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This article is the second one in a series on the use of local scale invariance in finance. 
In the first [6], we introduced a new formalism for the pricing of derivative securities, 
which focuses on tradable objects only, and which completely avoids the use of mar­
tingale techniques. In this article we show the use of the formalism in the context of 
path-dependent options. We derive compact and intuitive formulae for the prices of a 
whole range of well-known options such as arithmetic and geometric average options, 
barriers, rebates and lookback options. Some of these have not appeared in the litera­
ture before. For example, we find rather elegant formulae for double barrier options with 
exponentially moving barriers, continuous dividends and all possible configurations of 
the barriers. The strength of the formalism reveals itself in the ease with which these 
prices can be derived. This allowed us to pinpoint some mistakes regarding geometric 
mean options, which frequently appear in the literature. Furthermore, symmetries such 
as put-call transformations appear in a natural way within the framework. 

Keywords: Contingent claim pricing, scale invariance, homogeneity, partial differential 
equation. 

1. Introduction 

In our previous paper [6] we introduced a new formalism for the pricing of derivative 
securities, based on the idea of the "relativity" of prices. The core of this formalism 
is the idea that problems should be formulated in terms of tradable objects only. 
(Note that we use a broad definition of the term "tradable": every quantity that 
can be represented by a self-financing portfolio is considered to be a tradable). If 
this is done, we can show that functions expressing the price of a derivative in terms 
of prices of the underlying tradables should always be a homogeneous function of 
degree one. This follows from a simple dimensional analysis argument. The same 
should therefore be true for payoff functions, in terms of which the contracts are 
specified. In fact, we claim that any payoff function should be representable by a 
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homogene.ous junction of degree one in tradables, for else it is ill-define~. In this 
paper we show that the formalism works very well for path-dependent opt10~s, and 
that this leads to more compact formulae, which can be verified more easily and 

have a clearer financial interpretation. 
Our formulation is based on a PDE approach. We have shown that, by using 

homogeneity properties, it is very easy to derive a PDE describing the evolution of 
claim prices without making use of any martingale techniques. The solution of the 
PDE may, of course, be cast in the form of a Feynman-Kac formula using a Green's 
function approach. The PDE has an explicit symmetry corresponding to the free­
dom of choice of a numeraire. The PDE is defined in terms of volatility functions 
of tradables only, drift terms are irrelevant. The only place where drift terms do 
play a role is in the analysis of arbitrage: if deterministic relations exist between 
tradables there are conditions on the drift terms in order to exclude arbitrage. 

' The fact that our PDE has an explicit numeraire independence is fundamental. It 
is in marked contrast with the usual Black-Scholes PDE approach. In the latter 
approach the numeraire, some currency, is fixed in advance and bonds nominated 
in this currency are considered to be risk-free. This, of course, is an illusion. Even 
if interest rates are constant, a dollar bond is not risk-free in the eyes of a Euro­
pean investor. In fact, the only object that truly deserves the name "risk-free" is an 
object that has zero-value at all times. To declare any other object to be risk-free 
breaks the symmetry and makes calculations a lot less transparent. An important 
lesson that modern physics teaches us is that symmetries which exist in a problem 
should be preserved in every step of a calculation. It makes the formalism trans­
parent and gives us a powerful tool to verify results. We want to put forward the 
opinion that the local scale symmetry is one of the most fundamental ingredients 
for a pricing theory, and that other concepts, like the existence of an equivalent 
martingale measure, should be derived from this, not the other way round. 

Finally, it should be mentioned that many tricks and symmetries that appear 
in an ad hoe way in the literature, for example put-call symmetries and similarity 
reductions, can be traced back to the fundamental property of the homogeneity of 
pricing functions. It places all these concepts in a unified framework. 

The outline of this article is as follows. In Sec. 2 we recall some of the results from 
Ref .. 6. We show how to derive the fundamental PDE using the homogeneity pro­
perties of pricing functions, given a set of tradables with stochastic dynamics driven 
by Brownian motion. Then we show that the PDE posseses a symmetry associated 
with numeraire independence, which implies that only the relative volatilities of the 
un~erl~ing tradables with respect to each other matter. Next, we give an algorithm 
which lS used to derive claim prices using this PDE. Furthermore, it is shown that 
the ~omo~eneity leads in a very straightforward way to generalized put-call sym­
metries. Fmally, we recall the general solution for the case of European claims in a 
lognormal world, using Green's functions. In Sec. 3 we show that the formulation 
of the ~sia~ clai~ pricing problem in terms of the tradables leads to a consid­
erable simphficat10n of the governing PDE. We show that some results regarding 
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geometric average options which appear frequently in the literature (e.g. [12]) con­
tain mistakes. We provide the correct solutions. In Sec. 4 we construct a large 
class of solutions to the PDE, new tradables, which turn out to be very useful in 
the pricing of barrier-type options in a very compact and intuitive way. In Sec. 5 
we discuss the pricing of single and double barrier options, rebates and lookback 
options. We derive very clean formulae and show the various symmetries between 
them. We correct and extend some results on double barrier options. We end with 
a discussion and outlook. 

