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Wilson’s construction for mutually orthogonal Latin squares is generalized. This generalized
construction is used to improve known bounds on the function n, (the largest order for which
there do not exist r MOLS). In particular we find

n, <780, ng<4738,  ng<5842,  n,,<7222,
n, <7478, n,;<9286, n,;<9476, n,s=<10632.

0. Introduction

For the definition of a Latin square and a set of mutually orthogonal Latin
squares, (MOLS), see Dénes and Keedwell [8]. Let N(v) denote the maximum
number of MOLS of order v. (For v > 1 we have N(v)<v—1; it is convenient to
put N(0) = N(1) = +.) Chowla, Erdos 2nd Straus [7] showed that lim,_.., N(v) =
+w, Consequently we may define

n, :=max{v | N(v)<r} (for r=2).

Wilson [23] proved that n, <r'” when r is sufficiently large. For small vaiues of r
explicit upper bounds for n, have been obtained. The current state of affairs is:

n,=6 (Bose, Shrikhande and Parker [2]),

ns<14 (Wang and Wilson [22]),

ny<52 (Guérin [9)),

ns<62 (Hanani [10]),

ne<76 {Wojtas [26)),

n, <780, ng=<4738, ny=<>5842, n,,<7222,

n, <7478, n,;<9286, n,;<9476, n;,<n,;s=<10632 (this paper),
N3 <65278 (Brouwer [3]).

(The very good bounds on n, for r <6 are obtained using the fact that 7, 8,9 are
consecutive prime powers. The bounds on n;s and ns;, come from 16,17 and
31, 32 respectively.) For a list of lower bounds for N(v), v <10000, see Brouwer
[3].

As is well known, the existence cf r mutually orthogonal Latin squares of order
0012-365X/82/0000-0000/$02.75 © 1982 North-Holland
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v is equivalent to the existence of a transversal design TD[r +2; v] (with blocks of
size r+2 and r+2 groups of size v) (see, e.g. Wilson [23]). We shall vse the
language of transversal designs in the sequel.

In [23] Wilson describes a recursive construction for transversal designs. This
construction was gene-alized by Wojtas [27, 28] and Stinsor [18]. This construc-
tion is now further generalized to subsume the other constructions. (Both authors
arrived independently at essentially the same theorem — the logical conclusion of
the work of Wojtas and Stinson. A much more general construction for group
divisible designs, generalizing almost every known recursive construction, has just
been found by Stinson (cral communication) but it seems that the specialization of
this very general resuit to the case of transversal designs is almost equivalent to
our result.)

1. The construction

As auxiliary structures in the construction we need ‘transversal designs with -
holes’, things that lock like a transversal design from which one or more (disjoint)
subdesigns have been removed. (This concept —in the case of one hole — occurs in
Horton [11] under the name ‘incomplete array’.) Specifically, we write TD[k; v]-
Yi_1 TD[k; ;] for a structure (X, %, &, (Y;);<,) where X is a set of kv points,
9$={G,, G,,...,G,} is a partition of X into k groups of v elements each, each
Y, (1=<i=<r)is a set of ky; points such that |Y; NG;| =y, for 1<j=<k,and o« is a
set of subsets of X called blocks, each containing exactly one element from each
group, such that each pair {x, y} of clements from different groups is either
contained in Y; for some i or occurs in a unique block of & (but not both).

Thus it follows that each block contains k elements and there are v2—Y7_, u?
blocks. Notice that for r=0 the concept ‘transversal design with zero holes’
coincides with the usual concept of transversal design. Also, that if a transversal
design contains r disjoint subdesigns we obtain a ‘transversal design with r holes’
by removing the blocks of these subdesigns. Note however that a transversal
design with holes might exist where the full design does not exist. For example,
Horton constructed TD[4; 6]—-TD[4; 2].

The following is our main theorem.

Theorem 1.1. Let (X, %, o) be a TD[k +1; t] where $={G,, ..., G, H,, ..., H}.
For 1=<i=<l let H,=Y%,H; be a partition of H, Let nonnegative numbers
m, m; be given such that the following two conditions are satisfied.

(i) For 1=<<i<| there exists a transversal desig 1

!
Tl)[k;;{;.1 mn-h,-] where hy:=|Hy|.
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(ii) For any block A € intersecting Hy;, (1<i<1) there exists an incomplete
transversal design (transversal design with 1 holes)

1 1
TD[k; m+ Z mij(i)] - Zl TD[k; my,].

i=1

Then a TD[k; mt+Y;_, Y7u, m;h,] exists.

Proof. Let I, ={1,2,..., k} be some set of cardinality k. Let M, M be sets of
cardinality m, my;, respectively. Let X,=G,;U - - - UG,. For eact block A €,
put Ag=ANX;, and A, =ANH, (1<i=<]). The design we constict will have
pointset

X* =(XoxM)U U (I, X M; XI'Iij)
i
and collection of groups ¥*={G¥, ..., G¥}, where
G¥=(G,xM)uU q {i}xM; xH;) (I<i<k).

It remains to describe the blocks.
For each block A € # construct a TD[k; m +},; my;,]— Y, TD[k; my;,] on the
set '
A*¥=(A;xM)U U (L X My X A;)

(where j(i) is defined by A; = Hy, (1<i<1)) with groups A*NG¥ (1=<i<k) and
holes I, X M;;;, X A; (1<i=<I). Let its family of blocks be B,.

Next, for 1=<i=<] let €, be the family of blocks of a transversal design
TD[k; Y m;h;] with pointset H¥={J; L, XxM;xH; and groups H¥UG]
(I1sg=k). Put £* =, B, UUJ; €. Then (X*, ¥* B*) is the required design,
as one readily checks. [J

Sometimes one needs another distribution of the holes. A still more general
theorem tells us where we may avoid holes.

