
CHAPTER 17

Algebraic Process Verification

J .F. Groote 1, M.A. Reniers2

1 CW!, P.O. Box 94079, NL-1090 GB AmMerdam, The Netherlands,

Farnlty {!lMathematics and Computing Science, Eindhoven University ofTechnolog~; P.O. Box 513,

Nl-5600 MB Eindhoven, The Netherlands
E-mail: JanFriso.Groote@cwi.nl

1 Faculty of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands CW!, P.O. Box 94079,

Nl-1090 GB Amsterdam, The Netherlands

Contents
I. Introduction
2. Process algebra with data: µCRL ..

2.1. Describing data types in µ CRL
2.2. Describing processes in µCRL.

3. A strategy for verification
3.1. Linear process operators

E-mail: M.A.Reniers@tue.nl

'.l.2. Proof principles and elementary lemmata
3.3. The general equality theorem
3.4. Pre-abstraction and idle loops

4. Verification of the Serial Line Interface Protocol
5. Calculating with n + 1 similar processes

5.1. Introduction
5.2. Linearization of two different parallel processes
5.3. Linearization of parallel processes

6. The Tree Identify Protocol of IEEE 1394 in µCRL
6.1. Description of the Tree Identify Protocol
6.2. Correctness of the implementation .

7. Confluence for process verification
7.1. Introduction
7.2. Confluence and r-inertness
7 .3. Confluence of linear process equations
7.4. State space reduction
7 .5. An example: Concatenation of two queues

Acknowledgements

HANDBOOK OF PROCESS ALGEBRA
Edited by Jan A. Bergstra, Alban Ponse and Scott A. Smolka
© 200 I Elsevier Science B. V. All rights reserved

1151

. 1153

. 1156

. 1156

. 1162

. 1172

. 1173

. 1175

. 1176

. 1179

. 1180

. 1186

. 1186

. 1186

. 1187

. 1190

. 1191

. 1192

. 1196

. 1196

. 1197

. 1200

. 1202

. 1203

. 1205

l 152

References
Subject index

Abstract

J.J:: Groote, M.A. Renier.1·

. l205

. 1208

This chapter addresses the question how to verify distributed and communicating systems
in an effective way from an explicit process algebraic standpoint. This means that all calcu
lations are based on the axioms and principles of the process algebras. The first step towards
such verifications is to extend process algebra (ACP) with equational data types which adds
required expressive power to describe distributed systems. Subsequently, linear process opera
tors, invariants, the cones and foci method. the composition of many similar parallel processes,
and the use of confluence are explained, as means to verify increasingly complex systems. As
illustration, verifications of the se1ial line interface protocol (SUP) and the IEEE 1394 tree
identify protocol are included.

Algebraic process verification 1153

I. Introduction

The end of the seventies, beginning of the eighties showed the rise of process algebras such
as CCS (Calculus of Communicating Systems) [38], CSP (Communicating Sequential Pro
cesses) [27], and ACP (Algebra of Communicating Processes) [7,8]. The basic motivation
for the introduction of process algebras was the need to describe and study programs that
are dynamically interacting with their environment [3,37]. Before this time the mathemati
cal view on programs was that of deterministic input/output transfonners: a program starts
with some input, runs for a while, and if it terminates, yields the output. Such programs
can be characterized by partial functions from the input to the output. This view is quite
suitable for simple 'batch processing', but it is clearly inadequate for commonly used pro
grams such as operating systems, control systems or even text editors. These programs are
constantly obtaining information from the environment that is subsequently processed and
communicated. The development of distributed computing, due to the widespread avail
ability of computer networks and computing equipment, makes that proper means to study
interacting systems are needed.

Process algebras allow for a rather high level view on interacting systems. They assume
that we do not know the true nature of such systems. They just regard all such systems as
processes, objects in some mathematical domain. A process is best viewed as some object
describing all the potential behaviour a program or system can execute. We only assume
that certain (uninterpreted) actions a, b, c, ... are processes, and that we can combine
processes using a few operators, such as the sequential composition operator or the parallel
composition operator. A number of axioms restrict these operators, just to guarantee that
they satisfy the basic intuitions about them. This basically constitutes a process algebra:
a domain of processes, and a set of operators satisfying certain axioms. Unfortunately,
axioms are not always sufficient, and more general 'principles' are employed. All these
principles, however, adhere to the abstract view on processes.

There are many approaches in the literature that, contrary to the process algebra ap
proach, study processes as concrete objects, such as failure traces [43], traces decorated
with actions that cannot be executed at certain moments, Mazurkiewicz traces [36], which
contain an explicit indication of parallelism, event structures [52], Petri nets [31 ,45],
objects in metric spaces [11], etc. etc. A partial overview of process models is given
in [49,50]. A very useful perspective, which we employ for illustrations, is the view of
a process as an automaton of which the transitions are labelled with actions. Each traversal
through the automaton is a run of the process. This view allows one to compactly depict
the operational behaviour of a process.

In this chapter, we want to increase our understanding of processes by manipulating
them, proving their properties, or proving that certain processes have the same behaviour.
We stress again that we do this strictly from the abstract process algebraic perspective. This
means that all our calculations in this chapter are based on the axioms and principles.

There are two major difficulties one runs into if one tries to do process algebraic verifica
tions in this way, applied to more than just trivial examples, namely restricted expressivity
and lack of effective proof methodologies.

The basic reason for the expressivity problem is that basic process algebras cannot ex
plicitly deal with data. Often this problem is circumvented by annotating data in the sub-

1154 J.F. Groote, M.A. Reniers

scripts of process variables. A consequence of this is that the number of process variables
becomes large or infinite, which is less elegant. Furthermore, it is impossible to commu
nicate data taken from infinite data domains. This generally is dealt with by considering
only finite, but sufficiently large data domains. A true problem, however, is that for larger
verifications the majority of the calculations tend to shift to the data. The role of data as
second class citizens hinders its effective manipulation. This has a direct repercussion on
the size and difficulty of the systems that can be handled.

The other problem is that the axioms and principles are very elementary. This means that
although there are very many ways to prove some property of processes, finding a particular
proof turns out to be an immense task. What is called for are proof methodologies, i.e.,
recipes and guidelines that lead in reasonable time to relatively short proofs.