2. Homogeneity and Contingent Claim Pricing 

In the previous paper [6] we have shown that a fundamental property of any properly 
defined market of tradablesa is that the price of any claim depending on other 
tradables in the market should be a homogeneoush function of degree one of these 
same tradables. This property is nothing but a consequence of the simple fact that 
prices of tradables are only defined with respect to each other. Let us review some 
of the content of Ref. 6. Assume that we have a market of n + 1 basic tradables 
with prices Xµ. (µ = 0, ... , n) at time t. The price of any tradable in this market 
with a payoff depending on the prices of these basic tradables should satisfy the 
following scaling symmetry: 

V(>.x, t) = .\V(x, t) (2.1) 

which automatically impliesc (Euler) 

V(x, t) = Xµ8x,,. V(x, t) (2.2) 

where 8/8xµ = Ox,,.· This is a universal property, independent of the choice of 
dynamics. We use this fundamental property to derive a general PDE, giving the 
price of such a claim in a world where the dynamics of the tradables are driven by 
k independent standard Brownian motions, as followsd 

dxµ(t) = xµ(t)(aµ.(x, t) · dW(t) + aµ(x, t)dt), (no sum). (2.3) 

Consistency requires that both aµ and aµ are homogeneous functions of degree zero 
in the tradables, i.e. they should only depend on ratios of prices of tradables. Note 
that we do not specify the numeraire in terms which the drift and volatility are 

aTradables are objects which are trivially self-financing: it doesn't cost nor yield money to keep 
a fixed amount of them. Two examples are stocks and bonds. Note that money is not a tradable, 
unless the interest rate is zero. 
bA function f(xo, .. .,xn) is called homogeneous of degree r if f(axo, ... ,axn) 
ar f(xo, ... bx,.). Homogeneous functions of degree r satisfy the following property (Euler): 
:E~=O xµ"'lfiµ f(xo, ... , xn) = r J(xo, ... , xn) 
ewe make use of Einstein's summation convention: repeated indices in products are implicitly 
summed over unless otherwise stated. 
dBoth the uµ and dW are vectors, the dot denotes an inner-product w.r.t. the k driving diffusions. 
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expressed. This choice is irrelevant for the pricing problem, as we will see. Applying 

Ito to V(x, t) we get 

dV(x, t) = 8xµ V(x, t)dxµ + .CV(x, t)dt (2.4) 

where 

.CV(x, t) = ( 8t + ~aµ(x, t) · av(x, t)xµxv8xµ8xv) V · (2.5) 

So, if V(x, t) solves .CV= 0 with the payoff at maturity as the boundary condition 

V(x, T) = f (x ), we immediately have a replicating self-financing trading strategy 

because of the homogeneity property. We will drop the distinction between such 

derived and basic quantities and always refer to them as tradables. Note that we 

do not have to use any change of measure to arrive at this result if we keep the 

symmetry explicit. Drifts are irrelevant for the derivation of the claim price. Only 

the requirement of uniqueness of the solution, i.e. no arbitrage, leads to constraints 

on the drifts terms if deterministic relations exist between the various tradables [6]. 

2.1. Symmetries of the PDE 

The scale invariance of the claim price is inherited by the PDE via an invariance 

of the solutions of the PDE under a simultaneous shift of all volatility functions by 

an arbitrary function .A(x, t) 

aµ(x,t)-+-aµ(x,t)-.A(x,t). (2.6) 

Indeed, if V solves .CV = 0, then it also solves 

( Ot + ~(aµ(x, t) - .A(x, t)) · (a11(x, t) - >..(x, t))xµxv8xJlx,,) V = 0. (2. 7) 

This can easily be checked by noting that for homogeneous functions of degree 1 
we have 

(2.8) 

This ensures that terms involving the .A drop out of the PDE. (Note that this 

eq~a~ion gives interesting relations between the various I''s of the claim). From 

this it follows that V itself must be invariant under the substitution defined by 

Eq. (2.6). This corresponds to the freedom of choice of a numeraire. It just states 

that volatility is a relative concept. Price functions should not depend on the choice 
of a numeraire. 

2.2. The algorithm 

To price contingent claims we start out with a basic set of tradables. Using these 

tradables we may construct new, derived, tradables, whose price-process V depends 

upon the basic tradables. Of course, these new tradables should be solutions to the 
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basic PDE, .CV = 0. Their payoff functions serve as boundary conditions. (Note 
that prices of basic tradables trivially satisfy the PDE, by construction). If the 
derived tradables are constructed in this way, we can use them just like any other 
tradable. In particular, we can use them as underlying tradables, in terms of which 
the price of yet other derivative claims can be expressed (and so on ... ) In fact, 
this is a fundamental property that any correctly defined market should posses. It 
amounts to a proper choice of coordinates to describe the economy. 

The general approach to the pricing of a path-dependent claim in our formalism 
can be described as follows. 

(1) The payoff is written in terms of tradable objects. 
(2) A PDE is derived for the claim price with respect to these tradables. 
(3) The PDE is solved. 
( 4) Possible consistency check: the solution should be invariant under the substi­

tution Eq. (2.6) (numeraire independence). 

