
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.-M. Jacquet, L. Monteiro

Comparative semantics for a parallel contextual programming language

Computer Science/ Department of Software Technology Report CS-R9018 May

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Comparative Semantics for a Parallel Contextual
Programming Language*

Jean-Marie Jacquet 1

Luis Monteiro 2

1 Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 Departamento de Informatica, Universidade Nova de Lisboa,
2825 Monte da Caparica, Portugal

Abstract

Recently, contextual logic programming has been proposed as an extension to the logic pro­
gramming paradigm aiming at structuring programs and logical derivations in a coordinated
way ((MP89]). The purpose of this paper is to present and compare various semantics for a
parallel version of it . Six semantics, ranging in the operational, declarative and denotational
types, are discussed. Three operational semantics are presented. They all rest on a transition
system but differ in their ability of describing success set, failure set, infinite computations
and of handling repetitions :

i) the first operational semantics just describes the set of atoms having a successful bottom­
up derivation;

ii) the second operational semantics precises, in addition, the computed answer substitu­
tions;

iii) the third operational semantics moreover characterizes infinite derivations.

As far as the declarative semantics are concerned, a model-theoretic and a fixed-point
semantics are examined. They extend the Herbrand interpretation and the immediate con­
sequence operator to our contextual framework . Finally, a denotational semantics based on
processes, structured as trees, are given. The mathematical tools mainly used for these se­
mantics are complete lattices for the declarative semantics and metric spaces for the other
ones.

The parallel logic language under consideration is an elementary one: it uses or-parallelism
and and-parallelism in an unrestricted manner. A reconciliation calculus is provided as a way of
combining substitutions resulting from the reductions of conjoined goals . Despite its simplicity,
we believe that the parallel language still constitutes a model of interest : the results obtained
on it - in particular, the semantical ones - are bases for results about more elaborated and
more practical concurrent versions.

Key words and phrases: Operational semantics, denotational semantics, declarative se­
mantics, parallelism, contextual logic languages.

1985 Mathematics Subject Classification 68Q10, 68Q55

1987 Computing Reviews Categories: D.1.3, D.3.1, F.1.2, F .3.2, F.4.1

•Part of this work was carried out in the context of ESPRIT Basic Research Action (3020) Integration.

Report CS-R9018
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 1

1 Introduction

Contextual logic programming ((MP89)) is an extension of the logic programming paradigm based
on the idea of having both local and context-dependent predicate definitions. A language is pro­
posed for supporting local definitions of predicates of the kind provided by systems of modules,
and context-dependency in the form of predicate definitions implictly supplied by the context. On
the one hand, the clauses comprising a program are distributed over several modules (or "units" ,
as they will be called here), and in that sense a predicate definition is local to the unit where
the corresponding clauses occur. On the other hand, the definition of a predicate may depend on
predicates not defined in the same unit, and in that case the definitions available in the context
for those predicates are assumed by default .

From the language point of view, only two new notions are required, when compared to Horn
clause logic. One is that of a unit u:U, which is a set of clauses U with name u. The other is that of
an extension formula u » G, which intuitively states that G is true in the context extended with
the denotation of u. Here G is a conjunction of atoms, and possibly also of extension formulae.

The other required notion is semantics in nature, and is that of context. A context is simply a
stack of units. Operationally, to derive a goal in a context, derive the goal (using the clauses) in
the top unit until one of the three following situations occurs : (i) the goal fails or succeeds, (ii)
an extension formula u » G has been selected, or (iii) the predicate of the selected atom is not
defined in the top unit. In the first case, end the derivation in failure or in success. In the second
case, "extend" the context with unit u (push u on top of the stack) and derive G in the extended
context . In the last case, pop the top unit and derive the goal in the new context .

After this "operational" explanation, it may be somewhat surprising that contextual logic
programming has an intuitively simple declarative semantics, not very different from that of Horn
clause logic. A context determines a subset of the Her brand base, to be called a "situation",
comprising the facts that are true in the context. A unit has a declarative reading analogous to
a Horn clause logic program, except that is is parameterized by the predicates mentioned but not
defined in the unit . Since situations supply the missing meaning for those predicates, the semantic
type of units is that of functions from situations to situations, called "updates" . Updates are the
declarative counterparts of context extension.

Example 1 Throughout the paper the following example will be used:
u : p(l) . v: r(2).

p(X) +- v » r(X). r(X) +- s(X).
q(f(3)).

s(f(Z)).
There are two units, with names u and v, defining, respectively, the predicates p, q, s and r .
Note, for example, that the goal u » p(X) can be derived in the empty context with substitution
{X/f(Z) } . Indeed, since u » p(X) is an extension formula, this reduces to derive p(X) in the
context formed by u alone. Using the second clause for p in u, this amounts to deriving v » r(X)
in u. Extending u with v is denoted by vu, and the previous goal reduces to derive r(X) in vu.
If the second clause for r in v is used, s (X) must be derived in the same context. Since s is not
defined in v, s(X) must be derived in the context obtained by poping v, that is u. The derivation
then succeeds with the required substitution. The declarative semantics of u and v is presented in
ru~~~n~L ■

We turn in this paper to a quite simple parallel version of the contextual logic programming
framework. It just involves and-parallelism and or-parallelism without any concern for guard-like
constructs, commitment, read-only annotations, mode declarations or other suspension constructs.
We shall also not tackle negation here. However, our purpose is not to provide the reader with
a practical parallel contextual logic language nor to discuss some parallel implementation. It is
semantical and, more precisely, it consists of presenting and of relating semantical models for it.
With respect to this aim, we believe that the parallel contextual logic language treated here­
subsequently referred to as CLL--is of interest since it captures the basis of contextual logic
programming and of parallel logic programming. As an additional argument, our future research

2

(under development) for more practical and more elaborated concurrent contextual logic languages
will be based on the results exposed here .

The paper presents and compares six semantics issued from the logic programming and im­
perative traditions and ranging in the classical operational, declarative and denotational types.
And-parallelism is treated in a quite close way to real concurrent executions : to allow a goal to
progress from one step, it is sufficient that one of its subgoals performs one step, although all of
them are allowed to do so. Restated in other terms, in contrast with work such as [BKRP89],
our modelling of and-parallelism includes the interleaving perception of parallel computations as
well as the true concurrent one. For simplicity of the exposition, or-parallelism is not treated in
the same way but more implicitly as a choice. Some parallelism is however still captured in the
sense that no order is imposed on the way clauses should be selected for reduction. It should also
be noted that our modelling of or-parallelism and and-parallelism allows to capture the different
(concurrently executed) and/or search subtrees, corresponding, in the parallel framework, to SLD­
derivation paths. Repetition of such subtrees is furthermore taken into account in some semantics
by means of multi-sets .

Our six semantics are composed of four operational semantics, two declarative semantics and
one denotational semantics. Four of them, namely the operational semantics Obu and Otd, and the
two declarative semantics Declm and Decl1, take place in the logic programming tradition. The
other ones, called Och and Den, are issued from the imperative tradition, especially from its metric
branch.

The operational semantics Obu rests on the so-called bottom-up derivation relation. It describes
successful derivations of goals in a bottom-up fashion but does not produce any substitution. It
is however interesting since it is close to the declarative reading of the clauses and thus help, in
the one hand, in understanding the declarative semantics and, on the other hand, in relating the
operational and declarative semantics.

The operational semantics Otd also rests on a derivation relation. It describes the derivation
in a top-down manner and associates a computed answer substitution with each of them. It thus
corresponds to the classical success set and failure set characterizations of programs.

The two declarative semantics Declm and Deel/, are based on model and fixed-point theory,
respectively. They generalize the notions of Herbrand interpretation and consequence operator for
classical Horn clause logic in order to take into account the context dependency of the truth of
formulae. As suggested, an effort has been made to keep these semantics as simple as possible as
well as in the main streams of logic programming semantics. However, context-dependency and
parallel executions raise new problems, for which fresh solutions are proposed.

The third operational semantics Och completes the operational description of Ob,. and Otd by
handling repetition of computations as well as infinite computations. It furthermore tackles more
closely the computation steps and, therefore, makes the modelling of and-parallelism expressed
before fully apparent. Technically speaking, it is based on computation histories represented as
streams of actions. Repetition is handled by means of multi- sets.

The denotational semantics Den, defined as usual compositionally, further details the compu­
tation by handling choice-points i.e. points of possible alternatives of use of unifiable clauses. It
uses (as usual, too), processes organized in tree-like structures .

