co 
5 c Iii <symbol> co 
6 <symbol><tape>-in <tape> co 
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7 <tapel> T<tape2>-is <tapel> <tape2> co 
8 <tape15' c<tape6 is <tape1> T<tape2> -Co 
9 <tapel> a<tape6 is <tapel>" c<tape6 co 

10 <tapel>" b<tape6 is <tapel>" i<tape6 co 
11 <tapel> 1T<tape2> is-<tapel> ?b<tape2>-co 
12 <tapel:> l:T<tape2> is-<tapel> aT<tape2> -Co 
13 ~tapel~ la:5tape~ is §apel~-al:::tape~- -

SN: 11:111 

IR( 12 ) : la: 11 
IR( 13 ) : a1:11 
IR( 12 ) : aa: 1 
IR( 9 ) : ea: 1 
IR( 9 ) : cc: 1 
IR( 8 ) : le: 1 
IR( 8 ) : 11: 1 
IR( 12 ) : Ja: 
IR( 13 ) : al: 
IR( 11 ) : a:b 
IR( 10 ) : a: 1 
IR( 9 ) : c: 1 
IR( 8 ) ; 1 : 1 
IR( 12 ) : a: 
IR( 9 ) : c: 
IR( 8 ) : 1 : 
IR( 1 1 ) : :b 
IR( 10 ) : : 1 
IR( 7 ) : 1 
CV: 

in <symbol> .::£ 

13 <tapel> la~tape~ is ~tapel~ al~tape~ co 
14 T -
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4.2.2.2.Example 6. 
A Turing ma.chine for addition. 
The construction of theorem 3.1.2 has been applied to the 
Tu.ring ma.chine for addition which is defined in [ 16], p.12. 

Input : 

{: 0 ~ <symbol> co 
1 in <symbol> co 

<symbo~tap~ ~ <tape> ~ 

q ;;stat~ ~ <state> ~ 

<state1><symboll><symbo.12><state2> im 
<tapel><state1><symboll><tape2> is 
3tape1~tate2><symbo12>3tape~ co 

<statel><symboll>R<state2> im 
<tapel><state1><symboll><tape2> i~ 

3tapel~ymboll><sta.te2><tape2> co 

<statel><symboll>R <state2> im 
<tapel><statel><symbol 1> is-
3tapel~ymboll><st1:2.te2>0 co 

<statel><syn1bol l>L<st1:2.te~.... im 
<tape 1><symbol2><sta te 1><symbo l 1><tape2> is 
3tapel~tate2><symbol2><symbol 1~tape~ co 

<state 1><symbol 1>L<state2> im 
<statel> <symbol1><tape1> ""Ts 
<state2> 0 <symbol1~ta.pe1~ co 

q 1 0 q co 
q 0 R qq co 
qq 1 R qq co 
qq 0 R qqq co 
qqq 1 0 qqq f'":co 

q 1 1 0 1 
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Output 

SN: 
f 0 in <symbol>;:£ 1 in <symbol>~ <symbo~tap~ in <tape>;:£ 
q<state> in <state> co <statel><symboll><symbol2><state2> im <tapel> 
<Statel><Bymboll><tape2> is <tapel> <state2><symbol2><tape2> -·co -
<statel><symboll>R<state2>-"Tm-<tapeT> <statel><symboll:><tape2> IS 
<tape1> <symbol l><state2><tape2> co "<statel><symbol 1>R<state2> im 
<:tape15' <statel><symboll> is <tapel> <symboll><state2>0 co <statel> 
"<symboll>L<state2> im <tape1>-<symbol2><statel><symbol l><tape2> is 
<tapel> <state2><symboI2><syiiibol l><tape2> co <statel><sYmbol l>"L -
<state2> im <statel><symboll><tapel> is-<state2>0<symboll><tape1> 
;:£ qlOq co qORqq ;:£ qq1Rqq co-qqORqqq co qqqlOqci.q * - .. ~ 

CV: 

1 0 in <symbol> co 
2 1 Iii <symbol> Co' 
3 <symbol><tape>-in <tape> co 
4 q<state> - in <state> co -
5 <Statel><symboll><sym0012><state2> im 

<tapel> <statel><symboll><tape2> is 
<tapel> <state2><symbol2><tape2> Co' 

6 <statel><symboll>R<state2> im - -
<tapel> <state1><symboll><tape2> is 
<tapel> <symboll><state2><tape2> Co' 

7 <stateT><symbol 1>R<state2> im -
<tapel> <statel><symboll> is 
"<tape15' <symbol1><state2>0-Co 

8 <statel><symboll>L<state2> im 
<tapel> <symbol2><sta.tel><symbol1Xtape2> is 
<:tapel>" <state2><symbol2><symbol1>"<ta.pe2> co 

9 <stateT><symbol l>L<sta.te2> im - -
<statel><symbol l><tapel> is 
<sta.te2>0<symbol l:><tape l> -Co 

10 q 1 Oq co - - -
11 qORqq-Co 
12 qq1Rqqco 
13 qqORqqq-Co 
14 qqqlOqqq-
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SN: ql 101 

IR( 5 ) : q0101 
IR( 6 ) : Oqq101 
IR( 6 ) : 01qq01 
IR( 6 ) : 010qqq1 
IR( 5 ) : 010qqq0 
CV: 

0 ,!!! <symbol>~ 

14 qqqlOqqq co 
15 010qqq0 -

4.2.2.3.Example 7. 
Recognizer for the context sensitive language 
{an bn an I n ~ 1}. 

This example was treated in 3.2.3. 

{: a ~s2:: in <as> co 
b <bs> In <bs> M 

aba in <.ABA> co 

<as l>a<bs l:>b<as l>a in <.ABA> is 
<asl> <bsl> <asl> in <.ABA> f""co 

aaabbbaaa in <.ABA> co aaabbaaa in <ABA> 



81 

Output 

SN: 
f a:sas2:. in <as> ~ b~s::::, ~ <bs> ~ aba ~ <.ABA> ~ 
<asl>a<bsl>b<as1>a in <.ABll> _!! <as1><bs1><as1> in <.ABll> * 

CV: 

1 a<as> in <as> co 
2 b<'.bs> in <bs> co 
3 aba In <.ABll> co-
4 <asl>a<bs1>b<B:'S1>a in <.ABll> is <asl><bsl><asl> :in <.ABll> 

SN: aaab bbaaa in <.ABll> 

IR( 4 ) : 
IR( 4 ) : 
CV: 

aabbaa in <.ABll> 
aba in <A'Bll> 

a<as> in <as> co 

4 <asl>a<bs1>b<asl>a in <ABll> is <asl><bsl>«>.sl> in <AB.11> co 
5 tr 

SN: aaabbaaa in <.ABll> 

IR( 4 ) : aabaa in <Al31'1> 
CV: 

a<as> in <as> co 

4 <as1>a<bsl>b<as1>a in <ABA> fa <asl><bo3l><as1> in <.llBll> co 
5 tr co 
6 a.abaa in <.ABll> 
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4.2.2.4.Example 8. 
A finite automaton. 
A two state,two symbol finite automaton is defined. See 
also 3 . 2. 4. 1 • 

Input : 

f a in <symbol> co 
b in <symbol> co 

<symbo~tap~ ~ <tape>~ 

1 in <state> co 
2 in <state> co 
2 in <final state> co 

<statel><symbol 1><state2> im 
<state1><symbol1~tape1?. is <state~tapel~ ~ 

<state> 
<final state> 

1 a 2 co 
1 b 1 co 
2 a 1 co 
2 b 2 f'-:co 

is f tape not accepted * co 
is f tape accepted * ~ -

1 a a co 2 b a a 

Output 

SN: 
{:a~ <symbol>~ b ~<symbol>~ <symbo~tape?_ in <tape>~ 1 ~ 
<state> co 2 in <state> co 2 in <finalstate> co <statel><symboll> 
<state2> im <State1><symbol 1><t'ape1> is <state2><tape1> co <state> 
is {: tapenotaccepted } co <finalstate:> is {: tapeaccepted""* co 
la2 ~ lbl ~ 2a1 ~ 2b2 f" - -



CV: 

1 a in <symboJ> co 
2 b in <symboJ> co 
3 <symbol><tape>-in <tape> co 
4 1 in <state> co - -
5 2 in <state> co 
6 2 in <finalstate> co 
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7 <statel><symboll><'State2> im 
<statel><symboll><tapel> is <state2><tape1> co 

8 <state> is {: tapenotaccepted * co - -
9 <finalstate> is f tapeaccepted t-co 

10 1a2 co - -
11 1b1 Co 
12 2a1 co 
13 2b2 

SN: laa 

IR( 
IR( 
IR( 
CV: 

13 
14 

SN: 

IR( 
IR( 
IR( 
IR( 
CV: 

13 
14 
15 

7 ): 
7 ): 
8 ): 

2a 
1 
f tapenotaccepted * 

a in <symboJ> ~ 

2b2 co 
tapenotaccepted 

2baa 

7 ) : 2aa 
7 ) : la 
7 ) : 2 
9 ) : f tapeaccepted * 

a ,!E. <symboJ> ~ 

2b2 co 
tapenotaccepted ~ 
tapeaccepted 
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4.2.2.5.Example 9, 
A pushdown automaton for the recognition of 

the language {an bn I n .::_ 1}. 
Theorem 3.2.4.2 has been applied to the pushdown 
automaton which is given in [22], p. 66. 

f a in <symbol> co 
b in <symbol> co 

<symbo~tap~ in <tape> ~ 

pO in <state> co 
pl in <state> co 
p2 Iii <state> co 
p2 in <final state> co 

zO in <pd symbol> co 
z 1 in <pd symbol> co 
z2 Iii <pd symbol> co 

<pd symbo~pd tape::::_ in <pd tape>~ 

<pd tape> 
g>d tap~,;::...pd tapelis~ 

in <pd tapelist> co 
in <pd tapelist> co 

<state><statelist> in <statelist> co 

<statel><symboll><pd symboll><statelistl><pd tapelistl> im 
<statel><symboll><tapel><pd symboll><pd tapel> -
is - - - -
<statelistl~tapel:::: g>d tapelist1::::1 5pd tapel::::_ ~ 

<statel><statelistl><tapel~pd tapel::::_,g>d tapelistl~,5pd tape2::::_ 
is 
r-<statel><tapel><pd tapel> <pd tape2> co 
- <statelistl><tapel~pd tapelist1::::1 $i)d'"'tape2::::_ l ~ 
<statel><tapel~pd tapel~,g>d tape2::::_ 
is 
<statel><tapel~pd tapel:::: :5Pd tape2-2: ~ 

<statelist><final state><statelist> <pd tapelist> 
Is - - - - -
~tape accepted * co 



pO a zO pO z2 
pO a z2 pO z1 
pO a zl pO zl 
pO b zl pl 
pO b z2 p2 z2 
pl b zl pl 
pl b z2 p2 z2 

pO aaabbb zO 

Output 

SN: 

co 
z2 co 
zl co 

co 
co 
co * co 
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-j:: a in <symbol> ~ b ~ <symbol> ~ <symbo~tap~ ~ <tape> ~ pO 
in <state> co pl in <state> co p2 in <state> co p2 in <finalstate> co zO in <pdsymboD co z 1 in <pdsyiilbol> co z2in <pdsymbol> co 
<pdsymbol><pdtape> in <pdtape> co <pdtape> in '<pdtapelist> co 
<pdtape> ,<pdtapelis't> in <pdtapelist> co <State><statelist> in 
<statelist> co <stateT><symboll><pdsymboT'f><statelistl><pdtapelistl> 
im <state1><symbol1><tape1> <pdsymboll><pdtapel> is <statelistl> -
<t'apel> <pdtapelistl> ,<pdtapel> co <statel><stateiistl><tapel> 
<.Pdtape1:> ,<pdtapelist1> ,<pdtapei> is ( <statel><ta.pel><pdtapel> 
:(pdtape2:> co <statelistl><tapel><Pdtapelistl> ,<pdtape2> -) co -
<state1Xtapel><pdtape1> ,<pdtape2> is <statelXtapel><pdtapel> 
<pdtape2> co <Statelis't> <t'inalstate5<statelist> <pdtapelist> -is 
'.f tapeaccepted-* co p0az0p0z2 co pOaz2pOz1z2 co-p0az1p0zlz1 co -
p0bz1p1 ~ p0bz2p2~ ~ p1bz1p1 co p1bz2p2z2 *-

CV: 

1 a in <symbol> co 
2 b in <symbol> co 
3 <symbol><tape>-in <tape> co 
4 pO in <state>-co- -
5 pl Iii <state> co 
6 p2 Iii <state> Cci 
7 p2 in <finalstate> co 
8 zO Iii <pdsymbol> co-
9 z 1 in <pdsymbol> Cci 

10 · z2 In <pdsymbol> Cci 
11 <pdsymbol><pdtape>·- in <pdtape> co 
12 <pdtape> in <pdtapelist> co -
13 <pdtape> ,<pdtapelist> iil"<pdtapelist> co 
14 <state><statelist> in <Statelist> co 



15 

17 

18 

19 
20 
21 
22 
23 
24 
25 

SN: 

IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
IR( 
CV: 

25 
26 
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<sta.te1><symbol1><pd.symbol1><statelist1><pdtapelist1> im 
<statel><symboll><tapel> <pdsymbol1><pdtape1> is -
<sta.telistl><tapel> <pdtapelistl> ,<Pdtape1>- co 
<statel><sta.telistTXtapel><pdtapel> ,<pdtapelISt1> ,<pdtape2> 
is ( <sta.tel><tapel><pdtapel> <pdtape2> co - - -
<statelistl><tapel><pdtapelistl> ,<pdtape2:>° ) co 
<statel><tapel><pdtapel> ,<pdtape2> is - -
<sta.te1><tape1Xpdtape1> <Pdtape2>- co 
<sta.telist> <f'inalstate><Statelis't> <pdtapelist> is f tapeaccepted t ~ - - - -
p0az0p0z2 co 
p0az2p0z1z2co 
p0az1p0z1z1 Co 
p0bz1p1 co -
p0bz2p2z2co 
p1bz1p1 co-
p1bz2p2z2 

pOaaabbbzO 

15 ) : p0aabbbz2, 
17 ) : p0aabbbz2 
15 ) : pOabbbz 1 z2, 
17 ) : p03bbbz1z2 
15 ) : p0bbbz1z1,z2 
17 ) : pObbbz 1z1 z2 
15 ) : p1bb,z1z2 
17 ) : p1bbzlz2 
15 ) : p1b,z2 
17 ) : p1bz2 
15 ) : p2z2, 
18 ) : f tapeaccepted t 

a !!:. <symbol> ~ 

p1bz2p2z2 co 
tapeaccepted 
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4.2.3. Examples related to the definition of ALGOL 60. 

4.2.3.1.Example 10. 
Conditional expressions. 
If the expression between if and then is not equal to 
one of the symbols true orfalse,-rt"is first evaluated. 
If the result is true, then the value of the original 
expression is the value of the expression between then and 
else; if it is false then its value is the value o~ 
~expression after else. 
An arbitrary choice has been made for the value of a 
simple expression(i.e. a sequence of a's and b 1 s). If it 
begins with an a,it has the value true,, otherwise its 
value is false. 
Cf. chapter 5,section 22,truths 22.3 to 22.8. 

f a .5sexli;;: in <sexp> co 
b .:;:sexp;::: in <sexp> co 

<sexp> ,!!: <exp> ~ 

if <exp> ~ <exp> ~ <exp> in <exp> ~ 

if <expl> ~ <exp2> ~ <expJ> 
:i.s 
i.f.' !::-. .£.<expl>l ~ <exp2> else <exp3> co 

if true then <expl> ~ <exp> is <expl> co 

if false then <exp> ~ <expl> is <expl> ~ 

a <sexp> is {:: true ;f co 
b 3sex.f1~ is f false } ;j> -co 

if a then if b then a elne ab else a co 

if if b then ab else ba then ab else aa 
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Output 

SN: 
f a~exp~ .!!! <sexp> ~ b::;sex~ in <sexp> co <sexp> in <exp> co 
if <exp> then <exp> else <exp> in <exp> co 
IF <expl> "then <exp2> else <exp3> is -
if ~ i <expl> l then <exp2> else <exp3> ~ 
if true then <expl> else <exp> is <expl> co 
If :false --=the'n <exp> else <exp1> is <expl> co 
a~ex~ is :-:f" ~ * co b~exp~ is f false :} :} 

CV: 

1 
2 
3 
4 
5 

6 
7 
8 
9 

a<sexp> in <sexp> co 
b"<sexp> in <sexp> co 
<Sexp>-in<exp> co -
if <exp> then <exp> else <exp> in <exp> co 
if <expl> then <exp2>-else <exp3> is 
if va ( <expl> ) thell<exp2> else <exp3> co 
if true- then <expl> else <exp>-rs-<expl> cO­
If false then <exp> else <expl> is <expl>co 
a~exP2. is Ttrue :j> co - -
b<sexp> is false :} - - - --

SN: if a then if b then a else ab else a 

TS( 
IR( 
IR( 
IR( 
TS( 
ITI( 
IR( 
IR( 
rn( 
CV: 

5 ): 
8 ) : 
5 ) : 
6 ) : 
5 ) : 
9 ) : 
5 ) : 
7 ): 
8 ): 

a 
-f true :} 
if ""trlie then if b then a else ab else a 
IT b th~n a else ab 

b-

f~* if :L'alse then a. elr:e ab 
ab -- --
f true :} 

9 b<sexp> is f false :} co 
10 t:::·ue -
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SN: if if b then ab else ba then ab 

TS( 5 ) : if b then ab else ba 
TS( 5 ) : b 
IR( 9 ) : f false 

* IR( 5 ) : if "'""faTSe then ab else ba 
IR( 7 ) : ba 
IR( 9 ) : f false 

* IR( 5 ) : if ra:IS'e then ab else aa 
IR( 7 ) : - -- --aa 
IR( 8 ) : f true 

* CV: 

a~exp;: in <sexp> ~ 

9 b<sexp> is f false ;t cu 
10 true -co 
11 trile 

else aa 
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4.2.3.2.Example 11. 
Definition of the logical operators l , /\ , V. 
Operations upon true and false by the operators 
l , /\ , V , along with their priority rules and 
the meaning of parentheses are defined.This 
example demonstrates the principle for the 
definition of boolean expressions. Cf. chapter 51 

section 22. 

Input : 

f: ~ in <!:>primary> co 
false in <!:>primary> co 

( <bexp>) !!! <!:>primary> ~ 

<!:>primary> in <!:>secondary> co 
l <!:>primary> in <!:>secondary> co 

<!:>secondary> 
<bfactor> /\ <bsecondary> 

<bf actor> 
<bexp> V <bfactor> 

(<bexpl>) is <bexpl> co 

in <bfactor> co 
in <bfactor> co 

in <bexp> co 
in <bexp> co 

l <bprimaryl> is l ~ i <bpri:maryl> l ~ 
<bfactorl> /\ <bsecondaryl> 
is 
va i<t>factorl>l /\ ~ l <bsecondaryl>l ~ 

<bexpl> V <bfactorl> 
is 
va l <bexpl> l V .::::_ l <bfactorl> l ~ 
l true is false co 
l faISe is true co 

true /\ true is true 
trUe' /\ faISe is false 
false /\ trUe" is false 
TaISe /\ false IS false 

true v true is true 
trUe' v false is true 
false v true is true 
TaISe v faISe is false 

l true V false /\ false co 

co 
co 
co 
co 

co 
co 
co 
r co 

true V false /\ true 
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Output 

SN: 
f ~ !!:. <bprimary> ~ false in <bprimary> ~ ( <bexp>) !!:. 
<bprimary> co <bprimary> in <bsecondary> co l<bprimary> in 
<bsecondary5"°'co <bsecondary> in <bfactor>--Co <bfactor>A<iiSecondary> 
in <bfactor> co <bfactor> in <bexp> co <be'Xii>V<bfactor> in <bexp> co 
"[<bexp.1>) is <bexpl> co l<bpriniaryl> is 1 va ( <bprimaryl> ) co -
<bfactor1>/\<bsecondary1> is va ( <bfactorl> ) /\ va ( <bsecondaryl> 
) co <bexp1>V<bfactor1> is va r <bexpl> ) V-va ""l" <Eifactorl> ) co 
"'i true is false co 1 false-is- true co- true /\-true is true -
co--:rrue7\ fa:rse- is fa~co-faISe""/\ true-r5 false Co false 
Afalse is false-co"""""t'riie Vtriieis true' co ~V falseis' 
true co false V true is true co false V false is false l-

CV: 

1 true in <bprimary> co 
2 false in <bprimary> co 
3 ( <bexp>) in <bprimary> co 
4 <bprimary5"°'in <bsecond.ary> co 
5 l<bprimary>in <bsecondary>--Co 
6 <bsecondary>in <bfactor> co-
7 <bfactor>/\<bsecondary> in <lifactor> co 
8 <bfactor> in <bexp> co -
9 <bexp>V<bfactor> in <bexp> co 

10 (<bexpl>) is <bexpl> co -
11 l<bprimaryl> is 1 va ""l" <bprimaryl> l co 
12 <bfactorl>/\<bsecondaryl> is 

Va ( <bfactorl> ) /\ Vh r <bsecondaryl> ) CO 

13 <bexpl>V<bfactorl>" is- - -
va ( <bexpl> ) v va ( <bfactorl> ) co 

14 ltriie is false co - -
15 1 TaISe is true co 
16 true /\ true i'S' true co 
17 true/\ false is -Wse-co 
18 false /\true is f81Se co 
19 TaISe /\ TaISe is r;;:lse -Co 
20 t:ni'ev tz=ue-is-trUe"Co -
21 true V false is t:riie co 
22 TaISe Vtrue is true co 
23 TaISe V false is farse-



SN: 1 true V false /\ false 

TS( 13 ): 
IR( 14 ): 
TS( 13 ): 
IR( 19 ): 
IR( 13 ): 
IR( 23 ): 
CV: 

1 true 
farBe 
fiiISe /\ false 
TaISe 
TaISe V false 
TaISe 

1 : true _!!! <bprimary> ~ 

23 false V false is false 
24 false - -

SN: ~V~)/\~ 

TS( 12 ) : ( true V false 
IR( 10 ) : trueV fa:rBe""' 
IR( 21 ) : true 
TS( 12 ) : true 
IR( 12 ) : true/\ true 
IR( 16 ): true 
CV: 

true _!!! <bprimary> ~ 

co 

23 false V false is false co 
24 fuISe co 
25 tiii'e" 
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4.2.3.3.Example 12. 
Integer addition and subtraction and assignment statements. 
The principle for the treatment of assignment 
statements is given.The addition and subtraction 
of integers are defined.Cf. [41) ,p.18 and chapter 51 

section 22. 
We have chosen 4 as the base for the number system in 
order to reduce the time needed for the execution of 
this example. 

Input : 

f 0 in <di> co 
1 in <di> Co 
2 in <di> Co 
3 In <di> Co 

<di><ui> in <ui> co 
:5IJ~i> In <in> Co 

O<ze> in <ze> co 

+ in <pm> co 
- in <pm> co 

x <id> in <id> co 

<id> in <primary> co 
<ui> in <primary> co 

<pm><primary> 
<exj;i><pm><primary> 

in <exp> co 
in <exp> co 

<pml><primaryl> is <pml> ~ l_<primaryl>l ~ 

<expl><pml><primaryl> is ~ i<expl>l <pml> ~ i<primaryl>) co 

<idl>:= <expl> is <idl> := ~ i <expl> l ~ 

<idl>:= <inl> is {: <idl> is <inl> :j> ~ 

-<Uil> + <ui2> 
<inl> - - <ui 1> 
<inl> + - <ui 1> 
- <ui 1> - <ui2> 

is <ui2> - <ui 1> co 
is <in 1> + <ui 1> 'Co 
is <in 1> - <ui 1> 'Co 
is - ~ i <ui1> +<ui2> l ~ 

<ui l><di 1><pml><ui2><di2> 
is 
va i <ui 1><pml><ui2> l 0 + ~ i <di 1><pml><di2> l ~ 

<ui l><di 1><pml><di2> is <ui 1> 0 + va (<di 1><pml><di2>) co 
<di l><pml><ui 1><di2> is <pml><ui 1> 0 -+ .:'."! i <di 1><pm1Xd.I2>l ~ 
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<ui 1> 0 + <di 1> is <ui l><di 1> co 
<di 1> + <ui 1> o IS <ui l><di 1> Co' 

<ui 1> 0 - <di 1> is va i <ui 1> - 1 ) 0 + .:'.! i 10 - <di 1> l ~ 
10 - <di 1> is 3-= va I <di 1> - lI ~ 

<di l><pm l><di2> is ~ l <di l><pm 1> 1 l <pm 1> ~ i <di2> - 1 l ~ 
<ui l><pm><ze> is <ui 1> co 
<ze><pml><ui 1> is <pml><\iil> co 

0 + is 1 co 
1 + IS 2 co 
2 + is 3 co 
3 + is 10 Co 

1 - 1 is 0 co 
2 - 1 is 1 Co' 
3-1is2Co' 

+<ui 1> is {: <ui 1> ;j- ~ 
-<ui 1> ~ {: -<ui 1> ;j- :j- ~ 

x:= 1 + 2 + 3 co xx := x - 10 co xx .- xx + x 

Output 

SN: 
{: 0 ~ <di> ~ 1 ~ <di> ~ 2 in <di> co j in <di> co <di><ui> in 
<ui> co <pm> <ui> in <:'.n> co O<ze> in <ze> co + in <pm> co - in 
<pm> Co x<id> in <id> co <id>-in-<prillll:l.ry> Co <ui> in <primary> co 
<pm> <$riiiiacy> in <exp> co <exp><pm><primary:>in <exp> co <pml> -
'<primary1> is <pm1> va r<primi:cryl> ) co <expl><pml><primaryl> is 
~ ( <expl:>) <pm1> va -i <prillli:l.ryl>-1. co <id1>:=<exp1> is <id1>:"= 
~ I <expl> I ~ <idl>:=<in1> is {: <idl> ~ <inl> l ~ -<ui 1>+ 
<ui2> is <ui2>-<ui 1> co <inl>--<ui l> is <inl>+<ui 1> co <inl>+-<ui 1> 
is <inl>-<ui 1> co -<ui 1>-<ui2> is - v<l ( <ui l>+<ui2:>) co <ui l> <di l><pml><ui2><d:i.2> is va ( <Ui l><pml><ui2> ) O+ va- (<di 1><pm1> 
<di2> ) co <ui l><di l><pm1><aI'2> is <ui 1>0+ va -( <d.IT><pml><di2> 
) co <dil><pml><ui 1><di2> is <pml><ui 1>0+ va (-<di l><pml><di2> ) 
co <iii l>O+<di 1> is <ui 1><di 1> co <di 1>+<ui 1>0 is <ui 1><di 1> co <uil> 
°():<di 1> is va r<ui 1>-1 ) o+-Y.a ( 10-<di 1> r co 10-<di 1> is 3 - ~ i <di 1>=1 ~<di 1Xpm1Xdi°2> is ~ I <fill><pml>l l"<pml> 
~ l <di2>-1 l ~ <ui 1><pm><ze> is <ui 1> ~ <ze><pml><ui l> is 
<pml><uil> co 0+1 is 1 co 1+1 is 2 co 2+1 is 3 co 3+1 is 10 co 1-1 
is o co 2-1is 1 co3-1is 2 co+<uTI> is f <uTI> -L Co' -<ui 1> is r -<uTI> * r - - - - -r - -