2.3. Generalized put-call symmetries 

As an example of the strength of this symmetry, and to show the natural embedding 
in our formalism, consider an economy with two tradables with prices denoted by 
x1,2 and dynamics given by (i = 1, 2) 

(2.9) 

It is easy to see that under certain conditions there should be a generalized put­
call symmetry. Any claim with payoff f(x 1,x2) at maturity and price V(x1,x2,t) 
should satisfy 

(2.10) 

where a(x1 , x2, t) = a1(x1, x2, t) - a2(x1, x2, t). Homogeneity implies that it also 
solves 

( 8t + ~ IO"(x1, x2, t)! 2x§a;2 ) v = o. (2.11) 

Therefore, if !a(x1, x2, t)l2 = !O"(x2, x1, t)l2, this PDE can be rewritten as 

(at+ ~\a(x2, x1, t)\ 2x§a;2 ) v = o. (2.12) 

and we see that V(x2, x1, t) with payoff f (x2, x1) is a solution, too. This is nothing 
but a generalized put-call symmetry. In the first case x2 acts as numeraire, in 
the second case x 1 takes over this role. The usual put-call symmetry follows if we 
take a constant a and let x1 , x 2 represent a stock and a bond respectively. This 
result holds also when early-exercise features are included, but extra care should be 
taken in that case to make sure that the boundary conditions satisfy the symmetry 
operation. See for example Ref. 2. Furthermore, we would like to point out that in 
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· · t' l these symmetries also appear, but 
the usual formulation, which uses mar mga es, 

only after a lot of work. 

2.4. Lognorrnal asset prices 

In an economy with lognormal distributed asset prices 

dx,,(t) = a,,(t)x,,(t) · dW(t) + · · · (2.13) 

it is possible to v.Tite down a very elegant formula for European-type claims, as was 

shown in Ref. 6 

V(xo, ... , Xn, t) = J V(xo<P(z - Bo), ... , Xn</>(z - Bn), T)dmz (2.14) 

with 

1 ( 1 m ) 
</>(z) = ( v27i)m exp -2 ~ zr . (2.15) 

The O are m-dimensional vectors, which follow from a singular value decomposition 
µ 

of the covariance matrix :E,,,, of rank m ~ k: 

:E,,,, =: 1T a,,(u) · a,,(u)du = Bµ · B,,. (2.16) 

3. Asians 

Asian contingent claims provide payoffs which involve average prices of one (or 

more) of the underlying tradables. The averaging makes them strongly path­

dependent [11], as knowledge of the price path is required for the determination of 

the average. In this section we discuss arithmetic and geometric average options [10]. 

We show that by working with tradables it is possible to write down compact PDE's 

for the price process. For geometric average strike options it is shown that certain 

results, which appear frequently in the literature (e.g. [12]), contain mistakes. 

3.1. Arithmetic average options 

A general rule is that payoff functions can be expressed as homogeneous functions of 

degree 1 in tradables. How do we handle information from the past in this context? 

Let us consider an elementary example, a contract that pays S(s) at time T > s. 
A problem now becomes apparent. How do we relate the value of an object at two 

different times? A dollar today is not a dollar tomorrow. So we have to define how 

to translate value through time. What usually is done is to express the value of 

the stock at time s in a reference currency (say dollars). Since this is a ratio, it is 

well-defined. This is then converted back into dollars at time T. In a formula 

S(s) ~ S(s)P(T, T) 
P(s, s) (3.1) 

Here P(t, T) is a bond which pays 1 dollar at time T. The next question is: what 

tradable has this value at time T? We have to distinguish two time ranges, t > s 
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where we know the ratio <5 = S(s)/ P(s, s) and t < s where we do not. In the former 
case, the tradable is simply 8P(t, T). In the latter case we can consider it as an 
contract whose value at times equals 8P(s, T). Assuming a lognormal world, it has 
value 

J S(t)</>(z - Os)P(t, T)</>(z - OpT) d 
P(t, s)</>(z - Op.) z · (3.2) 

Here we used Eq. (2.14). Therefore, the tradable that should appear in the payoff 
is given by 

{ 
8P(t,T) 

Vs(s)(t) = S(t)P(t,T) (O _ (} ) . (O _ () ) 
P(t, s) exp s P, Pr P. 

s<t 

s>t 
(3.3) 

This tradable is an elementary building block for many path-dependent options. 
For example, an arithmetic average price call option, sampled at discrete times ti 
(1 ~ i ~ n), has a payoff defined by 

u t, Vsc"1(T) -KPr r (3.4) 

Note that this formulation allows for stochastic interest rates. To hedge the claim, 
we need not only the stock S and the bond PT = P(t, T) maturing at time T, 
but also as many bonds as there are sample dates. Obviously, when we consider 
a continuously sampled average, this becomes problematic. So let us consider a 
simplification, assuming a deterministic relation between the bond prices 

P(t, s) = er(T-s) P(t, T). (3.5) 

We will call this a deterministic bond structure. It corresponds to the assumption 
that interest rates are constant. The bonds do not have to be deterministic, the 
deterministic relations only imply that all bonds have the same volatility. In this 
case the currency N in which the bond is nominated can be expressed as 

N(t) = P(t, t) = er(T-t) P(t, T). (3.6) 

This corresponds to the usual assumptions in the literature when the bonds are 
deterministic. Now Vs(s) reduces to 

{ 
8P(t,T) 

Vs(s)(t) = e-r(T-s)S(t) 
s<t 

s>t 
(3.7) 

Now let us consider options involving a continuously sampled arithmetic average 
price. This price is represented by the tradable 

_ 1 {T 1 _ e-r(T-t) 
S(t) = T lo Vs(s)(t)ds = rT S(t) 