Although they are of classical inspiration, these last two semantics still present some originality
with related work ([BZ82], [BKMOZ86), [BM88), [B88], [KR88], [BK88], [BKRP89], ...). It arises
essentially from the four following points :

i) our concern with contextual logic programming, which has not be done before and which
requires new solutions;

ii) the novel way (including interleaving and true concurrency) in which parallelism is modelled;
iii) the handling of repetitions of computations;
iv) our use of local state and of reconciliation to combine them, which allows to define the deno­

tational semantics more simply; in particular, the processes are expressed here just in terms
of very intuitive computation steps - input substitutions, actions and output substitutions -
rather than functions.

3

The semantical tools mainly used in this paper are of four types : sets, multi-sets, complete
lattices and metric spaces. Despite this variety, the semantics have been related throughout the
paper. Lack of space prevents us however to give proofs. Nevertheless, all the propositions stated
hereafter have been proved in (Mo89] and (Ja90] .

The remainder of this paper is organized into 8 Sections. Section 2 describes the basic constructs
of the language and explains our terminology. Section 3 recalls the basic semantical tools used
in the paper : sets, multi-sets, complete lattices and metric spaces. Section 4 presents (and
compares) the three operational semantics according to their power of expression : Obu, Otd and
Och• Section 5 discusses the declarative models Declm and Deel/ and connects them with the
operational semantics. Section 6 specifies the denotational semantics Den and compares it with
the operational semantics Och and, consequently, in view of previous results, to the other semantics.
Section 7 sums up the relationship established in the paper and gives our conclusions. Finally,
Sections 8 and 9 presents our acknowledgments and references.

2 The language CLL

As usual in logic programming, the language CLL comprises denumerably infinite sets of variables,
functions and predicates, subsequently referred to as Svar, Sfunct and Spred, respectively. It also
includes a set Su.nit of so-called unit names, characterized by the property that every element u
has attached a finite subset of predicate, called the sort of u and denoted by sort(u). The sets
Svar, Sfunct, Spred and Sunit are assumed to be pairwise disjoint.

The notions of term, atom, clause, substitution, unification, . . . are defined as usual. We do
not recall them here but rather specify some contextual related notions as well as some useful
notations.

An extension formula is a formula of the form v. » G where u is a unit name and G is a
finite conjunction of atomic or extension formulae. A general atom (g-atom) is an atomic or an
extension formula. It is typically denoted by the letters A, B, C, A general goal (g-goal) is
a finite conjunction of g-atoms. It is typically denoted by the symbols A, B, C, ... , G, The
empty g-goal is denoted by the D, letter. Clauses take here the form H +- Band allow extension
formula to take place in their body. Given an atom A= p(t1 , .. . ,tm) , we denote by name(A) the
predicate name of A, namely p . A set of clauses is said to define a predicate p if it contains a
clause whose head's name is p.

A unit is a formula of the form u : U, where u E Sunit and U is a finite set of clauses such
that the set of predicates defined in U is sort(u). We call u the name or head of the unit and U
its body. A system of units is a set U of units such that no two distinct units in U have the same
name. For a unit in U with name u, we denote its body by lulu, or simply lul if U is understood.
In the sequel we will often abuse language and refer to u as a unit in U when in fact we mean the
unit u: jul. The set of systems is subsequently referred to as Ssyst.

A context is a stack of units. It is referred to by its name, consisting of an arbitrary sequence of
unit names. The set of context names, Scontext , is thus the free monoid Sunit <w. Context names
are represented by juxtaposition, as in uv. The empty sequence >. is employed as the name of the
empty context . The context resulting from extending the context c with unit u (i.e. by putting u
on top of the stack) is denoted by uc .

3 Mathematical preliminaries

3.1 Sets and multi-sets

Executions may result in computing a same answer or a same computation path several times.
Multi-sets, allowing an element to be repeated, are used subsequently to capture this repetition .
To clearly distinguish them from sets, they are denoted by adding the ms label to the { ... }
brackets, as in {a,a,b}m., whereas sets are denoted by the s label, as in {a,b} • . The union symbol
U is also subscripted in this way for the same purpose. To avoid any ambiguity, let us further

4

precise that, given two multi-sets S and T, we denote by S Uma T the collection of all elements of
S and T repeated as many times as they occur in S and T .

The usual notations 'P(E) and M(E) are used to denote, respectively, the set of sets and multi­
sets, with elements from E . The notations 'P,,.(E) and M,,.(E) are moreover employed to denote
those sets and multi-sets verifying the property 1r. For instance, Mnt(E) (resp. Mco(E) denotes
the set of non-empty and finite1 multi-sets (resp. the compact multi-sets) with elements from E.

3.2 Reconciliation of substitutions

Full use of and-parallelism requires a way of combining substitutions issued from the concurrent
reductions of subgoals of a g-goal in order to form answer substitutions for the whole g-goal. It has
been provided under the name of reconciliation of substitutions in [Ja89] and has been extensively
studied there. Concurrently, an equivalent notion, named parallel composition of substitutions, has
been developed in [Pa88) and [Pa90) . We briefly recall this notion here for the sake of completeness.
The reader is referred to the above three references for more details.

The reconciliation of substitutions is based on the interpretation of substitutions in equational
terms. Precisely, any substitution 9 = {Xi/t1, .. . , Xm/tm} a is associated with the system of
equations

{
~~ = t1

Xm =tm

subsequently referred to as syst{9). Reconciling substitutions then consists of solving systems
composed of the associated equations.

Concepts of unifiers and mgus can be defined for these systems in a straightforward way.

Definition 1 Let S be a system of equations formed from terms. A unifier of Sis a substitution 9
such that, for any equality t=u of S, the terms tfJ and ufJ are identical. It is a most general unifier
of S iff it is more general than any unifier of S. The system S is said to be unifiable iff it has one
unifier. ■

It is possible to relate the unification of systems of equations with that of terms in such a way
that all properties of the unification of terms transpose to the unification of systems of equations.
In particular, mgus of systems can be proved to be equal modulo renaming. We consequently use,
in the following, the classical abuse of language and speak of the mgu of one unifiable system. It
is referred to as mgu_syst{S), where S is the system under consideration.

We are now in a position to define the notion of reconciliation of substitutions.

Definition 2 The substitutions 91 , . .. , 9m {m ~ 1) are reconcilable iff the system composed of
the equations of syst{91) , ••• , syst(9m) is unifiable. When so, its mgu is called the reconciliation
of the substitutions. It is denoted by p(91, . .. , 9m). ■

The equational interpretation of substitutions requires, at some point, the idempotence of the
substitutions. This is not a real restriction since any unifiable terms or systems of equations
admit one idempotent mgu. It is furthermore to our point of view the natural one. For ease of
the discussion , we will take the convention of using, from now on, idempotent substitutions only.
Their set is referred to as Ssubst.

3.3 Complete lattices

Complete lattices and continuous functions will be used in the characterization of the fixed-point
semantics. The main definitions are briefly recalled here, together with Tarski's lemma, which
guarantees the existence of a least fixed point for every continuous function of a complete lattice
to itself.

1 To avoid confusion, we precise that a multi-set is finite iff it contains only a finite number of elements (and thus
not iff any element occurs a finite number of times)

5

Definition 3 Let L be a partially ordered set, with partial order relation$. Lis a complete lattice
if L has a least element .l and every subset X of L has a least upper bound {lub) V L. ■

The requirement that .l exists is redundant, since .l is the lub of the empty set 0. Also, the
definition implies that L has a greatest element and every subset has a greatest lower bound, but
those facts will not be needed. The simplest example of a complete lattice is probably the powerset
of a set S, P(S), ordered by inclusion. The fixed-point semantics of Horn clause logic is based on
such complete lattices, where S is the Herbrand base. The lattices required by the semantics of
CLL are more complex, and are introduced in section 5.2.

Definition 4 Let L be a complete lattice.
1) A subset D of L is directed if D is not empty and, for every x, y E D, there is z E D such

that x $ z and y $ z.
2) A function f: L -+ L 'from L to another complete lattice L' is continuous if, for every directed

subset D of L, /{DJ= {f{x) : x ED}. is directed and Vf{D) = /(VD).
9) A prefixed point of a continuous function f: L -+ L from a complete lattice L to itself is an

element x E L such that f(x) $ x; it is a fixed point if it furthermore verifies f(x) = x. ■

The main result of (order-theroretic) fixed-point theory is the celebrated Tarski 's lemma.