CV: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

0 in <di> co 
1 in <di> co 
2 in <di> co 
3 In <di> Co' 
<a.l><ui> in <ui> co 
<pm> -<ui> in <in> co 
O<ze> in <ze> co -
+-in-<pm> co 
- in <pm> Co' 
x<id> in <id> co 
<id>-in -:(primary> co 
<ui> in <primary> Co' 
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<pm> <primary> in <exp> co 
°ZeXpY-.pnl><primacy> in <exp> co 
<pml><primaryl> is <pm1> va ~ <primary1> l co 
<exp1><pm1><primary1> is - -
va ( <expl> ) <pml> va ( <primaryl> ) co 
<id1>":=<expl>-is <id1S::-= Va. ( <expl> T co 
<idl>:=<inl> is f <idl> is <Inl> * co 
-<ui l>+<ui2> is <ui2>-<ui 1> co 
<in l>--<:ui 1> is <in l>+<ui 1> Co' 
<in 1>+-<ui 1> IS <in 1>-<ui 1> co 
-<ui 1>-<ui2> is - va. ( <ui 1>+<ui2.> l co 
<ui l><di l><pml><ui2><a.I2> is 
va ( <ui l><pm1><ui2> ) o+ v« ( <di l><pml><di2> co 
<ui 1S:<'.di 1><pml><di2> is <ui l>o+-va ( <di 1><pml><di2>) co 
<di l><pml><ui l><di2> is <pml><ui"i>O+-V"- i <di l><pml><di2>"l co 
<ui l>O+<di 1> is <ui l><di 1> co -
<di l>+<ui 1>0 is <ui l><dU> co 
<ui 1>0-<di 1> is %. ( <ui 1>-1 l O+ ~ i 10-<di 1> l co 
10-<dil> is 3::-va-( <dil>-1 ) co 
<di l><pml><di2> is -vc-. ( <dil><pml>l l <pml> ~ i <di2>-1 l co 
<ui l><pm><ze> is <:u.:. 1> co 
<ze><pml><uil>is <pml><ull> co 
O+l is 1 co - -
l+l is 2 Co 
2+1 is 3 Co 
3+1 is 10-Co 
1-1 is 0 co 
2-1 is 1 Cci 
3-1 is 2 co 
+<ui 1> is--F <ui 1> * ~ 
-<ui 1> ~ f -<ui 1> * 



SN: x:=1+2+3 

TS( 17 ) : 1+2+3 
TS( 16 ) : 1+2 
TS( 30 ): 1+1 
IR( 34 ) : 2 
TS( 30 ): 2-1 
IR( 38 ) : 1 
IR(30): 2+1 
IR( 35 ) : 3 
TS( 16 ) : 3 
IR( 16 ) : 3+3 
TS( 30 ): 3+1 
IR( 36 ): 10 
TS( 30 ) : 3-1 
IR( 39 ) : 2 
IR( 30 ) : 1o+2 
IR( 26 ) : 12 
IR( 17 ): x:=12 
IR( 18 ) : f x ~ 12 * 
CV: 

1 : O in <di> co 

41 : -<ui 1> is f -<ui 1> * co 
42 : x is 12-

SN: xx:=x-10 

TS( 17 ) : 
TS( 16 ): 
IR( 42 ): 
TS( 16 ): 
IR( 16 ): 
TS( 23 ): 
IR( 37 ): 
TS( 23 ): 
IR( 31 ): 
IR( 23 ): 
IR( 32 ) : 
IR( 40 ) : 
IR( 17 ) : 
IR( 18 ): 

x-10 
x 
12 
10 
12-10 
1-1 
0 
2-0 
2 
Oo+2 
+2 

f 2* 
xx:=2 

f xx is 2 * 



CV: 

1 : O in <di> co 

41 : -<ui1> is f -<ui1> l co 
42 : x is 12co 
43 : xxis 2 

SN: xx:=xx+x 

TS( 17 ) : 
TS( 16 ) : 
IR( 43 ) : 

xx+x 
xx 
2 

TS( 16 ) : x 
IR( 42 ) : 12 
IR( 16 ) : 2+12 
TS( 25 ) : 2+2 
TS( 30 ): 2+1 
IR( 35 ) : 3 
TS( 30 ): 2-1 
IR( 38 ): 1 
IR( 30 ) : 3+1 
IR( 36 ) : 10 
IR( 25 ): +10+10 
TS( 16 ): +10 
IR( 40 ): f 10 * 
TS( 16 ) : 10 
IR( 16 ) : lo+lO 
TS( 23 ): 
IR( 34 ): 
TS( 23 ): 
IR( 32 ) : 
IR( 40 ): 
IR( 23 ): 
IR( 31 ): 
IR( 17 ) : 
IR( 18 ): 
CV: 

l+l 
2 
o+O 
+O 
f Ot 

2o+O 
20 
xx:=20 

f xx ~ 20 * 
0 in <di> co 

41 : -<ui 1> is f -<ui 1> l co 
42 : x is 12co 
43 : xxis 2 co 
44 xx is 20-
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4.2.3.4.Example 13. 
Goto statements. 
This example dem::instrates the principle of the definition 
of goto statements. In a "prescan" each statement is 
numbered and supplied w1 th the number of its successor. 
After the prescan is finished the actual evaluation of the 
"program'' is started by the evaluation of the first number. 
The evaluation of a goto statement referring to a certain 
label leads to the evaluation of the number of the 
statement which is labelled by this label.Many more 
details of the prescan mechanism for ALGOL 60 (which is 
in fact much more complicated, mainly because of the 
block structure) are given in chapter 6. 

f S in <statement> co 
T Iii <statement> co 
U Iii <statement> co 
goto <label> _!!! <statement> ~ 

<label> : <statement> in <statement> co 

<statement> 
<statement> ; <statement list> 

1 in <label> co 
2 Iii <label> co 
3 Iii <label> co 
a<as> in <as> co 

begin <statement list1> end 
is 

in <statement list> co 
Iii <statement list> co 

r a : <statement list 1> ~ a l ~ 
<a.sl> : <statementl> ; <statement list1> 
is r-f: <a.s1> .!-! i <statement1> co <a.s1>a l * ~ 

<a.sl>a : <statement list1> '1 ~ 
<as1> : goto <labell>;<statement listl> 
is -r-f: <a.sl> .!-! goto <label1> * ~ <a.sl>a : <statement list1> l ~ 
<a.sl> : <statementl> _!.! f <a.sl> _!.! <statementl> :I- ~ 
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<asl> : <label1> : <statement list1> 
js 

["{: <label1> ~ <as1> ;t. ~ <as1> : <statement list1> l ~ 
~ <label 1> ~ <label 1> ;t. ~ 

begin S .; T .; goto 1 .; S .; 1 : U end 

~t:put 

SN: 
f S ~<statement>~ T ~<statement>~ U ~<statement>~ goto 
<label> in <statement> co <label>:<statement> in <statement> co 
<statement> in <statementlist> co <statement>;<Statementlist>""'Tn 
<statementli"St> co 1 in <label> co 2 in <label> co 3 in <labeDco 
a<a.s> in <as> co begJn <statementlistl> end is ( S:: -
~tatementlistl>""co a co <asl>:<statementl>;<'Statementlistl> is 
i f <asl> ~ i <statementl> ~ <asl>a l t ~ <asl>a: -
<statementlistl> ) co <asl>: goto <labell>;<statementlistl> is ( 
f <asl> ~ goto <1abell> l co <asl>a:<statementlistl> l co""<a.sT> 
:<stateruentl> ~ f <asl> is <statementl> t ~ <asl>:<labell>: 
<statementlistl> is ( f <labell> is <asl> l co <as I>: 
<statementlistl> T co goto <labell> ~ <labell> l 

CV: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 

14 

15 
16 

S in <statement> co 
T Iii <statement> co 
u rn <statement> co 

goto <label> in <Statement> co 
<Ta."b'el>:<stateiilent> in <statement> co 
<statement> in <statementlist> co 
<statement>;<Statementlist> in <Statementlist> co 
1 in <label> co -
2 Iii <label> co 
3 Iii <label> co 
a<'.i'S> in <as> co 
begin <Statementlist1> end is 

i a:<statementlist1> ~ a"'J: co 
<as1>:<statement1>.;<statementlist1> is 
i f <as1> ~ i <staternentl> ~ <.asT>a l * co 
<.asl>a:<statementlistl> ) co 
<asl>: goto <label1>.;<stateiilentlist1> is 
i f <as 1> is got.o <label 1> l ~ - (" 
<asl>a:<statementlistl> l ~ 
<asl>:<statementl> ~ f <asl> ~<statement.I> t co 
<asl>:<labell>:<statementlistl> is 
i f <labell> ~ <asl> t ~ <asT>:<statementlistl> l co 

goto <labell> ~ <labell> 



SN: begin S;T; goto 1;S.;1 :U ~ 

IR( 12 ) ; 
IR( 3 ): 
cv~ 

a:S;T; goto 1,s;1:u 
-f a is ~s ~ aa l l 

;:; in <statement> co 

7 goto <labell> is <label!> co 
18 a is i S ~ aa"] -

IR( <3 ): aa:'J; goto ,s; ·i ;U 
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IR( 13 ): f aa is I T ~ aaa l l 
CV: 

S in <statement> co 

17 goto <labell> is <lab~ll> co 
18 a iS i S co aa) co -
19 aa is l T co a.a.al-

IR( 13 ): aaa: goto ';S; 1: r 
f aaa is goto I t IR( 14 ); 

CV: 

S in <statement> co 

17 goto <labell> is <labell> co 
18 aiS ( S co aa) .o -
19 aais -( Teo a.a.a )-co 
20 aaa is -goto 1 - -

IR( 14 ) ; 
IR( 13 ) : 

aaa.a:S; 1 •TJ 

-faaaa.:!:,! iS~acw.aal l 
CV: 

17 
18 
'19 
20 
21 

S in <statemen1:> co 

goto <label 1> "s <lab ~11> co 
ai'S" ( S co aa) co -
aa is -( Teo aaa )-co 
aaais -gito 1 co - -
aaaa is S co -aaaaa l 



IR( 13 ): 
IR( 16 ) : 
CV: 

aaaaa:1 :U 
fl~aaaaat 

S in <statement> co 

17 goto <label1> is <labell> co 
18 a iS ( S co aa) co 
19 aais -( Teo aaa )-co 
20 aaais -gotol co - -
21 aaaais n coaaaaa ) co 
22 1 is aaaaa - -

IR( 16 ) : 
IR( 15 ): 
CV: 

S in <statement> co 

17 goto <labell> is <labell> co 

18 a is i S ~ a.a"1 ~ 
19 aa is ( T co aaa ) co 
20 aaais -got01 co - -
21 aaaais n coaaaaa ) co 
22 1 is aaaaa co- -
23 aaaaa is u 

IR( 12 ) : a 
IR( 18 ) : S 
CV: 

S in <statement> co 

17 goto <labell> is <label1> co 
18 ai'S ( S co aa) co 
19 aa is -i. T co aaa l-co 
20 aaa is goto 1 co 
21 aa.aa is "IS co -aaaaa l co 
22 1 is aaaaa co 
23 aaaaa is u Co' 
24 s 
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IR( 18 ) : aa 
IR( 19 ) : T 
CV: 

17 
18 
19 
20 
21 
22 

S in <statement> co 

goto <label 1> is <label 1> co 
a is i S co aa-'! co -
aa is l T co aaa l-co 
aaa is goto 1 co 
aaaa is lS co -aaaaa l co 
1 is aaaaa C) 

23 aaaaa is u C0 
24 . s co 
25 T 

IR( 1Sl ) ; as.a 
IR( 20 ) : gnto 

IR~ 1'7 ) : 1 
IR 22 ) : aaaaa 
IR( 23 ) : u 
CV: 

1 : S in <statement> co 

17 goto <labell> is <labell> co 
18 a i;$ if~ aa-'! ~ -
19 aa ~ l T ~ aaa l ~ 
20 aaa is goto 1 co 
21 a~aa is -rs co aaaaa l co 
22 1 is aaaaa co 
23 aaaaa is u Co 
24 s co 
25 T co 
26 u 
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4.2.4. Wang's algorithm for the propositional calculus. 

Example 14. This example defines the well known algorithm of 
Wang for the propositional calculus [45,36]. 
Truth 15 is Wang's rule Pl,truths 16,17, ••• ,25 
correspond to his rules P2a,P2b, ••• ,P6b.The 
equal sign replaces Wang's arrow. 
A form(ula) is valid if and only if the evaluation 
of the simple name that denotes the formula does 
not lead to the addition to V of a truth different 
from "valid" • 
The idea of using the metalanguage for the definition 
of this algorithm was ta.ken from PANON lB, see [9]. 

f P in <atomic form> co 
Q in <atomic form> Co' 
R in <atomic form> Co 
s in <atomic form> co 
T in <atomic form> co 
<atomic form><a.t form se~ in <at form seq> .:::::. 

<atomic form> in <form> co 
(l <form>) in <form> Co 
(<form> /\ <form>) in <form> Co' 
(<form> V <form>) in <form> co 
(<form> l <form>) in <form> Co' 
(<form>: <form>) in <forlli> co 
<form>Sf orm se~ in <form seq> ~ 

<at form se~ = ,::at form se~ ,!! f non valid :} ~ 

<at form seq;:::<atomic forml>_::at form se~ 

<at form seq><atomic forml~t form se~ 
In -
f""valid * ~ 



1o4 

,::at form seq 1::_ = ~t form seq22:_( 1 <form1> )Sform seq 1:'.:: 
l.S 

<form1>::.:at form seq 12::, = =sat form seq22:_ Sform seq 1~ ~ 

<at form seql>(l <form1>)<form seq1> = <form seq2> Is - - - - -
~t form seq1:;: :$form seq1:::, = ~t'orm seq2?_<form1> ~ 

<at form seq1> = <at form seq2>(<form1> /\ <form2>)<form seq1> Is - - - - -r :;:at form seq 1:::, = =sat form seq22:<form1~orm seq 1:::, co 
~t form seql~ = ~t form seq~o~orm seq·1::: Teo 

<at form seq1>(<form1> /\ <form2>)<form seq1> = <form seq2> Is - - - - -
<Jc.it form seql~orm1><form2>St'orm seq12: = ::!Orm seq22:_ ~ 

<at, form seq 1:::_ = ~t form seq22:_( <form1> V <form2> )Sf,Jrm seq 1:_:: 
Is 
.:5'2t form seq1:'.:: = ~t form seq2?:<form1><fo~orm seq1:::_ ~ 

<at form seq1>(<form1> V <form2>)<form seq"i> =<form seq2> Is - - - --- -
t<.at form seq1><form1><form seq1> = <form seq2> co 
- ~at form seq1~orm2>St'orm seq1~ = ~orm seq~ Teo 

<at form seq1> = <at form seq2>(<form1> 1 <form2>)<form seql> Is - - - - - -
~t form seq"i:::,<forml> = ?t form seq22:<form2>:Sform seq 12: ~ 

<at form seql>(<forml> 1 <form2>)<form seql> = <form seq2> Is - - - - - -
r <o. t form seq 1><form2><form seq 1> = <i'orm seq2> co 
- ~""t form seql~ ::;:.torm seql~ = Sform seq~ormT>l: ~ 

<at form seql> =<at form seq2>(<form1> = <form2>)<forrn seq12: Is - - - - -
t<forml><at form seql> = <at form seq2><form2><form seql> co 
- <form2>~t form seql~ = 9-t form seq~orrnl~'orm seql~ Teo 

<at fom seql>(<forml> = <form2> )<form seql> = <form seq2> Is - - - - - -r <forml><form2><at form seq 1> <form seq 1> = <form seq2> co 
~t form seg_l;::-srorm seql:::_;; ~Orm seq~orml><forrnS r * ~ 
((( 1 p ) /\ ( 1 Q )) 2 ( p = Q )) co 

(( p v Q ) 1 ( p /\ Q )) 
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output 

SN: 
f P in <.atomicform> co Q in <a.tomicform> co R in <atomicform> co S in 
<atoiiiicform> co T in "<atoiiiicform> co <atoiiiicforiit><a.tformseq> Iii -
<atformseq;> co <atOmicform> in <foriii> co ( l<form>T in <forni> co 
( <form>A<f'oriii>) in <form> co "T <form>v<l'Orm>) in <foriii> co (<form> 1 
<form>) in <forni>co (<foriii> = <form>) in <foriii> co <foriii><formseq_S 
!!: <formseq> ~ ,::at'formse~ =~tformse~ is f nonvalid *- ~ -
<.atformseq;> <.atomicform1><atformseq> =<atformseq> <atomicform1> 
~tforms~ ~ f valid l' ~ ,::atrorm'Seq12:. =,::at'formseq~ (l<form1>) 
<formseq1> is <forml><atformseql> =<.atformseq2> <formseql> co 
<a.ttormseql> °Tl<forml> J<tormseq 1> - =<%rmseq2> Is-<a tformseq 1> 
<i'ormseql> ;;;'<formseq2> <i'orml> co <itformseql> ;;;:(a.'tformseq2> '(°<forml> 
i\<.:t'orm2>)<t'ormseq1> Is i <atformseql> =<.atform'Seq2> <formT><formseql> 
co <atformseql> =<itformseq2> <form2><'forillseq1> ) co <atformseql> -
"(<form1>A<f'orm2>)<formseq1> ";;<formseq~ is <atformseql:> <form.1> -
<form2><formseq 1>-=<formseq2> - co <atform.Se'q l> =<atform'Seq2> ( <form1> 
V<fo:rm2>)<formseq1>- is <atformseql> =<atform'Seq2> <forml><f'orm2> 
<formseql> co <at'foriiiSeql> (<form1:>V<1orm2>)<formseql> =<formseq2> 
Is i <atforiiiSeql> <forml><t'ormseql> =<formseq2> co <itformseql> -
<form2><formseq 1> -=<formseq2> ) co <itformseql> ;;;:(a.'tformseq2> r 
<forml> -1 <form2>)<.formseq 1> - is <itformseq 1> <forml>=<atformseq2> 
<form2><.formseq1> -co <.atformseql>" (<forml> 1 <form2>)<i'ormseq1> ;­
<formseq2> is I <irtrormseql> <form2><:formseq1> =<foriiiseq2> co 
<a.trormseql>""<rorm'Seql> =<formseq2> <forml> ) co <a.tformseql>-;; 
<a.trormseq2:> '(' <form.1> ;; <.form2> )<formseq 1> Is 1: <t'orml><atformseq 1> 
;;;'<atformseqb <form2><'formseq 1> -co <form2><a:tformseq 1> =<a.tformseq2:> 
<forml><formS'eq 1> ) - co <atformseql> ( <foriiil> = <form2> )<formseq 1> -
=<formseq2> is "1 <forml><f'orm2><at1'ormseq1> <l'ormseql> ;;;"<formseq~ 
co ,::atrorm'Seql?:. 5formseq1?:. =5form'Seq~ <form1X:rorm2> r *- -

CV: 

1 P in <atomicform> co 
2 Q Iii <atomicform> co 
3 R 'fii <atomicform> co 
4 s rn <atomicform> co 
5 T 'fii <atomicform> co 
6 <atomicform><atforiiiSeq> in <.atformseq;> co 
7 <atomicform>-in <form>-co-
8 ( l<form>) in <form> co -
9 ( <form>t\<form>) in <l'Orm> co 

10 ( <form>V<form>) rn <form> co 
11 (<form> 1 <form> Tin <forni>co 
12 (<form> ;; <form>) in <form> co 
13 <form>,:s:rorms~ in <formse'g_;>-co 



14 
5 

16 

17 

18 

9 

20 

21 

22 

23 

24 

25 

SN: 

lo6 

~tformse~ =~tformse~ ~ -f: nonvalid l co 
<a.tformse~ <a.tomicform1><atformseq_> = 
<a.tformse~ <.atornicform1><a.ttormse<P is {: valid * co 
<a.tformseqT> .. <a.tformseq:S ( l<form1>")d'Ormseq 1> is 
<.rorml><atformieql> =<a.tformseq2> <formseql> co ~ 
<.a.tformieq 1> ( l<forml>")<formseq 1> ;;<formseqb '"is 
<atformseql> <formseq1>-=<formseq2>-<form1> co -­
<a.tformseql> :<.a.tformseqi>' (<form1:>/\<form2>)<Iormseq1> is 
r <.a.tformseq1>-=<.a.tformseq2> <torml><formseqT> co -
<at'formseql> :<a.tformseq2> <form2><formseq1> -l -Co 
<a.t:f'ormseq1$' (<forml>A<:f'oi=mz>)<:f'oriiiseq1> =<formseqb is 
<attormseql:> <forml><:f'orm2><formseq1> =<formseq2> co 
<atformseql>" =<atformseq2> f <:f'orm1>v<foi=m2>)<foriiise<il> is 
<atformseql> =<atformseq6 <form1><:f'orm2><formseq1> co -
<a.t:f'ormseq 1> (<form1>V<foi=m2> )<formseq 1> ;°<formseq2> is 
I <atformseql> <form1><:f'orm.seqT> =<form'Seq2> co - -
<atformseq1> <form2><:f'orm.seq1> ;"<formseq2> -) co 
<'atformseq1>" =<atforiiiseq2> (<foriii1> 1 <foi=m2>)<To'rmseq1> is 
<atformseq1> <form1>=<ki.tformseq2> <form2><form8eq1> co­
<atformseq1):° (<forml>-1 <form2>)<t'ormseq1> =<formseq2> is 
r <atformseq1> <form2><rormseq1>-=<formseq2>- co - -
"<atformseql> <rormseq1> =<formseq6 <form1>-) co 
<a tformseq 1> ;°<a, tform.seq6 (<form 1> = <formi> )<l'Ormseq 1> is 
r <forml><atformseql> =<ci.tformseq2> <form2><formseq1> co -
<t'orm2><atformseq1> ~<atformseq2.> <:rorm1><formseq1> -) co 
<atform'Seql> (<foriiil>-= <form2>)<.:f'ormseq1:>" =<formseq6 is 
r <forml><form2><atforiiiseq1> <formseq1> =<formseq2> co -
~tformseq1~ ~ormseql~ =~oriiiseq2;:: <formT><form2>-l -

=(((lP)/\(lQ)) _]_ (P ~ Q)) 

IR( 22 ) : ((lP)/\(lQ))=(P = Q) 
(lP)(lQ)=(P = Q) 
(lQ)=(P = Q)P 

IR( 19 ): 
IR( 17 ) : 
IR( 17 ): =(P = Q)PQ 
IF( 24 ) : 
IR( 15 ): 

P=QPQ 
f valid t 

CV' 

P in <atomicforrn> co 

25 <atformseql> (<form1> = <form2.>)<formseq1> =<formseq2> is 
r <forml><:f'orm2><atforiiiseq1> <formseql> =<formseq2> co -
<atformseq1> <formseql> =<formseq2> <formT><form2>-) co 

26 valid - - - - - - -



IR( 24 ) : Q=PPQ 
IR( 15 ) : f valid* 
CV: 

P in <a.tom:i.cform> co 

. 
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25 <a.tformseql> (<forml> = <form2>)<formseq1> =<formseq2> is r <forml><form2><a.tforiDseq1> <formseql> =<f'ormseq2> co -
<a.tformseql> <formseql> =<foriDseq2> <formT><form2>-) co 

26 : valid co - - - - - - -
27 : valid 

SN: =((P\Q) 2 (Pl'Q.)) 

IR( 22 ) : (P\Q)=(P/'Q.) 
IR( 21 ): P=(Pl'Q.) 
IR( 18 ) : P=P 
IR( 15 ): f valid* 
CV: 

P in <a.tomicform> co 

. 
25 <atformseql> (<forml> = <form2>)<formseq1> =<formseq2> is 

I <forml><form2><a.tforiDseq1> <formseql> =<formseq2> co -
<a tformseq 1> <formseq 1> =<foriDseq2> <formT><form2>-) co 

26 Valid co - - - - - - -
27 : valid co 
28 : valid 

IR( 18 ) : P=Q 
IR( 14 ) : f nonVhlid * 
CV: 

P in <atomicform> co 

. 
25 <a.tformseql> (<forml> = <form2>)<formseq1> =<forrnseq2> is 

I <forml><form2><a.tforiDseq1> <formseql> =<formseq2> co -
<atformseq 1> <formseq 1> =<foriDseq2> <formT><form2>-) co 

26 valid co - - - - - - -
27 valid co 
28 valid co 
29 nonvalid 



IR( 2: ): 
IR( 18 ) : 
IR( 14 ) : 
CV; 

: p 

. 

Q=("Cl'Q' 
Q=P 

1
1: nonvalid * 

<a.tomicfornt> ~ 

1o8 

25 

26 
27 
28 
29 
30 

<a.tformseql> (<form1> = <form2>)<formseql> =<formseq2> is I <form1><fo~tformseq 1::. :stormseq 1:::, =Sf'ormseq2>_ 70 -
<a.tformseq!> <formseql> =<formseq2> <form1><form2> ) co Va.uu co - - - - - ·· ·· -
valid o 
valid c 
nonval:'d co 
nonval"d -

IR( 18 ) : Q=Q 
IR( . 5 ) : f valid * 
CV; 

in <a omicform> co 

25 <atformseql> (<form1> <form2>/<formseq·> =<formseq2> is 
T <fcrml><form2><atforiiiseq 1> <formseq 1> =<formsec:c2> co -
<a.tformseq 1> <formseq 1> =<foriiisec;2> <formT><form2>.~) co 

26 Va i.d co - - - .. -~ -
27 valid Co' 
28 valld co 
29 nonvalTci co 
30 nonvalid co 
3 vahd 



CHAPTER 5 

DEFINITION OF ALGOL 60 

In this chapter we give the definition of ALGOL 60 by means of a 

metaprogram. 

An explanation of this definition follows in chapter 6. 

For typographical reasons, the ALGOL 60 symbols f and => are denoted 

here by ..:_ and.:::::!· 

The numbers to the left of the truths and the headings of the sections 

are not to be interpreted as part of the metaprogram; they are intro­

duced only for easier reference in chapter 6. 



0.1 

0.2 
0.3 
o.4 
0.5 
o.6 
0.7 

1. 1 
1.2 
1.3 
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11 Undefined values 11 

<sequence of basic and awe term symbols> is o 

<ass st.> 
<dexP> 
<proc st.> 
<block> 
<bplist> 
<switch list> 

<ass st> 
goto <dexP> 
<:prQc st> 

in <decl ass st> is 0 
1ri <decl dexp> rs 0 
1ri <d.ecl proc st> rs 0 
1ri <d.ecl block> rs 0 
1ri <decl bplist> Iii 0 
1ri <decl switch list> Iii 0 

Syntax of a program. 

in <unlabelled basic st.> co 
1ri <unlabelled basic st.> Co' 
in <unlabelled basic st.> Co' 

1.4 <unlabelled basic st.> in <basic st.> co 
1. 5 <label> : <basic st.> rn <basic st.> Co 

1.6 
1. 7 
1.8 

<basic st.> 
<compound st> 
<block> 

in <unc st.> co rn <unc st> Co 
in <unc st.> Co 

1.9 if <bexp> then <unc st> in <cond st> co 
1 • 10 if <bexp> then <ror st.> in <cond st.> co 

co -
co 
co -co 
co 
co 
co 

1.11 if <bexp> then <unc st.> else <st.> in <cond st> co 1.12 <Iabel> : <cond-st> - - - rn <cond st> Co 

1. 13 
1. 14 
1. 15 

1.16 
1.17 

1. 18 
1. 19 

<unc st.> 
<cond st> 
<for st.> 

in <st> co 
in <st> Co 
in <st> Co 

<st.> in <st list> co 
<st> ; .::;st list> in <st list> Co' 

beg~n :::;st lis~ ~ ~ <compound st> co 
<la el> : <compound st> ~ <compound st.> co 
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1.20 <type declaration> in <declaration> co 
1.21 <array declaration> Iii <declaration> Co' 
1.22 <switch declaration> Iii <declaration> Co' 
1. 23 <procedure declaration> Iii <declaration> Co' 

1.24 <declaration> ; ~eel Us~ f!! <de9l list>~ 

1.25 begin <decl list><st list> end in <block> co 
1.26 <iii'bel> : <block>- - - in <block> Co' 

1.27 ~eel Us~ ~t Us~ ~ in <block tail> co 

1.28 
1.29 
1.30 

<int var>:= <i'or list> 
<st list> 
~t st lis~;:::;ext st Us~ 

in <ext st list> co rn <ext st list> Co 
Iii <ext st list> Co' 

1.31 ; :::;ext st Us~ f!! <special st list> ~ 

1. 32 :::;special st Us~ ~ f!! <block end> ~ 

1.33 <co:mpo\Uld st> in <program> co 
1.34 <block> in <program> co 

2. 1 <program 1> 
is 

Value of a progrwn. 

r1=:~.£:t-~1=:!~*~ 
b c a : integer~ 1; boolean d.wn!ey- 2; 

integer procedure sign (f); value f; integer f; 
sign : = .!:!, f > 0 then 1 else """i'f""f = 0 then 0 

<programl> ~ ~ 
b c a l ~ 

-- else-1; 

2.2 <sequence of basic and aux term symbols><a.ux id> 
<sequence of basic and aux term symbols> 
Tu 0 ~ -

2.3 <sequence of basic and aux term symbols><a.ux label> 
<sequence of basic and aux term symbols?: 
Is o co - - -
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Syntax of block number and program point. 