1 t S(s) _ 
+ T lo P(s, s) ds P(t, T) = </>S + AP. (3.8) 
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If we take the bond as the numeraire, then 

dS=aSdW+···, dB= rpaSdW + ·· ·. (3.9) 

If we choose the bond as the numeraire, in this gauge the relative volatility of the 
bonds is zero. This immediately leads to the following PDE for the price of an 

arithmetic average option 

( 8t + ~a2S2 (8s + rf>8s) 2 ) V = 0. (3.10) 

Note that if we have a contract that has a payoff, which only depends on Sand S, 
such as an average strike option, we can further reduce the dimension of the PDE 
by choosing S as a numeraire. The PDE then becomes 

(3.11) 

Introducing the variable x = S / S, one sees that the dimension of the PDE is 
reduced by one. This form can be used as a starting point to find a semi-analytical 
or numerical solution. We provide more details on semi-analytic solutions in Ref. [7], 
where we also show that the local scale invariance allows one to relate unseasoned 
arithmetic average strike and average price options. In Ref. 8 we introduce a very 

fast scheme to solve the above PDE. Finally, note that if we perform a change of 
variables in Eq. (3.10) using the running average A instead of S, we find 

(3.12) 

which corresponds to the usual formulation. 

3.2. Geometric average options 

What about geometric average options? For these, we need another building block: 
a tradable paying at time T 

( S(s) ) 
log P(s, s) P(T, T). (3.13) 

Again we distinguish two time ranges. For t > s, the tradable is JP(t, T) where 
J = log(S(s)/ P(s, s)) is known. Fort< sits value is given by 

/
l ( S(t)<jy(z -Bs) ) 
og P(t, s)rf>(z - Op.) P(t, T)rj>(z - ()pr)dz. (3.14) 

This integral can be evaluated easily, giving 

P(t, T) (1og (p~~~~) )- ~IBs - ()Prl 2 +~IBP. -Bprl 2 ) (3.15) 
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In the deterministic bond setting, things simplify to 

{ 
8P(t,T) 

Vlog(S(s))(t) = St 1 
(1og (P(t~ ~)) - r(T - s) - 2a 2 (s - t)) P(t, T) 

s < t 

s > t 

(3.16) 

(Note: for s = T this is a log-option). From this we can construct a tradable 
representing the logarithm of the geometric average (up to a factor r-1 ): 

s(t) = foT Viog(S(s))(t)ds 

= P(t,T) ((T-t)log (P~t~t~))- ~ (r+ ~a2) (T-t)2) 

+ P(t, T) 1t log (:C~~~)) ds. (3.17) 

If we take the bond as the numeraire, then 

dS=aSdW+···, ds = a(T - t)PdW + · · · ; (3.18) 

Therefore, we find the following PDE for claim prices 

( Ot + ~a2 (S28~ + 2(T - t)SP88 88 + (T - t) 2 P 2o;)) V = 0. (3.19) 

Now it is useful to perform a change of variables. We want to trade in s for the 
following object, which is again a tradable, and equals the geometric average on 
expiry 

- ( s a 2 (T- t) 3 ) 
S = p exp PT + 6T2 

= Pexp (~ (cr-t)log (!)- ~ (r+ ~a2) (T- t)2 +1) + u2 (~T~ t)3), 

(3.20) 

where we have introduced I for the integral over log(S/P). In terms of this tradable, 
the PDE becomes 

( 1 2 ( 2 2 T - t - (T - t) 2 - 2 2)) 8t + 2u S 88 + 2--;y-SS8s8s + T 2 S 08 V = 0. (3.21) 

It turns out that the prices we obtain for geometric average options differ from those 
in the literature. What seems to be missing there is the last term in the exponential 
in Eq. (3.20). We are convinced that our results are correct. To prove this, let us 
explicitly show that S satisfies the fundamental PDE 

.CS(S, P, t) = ~ ( 8tI - log (Per~T-t))) . (3.22) 
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This vanishes by definition of I. Note that the delta's corresponding to Sare simple 

- (T- t) S 
8sS= -y S' - ( t) s opS = r P. (3.23) 

Consider an average price call. Since its payoff (S - KP)+ only depends on Sand 

P, the relevant PDE reduces to 

The solution of this problem is 

VaAPc(S, P, K, t) = S<I>(d1) - KP<I>(d2) 

with 

2 - 0"2(T - t)3 
:E = 3T2 

(3.24) 

(3.25) 

(3.26) 

Here <I>(z) = f 00 exp(-~x2 )dx/ .J21r. If we look at the price of the option at t = 0, 
and use the currency corresponding to the bond as the numeraire (so that P = 
e-·r(T-tl), this formula reduces to 

VaApc(S, P, K,O) 

~,-•rsif> cog(iJ +aT) _,-..TK<J> cog(fJ +aT _ :E) (3.27) 

Here a.= ~(r + ~2 
). We wrote this in the format used in [12], but found a different 

result. Next consider an average strike call. After a suitable change of numeraire, 
the PDE becomes 

(3.28) 

In this case, the solution is 

(3.29) 

with 

(3.30) 

Again'. if we look at the price of the option at t = 0, and use the currency corre­
spondmg to the bond as the nurneraire this formula reduces to 

VaAsc(S, S, 0) = S<I> (aT + ~:E) _ e-aT S<I? (aT _ ~E) :E 2 E 2 . (3.31) 
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4. Generating New Solutions 