Proposition 5 (Tarski's lemma) Let f: L -+ L be a continuous function from a complete lattice
L to itself. The set of all prefixed points (resp . fixed points) off is a complete lattice, for the order
induced by L . The least prefixed point p off is also a fixed point, and is given by

where r is the nth. of/. ■

3.4 Metric spaces

Metric spaces will also be used as important semantical tools . The reason for their introduction
arise from the following fact: it is quite natural to identify the more two histories the greater their
common prefix is. This observation naturally leads to a distance between them, as formalized
in example 2, and therefore to metric spaces. The reader is assumed to be familiar with metric
spaces as well as with their related notions of convergent sequences, closed and compact subsets,
completeness, He is referred to [En77], when need be. For sake of completeness, we however
specify hereafter some practical language misuse, describe examples of metric spaces employed
subsequently and recall the notion of contraction and its very useful property (due to S. Banach)
of having one and only one fixed point in complete metric spaces.

Convention 6 We subsequently just use metric spaces whose metric is bounded by 1 i.e metric
spaces (M,d) such that for all x, y E M, d{x,y) $ 1. In view of this, we refer to them more simply
as metric spaces. Furthermore, their metric d is often omitted when it is clearly understood. ■

Example 2 Let A be an alphabet and let A S w denote the set of all finite and infinite words over
A . Let furthermore, for any x E A S w, x/n} represent the prefix of x of length n. Define the mapping

datream : A $ w x A Sw -[o, 1]

as follows : for any x, y E A Sw

d (x y) _ 2-sup{ n,xfn}=yfn}} •
atrea.1n , - ,

with the convention that 2- 00 = 0. Then, (A S w ,dstreamJ is a complete metric space. ■

6

Such use of a truncation function may be extended to define a metric on multi-sets.

Example 3 Let E be some set and let .L be an element not in E. Let futhermore2

.[.]:Ex N-+ EU {.L}.

be a function such that,

i) for any e E E : e[O] =.l;
ii} for any e,f E E :if e[n/ = f[n/, for all n E N, then e=f;

iii} for any e E E, m, n EN : {e[m/}[n/=e[min{ m,n }./.

Such a function is subsequently called truncation too . Define, for any SE M(E) and n E N, S{n/
as the multi-set {s{n/ : s ES}=•· Furthermore, define, for any e,fE E, S, TE M(E),

dE (e, I) = r.up{ n: e{nf=f[n/}.;

dma(S, T) = 2-•up{n,S{nf=T{nj}._

Then, the space (E,dE} is a complete metric space. Moreover, the spaces {M .. 1(E),d.n.) and
(Mc0 (E),d.n.), where compactness3 is taken with respect to dE, are metric spaces. They are
complete if (E,dE} is complete. ■

Example 4 Let Ebe some set and {M,d), (M1,d1}, {M2,d2} be complete metric spaces. Define

i) the mapping dtunct on the set X-+ M of all functions from X to Mas follows : for any
f1,f2 EX-+ M,

ii) the mapping dcart on the cartesian product M1 X M2 as follows
(x1,Z2),(y1,y2) E M1 x M2,

Then, the spaces {X-+ M,dfunct) and {M1 X M2,dcart) are complete metric spaces.

for any

■

Definition 7 Let {M1,d1} and {M2,d-i) be two metric spaces. A function f: M1-+ M2 is called a
contraction iff there is a real number c E (0, 1) such that, for all x, y E M,

■

Proposition 8 (Banach's theorem) Let (M,d} be a complete metric space. Any contraction
f: M -+ M has a unique fixed point. ■

4 Operational semantics

4.1 Bottom-up derivation

The first characterization of the operational semantics of CLL is expressed in terms of the notion of
bottom-up derivation. Its interest arises from its closeness to the "declarative" reading of clauses.
It is twofold. On the one hand, it helps in understanding the declarative semantics, to be presented

2 We denote by N the set of non negative integers
3 Compactness is extended straightforwardly from sets to multi-sets : a mutli-set Mis compact iff any sequence

of elements of M contains a subsequence converging to an element of M.

7

in section 5. On the other hand, it helps in proving the equivalence between the operational and
the declarative semantics.

The notion of bottom-up derivation is characterized indirectly by defining a "bottom-up deriva­
tion relation". It takes the form c ~~ G, for a system of units U, a context name c and a g-goal

G. The intended meaning is that every ground instance of G is true in the situation represented
by the context c. The relation ~~ is defined more formally by means of rules of the form

Assumptions

Conclusion
if Conditions,

asserting the Conclusion whenever the Assumptions and Conditions hold. (Note that Assumptions
and Conditions may be absent from some rules .) Precisely, it is defined as the smallest relation
of Ssyst x Scontext x Sgoal satisfying the following rules (N-B) to (E-B), by case analysis on the
form of G . The notation Sinst(U) is used to denote the set of all (possibly non- ground) instances
of clauses in U, and ~" u is written simply as ~" , for readability.

Null formula

(N-B)

Conjunction

(C-B)

Atomic formula - local reduction

(R-B) UC~" B
UC~" H

if H +- B E Sinst(Jul)

Atomic formula - contextual definition

(X-B) C ~" A
UC~" A

if name(A) (/ sort(u)

Extension formula

(E-B)
UC ~u G
£..

cf- u ~G

The first three rules are essentially the same as for Horn clause logic. They state, respectively,
that true can be derived in any context, that a conjunction is derivable if its conjuncts are, and
that the head of a clause is derivable if its body is . The rule (R-B) explains the meaning of
contextual definition : an atom is derivable in a context whose top unit does not define the atom 's
predicate name if the atom is derivable in the context with the top unit removed . The last rule
(E-B) characterizes context extension: an extension formula is derivable in a context if the "inner"
conjunction is derivable in the context extended with the unit mentioned in the extension formula.

Example 5 (Example 1 continued) It can be shown that u ~" p(f(3)) as follows, where each
line is justified by the previous one and a derivation rule:

u ~u D. (N-B)
bu

u f- s(f(3)) (R-B)
bu

vu f- s(f(3)) (X-B)
bu

vu f- r(f(3)) (R-B)

u ~" v > r(f(3)) (E-B)
bu

u f- p(f(3)) (R-B)

Similarly, one has u ~u q(f(3)), therefore, by {C-B), one has u ~" [p(f(3)) ,q(f(3))] ■

8

Definition 9 Let £,- and f,+ be two fresh symbols. The bottom-up operational semantics of CLL
is the function Obu : Ssyst ___. Scontext ___. Sgoal ___. { £,-, f,+ } 4 defined as follows: for any UESsyst,
cEScontext and GESgoal,

if C ~~ G
otherwise ■

4.2 Top-down derivation

The operational semantics Obu does not deliver that much information, just the possible existence
of a successful derivation. The purpose of any computation is however far more richer: to compute
bindings for the variables of the query. The notion of successful top-down derivation allows precisely
to capture such an idea. Given a system of units U and a g-goal G, it consists of a sequence of
steps reducing G to the null conjunction. Associated with it, there is a substitution 9 representing
the values computed for the variables of G. The expected result (presented in section 5) is that
the universal closure of G9 is a logical consequence of U, and that any instance of G which is a
consequence of U can be obtained as instance of G9 for some computed substitution 9.

As before, the top-down derivation is not specified directly, but by means of a top-down deriva-
- <d - <d -

tion relation. For any context name c and g-goal G, c r-u G [9], or more simply c r- G [9]

when U is understood, denotes the fact that there is a (successful) top-down derivation of G
in c from U with substitution 9. Again, ~d u is formally defined as the smallest relation of
Ssyst x Scontext x Sgoal x Ssubst satisfying the rules below. The symbol f denotes the empty
(identity) substitution.

Null formula

(N-T)

Conjunction

(C-T)

td C r- fj,_ [f]

Atomic formula-local reduction

(R-T)
cd-

UC r- B9 [O']
td

UC r- A [90']
if {

H +-BE lul
9 = mgu(A,H)

Atomic formula-contextual definition

(X-T)
•• c r- A [9]
,d

UC r- A [8]
if name(A) (/. sort(u)

Extension formula
cd-

UC r- G [Oj
,d -Cr- u » G [BJ

(E-T)

These rules have a reading similar to the bottom-up case. For example, rule (C-T) states that in
order to derive a g-goal we must derive each g-atom and then reconcile the resulting substitutions.
As usual, in rule (R-T) a suitable renaming of the clauses is assumed.