Theorem 1.2. Let (X, 4, o) be a TD[k +1I; t} where $={G,,..., G, H,, ..., H).
Let H=Ji., H,. Choose a nonnegative integer m and maps w:H —Ny, g:H—
YU A such that x € g(x) for each x € H. If

(i) there exist TD[k; Z w(x)]~ Z TD[k; w(x)] (I=i<]),

xeH; xeH;
g(x)*H,
and
(1) there exist Tle; m+ Z w(x)]— Z TD[k; w(x)] (VAeHA)
xe ANH :;73;\:1

then there exists a TD[k; mt +Y ..y w(x)].
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The proof is similar to that of Theorem 1.1. We shall call the members m;; from
Theorem 1.1 and w(x) from Theorem 1.2 weights. The most useful applications
are those where all nonzero weights occur on one or two groups or on one block.
Let us formulate these explicitly.

Corollary 1.3 (Brouwer [3(b)]). If TD[k +1;t] and TD[k;}Y?., mik;} and (for
i=1,...,p) TDlk; m+m]]—TD[k; m;] all exist (where t=3}., h;), then also
TD[k; mt+37., mik;] exists.

Proof. This is the case | =1 of Theorem 1.1 [

Corollary 1.4 (Brouwer [5]). I¥ TD[k+1;t], TD[k; m], TD{k; m+w] and (for
i=1,...,D0TD[k; m+w,]—TD[k; w;] all exist (where w=Y'_, w,), then also
TD[k; mt + w] exists.

Proof. This is the case w(x)=0 for x¢ A and g(x)=A for xe A (where A is
some fixed block) of Theorem 1.2. Note that we do not need TD[k; m] in case
k+l1=¢t+1. O

Remarks. Theorem 1.2 generalizes most know:: variants of Wilson’s theorem.
One obtains Thecrem 1.1 by taking g(x) = H, for x < H,. Wilson’s construction
[23]is Theorem 1.1 with all weights either zero or one. Stinson’s construction [18]
is the case of Theorem 1.1 with weightse{0, n}. Wojtas’s construction [27] is
Corollary 1.3 with weightse{0,1,m;} and m=mym,. Corollary 14 is a
generalization of Wojtas’s lemma 2.1 [28].

Of course in this kind of situation the merit lies not so much in finding new
generalizations, as well in finding new specializations of the parameters in one of
these very general theorems so as to produce working corollaries. For example,
not until four years after Wilson’s theorem was published did Wojtas (in [26])
show that N(90)=6 was a corollary.

So let us justify these beautiful theorems by improving the known results on

n, (7<r=<15). [This is a nice test case. Previous results are (approximately in
chronological order):

n, <5036 (Bussemaker and Kamps, 1974 [12]),

n, <4922 (Wojtas, 1977 [25)),

n,<4146 and ng<9402 (Mudlir et al., 1978 [16]),
n,<4298  (Wojtas, 1978 [27]s,

n, <2862 and ng<7768 (Brovwer, 1978 [3]),

n, <2862 (Stinson, 1978 [17T,

n,< 1750 (Wojtas, 1979 [28],

n; <1726 and ng=<7464 (Brouwer, 1979 [4]),

ng <7474 (Stinson, 1979 [18]).

Here we show n,=<780 and ng=<4738, 2 gre~* leap forward.]
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2. Holes of size one

A TD[k; v]-TD[k; 0] exists if and only if TD[k; v] exists; they are the same
object. Also for holes of size one we have easy criteria.

Lemma 2.1. (a) Suppose a TD[k; v]—TD[k; u] exists. Then v=u or v= (k- u.
A TD[k; v]-TD[k; u]-TD[k; 1] exists iff v>(k— Du.

(b) Suppose a TD[k; v]—¥;.; TD[k; ] exists, where r=2 and u;=u,=-- - =
u=06. Then ov=k-1)-u+u,. X o>k-DY_w, then a
TD[k; v]-Xi-1 TD[k; u]—TD[k; 1] exists.

Proof. In order to obtain a hole of size one, remove a block disjoint from the
given holes. [J

Lemma 2.2. (a) Suppose a TD{k +1; v] exists. Then a TD[k; v]--}"_, TD[k: 1]
exists.

{(b) Suppose a TD[k+1;v]—-Y7_, TD[k + 1; u,] exists, where f :=v—Y7_, 4, >0.
Then a TD[k; v]—3i_, TD[k; u;}—Y!_, TD[k; 1] exists.

Proof. Obvious. [
The conclusion of Lemma 2.1(a) can be strengthened slightly:

Lemma 2.3. Suppose that k=3,v>(k—1)u and that a TD[k; v]-TD[k; u]
exists. Then a TD{k; v]-TD[k; u]—~2TD[k; 1] exists.

Proof. Consider the graph with the blocks of TD[k; v]—TD[k; u] which are
disjoint from the hole as vertices, two blocks being adjacent if they have
nonempty intersection. By Lemma 2.1(a) the set of vertices V' is nonempty. In
fact |Vl=0v*~u?—ku(v—u), and the graph is regular of degree d:=k(v—1-
(k—1u). Since v>(k~Du and k=3 it follows that [Vi~-1>d
(Vl-d—-1=(v~(k—-1)u)v—u—k)+k—1>0),ie., the graph is not complete so
that there exist two nonadjacent vertices. [J

Corollary 2.4. Suppose that v=k=3 anu that a TD[k;v] exists. Then a
TD[k; v]-3TD[k; 1] exists.

3. Input designs

Tn order to apply our theorems we need some constructions for transversal
gesigns with holes. First remark that if we have a TD[k; v] with subdesign



26R A. E. Brouwer, G.H.J. van Rees

TD[k; u] then by removing the blocks of the subdesign we get TD[k;v]~-
TD[k; u]. Usually we shall construct transversal designs with holes in this way.
However, some of the following propositions yield transversal designs with holes
that perhaps cannot be filled.

Proposition 3.1. Let (X, ¢, o) be a group divisible design such that for each A e {
a TD[k+1; |A|] exists. Then a TD[k;|X|]—Ygcs TD[k; |Gl] exists.