In this section we consider claims depending on one lognormal stock S with volatility 
a in a deterministic bond structure as before. It should be clear that in our approach 
it is a trivial exercise to write down the corresponding formula, when we have two 
lognormal stocks instead of one stock and one bond. We show that the symmetries 
of the PDE allow for the construction of classes of solutions, which prove very 
useful in constructing solutions for barrier-type claims. The governing PDE for the 
claim-price V(S, P, t) with payoff J(S, P) at time T can be written as 

.cv =(at+ ~a2s2a~) v = o. (4.1) 

In the following we will use time-to-maturity T = T - t instead of the running time 
t to simplify the notation. The PDE becomes 

.CV= (-ar + ~a2S28~) V = o. (4.2) 

The Green's function for this PDE is given by 

G( ) = 2_,i, (log(x) _~I;) 
X,T L;'f' ~ 2 1 

1 I 2 </>(z) = --e-2z 
J2;: 

(4.3) 

Now we construct a tradable R0 (S, P, T) with payoff F0 (S, P) = (S/ P)°' Pat ma­
turity for some constant o:. The convolution of the payoff function with the Green's 
function yields a new set of tradables 

(4.4) 

Recall that a tradable is a trivially self-financing object. Note that Ro(S, P, T) = P 
and R1 (S,P,T) = S. These tradables satisfy two very nice symmetry properties. 
On the one hand we have 

On the other hand 

R0 (S, P, T) = R-o+l (P, S, T), 

Ra.(R0 (S, P, T), Ra.+1(8, P, T), T) = S 

Ra.+l (R0 (S, P, T), Ra+ I (S, P, T), T) = P. 

These are special cases of the following relations 

R0 (R13(S, P, T), Rf3+1 (S, P, T), T) = R13-a+I (S, P, T) 

R 0 (R13+1(S,P,T),R13(S,P,T),T) = R13+a.(S,P,T). 

If we apply Ito to R 0 (S, P, T) we obtain 

dRa = o:a R0 dW + · · · . 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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Therefore the price V(>..Ra, µR13 , r) of a claim with payoff f(>..Ra, µR13) at maturity 
with >., µ E R satisfies the following PDE: 

(-or+ ~(a - ,6)2a2 R~oh,,) V = O. ( 4.11) 

If we introduce a scaled time 7 = (a - ,6)2r this PDE becomes of the form 

(-a,,+ ~a2 R~at) v = o, (4.12) 

which bears close resemblance to the PDE at the beginning of this section. This 
implies that if V(S, P, r) solves .CV = 0 with the payoff V(S, P, 0) = f(S, P) as 
boundary-condition, then 

(4.13) 

is a solution too of the PDE with payoff f (>..Ra, µR13, 0). Let us consider a few 
simple examples. If we denote by Vc(S, P, r) the price of a vanilla call with strike 
1 and payoff fc(S, P) = (S - P)+ is then 

Vc(S,KP,r) = Vc(R1,KRo,r) (4.14) 

with strike K will be a solution with payoff f c ( S, K P). In a similar way we define 
the price Vp(S, P, T) of a vanilla put with strike 1 and payoff f p(S, P) = (P - S) +. 
Automatically Vp(S,KP,r) will be a solution, too, with payoff fp(S,KP). The 
put-call parity transformation follows immediately: 

Vc(S,KP,r) = Vp(KP,S,r). 

It also follows trivially that when KoKp = (S/P) 2, 

Vc(S,KcP,T) = )Ko/KpVp(S,KpP,T). 

Note that S/ P is what is called the forward price in the literature. 

(4.15) 

(4.16) 

Finally, note that we may construct additional solutions to a PDE with a 
time-dependent volatility-function a(r). In this case the solutions are of the form 
V(>..Ra, µRa±1, r) where 

(s ) ( S )a 1E2a Ra , P, r = 1 E 2 e 2 P 
e• ap 

(4.17) 

and ~2 = J0T-t a(u)2du. 
The earlier quoted symmetries can be used to relate the various solutions of the 

PDE and can be used very fruitfully in the construction of solutions of, for example, 
barrier-type options. These symmetries lead to generalized put-call symmetries, 
although they also provide symmetries between vanilla and barrier options, as we 
will show in the next section. 

These types of symmetries may be very useful when one needs to hedge an exotic 
contingent claim, as was already observed in Ref. 3. Especially with barrier-type 
options it allows one to introduce semi-static hedges. 
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5. Barriers and Friends 

In this section we discuss contingent claims which possess so-called "weak path 
dependence" [11]. These claims have payoff features which are triggered by some 
event during the life-time of the contract. In contrast to the asian-type options, 
which are strongly path-dependent, their valuation is less involved, as it does not 
require knowledge of the complete path. We first consider single moving barriers, 
where we show the usefulness of the symmetry of solutions discussed in the previous 
section. Then we move on to double moving barriers claims, which can be seen 
as a double infinite sum of single moving barriers claims. Only a few terms are 
required to obtain accurate results. We show that the results of Ref. 9 are valid 
only when L < K < U, where Land U denote the lower- and upper-barrier and 
K the strike, and give the correct results for the general case including continuous 
dividends. Finally, we discuss lookback options and show that they fit nicely into 
our framework. 

Note that barriers are often monitored at discrete times. In Ref. 1 a simple and 
straightforward way to correct for this fact has been put forward. It only involves 
a simple shift of the barriers depending on the frequency of monitoring. 