3 • 1 a <a.a> in <as> co 

3.2 b <ba> in <ba> co 

3.3 <bs> c in <be> .=£. 

3,4 <bc><bcs> in <bes> co 

3.5 d <bcs><dbcs> in <dbcs> co 

3.6 <bcs><dbcs> in <bn> co 

3. 7 <bcs><as> in <p> ~ 

Prescan declarations. 

4.1 <pl>: <declarationl>; <block tail1> 
is 

4.2 

4.3 

'['"' <declarationl><pl> 1 co 
- -~ <pl> is .l <declarationl><pl> 2 co 

f <pl> is ( -
f-t <pl> is ( <declaration1><p1> 4 co 

t <pl> a-) -* co -
<pl> a j t co -

<pl> .'.: l -* -co -
<pl> ,:;: : <lllock tail 1> l co 

<pl> 
is 
<pl> 

<pl> 

is 

~ownl~<typel><id1>1 <1d listl> <lllock taill> 

<own l><type l><i d 1>; 
~wnl~typel><idlistl> ; <block taill> ~ 

<ownl><typel> array <array segment1>1 

<array listl> T""<Siock taill> 

<P'l> ~wnl:::-_<typel> array <array segmentl>; 
~own l~type 1> array <array list 1> ; <block tail 1> co 



5.4 

5.5 

5.6 
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Prescan statements. 

<pl> <st Ustl> end 
is 
<$1> <st listl> end co 

<pl> 
is 
<pl> 

<pl> 
is 
<pl> 

<pl> 
is 
<pl> 

<pl> 
is 
<pl> 

<pl> 
is 
<pl> 

begin ,:::St Ustl~ ~<block endl> 

<st listl><block endl> co 

g <bexpl> ~ .:;::unc stl~l wk endl> 

if 1 (<bexpl>) then goto <pl> 1 1; <unc stl~; 
<Pl> ! 1 , <bloCKend 1> ~ - -

g <bexpl> ~<for stl><blo:k endl> 

if 1 (<bexpl>) then goto <pl> 1 2, <for stl> 
<P'l> !_ 2 : <bloCk"endi'>" ~ -

g <bexpl> ~ .::;unc st'~ ~ ,:::Stl:::<block endl> 

if <bexpl> then begin <unc :otl> ; goto <pl> 1 3 end; 
~tl~ ; <pl> l 3--:<i>lock end1> co - -

g <bexpl> ~ ~ <dexpl><block endl> 

goto if <bexpl> then <dexpl> else <pi> 1 4; 
<pl> p+ : <block'""eiidl> ~ -- -

5, 7 <J;>l> : <unlabeLed basic stl><block endl> 
is r t: <pl> is i <unlabelled basic stl><pl> 2 co 

t: <pi> ~ i 
{: t <pl> is <unlabelled basic stl><pl> 4 * co 
<pl> 2 l rco -

<pl> a T :t co-
<pl> !: 7 <'Pl> ~!<block endl> l co 

5.8 <pl> : <labell> <st listl> end 
is r label <labell><pl> 1 co 

f<ii1> ~ i - -
f <pl> is i label <label 1><p > 3 co 

{:~ <pl>""'IS""""t <pl> a* co-
<pl> a -) * Co' - - -

<p1> - l :f co -
<pl> !: <st Ustl~ ~ l ~ 



5,9 <pl> 
is 
<pl> 
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begin <decl listl>:Sst list1;::: ~<block end1> 

begin <decl listl~t listl;: ; goto <pl> ~ 1 ~; 
<pl> ~ 1 : <block endl> co 

5. O begin <decl lis~t Us~ ; goto <p> !: end 
~ <special block> ~ 

5. 11 

5., 12 

5.14 

<pl> : <special blockl><block end1> 
is 

lf <pl> ~ .l <special block:>~ <decl block> co 
fil'st progr.p of block <pl> co f <pl> is ~ - -- -

f-t <!il> is first progr"p of block <pl> * co 
<pl> a )- :} co - - - - -

<p1> ~ l- :f co-
<p"i> ~ : <block endl> l co 

<bcsl><bcl> im 
first progr.p-Of block <bcsl><asl> is 
'f first progr:Ji of block <bcsl><asl> ~ <bcsl><bcl> ~ * ~ 
begin <block tail1> in <cl.eel block> rs- -r ~ ~<block taill> l ~ 
<bes l> im <block tail 1> 
is r f <bes 1> a is ( 

f <bcsl>a .~is ( begin co 
f -t <bcsT> aTs ,! <bcs1> ~ ~:} ~ 

<bcsl> a a ) t co- -
<bes 1> a a )-;t.-co -

<bcsl> a ~;-:-<lilocktaill> l ~ 
5.15 <bcsl><as1>: end 

is rt: <bcsl><asl> ~ l ~ ~ f <bcsl><asl> is ( 
f t <bcST><iisl> is 

~ <bes 1>-~ l :} l * ~ 
<bes!>~ l ~ 

end :} co - -
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Value of begin and ~· 

6. 1 <lm 1> im begin ,!! begin <t:m 1> ~ 
6.2 <bnl> Iiii end is end <bnl> co 

6.3 begin <bcsl~csl:;: ,!! f <bcsl> '£_,::. :91bcs1::: * co 

6.4 <bcsl><bcl><dbcs> im 
begin <bcs1>":5dbcsl~is f <bcsl> £_ <bcl>:;:dbcsl;::: :j. ~ 

6.5 end b c is 
nna:-b cis 

f<sequence of basic and awe term symbols> ;t * ~ 
6. 6 end <bes l><bc>:Sdbcs 1:;: ,!! f <bes l>:;:dbcs 1:::_ ;l- ~ 

Type declarations. 

7.1 integer in <type> co 
7.2 boolean Iii <type> co 

7.3 own in <own> co 

7 .4 <id> in <id list> co 

7. 5 <id>,<id list> in <id list> co 

7. 6 ~wn:::_<type><id list> ~ <type declaration> ~ 

7.7 ::;own:::,<typel><idl><bcsl><as> ..!. ~ f <typel><idl><bcs1> * ~ 
7,8 <specifier><idl><bcsl> im 

~wn:::,<type><idl><bcsl><aS> ..!. is o co 

7.9 <type declaration><p> g ~ 

7 .10 <typel><idl><p> ~ ,!! <typel><idl> co 

7.11 <bcsl><dbcs> im -<typel><idl> is f <typel><idl><bcsl> :j. co 

7.12 <bcsl><dbcs> im ~ <typel><idl><pl> ~ 
is 
'f""<typel><idl><bcsl> ~ 
~ <pl> .!! i.~ <typel><idl><pl> ~ <bcsl> ~ ~ <pl> ~ l * ~ 

7.13 <bcsl><dbcs> im own <typel><idl><p1> 4 <bcs2> 
is - - - - -

l.own <typel><idl><pl> ~ ~ f <idl><bcsl> is <idl><bcs2> * l ~ 
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The value of a simple variable. 

8.1 <bcsl><dbcs> im <idl> is <idl><bcsl> co - - -
8.2 <idl><bcsl><bc> is <idl><bcsl> co 

8.3 formal <idl><bcsl> actual <expl> bn <bnl> im 
<id l><bcs 1> -
is 
~save bn <idl><bcsl> co f <bnl> t co result : ::'.!!: i <expl> l ~ 

resetbn <idl><bcsl> co result l co 

8 .4 <type><id l><bcs 1> ~ <id l><bcs 1> is o co 

8.5 <bnl> im save bn <idl><bcsl> 
is - ---
~reset~ <idl><bcsl> _!! f <bnl> t t ~ 

8.6 result : <constantl> _!! f result _!! <constantl> t ~ 
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Array declarations. 

9" 1 <a.exp> : <a.exp> in <bplist.> co 
9.2 <a.exp> : <a.exp> , <bplist.> in <bplist.> co 

9.3 <decl aex:p> : <decl aexp> in <decl bplist> co 
9.4 <decl aex:p> : <decl aex:p>,<decl bplist> in <decl bplist> co 

9.5 
9.6 

9. 
9.8 

<id>[ <bplist>] 
<id>,<a.rray segment> 

<array segment> 

in <array segment> co 
in <array segment> co 

<array segment>,<array list> 
in <array list> co 
Iii <array list> co 

9.9 ::::O~type> array <array list> in <array declaration> ~ 

9.10 ::::O~typel> array <idl>,<id listl>[<bplistl>]<pl> .!. 
is 
r<type1> array <idl> [<bpHstl>]<pl> ]_ ~ 

<type''> array <id listl>[<bplistl>]<pl> .!. l ~ 
9.11 ::::O~typel> array <idl>[<bplistl>]<bcsl><llcl><as> .!. 

is 
r<typel> array <idl><llcsl><llc'I> co f <bcsl> * co 

<bplist 1> ~ <decl bplist> co~ <bes l><bc 1> "1= l ~ 
9 12 <typel> array <idl><bcsl> is f <typel> ~ <idl><bcsl> * ~ 
9.13 <specifier><idl><llcsl> .!,!!! <type> ~ <idl><llcsl> 

9, 14 <array declaration><p> g ~ 

9" 15 ~wnl~typel> array <id l:Lstl>[<bplistl>]<pl> ! 
is 

is o co - - -

~wn1~type1> array <id listl>[~ i <bplist1>ll<p1> !, co 

9. 16 <bcsl><bc1><dbcs1> im <aexpl> <aexp2> 
is - - ~ 

r f <bes l~dbcs 1~ * ~ 
bound pair : va i <aexpi>) ; va ( <aexp2>) co 
f <bes l'><bc l~dbcs 1~ * co -bound pair l co -

9.17 ~ ~: <intl> : <int2> 
is 
f.bound pair !,:! <int 1> : <int2> * co 

9.18 <aexpl> :<aexp2> , <bplistl> 
is 
va i <aexpl> <aexp2> l ~ ~ i <bplistl> l ~ 



9.19 
9.20 

9.21 

9.22 

9,23 

9,25 
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<int> : <int> in <int bplist> co 
<int> : <1nt>1 <1nt bplist> Iii <int bplist> co 

<int bplist 1> .!!, f <int bplist 1> :j- .£2_ 

<type 1> array <id list 1>[ <int bplist 1> ]<p> ! 
is 
<type 1> array <id list 1>[ <int bplist 1>] .£2_ 

<bes l><dbcs> im 
~ <tyPel>-arr!"y <id listl>[<int bplistl>]<pl> ! ~cs~ 
is 
i.f t <p1> is 
low <typel> array <id listl>[<int bplistl>]<pl> 4 <bcsl> co 

t <pl> a l :} co - -
ow <typel> arrey <id list1>[<1nt bplistl>]~cs~ l .£2_ 

<ownl><typel> arr& <1d1>,<1d list1>[<1nt bplistl>]<bcsl> Is - - -
r.<own1><type1> array <idl> [<int bplistl>]<bcsl> co 

3'>wntE<type1> arr& <id listl>[<int bplistl>]~csl~ l .£2_ 

<bes l><dbcs> im 
~~ <"typel> arr& <1d1>[<1nt bplist1>] 
is 
f<typel> array <idl><bcsl>(<int bplistl>] :j.. .£2_ 

. <bes l><dbcs> im 
~ <tY'Pel>-array <1d1>[<1nt bplist1>]<bcs2> 
is 
f <typel> array <idl><bcsl>[<int bplistl>] co 

<sub exp list 1> within bounds of <int bplIS't 1> im 
<idl><bcsl>[<sub exp listl>] - -
is 
<I'd 1><bcs2>[ <sub exp list 1>] :j- .£2_ 

<1nt3> within bounds of <int 1> : <1nt2> 
is -
r. va i <1nt3> - <int 1> ) ~ negative co 

.!! I <1nt2> - <1nt3> I~ negative rco 

<ui> ~negative ~ 

<1nt3>,<sub exp listl> within bounds of 
<intl> : <1nt2>,<bplist1> -
is r <1nt3> within bounds of <int 1> : <1nt2> co 

<sub exp list 1> Withinbounds 2! <bplist T> l ~ 
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The value of a subscripted variable. 

1O.1 <int> in <int list> co 
10. 2 <int>, <int list> in <int list> Co 

10.3 <sub exp1>,<sub exp list1> 
i::; 
va i. <sub exp1> l , .!.!: i <sub exp list1> l ~ 

10.4 <int list1> ~ f <int list1> * ~ 
10.5 <b::sl><dbcs> im <idl>[<sub exp listl>] 

is - - -
<fd'i><bcs1>[ ~ i <sub exp list1> l ] co 

10. 6 <id> £ _£ [<sub exp list>] ~ ~ ~ 

10. 7 <id1><bcs1><bc>(<sub exp list1>] 
is 

[<sub exp list1>] co 

10.8 formal <id1><bcs1> actual <id2> bn <bcs2><dbcs> im 
<idl><bcsl>[<sub exp list1>] 

10.9 

11, 1 
11, 2 

Ls 
<i"d2><bcs2>[ <sub exp list 1>] ~ 

<type> arral <id 1><bcs 1>[ <bplist>] ~ 
<id'1><bcs1> <sub exp list>] ~ ~ ~ 

Switch declarations. 

<d.exp> 
<d.exp>,<switch list> 

in <switch list> co 
in <switch list> co 

11.3 <decl dexp> in <decl switch list> co 
11.4 <de:::l dexp>,<decl switch list> Iii <decl switch list> co 
1·1.5 swit.ch <id>:= <switch list> in <switch declaration> co 

1 ·1.6 ;;;witch <idl>:= <switch list><bcsl><as> 1 is 

f switch <idl><bcsl> * ~ 
11.7 <specifier><id1><bcs1> im 

switch <idl> := <switch ITst><bcsl><as> is o co 
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11.8 switch <id> := <switch listl><p> 2 is 
<switch list 1> in <decl switch list>' co 

11.9 <bcsl><dbcsl> im 
switch-<id1>7= <Switch listl><p> 4 
is -r f switch <id l><bcs l~cs 12: * ~ 

store <idl><bcsl> := <switch listl> l ~ 
11.10 store <idl><bcsl> := <dexpl> rs-

f<idl><bcsl>[l] eq <dexpl> * ~ 
11.11 store <idl><bcsl>:= <dexpl>,<switch listl> rs-r ~ <idl><bcsl> := <dexpl> ~ 

~ <idl><bcsl> [2] := <switch listl> l ~ 
11. 12 store <idl><bcsl>[ <ui 1>] := <dexpl> rs-r <idl><bcsl>[ <ui 1 J !:9. <dexpl> * 
11.13 store <idl><bcsl>[<uil>] := <dexpl>,<switch listl> rs-

rstore <id1><bcs1>[ <ui 1> J := <dexpl> co 
~ <id1><bcs1>[ ~ i <uil> + 1 l T:= <switch listl> l ~ 

" T)::1bel declarations " . 

12, 1 label <la.bel l><bcs l><as> 1 rs-
f label <le:.bel l><bcs 1> t ~ 

12.2 <specifier><labell><bcsl> im 
label <labell><bcsl><a.s> 1 ""'Ts o co 

12.3 <bnl> im ~ <labell><pl> l 
is 
label <labell><bnl> l <pl> ~ 

12.4 <fgsl> im label <labell><bnl> 3 <pl> 
is ~-- -
f.label <labell><bnl><fgsl> S ~ <pl> * ~ 



13.1 
13.2 
13.3 

13.4 
13.5 
13,6 
13.7 

13.8 

<type.> 
<type> array 
<type.> procedure 
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Procedure declarations. 

in <value specifier> co 
Iii <value specifier> Co 
Iii <value specifier> co 

<value specifier> in <specifier> co 
label Iii <specifier> Co 
SWI't'Ch Iii <specifier> Co' 
procedure Iii <specifier> co 

value <id list> in <value part> co 

13.9 <specifier><id list> ; ::; spec par~ in <spec part> .::£ 

13.10 (<id list>) in <formal par part>.::£ 

13.11 <type.> procedure <id><forma.l par part>; 
~value par~ ~pee par~~~ .!;: <procedure declaration> co 

13. 12 <type1> procedure <id1><formal par part1>; 
<value-part> <spec part> <st> <bcsl><as>-1 Is - - - - - -
=f'":::type1~ procedure <id1><bcs1>:::forma.l par part1~ * .::£ 

13.13 <specifier><id1><bcs1> im 
<type> procedure <id 1><formal par part> ; 
3va1ue par"t.2: ~pee par~ ~1:.2: <bcs1><as> ..!. ~ ~ .::£ 

13.14 procedure <id1>; ~tl~pl> g 
is 
r.begin .::£ formal <p1> ~ .::£ 

begin integer ~;<st1>;goto <pl> k end in <decl block> co 
nrst progr.p ~ proc.bod;Y <p1> .::£ endT co -

13.15 <type> procedure <idl>; ~st1~pl> ~ 
is 
r.begin integer dummy ; ~st 1;:: ~ in <decl block> co 
~ progr.p ~ proc.body <pl> :f"co 

13.16 procedure <id1>(<id list1>); 
<value part> <spec part> <st1><p1> 2 Is - - - - - -
Z-begin co formal <id list1>,<p1> k co 
- begin integer ~;<st1>;goto <pl>k end in <decl bloclc> co 

first progr. p ~ proc. body <p 1> .::£ end l co -
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13.17 <type> procedure <idl>(<id listl>); 
<value part> <spec part> <st l><pl> 2 
Is - - - - - -
I":begin ~ formal <id list 1> ~ 

begin integer~ ; <stl> end in <decl block> co 
first progr.p ~ proc.body-<pl> co~ l ~ -

13.18 <bcsl> im formal <idl> ~ {: formal <1d1><bcs1> :} ~ 

13.19 formal <1dl>,<1d listl> is 
I formal <idl> ~ formai"<id listl> l ~ 

13.20 <bcsl><bcl> im first progr.p of proc.boay <bcsl><a.sl> is 
{: first progZ:-:-p of proc.body <bcsl><a.sl> 

is {: <bcsl><bCl> .'.: i" * ~ 
13.21 <procedure declarationl><pl> ~ 

is 
<procedure declarationl> : <pl> : 
~ ,l ~ progr.p ~ proc.body <pl> l ~ 

13.22 <bcsl><dbcs> im 
procedure <Id1>; <st.> : <pl> : <p2> 
is - -
procedure <id l><bcs 1> ( <p 1> ~) <p2> co 

13.23 <bcsl><dbcs> im 
procedure <I'dl>{"<id list1>); 
<value part 1> <spec part 1> <st.> : <p1> : <p2> 
Is - - - - -
procedure <id1><bcs1>(<id list1>,<p1> k) 
~value part12:, .Sspec part12:. <p2> ~ -

13.24 <bcsl><dbcs> im 
<type1> procedure <idl><formal par partl> ; 
<value part1> <spec part1> <st> : <p> : '<!>1> 
Is - - - - -
<typel> procedure <idl><bcsl><formal par partl> 
<value part12:. _sspec part12:, : <pl> ~ -

13.25 <value specifier><id>,<left formal list> 
In <left formai.-11st>-co -

13.26 ,<value specifier><id><right formal list> 
in <right formal-list> ~ 

13.27 <left formal list> <value specifier2:,<i~ight formal list> 
In <ext formal lis't> co 

13.28 (<ext formal list>) in <ext formal par part> co 
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13.29 <typel> procedure <idl><bcsl><ext formal par partl~ ; 
<spec part> : <pl> -
Is -
f"::;typel~ procedure <idl><bcsl~ext formal par part1~:<p1> t ~ 

13.30 <typel> procedure <idl><bcsl>(<id listl>); 
'Value "<id.2>,<id list2>; <spec part 1> : <pl> 

13 .31 

rs- - -
<typel> procedure <idl><bcsl>( <id listl>); 
Value "<id.2> ; ~<id list2> ; :93pec partl~ <pl> ~ 

<typel> procedure <idl><bcsl> 
r<left-formal list1><id.2><right formal listl>); 
value <id.2>; <value-part1> <spec partl> -
<Va'Itie specifierl><left foriiial list2><Id2><right formal list22:.i 
<spec part2> : <pl>" - -
Is -
<typel> procedure <idl><bcsl> 
r<left-formal listl><value specifierl><id.2><right formal listl::::_); 
<value part1> <spec-partl><value specifierl>" 
<left formal-1Ist2><id.2><i='ight formal list2>; 
:SSpec part2;:: :<pl>-co - -
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Assignment statements. 

14. 1 <int var>: = in <int left part> co 
14.2 <int proc id>:= in <int left part.> co 

14.3 
14.4 

14.5 
14.6 

14.7 
14.8 

<decl int var>:= 
<decl int proc id>:= 

<boolean var>:= 
<boolean proc id>:= 

in <decl int left part> co 
Iii <decl int left part> co 

in <boolean left part> co 
Iii <boolean left part> co 

<decl boolean var>: = 
<decl boolean proc id>:= 

in <decl boolean left part> co 
Iii <decl boolean left part> co 

14.9 <int left part><int left part list> 
.!!: <int left part list> ~ 

14.10 <boolean left part><boolean left part list> 
.!!: <boolean left part list> ~ 

14.11 <decl int left part><decl int left part list> 
in <decl int left part list> ~ 

14.12 <decl boolean left part><decl boolean left part list> 
.!!: <decl boolean left part list> co 

14. 13 
14. 14 

14. 15 
14. 16 

<int left part list.><aexp> in <ass st.> co 
<boolean left part list><bexp> in <ass st.> Co 

<decl int left part list><decl aexp> in <decl ass st.> co 
<decl boolean left part list><decl bexp> Iii <decl ass st.> co 

14.17 <ass st1><p1> g is <ass stl> in <decl ass st.> co 

14.18 <ass stl><pl> ~ is i <ass stl> ~ ! <pl> ~ l ~ 
14.19 <type><id><bcs> .!!: <ext left part>~ 

14.20 <type> array <id><bcs>[<sub exp list>] in <ext left part>~ 

14.21 
14.22 
14.23 

<int left part> 
<boolean left part> 
<ext left part> 

in <ext left part list> co 
Iii <ext left part list> co 
Iii <ext left part list> co 

14.24 <ext left part list><ext left part list> 
in <ext left part list> co 
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14.25 <ext left partl>::ext left part list1:::_<exp1> 
is 
<ext left partl~ext left part list1~ ~ i <exp1> l ~ 

14.26 <ext left partl><ext left part list1><constant1> 
is 
r.-<ext left part1><constant1> ~ 

<ext left part listl><constantl> l ~ 
14.27 <ext left part><constant> is ~ ~ 

14.28 <bcsl><dbcs> im <id1>:= <ext left part listl:::_<expl> 
is - - - -
<id1><bcs1>:= ~ext left part list1~<exp1> ~ 

14.29 <id> £_ _£ := .sext left part lis~exp> is o co 

14.30 <idl><bcsl><bc>:= <ext left part listl:::_<expl> 

14.31 

is 
<id1><bcs1> := <ext left part listl~<expl> co 

formal <idl><bcsl> actual <id.2> bn <bcs2><dbcs> im 
<idl><bcsl>:= <ext left part list1:::_<exp1>-
is 
<I'd.2><bcs2>:= <ext left part listl~<exp1> ~ 

14.32 formal <idl><bcs 1> actual <id.2>[ <sub exp list 1>] 
bn <bcs2><..dbcs1> im 

14.33 

<idl><bcsT>:= ~ex't'"left part listl:::_<expl> 
is 
rsave bn <idl><bcsl> co f <bcs2><dbcs1> * co 
- SUb'Script list : va -C-<sub exp Tistl>-) cO-

reset bn <Idl/<bcSl>-cu <id2><bcs2>[ va rsubscript ~ lJ := 
~ext left part listl~<exp1> l ~ - -

subscript list : <int listl> 
is 
rsubscript ~ is <int listt;,. t ~ 

14.34 <typel><idl> p <bcsl> im 
<idl><bcsl>:=-_sext lef't'°part listl:::_<expl> 
is 
~ext left part listl~<typel><idl> £ <bcs1>:= <exp1> ~ 

14.35 <typel><idl><bcsl> im 
<idl><bcsl>:= ~ext left part listl:::_<expl> 
is 
<ext left part listl:::_<typel><idl><bcsl>:= <expl> co 
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14.36 <bcsl><dbcs> im 

14.37 

14.38 

14.39 

14.40 

14.41 

14.42 

14.43 

<idl>[<'.sub explistl>]:= <ext left part lis~expl> 
is -
<fdl><bcsl>[ ~ i <sub exp listl> 11 := 
~t left part listl::::.<expl> ~ 

<id> £, ~ [<sub exp list>]:= ~ext left part lis~exp> .!:! ~ ~ 

<idl><bcsl><bc>[<sub exp listl>]:= .::;ext left part listl::::_<expl> 
is 
<idl><bcsl>[<sub exp listl>]:= ~ext left part listl::::_<expl> ~ 

formal <idl><bcsl> actual <id2> bn <bcs2><dbcs> im 
<idl><bcsl>[<sub exp listl>]:= <ext left part Tistl><expl> 
is - -
<fd2><bcs2>[<sub exp listl>J:= .::;ext left part listl::::.<expl> co 

<typel> arrry <idl><bcsl>[<int bplistl>J 2E! 
<idl><bcsl> <sub exp list1>]:= <ext left part list1::::_<exp1> 
is -
r-<sub exp list1> within bounds of <int bplist1> co 
- <ext left part listl><typel> array ~ 

<idl><bcsl>[<sub exp-listl>J:= <expl> l ~ 
integer <idl><bcs1> := <int1> .!:! f <id1><bcs1> .!:! <int1> t ~ 
boolean <id1><bcs1>:= <logical value1> 
is 
f <id1><bcs1> is <logical VC>.luel> * ~ 
integer arri-.:.y <idl><bcsl>[<sub exp list1>]:= <intl> 
is 
=f'<idl><bcsl>[<sub exp listl>J .!:! <intl> f ~ 

14.44 boolean array <idl><bcsl>[<Gub exp list1>]:= <logical valuel> 
is 
f<id1><bcs1>[<subexp listl>J ~<logical valuel> * ~ 
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Goto statements. 

15.1 goto <d.exp1><p1> g 1!_ <d.expl> in <a.eel dex:p> ~ 

15.2 <bn1> im 
goto <dexp1><p1> ~ is goto <dexpl><pl><bnl> ~ 

15.3 goto (<d.expl>)<pl><bnl> 1!_ goto <dexpl><pl><bnl> ~ 

15.4 goto if <bexpl> then <sdexpl> else <dexpl><pl><bnl> rs-- - --
goto .!,!. ,!:! i <bexpl>l ~ <sdexpl> ~ <dexpl><pl><bnl> ~ 

15.5 goto if true then <sdexpl> else <dex:p><pl><bnl> rs------ --
goto <sdexp l><p l><bn 1> ~ 

15.6 goto if false then <sdexp> else <dexpl><pl><bnl> rs----- --
goto <dexpl><pl><bnl> ~ 

15,7 <fgsl> im 
go to <label 1><p 1><bn 1> ~ goto <label l><fgs l><p l><bn 1> co 

15.8 <bcsl>~cs:;: ~ ~ <labell><fgsl><pl><bnl> 
is 
goto <labell><bcs1><fgsl><p1><bn1> ~ 

15. 9 goto <label> ~ ~ <fgs><p><bn> ~ .:?. ~ 

15.10 goto <labell><bcsl><bc><fgsl><p1><bn1> 
IS" 
goto <label 1><bcs 1><fgs1><pl><bn 1> ~ 

15.11 formal <idl><bcsl> actual <dexp1> bn <bn2> im 
goto <id1><bcs1><fgs><pl><bn1> -
IS" rt: <bn2> * ~ goto <dexp1><p1><bn1> l ~ 

15.12 label <labell><bcsl><dbcsl><fgsl> eq t <p1> im 
got0""'<1abell><bcsl><fgsl><l"gs><p><bn>- -
IS" - -
rt: <bcsl>~cs12: * ~ f <fgs1> * ~ .!: <pl> l ~ 

15.13 <bcsl><dbcs> im goto <idl>[<sub expl>]<pl><bnl> 
is - - ---

goto <idl><bcsl>[ ~ i <sub expl>lJ<pl><bnl> ~ 
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15. 14 goto <id> £. ~ [<sub exp> ]<p><bn> is ~ 5:£ 

15.15 goto <id1><bcs1><bc>[<sub expl>]<pl><bnl> 
~ 
goto <idl><bcsl>[<sub expl>]<pl><bnl> 5:£ 

15.16 formal <idl><bcsl> actual <id2> bn <bcs2><dbcs> im 
goto <idl><bcsl>[<sub expl>]<pl><bnl> 
~ 
goto <id2><bcs2>[ <sub expl> ]<pl><bn 1> 5:£ 

15. 17 switch <id l><bcs l><dbcs 1> im 

15. 18 

15. 19 

goto <idl><bcsl>[<sub expl>l"<pl><bnl> 
~ rt: <bes 1>:9fucs 1~ * 5:£ ~ <id l><bcs 1>[ <sub expl> ]<pl><bn 1> l. 5:£ 

go <id><bcs>[ <sub exp> ]<p l><bn 1> 
IS rt: <bnl> * 5:£ ! <pl> ~ 15:£ 

<id l><bcs 1>[ <sub exp 1>] eq <dexp 1> im 
go <idl><bcsl>[<sub expl>J<pl><lml>­
is 
go to <dexp l><p l><tm 1> 5:£ 
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For statements. 