We have addressed the first problem by extending one of the basic process algebras, with
data. The result is µCRL (micro Common Representation Language). Basically, it is a min
imal extension to ACP with equational abstract data types. Special care has been taken to
keep the language sufficiently small, to allow study of the language itself, and sufficiently
rich to precisely and effectively describe all sorts of protocols, distributed algorithms and,
in general all communicating systems.

In µCRL process variables and actions can be parameterized with data. Data can influ
ence the course of a process through a conditional (if-then-else)construct, and alternative
quantification is added to express choices over infinite data sorts. Recently, the language
has been extended with features to express time [23], but time is not addressed in this chap
ter. µCRL has been the basis for the development of a proof theory [20], and a tool set [10]
allowing to simulate µCRL specifications and to perform all forms of finite state analysis
on them. Using the toolset, it is even possible to do various forms of symbolic process
manipulations, on the basis of the axioms, and currently this is an area under heavy inves
tigation.

A lot of effort went into the specification and (manual) verification of various interactive
systems [2,4, 16, 18,26,32-34]. When doing so, we developed a particular methodology of
verification, culminating in the cones and foci technique [24], which enabled an increase in
the order of magnitude of systems that could be analyzed. As we strictly clung to the basic
axioms and principles of process algebra, it was relatively easy (but still time consuming)
to check our proofs using proof checkers such as Coq [12], PVS [47] and Isabelle [41,42]
(for an overview see [I 9]).

The first observation we ran into was that proving systems described in the full µ,CRL
process syntax is inconvenient, despite the fact that the language is concise. Therefore, a
normal form that is both sufficiently powerful to represent all systems denotable in µ,CRL
and that is very straightforward was required. We took Linear Process Operators or Linear
Process Equations as the normal form. This format resembles VO automata [35], extended
finite state machines [30] or Unity processes [9]. It is explained in Section 3.1.

An obvious verification problem that we often encounter is to prove an implementation
adhering to its specification. We found this to be hard for basically the same reasons in all
instances we studied. By equivalence we generally understand rooted branching bisimilar
ity. In this case the verification task is roughly that visible actions in the implementation
should be matched by visible actions in corresponding states in the specification and vice
versa. The difficulty is that often an action in the specification can only be matched in the

Algebraic process verification l 155

F

~ External actions

- - - '>- Progressing internal actions

Fig. I. A cone and a focus point.

implementation by first doing a large number of internal steps. The implementation con
tains many cone-like structures as sketched in Figure 1, where internal actions in the cone
precede the external actions at the edge of the cone. The cones and foci method employs
these structures, as summarized in the generalized equality theorem (see Section 3.3), re
ducing the proof of equality to a proof of properties of data parameters that are relatively
easy to handle.

In this method the notion of invariant has been introduced. Despite the fact that invari
ants are the most important technical means to carry out sequential program verification,
they were virtually absent in process algebra. Although it can be shown that formally in
variants are not needed, in the sense that each process algebraic proof using invariants can
be transformed into one without explicit use of this notion, we believe that invariants are
important. The reason for this is that it allows to split a proof in on the one hand finding
appropriate invariants, and on the other hand proving an equivalence or property.

Another difficulty is that one often needs to prove properties of distributed systems
that consist of an arbitrary number, say n, similar processes. It turns out that calculat
ing the parallel composition of these n processes with induction on n is cumbersome (see,
e.g., [33]). The reason for this is that it requires to describe the behaviour of only a sub
set of the n processes. However, if one looks at the problem from a different angle, the
parallel composition becomes a simple mechanical procedure. This is exactly the topic of
Section 5.

Section 7 deals with confluence which is one of the most obvious structures occuning in
distributed systems. In Milner's seminal book on process algebra [38], a full chapter was
devoted to the subject. In Section 7 it is shown how confluence can be used to simplify
the behaviour of a system considerably, after which it is much easier to understand and
analyze it.

We feel slightly unsatisfied that only the topics mentioned above are addressed in this
chapter. There is much more known and to be known about process verification. We could

1156 J.F. Groote, M.A. Reniers

not include the large number of potentially effective techniques about which ideas ex
ist, but which have not yet developed sufficiently in the process algebra context to be in
cluded. One may think about classifying distributed systems in several categories with
similar structures, the use of symmetry in distributed systems, and the use of history and
especially prophecy variables. Even if we would have attempted to include such ideas, we
would soon be incomplete, as we feel that algebraic process verification is only at the brink
of its development.

The next section starts with a thorough explanation of the language µCRL. We sub
sequently address the topics mentioned above. Interleaved with these we prove two dis
tributed systems correct, as an illustration of the method.

The material presented in this chapter is based on a number of publications. Section 2
is based on (21]. The cones and foci method and the general equality theorem presented
in Section 3 are taken from (24]. The verification of the SLIP protocol in Section 4 is
slightly adapted from [19]. The linearization of a number of similar processes presented
in Section 5 is taken from (22]. The example of the Tree Identify Protocol of IEEE 1394
(Section 6) is taken from (48]. Section 7 on confluence is based on [25].

2. Process algebra with data: µCRL

In this section we describe µCRL, which is a process algebra with data. The process al
gebra µCRL is used in different contexts and for different purposes. On the one hand it is
used as a formal specification language with a strict syntax and (static) semantics. As such
it can be used as input for a formal analysis toolset. On the other hand it is a mathematical
notation, with the flexibility to omit obvious definitions, to only sketch less relevant parts,
introduce convenient ad hoe notation, etc. In this section we stick quite closely to µCRL
as a formal language. In the subsequent sections we are much less strict, and take a more
mathematical approach.

2.1. Describing data types in µCRL

In µCRL there is a simple, yet powerful mechanism for specifying data. We use equation
ally specified abstract data types with an explicit distinction between constructor functions
and 'normal' functions. The advantage of having such a simple language is that it can
easily be explained and formally defined. Moreover, all properties of a data type must be
defined explicitly, and henceforth it is clear which assumptions can be used when proving
properties of data or processes. A disadvantage is of course that even the simplest data
types must be specified each time, and that there are no high level constructs that allow
compact specification of complex data types. Still, thus far these shortcomings have not
outweighed the advantage of the simplicity of the language.