5.1. Single barriers 

We start our discussion with the simplest type of a single barrier claim, a down-and­
out call. This is a call option with the additional feature that it becomes worthless 
when the stockprice hits a barrier, given by S = Be1r P = B(r)P, from above 
during the lifetime of the option. Here we have B, 'Y E R. As before, we assume 
that we have a deterministic bond structure. This implies that 'Y = r corresponds to 
a constant barrier (in terms of the currency in which the bond is nominated), while 
other values of r lead to exponentially moving barriers. The claim price should 
satisfy the standard PDE 

(-aT + ~a2S28~) Vvoc(S, P, K, B, "(, r) = 0. (5.1) 

It is well known that all specific properties of this option are in the boundary 
conditions. The boundary condition for the European down-and-out call are simply 

Vnoc(S, P, K, B, 1, 0) = (S - K P)+ for all S >BP (5.2) 

Vvoc(B(r)P, P, K, B, -y, r) = 0 for all r > 0. (5.3) 

We will now assume that B < K, and come back to the case B > K later. Let us 
first consider the case where we do not have the second boundary condition and the 
payoff is defined on the whole positive S-axis. This is just the standard European 
call Vc(S, KP, r). The second boundary condition says that the value of the option 
becomes zero if, during its lifetime, the barrier is hit. This implies that the option 
price should be lower than that of a plain call since we take more risk. Thus we 
have to subtract a barrier premium from the standard call price. 
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Let us write V(S, P, K, B, ry, r) for this barrier premium. What boundary 
conditions should this function obey? Of course, its value should coincide with 
Vc(S, KP, r) on the boundary S = B(r)P for all r > 0: 

Vc(B(r)P,KP,r) = V(B(r)P,P,K,B,ry,r). (5.4) 

If, in addition, we have V(S, P, K, B, ry, 0) = 0 for S > BP, then we can construct 
the solution to the down-and-out call by 

Vnoc(S,P,K,B,1,r) = Vc(S,KP,r)-V(S,P,K,B,ry,r). (5.5) 

At this point we invoke the results of the previous section. If Vc(S, P, r) solves 
.CV = 0, then so does 

V(S, P, K, B, ry, r) = Vc(.\R0 (S, BP, r), µR13(S, BP, r), (a - /3) 2r). (5.6) 

With this choice of the barrier premium Eq. (5.5) satisfies all boundary conditions 
if we set 

,\ = 1, 
K 

µ= B' 
2ry 

a= - u2' /3=a+l. (5.7) 

The solution is thus given by 

Vnoc(S, P, K, B, ry, r) 

= Vc(S, KP, r) - Ve ( R0 (S, BP, r), ~ Ra+1(S, BP, r), r) (5.8) 

If B > K, we can apply the same construction. Only the call Ve should now be 
replaced by a "left-clipped" call V g+, which can be defined by its pa yo ff 

B+ {S-KP 
V0 (S,KP,O) = O 

for S >BP 

otherwise 
(5.9) 

Thus its value is given by 

(5.10) 

with 

d = log(/J;) ± ~:r; :r; '-
1,2 I; 2 , :=O'yT. (5.11) 

In a similar way, we can value an up-and-out call. Such an option is only interesting 
for B > K, since otherwise it is worthless. Repeating the same arguments, we see 
that it can be defined in terms of a "right-clipped" call vg-' with payoff 

{
S-KP 

vg-cs,KP,o) = 0 
for KP < S <BP 

otherwise 
(5.12) 
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Its value follows from vg- = Ve - vg+. So the value of the up-and-out call is 
given by 

Vuoc(S, P, K, B, 7, T) 

= vg-(s, K P, T) - vg- ( R°'(s, BP, T), ~ R°'+1 (s, BP, T), T) 

The values of up/down-and-in call follow from in-out parity 

VDic(S,P,K,B,7,T) = Vc(S,KP,T)-VDoc(S,P,K,B,7,T) 

Vuw(S, P,K,B,7,T) = Vc(S, KP, T) - Vuoc(S,P,K, B,7,T). 

(5.13) 

(5.14) 

(5.15) 

Note that under the transformations Ra++ S, R°'+1 ++ P we find a vanilla-barrier 
transformation which is valid for B < K 

( (s ) R°'+1 (S, BP, T) ) VDJC Ra ,BP,T, B ,K,B,7,T =Vc(S,KP,T). (5.16) 

For a down-and-out call we find a similar symmetry, which is actually valid for all 
B: 

( ( ) R°'+1(S,BP,T) ) ( Vvoc R°' S,BP,T, B ,K,B,7,T = -Vvoc S,P,K,B,7,T). 

(5.17) 

And similarly for the up-and-out call. Furthermore, we can immediately write down 
the price for all single barrier put options by using the generalized put-call trans­
formation 

Vuop(S,P,K,B,7,r) = KVvoc (P,S, ~' ~,-1,r) 
Vu1p(S,P,K,B,7,T) = KVDic (P,S, ~' ~,-'}',T) 

Vvop(S,P,K,B,7,T) =KVuoc (P,S, ~' ~,-1,T) 

Vv1p(S,P,K,B,7,T) = KVuw (P,S, ~' ~,-7,T). 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

It is a simple check to see that these claim prices satisfy all appropriate boundary 
conditions. 