Example 6 (Example 1 continued) In the following derivation, each line is justified by a de­
rivation rule and the line following it:

9

u ~c1 p(X) [{X/f(Z)}.J (R-T)
u i,:4

v » r(X) [{X/f(Z)}.J (E-T)
vu i,:" r(X) [{X/f(Z)}.J (R-T)

vu ~c1 s(X) [{X/f(Z)}.J (X-T)

u i,:c1 s(X) [{X/f(Z)}.J (R-T)
u i,:.i 6. [E] (N-T)

Similarly, we have u ~' q(X) [{X/f(3)}.]. By {C-T}, we obtain u i,:
4

[p(X),q(X)] [{X/f(3)}.]
since {X/f(3) ,Z/3}. is the reconciliation of {X/f(Z) }. and {X/f(3) }.. ■

The relationship between the top-down and bottom-up derivations is established by the follow­
ing proposition.

td - 1,,., - bu - - -
Proposition 10 If cf-=- G [9] then cf-=- G9. Conversely, if cf-=- G0 and G0 is an instance of G,

there is a substitution 9 such that c i-:.i G [9] and G0 is an instance of G9. ■

The top-down operational semantics can now be characterized. As may be seen in the following
definition, it corresponds to the usual notion of success set and failure set.

Definition 11 Define the top-down operational semantics as the following function

Otd : Ssyst-> Scontext-> Sgoal-> P(Ssubst)

as follows: for any U E Ssyst, c E Scontext, and GE Sgoal :

•
The following result relating Obu and Otd is an immediate consequence of the previous propo­

sition.

Proposition 12 Let a 1 : P(Subst)-> {6- ,o+}. be the function defined as

i) a1 (0) = o-
ii} a1 (E) = o+, if E -:/:- 0

One has Obu = a1 o Otd.

4.3 Computation histories

•

Although more powerful than Obu, the operational semantics Otd suffers from two problems: it
cannot cope with infinite computations and cannot distinguish repetition of computations. As
respective illustrations, the g-goals p (X) and q (X) are given the same semantics in the following
contexts u1 and u2 although, on the one hand, the reduction of p(X) finitely fails in u1 and is
infinite in u2 , and, on the other hand, the reduction of q(X) computes {X/1}. once in u1 and twice

q(l). u2: p(X) +-p(X).
q(l).
q(l).

The operational semantics Och. is introduced as a remedy. It essentially delivers the histories
of the computations rather than just their results and collects all their repetitions. The main
technicalities used for that purpose are as follows. Repetition is captured by using multi-sets rather
than sets. Histories are modelled by words whose elements represent the multi-set of unifications
and context extension (namely the two basic operations of CLL) performed at each step, as well as
the two termination status, failure and success. These histories are formally identified by means
of a labelled transition system, in the style of [Pl81], whose labels correspond to the multi-sets
of basic actions and whose configurations are some generalization of the goals. This extension is

justified by the fact that, in order to represent truly concurrent executions, any g-atom of any
g-goal must operate in a private working memory space, namely its own state and its own context.

This intuition given, let us define Och more precisely. The following notation and definitions
specify the concepts sketched above.

Notation 13 (Histories) The notations unif(A,B) and cxLext(c,u) are used to represent the
actions of unifying the atoms A and B and of extending the context c by the unit u, respectively.
The set of such basic actions is referred to as Sact . The set of words formed from Mnt {Sact} and
which finite elements are ended by one of the terminator operators {j-, representing failure, and
fj+, representing success, is referred to as Shist. Elements of Shist are called histories. ■

Definition 14 (Extended g-atoms and goals) Extended g-atoms (eg-atoms) are constructs of
the form A in < u, c > where A is a g-atom, u is a substitution and c is a context. They are typically
denoted by the letters A, B, C, Extended g-goals (eg-goals) are conjunctions of eg-atoms. They

are typically referred to as A, B, C, ... , G, The empty eg-goal is denoted by the D.ezt symbol.
The set of eg-goals is referred to by Sextgoal. Finally, {A1, ... ,Am} in < a, c > is defined as the
eg-goal {A1 in< a,c >), ... ,{Am in< a,c >). ■

Definition 15 (Transition relation) The transition relation used for specifying the operational
semantics Och is defined as the smallest relation -+ of

Ssyst x Sextgoal x Mnt(Sact) x Sextgoal

satisfying the following rules {R-H) to {C-H3). For ease of reading, the more suggestive notation

is employed instead of (U,G,l,G*).

Atomic formula - local reduction

{R-H)
A in < a, c > ~ Bin < a•, c >

if

Atomic formula-contextual definition

A . I B-. •
m < a, c > ---> m < a , c >

I -
A in < u, uc > ---> Bin < u•, uc >

{X-H}

Extension formula

(E-H}
u ~Gin< a, c > I -- Gin< a, uc >

Conjunction

{C-Ha}

A~A*
- - I -A,B---> A*,B

B~B*
-- I - -A,B---> A,B*

A~ A*·B~ B*

A.B~A*,B*
4 As usual, a suitable renaming of the clauses is assumed .

11

{

(H..- B) E lul4

Aa and H are unifiable
u• = uomgu(Aa,H}
l = { unif (Aa, H)}m.

if name{A} (/. sort{u)

if l = {cxLext(c,u)}ma

■

Rules (R-H), (X-H) and (E-H) essentially rephrase the rules (R-T), (X-T) and (E-T) defining
how atoms and extension formulas should be treated. Rules (C-Hi), (C-H2) and (C-H3) defines the
and-parallel execution of conjoined eg-atoms. It is worth noting that, thanks to rules (CHi)and
(C-H2), all eg-atoms need not be reduced in one step in order to allow the whole conjunction to
perform one reduction step. Such maximal parallel executions can however take place thanks to
rule (C-H3). Our modelling of and-parallelism is thus very close to the real practical operational
executions: it expresses concurrent executions waiting for some processing resource as well as the
fully concurrent executions when enough computing resources are available. Reformulated in a
more conceptual level, our modelling of and-parallelism subsumes the interleaving approach to
concurrency as well as the truly concurrent one (assuming, as usual, that all unfications take the
same amount of time).

The following property establishes that the transition relation is image finite.

Proposition 16 For any A E Sextgoal, the multi-set

~ ~ I ~
{(B, Q E Sextgoal x M,.1(Sact) : A ---+ B}ma

is finite. ■

We are now in position to define the operational semantics Och • Note that the image-finiteness
of Proposition 16 is not sufficient to ensure that the codomain of O and Och is composed of non­
empty and finite multi-sets of histories. However, it is strong enough to ensure that it is composed
of compact ones.

Definition 1 7
1) Define O : Ssyst-+ Sextgoal-+ Mc0 (Shist) as follows : for any U E Ssyst, any GE Sextgoal,

O(U)(G) = ~1 -l I - -
{li.l2ln.6-: G -2...+ Ai-.!..+ .. . --2!..+ A,.# 6ezt,An ~ }ma

Uma{li./i. • • • .J,. .6+: G ~ Ai ~ • • • .!.'.!... 6ezt}ma

{l l l ~0 11 A- 12 ,,. - 1 .. +1• •· }
Um• i - 2 • • • • • n • • • • : ---+ i ---+ • • • ---+ An ---+ m•

2) Define the computational history operational semantics as the following function :

Och : Ssyst-+ Scontext-+ Ssubst-+ Sgoal-+ Mc0 (Shist)

for any U E Ssyst, any c E Scontext, any a E Ssubst, any G E Sgoals,

Och(U)(c)(a)(G) = Och(U)(Gin < a, c >).

Example 7 (Example 1 continued) As an illustration, the operational semantics

Och(U)(u)({Y/X}a)(p(Y) ,q(Y))

includes5

i) { uni/(p(X), p(Xi)), uni/(q (X), q (f (3))) }ma-{ cxLext(u, v) }ma
.{ uni/(r(Xi), r(X2))}ma-{ uni.f\s (X2), s (f (Z1)))}ma,

ii} { uni/(p(X), p(X1))}ma-{ cxLext(u,v)}ma -{ uni}\r(Xi), r(X2))}ma
.{ uni}tq (X), q(f (3))) }ma•{ uni.f\s(X2), s(f (Zi))) }ma

■

■

It is worth noting that the auxiliary function O is the fixed point of the following higher-order
contraction Wop reflecting the recursive nature of 0 . This property combined with the fortunate
circumstance that contractions have one fixed point will be useful! later to relate Och with the
denotational semantics Den.

5The variables Xi, X2 and Z1 indicate renaming of the variables of the clauses .