Each data type is declared using the keyword sort. Therefore, a data type is also called
a data sort. Each declared sort represents a non-empty set of data elements. Declaring the
sort of the Boo leans is simply done by:

sort Bool

Algebraic process verification 1157

Table I
Basic axioms for Boo!

Booll ~<t =I)
Bool2 ~<h =I)-+ b =I

Because Booleans are used in the if-then-else construct in the process language, the sort
Bool must be declared in every µCRL specification.

Elements of a data type are declared by using the keywords func and map. Using func
one can declare all elements in a data type defining the structure of the data type. For
example, by

sort Boo I

func t, f :-+ Bool

one declares that t (true) and f (false) are the only elements of sort Bool. We say that t and f
are the constructors of sort Bool. Not only the sort Bool, but also its elements t and f must be
declared in every specification; they must be distinct, and the only elements of Bool. This
is expressed in axioms Booll and Bool2 in Table 1. In axiom Bool2 and elsewhere we use
a variable b that can only be instantiated with data terms of sort Boot. If in a specification
t and f can be proven equal, for instance if the specification contains an equation t = f, we
say that the specification is inconsistent and it looses any meaning. We often write </> and
-.q;. instead of <P = t and </> = f, respectively.

It is now easy to declare the natural numbers using the constructors 0 and successor S.

sort Nat

func 0 :-+Nat

S:Nat-+ Nat

This says that each natural number can be written as 0 or the result of a number of appli
cations of the successor function to 0.

If a sort D is declared without any constructor with target sort D, then it is assumed that
D may be arbitrarily large. In particular D may contain elements that cannot be denoted
by terms. This can be extremely useful, for instance when defining a data transfer protocol,
that can transfer data elements from an arbitrary domain D. In such a case it suffices to
declare in µCRL:

sort D

The keyword map is used to declare additional functions for a domain of which the struc
ture is already given. For instance declaring a function /\ on the Booleans, or, declaring

1158 J.F. Groote, M.A. Reniers

the + on natural numbers, can be done by adding the following lines to a specification in
which Nat and Bool have already been declared:

map /\ : Bool x Bool --+ Bool

+:Nat x Nat-+ Nat

By adding plain equations between terms assumptions about the functions can be added.
For the two functions declared above, we could add the equations:

var x:Bool

n, n': Nat

rew x /\ t=x

X/\f=f

n+O=n

n + S(n') = S(n + n')

Note that before each group of equations starting with the keyword rew we must declare
the variables that are used.

The machine readable syntax of µCRL only allows prefix notation for functions, but we
use infix or even postfix notation, if we believe that this increases readability. Moreover,
we use common mathematical symbols such as /\ and + in data terms, which are also not
allowed by the syntax of µCRL, for the same reason.

Functions may be overloaded, as long as every term has a unique sort. This means that
the name of the function together with the sort of its arguments must be unique. For ex
ample, it is possible to declare max: Nat x Nat--+ Nat and max: Bool x Boo I --+ Bool, but
it is not allowed to declare a function f: Bool --+ Bool and j : Bool --+ Nat. Actually, the
overloading rule holds in general in µCRL. The restrictions on declarations are such that
every term is either an action, a process name or a data term, and if it is a data term, it has
a unique sort.

Although we have that every term of a data sort equals a term that is only built from the
constructor functions this does not mean that we always know which constructor term this
will be. For example, if we introduce an additional function 2 for the sort Nat by means of
the declaration

map 2 :-+Nat

this does not give us which constructor term equals the constant 2. This information can
be added explicitly by adding an equation

rew 2=S(S(O))

Algebraic process verification 1159

When we declare a sort D. it must be nonempty. Therefore, the following declaration is
invalid.

sort D

func f:D~ D

It declares that Dis a domain in which all the terms have the form f(f(f (. ..))),i.e., an
infinite number of applications off. Such terms do not exist, and therefore D must be
empty. This problem can also occur with more than one sort. For example, sorts D and
E with constructors from D to E and E to D. Fortunately, it is easy to detect such prob
lems and therefore it is a static semantic constraint that such empty sorts are not allowed
(see [21]).

In proving the equality of data terms we can use the axioms, induction on the construc
tor functions of the data types and all deduction rules of equational logic. An abstract
data type can be used to prove elementary properties. We explain here how we can prove
data terms equal with induction, and we also show how we can prove data terms to be
nonequal.

An easy and very convenient axiom is Bool2. It says that if a Boolean term b is not
equal to t, it must be equal to f or in other words that there are at most two Boolean values.
Applying this axiom boils down to a case distinction, proving a statement for the values t
and f, and concluding that the property must then universally hold. We refer to this style of
proof by the phrase 'induction on Booleans'.

A typical example is the proof of b /\ b =b. Using induction on Bool, it suffices to prove
that this equality holds for b = t and b =f. In other words, we must show that t /\ t = t and
f /\ f =f. These are trivial instances of the defining axioms for/\ listed above.

Note that the sort Bool is the only sort for which we explicitly state that the constructors
t and fare different. For other sorts, like Nat, there are no such axioms.

The division between constructors and mappings gives us general induction principles.
If a sort D is declared with a number of constructors, then we may assume that every
term of sort D can be written as the application of a constructor to a number of arguments
chosen from the respective argument sorts. So, if we want to prove a property p(d) for all d
of sort D, we only need to provide proofs for p(c11 (d1, ... , d11)) for each n-ary constructor
c11 : S 1 x · · · x S11 ~ D and each d; a term of sort S;. If any of the arguments of c", say
argument d1, is of sort D then, as dj is smaller than d, we may use that p(d1). If we apply
this line of argumentation, we say we apply induction on D.

Suppose we have declared the natural numbers with constructors zero and successor,
as done above. We can for instance derive that 0 + n = n for all n. We apply induction
on Nat. First, we must show that 0 + 0 = 0, considering the case where n = 0. This is a
trivial instance of the first axiom on addition. Secondly, we must show 0 + S(n') = S(n'),
assuming that n has the form S(n'). In this case we may assume that the property to be
proven holds already for n', i.e., 0 + n' = n'. Then we obtain:

0 + S(n 1) = S(O + n') = S(n 1
).