Let us show that the results above can be rewritten in the more well-known 
form using 

(5.22) 
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( S )a S ( S )a BS 
= e'YTBP e'YT = B(r)P B(r) · 

(5.23) 

For example 

V(S, P, K, B, /, r) =Ve ( Rc,(S, BP, r), ~ Ra+l (S, BP, r), r) 

( S )-~+i ((B(r)P)2 ) = -- Ve S ,KP,r 
B(r)P 

(5.24) 

The result quoted in the literature corresponds to the case where prices are ex­
pressed in the currency. If we consider a constant barrier (setting "f = r), the above 

equation collapses to 

Vvoe(S,P,K,B,"f,r) = Ve(S,KP,r)- (~)-~+1 Ve ( ~2 
,KP,r) , (5.25) 

as it should. 

5.2. Rebates 

Often, barrier options specify a rebate, an amount of money paid to the holder if 
the barrier is hit in the case of a knock-out option or not hit in the case of a knock­
in option. The premium that has to be paid for this provision can be calculated in 
terms of a rebate option. For example, let us consider a (generalized) down-and-out 
rebate optione VvoR(S,P,B,K,"(1,"f2,r). This option pays the holder Ke-Y2 ..,. Pat 
the first moment r > 0 for which S = Be'Y1T P. The usual choice is 'Yl = 12 = r, 
corresponding to a fixed barrier B and a fixed rebate K in terms of money. The 
option can be characterized by the following boundary conditions: 

VvoR(Be'Y1TP,P,B,K,71,12,r) = Ke'"f2TP 

VvoR(S,P,B,K,11,12,0) = 0 

for all r > 0 (5.26) 

for all S > BP. (5.27) 

To solve this problem, we first construct a tradable which has the proper value at 
the boundary 

>.Rc,(S,BP,r)=Ke'Y2TP for S=Be'Y1TP. (5.28) 

We find that this equation has two solutions, given by 

K a±b 1 2 
>. = B ' a± == 7 ' a = 11 - 2a b = y' a2 + 2720-2 . (5.29) 

6 a.k.a. (generalized) American digital option 
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We see that VDoR - >..R0 _ should vanish on the boundary. Now we can apply 
essentially the same techniques as we did for the down-and-out call to find that the 
rebate option can be written as 

~ ~ ( R._ (S, BP, r) + Vv ( R., (S, BP, r),R._ (S,BP, r), Gn' T) 

-VD ( R 0 _(S,BP,r),R0 +(S,BP,r), (~~r r)). (5.30) 

Here Vv(S, P, r) is an asset-or-nothing digital option, which is defined as 

( log($) 1 ) VD(S, P, r) = Sif? :E + "2:E , (5.31) 

The up-and-out rebate can be found by using a generalized put-call transformation. 
It is given by 

VuoR(S,P,B,K,")'1,/'2,r) = VvoR (P,S, ~' ~,-")'i,-1'1 +/'2,r). (5.32) 

What about knock-in rebates? We cannot simply use in-out parity to find values for 
these options because of the difference in timing of the payoff. Knock-in rebates are 
always paid at maturity, while knock-out rebates are generally paid before maturity. 
However, we can easily calculate the value of a knock-out rebate which does pay 
out at maturity, simply by setting ,,2 = 0. This allows us to use in-out parity after 
all and write 

Vv1R(S,P,B,K,/'1,r) = KP- VvoR(S,P,B,K,/'1,0,r) 

Vurn(S,P,B,K,/'1,r) = KP-VuoR(S,P,B,K,/'1,0,r). 

5.3. Double barriers 

(5.33) 

(5.34) 

Next, let us consider a call option with strike K which knocks out on two boundaries. 
The upper boundary is defined by S = He'Y 1r P, the lower by S = Le'Y27 P. Again, 
the choice "Yl = ,,2 = r corresponds to constant boundaries. We assume that L < 
K < H. A price for such a call can be constructed in an iterative way. As a first 
approximation, we consider an up-and-out call, knocking out on the upper boundary 

Voc(S, P,K,H,L,/'1,/'2, r),...., Vuoc(S, P,K,H,/'1,r). (5.35) 

Of course, this overestimates the price, since this up-and-out call has a positive 
value on the lower boundary. To compensate, we add a correction term Vi which 
has the opposite value on this boundary, and which has value zero at maturity if 
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S > LP. In the same way as before, we find that this correction term can be written 
as 

(5.36) 

(5.37) 

Y1 = R2<-ti 2.,2 ) (S, LP, r). 
" 

(5.38) 

But now, the value of the option is not vanishing on the upper boundary. So we 
need another correction term V_i, which compensates this, and has zero value at 
maturity if S < HP. Such a term can be constructed as 

(H)-~-1 ( Y_1 KH H 2 ) 
V_1 = L Vuoc X_1, H 'L'L'"f1,r 

X-1 = R_2("1~;"1a>+l (s, ~2 
P,r) ; 

Y-1 = R_2<-t~:z"12) (s, ~2 P,r). 