12

Definition 18 Define

IJ1 0 p: [Ssyst--+ Seztgoal--+ Mco(Shist)]--+ [Ssyst--+ Seztgoal--+ M(Shist)]

as follows: for any FE [Ssyst --+ Seztgoal--+ Mc 0 (Shist)], any U E Ssyst, any GE Seztgoal,

1l1op(U)(F)(G) = {o- : G-; b.ezt, G f. }nu

Um_,{o+ : G = b.e:i:t}m ..
- I - -

Um_,{l.h: G - G*, h E F(U)(G*)}m .. •
Proposition 19

1) The function IJt op is a contraction from [Ssyst--+ Seztgoal--+ Mc0 (Shist)J to
[Ssyst--+ Seztgoal--+ Mc 0 (Shist)J.

2} The function O is a fi;r;ed point of IJt op• ■

We conclude this section by relating the operational semantics Otd and Och• Roughly speaking,
all we have to do is, for each history, to perform all the unifications it contains and reconcile the
results. This is more precisely achieved by means of three functions. The eq..act function translates
each basic action into an equivalent unification equation. The sysLhist function returns the system
of equations corresponding to unification actions of successful histories and the empty system for
the others. The function 02 solves the systems of equations corresponding to the histories of any
given multi-set of Mc0 (Shist). Relating Otd and Och then consists of noting, by an inductive
reasoning on reduction and histories, that, for any system U, any context c and any g-goal G,
Otd(U)(c)(G) and [a2 oOch](U)(c){f)(G) are identical.

Definition 20
1) Define eq...a.ct as follows: for any l E Sact,

eq_label(l} = { ~ A = B}ma

2} Define sysLhist as follows: for any h E Shist,

0

U8 eq_act(a)
11EI,

if l = unif(A,B}
if l = czLezt(c, u}

if h = Iilm,o+ or if h is infinite

3} Define a2 as follows : for any MH E Mmfco(Ssyst) ,

a2 (MH) = u. { mgu_syst(sysLhist(h} }} •.
h EMH

Proposition 21 For any U E Ssyst, any c E Scontezt, G E Sgoal, one has

5 Declarative semantics

5.1 Model theory

•

•

The operational semantics is concerned with proof, the declarative semantics with truth. The
declarative semantics of a system of units is characterized by the set of g-goals that are true in
every model of the system of units. The purpose of this section is to show how such semantics can
be defined.

13

The first task is to find an appropriate notion of interpretation for CLL. An interpretation of
Horn clause logic is a subset of the Her brand base, intended to record the set of all facts that are true
under the interpretation. In CLL, which facts are true depend on the context. An interpretation
of CLL must thus provide a way to associate a subset of the Herbrand base with every context.
Such subsets are called "situations".

Let Sr(c) be the situation associated with the context c under the interpretation I. One must
have Sr(>.)=0 since no facts are true in the empty context. Moreover, the situation Sr(uc) must be
the "update" by u of the previous situation Sr(c), and consequently the equality Sr(uc)=I,.(Sr(c))
must hold for some function I,. depending on u. A unit name u is then interpreted as a "situation
update" I,., formalized as a mapping from situations to situations. Furthermore, given the intended
meaning of context extension, such a function must redefine the predicates define,} in the unit and
leave the other predicates unchanged. The required notion of interpretation is then a family of
updates I,. indexed by u E Sunit. These ideas are now made precise .

Definition 22 The Herbrand base of CLL is as usual the set HB of all ground atoms built with
Sfu,nct and Spred. A situation is a subset of HB. If P ~ Spred and S ~ HB, the restriction of S
to Pis the set S ! (P] = { p(t1, ... ,tn) E S: p E P}. To simplify the notation, S ! [Pred-P] is
abbreviated to S ! (-P] . Note that S = (S ! (Pl) u (S ! (-Pl). ■

Definition 23 A continuous mapping t : P(HB) ---> P(HB) is called an update with respect to
P ~ Spred if, for every S ~ HB, it satisfies the two following conditions:

i) Preservation: t(S) L [-P] = S ! (-P] (atoms with names not in Pare preserved by t) .
ii) Dependency: t(S) = t(S ! (-Pl) (the update depends only on the preserved atoms).

■

Definition 24 An interpretation I of CLL is a family I= Uu)ueSunit, where each lu is an update
with respect to sort(u). ■

Definition 25 Given a situation S, a finite set F of formulae and an interpretation I, the fact
that the formulae in Fare true in S with respect to I, denoted S FI F, is defined by the cases below.
Let ground(F) be the set of all ground instances of formulae in F. Let us furthermore write S FI f
instead of S FI {/} •.

i) Sets: S FI F if and only if S FI f for every f E F
ii) Units: S FI u:U if and only if I,.(S) FI U.

iii) Clauses : S FI H-B if and only if S FI Ho-Bo for all (Ho-Bo) E ground(H-B).
iv) Ground clauses : S FI H-B if and only if S FI H whenever S FI B .
v} Ground extension formulae : S FI u » G if and only if I,.(S} FI G.

vi) Ground atomic formulae : S FI A if and only if A E S.
■

The way this relation is defined is standard, with the possible exception of units and ground
extension formulae. A unit is true in a given situation if the body is true in the situation updated
by the denotation of the unit name. Extension formulae are interpreted similarly.

The notion of model, central for the declarative semantics, can now be defined.

Definition 26 An interpretation I is a model of a set F of formulae if S FI F for every S ~ HB.
A formula f is a consequence of F, denoted F Ff, if every model of F is a model off. ■

The case of interest is when Fis a system of units U and f is a g-goal G. The (model- theoretic)
declarative semantics will now be defined for this case. In the next definition, for a context name
c = u1 . . . un, c » G will be used as a shorthand for the extension formula un» . . . »u1»G.

Definition 27 Define the declarative semantics Declm : Ssyst Scontext Sgoal P(Ssubst)
as follows: for any U E Ssyst, c E Scontext, and GE Sgoal:

Declm(U)(c)(G) = {8 : VGo E ground(G8},U F c » Go}. ■

14

5.2 Fixed-point theory

The models of a system of units U can be characterized as the prefixed points of a continuous
operator Tu : Sint -+ Sint associated with U, where Sint is the set (complete lattice) of all
interpretations. This characterization has two important consequences that follow directly from
Tarski's lemma. The first is that U always has a minimal model Mu, given by the least fixed point
of Tu. The second is that there is a standard iterative procedure for computing the least fixed
point of Tu, and hence Mu.

These facts are used to define a fixed-point semantics Deel, and to prove the equivalence
between the top-down operational semantics Otd and the declarative semantics Declm, Along the
way other interesting results are presented, relating the bottom-up and the top-down derivation
relations with the consequence relation .

The first result states that the set of all interpretations is a complete lattice, as required.

Proposition 28 The set Sint of all interpretations I= (Iu)uEU' partially ordered by I~ J if and
only if Iu(S) ~ Ju(S) for every u E Sunit and S ~ HE, is a complete lattice. ■

The mapping Tu : Sint -+ Sint associated with U can now be defined.

Definition 29 Let Tu : Sint -+ Sint (or, more simply, T : Sint -+ Sint} be the mapping defined as
follows : for every interpretation I, Tu (I) is the interpretation J such that

Ju(S) = (S l [-sort{u}]) u {A: there exists (A+-B) E groundnul) such that lu(S) FIB}.

for every u E Sunit and S ~ HE.

The mapping T is well defined, as shown by the next proposition.

Proposition 30
1) T{I) is an interpretation, for every interpretation /.
2} T is continuous.
9} An interpretation I is a model of U if and only if T{I) ~ I

■

•
An interpretation I such that T(I) ~ I is sometimes kown as a "prefixed" point of T. By

Tarski's lemma (see proposition 5), T has a least fixed point, which by the previous property is
also the least model of U. This statement is the contents of the next proposition.

Proposition 31 Every system of units U has a minimal model Mu, given as the least fixed point
of Tu. •

Example 8 (Example 1 continued) The fixed-point construction is now illustrated with exam­
ple 1. For readability, Mu and Mv corresponding to the minimal model M are denoted more simply
by u and v, respectively. By definition of the operator Tu, of which {u, v} is of the least fixed point,
u and v satisfy the following equations, for every S ~ B :

u(S) = S l [-p,q,s] u. {p(l) ,q(f(3)) }. u. {s(f(x)) : x E {1, 2,3}.}.

u.{p(x) : u(S) I= v » r(x) }.

v(S) = (S l [-r]) u. {r(2) }. u. {r(x) : v(S) F s(x) }.

To "solve" them, let us first note that the condition v(S) I= s(x) is equivalent to s(x) E v{S}, and
therefore to s(x) ES, by the form of v(S) . One may thus write

v(S) = (S l [-r]) u. {r(2)}. u. {r(x): s(x) ES}.