16.1 <a.exp> in <for list el> co 
16.2 <a.exp> while <bexp> Iii <for list el> 'Co 
16.3 <a.exp> step <a.exp> ~ <a.exp> in <for list el> 'Co 

16.4 
16.5 

<for list el> 
<for list el>1 <i'or list> 

in <for list> co 
Iii <for list> Co 

16.6 for <int var> := <for list> do <st> in <for st> co 
16. 7 <la'bel> : <for st> - - - Iii <for st> Co 

16.8 f <fs> in <fs> co 

16.9 <fs> ~ ~gs::::, in <fgs> co 

16.10 <i'gsl> ~ forbegin ~ forbegin <fgsl> co 

16.11 forbegin <fgsl> ~ f <fgsl> f. ~ :} ~ 

16.12 <fgsl><fsl> g im 
forbegin <fgsl>-is f <fgsl><fsl> f.~ t ~ 

16.13 <pl>: for <int varl> :=<for listl> do <stl><block endl> 
is - -- -

rt: <pl> ~ 1 
f <pl> is ( forbegin co 

'"".ft <pl> is t""<pl> a :} co 
<pl> a )-t co - - - -

<p 1> ~ l :} co - -
<pl> a : <int varl> := <for listl>; 
<pl> m 1 : <.stl> ; goto special label <pl> 
<pl> m 2 : forend (<Iiit varl>) ;­
<block endl> l ~ 

16.14 <pl> : <int varl>:= <aexpl>1 <i'or listl>;<p2> ~ <block endl> 
is rt <pl> ~ 1 

f <pl> ~ i 
f t <pl> is ( f special label <p2> <pl> ~ 3 :} ~ 

t: <pl> a)-:t co --
<p1>-a ) :} co- -

<pl> .::. I :t co-
<p1> a : <int varl>:= <aexpl>; goto <p2> m 
<pl> iii 3 <int varl>:= <for liS'tl:>; 
<p2> ~ 1 : <lllock endl> l ~ 
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16.15 <pl>: <int varl>:= <aexpl> while <bexpl>,<for listl>; 
<p2> !!! 1 : <block end~ 

is r-F <pl> g i 
f <pl> is i 

f t""'<pl> is i -f special ~ <p2> <pl> !!! 4 ;!> ~ t <pi> a) :t co 
<p1> a: ) * co - -

<p1> ~-1-:r co 
<p1> a : <p1> m 4 : <int varl>:= <aexp1>; 
if <bexp1> then goto <p2> m 1 ; <int varl>:= <for listl>; 
<p2> !!! 1 : <blockeiid 1> l co 

16.16 <pl>: <int varl> := <aexpl> step <aexp2> until <aexp3>, 
<for listl>; <p2> !!! 1 :-<block endl:;-

is r-f <pl> g i. 
f <pl> g i 

f t <pl> is i f special label <p2> <pl> m 5 ;j> co 
't <pl> a) * co -- - -

<pl>-a ) ;j> co- -
<pl> ~ r:r-co -

<p1> a : <int varl>:= <aexpl>; 
<pl> m 6 goto if (<int varl>-<aexp3>) x sign (<aexp2>) > 0 

- - then <pl> m 7 else <p2> m TT 
<pl> m 5 <int varl> := <Int varl> + <aexpl>; goto <pl> !!! 6 
<pl> m 7 <int varl> := <for listl>; 
<p2> § 1 <block endl> l ~ 

16.17 <pl> : <int varl>:= <aexpl>;<p2> !!! 1 : <block endl> 
is 
Z--f <pl> is ( <int varl>:= <aexpl> in <decl ass st> co - -f <p1:>is ( - -

f t<pT> is ( f special label <p2> : <p2> m 2 ;j> co 
- - - <int varl> := <aexpl> co - -
t <pl> a ) t co -

<pl>-a ) :j.- co- -
<pl> a j :f co-

<pl> ~: <p2> ~ 1 : <block endl> l ~ 
16.18 <pl>: <int varl>:= <aexpl> while <bexpl> 

<p2> !!! 1 : <block end~ 
is 
r-f <pl> g i. 

f <pl> is ( 
f t"<pT> is ( f special label <p2> <pl> !!! 8 * ~ 

't <pl> a)-* co --
<p1> -a ) :r-co -

<pl> a-) :f co-
<pl> a :-<pl> m8 : <int varl> := <aexpl>; 
goto If <bexpl>" then <p2> m 1 ~ <p2> !!! 2; 
<p2> !!! 1 : <blockend 1> l co 
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16.19 <p1>: <int var1>:= <aexp1> step <aexp2> ~ <aexp3> 
<p2> ~ 1 : <block end1> 

is rf <p1> ~ 1 
f <p1> ~ i 

f t <p1> is ( f special label <p2> <p1> m 9 :t co 
t: <p1> a)-* co - - -

<p1>-a ) :} co- -
<pi>~ If co-

<p1> a : <int var1> := <aexp1> ; 
<p1> iii 10 : goto if (<int var1>-<aexp3>) x sign(<aexp2>) > 0 

- -- then <p2> m 2 else <p2> m ;;-
<p 1> ~ 9 <int va:rt>': = <int vari'> + <aex'P2> 

goto <p1> m 10; 
<p2> ~ 1 <tiIO'ck endl> l ~ 

16.20 <p1> : goto special label <p2><block endl> 
is ~- -

r-f <pl> is ( 
- t <p1>"is < 

f t <pT> is goto special label <p2> :t co 
<p1>-a ) :} 'Co -- --- -

<pl> a T f co-
<p1> ~ 7 <t>1o'Ck endl> l ~ 

16.21 special label <pl> : <p2> m <ui1> im 
goto speCi'ST""label <p1> is -goto <p2> ~ <ui 1> co 

16.22 <pl> : forend (<int varl>) <block endl> 
is rt <p1> ~ 1 

{: <pl> ~ i 
ft <pl> is ( forend (<int varl>) co 

t: <pl> a)-:} co 
<pT> a ) f co -

<pl> a T :f co-
<p1> ~ 7 "<bloCk endl> l ~ 

16.23 <fgsl><fs> g im forend (<int varl>) 
is - -rt <fgs 1> :} ~ forend <int varl> l ~ 

16.24 <'.bcs1><dbcs> im 
forend-<idl> ""Is forend <id1><bcs1> co 

16.25 forend <id1><bcsl><bc> is forend <idl><'.bcsl> co 

16.26 formal <idl><bcsl> actual <id2> bn <'.bcs2><dbcs> im 
forend <id 1><'.bcs 1> is forend <ia2><'.bcs2> co 
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16.27 formal <idl><bcsl> actual <id2.>[<sub exp listl>] 
bn <bcs2><dbcs1> im 
f'Orend <idl><bcsl> -
is 
\""save bn <idl><bcsl> co {: <bcs2><dbcs1> :} co 
- Su.'bscript ~ : !! ["<sub exp Tistl>-l co-

reset bn <idl><bcsl> co 
fureiid"<id2><bcs2>[ va i subscript ~ l l l ~ 

16.28 integer <idl><bcsl> im forend <idl><bcsl> 
is -
f" <id l><bcs 1> ~ £ :} ~ 

16.29 <bcsl><dbcs> im 
forend-<idl:>[<S'ub exp listl>] 
is 
f'Orend <idl><bcsl>[ !! i <sub exp listl> l ] co 

16.30 forend <idl><bcsl><bc>[<sub exp listl>] 
is 
fOrend <id l><bcs 1>[ <sub exp list 1>] ~ 

16.31 formal <idl><bcsl> actual <id2.> bn <bcs2><dbcs> im 
forend <idl><bcsl>[<sub exp listl>J 
is 
f'Orend <id2><bcs2>[ <sub exp list 1>] ~ 

16.32 integer array <idl><bcsl>[<int bplist>] 
im --
f'Orend <id l><l>cs 1>[ <-Bub exp list 1>] 
is 
f<idl><bcsl>L<sub exp listl>] is~:}.:::£ 
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Procedure statements and function designators. 

17. 1 <id> in <proc id> co 
17.2 <id> Iii <int proc Id>- co 
17 .3 <id> Iii <boolean proc Id>- co 

17.4 <proc id><a.ct par part.> in <proc st.> co 
17. 5 <int proc-id><a.ct par Pa.rt.> Iii <int funct des> co 
17 .6 <boolean proc-ia>:::act par Pa.rt.2:_ in <boolean funct des> co 

11.1 
17 .8 
17.9 
17.10 
17. 11 
11.12 
11.13 

11.14 
17 .15 

17. 16 

17, 17 
17. 18 . 
17. 19 
11.20 
17 .21 
17 .22 
17.23 

17.24 
17.25 

17.26 

17.27 

17.23 

17.29 

17.30 
17.31 
17.32 

<exp> in <a.et par> co 
<int array id> Iii <a.et par> Co 
<boolean array id> Iii <a.et par> co 
<switch id> Iii <a.et par> co 
<proc id> Iii <act par> co 
<int proc id> Iii <act par> co 
<boolean proc id> Iii <a.et par> co 

<a.et par> in <act par list.> co 
<act par>, <act par list.> Iii <act par list.> co 

(<act par list.>) in <act par part.>~ 

<decl exp> in <decl act par> co 
<decl int array id> Iii <decl act par> co 
<decl boolean array id> Iii <decl act par> co 
<decl switch id> Iii <decl act par> co 
<decl proc id> Iii <decl act par> co 
<decl int proc id> Iii <decl act par> co 
<decl boolean proc id> Iii <decl act par> co 

<decl act par> 
<decl act par>,<decl act par list> 

in <decl act par list.> co 
In <decl act par list> co 

(<decl act par list.>) ~ <decl act par part>~ 

<bcsl> im <idl> in <decl proc id> L> 
<id1><bcs1> Iii <decl proc id> co 

<bcs1> im <idl> Iii <decl int proc id> 
<id l><bcs 1> Iii <decl int p:roc id> 

<'ncsl> im <idl> in <decl boolE.a:i proc 
<id 1><bcs 1> Iii <decl boolean proc 

<id> b c in <decl proc id> j.s o co 
<id> b c in <decl int proc id> Is o co 
<id> b c in <decl boolean proc id> Is o co 

js 
cc 

id? 
id> 

j ;: 

co 



17.33 

17.34 

17.35 

17 .36 
17.37 
17.38 

17,39 

17.40 

17 .41 

17 .42 

17,43 

17,44 

17.45 
17,!~6 
17.47 

17 .48 

17.49 

17.50 

17.51 
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<id l><bcs l><bc> in <decl proc id> is 
<idl><bcsl> in <decl proc id> co 

<id l><bcs l><bc> in <de cl int proc id> is 
<idl><bcsl> in <decl int proc id> co 

<id l><bcs l><bc> in <decl boolean proc id> is 
<id l><bcs 1> in <decl boolean proc id> co 

formal <id l><bcs 1> im <id l><bcs 1> in <decl proc id> co 
formal <idl><bcs1> im <id1><bcs1> in <decl int proc Id> co 
formal <id l><bcs 1> im <id 1><bcs 1> in <decl boolean proc Id> co 

<type> procedure <id1><bcs1><formal par part> im 
<id 1Xbcs 1> in <decl proc Id> ~ - -

integer procedure <id1><bcs1><formal par part1::::, im 
<id1><bcs1> .;!;,!! <decl int proc id> ~ 

boolean procedure <idl><bcsl><f'ormal par part1> im 
<idl><bcs1> in <decl boolean proc id> co - -

<bcs1> im 
<idl><decl act par part1> in <decl proc st.> is 
<id1Xbcs1>_:::decl act par-part12:_ in <decl proc st.> co 
<bcs1> im 
<idl><decl act par pa.rt1> in <decl int funct des> is 
<id1Xbcs1><decl act par-part1:::_ in <decl int funct des> co 
<bcs1> im 
<idl><deCl act par pa.rt1> in <dccl boolean funct des> is 
<id1><'.bcs1~decl act par-part12:_ in <decl boolean funct des> co 
<id> b c <&et par part> in <decl proc st.> is o co 
<id> b c <act par part> Tri <Liecl int functdes> i.> o co 
<id>'.§:~ 2'-ct par part-=: ~n <decl boolec.n funct des>-i;3 ~ ~ 

<idl><bcsl><bc><act pa!' p'-'rt1> in <decl proc st.> is 
<idl><bcs 1> 2'-ct par part 12'.: ~ n <cL~cl proc st.> co 
<id1><bcs1><bc><act par part1> jn <decl int funct des> is 
<id1><bcs1> "<act par part1~ in <decl int funct des> Co 

<idl><bcsl><bc><EJct par partl> i:::l <decl boolean 1·unct des> is 
<id1><bcs1> <._qct p~r partl~ i!l <decl boolean funct des> co 
formal <id1>--.."1>c~1> im 
<id 1><bcs 1~ct par p::lrt;:: in <de cl proc s 1.> co 
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17,52 formal <idl><bcsl> im 
<id l><bcs l~ct par pa~ in <decl int fun.et des> co 

17. 53 formal <id l><bcs 1> im 
<id l><bcs l>_::act par par~ in <decl boolean fun.et des> co 

17 ,54 <type> procedure <idl><bcsl> im 
"<idl><'.bcsl> in <decl proc s~co 

17,55 integer procedure <idl><bcsl> im 
<idl><bcsl> in <decl int func't'"des> co 

17,56 boolean procedure <idl><bcsl> im 
<idl><bcsl> in <decl boolean funct des> co 

17. 57 <type> procedure <id l><bcs 1>( <id list 1>) im 
"<idl><'.bcsl>(<act par listl>) ,!!! <decl procst> 
is 
<Id listl> ~ length <act par listl> ~ 

17.58 integer procedure <idl><bcsl>(<id listl>) im 
<idl><bcsl>(<act par listl>) in <decl int f'Uiict des> 
is 
<id listl> equal length <act par listl> ~ 

17. 59 boolean procedure <id l><bcs 1>( <id list 1>) im 
<idl><bcsl>(<act par listl>) ,!!! <decl boolean funct des> 
is 
<I'd listl> equal length <act par listl> co 

17,60 <id> equal length <act par>~ 

17.61 <id>,<id listl> equal length <act par>,<act par listl> 
is 
<I'd listl> equal length <act par listl> ~ 

17.62 <proc stl><p> g ~ <proc stl> in <decl proc st> co 

17.63 <proc stl><pl> ~ is <proc stl> : <pl> ~ 

17.64 <bcsl><dbcs> im <idl~ct par partl::::_ : <pl> 
is 
<idl><bcs1>~ct par partl::::_ : <p1> ~ 

17,65 <bcsl><dbcs> im <idl>(<act par listl>) 
is - - -
<I'dl><bcsl>(<act par listl>) ~ 

17,66 <id>~~ ~et par pa~ : <p> ~ £ ~ 

17 .67 <id> ~ ~ (<act par list>) is o co 



17 .68 <id 1><bcs 1><bc><a.ct par part 1> 
<id1><bcs1> ~et par part1~ 

<p1> is 
<p1> co 

17. 69 <id 1><bcs l><bc>( <a.et par list1>) is 
<id1><bcs1> {<a.et par list1>) co 

17. 70 formal <id 1><bcs 1> actual <id.2> bn <bcs2><dbcs> im 
<idl><bcsl><act par part1> <p1:>" 
is - -
<Id2><bcs2>~ct par part12:, <p1> ~ 

17. 71 formal <id1><bcs 1> actual <id.2> bn <bcs2><dbcs> im 
<id.1><bcs1>{<act par listl>) 
is 
<id2><bcs2>( <act par list1>) ~ 

17.72 procedure <id1><bcs1>(<p3> k) <p1> im 
<id l><bcs 1> : <p2> -
is 
renter procedure <bcs1> co 
- ( <p3> ~) substitute ( <p2> ~) ~ <p1> l ~ 

17.73 procedure <id1><bcs1>(<ext formal list1>) <p1> im 
<id l><bcs 1>( <act par list 1>) <:p2> 
is r entc:r procedure <bes 1> co 
- (<ext formal list1>) subStitute (<act par list1>,<p2> ~) co 

<p1> l ~ 
17.74 <type1> procedure <id1><bcs1><ext formal par part12:, <p1> im 

<idl><bcsl>~ct par partl:::, -
is 
r.ent,"!r procc:dure <bcsl,.. ~ ~ ~ <typel><idl> E.~ 

<ext formal par part1> substltute <act par partl> co 
'<p1> co function value : va ( <idl>" p ) co - -
ext t proceducr:: c~1"'Twi'Ction viiJ.ue l co - -

17.75 intef:er procedure <id1><bcs1><ext formal par partl::::, :<p> im 
<J.,il><bcs 1>5f'1Ct par part1::::, : '<pi> 
is r ~ 1 := <idl~ct par part12:, ~ .!. <pl> ~ l ~ 

17. 76 boolee.n procedure <id l><bcs !><ext formal par part 1> <p> .!.!!! 
<id.l><bcsl><act par part1> : '<p1> -
is - -
r~ 2 := <idl>~ct par part1::::, ~ .!. <p1> ~ l ~ 

17,77 <bn1> im 
~ procedure <bes 1> ~ f <bes 1> ~ <bn 1> * ~ 
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17.78 <bes> d <bn1> im 
~ procedure is {: <bn 1> :} ~ 

17.79 function value : <constant1> 
is 
f. function ~ ~ <constant 1> :} ~ 

17.80 ,<act par>,::;right act par list;;: in <right act par list> co 

17.81 (<type1><id1><right formal listl>) substitute 
(<act parl><right act par listl>) 
is - -
"('""begin co <typel><idl> co <type1><id1> becomes <act par1> co 
- (,::;righ't""formal listl::::_)""'Substitute (,::;right act par list1;::)-:l ~ 

17.82 <bcsl> d <bnl> im <typel><idl> becomes <act parl> 
is - -
I""{: <bnl> :} co <type1><id1><bcs1>:= <act parl> co 

f <bcs1> ,!! <bnl>:} l ~ -
17.83 (<typel> procedure <ext formal listl>) substitute 

(<act par list1>) 
is 
'(<typel><ext formal listl>) substitute (<act par listl>) co 

17.84 (<typel> array <idl><right formal listl>) substitute 
(<id2><right act par-listl>) -
is - -
~begin ~ <typel> array ·~idl> actual <id2> ~ 

(,::;right formal list 1::::_) substitute (,::;right act par list 1;::) l ~ 
17.85 <bcsl> d <bcs2><dbcs> im 

<typel>-array <idl> h."ctual <id2> 
is 
<typel> array <idl><bcsl> actual <id.2><bcs2> ~ 

17. 86 <type> ~ <id><bcs> actual <id> £_ ~ ~ ~ ~ 

17.87 <typel> array <id1><bcs1> actual <id2><bcs2><bc> 
is 
<typel> array <idl><bcsl> actual <id2><bcs2> ~ 

17 .88 formal <id2><bcs2> actual <id3> bn <bcs3><dbcs> im 
<typel> array <id1><bcs1> actual""<id2><bcs2> - -
is 
<typel> array <idl><bcs1> actual <id3><bcs3> ~ 

17.89 <typel> array <idl><bcsl>[<int bplist1>] im 
<typel> array <id2><bcs2> actual <idl><bcSl> 
is rl <typel> array <id2><bcs2>[ <int bplistl>] * co 

<id2><bcs2>[<int bplistl>] assign <id1><bcs1>"'"1 ~ 
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17 .90 <i.nt.>,SJ.eft int list?: in <left int list.> co 

17.91 <i.dl><bcs1>[<left int list1><int1> :<int2>] assign <i.d2><bcs2> 
is - -r <id l><bcs i>[SJ.eft int list 1?;<1nt 1>] becomes 

va i <i.d2><bcs2>[ <left int list 1><int 1>] ) co 
<id 1><bcs 1>[ <leftint list 1> va I <int 1> + 1) : <i.nt2>] 
assign <id.2><bcs2> l ~ - - -

17.92 <id1><bcs1>[<left int list1><int1> : <int2>,<bplist1>] 
assign <id.2><bcs2> -
is 
Z-<id1><bcs1>[<left int list1><int1>,<bplist1>] 
- assign <id2><bcs2> co <id1Xbcs1> 

[<left int listl> va-( <intl> + 1 ) : <i.nt2>,<bplist1>] 
assign <i.d2><bcs'2:> "1 co -

17,93 <i.ntl> equal <i.nt2> im 
<i.dl><bcsl>l<left in't""listl><int1> : <int2>,<bplist1>] 
assign <id2><bcs2> -
is 
<idl><bcsl>[<left int listl><int1>,<bplist1>] 
assign <id2><bcs2> ~ -

17.94 <int1> equal <int2> im 
<id l><bcs l>L <left intlist 1><int 1> <int2>] 
assign <id2.><bcs2> -
is 
'Zidl><bcs1>[<left int listl><intl>] becomes 
~i. <id2><bcs2>[9eft int list1~int1>J l ~ 

17.95 <id1><bcs1>[<int liGt1>] becomes <constant1> 
is 
f<id1><bcsl>[<int listl>J ~ <constantl> t ~ 

17,96 <intl> ~ <int2> ~ ~ i <intl> - <int2> l ~ ~ ~ 
17.97 0 equal~~ 



139 

17.98 (<:i.dl>,<ext formal listl>) substitute 
(<a.et parl>,<a.ct par listl> 
is 
T<ext formal listl>,<:i.dl>) substitute 
(<a.et par listl>,<a.ct parl>) ~ 

17.99 ,<:i.~ight id lis~ ~ <right id list>~ 

17.100 (<:i.dl><right id listl>) substitute 
(<a.et parl><right act-par listl>) 
is - -
l,begin ~ <:i.dl> actual <act parl> ~ 

(S"right id list12:) substitute (S"right act par list12:) l ~ 
17.101 <'.bcsl> d <'.bnl> im <:i.dl> actual <act parl> 

Is - -
r formal <:i.dl><'.bcsl> actual <act parl> ~ <bnl> * ~ 

17.102 (,<ext formal listl>) substitute (,<act par listl>) 
is- - - -
~ext formal list12:) substitute (_::act par listl>) co 

17.103 ( ) substitute ( ) co 

17.1o4 substitute co 
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Variables. 

18.1 <a.exp> in <exp> co 
18.2 <bexp> in <exp> co 
18.3 <a.exp> in <exp> co 

18.4 <a.eel aexp> in <a.eel exp> ~ 
18.5 <a.eel bexp> in <a.eel exp> ~ 
18.6 <a.eel dexp> Iii <decl exp> ~ 

18.7 
18.8 
18.9 
18. 10 

18. 11 

18. 12 

18.13 

18. 14 

18.15 
18. 16 
18.17 
18. 18 

18. 19 

18.20 

18.21 

18.22 

18.23 
18.24 
18.25 
18.26 

18.27 
18.28 

18.29 

18.30 

<id> 
<id> 
<id> 
<id> 

in <int var id> co 
Iii <boolean var Id> co 
in <int array id> co­
Iii <boolean array Id> ~ 

<bcs1> im <idl> in <decl 
<id l><bcs 1> in <decl 

int var id> is 
int var id> Co' 

<bcsl> im <idl> in <decl boolean var Id> is 
<idl><bcs1> in <decl boolean var id> Co 

<bcs1> im <idl> in <decl int array id> is-
<id 1><bcs 1> in <decl int array id> co 

<bcsl> im <idl> in <decl boolean array id> is 
<id l><bcs 1> Iii <decl boolean array id> co 

<id> b c in <decl int var id> is 0 co 
<id> b c Iii <decl boolean var id> IS 0 co 
<id> b c in <decl int array id> is 0 co 
<id> b c in <decl boolean array id> IS 0 co 

<id 1><bcs 1><bc> in <decl int var id> is 
<id l><bcs 1> Iii <decl int var id> Co 
<id 1><bcs l><bc> in <decl boolean var id> is 
<id 1><bcs 1> Iii <decl boolean var id> Co 
<id 1><bcs 1><bc> Iii <decl int array id> is -
<id 1><bcs 1> Iii <decl int arri::.y id> Co 
<id l><bcs l><bc> in <decl boolean array id> is 
<id 1><bcs 1> In ...:.d.ecl boolean array id> co 

formal <id 1><bcs 1> im <-.id 1><bcs 1,- in '-decl int var id> co 
fo:nmo l <id 1><bcs 1> Iiii <id 1><bcs 1> in <decl boolean var I'd> co 
i'ormal <id1><bcs1> Iiii <idl><bcs1> in <decl int array id> co­
f'orilllotl <id l><bcs 1> im <id 1><bcs 1> in <decl boolean array id> co 

integr~r <id l><bcs 1> im <id 1><bcs 1> in <decl int var id> co 
boolean <idl><bcsl> Iiii <idl><bcsl,.· in <decl boolean var Id> co 

integer array <idl><bcsl> irn 
<id 1><bc"Sl>Tn <decl int array id> co 
booleun array <idl><bcsl> im 
<idl><bcsl> in <decl boolean array id> co 



18.31 
18.32 

18.33 
18.34 

18.35 
18.36 

18.37 
18.38 

18.39 
18.40 

18.41 
18.42 
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<int var id> in <int var> co 
<boolean var id> Iii <boc -Lean w:r> co 

<dee! int var id> in <dee! int var> co 
<dee! boolean var id> Iii <dee! boolean var> co 

<a.exp> in <sub exp> co 
<dee! aexp> Iii <dee! sub eip> co 

<sub exp> in <sub exp list> co 
<sub exp>,<sub exp list> Iii <sub exp list> co 
<dee! sub exp> 
<dee! sub exp>,<decl sub exp list> 

<int array id>[ <sub exp list>] 
<boolean array id>[<sub exp list>] 

in <decl sub exp list> co 
Iii <dee 1 sub exp list> Co 

in <int var> co 
Iii <boolean v-'ci:r> co 

18.43 <a.eel int array id>[<decl sub exp list>] 
in <decl int var> co 

18.44 <decl boolean array""Id>[<decl sub exp list>] 
in <decl boolean var> co 



142 

Syntax of arithmetic expressions. 