Proof. This is the well-known ‘pairwise balanced design’ — construction. (It is of

course sufficient to require the existence of TD[k; a]l-Y%., TD[k;1] for a=
|Al,Aesd) O

Proposition 3.2 (MacNeish [ 13], Bush [6]).If there exists a TD[k; m] and a TD[k; n]
then there exists a TD[k; mn] which contains a sub-TD[k; n].

More generally we have

Proposition 3.3. If there exists a TD[k; n] and a TD[k; v]-Y, TD[k; w;], then
there exists a TD[k; nv]—-Y,; TD[k; ny].

Proof. Obvious. [

The design that we constructed in the conclusion of Theorem 1.1 is full of
subdesigns. And even if some of the ingredients are missing we at least get a
design with holes. More precisely:

(A) Under the assumptions of Theorem 1.1 except for those under (i) we find that
1 “l ) ‘l 1 By
TD[k; mt + Zl L My | = ZITD["; 2 miihii]
i=1 j=1 i= i=1

exists.

(B) Under the assumptions of Theorem 1.1, if (ii) is replaced by the slightly
stronger conditior. (ii)": for any block A there exists a

- { 1
Tle; m+ Y mi,-(i)]-— Y TD[k; m;,]1-TD[k; 1],
t=1

i=1

then we may construct the design in the conclusion in such a way that it contains a
subdesign T[k; t].

Proof. Construct this subdesign on the set X; <{0} (where 0 is some fixed element
of M). (Clearly, by strengthening (i)’ further, we may obtain more disjoint
subdesigns T[k;t]) O
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(C) Under the assumptions of Theorem 1.1, if (i) is strengthened by requiring
that each TD[k; }?., myh;] contains a sub-TD[k; my,] (1<si<l), then we may
construct the design in the conclusion in such a way that it contains a subdesign
TDLk; m+Yi_; my).

(C1) In fact, disjoint blocks A give rise to disjoint such subdesigns.

[Hundreds of variants can be written down-e.g. if under (B) the ‘1’ in
condition (jii)’ is replaced by an ‘a’, then we may conclude to a subdesign
Tlk; at] - but these seem useless if one’s only purpose is to obtain good bounds
on n,.]

Similarly the design constructed in Theorem 1.2 is full of subdesigns; we refrain
from any explicit formulation.

Specializing parameters we may again convert these general remarks into useful
propositions.

Propositions 3.4. Let m>1 and suppose that a TD[k+1;t], a TD[k; m] and a
TDLk; m+1] exist; and that 0<s<t. Then a TD[k; mt +s]~TD[k; s] exists. If,
moreover TD[k;s] exists, then a TD[k; mt+s] exists which contains a sub-
TD[k;t], a sub-TD[k;m] if s#t a sub-TD[k;m+1] if s#0, and a sub-
TD{k; s].

Proof. In Theorem 1.1 put I=1,p,;=2,m;;=1,m;;,=0. By Remark (A)
TD[k; mt +s]—TD[k; s] exists. The sub-TD[k; t] is found using Remark (B)-
note that the requirement is that TD[k; m]—TD[k; 1] exists (i.e. m# 0) and that
TD[k; m +1]—2TD[k; 1] exists (i.e. k <m.+1, which follows from the existence
of TD[k; m]). The sub-TD[k; m +i] (i = 0, 1) are guaranteed by Remark (C). O

Proposition 3.5. Let m>1 and suppose that a TD[k+w;t], a TD[k; m] and a
TD[k; m+1] exist. Then a TD[k; mt+w]—TD[k; m +w] exists. If, moreover,
TD[k; m + w] exists, then there exists a TD[k; mt+w] which contains a sub-
TD[k;t], a sub-TD[k;m], a sub-TG[k;m+1] if w>0, and a sub-
TD[k; m +w].

Proof. In Corollary 1.4 put I=w and w;=---=w,;=1 (thus we obtain a
theorem of Woijtas [25, 28]). The claims again follow from (A)-(C} or their
analogues for Theorem 1.2. O

3.1. Separable designs

Bose, Shrikhande and Parker [2, Theorem 4] proved a theorem the most
important special case of which was reproved in Van Lint [1Z, Theorem 13.2.2]:
If there is a symmetric BIBD(v, k, 1) then N(k?+1)= min{N(k), N(k +1)—1}.
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But the design constructed contains a subdesign of order k —in fact Van Lint
proves

Proposition 3.6. If there is a symmetric B(k; v] and a TD[c+1; k+ 1], then there
is a TD[c; v+k]—TD[c;k].

A stvparabdle pairwise balanced design in the sense of Bose, Shrikhande and
Parker is a PBD (X, ®) with A =1 where the collection of blocks can be
partitioned into classes %, such that each (X, %,) is a 1-design with r, = k; (type I)
or ;=1 (type II). Let v:=|X|. By ‘partially completing’ this design by adding
‘points at infinity’ to the blocks of some of the classes &; (say, those with iel,
where I is some index set) and then performing the PBD construction for
transversal designs one obtains a transversal design on v+x points, where
x =Yt If only classes of type Il are present this corresponds to ordinary
completion followed by an application of Proposition 3.1; in the presence of type
I classes there is no intermediate pairwise balanced design but Bose, Shrikhande
and Parker showed how to proceed in this case.

A direct generalization of a slight improvement of their theorem is

Theorem 3.7. Let (X, %) be a separable PBD on v points with A =1 and with
separation B =Y.y B;, where each B, is a 1—(v, k;, r;) design withr, ~ k; orr,=1.
LetIcJ and let x =Y.

Suppose that there exist TD[c +¢;; k; + 1] fori e I and TD[c+ ¢;; k;] for i e ]\ L

(i) If &, =1 for all i€ J, or if there is an index i, such that B, is of type I (i.e.
r,.=1) and £,=20 and &=1 for all ieJ\{i}}, then there exists a
TD[c; v +x]—TD[c; x].

(i) If there is an index iy such that iz¢ I and B, is of type Il and g =1 for
ieJ\{io} (and ¢, is arbitrary), then there exists a TD[c;v+x]-TD[c;x]-

;-1 TD[c; k] where s =v/k and k =k, .