Now u(S) p v » r(x) if and only if r(x) E v(u(S)) . By the form of v(u{S}}, this is equivalent
to x = 2 or s(x) E u(S), that is, by the form of u(S), x E {2,f(l),f(2),f(3)}s, Thus one has

u(S) = (S l [-{p,q,s}.]) u. {p(l) ,p(2) ,q(f(3))}.

u.{s(f(x)): x E {1,2,3}.}. u. {p(f(x)): x E {1,2,3}.}. •
15

The fixed-point semantics is defined in terms of the least fixed point of Tu, as usual.

Definition 32 Define the fixed-point semantics Decl1 : Ssyst --+ Scontext -+ Sgoal --+ P(Ssubst)
as follows: for any U E Ssyst, c E Scontext, and GE Sgoal:

Decl1(U)(c)(G) = {8: \/Go E ground{GB),0 FMu c ~ Go}a,

where Mu is the minimal model of U. •
The equivalence between the declarative and the fixed-point semantics is based on the following

observation. There are two quantifications involved in the consequence relation U F G, one over
all models of U and the other over all situations. It is possible to eliminate both, by considering
only the minimal model of U and the truth of G in the empty situation with respect to that model.

Proposition 33 For every system of units U and g-goal G, U F G if and only if 0 FMu G. In
particular, the declarative and the fixed-point semantics coincide, that is Declm =Deel, . ■

The remainder of this section describes the connection between the operational and the declar­
ative semantics. The relationship between the bottom-up derivation and the consequence relation
F is established via the association of a situation with every context.

Definition 34 Let I be an interpretation of a system of units U. For every context name c, the
situation SI{c) determined by c under I is defined inductively as follows :

i) SI(>.) = 0
ii) SI(uc) = Iu(SI(c)) •

Proposition 35 Given a system of units U with minimal model M, c ~~ G if and only if

SM(c) FM G for every context name c and g-goal G. ■

The equivalence between the bottom-up operational semantics and the declarative semantics
is an easy consequence of the previous result .

Proposition 36 One has Obu = a 1 oDecl,,.. •
The next result relates the consequence relation to the top-down derivation relation.

Proposition 37 If Go is a ground instance of a g-goal G and if c is a context name, then
SM(c) FM Go if and only if c ~~ G[B] for some substitution 8 such that Go is an instance of

GB. ■

It is now easy to establish the equivalence between the top-down operational semantics and the
declarative semantics.

Proposition 38 Let aa : P(Ssubst) --+ P(Ssubst) be defined as follows: for every E E P(Ssubst),

aa(E) = {o-8: u E E,8 E Ssubst}a

One has Deel,,. = a3 oOtd· •

16

6 Denotational semantics

This section introduces our last semantics. It is defined compositionally and on the basis of
processes, organised in tree-like structures. It makes no use of transition systems as well as no
reference to any declarative paradigm. It is called denotational in view of these properties.

Processes introduced in this section are intended to capture at a conceptual level (thus not at
the implementation one) what could be roughly called the behavior of goals. Such a behavior is
here essentially seen as a sequence of computation steps, each one described by an input multi-set
of substitutions, a multi- set of basic actions6 and an output multi-set of substitutions. It involves
trees rather than streams in order to further capture the place of the various choice of uses of
clauses. Hence, as agreed by our intuitive perception of the computations, the reduction of p(a,X)
behaves differently in the following units u1 and u2 . Note that the g-goal p(a,X) however receives
the same operational and declarative semantics.

u1: p(a,Y) +- q(Y). u2: p(a,Y) +- r(Y).
q(b). p(a, Y) +- s(Y).
q(c). r(b).

s(c).
Tree-like structures with possible repetition of alternative branches may be formalized by means

of multi-sets. Processes may then be formally described as multi-sets of computation steps followed
by new processes. Two auxiliary processes, p+ and p-, are furthermore introduced to indicate
termination in the successful and failure status. In view of them, it may be ensured that any
choice (resulting from alternative use of unifiable clauses) is always composed of at least one
alternative. It is also composed of a finite number of alternatives since programs are composed of
a finite number of clauses. Multi-sets representing choices may thus be assumed non-empty and
finite. It is also easy to ensure the non-emptyness and finiteness of the multi-sets of computation
steps since computations always start with one substitution and perform, at each step, only a
non-empty and finite number of elementary reduction steps. Summing up, the set of processes
Sproc could be recursively defined by the equation

where Scstep7 is Mn1(Ssubst) X Atfn1(Sact) X Mn1(Ssubst). Recursive equations of this type
have been solved in a metric setting in [BZ82] and [AR89]. The careful reader will however note
that no multi-sets are tackled in these references and, furthermore, that, to apply their results,
Mn1(Scstep x Sproc) should be endowed with a distance, which cannot be inferred from previous
definitions unless a truncation on Scstep x Sproc is clearly specified. Anyway, the simplicity of
the equation (1) allows us to solve it directly. This is achieved as in [BZ82], by first defining an
auxiliary space Sfproc, by then endowing it with a distance d and by finally defining the metric
space Sproc as the completion of (Sfproc,d) . We will furthermore take profit of this direct solving
to restrict the processes to those verifying the following property :

The multi-sets of the initial substitutions of the first computation steps are identical. (2)

Definition 39 Define the set of finite processes Sfproc inductively by the following rules :
i) p+, p- E Sfproc

ii) ifw1 = (A1,S1,Y1), ... ,wm = (Am,Sm,Ym) E Scstep, P1, ·· ·,Pm E Sfproc, m > 0 and
A1 = . . . =Am, then {(wi,p1), ... , (wm,Pm)}ma E Sfproc ■

Endowing Sfproc with a distance, reflecting the property that the closer two processes are the
bigger their common prefix is, can be achieved by considering the union of the equation (1) as
disjoint and by defining the truncation function .[.] on processes.

Definition 40 Define the truncation function .{./ on Sfproc by the following rules:

6 Recall notation 13 of section 4.3
7 Read Scstep as the set of computation steps .

17

i) p/0/ = .l, for any p E Sfproc,
ii) p+[n] = p+, for any n > 0,

iii) p-[n] = p-, for any n > 0,
iv} {(w1, P1), ... , (wm, Pm)}ma[l] = {w1, ... , Wm}ma,

for any w1, ... , Wm E Scstep, p1, ... , Pm E Sfproc
v} {(w1,pi), ... , (wm,Pm)}m.[n] = {(w1,pi[n - 1]), ... , (wm,Pm[n - l])}m•

for any w1, ... , Wm E Scstep, p1, . . . ,Pm E Sfproc, n > 1.

Definition 41 Define the metric on Sfproc as follows:
i} d(p+,p+) = d(p-,p-) = 0,

ii) d(p-, p) = 1, for any p E Sfproc, distinct from p-,
iii) d(p+, p) = 1, for any p E Sfproc, distinct from p+,
iv) d(p1, p2) = d.m .. (p1, p2), for any p1, p2 E Sfproc, distinct from p+ and p- .

•

•
The metric space of process Sproc is then defined from the space of finite processes Sfproc by

taking in addition all limits of Cauchy sequences of Sfproc. This is achieved precisely by defining
Sproc as the completion of (Sfproc,d). Two interesting properties of these new processes is that
their structure ressemble that of finite processes and that they do verify property (2).

Definition 42 Define Sproc as the completion of {Sfproc,d}. •
Proposition 43 Any element of Sproc is either p+, p-or of the form {(w1,p1), ... , (wm,PmHma

with, for any i, Pi E Sproc and Wi E Scstep. Furthermore, in the last case, if, for any i, Wi is
rewritten as (Ai, Si, Ti), then the Wi 's verify the equalities A1 = .. . =Am . ■

Definition 44 Define, for any process p= {(w1,p1), ... , (wm,Pm)}ma, init(p) as the common value
of the first component of the Wi 's. ■

Example 9 (Example 1 continued) Returning to example 1, an example of a process is

where

WI ({u1, 0'1 }ma, { unij(p(X), p(X)i), unij(q(X), q(f(3)))}ma{ u2, ua}ma)

W2 = ({ 0'2 }ma, { cxLext(u, V) }ma, { 0'2 }ma),

W3 = ({ 0'2 }ma, { uni/(r(X), r(X2)) }nu, { 0'4 }ma),

W4 = ({u4}ma, { unij(s(Xh, s(f (Z)))}m., {us}m.),

0'1 = {Y/X}.,

0'2 = {X/X1, Y /Xi}•,

0'3 = {X/f(3),Y/f(3)} .. ,

0'4 {X/X2,Y/X2,X1/X2}.,

0'5 = {X/f(Z1) , Y/f(Z1),X1/f(Z1),X2/f(Z1)}. •
Defining a compositional semantics requires to define an operator tt equivalent at the denota­

tional level to the parallel composition operator "," between g- atoms. According to our modelling
of parallel composition of section 4.3 and to our denotational choice concern, it should be such
that, given two processes Pl and p2, p1 tt p2 is the process interleaving some steps of Pl and p2,
performing some others simultaneously and conserving their choice points. A recursive definition
for p1 tt p2 might be suggested by the recursive nature of the processes. The possible infinite nature
of Pl and P2 makes it however incorrectly stated. We circumvent this problem by using a higher­
order function 'YIJ, of the same recursive nature but that turns out to be a well-defined contraction.