19.1 + in <pnC> co 
19.2 rn <pnC> co 

19.3 x in <mult op> co 
19.4 • rn <mult op> co 

19.5 <ui> in <primary> co 
19.6 <int var> rn <primary> Co' 
19.7 <int funct des> rn <primary> Co' 
19.8 (<a.exp>) in <priui.ry> co 

19.9 
19, 10 
19. 11 
19. 12 

19. 13 
19. 14 

19. 15 
19. 16 

19.17 
19. 18 

19. 19 
19.20 

19.21 
19.22 
19.23 

19.24 
19.25 
19.26 

19.27 
19.28 

19.29 

19,30 

<ui> 
<decl int var> 
<decl int funct des> 
(<decl aexp>) 

in <a.eel primary> co 
in <dee! primary> Co' 
rn <dee! primary> Co' 
in <dee! primary> co 

<primary> in <factor> co 
<factor> 1' <primary> in <factor> Co' 

<dee! primary> in <decl factor> co 
<decl factor> ~ <dee! primary> in <a.eel factor> co 

<factor> in <term> co 
<ternt><mult op><factor> in <ternt> co 

<decl factor> in <decl ternt> co 
<decl ternt><mult op><decl factor> rn <decl term> Co' 

<term> in <s~exp> co 
<pnt><term> rn <saexp> Co' 
<saexp><pnt><term> in <saexp> co 

<a.eel ternt> 
<pm><decl term> 
<decl saexp><pnC><decl term> 

in <decl saexp> co 
rn <decl saexp> Co' 
in <decl saexp> co 

<saexp> 
<decl saexp> 

in <a.exp> co 
in <decl aexp> ~ 

.!! <l:>exp> ~ <saexp> ~<a.exp> ~ <aexp> ~ 

if <decl bexp> then <decl saexp> ~ <decl aexp> 
rn <decl aexp> co 



20.1 
20.2 
20.3 
20.4 
20.5 
20.6 

20.7 
20.8 
20.9 
20.10 
20.11 

20.12 
20.13 
20.14 
20.15 
20.16 
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Syntax of boolean expressions. 

< in <rel op>~ 
> Iii <rel op>~ 
< Iii <rel op>~ 
> Iii <rel op>~ - Iii = <rel op>~ 

+ Iii <rel op>~ 

<logical value> 
<boolean vaI'> 
<saexp><rel op><saexp> 
(<bexp>) 
<boolean funct des> 

<logical value> 
<decl boolean var> 

in <bprima.ry> co 
Iii <bprima.ry> Co' 
Iii <bprima.ry> Co' 
Iii <bprima.ry> Co 
Iii <bprima.ry> co 

<decl saexp><rel op><decl saexp> 
( <decl bexp>) 

in <decl bprima.ry> co 
Iii <decl bprima.ry> Co' 
Iii <decl bprimary> Co' 
in <decl bprimary> Co' 
Iii <decl bprima.ry> co <decl boolean funct des> 

20.17 <bprimary> in <bseconda.ry> co 
20. 18 1 <bprimary> Iii <bseconda.ry> co 

20.19 <decl bprimary> in <decl bseconda.ry> co 
20.20 1 <decl bprimary> Iii <decl bseconda.ry> co 

20.21 <bseconda.ry> in <bfactor> co 
Iii <bfactor> Co' 20.22 <bfacto?'> A <bseconda.ry> 

20.23 
20.24 

<decl bseconda.ry> in <decl bfacto?'> co 
<decl bfacto?'> A <decl bseconda.ry> Iii <decl bfacto?'> Co' 

20.25 <bfactoI'> in <bterm> co 
20.26 <bterm> V <bfactor> Iii <bternl> Co' 

20.27 <decl bfactor> in <decl bternl> co 
20.28 <decl bterm> V <decl bfactor> Iii <decl bternl> Co' 

20.29 
20.30 

20.31 
20.32 

<bterm> 
<implication> 1 <bterm> 

in <implication> co 
Iii <implication> co 

<decl bterm> in <decl implication> co 
<decl implication> .J. <decl bterm> Iii <decl implication> co 
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20.33 <implication> in <sbexp> co 
20.34 <sbexp> ::, <implication> in <sbexp> co 

20.35 <decl implication> in <decl sbexp> co 
20.36 <decl sbexp> ::, <decl implication> in <decl sbexp> co 

20.37 <sbexp> in <bexp> co 
20.38 .!!_ <bexp> ~ <sbexp> ~ <bexp> Iii <bexp> co 

20.39 <decl sbexp> ~ <decl bexp> ~ 

20.40 if <decl bexp> then <decl sbexp> else <decl bexp> 
Iii <decl bexp> co -



21.1 
21.2 

21.3 

21.4 

21.5 

21.6 

21. 7 

21.8 

21.9 

21. 10 
21.11 

21. 12 

21. 13 

21. 14 
21.15 
21.16 

21.17 
21. 18 
21.19 

21.20 
21.21 

21.22 

21.23 
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Syntax of designational e:icpressions. 

<id> in <label> co 
<.ui> in <label> oo 
<id> in <switch id> co 

<bes 1> im <label 1> in <.decl label> is 
<label 1><bcs 1> Iii <.decl label> Co 

<bcsl> im <idl> in <.decl switch id> is 
<idl><bcsl> in <.decl switch id> oo 

<label> b c in <.decl label> is o co --- ---
<id> ~ .£_ ~ <.decl switch id> !:! ~ ~ 
<label l><bcs l><bc> in <.decl label> is 
<label l><bcs 1> in <.decl label> Co 

<id l><bcs l><bc> in <.decl switch id> is 
<id l><bcs 1> in <.decl switch id> co 
form.al <id l><bcs 1> im <id l><bcs 1> in <.decl label> co 
f'orrnal <id l><bcs 1> Iiii <id l><bcs 1> in <.decl switch TO> co 

label <label l><bcs 1> im <J.abel 1><'.bcs 1> in <.decl label> co - -
switch <id l><bcs 1> im <id l><bcs 1> in <.decl switch id> w 

<label> in <sdexp> co 
<switch des> in <sdexp> co 
( <dexp>) in <sdexp> co 

<.decl label> in <.decl sdexp> co 
<.decl switch des> in <.decl sdexp> Co' 
( <decl dexp>) in <.decl sdexp> co 

<sdexp> in <.dexp> co 
<.decl sdexp> in <.decl dexp> ~ 

.!:£ <bexp> ~ <sdexp> ~ <.dexp> ~ <.dexp> ~ 

if <.decl bexp> then <.decl sdexp> else <.decl dexp> 
in <.decl dexp> -CO-- -

21 • 24 <switch id>[ <sub exp>] in <switch des> co 

21 • 25 <.decl switch id>[ <decl sub exp>] in <.decl switch des> co 



22. 
22.2 

22 3 

22.4 

22. :: 
22.6 

22." 
22,) 

22.9 

22.10 

22.11 

22.12 

22.13 

22 

22 5 
22.16 

22. •7 
22 .i8 
22.19 
22,20 
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The value of boolean expressions a: d of 
arithmetic exp1essi"ns 

(<ae ·pl>) 
(<bexpl>) 

's <aexpl> co 
is <bexpl> co 

if <bexp> ~ <saexpl> ~ <aexpl> 
is 
if ~ i<bexpl>l ~ <saexp1> ~ <aexpl> ~ 

if <bexp'i> ~ <sbexp1> ~ <bexp2> 
is 
if~ i<bcxpl>l ~ <sbexpl> ~ <bexp2> ~ 

if .rue ·..hen <saexpl> else <a.exp> -; s <saexpl> co 
If tru.: ~ <sbexpl> else <bexp> is <sbexpl> co 

: .. f felse then <saexp> else <aex,9·:> is <aexpl> co 
if f"1lse then <sbexp> else <bexpl> is <bexpl> co 

<saezpl><rel opl><saexp2> 
i:> 
Vd. i<sar,,xp1>l<rel opl> ~ ~<saexp2>l ~ 

l <bprimaryl> ~ l ~ i <b_9rimary(> l ~ 
<bfcctorl> /\ <bsecondaryl> 
i' 
va i <bfactorl> l /\ !:::: i <bsecondaryl~l ~ 

<bterml> V <bfactorl> 
is 
va L_<bterml>l V ~ l<bfactorl>l c_9 

<inp Li cation 1> l <bterml,, 
is -
!! l<implicationl>l J _!!! i<:;:term'>l .s_. 

<sbex:; 1> .::. <implication 1> 

va l<:bexpl>l =. ~ .,l<implcati n >l ~ 

·1 tr':e is false co 
l fc..lse is true Co' 

true /\ true is true 
true /\ Tal'Se is false 
fa'i"Se /\ true is TaIS: 
false /\ TaISe is Ts!Se 

co 
co 
co 
co 



22.21 
22.22 
22.23 
22.24 

22.25 
22.26 
22.27 
22.28 

22.29 
22.30 
22.31 
22.32 

22.33 
22.34 
22.35 

22.36 

22.47 

22.48 
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true v true is true co 
true v 'fa'lse is true co 
Ta'lse v tr'iie" is true co 
false v Ta'lse is f'8I'Se co 

true 1 true is true co 
true 1 f'8I'Se is f'8I'Se co 
TaISe 1 tiii'e is tr'iie" co 
fulse 1 f'8I'Se is true co 

true true is true co 
true false is faISe co 
TaISe tr'iie" is fulse co 
fulse 'fa'lse is tr'iie" co 

<.int 1> < <.int2> is 1 <.int2> < <.int 1> co 
<.int 1> > <.int2> is <.int2> < <.int 1> Co 
<.int 1> > <.int2> is 1 <.int 1> < <.int2> Co' 

<.int 1> = <.int2> is <.int 1> < <.int2> /\ <int2> < <.int 1> co 

- <ui> < 0 is true co 
<ui> < 0 is f'8I'Se Co 
<ze> < 0 is ~Co -- -

+ - <ui1> is - <uil> co 
- - <ui 1> is <ui 1> Co 

<.int 1> + - <ui 1> is <.int 1> - <ui 1> co 
<.int 1> - - <ui 1> is <.int 1> + <ui 1> Co 
<.intl> - + <uil> is <int1> - <uil> Co 

<factorl> ~ <prima.ryl> 
is 
<.factorl> ~ !!: i<primaryl>l ~ 

<terml><.mult opl><factorl> 
is 
va 1,<terml>l<mult opl> !!: i <factorl>l ~ 

22.49 <pml><terml> ~ <pml> ~ 1,<terml>l ~ 

22.50 <saexpl><pml><terml> 
is 
va i<saexpl>l<pml> ~ i<terml>l ~ 
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22, 51 <factorl> 1' <ui 1> is <factorl> 1' {<ui 1> - 1) X <factorl> co 

22,52 <factorl> ~ <ze> 
is 
if <factor1> f 0 ~ ~ <factorl> 1' (- 1) co 

22.53 <factorl> ~ ~e:::_ 1 ~ <factorl> co 

22.54 <intl>; -<uil> is --,::;:i<intl>..:.<uil>l~ 

22.55 <uil> - <ui2> 
is 
if <uil> < <ui2> then 0 else 1 + (<ui1> - <ui2>) : <ui2> co 

22. 56 <int 1> x - <ui 1> is - .!.:: i <int 1> X <ui 1> l ~ 

22.57 
22.58 

22.59 

<ui 1> x <ui2> is <ui 1> x ( <ui2> - 1) + <ui 1> co 
<ui> x o IS o co 

<di><ui> in <ui> co 

22.60 _sim:;:<ui> in <int> co 

22.61 0 <ze> in <ze> co 

22.62 - <ui 1> + <ui2> is <ui2> - <ui 1> co 

22.63 - <ui 1> - <ui2> is - ,::;: i <ui 1> + <ui2>l ~ 

22.64 <uil><dil><pml><ui2><di2> 
is 
va ,l <ui l><pml><ui2> l 0 + ~ i <di l><pm"1><di2> l ~ 

22. 65 <ui l><di l><pm l><di2> is <ui 1> 0 + ~ ,l <di 1..><pm "t><di2> l ~ 

22.66 <dil><pml><uil><dl.2> .~ <pml><uil> 0 +,::;: i<di1><pml><di2>l ~ 

22.67 <ui1> 0 + <dil> is <uil..><dil> co 
22.68 <di 1> + <u.i f> 0 "'S" <ui l><d.i \> co 
22.(9 <uil> 0 - <dil> is ~ i<uil> - ll 0 + !! ilO - <dil>l ~ 

22.70 10 - <di 1> ~ 9 - :e. i<di 1> - 11 ~ 

22. 7i <di l><pml><di2> is :e. ,l <di l><pml> l <pml> !! .£. <di2> - ll ~ 

22. 72 <ui l><pm><ze> ~ <ui 1> co 

22.73 <ze><pml><uil> ~ <pml><uil> ~ 
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22.74 0 + 1 is co 
22.75 1 + 1 is 2 co 
22 76 2 + 1 is 3 co 
22.77 3 + 1 is Li. co 
22.78 4 + 1 is 5 co 
22, 79 5 + 1 is 6 co 
22 .. 80 6 + 1 is 7 co 
22.81 7 + 1 is 8 co 
22.82 8 + 1 is 9 co 
22.83 9 + "j is 10 co 

22~84 1 ,._ 1 is 0 co 
22.85 2 - 1 is 1 co 
22.86 3 - 1 is 2 co 
22.87 4 - 1 is 3 cc 
22.88 5 - ' is 4 co 
22.89 6 - 1 is 5 co 
22.90 7 - 1 is 6 co 
22.9 8 - ·1 is 7 co 
22.92 9 - 1 is 8 co 



23.1 
23.2 
23.3 
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Basic synibols and auxiliary synibols. 

<let> 
<id><let> 
<id><di> 

Comment conventions. 

in <id> 'o 
Iii <id> Co 
in <id> Co 

23.4 <int> in <constant> co 
23.5 <logical value> in <constant> Co 

23.6 
23.7 
23.8 
23.9 

23.10 
23.11 
23.12 
23.13 
23.14 
23.15 

23.16 
23.17 
23.18 

O in <di> co 
1 Iii <di> Co 
2 Iii <di> Co 
3 Iii <di> Co 
4 in <di> Co 
5 in <di> Cci 
6 in <di> Cci 
7 Iii <di> Co 
8 Iii <di> Co 
9 Iii <di> Co 

- <ui 1> ~ i- <ui 1> 15!.£ 
+ <ui1> is <uil> co 

<ui 1> IS <ui 1> co 
23.19 · ~ze> is {: 0 t co 

23.20 
23.21 

true in <logical value> co 
'faiS'e Iii <logical value;- co 

23.22 <logical value1> is f <logical value1> * ,S£ 

23.23 
23.24 
23.25 
23.26 
23.27 
23.28 
23.29 
23.30 
23.31 
23.32 
23.33 
23.34 
23.35 
23.36 
23.37 
23,38 
23.39 

a in <let> co 
b Iii <let> Co 
c Iii <let> Co 
d Iii <let> Co 
e Iii <let> Co 
f Iii <let> Co 
g Iii <let> Co 
h Iii <let> Co 
:i_ in <let> Co 
j Iii <let> Co 
k in <let> Co 
1 in <let> Co 
m in <let> Co 
n in <let> Co 
o in <let> Co 
p in <let> Co 
q in <let> Co 
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23.40 r in <let> co 
23.41 s Iii <let> Co 
23.42 t in <let> Co 
23,43 u Iii <let> Co 
23.44 v Iii <let> Co 
23.45 w Iii <let> Co 
23.46 x Iii <let> Co 
23.47 y Iii <let> 'Co 
23.48 z Iii <let> Co 

23,,49 A in <let> co 
23.50 B Iii <let> Co 
23.51 c in <let> 'Co 
23.52 D Iii <let> co 
23.53 E in <let> Co 
23.54 F Iii <let> Co 
23.55 G in <let> Co 
23.56 H Iii <let> Co 
23,57 I Iii <let> Co 
23.58 J Iii <let> Co 
23.59 K Iii <let> Co 
23.60 L Iii <let> Co 
23.61 M in <let> Co 
23.62 N Iii <let> 'Co 
23.63 0 in <let> Co 
23.64 p 'f n <let> 'Co 
23.65 Q 1n: <let> Co 
23.66 R In <let> co 
23.67 s rn <let> co 
23.68 T in <let> Co 
23.69 u Iii <let> Co 
23.70 v Iii <let> co 
23.71 w in <let> co 
23.72 x Iii <let> Co' 
23.73 y Iii <let> co 
23.74 z in <let> co 
23.75 + in <spec del> .£2_ 
23.76 Iii <spec del> ~ 
23,77 x Iii <spec del> ~ 
23.78 Iii <spec del> ~ 
23,79 1\ Iii <spec del> ~ 
23,80 < Iii <spec del> .£2, 
23.81 > Iii <spec del> ~ 
23.82 < Iii <spec del> ~ 
23.83 > Iii <spec del> £2. 
23.84 - Iii = <spec del> £2. 
23.85 + in <spec del> £2_ 
23.86 = in <spec del> £2_ 
23.87 1 Iii <spec del> £2_ 
23.88 v Iii <spec del> co 



23.89 
23.90 
23.91 
23.92 
23.93 
23.94 
23.95 
23.96 
23.97 
23.98 
23.99 
23.100 
23.101 
23.102 
23. 103 
23. 104 
23.105 
23. 1o6 
23. 107 
23. 108 
23.109 
23.110 
23.111 

I 

:= 
step 
until 
While' r­
) 
[ 
] 
begin 
own -*Wch 
label 
WiUe -

in <spec del> co 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> co 
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23. 112 comment 
23. 113 integer 
23.114 boolean 
23.115 procedure 

in <spec del> co 
in <spec del> Co' 
in <spec del> Co' 
in <spec del> Co' 

23.116 <let> in <end comment symbol> co 
23. 117 <di> in <end comment symbol> co 
23.118 <logical value> in <end comment symbol> co 
23.119 <spec del> in <end comment symbol> co 

23.120 <end comment symbol><sequence of basic symbols 
not containing semicolon or end or else> 

in <sequence of basic symbols -
not containing semicolon or end or else> .£2. 

23.121 end <sequence of basic symbols 
not containing semicolon or end or else> 
in <ext end> co 

23.122 end in <comment symbol> co 
23.123 else in <comment symbol> co 
23.124 <end comment symbol> in <comment symbol> co 

23. 125 <comment symbol> 
<sequence of basic symbols not containing semicolon> 
in <sequence of basic symbols not containing semicolon> .£2. 
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23.126 comment <sequence of basic symbols not containing semicolon>; 
in <comment> co 

23.127 ;<comment> ~ <ext semicolon> .:2. 

23.128 begin <comment> ~ <ext begin> .:2. 

23.129 )<letter sequence> : ~ <ext par delimiter> .:2. 

23.130 <let>,5letter sequenc~ in <letter sequence> .s2. 

23.131 ; in <basic symboJ> co 
23.132 <comment symboJ> 'Iii <basic symboJ> co 

23.133 <basic symboJ><sequence of basic symbols> 
~ <sequence of basic symbols> .:2. -

23.134 <sequence of basic symbolsl><ext par delimiter> 
<sequence of basic symbols2> 
is 
<Sequence of basic symbolsl> 1 

<sequence of basic symbols2> .:2. 

23.135 <sequence of basic symbols l><ext semicolon> 
<sequence of basic symbols2> 
is 
<sequence of basic symbolsl> ; 
<sequence of basic symbols2> .:2. 

23.136 <sequence of basic symbolsl><ext begin> 
<sequence of basic symbols2> 
is 
35equence of basic symbols 12:, begin 
<sequence of basic symbols2> .:2. 

23.137 <sequence of basic symbolsl><ext end> 
<sequence of basic symbols~ 
Is 
<sequence of basic symbolsl> end 
,Ssequence of basic symbols~ co 

23.138 <basic symboJ> in 
<basic symbol different from letter or digit> .:2. 

23.139 <let> in 
<basic symbol different :f'rom letter or digit> !!, ~ .:2. 

23.140 <di> in 
<basicsymbol different from letter or digit> !!, ~ .:2. 



23.141 

23. 142 
23.143 
23.144 
23.145 
23.146 
23.147 
23.148 
23.149 
23. 150 
23.151 
23.152 
23.153 

23.154 
23.155 
23.156 
23.157 

23.158 
23.159 
23.160 
23. 161 
23.162 
23.163 
23.164 
23.165 
23.166 
23.167 
23.168 
23.169 
23.170 
23.171 
23.172 
23.173 
23.174 
23.175 
23.176 
23.177 
23.178 
23.179 
23.180 
23.181 
23.182 
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<sequence of basic symbolsl> 
<basic symbol different from letter or digitl><ze><uil> 
<sequence of basic symbols2> 
is -
<seiuence of basic symbols 1> 
<basic symbol different from letter or digitl><ui1> 
~equence of basic symbols~ co 

a in <awe term symb> co 
b rn <s.ux term symb> Co' 
c rn <awe term symb> Co' 
d in <awe term symb> Co' 
? rn <awe term symb> co - <awe term symb> Co' 
~ 

in 
Iii <awe term symb> Co' 

I Iii <awe term symb> Co' 
m in <awe term symb> Co' 

"'!"09 
0 in <awe term symb> ~ 
E Iii <awe term symb> ~ 
'\, Iii <s."UX term symb> .s2. 

1 in <awe term symb> 22. 
2 Iii <awe term symb> 22. 
3 Iii <awe term symb> co 
!j." Iii <awe term symb> Co' 

first in <awe term symb> co 
~ Iii <awe term symb> co 
block Iii <awe term synib> co 
formal Iii <awe term symb> Co' 
actual Iii <awe term symb> Co' 
save Iii <awe term syinb> Co' 
~ Iii <awe term symb> Co' 
reset Iii <awe term symb> Co' 
result Iii <awe term symb> co 
bound Iii <awe term symb> co 
pa.ihi Iii <awe term symb> Co' 

n Iii <awe term symb> Co' 
bounds Iii <awe term symb> Co' 
not Iii <aux term symb> co 
neiative Iii <aux term synib> 22. 
store Iii <awe term symb> 22. - Iii 
~scril!t 

<awe term symb> 22. 
Iii <awe term symb> co 

list Iii <awe term symb> co 

~rbegin 
Iii <awe term symb> co 
Iii <aux term symb> Co' 

forend Iii <aux term symb> 22. 
siecial Iii <awe term symb> co 
equal Iii <awe term symb> Co' 
lgth Iii <awe term symb> :§: 
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23.183 enter in <awe term symb> co 
23. 184 ~ in <awe term symb> co 
23.185 'SU.bs'titute Iii <awe term symb> co 
23. 186 :f'unction Iii <awe term symb> co 
23.187 assign Iii <awe term symb> co 
23.188 becomes Iii <awe term symb> co 
23. 189 zero Iii <awe term symb> co 
23.190 sign Iii <awe term symb> co 
23.191 ~ Iii <awe term symb> co 
23.192 progr.p Iii <a.we term symb> co 
23.193 proc.boSl Iii <awe term symb> co 

23.194 sign in <awe id> co 
23.195 ~ Iii <awe id> co 
23.196 ~1 Iii <awe id> co 
23.197 ~2 Iii <awe id> 'Co 
23.198 forend Iii <awe id> co 
23.199 <id> p Iii <awe id> co 
23.200 <p> !r Iii <awe id> co 
23.201 <awe id> in <id> co 

23.202 <p> k <.ui> in <awe label> co 
23.203 <p> I <ui> Iii <awe label> co 
23.204 <p> ! <ui> Iii <awe label> co 
23.205 special ~ <p> in <awe label> co 

23.2o6 <a.we label> in <label> co 

23.207 <basic symbol> 
~ <sequence of basic and awe term symbols> ~ 

23.208 <awe term symb> 
~ <sequence of basic and awe term symbols>~ 

23.209 <sequence of basic and awe term symbols> 
<sequence of basic and aux term symbols> 
in 
<Sequence of basic and awe term symbols> ~ 

23.210 o im <sequence of basic and awe term symbols> 

23.211 0 im <ass st> in <decl ass st> 
23.212 0 Iiii <dexp> Iii <decl dexp> 
23.213 0 Iiii <proc st> Iii <decl proc st> 
23.214 0 Iiii <block> Iii <decl block> 
23.215 0 Iiii <bplist> Iii <decl bplist> 
23.216 0 Iiii <switch list> Iii <decl switch list> 

23.217 0 is f ~t 

is o co 

is 0 co 
IS 0 co 
IS 0 co 
IS 0 co 
IS 0 co 
IS 0 co 



CHAPI'ER6 

EXPIANATION OF THE DEFINITION OF ALGOL 60 

In this chapter we give an explanation of the techniques used in the 

metaprogram for the definition of ALGOL 60. Sections 1 to 6 contain 

some general comments, and sections 7, 8, ••• , 30 correspond to sections 

o, 1, ••• , 23 of the metaprogram. 

6.1. Defects of the definition 

The following subjects have not been treated: 

a. Real arithmetic. 

In ALGOL 60 no exact arithmetic has been specified <[as], 3.3.6); this 

specification belongs to the accompanying information which should be 

given by the programmer (cf. also [as], 1, footnote 1). Thus, whenever 

one wants to execute a program in which real arithmetic is used one 

has to extend the metaprogram with additional truths defining this 

arithmetic, Moreover, the declarator"real"should then be introduced 

and one should give the definition of its consequences for declara­

tions, assignment statements, etc. 

b. Procedure bodies in code and strings as actual parameters. 

c. Standard functions (except the function 'sigti'), 

Another interpretation might be preferred in the following three cases: 

a. Only the static definition of own is given (for the definition of 

this static interpretation see [.iJ>. 
b. Specifications of non value parameters are ignored. 

c. The effect of a jump out of a function designator which leads to a 

label which is local to a function designator is defined in a way 

which differs from the usually accepted one. Details are given below. 
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In general, whenever in a program something occurs which was left un­

defined, said to be undefined or forbidden in [38], the value of the 

program is"w"1), which is used as a symbol for "undefined" (for more 

details see section 6,7). However, sometimes we could not avoid choice, 

e.g. regarding the order of evaluation of the value parameters, where 

we chose the order given in the formal parameter list. Also, primaries 

in the expressions are evaluated in order from left to right. A third 

example is the case of expressions containing formal parameters, which 

may become undefined if the corresponding procedure is called. Example: 

"if f then g else h", where "f", "g", and 11h 11 are formal parameters, 

might be replaced by 11 if true then 3 else a v b". Apparently, this does 

not fulfil the requirements of [38], 4.7.5. However, the metaprogram 

delivers"3"as the value of the last ft • It 

expression • 

The following two cases are treated incorrectly: 

a. A conditional statement of the form "if <bexpl> then <unc stl>", 

where"<bexpl>"has the value"false",is equivalent to the dummy state­

ment only if the evaluation of"<bexpl>"has no side effects. 

b. Mutatis mutandis this holds for a goto statement leading to an un­

defined switch designator. 

6.2. Structure of the metaprogram 

The metaprogram of chapter 5 is used in the following way: Whenever one 

wants to evaluate an ALGOL 60 program, say "<program!>", the processor 

is asked to evaluate the following name: 

{<LIST OF METAEXPRESSIONS CONTAINED IN CHAPTER FIVE>i E.£ <program!>, 

The list of metaexpressions of chapter ~ is thus again directly added to 

V. As will be seen later, the evaluation of the simple name "<program!>" 

is subdivided into the evaluation of a list of simple names, roughly in 

such a way that each declaration or statement of the program corresponds 

to one simple name. Thus, during the evaluation of "<program!>", the 

l) For easier readability, we use Greek letters in this chapter instead 

of the underlined Roman letters of chapter 5. Hence,"w"corresponds 

to"2"; 1a"to".!:• etc. (This convention is used only for single letters, 

not for underlined symbols containing more than one letter.) 
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metaprogram of chapter 5 is extended dynamically with new truths, each 

of which is the value of such a simple name. We distinguish two possi­

bilities for the use of such a truth in a subsequent evaluation: 

a, Direct application of the new truth. 

Example: The evaluation of the assignment statement "a ·- 3" will 

result in the addition to V of the truth 

(1) a .!,! 3 

(apart from some details concerning locality, which are given below; 

see also 4.2.3,3). 

Subsequent evaluation of the variable 

application of the truth (1). 

" " a will then lead to the 

b. Indirect application of the new truth: The addition to V of a truth 

may have the effect that another truth becomes applicable to some 

simple name. Remember that the applicability of a truth containing 

a condition may depend on whether the derived condition of this truth 

envelopes another truth (cf. for example the Turing machine example, 

3.1.2 and 4.2.2.2, where the applicability of the truths T4 1 to T4 5 • • 
depends on the truths corresponding to the quadruples in v5). Many 

examples of this situation in the metaprogram for ALGOL 60 will follow. 

The three main difficulties in the definition of ALGOL 60 proved to be: 

a. The concept of locality. 

b. The goto statements. 

c. The requirement that all identifiers of a program be declared, even 

in parts of the program which are not executed. Thus, we have to 

consider e.g. "begin if false then i := 0 end" as an incorrect ALGOL 60 

program. 