(5.39) 

(5.40) 

(5.41) 

Continuing in this way, we find an infinite series representation for the price of the 
out-call. The successive terms in this sum represent up-and-out calls which are more 
and more out of the money, so that the corrections terms rapidly become smaller, 
and in practice we need only a few terms to find a price with reasonable accuracy. 
The final formula becomes 

00 

Voc(S,P,K,H,L,71,'Y2,r) = L Vn (5.42) 
n=-oo 

where 

(5.43) 

(5.44) 

( HLn ) 
Yn = Ran(.,~ 2-.,2 ) S, Hn P, 'T • (5.45) 

The functions Vn have the property that Vn + V_n vanishes on the upper boundary 
and Vn + V-n+l vanishes on the lower boundary. Furthermore, Vn = 0 at maturity 
if L < S < H and n =/= 0. We have checked this result against that of [9] and 
found identical results and rates of convergence. By using in-out parity, we find the 
following formula for the price of an knock-in call with two barriers 

Vw(S, P,K,H,L,71,"f2, r) = Vuw(S, P, K, H,71,r) - L Vn. (5.46) 
n;>60 
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Generalized put-call transformations give the price for the corresponding double 
boundary put options 

( 1 1 1 ) Vop(S,P,K,H,L,"f1,"f2,r) =KVoc P,S, K'L' H,-"(2,-"(1,r ; (5.47) 

(5.48) 

What will happen when K < L < H in the case of a double barrier call option? 
In the derivation of the above formulae we have made essential use of the fact that 
the option-value Vuoc(S, P, K, H, "(1, 0) vanishes for S < LP. However, this is no 
longer true when K < L. So in order to find a price for this configuration of barriers, 
we need a new building block, the "left-clipped" up-and-out call. It can be defined 
as follows: 

ViJ0 c(S, P, K, H, L, "f, r) 

= V/J•L(S,KP,r)-V/j·L ( Ra(S,HP), ~Ra+1(S,HP),r) 

where the option V/!•L is defined by the double clipped payoff 

{ 
S - K P for LP < S < HP 

V/J•L(S,KP,O) = O 
otherwise 

(5.49) 

(5.50) 

Its price is thus given by V/j·L = vJ+ - v!f +.Now Vij00 (S, P, K, H, L, "(1, 0) does 
vanish for S < LP. Therefore in the case when K < L < H, we need to replace the 
function Vn by the following modified functions, a fact which was not recognized 
in [9]: 

(5.51) 

As a final note, let us mention that continuous dividend payments with rate q can 
easily be incorporated by making the usual substitution S -+ Se-qr. Simultane­
ously, all "I's that appear in the definition of boundaries should be adjusted like 
"{-+ "{-q. 

5.4. Lookbo.ck options 

We now turn to lookback options. Let us consider a floating strike lookback put. 
It pays the owner the difference between the maximum realized price and the spot 
price of some asset at expiry. This maximum is usually defined with respect to a 
given currency. Assuming that we are in a deterministic bond setting, it can be 
written as 

S - max S(t) 
max - O:::;t5T e"fT P( t, T) ' 

(5.52) 
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with 'Y = r. We will consider a slightly more general definition, leaving / arbi­

trary. Interestingly, this option can also be described in terms of a boundary pro­

blem (Ref. 4). If we introduce J = SmaxP and denote the price of the option by 

VLp(S, J, "(, T), the boundary conditions are 

vLP(s, J, 1, o) = (J - s)+; 

OJV£p(S, J,1, T)ls=e"r J = 0, for all r. 

(5.53) 

(5.54) 

The latter condition allows to roll-up the position self-financingly when S reaches 

a new high. It implies that at the boundary S = e-Yr J all money is invested in the 

stock. Now let us try a solution of the following form 

VLP(S, J, "(, T) = Vp(S, J, T) + Vp(>..Ra.(S, J, T), µR13(S, J, r), (a - ;3)2T), (5.55) 

where Vp(S, J, t) is the price of a plain vanilla put with strike Smax· One can check 

that this is indeed a solution, provided that we have 

1 2, 
>.. = µ = k , a = 1 - k, f3 = 1, k = o-2 . (5.56) 

Note that we must have / > 0 or else the price blows up. In greater detail, the 

solution is 

(5.57) 

where 

log(~) 1 
d1,2 = -'E- ± 2'E' 'E = O'yT. (5.58) 

From this, we find the following delta's 

(5.59) 

(5.60) 

In a very similar way, we can derive the value of the floating strike lookback call 

option. If we define J = SminP, its value is given by 

Vw(S, J, "(, r) = Vc(S, J, T) + ~ Vc(Ri-k(S, J, r), S, k2r). (5.61) 

6. Discussion and Outlook 

We have shown in this paper that the formalism put forward in Ref. 6 provides a 

powerful framework for the pricing of path-dependent contingent claim pricing. The 

formulation of the pricing problem in terms of tradables leads to more transparent 
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formulae with clearer financial interpretations. The scale symmetry which should be 
satisfied at any time by the claim prices provides a very powerful check when doing 
computations. Exploiting symmetries of the governing PDE leads to large families 
of related claims. Also put-call symmetries follow naturally from the formalism. 

In a first followup paper [7] we will discuss the pricing of arithmetic Asian 
options in greater detail. We will discuss intimate relations between the prices of 
unseasoned average price and average strike options, which follow from the local 
scale invariance. furthermore the symmetry can be used to relate vanilla options 
on cash-dividend paying stock to arithmetic Asians. A second followup paper will 
discuss the benefits of using our symmetric formulation to compute prices of con­
tingent claims numerically. 

By formulating the pricing of claims in terms of tradables, we can also clarify 
and extend results on American-type options and stochastic volatility models. This 
will be discussed in future papers. 
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