1160 J.F. Groote, M.A. Reniers

As an example, we define a sort Queue on an arbitrary non-empty domain D, with an
empty queue [], and in to insert an element of D into the queue. The arbitrary non-empty
domain is obtained by the specification of sort D without constructors.

sort D, Queue

func [] :- Queue

in: D x Queue - Queue

We extend this with auxiliary definitions toe to get the first element from a queue, untoe
to remove the first element from a queue, isempty to check whether a queue is empty and
++ to concatenate two queues.

map toe: Queue - D
untoe: Queue-+ Queue

isempty: Queue - Bool
var d, d': D

q, q': Queue

rew toe(in(d,[]))=d

toe(in(d, in(d', q))) = toe(in(d', q))
untoe(in(d, rn) = []
untoe(in(d, in(d', q))) = in(d, untoe(in(d', q)))
isempty([]) = t

isempty(in(d, q)) = f

[J++q =q

in(d, q)++q' = in(d, q++q')

A queue q 1 from which the last element has been removed can be given by untoe(q 1) and
a queue q1 into which the last element of q1 has been inserted is given by in(toe(q 1), q1).
Now we prove

Suppose that -.isempty(q1). We prove the proposition by induction on the structure of
queue q1.

Base. Suppose that q 1 = [].Then is empty([]) = t, which contradicts the assumption that
-.isempty(q1).

Induction step. Suppose that q1 = in(d, q;) for some d:D and q;: Queue. By induction
we have -.isempty(q;) - untoe(q;)++in(toe(q;>, q1) = q; ++q2. Then we can distin
guish the following two cases for q;:
• q; = [].In this case we have

untoe(q1)++in(toe(q1), q1)

= untoe(in(d, []))++in(toe(in(d, [])), q1)

Algebraic process verification

= [l++in(d, q1)

=in(d,q2)

= in(d, [l++q2)

= in(d, []l++lJ2

= q1++q2.

e q; = in(d', q;'). In this case we have

untoe(q1)++in(toe(q1), q2)

= untoe(in(d, in(d', q;')))++in(toe(in(d, in(d', q;'))), q2)

= in(d, untoe(in(d', q;1
)))++in(toe(in(d'. q;')), q2)

= in(d, untoe(q; H+in(roe(q;), q2))
= in(d, q; ++q2)

= in(d, q;)++q2

= q1++q2.

1161

Note that we used that untoe(q;)++in(foe(q;),c]2) =q;++cn. This is allowed as we
can derive that isempty(q;) = isempty(in(d'. q;')) =f.

Using the previous proposition we can easily prove that

-.isempty(q)---+ untoe(q l++in(toe(q), r 1) = q

for all q :Queue. For if we take q 1 = q and q2 = [] we obtain:

-.isempty(q) ---+ untoe(q)++in(toe(q), [I) = q++[].

Assuming that we can prove q++l l = q, it is not hard to see that we thus have obtained
--.fsemp(y(q) ---+ untoe(q) ++in(toe(q), []) = q. The property q ++[] = q for all q :Queue
can be proven with induction on the structure of q:

Base. Suppose that q = []. Clearly q ++[] = [l++ [] = l] = q.
Induction step. Suppose that q = in(d, q'). By induction we have q' ++[] = q'. Then

q++[I= in(d, q')++[] = in(d, q'++[]) = in(d, q') = q.
In µCRL it is possible to establish when two data terms are not equal. This is for in

stance required in order to establish that two processes cannot communicate. There is a
characteristic way of proving that terms are not equal, namely by assuming that they are
equal, and showing that this implies t = f, contradicting axiom Boo! I.

We give an example showing that the natural numbers zero (0) and one (5(0)) are not
equal. We assume that the natural numbers with a 0 and successor function S are appropri
ately declared. In order to show zero and one different, we need a function that relates Nat
to Bool. Note that if there is no such function, there are models of the data type Nat where

1162 J.F Groote, M.A. Reniers

zero and one are equal. For our function we choose 'less than or equal to', notation ~.on
the natural numbers, defined as follows:

map ~ : Nat x Nat--+ Bool

var n,m:Nat

rew O~n=t

S(n)~O=f

S(n)~S(m)=n~m

Now assume 0 = S(O). Clearly, 0 ~ 0 = t. On the other hand, using the assumption, we
also find 0::;; 0 = S(O) ~ 0 =f. So, we can prove t =f. Hence, we may conclude 0 # S(O).

This finishes the most important aspects of the data types. There are several standard
libraries available (51,40] of which some also contain numerous provable identities. The
general theory about abstract data types is huge, see for instance [14].

2.2. Describing processes in µCRL

2.2.1. Actions. Actions are abstract representations of events in the real world that is be
ing described. For instance sending the number 3 can be described by send(3) and boiling
food can be described by boil(jood) where 3 and food are terms declared by a data type
specification. An action consists of an action name possibly followed by one or more data
terms within brackets. Actions are declared using the keyword act followed by an action
name and the sorts of the data with which it is parameterized. Below, we declare the action
name timeout without parameters, an action a that is parameterized with Booleans, and an
action b that is parameterized with pairs of natural numbers and data elements. The set of
all action names that are declared in a µCRL specification is denoted by Act.

act timeout

a: Bool
b: Nat x D

In accordance with mainstream process algebras, actions in µCRL are considered to be
atomic. If an event has a certain positive duration, such as boiling food, then it is most
appropriate to consider the action as the beginning of the event. If the duration of the event
is important, separate actions for the beginning and termination of the event can be used.

In the tables with axioms we use the letters a and a' for action names, and in order to be
concise, we give each action a single argument, although in µCRL these actions may have
zero or more than one argument. The letter c is used for actions with an argument, and for
the constants 8 and r, which are explained in Section 2.2.3 and Section 2.2.8 respectively.