The first point made it necessary to introduce the notion of block number, 

and the last two require the equivalent of a prescan. 

In the evaluation of a program we distinguish the following phases: 

o. Check on the syntactic correctness of the program. The metavariable 
1) 

"<program>" is defined in the metaprogram (Tl,33 , Tl.34, etc.) 

in such a way that it envelopes precisely the syntactically correct 

l) T, followed by a number, refers to the corresponding truth in chapter 5. 
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ALGOL 60 programs. In fact, that part of the metaprogram that defines 

the syntax of an ALGOL 60 program is essentially a transcription of 

the Backus notation in [38]. In establishing whether T2.1 is applicable 

to an ALGOL 60 program, the syntactic correctness of the program is 

thus checked automatically by the processor. The case that T2.1 is 

not applicable is considered in the section on undefined values; see 

section 6,7, 

1. The prescan phase. 

1.1. In the first phase of the prescan the different identifiers of the 

program, which are introduced either by explicit declaration, or 

by standing as a label or a formal parameter, are noted. 

1.2. The second phase of the prescan checks whether each identifier in 

the program has been declared. 

2. The execution phase. 

2.1. In the first phase of the execution, the program is scanned for the 

occurrence of labels, which are then supplied with the block number 

of the smallest embracing block. This information makes it possible 

to restore the correct block number, if a goto statement leads out 

of a block. 

2.2. Finally, the actual execution of the program takes place. 

6,3, Determination of the block number 

First we give an intuitive introduction to the definition and use of the 

block number. 

Possible block numbers are (cf. T3.2 to T3.6): 

"sy", "SySySSy", "SySSy" or "SySySSyoSySy". 

The following rules hold: 

a. The y's count block depth. 

b. The S's between a certain y and the immediately preceding Y count the 

number of parallel blocks at the depth of this Y. 

c. The o's count the depth of procedure calls. 

At the beginning of the evaluation of a program, the block number is set 

to "Sy", i.e., "Sy" is added as a truth to V (first simple name of the 

right part of T2.1). 
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Next we consider the following example (we neglect for the moment the 

fact that a program is always embedded in a fixed outermost block, 

where some auxiliary declarations, e.g. of the function 

made): 

1: begin integer i; 

i := O; 

2:L:begin integer j; 

end 2; 

i := i + 1; if i < 2 then goto L; .•• 

3:begin integer k; 

end 1 

4:begin integer l; 

end 4; 

end 3; .•. 

In the prescan phase the block numbers are successively: 

Sy (initialized), 

Sy Sy (by 1: begin), 

Sy Sy Sy (by 2:begin), 

Sy Sy (by end 2), 

SySySSy (by 3:begin), 

SySySSySy (by 4:begin), 

SySySSy (by end 4)' 

Sy Sy (by end 3)' 

Sy (by end 1). 

,, • tl 

sign , are 

In the execution phase, the block numbers are successively (here we 

suppose that block 2 is executed twice): 

Sy (end prescan), 

SySSy (by l:begin), 

SySSySy (by 2:begin), 

SySSy (by end 2), 

SySSYSSy (by 2:begin), 
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SySSy (by end 2), 

SySSy?SSy (by 3:begin), 

SySSySSSySy (by 4:begin) 

SySSySSSy (by end 4), 

SYS Sy (by end 3), 

Sy (by end 1). 

The function of the o's is the following: 

If a procedure is called du.ring the execution phase .l r a block with 

block number "<bnl >", and i~ this procedu,·e is decla: e< in a block 

with block number "<bn2>", then the block number is ·ce' to 

"<bn2> 0 <bnl> " Upon exit from ,he p: ·ocedure, " <bnl, 
,. 

is . 
again, 

Example: 

l:begin integer i. , 
procedure P· , 

2:begin integer j; end 2 p 

3:begin integer k; 

•••• p 

end 3; ••• 

end 1 

In the prescan the block numuers are successively 

Sy (initialized) , 

Sy Sy (by l:begin), 

Sy Sy Sy (by 2:begin), 

Sy Sy (by end 2), 

SySySSy (by 3:begin), 

Sy Sy (by end 3), 

SY (by end 1). 

In the execution phase the block numbers are successively. 

Sy 

SYS Sy 

(end prescan), 

(by l:begin), 

activated 



f3yBBYBY 

ByBBy<S 8yBBy8y 

ByBBy8f3y<5ByBBYBY 

ByBBy<S f3y Bf3y By 

f3y8BYBY 

By8BY 

BY 
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(by 3:begin), 

(entrance to P), 

(by 2:begin), 

(by end 2), 

(exit from P, cf, however, 6,24), 

(by end 3), 

(by end 1). 

We now give a somewhat more precise description of the determination 

of the block number. 

Each block entrance or exit, and each procedure entrance or exit in the 

execution phase, leads to addition to V of a new block number (a few 

other situations in which new block numbers are added to V will be 

treated below). At every moment, the last entry in V which has the 

syntactic form of a block number, is called the current (or active) 

block number. From the definition of applicability, it follows that 

it is always possible, by appropriate use of a condition in a truth, 

to find this last entry. 

Suppose that, at a given moment, the current block number is 

"<bcs1>2.dbcsl.::_", and that a new block is entered. There are two 

possibilities: Either a truth of the form 11 <bcsl><bcl><dbcs>" occurs 

somewhere in V, meaning that the new block is parallel to an earlier 

one (possibly itself during the execution phase), in which case 
11 <bcsl> B <bc1>2.dbcsl~' is added to V (T.6.4), or else no such truth is 

found, in which case 11 <bcsl> By 2_dbcsl~' is added to V (T6.3). 

If the current block number is" <bcsl><bc>2_dbcs1.::_'', then "<bcsl>2_dbcsl~' 

is added to V upon exit from the block (T6.2, T6.6). The value of the 

last "end "of the program, i.e., of the "end11 of the fixed outermost block, 

is defined in T6.5 and explained below. 

The rules governing block entrance and exit hold both for the prescan 

and execution phase of blocks and procedure bodies. 

If a procedure is declared in a block with block number 11 <bnl> 11 and 

called from a block with block number 11 <bn2>", then 11 <bnl> <5 <bn2>" is 

added to V (Tl7.77). After this the entrance to the procedure body 

(which is always made into a block) is performed according to the rules 

for block entrance given above. 
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Upon exit from a procedure, the current block number is looked up. 

This has the form"<bcs> 6 <bnl> 11 ,and 11 <bnl> 11is added to V (T17.78). 

By means of the last two rules, which of course only hold in the 

execution phase, the correct block number is available during execution 

of a procedure and after exit from this procedure. 

In this way, at every moment the last truth in V which has the syntactic 

form of a block number defines the current block number. This is used 

whenever an identifier is processed; identifiers are always first ex­

tended with the current block number, so that e.g. uniqueness of iden­

tifiers is guaranteed in recursive situations. 

Finally, we introduce the following terminology: The "significant part" 

of a block number is that part of the block number that precedes the 

left most"15 11 .If no"IS"is present, its significant part is itself. Usually, 

we are interested only in the significant part of the block number. 

Therefore, we often write "block number" where we should write "signifi­

cant part of block number", 

6.4. The prescan 

As explained above, we have introduced two phases in the evaluation of 

an ALGOL 60 program, the prescan phase and the execution phase, each 

of which is subdivided again into two phases. Each block of the program 

passes once through the prescan phase, whereas the number of times it 

is executed is clearly determined dynamically. This structure of a.n 

evaluation of the program in several phases is not available directly 

in the metalanguage. However, the basic idea was already demonstrated 

in the example of 4.2.l,4, If a certain sequence of symbols is evaluated 

by means of a metaprogram, it is possible to introduce as a "side effect" 

of the evaluation of that sequence the addition to V of new truths in 

such a way that when precisely the same sequence is evaluated again, its 

value is different from the result of the first evaluation. This idea 

is used extensively in the prescan rules (T4,1 to T5.15), in view of 

the two problems mentioned above: the processing of goto statements 

and the check whether all identifiers of a program are declared. 
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The structure of the prescan is based on the concept of "program point" 

(defined syntactically as the metavariable"<P> 11in T3.7). Essentially, 

the evaluation of the ALGOL 60 program is replaced by the evaluation of 

a sequence of program points in such a way that: 

a. Each declaration or statement corresponds to precisely one program 

point. The uniqueness of the program point is achieved by defining 

it in such a way that its first part ( 11 <bcs> 11 ) is equal to the block 

number of the block which is scanned, while its second part ("<as>") 

is different for each declaration or statement in this block (the 

declarations and statements are numbered successively in the order 

in which they occur in the program; see also 4.2.3.4). 

b. The evaluation of a certain program point is defined differently for 

the several phases. 

Next we give a more detailed explanation of T4.1, the main prescan rule 

for declarations. 

First of all, we remark that the definition of "<block tail>" is given 

in Tl.27. Note moreover that an example of a specific case of the left 

part of T4.1 is provided by each specific case of the right part of T2.l. 

The right part of T4.1 consists of three simple names: 

1, "<declarationl><Pl> 1 11
• 

This means that 11 <declarationl> 11
, which occurs at program point 11 <pl>", 

has to be evaluated according to the rules which are given for the 

evaluation of a declaration in phase 1. E.g., if 11 <declarationl> 11 is 

a type declaration, T7.7 or T7.8 will prove to be applicable. The 

details of these rules will be explained below. However, we may already 

mention one essential point: The effect of the evaluation of a decla­

ration in prescan phase 1 is that the identifier which is declared 

is added to V, supplied with the current block number and its type, 

so that it is known in phase 2 of the prescan that this identifier 

has been declared. 

2. The evaluation of the second simple name of the right part of T4.1 

results in the addition to V of: 
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<pl> is {<declarationl><pl> ~ ~ 

f<pl > is { 

f T <pl> is {<declarationl><pl> ! ~ 
T <pl> aH ~ 

<pl> aH ~ 
<pl> a} 

Suppose now that phase 2 of the prescan is reached (how the transition 
to phase 2 is achieved is explained later). In this phase, as in 
phases 3 and 4 (i.e. the two phases of the execution), the sequencing 
of the evaluation of the different declarations and statements of 
the program is replaced by the evaluation of the successive corre­
sponding program points,which is made possible by the addition of 
new truths, such as (1). 

Suppose moreover, that"<pl>"is evaluated. Application of (1) then 
leads to the evaluation of: 

2.1. "<declaration1><p1> ~".This means again that "<declaration!>", 
occurring at program point 11 <pl>11

, has to be evaluated, but now 
according to the rules for the evaluation of a declaration in 
phase 2 (see e.g. T7.9, T9.14 or Tll.8). Since, as a result of 
phase 1, it is known which identifiers have been declared, it is 
now possible to check whether "<declaration!>" contains only 
declared identifiers. 

2.2. The evaluation of the second simple name in (1) results in the 
addition to V of: 

(2) 

<pl> ~ { 

{ T <Pl> ~ {<declarationl><pl> 4 co 

T <Pl> aH ~ 
<Pl> a} 

If phase 3 is reached, and supposing 11 <pl> 11 is evaluated again, 
application of (2) will result in: 

2.2.1. Addition to V of 

(3) T <pl> ~ {<declarationl><pl> 4 co T <pl> a} 
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(Note that the evaluation of 11 <declarationl><pl> ~" is missing. 

This is indeed unnecessary, since phase 3 is only introduced 

for the processing of labels.) 

If phase 4 is reached, and supposing 11 T <pl>" is evaluated (the 

reason for the extension of "<pl>" with the extra symbol'\"will 

be given below), application of (3) will result in: 

2.2.1,1, Evaluation of 11 <declarationl><pl> 4". 
11 <declarationl>11

, occurring at program point 11 <pl> 11
, will now 

be evaluated according to the rules of phase 4 (e.g. T7.10, 

T9,15, etc.). 

2.2.1,2. The evaluation will be continued by the evaluation of the next 

program point, i.e. of 11 T <pl> a". Here we note the basic 

sequencing idea: The evaluation of a program point is always 

defined in such a way that its successor is evaluated as the 

next step; "T <pl > a" is the program point corresponding to 

the declaration or statement which follows 11 <declarationl>11 

in the program. 

2.2.2. Evaluation of 11 <pl> a" remember that this results from appli­

cation of truth (2). 

2.3, Evaluation of 11 <Pl> a"; this results from application of truth (1). 
3. Evaluation of "<pl > a : <block tai 11 >"; this results from evaluating 

the final simple name of T4 .1. If "<block taill >" begins with a 

declaration, then T4.l will be applied again. This will result in 

the same structure of additions to V, this time however with 

"<pl > a" instead of "<pl>". 

From the example T4.1 the outline of the structure of the sequencing 

of the evaluations should have become clear: 

a. By addition of new truths, program points are evaluated by applica­

tion of different truths in different phases. 

b. Sequencing is achieved by organizing the added truths in such a way 

that evaluation of a program point leads automatically to the evalua­

tion of the next program point. 

Of course, there remains the explanation of the way in which the transi­

tion between the different phases is accomplished. 
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As a second example we consider T5.7. This truth has almost the same 

structure as T4.1. However, we note four differences: 

1. The metavariable "<block end>" is used instead of "<block tail>". 

The definition of"<block end>"is given in Tl.32 (cf, also Tl.28 to 

Tl .31). It is essentially the same as the "<compound tail>" of [38], 

4.1. Some complications were caused by the for statement (see sec­

tion 6.23). 

2. "<unlabelled basic stl><pl> !." is not included. In fact, in T4.1 the 

evaluation of "<declarationl><pl> !." in phase 1 leads to the addition 

to V of information about the declaration of the corresponding iden­

tifier(s). There is apparently no point in doing this here. 

3. The successor of 11 T <tpl>" is missing: 

The innermost metastring has the form: 

"t T JU <pl > is <Unlabelled basic stl >1 and not: 

"f T { a}Ju. <pl > is <unlabelled basic stl > ~ T <pl > 1 

4. An extra auxiliary label "<pl > K 0 labels "<block endl >". See also 

section 6.6; the label "<pl> K11 should not be confused with the 

program point "<pl > a". 

In order to explain the reasons for the differences mentioned in points 

3 and 4, we consider the statement sequencing in somewhat more detail: 

We distinguish the following cases: 

1. Three kinds of unlabelled basic statements, i.e., assignment state­

ments, goto statements and procedure statements. 

2. Blocks. 

3. Conditional statements and compound statements. 

4. For statements. 

5. Dummy statements (note that by Tl.l to Tl.3, a dummy statement is not 

an unlabelled basic statement). 

6. Labelled statements. 

Remarks: 

1. In cases 2 to 5 above, we consider only the unlabelled statements. 

2. The dummy statement is treated by: 

a. Appropriate use of optional metavariables. 

b. T5,l. 
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We shall not explain this in more detail. 

3. The (complicated) treatment of the for statement is described in 

Tl6.1 to T16.32 and explained separately. 

4. By applying T5.2 to T5.6, compound statements and conditional state­

ments are replaced by sequences of goto statements and (possibly 

labelled) unconditional statements or for statements. 

We now return to T5.7. 

If "<unlabelled basic stl>" is an assignment statement, say "<ass stl>", 

the effect of applying T14.18 to "<ass stl><pl> 4" will be: 

a. "<ass stl>" is evaluated. 

b. 0 T <pl> a" is evaluated. 

Thus, we use here the same technique as with declarations: the successor 

of the assignment statement concerned is executed as a result of the 

evaluation of the corresponding program point. 

It is possible that a jump out of a function designator, which occurs 

in the assignment statement, is executed as a result of step a. If no 

special measures were taken (described below), subsequent evaluation 

of "T <pl> a" would then completely upset the correct order of statement 

execution. (A similar difficulty may arise e.g. in the evaluation of a 

bound pair list in an array declaration.) 

Next, we suppose that "<unlabelled basic stl>" is a goto statement, e.g. 

"goto <labell>". Essentially, the result of the evaluation of "goto <labell>" 

is that the program point, corresponding to the statement which is labelled 

by "<labell>", is evaluated. In fact, one of the two main reasons for the 

introduction of the program points was the desire to make this solution 

of the processing of goto statements possible (cf. also 4.2.3.4, example 

13). Details about the case in which the goto statement is not simply of 

the form "goto <labell >", and about the treatment of the (unfortunate) 

concept of the undefined dummy switch designator (~s], 4.3.5) are given 

below. 

Finally, suppose that "<unlabelled basic stl >" is a procedure statement. 

Here we use the idea of A. van Wijngaarden, described in [49], which is 

equivalent to the following scheme (which is' applied only to non type 

procedures): 
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a. The procedure declaration is supplied with an extra formal parameter. 

b. A goto statement leading to this extra formal parameter is intro­

duced at the end of the procedure body. 

c. As corresponding actual parameter a label which labels the statement 

. following the procedure statement is supplied. This is the reason 

for the introduction of the label "<pl> K11 in TS.7. (In the case that 

"<unlabelled basic stl>11 is not a procedure statement, "<pl> K 11 has 

no function.) 

Since this process is not applied to type procedures a difficulty arises 

when a function designator is used as a statement. A solution for this 

case is described later. 

Next we make some remarks on TS.8. Here we find the same structure as in 

T4.1 and TS.7. However, it appears that only in phases 1 and 3 need any­

thing be evaluated: Phase 1 is used again to establish that "<labell> 11 

is a 11 declared11 identifier (or integer; the somewhat unusual notion 

of a declared integer is apparently introduced in the following sentence 

of [38], 4.1.3: a label separated by a colon from a statement, ••• , 

behaves as though declared in the head of the smallest embracing block ••• ). 

This information is then used in phase 2 in the check whether labels oc­

curring indesignational expressions have been declared. In phase 3 

"label <1abell><p1> .:!" is evaluated, as defined in T12.3 and T12.4. The 

effect is that a truth is added to V establishing a correspondence 

between "<label1>", "<p1>" and the current block number (for the meaning 

of 11 <fgs1>11 see sections 6.22 and 6.23). As explained above, the corre­

spondence between" <la bell>" and 11 <pl >" is used in the evaluation of a 

goto statement, leading to "<la bell >11
• 

There remains the treatment of blocks in the .prescan (TS.9 to TS.15, 

cf. also T2.1): 

1. Phase 1 of the prescan of the program is initiated by the evaluation 

of the third simple name in the right part of T2.1. 

2. Before the "end" of each block (except for the program itself and 

procedure bodies, but .including blocks within procedure bodies), an 

extra goto statement is included, leading to an extra label, which 

labels the statement immediately following the block concerned. 
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This is achieved by application of T5.9, Infinite addition of extra 

goto statements is avoided by the introduction of the auxiliary 

metavariable "<special block>": Once the extra goto statement is 

added to the block, it becomes a special block, and T5.ll becomes 

applicable. 

3. Application of T5.11 to a special block has the following effect: 

3.1. No special actions are performed in phases 1 and 3. 

3.2. In phase 2 the simple names "<special blockl> in <decl block>" and 

"first progr.p of block <pl>" are evaluated. After this, the 

standard addition to V of a new truth for "<pl>" is performed, 

and the succeeding "<pl> o." is evaluated. 

The evaluation of "<special blockl> in <decl block>" leads to the 

prescan of"<special blockl>"(T5.13, "<special blockl>" is a specific 

case of "begin <block tail>"), i.e., the prescan mechanism is 

activated recursively for this block by T5.13; see also below. 

The prescan of procedure bodies is performed by evaluating the 

appropriate simple names in the right parts of Tl3.14 to T13.17, 

as explained later. 

By applying T5.12, the evaluation of "first progr.p of block <pl>" 

leads to addition to V of a truth which defines the first program 

point of the block corresponding to 11 <Pl>"· 

One should note the difference in T5.12 between "<bcsl><asl>", 

which is the program point corresponding to the special block we 

consider, and "<bcsl ><bcl > o.", which is the program point corre­

sponding to the first declaration in the block concerned. This 

declaration occurs one block level deeper, and therefore an extra"Y" 

(and one or more 11 t3 11 's) are needed; hence, the transition between 

"<bcsl > <asl >" and "<bcsl > <bcl > o." • 

Note moreover that 11 <bcsl><bcl> 11 was left in V as a result of the 

block entrance in the evaluation of "<special blockl> in <decl block>", 

as will become clear later. However, at the moment of application 

of T5.12, "<bcsl><bcl>" is not the current block number, since this 

has been reset to "<bcsl >" upon exit from "<special blockl >". 
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3.3. In phase 4 the evaluation takes place of "first progr,p. of 

block <pl>". The necessary preparations for this evaluation were 

made in phase 2, since: 

a. As a result of the evaluation of "<special blockl> in <decl 

block>" (i.e. of the prescan of this block), truths have been 

added to V which define the values of the successive program 

points corresponding to the declarations and statements of 

this block, 

b. As a result of the evaluation of "first progr.p. of block <pl>" 

(in phase 2, described above), the first program point of the 

block concerned can be found in V. 

This means that phase 3 of the evaluation of the block, corre­

sponding to" <pl >", is started by the evaluation of "first progr.p. 

of ~ <pl >", in phase 4 of the evaluation of the smallest em­

bracing block of the block concerned. 

Note that no successor "1 <pl> a" is evaluated in phase 4. This is 

not necessary, since the extra goto statement which was added in 

T5,9, ensures the execution of the successor of the block concerned. 

Finally, we describe the evaluation of "<special blockl> in <decl block>", 

i.e., the way in which the prescan mechanism for a block is called recur­

sively. 

First of all, T5.13 will be applied; hence, the two simple names in its 

right part are evaluated. The first one, i.e. "begin", leads to the 

addition to V of the block number for this new block (as described in 

6.3). The second simple' name is evaluated by applying T5.14. The right 

part of T5.14 consists of two simple names. 

Evaluation of the first simple name leads to addition to V of: 

<bcsl> a is { 

f<bcsl> a is {begin co 

f T <bcsl> a is T <bcsl> a.a.f co 

<bcsl> a.a.}f co 

<bcsl> a.a 
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This is a truth of the same structure as those resulting from T4.1, 

T5,7, etc. We see that no special actions are taken in phases 1, 2 or 

4, but only in phase 3, where "begin" is evaluated again: This time 

the dynamic block introduction during execution time is performed, 

The second simple name of the right part of T5,14, i.e., "<bcsl> aa 
<block taill>", has precisely the form to which one of T4.1, T5,7, etc. 

is applicable. Hence, evaluation of this simple name starts the prescan 

of the block concerned. 

Repeated application of the prescan rules T4.1, T5.7, etc. to a given 

block, will eventually lead to exhaustion of the sequence of declarations 

and statements in this block, after which a program point, corresponding 

to its "end", is introduced. Then T5.15, which is important for the 

transition between the several phases, will be applicable. 

We describe its right part in detail: 

1. Evaluation of its first simple name leads to addition to V of: 

<bcsl><asl> is {end ~ 

f<bcsl><asl> is { 

f T <bcsl > <asl > is end i ~ 
T <bcsl> aH} 

1.1. Evaluation of "<bcsl><asl>" in phase 2 has the following effect: 

1.1.1. "end" is evaluated. This leads to the block exit; phase 2 of 

the prescan of the block concerned is now finished. 

1.1.2. To V is added: 

(1) <bcsl><asl> .!!_ {t T <bcsl><asl> .!!_ endi ~ T <bcsl> a} 

Note that there is no successor of "<bcsl ><asl >" in phase 2. 

Evaluation of "<bcsl ><asl >" in phase 3 leads to application of (1), 

with the following effect: 

1.1.2.1. To V is added 

(2) T <bcsl > <asl > .!!_ end 

1.1.2.2. "T <bcsl> a" is evaluated. 

The evaluation of "T <bcsl> a" starts phase 4 of the block 

concerned; here we find the transition from phase 3 to phase 4. 
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The reason for the extra symbol 11T 11 can now be given: If this 

symbol had not been introduced, it would have been impossible 

to distinguish between phase 3 and phase 4, if the block 

concerned is executed more than once. 

Evaluation of 11 T <bcsl><asl>" in phase 4 leads to application 

of (2), hence "end" is evaluated, which means that the (dynamic) 

block exit is performed. 

Again, there is no successor given of 11 T <bcsl><asl>" in phase 4. 

If the block concerned is not the body of a type procedure, its 

successor is found by the extra goto statement, added in T5.9 

(thus, in this case "T <bcsl ><asl >" will in fact never be 

evaluated), .whereas in the case that the block is the body of 

a type procedure, there is of course no succeeding statement. 

2. Evaluation of the second simple name of the right part of T5.15, i.e., 

of "<bcsl> a", starts phase 2 of the prescan; here we note the tran­

sition from phase 1 to phase 2. 

We now summarize the rules about initiation of and transition between the 

different phases: 

l, Phase 1 of the prescan of the program is initiated by the evaluation 

of the third simple name of the right part of T2.1. 

2. Phase 1 of the prescan of all other blocks is initiated by evaluating 

"<special blockl > in <decl block>" (T5 .11; the similar case of 

procedure bodies is treated by T13.14 to Tl3.17). 

3. Transition from phase 1 to phase 2 is performed by application of 

T5.15. 

4. Phase 3 of the program is initiated by the evaluation of the first 

program point of the program, i.e., of "Sya" (fourth simple name of 

the right part of T2.1). 

5. Phase 3 of the execution of inner "normal" blocks (i.e. blocks other 

than procedure bodies) is initiated by the evaluation of "first 

progr.p. of block <pl>", in phase 4 of the evaluation of the smallest 

embracing block (T5.ll). 

6, Phase 3 of the execution of procedure bodies is initiated by a mecha­

nism explained later. 
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7, The transition from phase 3 to phase 4 is performed by application 

of T5,15. 

6,5, The requirement that all identifiers of a program be declared 

In phase 2, application of T4.1 and T5.7 leads to evaluation of 
11 <declaration><pl> ~" and "<unlabelled basic stl><pl> ~" (evaluation, 

in phase 2, of "<special block!> in <decl block>" results in the same 

simple names). 

Depending upon the different kinds of declarations and unlabelled basic 

statements, the following possibilities arise: 

a. <type declaration! ><pl > ~ 

b. <array declaration! ><pl > ~ 

c. <SWi tch declara tionl > <Pl > ~ 

d. <Procedure declarationl><Pl> 2 

e. <ass stl ><pl > ~ 

f. go to < dexpl> < pl> 2 

g. <proc stl ><pl > ~ 

Clearly, it is not necessary to check whether identifiers occurring in 

type declarations have been declared. Hence, the definition of T7,9, 

which simply leads to the addition of"tr"to V. 

(This is a device which is used often in the metaprogram; addition of 

'tr'to V has no influence on the rest of the evaluation of the program. 

The reason for inclusion of T7.9 is the desire to obtain a uniform 

treatment of declarations in T4.l; various reasons for addition of"tr" 

to V in several other cases will appear in the sequel.) 

By T9 ,14, "<array declaration!> <pl > ~" also has the value" tr". The check 

whether the identifiers occurring in the bound pair lists have been 

declared is already performed in phase 1, since these identifiers have 

to be declared in embracing blocks and not in the block itself in which 

the array declaration occurs. Details of this check are given later. 

By Tll.8, evaluation of a switch declaration in phase 2 leads to evalu­

ation of "<switch listl> in <decl switch list>", where "<switch list!>" 

is the switch list occurring in the switch declaration concerned. 
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The more complicated treatment of procedure declarations in phase 2 

is explained below. 

By T14.17, T15.l and T17.62, evaluation of "<ass stl><pl> ~", "goto 

<dexpl><pl> ~", and "<proc stl><pl> ~" leads to evaluation of 

"<ass stl> in <decl ass st>", "<dexpl> in <decl dexp>", and "<proc stl> 

in <decl proc st>" respectively. 

Next we explain the way in which the simple names "<switch list> in 

<decl switch list>", ... ' "<proc st> in<decl proc st>" are evaluated. 

The main features of the evaluation of these simple names are: 

a. Inclusion in the metaprogram, in addition to the truths which are 

equivalent to the BNF rules of [3s], of related truths, such as: 

"<decl factor> in <decl term>" besides "<factor> in <term>", 

"<decl aexp> in <decl sub exp>" besides "<aexp> in <sub exp>" , 

11 <decl int var> in <decl primary>" besides "<int var> in <primary>", 

11 <decl saexp><rel op><decl saexp> in <decl bprimary>" besides 

"<saexp><rel op><saexp> in <bprimary>", 

etc. 

b, Use of a search in embracing blocks, by means of the block number. 

c. Use of information which is added to V in phase 1. 