We omit the proof. As usual, everywhere where TD[c+1; u] was required,
TD[c; u]-3;., TD{c: 1] suffices. Also, if e.g. in case (ia) a TD[c; x]exists, then a
TD[c; v+ x] exists with subdesigns TD[c; k;] for ie J\I and TD[c; k; +1]for iel
and B, of type II.

Apart from some sporadic examples containing small blocks (say of size less

than six) ati separable designs we know are either resolvable or come from the
next theorem.

Theorem 3.8 (Brouwer [4]). Let q be the power of a prime, and 0<t<q>—q+1.
Then there exists a pairwise balanced design B[{t q+1t}, t(q>+q+1)] such that it is
the union of a symmetric 1-(v,q+1t,q+t) detign and (g>°—q+1—1t) 1-(v,t, 1)
designs. ’

3.2. A difference method

Wilson [24] has given a direct construction for incomplete transversal designs.
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Proposition 3.9. Let q=mt+1 be a prime power. Let k =m +2. If there may be
found a matrix-minus-diagonal of field elements a;eF, (1<i,j<k;i#]) such
that for each jy,j, (1=<j,<j;<k) the m differences a;,—a,, (1=<i<k;i#j,,j,)
form a system of representatives for the cyclotomic classes of index m in F,, then
Tlk; q+t]—Tlk; t] exists.

Mullin et al. [16] introduced the notation V(m, t) for a vector of length m+1
such that the circulant matrix with empty diagonal and V(m, t) as first row has the
properties required in Proposition 3.9. They constructed V(8,9) and V(8, 11).

In Appendix A we construct V(m, t) for 4<=m =<8 and q = mt + 1 <2000 for all
relevant primes (but not prime powers) q.

(It is remarkable that the time required to find such a vector for given m at first
increases strongly with t while it decreases again for large ¢: if the cyclotomic
classes are large enough, then therc are many solutions. On the other hand,
increasing m by one makes the problem an order of magnitude more difficult. I
cculd not find any V(m, t) with m>8.)

4. An example

Several authors paid attention to o,:= max{v|v odd and N(v)<r}, mainly
because usually one can obtain much better upper bounds for o, than for n,. (The
reason must be that prime powers are usually odd. One exception was r=29
where Hanani found e,,<2733666, n,o<34115553[10]- in his case just the even
numbers were simpler to deal with—but recently Brouwer [5] sliowed
(N0 <) n3,<65278 and the only possible exceptions above 60000 are even so that
03,<60000.)

Some results aze:

0,<469 aad 0,5<54047 (Szajowski, 1976 [20]),
07<335 {Wojtas, 1977 [25]),
052343 (Stinson, 1978 [17]).

For small r one finds from existing tables: 03=3, 0,<33, 0s<31, 0,<75. A
computer program produced the bounds 0,<2607, 0,,<2863, o<
3471, 0,5<3565, 0,5<5467. But in fact 5467 was the only possible exception
above 3603, so that 0,5<3603 as soon as we show that N(5467)=15. This
motivates us to prove the following lemma. (The proof is a nice illustration of how
Theorem 1.2 may be used.)

Lemma 4.1. N(5467)=15.

Proof. 5467=19-271+289+29, 289=17-17, 29=1-17+12-1
Apply Theorem 1.2 with k=17,t=19.m =271.1=2. Give in H, two points
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weight 0 and seventeen points weight 17. Give in H, one point (x,) weight 17,
twelve points weight 1, and six points weight 0. Let for x € H;, g(x) be the block
through x and x,, and let g(x) = H, for x € H,. We need the following ingredients:

(1) TD[17;289]-17TD[17;17]. This is found using Proposition 3.3 with
k=n=v=17,u,=1 (1<i=<17) and Lemma 2.2(a).

(2) TD[17, 29], which exists since 29 is prime.

(3) TD[17;271], which exists since 271 is prime.

(4) TD[17; 272} ~-TD[17; 1], which exists since 272=16.17.

(5) TD[17;288]-TD[17; 17]. This is found using Proposition 3.4 with m =
16, k=t=17,s=16.

(6) TD[17;305]-TDJ[17; 17]. This is found using Proposition 3.4 with m=
16,k =17,t=19,s = 1. Since all necessary ingredients exist, Theorem 1.2 gives
us a TD[17;5467]. O

5. Seven squares

Let us show how to use our theorems to obtain n,=<780. Wojtas [28] showed
n; <1750 and Brouwer [3] gives a list of orders for which there may not exist
seven mutually orthogonal Latin squares. For each such order >780 we indicate a
construction. Let us give an example,

876=11-72+(7x8+1x1+3x0)+(3x9+8x0)

means (apart from arithmetic equality) that N(876)=7 follows from an applica-
tion of Theorem 1.1 with (k=9),t=11,m=72,1=2,

m=(; 5 ) ma=(f ; °)

In this particular case we may check the availability of the ingredients as follows:
N(57)=17 follows from 57=72+7+1 and the existence of PG(2,7), N27)=7
since 27 is a prime power, N(72)=7 since 72=8 - 9, N(73)=7 since 73 is prime,
the existence of TD[9;80]—TD[9; 8] follows from Proposition 3.4 and 80=
9 -8+8, that of TD[9; 81]—TD[9; 9] from Proposition 3.2, that of TD[9; 82]—
TD[9; 9]—TDI[9; 1] from the existence of V(8,9), and finally that of TD[9; 89]—
TD[9; 9]-TD[9; 8] from Proposition 3.4 and the preceding Remark (C,) and
89=11-8+1.