2.2.2. Alternative and sequential composition. The two elementary operators for the
construction of processes are the sequential composition operator, written as p · q and
the alternative composition operator, written as p + q. The process p . q first performs the

Algebraic process ver(fication

Table 2
Basic axioms for 11 CRL

Al x+y=v+x
A2 x+(.v+:)=(x+yJ+z
A3 x +x =x
A4 (X + y) · Z = x · Z + .\' ·
AS (x·y)·z=x·(y·:)

1163

actions of p, until p terminates, and then continues with the actions in q. It is common
to omit the sequential composition operator in process expressions. The process p + q
behaves like p or q, depending on which of the two performs the first action. Using the
actions declared above, we can describe that a(3, d) must be performed, except if a time
out occurs, in which case a (t) must happen.

a(3, d) + timeout · a(t)

Observe that the sequential composition operator binds stronger than the alternative com
position operator.

ln Table 2 axioms A I-AS are listed desc1ibing the elementary properties of the sequen
tial and alternative composition operators. For instance, the axioms A I, A2 and A3 express
that+ is commutative, associative and idempotent. In these and other axioms we use vari
ables x, y and :: that can be instantiated by process terms.

For processes we use the shorthand x :::::; y for x + y = y and we write x 2 y for y :::::; x.
This notation is called summand inclusion. It is possible to divide the proof of an equality
into proving two inclusions, as the following lemma shows.

LEMMA 2 .1. F'or arhitrar:v fL CRL-terms x and y we have: if x :::::; y and y :::::; x, then x = y.

PROOF. Suppose x :::::; y and y :::::; x. By definition we thus have
(l) x + y = y, and
(2) y+x=x.

Th h . 121 A I I I)
us we o tam: x = y + x = x + y = y. 0

2.2.3. Deadlock. The language r1CRL contains a constant 8, expressing that no action
can be performed, for instance in case a number of computers are waiting for each other,
and henceforth not performing anything. This constant is called deadlock. A typical prop
erty for i5 is p + i5 = p; the choice in p + q is determined by the first action performed by
either p or q, and therefore one can never choose for i5. In other words, as long as there are
alternatives deadlock is avoided. In Table 3 the axioms A6 and A 7 characterize the main
properties of i5.

2.2.4. Process declarations. Process expressions are expressions built upon actions in
dicating the order in which the actions may happen. In other words, a process expression
represents the potential behaviour of a certain system.

1164 J.F Groote, M.A. Reniers

Table 3
AxiL>ms for deadlock

Ao x + ~ =x
A7 8·X=•I

In a 11 CRL specification process expressions appear at two places. First, there can be a
single occurrence of an initial declaration, of the form

init p

where p is a process expression indicating the initial behaviour of the system that is being
described. The init section may be omitted, in which case the initial behaviour of the
system is left unspecified.

The other place where process expressions may occur are in the right hand side of pro
cess declarations, which have the form:

proc X(x1:s,, ... ,x,,:s,,)=p

Here X is the process name, the x; are variables, not clashing with the name of a constant
function or a parameterless process or action name, and the s; are sort names. In this rule,
process X (x 1 , ••• , x,,) is declared to have the same behaviour as the process expression p.

The equation in a process declaration must be considered as an equation in the or
dinary mathematical sense. This means that in a declaration such as the one above an
occurrence of X (u 1, ... , 11,,) may be replaced by p(u 1/x1 , u 11 / x,,), or vice versa,
p(u1/.ri ,11 11 /x,,) may be replaced by X(u 1 ••••• u,,).

An example of a process declaration is the following clock process which repeatedly
performs the action tick and displays the current time. In this example and also in later
examples we assume the existence of a sort Nat with additional operators which represents
the natural numbers. We simply write I instead of S(O), 2 instead of S(S(O)), etc. Further
more. we assume that the standard functions on naturals are defined properly. Examples of
such functions are+, :S;, <,>,etc.

act tick

di.\play : Nat

proc C/ock(t: Nat) =tick· Clock(t + I) + display(t) · Clock(t)

init Clock(O)

2.2.5. Conditionals. The process expression p <J h [> q where p and q are process ex
pressions, and h is a data term of sort Bool, behaves like p if b is equal to t (true) and
behaves like q if bis equal to f (false). This operator is called the conditional operator, and
operates precisely as an then_if_else constrnct Through the conditional operator data in
fluences process behaviour. For instance a counter, that counts the number of a actions that

Table 4
Axioms for conditionals

Cl
C2

x <Jlr>y=x
X<Jft>y=y

Algebraic process verification 1165

Table 5
Axioms for alternative quantification

SUMI Ld:J) x = .\'

SUM3 "£X="£X+Xd

SUM4 L1:1J(Xd+Yd)="£X+"£Y

SUMS ("E,X) ·X = Ld:D(Xd '.\)

SUMI I (''id:/J (Xd =Yd))~ L x = "£ Y

occur, issuing a b action and resetting the internal counter after I 0 a 's, can be described
by:

proc Counter(n :Nat) =a · Counter(n + I) <111 < I 0 1> b · Counter(())

The conditional operator is characterized by the axioms C I and C2 in Table 4. All the prop
erties of conditionals that we need are provable from these axioms and Boo! I, Bool2. The
conditional operator binds stronger than the alternative composition operator and weaker
than the sequential composition operator.

LEMMA 2.2. Thef(>lfowing identities hold.for arbitrnry 11CRL-terms x, y,::: andfc>r ar

bitrary Boolean terms b, h1, b2.
(I) x <1b1> y = x <J b 1> o + y <J --.b 1> o;
(2) x<Jb1 vh21>o=x<Jb11>o+x<1h21>0;
(3) (b = t---+ x =)') ---+ x <lb I>::: = y <lb I> z.

2.2.6. Alternative quantification. The sum operator or alternative quantification

Ld:D P(d) behaves like P(d1) + P(d2) +···,i.e. as the possibly infinite choice between
P(d;) for any data term d; taken from D. This is generally used to describe a process that
is reading some input. E.g. in the following example we describe a single-place buffer,
repeatedly reading a natural number n using action name r, and then delivering that value
via action name s.

proc Buffer= L r(n) · s(n) ·Buffer

n:Nat

Note that alternative quantification binds stronger than the alternative composition op
erator and weaker than the conditional operator.