As a result of these three points, the process of checking whether all 

identifiers of a program are declared is performed automatically by the 

processor, as follows from the definition of envelope and applicability. 

We give an example: 

In order to evaluate "a := b + c in <decl ass st>", T14.15 is eventually 

tried for applicability (the preceding truths, in particular T14.16 will 

prove to be inapplicable). Tl4.15 is applicable, if "a in <decl int left 

part list>" and "b + c in <decl aexp>" have the value "tr". 

Application of T14.ll, T14.3 and T18.33, to "a in <decl int left part 

list>" leads to evaluation of "a in <decl int var id>". 

Application of T19.28, T19,26, T19.24, T19.19, T19.15, T19.10 and T18.33 

to "b + c in <decl aexp>" leads to evaluation of "b in <decl int var id>" 

and "c in <decl int var id>". Application of Tl8.11 to "a in<decl int 

var id>" leads to evaluation of "a <bcsl > in<decl int var id>", where 

"<bcsl >" is the current block number. 
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If "a" has been declared in this same block, application of T18.27 

results in the value"tr"for "a in <decl int var id>". (As will be seen 

later, if "a" is an integer variable, declared in the block with block 

number 11 <bcsl>", there will have been left in Va truth of the form 

"integer a <bcsl>", as a result of phase 1. Since the condition of 

Tl8,27 envelopes this truth, TlS.27 is applicable to "a <bcsl> in <decl 

int var id>",) 

If "a" is not declared in the block with block number "<bcsl>", it might 

be a formal parameter, in which case TlS.23 applies (the way in which 

"formal a <bcsl>" might have been added to Vis again described later). 

If "a" is not a formal parameter either, then by TlS.19 the evaluation 

of "a <bcs2><bcl> in <decl int var id>" (with 11 <bcs2><bc1> 11=11 <bcsl> 11 ),is 

replaced by the evaluation of "a <bcs2> in <decl int var id>", i.e., 

the smallest embracing block is now considered, and Tl8,27 and TlS.23 

are tried again (note that the current block number is not changed if 

an embracing block is tried). 

In case of no success, by repeated application of TlS.19, all embracing 

blocks are searched, until there is no longer an embracing block. Then 

TlS.15 applies, and the value of "a in <decl int var id>" is some symbol, 

viz,"w",different from"tr",which means ultimately that T14.15 is not 

applicable to "a == b + c in <decl ass st>". 

If, on the other hand, "a" and also "b" and "c", have been declared 

correctly, the final result is that "a == b + c in <decl ass st>" has the 

value"tr",which is then the result of the evaluation of "a == b + c <pl> !" 
in phase 2. Again, addition of"tr"to V does not influence the rest of the 

evaluation. 

The case that one of the identifiers in "a := b + c" turns out not to be 

an integer variable nor a formal parameter, will be treated below (6.7). 

In a sense, the evaluation of the program is then stopped. 

From the given example, it follows that phase 2 is in fact not only used 

for the test whether all identifiers have been declared, but also to check 

that the identifiers have the correct types. With formal parameters, this 

check is of course in general impossible. Therefore, the type of a formal 

parameter is always considered to be correct. 

All evaluations in phase 2 proceed essentially as in the above given example. 
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6.6. Auxiliary identifiers and labels 

In several places we have introduced auxiliary identifiers and labels, 

such as: the identifiers "dummy 1", "dummy 2" and"~" in T2.1, the 

labels "<p> A. 1" to "<p> A. 4" in T5.3 to T5.6, the label "<p> K11 in 

T5.7, etc. (a complete list is given in T23.194 to T23.200 and T23.202 

to T23.205), By T23.201 and T23.206, these auxiliary identifiers and 

labels are indeed identifiers and labels; hence, the metaprogram will 

treat simple names which contain these auxiliary identifiers and labels 

in the same way as simple names containing "normal" (i.e. defined as 

in [3s]> identifiers and labels. However, there is one exception to 

this rule: If an auxiliary identifier or label occurs in the original 

program, then by T2.2 or T2.3, its value is defined to be 

6.7. "Undefined values" (T0.1 to T0.7) 

If " w (6. 7) • 

Whenever in the course of the evaluation of a program something occurs 

which was left undefined, said to be undefined or forbidden in [38], 

we have tried to arrange that the value of the program is then "w". 

It is, however, in general impossible to deliver the single symbol "w" 

as the value of the whole program (with two exceptions, see below), 

since, as a result of the prescan, the evaluation of the program is 

divided into the evaluation of a list of simple names. Thus, the value 

of the program is necessarily the list of the values of these simple 

names. The best we could do was to try to organize the evaluation of 

the program in such a way that essentially, whenever the value of a 

certain simple name happens to be"~', that then the values of the 

remaining simple names are also "w", so that the value of the program 

terminates with a list of "w"'s. 

We now give more details about our treatment of the "undefined values", 

First we treat the case that the "program" which is ·evaluated contains 

an auxiliary identifier or label. Then, by T2.2 or T2.3, its value is 

defined to be "w" (provided it consists only of basic symbols or 

auxiliary terminal symbols (see below)) • 

If the program does not contain an auxiliary identifier or label, but 

it is syntactically incorrect for some other reason, then T0.1 will be 
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applied, again with the result "w" 

(Note that the introduction of an auxiliary identifier or label results 

in a program which is syntactically incorrect in the sense of [as], 
but which is still a specific case of "<program>" as defined in the 

metaprogram. Hence, the need for truths T2.2 and T2.3.) 

The syntactic definition of a sequence of basic and aux(iliary) 

term(inal) symbols is given in T23,207 to T23.209, The auxiliary terminal 

symbols are listed in T23,l42 to T23.l93, Examples of their use have 

already been given in the definition of a block number, a program point, 

the symbols "!.", "2" -· "~", "!",which indicate evaluations in the differ-

ent phases, the simple name "first progr.p. of block <p>", etc. 

As explained above, the evaluation of. a syntactically correct ALGOL 60 

program is divided into the evaluation of a list of simple names. Each 

of these simple names (except for the metastrings) is either a sequence 

of basic and auxiliary terminal symbols, or of one of the forms 

"<ass stl> ~<dee! ass st>", ••• ,"<switch listl> in <dee! switch list>", 

(Remember that simple names of the second kind where introduced in phase 

2.) 

The metaprogram is organized in such a way that whenever one of these 

simple names contains something which was left undefined, said to be un­

defined or forbidden in [as] (e.g. an undeclared identifier, an identifier 

which is declared more than once in the same block, an array element with 

subscripts outside the array bounds, number of actual parameters in a 

procedure call different from the number of formal parameters, etc.), then 

the value of that simple name is either directly defined to be "w" (see 

e.g. T7,S), or none of the truths except one of TO.l to T0.7 will be 

applicable. 

Suppose now that the evaluation of a certain simple name has resulted in 

the addition of "w" to V; from then on, all remaining simple names (for 

an exception see below) will also have the value "w", since one of T23.210 

to T23.216 will now be applicable: The addition of "oi' to V has the ef­

fect that the condition in T23.210 to T23.216 has the value"tr".Thus, once 

a certain simple name has the value "w", all other simple names will have 

the value " " Ill. 
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There is, however, an exception to this rule: As follows from the 

definition of the metalanguage, metastrings are not evaluated by 

applying the metaprogram; hence, the occurrence of"w"in V will not 

prevent the addition of the values of these metastrings to V. 

6.8. Syntax of a program (Tl.1 to Tl.34) 

The truths in this section are essentially equivalent to the BNF rules 

for an ALGOL 60 program, cf. [ss], 4.1.1, etc. Some minor modifications 

were needed for the treatment of the dummy statement. 

Also, the metavariables "<block end>" and "<block tail>" were introduced 

for subsequent use, e.g. in the prescan rules. The reason for the unusual 

definition of "<block end>" will become clear when we treat the for 

statement. 

6.9. Value of a program (T2.l to T2.3) 

The main aspects of T2.1 have already been treated in the description 

of the prescan. 

The first simple name of its right part initializes the block number. 

The second simple name initializes a for counter, which is used in the 

definition of the for statement and is explained later. 

The third simple name initiates the prescan. Note that the given program 

is embedded into an outermost block which contains auxiliary declarations. 

The reason for the type declarations"integer dummy l"and"boolean dummy 2" 

will become clear below. The integer procedure 

view of the definition of the for statement. 

H • It sign is introduced in 

Evaluation of the fourth simple name starts the execution of the program. 

T2.2 and T2.3 were treated above. 

6.10. Syntax of block number and program point (T3,l to T3.7) 

This requires no special comment. 

6.11. Prescan declarations (T4.1 to T4.3) 

T4.1 has been explained already. 
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By means of T4.2, a type declaration, containing more than one identi­

fier, is replaced by a sequence of type declarations, each containing 

only one identifier. 

T4.3 has a similar function for array declarations. 

6.12. Prescan statements (T5.1 to T5.15) 

The meaning of T5.1 and T5.2 is clear. 

T5.3 to T5.6 are used to transform a conditional statement into a 

sequence of unconditional statements or for statements. 

T5.7 to T5.15 have been treated already in the description of the 

prescan mechanism. 

6.13. Value of begin and end (T6.1 to T6.6) 

Except for T6.5, these truths were treated above. 

T6.5 needs some more explanation. We have already mentioned that jumps 

out of function designators occurring in expressions can upset the 

correct order of evaluation of a program: For example, let "<pl>" corre­

spond to an assignment statement;thenfrom Tl4.18 it follows that after 

the completion of the evaluation of this assignment statement, 11 T <pl> a" 

has to be evaluated. However; if a jump out of this assignment statement 

occurs, we have to find a way to avoid subsequent evaluation of 11 T <pl> a". 

This is accomplished by the following device: 

a. Each block ends with a goto statement, leading to the successor of this 

block; hence, a jump out of a function designator leads to the evalua­

tion of the whole rest of the program (for an exception see below), 

and only after completion of the whole program will the evaluation of 

T14 .18 be continued by evaluating "T <Pl > a". 

b. However, application of T6.5 will result in addition to V, in phase 4, 

of the truth 

"<Sequence of basic and aux term symbols>". 

Thus, after "completion" of the program, every simple name which is 

evaluated afterwards, such as "T <Pl > a", has the value "tr". This means 

that we have in a way cancelled the superfluous evaluations after the 

actual completion of the program. 
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The above described scheme does not work for a jump out of a function 
designator to a label which is local to a function designator, cf. 6.1. 

6.14. Type declarations (T7.1 to.T7.13) 

The meaning of T7.1 to T7.6 is obvious. 

T7.7 leads to addition to V of the identifier concerned, supplied with 
its type and the current block number. However, if the same identifier 

has been declared already in this block, then T7.8 will be applicable 
and " ft (I) is added to V. In fact, if ''<idl>" has been declared already 

in this block, then a truth will have been added to V which is enveloped 
by "<specifier><idl><bcsl>", whence the applicability of T7,8, For the 
definition of "<specifier>" see T13.4 to T13.7, 

By T7,10 and T7.11, evaluation of a declaration of a non own simple 

variable in phase 4 leads again to addition to V of the identifier 

concerned, supplied with its type and the current block number (the block 
number in phase 4 is of course different from that in phase 2). 
T7.12 and T7.13 treat the somewhat more complicated case of own type 
declarations, e.g. "£!!! <type! ><idl ><pl> 4". Two cases are distinguished: 
1. If the block in which the declaration of the own simple variable 

occurs is executed for the first time, T7.12 will apply; hence, two 

truths are added to v: 

(1) <typel><idl><bcsl> 

This is just the same as with a non own simple variable. 

(2) t <pl > ~ {own <type! ><idl ><pl > 4 <bcsl > co t <pl > a} 

(2) has the following effect: 

2. If the block in which the declaration of the 9wn simple variable occurs 

is executed again, then the program point corresponding to this declara­

tion will be evaluated by applying truth (2): 

2.1. Evaluation of the first simple name of the right part of (2) is per­
formed by applying T7,13. Again, two simple names are evaluated: 

2.1.l, The first simple name of the right part of T7.13 is of the same 

form as an own declaration which is executed for the first time· 

(see 1. above) • 
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2,l,2, The second simple name leads to addition to V of 

(3) <idl><bcsl> is <idl><bcs2> 

Here 11 <bcsl>11 is the block number of the current activation of 

the block concerned, "<bcs2>" is the block number of its previous 
activation. The effect of (3) is that if "<idl>" is evaluated 
at the moment that 11 <bcsl>11 is the current block number, and if 

there has been no assignment to 11 <idl>" during this activation 

of the block, then evaluation of "<idl><bcsl>" is replaced by 

evaluation of 11 <idl><bcs2> 11
; i.e., the processor now searches for a 

value of11 <idl>11 which was possibly assigned to it in the previous 

activation of the block concerned, which had as its block number 
11 <bcs2>11

, (In order to understand this mechanism completely, one 

also has to know how the evaluation of a simple variable and of 
an assignment statement is defined.) 

2.2. Evaluation of the second simple name of the right part of (2) will, 

as usual, lead to evaluation of the declaration or statement which 
follows the own type declaration. 

6,15, The value of a simple variable (TS.1 to TS.6) 

If a simple variable, say 11 <idl> 11
, is evaluated, and if the current block 

number is 11 <bcsl>", then application of TS.1 results in evaluation of 
11 <idl><bcsl> 11 • 

If 11 <idl> 11 has been declared in the block with block number "<bcsl>", and 

if T8,4 proves to be applicable, then no assignment to 11 <idl> 11 has taken 

place in this block, for otherwise first a dynamically added truth of the 
form 11 <idl><bcsl> is <intl>" or "<idl><bcsl> is <logical value!>" would 

have been met as the result of such an assignment (see also the definition 
of assignment statements). Thus, applicability of TS.4 indicates that the 
simple variable concerned did not get a value in this block, whence its 

value is defined to be " 11 w . 

Another possibility is that "<idl><bcsl>" is a formal parameter, called 

by name, which has an expression 11 <expl>11 as its corresponding actual 
parameter. Then T8~3 will be applicable. The condition of TS.3 is then 
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an envelope of a truth which was left in Vas the result of the treatment 

of procedure statements (explained below). The block number of the 

smallest embracing block of the procedure statement occurs as "<bnl>" 

in this condition. This is not the same as the block number at the 

moment that "<idl><bcsl>" is evaluated, since the procedure call mecha­

nism will have changed the block number. 

Evaluation of the right part of TS.3 has the following effect: 

a. Evaluation of the first simple name stores the current block number 

in such a way that it can be reset later (seed). 

b. The block number of the block in which the procedure statement occurs 

is added to V (hence, this becomes for the moment the current block 

number). 

c. "<expl>" is evaluated and a rule which contains this result is added 

to v. 
d. The block number which was preserved in a is reset. 

e. Now the value of "<idl><bcsl>" is the value of "result". 

Remark: The manipulations with the block number are necessary to avoid 

clash of names, e.g. in the following case: 

begin procedure P(f); 

end 

begin integer a; ••• f ••• end P; 

integer a; 

... ; P(a); 

When neither TS.4 nor T8.3 is applicable, and if we assume that "<idl>" 

is not a function designator (this case is treated below), then by T8.2 

the value of "<idl><bcs2><bc1>" (where 11 <bcsl> 11 = 11 <bcs2><bc1>") is the 

value of "<idl><bcs2>"; i.e., the smallest embracing block is searched, 

(This is the same technique as was used in the check in phase 2 whether 

all identifiers are declared.) 

Again the three possibilities are considered, viz. 

a. A value was assigned dynamically to 11 <idl><bcs2>", 

b. "<idl><bcs2>" was declared in the block with block number "<bcs2>", 

but no assignment occurred (TS.4). 
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c. 11 <idl><bcs2>" is a formal parameter (TS.3). 

In case of no success, TB.2 is applied again, etc. 

Eventually, this process must come to an end, since "<idl>" is certain­

ly a declared identifier or a formal parameter (this was checked already 

in phase 2); thus, there will be some block, embracing the initially 

considered one, in which one of the three above mentioned possibilities 

holds. 

6.16. Array declarations (T9.1 to T9.29) 

T9,l to T9.9 give the syntactical definition of an array declaration. 

T9.10 to T9.13 define the value of an array declaration in phase 1, 

The meaning of T9.10 is clear. Application of T9.11 has the following 

effect: 

a. The first simple name of its right part is evaluated by application 

of either T9.13 or T9.12. If T9.13 is applicable, then 11 <idl> 11 has 

been declared already in the same block and "w" is added to V. Other­

wise, a truth is added to V, containing the type of the identifier, 

an indication that it is an array identifier, and the block number 

of the block in which it is declared. 

b. The three remaining simple names check whether the identifiers in 

the bound pair list have been declared. This check is performed in 

phase 1, since these identifiers must have been declared in embracing 

blocks. First the block number of the smallest embracing block is 

activated, then "<bplistl > in <decl bplist>" is evaluated, and finally 

the block number of the block concerned is restored. (By the defini­

tion of the program point, the block number of the smallest embracing 

block is immediately available.) 

T9.14 defines the value of an array declaration in phase 2 to be"tr". 

T9.15 to T9.29 define the value of an array declaration in phase 4: 

a. By T9.19 and T9.20, an integer bound pair list is defined as a bound 

pair list which contains only integers. 

b. By T9.15, if the array declaration contains a bound pair list which 

is not an integer bound pair list, the expressions in the bound pair 
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list are evaluated, again after first activating the block number 

of the smallest embracing block, and later on reactivating the 

block number of the current block (T9.16 to T9.18, T9.21). 

c. The treatment of a non own array declaration is completed by T9.22, 

T9.24 and T9.25. Eventually, a truth is added to V, containing the 

identifier concerned, its type, the indication "array", and the 

evaluated bound pair list. 

d. The value of an own array declaration is given by T9.23 to T9.26. 

Essentially, the same scheme is used as with own simple variables. 

Only one extra difficulty arises: According to [38], 5.2.5, when a 

subscripted variable is evaluated, which corresponds to an own array 

and which has obtained a value in a former activation of the block con­

cerned, it is necessary to check whether the subscripts are within the 

most recently calculated subscript bounds. This is accomplished by 

the condition in the second metaexpression of the right part of 

T9.26: Only if the subscripts are within the most recently calculated 

subscrd.pt bounds (i.e. if the value of "<sub exp list> within bounds 

of <int bplistl>" (defined in T9.27 to T9.29) is tr) is the value of 

the subscripted variable "<idl><bcsl> [<sub exp listl>]" equal to the 

value of the same variable in the previous activation, viz. 

"<idl><bcs2> [<sub exp listl>]". 

e. The meaning of T9.27 to T9.29 is obvious. 

6.17. The value of a subscripted variable (TlO.l to Tl0.9) 

Tl0.1 to Tl0.4 define the value of a subscript expression list. If a 

subscripted variable, say"<idl> [<sub exp listl> ]",is evaluated, Tl0.5 

results in the evaluation of "<sub exp listl>" and the extension of 

"<idl>" with the current block number. Tl0.9 will be applicable to the 

result, if no assignment has been made to the subscripted variable in 

the block in which it has been declared, whence its value is undefined. 

Tl0.8 gives the replacement of the formal array identifier "<idl><bcsl>" 

by the actual array identifier "<id2><bcs2>". Note again that 11 <bcs2> 11 

is the block number of the block in which the procedure statement occurs. 

Tl0.7 causes the search in an embracing block. 

Tl0.6 is applicable if none of the aforementioned cases occurs. 
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6.18. Switch declarations (Tll.1 to Tll.13) 

Tll.1 to Tll.8 need no further explanation. 

Tll.9 to Tll.13 define the value of a switch declaration in phase 4. We 

demonstrate the effect of these truths by an example: Evaluation of 

"switch S := L, if i > 0 ~ P else Q, M[3] <p> !" 
in a block with block number "<bcsl><dbcsl>"leads to addition to V of: 

switch S <bcsl><dbcsl> co 

S <bcsl> [1] s L ~ 

S <bcs2> [2] s if i > 0 then P else Q ~ 

S <bcs2> [3] 3 M [3] 

Remark: "<Ui>" in Tll .12 and Tll ,13 stands for "unsigned integer", and 

is defined in T22.59, The definition of addition is also given later. 

6.19. "Label declarations" (T12.1 to T12.4) 

T12.1 and Tl2.2 have the usual meaning. 

By means of T12.3 and Tl2.4, the evaluation of "<labell><pl> !" results 

in the addition to V of a truth which contains "<labell>", the current 

block number and for counter (see section 6.23), and the program point 

corresponding to the statement which is labelled by "<iabell>". 

6.20. Procedure declarations (T13.1 to T13.31) 

Tl3.1 to T13.11 define the syntax of a procedure declaration. 

T13.12 and T13.13 define the value of a procedure declaration in phase 1. 

If the procedure identifier has not been declared before in the same 

block, a truth is added to V containing the identifier, an indication 

that it is a procedure identifier, possibly of some type, the current 

block number, and possibly a formal parameter part. The addition of the 

formal parameter part is used later to check in phase 2 whether the 

number of actual parameters in a procedure statement is equal to the 

number of formal parameters in the corresp~nding declaration. 

T13.14 to T13.19 define the value of a procedure declaration in phase 2. 

We explain only T13.16, the others being similar. Let 

"procedure <idl> (<id listl>); ~value partl><spec partl><stl><Pl> 2" 

be the declaration concerned. 
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a. An extra "begin" is evaluated (to ensure the right scope for the 

formal parameters). 

b. "formal <id listl>, <pl> K 11 is evaluated. "<pl> K" is the extra 

formal parameter which was already mentioned in 6.4. The effect of 

evaluating a list of formal parameters is the addition to V of these 

parameters, supplied with the current block number and the indication 

"formal" (T13.18, T13.19), This information is used later on in phase 

2, in the check whether the procedure body contains only declared 

identifiers. 

c. "begin integer dummy; 2_St1~; goto <pl> K end in <decl block>" 

is evaluated. This means that the prescan mechanism is activated 

(T5.14) for the procedure body. Note that "<stl>" is embedded in an 

auxiliary block (by means of the declaration "integer dummy") and that 

an extra goto statement is inserted, leading to the extra formal 

parameter "<pl > K11
• 

d. The first program point of the procedure body is stored by applying 

T13.20 (cf, T5.12). 

e. The "end", corresponding to the "begin" in a, is evaluated. 

Remark: From T13.15 and T13,17 it follows that no extra formal parameter 

is inserted for type procedures. 

T13,21 to T13.31 define the value of a procedure declaration in phase 4. 

By applying T13.21, the procedure declaration is first extended with the 

first program point of its body. This first program point is availabl~ 

as a result of one of Tl3.14 to T13.17, and T13.20. 

Next the extra formal parameter is added in case of a non type procedure 

(T13.22, T13.23). In the left parts of Tl3.22 and T13.23, 11 <pl> 11 is the 

program point corresponding to the procedure declaration, and 11 <p2> 11 

the first program point of its body. Once the addition of the extra formal 

parameter is made, "<pl>" is no longer necessary and is therefore omitted. 

This omission is also done in case of type procedures by T13.24. 

T13.25 to Tl3.28 define some auxiliary metavariables. After application 

of T13.22 to Tl3.24 two possibilities arise: 

a. The procedure declaration has no value part. Then by Tl3.29, the 
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relevant information is added to V. Note that the specification part 

is ignored. 

b. The procedure declaration does have a value part, Then by Tl3.30 and 

Tl3.31, the entries in the formal parameter list which occur in the 

value part are supplied with a special indication, viz. the corre­

sponding specifier. If this process is completed for all value para­

meters, Tl3.29 will be applicable. 

6.21. Assignment statements (Tl4.l to Tl4.44) 

Tl4.1 to Tl4.16 give the syntax of assignment statements and of declared 

assignment statements. 

Tl4.17 defines the value of an assignment statement in phase 2. 

Tl4,18 links the assignment statement with its successor. 

Tl4,19 to Tl4.44 define the value of an assignment statement in phase 4. 

The ultimate result of the application of these truths to an assignment 

statement is the addition to V of: the variable concerned, followed by 

the block number of the block in which it has been declared, followed 

by 11 is 11
, followed by the expression on the right hand side of the 

assignment statement (cf. Tl4.41 to Tl4.44). 

Complications in the detailed definition of the evaluation of an assign­

ment statement are caused by: 

a. Multiple assignment statements. The requirement that the expression 

on the right hand side is evaluated only once does not allow the first 

solution which comes to mind, i.e., the rewriting of the multiple 

assignment statement as a sequence of "simple" assignment statements. 

b. The desire to supply the variables of the left part list with the 

block number of the block in which they are declared (and not of the 

block in which the assignment statement occurs). 

c. Clash of names, especially in the case of assignment to a formal 

parameter which has a subscripted variable as its corresponding actual 

parameter. 

d. Assignment to the procedure identifier in the declaration of a type 

procedure. 
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e. The requirement that subscripted· variables in a left part list have 

subscripts within the corresponding array bounds. 

The first two problems are solved essentially by means of the introduc­

tion of the auxiliary metavariables "<ext left part>" and "<ext left 

part list>", and the usual search in embracing blocks. Here a scheme is 

used which first establishes the identity of the variables in the left 

part list, and then evaluates the expression on the right hand side, 

after which the rewriting of the assignment statement as a sequence of 

"simple" assignment statements becomes possible. Then T14.41 to T14.44 

become applicable. 

Clash of names is treated by T14.32 and T14.33. The structure of T14.32 

is similar to that of TS.3. 

Assignment to a procedure identifier is defined in T14.34. It will be 

explained later when we treat type procedures. 

The check whether the subscripts of a subscripted variable are within 

the corresponding subscript bounds is performed by evaluating the first 

simple name of the right part of T14.40. The value of this simple name 

was defined in T9.27 to T9.29. If it has the value "tr", it will be 

added to V, again without any influence on the evaluation of the remain­

der of the program. However, if its value is not".!.!", then "w" will be 

added to V with the usual result (6.7). 

6.22. Goto statements (T15.1 to TlS.19) 

T15.l defines the value of a goto statement in phase 2 and T15.2 to Tl5.19 

define its value in phase 4. 

The requirement that a goto statement, leading to an undefined switch 

designator, be equivalent to the dummy statement has complicated the 

definition of the goto statement, among other things because it is 

necessary to keep available the program point corresponding to the goto 

statement concerned, and the block number of the block in which this state­

ment occurs. 

By Tl5.2, the current block number is added to the goto statement. 

By T15.3 1 parentheses around designational expressions are deleted. 
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T15.4 to T15.6 treat conditional designational expressions. If the 

boolean expression of the if clause is not one of the symbols "true" 

or "false", then this boolean expression is evaluated by T15.4, after 

which T15.5 or Tl5.6 may apply (cf. also 4.2.3.1). 

After application of Tl5.3 to Tl5.6, the designational expression is 

either a label or a switch designator. 

Tl5.7 to Tl5.12 treat the first case. 

By T15.7, the current for counter is found and added to"~ <~abell> 

<pl><bnl>11
• The definition of the for counter, as given in the section 

on for statements, is essentially similar to that of the block number: 

Possible for counters are: "$x", "$x$x$$x", "$x$$x$x$$$x", etc. Again, 

the "x"'s count the depth of nested for statements, the "$"'s between 

a certain "x" and the immediately preceding "x" count the number of 

parallel for statements on the depth of this "x". The for counter is 

used to avoid jumps into a for statement from outside (see below). 

By T15. 8, the current block number is added to "go to <labell ><fgsl > 

<Pl><bnl>". Note that, although at the moment of application of T15.2, 

"<bnl>" was the current block number, this is now no longer necessarily 

the case, since the block number may have changed as the result of the 

treatment of switches (see explanation of Tl5.17 below), 

T15.10 defines the usual transition to a search in the embracing block, 

and T15.9 applies if the outermost block is reached. 

Tl5.11 treats the case of a formal label: this label is replaced by 

the corresponding actual designational expression. First, however, the 

block number in which the procedure statement containing the formal label 

occurs, is activated, in order to avoid clash of names. It is not necessary 

to reactivate the current block number, since this will be activated 

eventually by T15.12. 