The operator tt is then defined as its fixed point. Miming the "," operator, it is also associative.

18

Definition 45 Define '1111 : [Sproc x Sproc-+ Sproc] -+ [Sproc x Sproc-+ Sproc] as follows: for any
FE [Sproc x Sproc --t Sproc], for any p E Sproc, for any p1 , p2 E Sproc distinct from p+ and p-:

i) '1111(F)(p- ,p) = p- = '1111(F)(p,p-);
ii} '1111(F)(p+ ,p) = P = 1Jt11(F)(p,p+);

iii) 1lt II (F) (P1 'P2) =
{(w*, F(p '1, p '2)) : ((A1, S1, 11), p '1) E P1, ((A2, S2, 12), p '2) E P2,

W* = ((A1 Um, A2), S1 Um, S2, (11 Um, l2))}m,
Um, {(w*,F(p'1,P2)): ((A1,S1, 11),p'1) E P1,A2 = init(p2),

W* = ((A1 Um, A2), S1, (11 Um, A2))}m,
Um, {(w*,F(p1,P'2)) : ((A1,S1, 11),p'1) E P1,A1 = init(p1),

W* = ((A1 Um, A2), S2, (12 Um, A1))}m, ■

Proposition 46 The function 11'11 is well-defined and is a contraction. ■

Definition 47 Define the function O : Sproc x Sproc --t Sproc as the fixed point of '1111. ■

Proposition 48 For any p1, p2, p3 E Sproc, one has (p1 0 p2) 0 p3 = p1 0 (p2 0 p3) ■

We are now in position to specify the denotational semantics Den. In view of its compositional
nature, it is mainly defined by stating the denotational meaning of the basic cases, namely the
empty g-goal and the g-goal reduced to one g-atom, which is quite straightforward in view of the
preceeding sections. As before, undesirable problems with recursivity are avoided by means of a
(well-defined) higher-order contraction 1V den· It is stated in terms of extended g-goals rather than
g-goals in order to ease the relationship between Och and Den. Nevertheless, a similar contraction
can be defined directly on g-goals (in a similar way) and its fixed point can be proved equal to
Den, defined as the following restriction of D.

Definition 49 Define 'Vden : [Ssyst -+ Sextgoal --t Sproc] -+ [Ssyst -+ Sextgoal --t Sproc] as
follows: for any FE [Ssyst-+ Sextgoal --t Sproc], for any U E Ssyst,

i} 'Vden(F)(U)(~ezt) = p+

ii) 'Vden(F)(U)(A in < u, c >) = p-, if c=..X or if the following conditions holds:
• c = uc',
• name{A) E sort{u};
• no clause of u unifiable with A

iii) 'V den(F)(U)(A in < u, c >) = { (w1, F(U)(B1)), ... , (wm, F(U)(Bm))}m., if the following con-
ditions holds :

• c = uc';
• name{ A} E sort{u};
• H1 +-B1 , ... , Hm+-Bm are all the clauses of u unifiable with Aa, say with {idempotent)

mgu 81, ... , 8m, respectively,
• Wi = ({u}m,,{unij(Au,Hi)}m,,{uo8i}m,), for all i,

• Bi = Bi in < uo(Ji, c >
iv} 'Vden(F)(U)(A in < u, c >) = 'Vden(F)(U)(A in < a, c'>),

if c=uc' and name{A} i, sort{u)

v} 'Vden(F)(U)(u~ Gin <u,c>)={(w,F(U)(Gin<u,uc>)}m,,
where w = ({ u }m., { cxLext{ c, u}}m., { u }m,)

vi} 'Vden(F)(U)((Ai, ... , ::f.:)in < a, c >)
= 'Vden(F)(U)(Ai in < a, c >) 0 ... 0 'Vden(F)(U)(X,: in < a, c >)

Proposition 50 The function iI>' den is well-defined and is a contraction.

19

■

■

Definition 51
1} Define D: Ssyst--+ Sextgoal--+ Sproc as the {unique) fixed point of Wden·
2} Define the denotational semantics Den : Ssyst --+ Scontext --+ Ssubst --+ Sgoal --+

follows: for any U E Ssyst, any c E Scontext, any u E Ssubst, any G E Sgoal,

Den(U)(c)(u)(G) = D(U)(G in < u, c >).

Example 10 (Example 1 continued) The process of example 9 is an element of

Den(U)(u)({Y /X}.){p(Y), q(Y)).

Sproc as

■

■

We conclude this section by relating Den with the operational semantics Och• This achieved by
relating the auxiliary functions O and D . Function O handles linear structures whereas function
D manipulates tree-like structures. To relate them, we thus first need to introduce a function that,
given some tree, produces the streams it contains. We then need to select the appropriate part of
the computational set of Och, namely the action multiset part . This is the purpose of the following
function o:4. It is defined as the fixed point of a suitable contraction in order to handle correctly
infinite structures.

Definition 52 Define

Watream: [Sproc--+ Mc0 (Shist)]--+ [Sproc--+ Mc0 (Shist)]

as follows: for any FE [Sproc--+ Mco(Shist)],
i} W.tream(F)(p-) = {6-}ma

ii) w.tream(F)(p+) = {6+}ma

iii} Watream(F)({((A, S, T),P)}ma) = {S.a : a E F{p)}ma

iv} W atream(F)({(w1, P1), • • •, (wm, Pm)}ma
= Watream(F)({(w1,P1)}ma Uma • • • Uma Watream(F)({(wm,Pm)}ma)

Proposition 53 The function '11 atream is well-defined and is a contraction.

Definition 54 Define 0:4 : Sproc--+ Mc0 (Shist) as the fixed point of '11 atream•

Relating O and D simply consists of proving that the function

a40D : Ssyst --+ Sextgoal--+ Mco{Shist)

defined as

■

■

■

is a fixed point of '11 op• Indeed, as O is also a fixed point of '11 op{see proposition 19) and since
contractions have only one fixed point, the functions O and a 4oD are then proved identical. Hence,
using the corresponding restrictions, one has

{the function a40Den is defined similarly to a 4oD). Such a fixed-point and equality properties
may indeed be proved, as claimed by the following proposition.

Proposition 55
1) The function a40D is a fixed point of Wop•
2) One has O = a40D and therefore Och= a40Den ■

20

7 Comparison and conclusion

The paper has presented six semantics ranging in the operational, declarative and denotational
types . Four of them are inspired by the traditional logic programming paradigm. They consist of
the operational semantics Obu and Otd, based on the notions of bottom-up and top-down deriva­
tions, respectively, and of the declarative semantics Declm and Decl1, based on model theory and
fixed-point theory, respectively. One contribution of this paper is precisely to show how the classical
logical semantical framework can be extended to contextual logic programming and, in particular,
to the parallel version studied in this paper, including or-parallelism and and-parallelism.

More precisely, the main innovations with respect to these semantics studies are as follows .
Firstly, there is the use of derivation relations instead of the notion of derivation to characterize
the operational semantics. Secondly, a bottom-up derivation relation has been introduced, to help
grasp the declarative meaning of clauses, and to simplify the proof of the equivalence between the
operational and the declarative semantics. And finally, the notion of interpretation for Horn clause
logic has been appropriately generalized, in order to take into account the context-dependency of
the truth of formulae. An effort has thus been made to keep these semantics as simple as possible,
and well in the mainstream of logic programming semantics. Context-dependency, however, raises
new problems, requiring fresh solutions. The approach followed in this paper consisted of modelling
the "information content" of contexts by situations, and units by situation updates. It is hoped
that this approach can be adapted to other cases, where different kinds of situation transformations
can be used to represent different kinds of context extension.