In Table 5 the axioms for the sum operator are listed. The sum operator Ld:D p is a
difficult operator, because it acts as a binder just like the lambda in the lambda calculus
(see, e.g., [I]). This introduces a range of intricacies with substitutions. In order to avoid
having to deal with these explicitly, we allow the use of explicit lambda operators and
variables representing functions from data to process expressions.

In the tables the variables x, y and :: may be instantiated with process expressions and
the capital variables X and Y can be instantiated with functions from some data sort to

1166 J.F. Groote, M.A. Reniers

process expressions. The sum operator E expects a function from a data sort to a process
expression, whereas Ld:D expects a process expression. Moreover, we take Ld:D p and
E A.d:D.p to be equivalent.

When we substitute a process expression p for a variable x or a function A.d:D.p for a
variable X in the scope of a number of sum operators, no variable in p may become bound
by any of these sum operators. So, we may not substitute the action a (d) for x in the left
hand side of SUMI in Table 4, because this would caused to become bound by the sum
operator. So, SUMI is a concise way of saying that if d does not appear in p, then we may
omit the sum operator in Lt1:/J p.

As another example, consider axiom SUM4. It says that we may distribute the sum
operator over a plus, even if the sum binds a variable. This can be seen by substituting
for X and Y A.d:D.a(d) and A.d:D.b(d), where no variable becomes bound. After [3-
reduction, the left hand side of SUM4 becomes E,w(a(d) + b(d)) and the right hand
side is Ld:D a (d) + Ld:D b(d). In conformity with the A.-calculus, we allow a-conversion
in the sum operator, and do not state this explicitly. Hence, we consider the expressions

Ld:D p(d) and Le:D p(e) as equal.
The axiom SUM3 allows to split single summand instances from a given sum. For in

stance the process expressions Ln:Nat a(n) and Ln:Nat a(n) +a(2) are obviously the same,
as they allow an a(n) action for every natural number n. Using SUM3 we can prove them
equal. Instantiate X with A.n.a(n) and d with 2. We obtain:

2:)11.a(n) = I>n.a(n) + (A.n.a(n))2.

By ,B-reduction this reduces to Ln:Nat a(n) = Ln:Nat a(n) + a(2).
We show how we can eliminate a finite sum operator in favour of a finite number of

alternative composition operators. Such results always depend on the fact that a data type
is defined using constructors. Therefore, we need induction in the proof, which makes it
appear quite involved. This apparent complexity is increased by the use of axioms SUM3
and SUM 11. Consider the equality

L r(n) <Jn ~ 21> o = r(O) + r(l) + r(2),
n:Nm

(l)

assuming that the natural numbers together with the ~ relation have been appropriately
defined. The result follows in a straightforward way by the following lemma that we prove
first.

LEMMA 2.3. For all m: Nat we find (S is the successor function):

L Xn =XO+ L XS(m).
n:Nat m:Nat

PROOF. Using Lemma 2.1 we can split the proof into two summand inclusions.

Algebraic process ver(fication 1167

(s;) We first prove the following statement with induction on n:

X11 s; XO+ L XS(m).
w:Nat

- (n = 0) Trivial using A3.
- (11=5(11 1))

XO+ L XS(m)
111:Na1

SL~1.1 XO+ L XS(m)+XS(11 1)

rn:Nat

2 Xn.

So the statement has been proven without assumptions on n (i.e. for all n). Hence, ap
plication of SUMI l, SUM4 and SUMI yields:

L Xn s; XO+ L XS(m),
n:Nat m:Nat

as was to be shown.
(2) Using SUM3 it immediately follows that for all m

L Xn;2XO+XS(m).
11:Na1

So, SUMI l, SUM4 and SUMI yield:

L Xn 2 XO+ L XS(m). D
11:Na1 m:Nat

Equation (l) can now easily be proven by:

L r(n)<1n (21>8
n:Nat

Lem~a 2.J r(O) <I 0 (2 I> 8 + L r(n' + 1) <111' +I (2 C> 8

n 1 :Na1

Lem~a2..1r(O)+r(l)<1] (21>8+ L r(n"+2)<111 11 +2(21>8
n'':Nat

Lem~• 2.3 r(O) + r(l) + r(2) <J 2 (2 C> 8 + L r(3 + n'") <111"' + 3 (2 t> 8
n'":Nut

= r(O) + r(l) + r(2).

1168 J.F. Groote, M.A. Reniers

All the identities on data that we have used in the proof above can be proved from the
axioms on natural numbers in Section 2.1.

An important law is sum elimination. It states that the sum over a data type from which
only one element can be selected can be removed. This lemma occurred for the first time in
[17]. Note that we assume that we have a function eq available, reflecting equality between
terms.

LEMMA 2.4 (Sum elimination). Let D be a sort and eq: D x D-+ Bool a function such
that for all d, e:D it holds that eq(d, e) = t if! d =e. Then

L Xd <l eq(d, e) t> 8 = Xe.
d:D

PROOF. According to Lemma 2.1 it suffices to prove summand inclusion in both direc
tions.
(£) Using Lemma 2.2.2 above we find:

Xe = Xe <Jeq(d, e) t>8 + Xe <J-ieq(d, e) t> o.

Using SUMI 1 and SUM4 we find:

L Xe = L Xd <J eq(d, e) t> 8 + L Xe <J-ieq(d, e) t> 8.
d:!J d:D d:D

Using SUMI and the summand inclusion notation we obtain:

L Xd <l eq(d, e) t> 8 s; Xe.
d:D

(2) By applying SUM3, and the assumption that eq(e, e) = t, we find:

L X d <l eq(d, e) t> 8 2 X e <J eq(e, e) t> 8 = X e.
tl:/J

LEMMA 2.5. If there is some e:D such that b(e) holds, then

x = L:x <Jb(d)t>8.

d:D

D

2.2.7. Encapsulation. Sometimes, we want to express that certain actions cannot hap
pen, and must be blocked, i.e., renamed to 8. Generally, this is only done when we want
to force this action into a communication. The encapsulation operator a H (H s; Act) is
specially designed for this task. In aH (p) it prevents all actions of which the action name
is mentioned in H from happening. Typically,

a{i>J(a. b(3). c) =a. 8,

where a, band care action names. The properties of aH are axiomatized in Table 6.