For the designs below it is easy to verify thar the required ingredients exist. For
shortness we drop terms h X0 and write h instead of h X1 so that the above line
becomes ‘876 =11 724-(7x8+1)+3x9’. (Concerning the last line of Table 1,
that for v =796, note that by a remark due to Wojtas [26] we may choose sets H;;
with |Hy,| =8, |H,,|=9, |H3,|=9, (m;; =1, m;; = 0) in such a way that each block
A intersects at least one of the H;; so that we do not need the ingredient
TD[9; 70].)
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1750=23-72+9%x9+13
1740=23 - T1+(11x9+8)
1734=11-151+(8%x9+1)
1726=23-71+(O@x9+1)+11
1722=23-71+8%x9+17
1718=23-71+8%x9+13
1260=16-72+11x9+9
1258=17-71+(4x9+7)+8
1230=16-714+9%x9+13
1206:--11- 103 +(8%x9+1)
1202=11-99+8x13+9
1198=11-103+(7x9+2)
1190=1-72+3x9+11
1182=11-100+(9%9+1)

1180=16-72+3x9+1

1126=11-99+(4x8+5)

1026=13-72+9x9+9
1022=13-71+11x9

1020=13-71+(7x10+3x9)

1012=13-71+9x9+8

1006=13
994=13 -

982=13
966 =13
914=13
876=11
868 =11

844=11
836=11
828=11
826=11
822=11
820=11
818=11
814=11
806= 11
804=11
802=11

(796=11

-71+8x9+11

T1+(7x10+1)

= 714+(6%9+5)

< 714+(4%x9+7)
+64+(10%x8+2)
~T2+(7Tx8+1)4+3%9
+72+(6x8+1)+3x9
866=13-

56+(10x8+2)+7x8

~724+(3%x8+1)+3%9
*T14+(5%9+2)+8
+72+3%x9+9

<71 +(4%x9+1)+8
cT14+(@4%xX9+5)

- 72+43%9+1

- 71+(4x9+1)
«T714+(2x9+7)+8
<714(2%x947
~T14(2X9+5)
<724+1%x9+1
-70+8+9+9)

[Note. N(56)=7 is proved in Mills [14], N(57)=7 in Bose and Shrikhande (1], N(65)=7 follows
from Proposition 3.6, the existence of TD[9;81]-7TD[9; 10}, TD[9; 82]-TD[9; 9] and of
TD[9; 100]-TD[9; 11] follows from the existence of V(7,10), V(8,9) and V(8. 11), respectively.]

Thus we proved:

Theorem 5.1. n,<780.

6. Fifteen squares

First we ran a program with some knowledge about Latin squares to find an
upper bound on n,s. It proved n,s<59942. (As follows: as a corollary to Wilson’s

theorem we have

(*) If N(1)=16 and 0<h<t and N(h)=15, then N(16+h)=15. Given n, if
we know enough numbers h in the residue class of n (mod 16) such that
N(h)= 15, then among the numbers ¢t we get when writing n = 16t + h at least one
is coprime to 2-3-5-7-11-13 so that for this ¢ we have N{t)=16. By (%) it
follows that N(n)=15 provided that ¢t=h. Hence one finds that this works for
n=17h_. hoa beiig tlie largest element in some fixed good collection of
numbers h. As an esphat example, consider the residue class 1 (mod 16). The
program proved N(h)=15 for

he{l, 17,49, 81,97, 113, 193, 241, 257,273, 289, 305, 321, 337,
353,369, 385,401, 417, 433, 449, 465, 481, 497, 513}.
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(And indeed, N(1) =+ and all other numbers are prime powers or of the form
16g+1 or 16q+17 where g is a primepower =17.)

Now if we write n = 16t,+ 1, then we have n = 16t +h with h in the above set
and

tet,={0,1,3,5,6,7, 12,15, 16,17, 18, 19, 20, 21, 22, 23,
24,25,26,27, 28,29, 30, 31, 32}.

We claim that at least one of these t has no factors 2,3,5,7, 11 or 13. Consider
six cases according to the residue class of t, (mod 6).

(a) to=1(mod 6). Choose tet,—{0,6, 12, 18,20, 24, 26,30,32}. At most
three of these numbers are divisible by 5, at most two by 7, at most one by 11 and
at most two by 13. But we have nine choices and 9—-3—2-1-2>0, so we may
pick ¢ in such a way that (£,2-3-5-7-11-13)=1.

(B) to=2 (mod 6). Choose ter,~—{1,7, 15,19, 21, 25, 27, 31}. At most three of
these numbers have a factor 5, at most two a factor of 7, at most one a factor of
11 and at most two a facte” 13, But unfortunately 8 -3—-2—-1-2=0. Looking
somewhat closer we see that three five’s occur only when f,=1(mod 5). Now

choose tet,—{7, 15, 19,25, 27}. There is at most one 7 or 11 or 13 so that two
choices are left.

The other cases are similar.

This proves that N(n)=15 for n=1 (mod 16), n=17 - 513 =8721. (By hand
one finds N(n)=15 for n=1 (mod 16) and n>3505 - all n admit a decomposi-
tion n = 16t+h such that (») applies, or with ¢ prime, 0sh=<t—15,N(h+16)=
15 where Froposition 3.5 applies, except for n=4833=27-179,3537=
27-131,3521=31-113+18))

In a similar way one finds N(n)=15 for n=17 - h,,,, for the other residue
classes mod 16:

n (mod 16) 0 1 2 3 4 5 6 7

Roax 720 513 3154 643 3172 869 3526 615
n (mod 16) 8 9 10 11 12 13 14 15
| T 2840 841 2570 875 3212 797 2590 847

It follows that n,5<17 - 3526 = 59942 and 0,5<17-875=14875.)

Next with a shoit run it turned out that in fact the above method (n =16t+h)
also works in the interval 31050 =<n =<60000. Ccvering the interval 10000sn=<
31000 with a somewhat smarter program, and 0=:n < 10699 with the full strength
of the program that knows all recursive constructic ns described in [3], we get the
results mentioned in the introduction.