If "<labell >11 occurs in the block with block number "<bcsl >~dbcsl 'i_', then 

T15.12 will be applicable to "goto <labell><bcsl><fgsl>~fgs~<p><bn>". 

The following remarks may explain T15.12: 

a. As a result of application of Tl2.3 and T12.4, a truth will have been 

left in V which is enveloped by the condition of Tl5.12, 
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b. "<bcsl><dbcsl>" is the block number of the block in which 11 <labell>" 

was "declared". It is activated by the evaluation of the first simple 

name of the right part of T15.12. 

c. 11 T <pl>" is the program point, corresponding to the statement which 

is labelled by 11 <label1> 11
, Evaluation of this program point in the 

right part of T15.12 leads to the continuation of the evaluation of 

the program by evaluating this statement. 

d. "<fgsl>" is the for counter, current at the moment of "declaration" 

of 11 <label1>11 • It is activated by the evaluation of the second simple 

name of the right part of T15.12. If, at the moment that "goto <label1> 

<bcsl><fgsl>~fgs2'.._<p><bn>" is evaluated, the for counter does not have 

the form "<fgsl>~fgs.::,'.', then Tl5.12 will not be applicable: From the 

definition of the for counter it follows that jumps into a for state­

ment from outside are prevented (in the sense that then only T0.1 

will be applicable). 

e. The program point corresponding to the goto statement concerned and 

the block number of the block in which this statement occurs (the 

last two metavariables in the left part of T15.12) have no function 

in T15.12. 

T15.13 to T15,19 define the value of a goto statement in the case that 

the designational expression is a switch designator. 

By T15.13, the switch identifier is extended with the current block 

number and the subscript of the switch designator is evaluated. 

T15.14 to T15.16 have the usual function. 

If T15.17 is applicable then first the block number of the block in which 

the switch concerned is declared is added to V. Again, this is done to 

avoid clash of names ( [38], 5.3.5). The second simple name of the right 

part of T15.17 is evaluated by application of T15.18 or T15.19. 

T15.19 will be applicable if the value of the subscript in the switch 

designator is equal to the ordinal number of one of the items in the 

corresponding switch list. Then, as a result of the treatment of switch 

declarations, a truth will have been added to V which is enveloped by 

the condition of T15.19, and the evaluation of the original goto state­

ment will be replaced by the evaluation of the goto statement leading to 
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the corresponding designational expression in the switch list. 

If, on the other hand, Tl5.19 is not applicable, then by Tl5.18 the 

evaluation of the goto statement concerned will simply be replaced by 

the evaluation of '\ <Pl> a", i.e., of its successor. Note that first 

the block number of the block in which this goto statement occurs is 

reactivated; this block number was added to the goto statement by Tl5.2. 

Thus, a goto statement, leading to an undefined switch designator, is 

equivalent to the dummy statement (apart from side effects in the evalu­

ation of the subscript; cf. also 6.1). 

6,23. For statements (Tl6.l to Tl6.32) 

Tl6.l to Tl6.7 define the syntax of a for statement. 

Tl6.8 and Tl6.9 give the definition of the for counter. As will be seen 

from Tl6,13, an auxiliary terminal symbol 11 forbegin11 is evaluated in 

phase 3 of the evaluation of a for statement. The value of this symbol 

is defined in Tl6.l0, Tl6.ll and Tl6.12. These truths are analogous to 

T6,l 1 T6.3 and T6.4, respectively. Together with the truths defining 

the value of 11 forend 11 (given later), they perform the updating of the 

for counter. 

The prescan rules for the for statement are given in the rest of section 

16. The main reason for their complex structure is the fact that it is 

not correct to rewrite a for statement, containing a for list with more 

than one element, as a sequence of for statements, each containing just 

one element of this for list (thus, the proposed semantics of the for 

statement in [24] contains an error). This was pointed out to us by 

B.J. Mailloux and is demonstrated by the following example: 

"for i ·- 1, 2 do begin ~ integer j; if i = 1 then j ·- O· j ·- j + 1 • 
is not equivalent with: 

·-

end" 

"for i 1 do begin~ integer j; if i 1 then j ·- O· j == j + 1 end; , 
for i ·- 2 do begin ~ integer j; if i 1 then j ·- o· j ·- j + 1 end". , 

The essential feature in the prescan rules for the for statement is the 

introduction of a "dynamic label", called "special label <pl>". Here we 

mean by "dynamic" that this special label is associated successively with 

different labels in the program (also especially introduced for this 
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purpose). It is then possible, after completion of an evaluation of the 

statement after .the for clause, to resume the evaluation of the for 

statement with the next assignment to the controlled variable, by means 

of a jump backwards to this dynamic label. 

A precise description now follows: 

First we consider T16.13. Its right part consists of two simple names. 

The structure of its first simple name is similar to that used in the 

prescan rules of sections 4 and 5 of the metaprogram. Apparently, its 

only use is the evaluation of "forbegin" 'in phase 3. In the second 

simple name we observe: 

a. The introduction of the extra labels "<pl> µ 1" and "<pl> µ 211 • 

The label 11 <pl> µ 1 11 labels the statement "~st~' that occurs after 

the for clause. In the remainder of this section, we shall call 

"<stl>" the "controlled statement". 

The label 11 <P1> µ 2" labels the construction "forend (<int varl>)". 

This construction will be used later at the end of the evaluation of 

the for statement. Note that 11 forend ( <int varl >)" has syntactically 

the form of a procedure statement, since 11 forend11 is an auxiliary 

identifier (T23.198), 

b, The introduction of the extra goto statement "goto special label <pl>". 

Again, this is a syntactically correct goto statement, since "special 

label <pl>" is an auxiliary label by T23.205. 

c. From a and b it follows that the sequence of symbols after "<pl> µ 1 11 

is indeed a blockend. This fact is used later, in the left parts of 

T16.14 to T16.20. 

After application of T16.13, one of T16.14 to T16.19 will be applicable 

to the second simple name of the right part of Tl6.13. T16.14 to T16.16 

treat the case in which the for list contains more than one element, and 

T16.17 to T16.19 the other case. Suppose T16.14 is applicable, The first 

simple name of its right part has the u.sual structure. We see that, in 

phase 4, a correspondence is set up between the special label and the 

auxiliary label "<Pl> µ 311
• 

From the second simple name it follows that: 
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a. After execution of 11 <int varl> := <aexpl>", a jump is performed to 

the controlled statement ("<p2> µ 1 11 labels this controlled state­

ment as a result of Tl6.13; note that "<p2> 11 is fixed for the whole 

for statement). 

b. After execution of the controlled statement, "goto special label <pl>" 

will be executed. As a result of the association of the special label 

and 11 <Pl> µ 311
, this jump will cause the next assignment to the con­

trolled variable to be executed. 

In Tl6.15 the same principle is used. The jump to the controlled state­

ment is executed only if the boolean expression after "while" has the 

value "true"; otherwise, the next element of the for list is considered. 

Tl6,16 defines the step-until element. The second simple name of its 

right part is similar to [38], 4.6.4.2. E.g., "<pl> µ 7 11 corresponds to 

the label "Element exhausted", and 11 <pl> µ 611 to the label "Ll". For the 

definition of the integer procedure "sign", see T2.l. 

Tl6.17 to T16.19 treat for list elements, in the case that these elements 

are the last ones of the for list. 

In T16.17, the special label is now associated with "<p2> µ 2"; by Tl6.13, 

this label labels the construction which ends the for statement. Hence, 

"goto special label <p2>11 will here cause the evaluation of "forend (<int 

varl >)". 

Tl6.18 and T16.19 are similar to T16.16 and T16.17, but now "<p2> µ 211 

corresponds to the label "Element exhausted". 

Tl6.20 gives the prescan rule for the auxiliary statement "goto special 

label <Pl>"· From its structure, it follows that only phase 4, in which 

Tl6.21 will be applicable, is of importance. We see that the jump to the 

special label is replaced by a jump to the auxiliary label most recently 

associated with it: as a result of one of Tl6.14 to T16.19, a truth will 

have been left in V which is enveloped by the condition of T16.21. 

Tl6,22 is the prescan rule for the end of the for statement. The require­

ment that the value of the controlled variable be undefined upon exit from 

the for statement makes the remaining truths of this section necessary. 

First, by.evaluating the first simple name of the right part of T16.23, 



195 

the for counter is updated. Next, the value of the controlled variable 

is set to "w". The usual technique for the search in embracing blocks 

and the treatment of formal parameters is applied (cf. e.g. T16.27 with 

T14,32), Ultimately, either T16.28 or T16.32 will apply,resulting in 

the addition to V of a truth which defines the value of the controlled 

variable to be rt tt w • 

6.24. Procedure statements and function designators (T17,1 to Tl7.104) 

T17,l to T17.61 define: 

"<proc id>" and "<decl proc id>", 

"d.nt proc id>" and "«decl int proc id>", 

"<boolean proc id>" and "<decl boolean proc id>", 

"<proc st>" and "<decl proc st>", 

"<int funct des>" and "<decl int funct des>", 

"<boolean funct des>" and "<decl boolean funct des>", 

"<act par>" and "<decl act par>", and 

"<act par list>" and "<decl act par list>". 

The mechanism explained in 6.5 is used extensively. In the cases of 

"<decl proc st>", "<decl int funct des>", and "<decl boolean fun.et des>", 

it is checked whether the number of actual parameters is equal to the 

number of formal parameters in the corresponding declaration (T17.57 to 

T17.59 and Tl7,60, T17,61). 

T17.62 gives the value of a procedure statement in phase 2. The remaining 

truths of this section treat procedure statements and function designators 

in phase 4. 

After application of Tl7.63, T17,64,(Tl7.66), T17.68 and T17.70, which 

have the usual meaning, to a procedure statement (supposing that the 

procedure concerned is not a function designator), either Tl7.72 or 

T17.73 will prove to be applicable. 

A similar scheme is used for function designators in Tl7.65, T17.67, 

T17.69 and T17,71, after which T17,74 will be applic2ble. Note, however. 

the differences between the two cases: A procedure statement is alw~ys 

accompanied by its corresponding program point (e.g. "<pl>" in T11o63), 
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which clearly does not exist for function designators. Also, an empty 

actual parameter part does not occur here with function designators, 

since this case will be taken care of by TB.1 to TB.3. 

T17.72 treats procedure statements without parameters. Evaluation of 

its right part has the following effect: 

a. The block number of the block in which the corresponding declaration 

occurs is activated by evaluating "enter procedure <idl><bcsl>" 

(cf. T17.77 and section 6.3). 

b. The extra formal parameter "<p3> K" is associated (see below) with 

the extra actual parameter "<p2> K"· Cf. also TS.7. 

c. The first program point of the procedure is evaluated. 

One might expect the evaluation of "exit procedure" as the fourth simple 

name, corresponding to the "enter procedure" of a. However, this is not 

necessary, since the correct block number is activated after the comple­

tion of the evaluation of the procedure statement as a result of the 

evaluation of the inserted auxiliary goto statement (this fact was 

ignored in the second example of section 6.3 on block numbers). 

A procedure statement with parameters is evaluated by means of T17.73. 

Again, the procedure entrance is performed, and the formal parameters 

(which include the extra formal label) are associated with the actual 

parameters, after which the first program point of the procedure body 

is evaluated. 

T17.74 treats function designators. The following simple names are evalu­

ated: 

a. "enter procedure <idl ><bcsl >". The procedure entrance is performed, 

b. An extra "begin", in view of: 

c. "<typel><idl> n". This is a type declaration; hence, T7 .11 will be 

applicable (cf. also T23.199). Jt is introduced to make assignment 

to the procedure identifier possible· (T14.34). The extra symbol "n" 

is necessary in recursive situations. Without this indication, an 

occurrence of the procedure identifier other than as a left part, 

would not cause recursive activation of the procedure, but would 

simply deliver the value that was last assigned to it. 
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11 1 II d. ~ext formal par partl~ substitute ~act par part > , The formal para-

meters are associated with the actual parameters. Cf, also T17.104. 

e. "<pl>", The first program point of the procedure body is evaluated. 

f. "function~ : ~ {<idl> 'IT}". The value assigned to the procedure 

identifier is stored. Cf. T17.79. 

g, "exit procedure". The block number of the block in which the function 

designator occurs is restored (T17.78). By the definition of "exit 

proced:ure", it is not necessary to include the evaluation of an "end", 

corresponding to the "begin" of b, 

h. "function value". Thus, finally, the value of the function designator 

is the value of "function~", as stored by T17,79. 

T17.75 and T17.76 treat function designators, occurring as statements. 

These cannot be treated as "normal" procedures, since no extra goto state­

ment was included at the moment of their declaration. The solution to this 

difficulty is provided by including such a function designator in an 

auxiliary assignment statement. Note that the left parts of these assign­

ment statements have been declared in T2.l. The correct sequencing is 

ensured here by evaluating 11 T <pl> a", which corresponds to the successor 

of the procedure statement. 

T17.80 to T17,104 define the formal-actual substitution. 

T17.81 defines the call by value of a formal parameter, specified "integer" 

or "boolean": 

a. An extra "begin" is evaluated. 

b. The formal parameter is declared to be of the specified type. 

c. The assignment to the formal parameter is performed (T17.82), with 

some precautions because of the possibility of clash of names: Before 

the evaluation of the assignment statement, the block number of the 

block in which the procedure statement or function designator occurs is 

activated, 

d. The formal-actual substitution of the remaining parameters is performed, 

if necessary. Cf. also T17.103. 

Again, no "end" corresponding to the "begin" of a is evaluated. The correct 

block number will be activated upon exit from the procedure either by the 
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extra goto statement in case of procedure statements, or by the evalua­

tion of "exit procedure" in case of function designators" 

By T17.83, a formal parameter which was called by value and specified 

"integer procedure" or "boolean procedure", is treated as a formal para­

meter, called by value and specified "integer" or "boolean". 

T17.84 to T17.97 treat value arrays. 

By T17.84, first an extra "begin" is evaluated, then follows the evalua­

tion of "<typel > array <idl > actual <id2>11 (see below), after which the 

remaining substitutions are performed, if necessary. 

By T17.85 to T17.89, the declaration of the actual array identifier is 

looked up, after which the formal identifier is declared to be an array 

with the same bounds as the actual (first simple name of the right part 

of T17.89). The evaluation of the second simple name of the right part of 

T17.89 will result in the assignment of the value of the actual array 

(i.e. of the ordered set of values of the corresponding array of subscrip­

ted variables, [38], 2.8) to the newly declared array. This assignment 

is performed by application of T17.91 to T17,95. Auxiliary truths for 

this purpose are Tl7.90, T17.96 and T17.97. 

Finally, we explain the treatment of formal parameters called by name. 

If there are formal parameters left in the extended formal list which 

are called by value, they are treated first (T17.98); otherwise, T17.100 

is applicable. First an extra "begin" is evaluated to ensure the correct 

scope of the formal parameter. The second simple name of the right part 

of T17.100 is evaluated by application of T17.101, resulting in the 

addition to V of a truth containing the formal parameter, the block number 

of the block which was entered in T17.100, the corresponding actual para­

meters, and the block number of the block in which the procedure state­

ment or function designator occurs. The use of such a truth was already 

demonstrated in T8.3, Tl0.8, T14.31, T14.32, etc. The section ends with 

the auxiliary truths T17.102 to T17.104. 
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6,25, Variables (Tl8,l to TlS.44) 

In this section, the definitions of variables and of declared variables 

are given. The technique described in 6.5 is used. 

6,26, Syntax of arithmetic expressions (T19.1 to T19.30) 

This section is simply a transcription of [as], 3,3,l, together with 

the definition of the "declared" counterparts of the metavariables con­

cerned. 

6,27. Syntax of boolean expressions (T20.l to T20.40) 

See section 6,26. 

6,28, Syntax of designational expressions (T21.1 to T21.25) 

See section 6.26. 

6,29. The value of boolean expressions and of arithmetic expressions 

(T22.l to T22.92) 

By T22.1 and T22.2, the value of an expression between parentheses is 

equal to the value of the same expression with the parentheses deleted. 

T22.3, T22.5 and T22.7 define the value of a conditional arithmetic 

expression. If the boolean expression of the if clause is not one of the 

symbols "true" or "false", it will be evaluated by application of T22.3, 

after which T22.5 or T22.7 may be applicable (cf, also 4.2.3.1). 

Similarly, the value of a conditional boolean expression is defined in 

T22,4, T22.6 and T22.8. 

T22.9 to T22.14 give the value of a simple boolean expression, which is 

neither a boolean primary different from a relation, nor is enveloped by 

one of the left parts of T22.l5 to T22.41. Cf. also 4.2.3,2, 

Note that the observance of the precedence rules for the operators is 

achieved by the definition of T22.9 to T22.14. For the sake of complete­

ness, we mention the relevant truths for evaluation of a boolean primary: 

a. The value of a logical value is itself (T23.22). 
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b. A boolean variable is evaluated by means of TS.l or Tl0.5. 

c. The value of a relation is given by T22.9. 

d. The value of " ( <bexp>)" is given by T22.2. 

e. The value of a boolean function designator is given by T8.1 or. 

T17.65. 

T22.15 to T22.32 define the usual truth tables for the operators 

" " .., . " " A ' "v0 
, ":i' , and "-" = • 

T22.33 to T22.41 define relations involving integers; every relation is 

first reduced to the relation "<int> ~ <int>", which is in turn reduced 

to the evaluation of "<int> ~ o", as defined in T22 ,39 to T22 .41. 

T22.42 and T22.43 are used in the evaluation of expressions as "+(-3)", 

and T22.44 to T22.46 in the evaluation of e.g. 113+(-5) 11 and "+3 < +5 11 

(by T22.38, this leads to the evaluation of "+3 - +5 11
). 

T22.47 to T22.50 define the value of a simple arithmetic expression 

involving integer variables or function designators or containing more 

than one operator. Again, the precedence of the operators is observed 

in these truths. Note the deviant form of the right part of T22.47 

(the value of "(-2) t 2 11 is not equal to the value of "-2 t 2 11
). 

T22.51 to T22.53 define exponentiation. Since exponentiation is not 

defined for non-positive exponents (this would lead to "real" numbers), 

the value of the expression after "else" in the right part of T22.52 is 

"w"; i.e., the value of "o to" is "w". 

T22.54 and T22.55 define integer division. The left part of T22.54 might, 

for example, be an envelope of the result of application of T22.48 and 

T22.l to 11 3 ..:_ (-5) 11
• 

T22.56 to T22.58 define multiplication. 

T22.59 to T22,61 define the syntax of an unsigned integer, an integer 

and a sequence of zeroes. 

T22.62 to T22.92 define addition and subtraction of integers (cf. [49], 

p, 17, 18 and 4.2.3.3). 

6.30. Basic symbols and auxiliary symbols. Comment conventions (T23.1 

to T23.217) 

T23.1 to T23.15 define the syntax of identifiers, constants (cf. TS.6, 

T14.26, etc.) and digits. 
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T23.16 to T23.19 define the value of a number. 

T23.20 to T23.22 define the syntax and the value of a logical value. 

T22 •. 23 to T23.74 list the letters. 

By T23.75 to T23.ll9, an "end comment symbol" is any ALGOL 60 basic 

symbol except the symbols";", "end" and "else". By T23.122 to T23.124, 

a "comment symbol" is any ALGOL 60 basic symbol other than a semicolon. 

These definitions are used to define the comment conventions of [38], 

2.3 in T23.135 to T23.137. 

By T23.134 a parameter delimiter which is not a comma is replaced by a 

comma. 

T23,138 to T23.141 are introduced because of ~s], 3.5.5. 

T23.142 to T23.193 list the auxiliary symbols which were introduced in 

the preceding sections. 

T23.194 to T23.200 list the auxiliary identifiers; the auxiliary labels 

are given by T23.202 to T23.205. 

T23.207 to T23.209 define a sequence of basic and auxiliary terminal 

symbols, used in TO.l, T6.5 and T23.210. 

The remaining truths were explained in 6.7. 



202 

BIBLIOGRAPHY 

1. American Standards Suggestions on ALGOL 60 (Rome) Issues. 

Association Subcommittee Comm. ACM, 1963, vol. 6, pp. 20-23. 

X3,4.2 

2. J.W. Backus 

3. J.W. de Bakker 

4. c. Bohm 

5. C. Bohm 

6. A. Caracciolo di 

Forino 

7. A. Caracciolo di 

Forino 

8. A. Caracciolo di 

Forino 

The syntax and semantics of the proposed 

international algebraic language of the 

ZUrich ACM-GAMM conference. 
ICIP Proceedings, Paris, 1959. 

London, Butterworth's, 1960, pp. 125-132. 

Formal definition of algorithmic languages, 

with an application to the definition of 

ALGOL 60. 

Report MR 74, Mathematisch Centrum, Amster­

dam, 1965. 

The CUCH as a formal and description 

language. 

[41], pp. 179-197. 

Introduction to CUCH. 

Automata Theory (Ed. E.R. Caianiello). 

New York, Academic Press, 1966. 

On the concept of formal linguistic systems. 

(41] ' pp. 37-51. 

Generalized Markov Algorithms and Automata. 

Automata Theory (Ed. E.R. Caianiello). 

New York, Academic Press, 1966. 

String processing languages and generalized 

Markov algorithms. 

Proc. IFIP Working Conference on Symbol 

Manipulation Languages, Ed. D. Bobrow. 

(to appear). 



9. A. Caracciolo di 

Forino, L. Spanedda, 

N. Wolkenstein 

10. N. Chomsky 

11. N. Chomsky 

12. N. Chomsky 

13. N. Chomsky and 

G.A. Miller 

14. C. Christensen 

15. K. Cohen and 

J,H. Wegstein 

16, M. Davis 

17, C.C. Elgot 

18. c.c. Elgot and 

A. Robinson 

203 

PANON IB,a programming language for symbol 

manipulation. 

Presented at the SICSAM Symposium, 

Washington, March 29-31, 1966. 

Three models for the description of language. 

IRE Transactions on Information Theory, 

1956, vol. IT-3, pp. 113-124. 

On certain formal properties of grammars. 

Information and Control, 1959, vol. 2, pp, 

137-167. 

Context free grammars and pushdown storage. 

Quarterly Progress Report no. 65. 

Research Laboratory of Electronics, M.1.T, 

1962. 

Finite state languages. 

Information and Control, 1958, vol. 1, 

pp. 91-112. 

Examples of symbol manipulation in the 

AMBIT programming language. 

ACM National Conference Proc., August 1965, 

pp. 247-261. 

AXLE, an axiomatic language for string 

transformation. 

Comm. ACM, 1965, vol. 8, pp. 657-661. 

Computability and Unsolvability. 

New York, McGraw-Hill,, 1958. 

Machine species and their computation 

languages. 

[41], pp. 160-179. 

Random-access, stored program machines, 

an approach to programming languages. 

J. ACM, 1964, vol.11, pp. 365-399. 



19. J. Feldman 

20. R.W. Floyd 

21. J.V. Garwick 

22. S, Ginsburg 

23. s. Ginsburg and 

H.G. Rice 

24, C.A.R. Hoare 

25. s. Igarashi 

26. S. Igarashi 

27. D.E. Knuth 

28. F.E.J. Kruseman Aretz 

204 

A formal semantics for computer languages 

and its application in a compiler-compiler. 

Comm. ACM, 1966, vol. 9, pp. 3-9. 

On the non-existence of a phrase structure 

grammar for ALGOL 60. 

Comm. ACM, 1962, vol. 5, pp. 483-484, 

The definition of programming languages 

by their compilers. 

[41], pp. 139-147. 

The mathematical theory of context free 

languages. 

New York, McGraw-Hill, 1966. 

Two families of languages related to ALGOL. 

J. ACM, 1962, vol. 9, pp. 350-371. 

Cleaning up the for statement. 

ALGOL Bulletin, no. 21, pp. 32-35. 

A formalization of the description of 

languages and the related problems in a 

Gentzen type formal system, 

RAAG Research Notes, Third Series, no. 80, 

1964. 

An axiomatic approach to the equivalence 

problems of algorithms with applications. 

Ph.D. thesis, University of Tokyo, 1964, 

A list of the remaining trouble spots in 

ALGOL 60. 

ALGOL Bulletin, no. 19, pp. 29-38. 

ALGOL 60 Translation for Everybody, 

Elektr. Datenverarbeitung, Heft 6, 1964, 

pp. 233-244. 



29. S.Y. Kuroda 

30. P.J. Landin 

31. P.J. Landin 

32, P,J, Landin 

33. A.A. Markov 

34. J. McCarthy 

35. J. McCarthy 

36. J, McCarthy et.al. 

37. E. Mendelson 

38, P. Naur (Ed.) 

205 

Classes of languages and linear bounded 

automata. 

Information and Control, 1964, vol. 7, 

pp. 207-223. 

The mechanical evaluation of expressions. 

Comp. J,, 1964, vol. 6, pp. 308-320. 

A formal description of ALGOL 60. 

[41], pp. 266-294. 

A correspondence between ALGOL 60 and 

Church's lambda notation. 

Comm. ACM, 1965, vol. 8, pp. 89-101, 

pp. 158-165. 

Theory of Algorithms. 

Moscow, USSR Academy of Sciences, 1954. 

(Translated into English by the Israeli 

Program for Scientific Translations, 

Jerusalem, 1961). 

A formal description of a subset of ALGOL. 

[41]. pp. 1-12. 

Problems in the theory of computation. 

Proc. IFIP Congres 1965, vol. l (ed. A. 

Kalenich), Washington, Spartan Books, 1965, 

pp. 219-222. 

The LISP 1,5 programmer's manual. 

Cambridge, Mass. MIT Computation Center, 1962. 

Introduction to Mathematical Logic. 

Princeton, van Nostrand, 1964. 

Revised Report on the algorithmic language 

ALGOL 60. 

Copenhagen, Regnecentralen, 1962, 



39. M. Nivat and N. Nolin 

40. T.B. Steel, jr. 

41. T.B. Steel, jr. (Ed.) 

42. T.B. Steel, jr. 

43. c. Strachey 

44. H. Thiele 

45. H. Wang 

46. N. Wirth 

47. N. Wirth and H. Weber 

206 

Contribution to the definition of ALGOL 

semantics. 

[41], pp. 148-159. 

Beginnings of a theory of information 

handling. 

Comm. ACM, 1964, vol. 7, pp. 97-103, 

Formal Language Description Languages for 

Computer Programming. 

Proceedings IFIP Working Conference, Vienna, 

1964. 

Amsterdam, North-Holland, 1966. 

A formalization of semantics for programming 

language description. 

[41], pp. 25-36. 

Towards a formal semantics. 

[41], pp. 198-220. 

Wissenschaftstheoretische Untersuchungen 

in Algorithmische Sprachen. 

Berlin, VEB, 1966, 

Towards Mechanical Mathematics. 

IBM J. of Research and Development, 1960, 

vol. 4, pp. 2-22. 

A generalization of ALGOL. 

Comm. ACM, 1963, vol. 6 1 pp. 547-554. 

EULER, a Generalization of ALGOL, and its 

Formal Definition. 

Comm. ACM, 1966, vol. 9, pp. 13-23, pp. 

89-99. 



48. A. van Wijngaarden 

49. A. van Wijngaarden 

50. A. van Wijngaarden 

51. Y. I , Yanov 

52. V. Yngve 

53. PI.II-Definition Group 

of the Vienna Labora­

tory 

207 

Generalized ALGOL, 

Proc. ICC Symposium on Symbolic Languages 

in Data Processing. 

New York, Gordon and Breach, 1962, pp. 

409-419. 

Also in 

Annual Review in Automatic Programming, 

R. Goodman (Ed,), vol. 3, pp. 17-26. 

New York, Pergamon Press, 1963, 

Recursive definition of syntax and 

semantics. 

[41], pp. 13-24. 

Orthogonal design and description of a 

formal language. 

Report MR 76, Mathematisch Centrum, Amster­

dam, 1965. 

The logical schemes of algorithms. 

Problems of Cybernetics, vol. 1, pp, 82-140. 

New York, Pergamon Press, 1960, 

An introduction to Comit programming, 

M, I , T, , 1961 , 

Formal. Definition of PLII. 

IBM Technical Report TR25.071, December 1966, 