Algebraic process verification

Table 6
Axioms for encapsulation.

DD 8H(8)=8

DI ilH(a(d)) =a(d)

02 iJH(a(d))=o

03 OH (x + y) = OH(x) + ilH(Y)
04 iiH(X · y) = BH(X) · OH(Y)

SUMS iJH('l;X> = L11:DilH(Xd)

Table 7

ifa ~ H
if a EH

Axioms for internal actions and abstraction

BI c · r =C

B2 x · (r · (y + z) + y) = x · (y +::)

TIO r1(8) =8

TIT r1(rJ=r

TI! r1(a(d)) =a(d) if a If. I
TI2 r1(a(d)) = r if a EI
TB rf(x + y) = r1(x) + r1(y)
TI4 T/ (x · y) = r1 (x) · r1(y)
SUM9 r1('l;X) = Ld:D r1(Xd)
DT iJH(T) = r

1169

2.2.8. Internal actions and abstraction. Abstraction is an important means to analyze
communicating systems. It means that certain actions are made invisible, so that the re
lationship between the remaining actions becomes clearer. A specification can be proven
equal to an implementation, consisting of a number of parallel processes, after abstracting
from all communications between these components.

The internal action is denoted by r. It represents an action that can take place in a
system, but that cannot be observed directly. The internal action is meant for analysis pur
poses. and is hardly ever used in specifications, as it is very uncommon to specify that
something unobservable must happen.

Typical identities characterising r are a· r · p =a· p, with a an action and pa process
expression. It says that it is impossible to tell by observation whether or not internal actions
happen after the a. Sometimes, the presence of internal actions can be observed, due to the
context in which they appear. For example, a + r · b -:f. a + b, as the left hand side can
silently execute the r, after which it only offers a b action, whereas the right hand side can
always do an a. The difference between the two processes can be observed by insisting
in both cases that the a happens. This is always successful in a + b, but may lead to a
deadlock in a+ r ·b.

The natural axiom for internal actions is Bl in Table 7. Using the parallel composition
operator (Section 2.2.9) and encapsulation, Bl can be used to prove all closed instanti
ations of B2 [50], and therefore B2 is also a natural law characterising internal actions.
The semantics that is designed around these axioms is rooted branching bisimulation. The

1170 J.F. Groote, M.A. Reniers

axioms in all other tables hold in strong bisimulation semantics, which does not abstract
from internal actions. The first semantics abstracting from internal actions is weak bisimu
lation (38]. Weak bisimulation relates strictly more processes than rooted branching bisim
ulation, which in tum relates more processes than strong bisimulation. It is a good habit to
prove results in the strongest possible semantics, as these results automatically carry over
to all weaker variants. We do not consider these semantics explicitly in this section. The
reader is referred to for instance [8,49,39].

In order to abstract from actions, the abstraction operator T 1 (I ~ Act) is introduced,
where I is a set of action names. The process TJ (p) behaves as the process p, except that
all actions with action names in I are renamed to r. This is clearly characterized by the
axioms in Table 7.

2.2.9. Parallel processes. The parallel composition operator can be used to put processes
in parallel. The behaviour of p II q is the arbitrary interleaving of actions of the processes
p and q, assuming for the moment that there is no communication between p and q. For
example the process a II b behaves like a · b + b · a.

The parallel composition operator allows us to describe intricate processes. For instance
a bag reading natural numbers using action name r and delivering them via action name s
can be described by:

act r, s: Nat

proc Bag= L r(n) · (s(n) II Bag)
11:Nat

Note that the elementary property of bags, namely that at most as many numbers can be
delivered as have been received in the past, is satisfied by this description.

It is possible to let processes p and q in p II q communicate. This can be done by
declaring in a communication section that certain action names can synchronize. This is
done as follows:

comm a I h=c

This means that if actions a (d 1, ... , d11) and b (d 1 , ... , d11) can happen in parallel, they
may synchronize and this synchronization is denoted by c(d1, ... , d11). If two actions syn
chronize, their arguments must be exactly the same. In a communication declaration it is
required that action names a, b and c are declared with exactly the same data sorts. It is not
necessary that these sorts are unique. It is for example perfectly right to declare the three
actions both with a sort Nat and with a pair of sorts D x Bool.

If a communication is declared as above, synchronization is another possibility for par
allel processes. For example the process a II bis now equivalent to a · b + b ·a+ c. Often,
this is not quite what is desired, as the intention generally is that a and b do not happen
on their own. For this, the encapsulation operator can be used. The process afa.hl (a II b) is
equal to c.

Axioms that describe the parallel composition operator are in Table 8. In this table the
communications between action names from the communication section are represented
by the communication function y. In order to formulate the axioms two auxiliary parallel

Algebraic process verification

Table 8

Axforns for parallelism in 11CRL

CMI

CM2
CM3
CM4
SUM6

CF

CDI
CD2
CTI
CT2
CMS

CM6
CM7

CMS
CM9

SUM7

SUM7'

·' II y = x lL .v + y lL x + x I y

cJLx=c·x
c · x 1L y = c · (x 11 yl

(X + Y) lL Z = X JL Z + Y JL Z

(L X) JLx = Ld v(Xd JLx)

l/(d)la'(e) = { r(a,a 1)(d) <ieq(d,e) r> 8

.lie= 8
cl.I= 8

rlc = 8
cir= 8
c · xlc' = (cic') · x

clc' ·X = (clc') ·X

c ·xlc' · y = (c!c') · (x 11 y)

(x + vllz = xlz + vlz
xl<.r+:::J=xly+xlz
(L Xllx = Ld:n<Xdlxl
x1("'£Xl = Ld:n<xlXd)

if y(a, a') defined
otherwise

1171

composition operators have been defined. The left merge JL is a binary operator that be
haves exactly as the parallel composition operator, except that its first action must come
from the left hand side. The communication merge I is also a binary operator behaving
as the parallel composition operator, except that the first action must be a synchronization
between its left and right operand. The core law for the parallel composition operator is
CM I in Table 8. It says that in x II y either x performs the first step, represented by the
summand x JL y. or y can do the first step, represented by y JL x, or the first step of x II y is
a communication between x and y, represented by x I y. All other axioms in Table 8 are
designed to eliminate the parallel composition operators in favour of the alternative com
position and the sequential composition operator. The operators for parallel composition
(II. JL , and I) bind stronger than the conditional operator and weaker than the sequential
composition operator.