[Note. Recently I learned that Stinson [19] used a similar method to obtain a
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bound for nj,. Given his result the above work may be replaced by a search
through the interval 10000 <n<121605.]
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Appendix A

Below we list an example of a vector Vi{m, t) (Cf. Section 3.2 and references
[247, [16]; [3b]) for 4<m <8 and for all t= t, such that q = mt+1 is prime, and m
an ¢t are not both even, up to values of g around 2000.

m 45678
b 36569

Rihk o om 4 kRkk

qg= 13, gt = 16, V(4,3): 0 1 3 7 2
¢ = 29, qgtt = 36, V(4,7): 0 1 3 7 19
g= 37, qtt = 46, V(4,9): 0 1 3 2 8
q= 53, gtt = 66, V(4,13): 0 1 3 7 19
q= 6l, qtt = 76, V(4,15): 0 1 3 7 5
q = 101, g+t = 126, V(4,625): 0 1 3 2 31
q= 109, g+t = 136, V(4,27): 0 1 3 11 2
q = 149, g+t = 186, V(4,37): 0 1 3 2 5
q = 157, qtt = 196, V(4,39): 0 1 3 2 65
q= 173, gtt = 216, V(4,43): 0 1 3 2 7
q= 181, g+t = 226, V(4,45): 0 1 3 7 38
q= 197, qtt = 246, V(4,49): o} 1 3 2 23
q = 229, gt = 286, V(4,57): 0 1 3 7 59
q= 269, gt = 336, V(4,67): 0 1 3 2 21
q= 277, qtt = 346, V(4,69): 0 1 3 7 125
q= 293, qtt = 366, V(4,73): o 1 3 2 22
q= 317, gt = 396, V(4,79): 0 1 3 2 29
q= 349, qtt = 436, V(4,87): 0 1 3 2 10
q = 373, qtt = 466, V(4,93): 0 1 3 2 56
q= 389, qtt = 486, V(4,97): 0 1 3 2 5
q= 397, g+t = 496, V(4,99): 0 1 3 2 74
q = 421, qtt = 526, V(4,105): 0 1 3 7 66
q = 461, g+t = 576, V(4,113): 0 1 3 2 5
q= 509, qgtt = 636, V(4,127): 0 1 3 2 21
q = 541, qtt = 676, V(4,135): 0 1 3 7 45
q = 557, gt = 696, V(4,139): 0 1 3 2 16
q = 613, qtt = 766, V(4,153): 0 1 3 2 8
q = 653, qtt = B8l6, V(4,163): 0 1 3 2 67
q= 661, qtt = 826, V(4,165): 0 1 3 2 139
q= 677, qtt = 846, V(4,169): 0 1 3 2 85
q= 701, qtt = 876, V(4,175): 0 1 3 2 79
q= 709, qtt = 886, V(4,177): ¢ 1 3 7 38
q= 733, qtt = 916, V(4,183): 0 1 3 7 31
q= 757, gt = 946, V(4,189): 0 1 3 7 48
q= 773, qtt = 966, V(4,193): 0 1 3 2 7
q= 797, gt = 996, V(4,199): 0 1 3 2 7
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821,
829,
853,
877,
%1,
997,

1013,

1021,

1061,

1069,

1093,

1109,

1117,

1181,

1213,

1229,

1237,

1277,

1301,

1373,

1381,

1429,

1453,

1493,

1549,

1597,

1613,

1621,

1637,

1669,

1693,

1709,

1733,

1741,

1789,

1861,

1877,

1901,

1933,

1949,

1973,

1997,
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w
—
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g+t = 1026,
q+t = 1036,
g+t = 1066,
qtt = 1036,
qtt = 1176,
qtt = 1246,
qtt = 1266,
g+t = 1276,
qtt = 1326,
q+t = 1336,
qtt = 1366,
g+t = 1386,
qtt = 1396,
qtt = 1476,
qtt = 1516,
qtt = 1536,
qtt = 1546,
g+t = 1596,
q+t = 1626,
qtt = 1716,
qtt = 1726,
q+t = 1786,
qtt = 1816,
g+t = 1866,
q+t = 1936,
g+t = 1996,
q+t = 2016,
qtt = 2026,
q+t = 2046,
q+t = 2086,
g+t = 2116,
qtt = 2136,
qtt = 2166,
qtt = 2176,
qtt = 2236,
qtt = 2326,
qtt = 2346,
qtt = 2376,
qFt = 2416,
qtt = 2436,
qtt = 2466,
qét = 2496,
5  hkkk

qtt = 37,
gtt = 49,
gt = 73,
qtt = 85,
gtt = 121,
qtt = 157,
q+t = 181,
qit = 217,
qtt = 229,
gtt = 253,
qtt = 289,
g+t = 301,
g+t = 325,
qtt = 337,
qtt = 373,
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V(4,205):
V(4,207):
V(4,213):
V(4,219):
V(4,235):
V(4,249):
V(4,253):
V(4,255):
V(4,265):
V(4,267):
V(4,273):
V(4,277):
V(4,279):
V(4,295):
7(4,303):
V(4,307):
V(4,309):
V(4,319):
V(4,325):
V(4,343):
V(4,345):
V(4,357):
V(%4,363):
V(4,373):
V(4,387):
V(4,399):
V(4,403):
V(4,405):
V(4,409):
V(4,417):
V(4,423):
V(4,427):
V(4,433):
V(4,435):
V(4,447):
V(4,465):
V(4,469):
V(4,475):
V(4,483):
V(4,487):
V(4,493):
V(4,499):

V(5,6):

v(5,8):

V(5,12):
V(5,14):
Vv(5,20):
v(5,26):
Vv(5,30):
V(5,36):
v(5,38):
Vv(5,42):
V(5,48):
v(5,50):
V(5,54):
Vv(5,56):
v(5,62):

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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7
2
7
2
7
2
2
2
2
2
2
2
2
2
2
2
2

20
272
208

17

5
166
7
105
5

10
398
373

15
217

15

10

2

55
115

20
377

44

15
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g+t
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qt+t
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qtt
qtt
qtt
qtt
qt+t
qtt
qtt
qtt
q+t
gtt
qtt
qtt
q+t
qt+t
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
g+t
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
qtt
g+t
qtt
qtt
att
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397, V(5,66):

481, V(5,80):

505, V(5,84):

517, V(5,86):

553, V(5,92):

589, V(5,98):