The language CLL has a certain similarity with the language proposed by Miller ((M86], (M89]),
which is based on the deduction theorem of the predicate calculus. There are however two main
differences between the two languages. The context mechanism in Miller's language consists of
adding new clauses to the clauses in the context . In CLL, the clauses are kept separated, and new
predicates are added instead, overriding all existing predicates with the same name. The use of
clauses instead of predicates complicates enormously the semantics, as can be appreciated in the
semantics put forward by Miller .

The two other semantics are issued from the imperative tradition, and, more particularly,
from its metric semantical branch ((BZ82], (BKMOZ86], (BM88], (B88], (KR88], (BK88], . . .).
They consist of the operational semantics Och, characterizing computations by means of streams,
and of the denotational semantics Den, characterizing them, in a compositional way, via tree­
like structures. With respect to these semantics, our contribution is fourfold. First, the parallel
contextual logic programming framework is tackled; this requires new solutions that were not
addressed before. Second, parallel computations have been modelled in a very realistic manner:
our perception includes both interleaving and true concurrency. Restated in other terms, in order
to allow a parallel compound statement to proceed, it is sufficient that one subcomponent performs
one step although, all of them are allowed to do so. Third, repetition of computations has been
taken into account. Fourth, use of local states and of reconciliation to combine them has allowed to
express the denotational semantics very simply: processes are here not composed of full functions
but of quite intuitive computation steps: input substitutions, actions and output substitutions.

All these semantics have been related throughout the paper, thanks to propositions 12, 21, 33,
36, 38, 55. They are summed up in Figure 1.

The minimal relations have only been stated in the paper. From them, it is possible to deduce
other relations, for instance to connect Den with Deel,. It is furthermore impossible to add
nonredundant relations. For instance, it is impossible to relate Otd and Och since the former
essentially delivers the results of the computation and the latter basically delivers histories of
the computation. Similarly, it seems impossible to guess the choice point to build Den from
Och• However, it is worth noting that although the semantics are different, it is possible to further
connect the bottom-up derivation, the top-down derivation and the model theory. Propositions 10,
35, 37 and have, respectively, established the equivalence between the bottom-up and top-down
derivations, the equivalence between the bottom-up derivation and the satisfaction relation, and
the equivalence between the top-down derivation and the satisfaction relation. Hence, figure 1 can
be completed by figure 2.

21

al

---11►~ Qbu

a3\ /al

Figure 1: The minimal relations

(Proposition 10)

~" .. ◄----------t►~ ~d

(Proposition 35~ /.,oposition 37)

I=

Figure 2: Equivalence of the bottom-up derivation, top-down derivation and satisfaction relation

22

The parallel version of contextual logic programming presented in this paper is quite simple:
it just includes or-parallelism and and-parallelism. It is not considered as a practical language to
program with but rather as a first case study model. It is however quite interesting in the sense
that it captures both the basis of contextual logic programming and of parallel logic programming.
Our future work, under development, will be based on the results presented in this paper. It will be
concerned with more elaborated versions including inheritance, guard-like constructs with related
commitment operations, suspension conditions and some other more elaborated mechanisms (under
development) for communication and concurrency. Also, we are trying to develop semantics closer
to real computation in treating or-parallelism as real parallelism and not just as non-deterministic
choice as in the paper. Finally, we are investigating the relationship of our model with semantics
of the partial order type such as pomsets or event structures (see e.g. [Gr81], [Pr86], [BW90]).

8 Acknowledgments

The idea of contextual logic programming has been developed in joint work with A. Porto, with
whom we have discussed many of the topics of this paper. We also thank the C.W.I. concurrency
group, composed by J.W. de Bakker, F. de Boer, F. van Breughel, A. de Bruin, E. Horita, P.
Knijnenburg, J. Kok, J . Rutten, E. de Vink and J . Warmerdam, for comments on a previous
version of this paper. In particular, the first author wishes to thank E. Horita and J. Warmerdam
for their "every-day" intensive discussions.

The research reported herein has been partially supported by Esprit BRA 3020 (Integration).
The first author likes to thank also the Belgian National Fund for Scientific Research as well as the
University of Namur for having supported his past research, from which some ideas of this paper
have arisen. The second author also thanks the lnstituto Nacional de Investigai;ao Cientifica for
partial support.

9 References

[AR89] America P., Rutten J.J.M.M., Solving reflexive domain equations in a category of complete
metric spaces, Journal of Computer and System Sciences, Vol 39, no. 3, 1989, pp. 343-375.

[B88] de Bakker J.W., Comparative Semantics for Flow of Control in Logic Programming without
Logic, Report CS-R8840, Center for Mathematics and Computer Science, Amsterdam, The
Netherlands, 1988, to appear in Information and Computation.

[BK88] de Bakker J.W., Kok J.N., Uniform Abstraction, Atomicity and Contractions in the Com­
parative Semantics of Concurrent Prolog, Proc. of FGCS, 1988, pp. 347-355.

[BKMOZ86] de Bakker J.W., Kok J.N., Meyer J.-J.Ch, Olderog E .-R., Zucker J.I., Contrasting
Themes in the Semantics of Imperative Concurrency, in Current Trends in Concurrency :
Overviews and Tutorials (J.W. de Bakker, W .P. de Roever, G. Rozengerg, eds .), Lecture
Notes in Computer Science, Vol. 224, Springer-Verlag, 1986, pp. 51-121.

[BKRP89] de Boer F.S., Kok J.N., Palamidessi C., Rutten J.J .M.M., Semantic Models for a Version
of PARLOG, Proc. of the 6th Int. Conj. on Logic Programming, 1989, pp. 621-636.

[BM88] de Bakker J.W., Meyer J.-J.Ch., Metric Semantics for Concurrency, BIT, 28, 1988, pp.
504-529.

[BW90] de Bakker J.W., Warmerdam J., Metric Pomset Semantics for a Concurrent Language
with Recursion, to appear in Proc. of the 18e Ecole de Printemps d'lnformatique Theorique,
La Roche-Posay, France, 1990.

[BZ82] de Bakker J.W., Zucker J.I., Processes and the Denotational Semantics of Concurrency,
Information and Control 54, 1982, pp.70-120.

23

[En77] Engelking R., General Topology, Polish Scientific Publishers, 1977.

(Gr81] Grabowski J., On Partial Languages, Fundamenta Informaticae IV.2, 1981, pp . 427-498.

(Ja89) Jacquet J.-M., Conclog : a Methodological Approach to Concurrent Logic Programming,
Ph.D. Thesis, University of Namur, Belgium, 1989, to appear as Lecture Notes in Computer
Science, Springer-Verlag.

(Ja90) Jacquet J.-M., Semantics for a Concurrent Contextual Logic Programming Language, to
appear as Technical Report, Center for Mathematics and Computer Science, Amsterdam,
The Netherlands.

(KR88] Kok J .N., Rutten J.J.M.M., Contractions in Comparing Concurrency Semantics, Proc.
15th /GALP (T. Leisto, A. Salomaa, eds.), Lecture Notes in Computer Science, Vol. 317,
Springer-Verlag, 1988, to appear in Theoretical Computer Science.

(M86) Miller D., A Theory of Modules for Logic Programming, Proc. of the 1986 Symposium on
Logic Programming, 1986, pp. 106-114.

(M89) Miller D., A Logical Analysis of Modules in Logic Programming, Journal of Logic Program­
ming (6), 1989, pp. 79-108.

(Mo89) Monteiro L., The Semantics of Contextual Logic Programming, Technical Report UNL
Dl-5/89, Departamento de Informatica, Universidade Nova de Lisboa, Portugal, 1989.

(MP89) Monteiro L., Porto A., Contextual Logic Programming, Proc. of the 6th Int. Conj. on
Logic Programming, 1989, pp. 284-299.

(Pa88] Palamidessi C ., A Fixpoint Semantics for Guarded Horn Clauses, Technical Report CS­
R8833, Center for Mathematics and Computer Science, Amsterdam, The Netherlands, 1988.

(Pa90] Palamidessi C ., Algebraic Properties of Idempotent Substitutions, Technical Report TR-
32/89, Dipartimento di Informatica, University of Pisa, P isa, Italy, 1989, to appear in Proc.
of the 17th ICALP, 1990.

(Pl81] Plotkin G.D., A Structural Approach to Operational Semantics, Tedmical Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

(Pr86) Pratt V., Modelling Concurrency with Partial Orders, Int. Journal of Parallel Program­
ming, 15, 1986, pp. 33-71.

24

OKiVANGEN 3 JULI \99Q