625, V(5,104):
649, v(5,108):
685, V(5,114):
721, Vv(5,120):
757, V(5,126):
769, V(5,128):
793, v(5,132):
829, v(5,138):
841, V(5,140):
901, v(5,150):
913, v(5,152):
973, V(5,162):
985, V(5,164):
1057, V(5,176):
1093, Vv(5,182):
1129, V(5,188):
1165, V(5,194):
1189, Vv(5,198):
1225, V(5,204):
1237, V(5,206):
1261, V(5,210):
1273, V(5,212):
1309, v(5,218):
1381, v(5,230):
1405, V(5,234):
1417, v(5.236):
1461, V(5,240):
1477, V(5,266):
1549, v(5,258):
1561, V(5,260):
1585, V(5,264):
1633, V(5,272):
1657, V(5,276):
1741, V(5,290):
1765, V(5,294):
1777, V(5,296):
1813, V(5,302):
1837, V(5,306):
1885, V(5,314):
1921, v(5,320):
1945, V(5,324):
2065, V(5,344):
2089, V(5,348):
2161, V(5,360):
2173, V(5,362):
2197, V(5,366):
2233, v(5,372):
2245, V(5,374):
2281, V(5,380):
2317, V(5,386):
2341, V(5,390):
2413, V(5,402):

0
0
0
0
)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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Rikk @ om §  kkRk

q= 31, gt = 36, V(6,5): 0 1 7 30 12 21 15
q= 43, gt = 50, V(6,7): 0 1 3 16 35 26 36
q= 67, gttt = 78, V(6,11): o 1 3 14 7 2 27
q= 79, qrt = 92, V(6,13): 0 1 3 7 55 471 3%
q= 103, qtt = 120, V(6,17): 0 1 3 2 1& 99 29
q= 127, ¢tt = 148, V(6,21): 0 1 4 13 66 93 45
q= 139, ¢+t = 162, V(6,23): 0 1 3 2 31 128 58
q= 151, g+t = 176, V(6,25): 0 1 3 2 107 142 149
q= 163, g+t = 190, V(6,27): 0 1 3 2 54 B89 16
q= 199, qtt = 232, V(6,33): 0 1 3 2 23 49 €4
q= 211, qtt = 246, V(6,35): 0 1 3 2 22 114 111
q= 223, gt = 260, V(6,37): 0 1 4 13 39 216 147
q= 271, qtt = 316, V(6,45): 0 1 3 2 7 53 168
q = 283, qtt = 330, V(6,47): 0 1 3 6 13 33 124
q= 307, qgtt = 358, V(6,51): 0 1 3 8 18 215 91
q= 331, qtt = 386, V(6,55): 0 1 3 2 B 147 89
q= 367, qgtt = 428, V(6,61): 0 1 3 2 13 311 84
q= 379, qrt = 442, V(6,63): 0 1 3 2 5 346 300
q= 439, qgtt = 512, V(6,73): 0 1 4 14 25 184 45
q = 463, qtt = 540, V(6,77): 0 1 3 2 7 18 133
q = 487, qtt = 568, V(6,81): 0 1 3 2 8 33% 9
q = 499, qtt = 582, V(6,83): 0 1 3 8 23 376 474
q= 523, qtt = 610, V(6,87): 0 1 3 2 8 502 266
q = S47, g+t = 638, V(6,91): 0 1 3 2 7 43 281
q= 571, g+t = 666, V(6,95): c 1 3 2 5 59 192
q= 607, qtt = 708, V(6,101): 0 1 3 2 5 128 324
q= 619, qrt = 722, V(6,103): o 1 3 2 7 17 264
q= 631, qtt = 736, V(6,105): 0 1 3 2 5 86 411
q= 643, qrt = 750, V(6,107): 0 1 3 10 24 179 117
q= 691, gt = 806, V(6,115): 0 1 3 & 12 30 361
q= 727, qtt = 848, V(6,121): 0 1 4 1 16 445 29
q= 739, qrt = 862, V(6,123): 0 1 3 6 17 68 360
q= 751, qtt = 876, V(6,125): 0 1 3 2 5 59 189
q= 787, qtt = 918, V(6,131): 0o 1 3 2 8 67 482
q= 811, g+t = 946, V(6,135): ¢ 1 3 6 11 465 66
q= 823, qtt = 960, V(6,137): 0o 1 3 2 5 25 350
q = 859, qtt = 1002, V(6,143): o 1 3 2 5 139 2N
q = 883, g+t = 1030, V(6,147): 0 1 3 2 11 50 288
q = 907, g+t = 1058, V(6,151): 0 1 3 2 7 393 B46
q= 919, g+t = 1072, V(6,153): 0 1 4 11 16 200 231
q= 967, qrt = 1128, V(6,161): o 1 3 2 7 27 31
q= 991, qt = 1156, V(6,165): o 1 3 2 8 352 9
q = 1039, qtt = 1212, V(6,173): 0 1 3 2 5 14 422
q = 1051, q+t = 1226, V(6,175): 0 1 3 6 11 247 329
q = 1063, g+t = 1240, V(6,177): 6 1 3 2 5 315 56
q = 1087, g+t = 1268, V(6,181): 0 1 3 2 5 561 86l
q = 1123, g+t = 1310, V(6,187): o 1 3 2 5 38 786
q = 1171, gt = 1366, V(6,195): o 1 3 2 5 70 392
q = 1231, g+t = 1436, V(6,205): 0 1 3 2 5 122 559
q = 1279, qtt = 1492, V(6,213): o 1 3 2 5 46 747
q = 1291, qtt = 1506, V(6,215): o 1 3 2 5 211257
q = 1303, g+t = 1520, V(6,217): o 1 3 2 9 91 861
q = 1327, g+t = 1548, V(6,221): o 1 4 11 2 159 1119
q = 1399, q+t = 1632, V(6,233): 6 1 4 11 30 7 229
q = 1423, g+t = 1660, V(6,237): 0 1 4 11 26 488 436
q = 1447, qtt = 1688, V(6,241): o 1 3 2 5 72122
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q * 1459, q+t = 1702, V(6,243):
q * 1471, g+t = 1716, V(6,245):
q ~ 1483, gt = 1730, V(6,247):
q = 1531, q+t = 1786, V(6,255):
q = 1543, q+t = 1800, V(6,257):
q » 1567, qtt = 1828, V(6,261):
q = 1579, qtt = 1842, V(6,263):
q = 1627, qt = 1898, V(6,271):
q = 1663, q+t = 1940, V(6,277):
q = 1699, q+t = 1982, V(6,283):
q = 1723, q+t = 2010, V(6,287):
q = 1747, qtt = 2038, V(6,291):
q = 1759, g+t = 2052, V(6,293):
q = 1783, q+t = 2080, V(6,297):
q = 1831, q+t = 2136, V(6,305):
q = 1867, g+t = 2178, V(6,311):
q = 1879, gt = 2192, V(6,313):
q = 1951, gt = 2276, V(6,325):
q = 1987, g+t = 2318, V(6,331):
q = 1999, q+t = 2332, V(6,333):
q = 2011, g+t = 2346, V(6,335):
RARR g om ] hkkk
q= 43, gtt = 49, V(7,6):
q= 71, gt = 81, V(7,10):
q= 113, qic = 129, V(7,16):
q= 127, qtt = 145, V(7,18):
q= 197, g+t = 225, V(7,28):
q= 211, gbt = 241, V(7,30):
q= 239, gt = 273, V(7,34):
q= 281, gt = 321, V(7,40):
q= 337, qtt = 385, V(7,48):
q= 379, qtt = 433, V(7,54):
q = 421, q+t = 481, V(7,60):
q= 449, gt = 513, V(7,64):
q = 463, qtt = 529, V{7,66):
q= 491, q+t = 561, V(7,70):
q= 547, qtt = 625, V(7,78):
q= 617, qtt = 705, V(7,88):
q= 631, qtt = 721, V(7,90):
= 6§59 t = 753, V(7,94):
3= 673 git = 769, v§7:963:
q= 701, qtt = 801, V(7,100):
q= 743, qtr = B49, V(7,106):
q = 757, gt = 865, V(7,108):
q = 827, o4t = 945, V(7,118):
q = 883, g+t = 1009, V(7,126):
q = 911, g+t = 1041, V(7,130):
q = 953, q+t = 1089, V(7,136):
q = 967, qtt = 1105, V(7,138):
q = 1009, g+t = 1153, V(7,144):
q = 1051, q+t = 1201, V(7,150):
q = 1093, q+t = 1249, V(7,156):
q = 1163, q+t = 1329, V(7,166):
q = 1289, q+t = 1473, V(7,184):
q = 1303, q+t = 1489, V(7,186):
q = 1373, q+t = 1569, V(7,196):
q = 1429, q+t = 1633, V(7,204):
q = 1471, g+t = 1681, V(7,210):
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78 522
39 1184
277 690
41 1451
150 1116
15 562

334 1072
109 217
369 1269
21 1169
142 1186
106 1618
37 1024
115 613
32 638
53 9l
14 1842
212 877
59 882
195 247



q = 1499, g+t = 1713,
q = 1583, q+t = 1809,
q = 1597, g+t = 1825,
q = 1667, g+t = 1905,
q = 1709, g+t = 1953,
q = 1723, q+t = 1969,
q = 1877, qtt = 2145,
q = 1933, q+t = 2209,
q = 2003, q+t = 2289,
q = 2017, g+t = 2305,
RAkk g om §  Khkik

q= 73, qtt = 82,
q= 89, gt = 100,
q= 137, qtt = 154,
q= 233, qtt = 262,
q= 281, qtt = 316,
q= 313, g+t = 352,
q= 409, q-t = 460,
q = 457, qtt = 514,
q= 521, qtt = 586,
q= 569, qtt = 640,
q= 601, qtt = 676,
q= 617, qtt = 69,
q= 761, g+t = 856,
q= 805, g*r = 910,
q= 857, qrt = 964,
q = 937, g+t = 1054,
q= 953, qtt = 1072,
q = 1033, q+t = 1162,
q = 1049, g+t = 1180,
q = 1097, q+t = 234,
q = 1129, g+t = 1270,
q = 1193, q+t = 1342,
q = 1289, q+t = 1450,
q = 1321, g+t = 1486,
q = 1433, g+t = 1612,
q = 1481, g+t = 1666,
q = 1609, g+t = 1810,
q = 1657, ¢+t = 1864,
q = 1721, g+t = 1936,
q = 1753, q+t = 1972,
q = 1801, g+t = 2026,
q = 1913, qtt = 215.,
q = 1993, g+t = 2242,

More mutually orthogonal Latin squares

V(7,214):
V(7,226):
V(7,228):
v(7,238):
V(7,244):
V(7,246):
Vv(7,268):
V(7,276):
Vv(7,286)
V(7,288):

v(8,9):
v(8,11):
v(8,17):
V(8,29):
v(8,35):
v(8,39):
v(8,51):
v(8,57):
V(8,65):
v(8,71):
V(8,75):
v(8,77):
V(8,95):
V(8,101):
v(8,107):
v(8,117):
v(8,119):
Vv(8,129):
V(8,131):
v(8,137):
v(8,141):
V(8,149):
V(8,161):
V(8,165):
v(8,179):
v(8,185):
v(8,201):
v(8,207):
v(8,215):
v(8,219):
v(8,225):
Vv(8,239):
V{8,249):
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15
15

2
28
11
15
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110
50
91

121
63
59
55
17
97
22

59
35
126
60

135
295
333
509
179

89
242

89
539

114
49

34
20
80
47
107
62
67
17
74
17
25
56
l34
34
15

1313
774
607

30
397

1525

1852
816
593

1961

992
768
155
713
985
849
1294
365
1419
640

783
1438
945
1182
199
1037
1681
485
618
1493

8
23
109
16
266
197
54
154
183
337
395
371
30
116
148
1¢7
629
141
675
930
257
664
346
176
728

411
38
982

793 1429

507

689

1214 1555 1537
471 262 949
83 770 1506
1419 1339 985
540 553 434
1339 1914 630
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