Data transfer between parallel components occurs very often. As an example we de
scribe a simplified instance of data transfer. One process sends a natural number n via
action name s, and another process reads it, via action name r and then announces it via
action name a. Using an encapsulation and an abstraction operator we force the processes
to communicate, and make the communication internal. Of course we expect the process p
to be equal to r · a (n).

var n:Nat

act r, s, c, a : Nat

comm r Is= c

proc p = T\c) (a1r.1i(s(n) II 2..:: r(m) · a(m)))
111:Nut

1172 J.F Groote, M.A. Renier.1·

"fable l)

Axioms for renmning in 1iCRL

RD PRii'il=<I
RT PR(rl = r
RI PR(aid))=Rla)(d)

R3 PRlx+v)=flR(x)+PR(Y)

R4 PRIX· V) = flfl(X) · f'R(Y)

SlJMIO P11i'L:,XJ='£i1nP11iXd)

Assuming that eq is an equality function on natural numbers. we have

p T[<) (a11.1i (s(11} II L r(m) · a(m)))
m:Nat

r1<1(il1r. 1 1(s(11) · L r(m) ·a(m} + L r(m) · (s(n) II a(m))
111:/'v'ut 111:Na1

+ L c(m) · 0(111) <l eq(n. m) r> 8))
m:Nat

=rt<:(L c(m)·a(m)<ieq(11.m)1>0)
1n:,\tlf

L r · 11(111) <J eq(11. 111) 1> o
m:.\!u1

= r · a(11).

2.2.10. Renaming. In some cases it is efficient to reuse a given specification with differ
ent action names. This allows. for instance. the definition of generic components that can
he used in different configurations. We introduce a renaming operator PR. The subscript
R is a sequence of renarnings of the form a -+ b, meaning that action name a must be
replaced by h. This sequence of renamings is not allowed to contain distinct entries that
replace the same action name. For example the subscript a -+ b, a -+ c is not allowed. So.
clearly. P1<(fl) is the process p with its action names replaced in accordance with R. An
equation al characterization of the renaming operator may be found in Table 9.

3. A strategy for verification

In process algehra it is common to verify the correctness of a description (the implementa
tion) by proving it equivalent in some sense, e.g .. with respect to rooted branching bisim
ulation, to a more abstract specification. When data is introduced into the descriptions,
proving equivalence is more complex, since data can considerably alter the flow of control
in the process. The cones and foci technique of [24] addresses this problem. A requirement
of the cones and foci proof method is that the processes are defined by a linear equation

Algebraic process verification I 173

(Definition 3.1). The linearization of process terms is a common transformation in pro

cess algebra. Informally, all operators other than ·, + and the conditional are eliminated.
Therefore, we first present the linear process operator.

3.1. Linear process operators

We start out with the definition of 'linear process operator'. The advantage of the linear

format is that it is simple. It only uses a few simple process operators in a restricted way. In
particular, it does not contain the parallel composition operator. In general a linear process

operator can easily be obtained from a µCRL description, including those containing par

allel composition operators, without undue expansion (see also Section 5). Other formats,

such as transition systems or automata, generally suffer from exponential blow up when

the parallel composition operator is eliminated. This renders them unusable for the analysis

of most protocols. We use linear process operators and linear process equations.

DE FIN I TI ON 3. I . A linear process operator (LPO) over data sort D is an expression of
the form

Ap.Ad:D. L L Ci (.fi (d, ei)) · p(g; (d, e;)) <J b; (d, ei) t> o
iE/ e;:E;

for some finite index set I, action names Ci E Act U { r }, data sorts Ei. Di, and functions

.fi: D x Ei ----7 Di. gi: D x Ei ----7 D, and h;: D x Ei ----7 Bool. (We assume that r has no
parameter.)

Here D represents the state space, ci are the action names, fi represents the action pa

rameters, gi is the state transformation and bi represents the condition determining whether

an action is enabled. Note that the bound variable p ranges over processes parameterized

with a datum of sort D. We use a meta-sum notation Li El p; for P1 + p~ + · · · + Pn
assuming I = {I, ... , n l; the Pi 's are called summands of L; El Pi. For I = 0 we define

L; E 1 p; = 8. We generally use letters cJ>, tJ!, and S to refer to LPOs.
According to the definition in [5], an LPO may have summands that allow termination.

We have omitted these here, because they hardly occur in actual specifications and obscure

the presentation of the theory. Moreover, it is not hard to add them if necessary.

LPOs have been defined as having a single data parameter. Most LPOs that we consider

have several parameters, but these may be reduced to one parameter by means of Carte

sian products and projection functions. Often, parameter lists get 1~ther long. Therefore,

we use the following notation for updating elements in the list. Let d a~breviate the vector

d 1, ••• , d,,. A summand of the form Le,:E; c; (f; (d, ei)) · p(d; /d;) <Jb; (d, e;) r:>o in the defi-

nition ofa process p(cl) abbreviates Le; E, ci(fi(cl, ei))· p(d1, ... , di-I· d;. di+I · · · .d") <I

h; (cl, ei) r> 8. Here, the parameter di is updated to d; in the recursive call. This notation is

extended in the natural way to multiple updates. If no parameter is updated, we write the

summand as L,,;:E, ci(fi(cl, e;)) · p <Jb;(cl, ei) r:>o.

I 174 J.F. Groote, M.A. Reniers

Given a process operator tfJ, the associated linear process equation (LPE) can be written
as X (d) = tfJ Xd. Conversely, given a linear process equation X (d) = p, the associated
LPO can be written as)..X.A.d:D.p. As a consequence we can choose whether to use linear
process operators or equations at each point. Notions defined for LPOs carry over to LPEs
in a straightforward manner and vice versa.

As an example consider the unreliable data channel that occurs in the alternating bit
protocol [8], usually specified by:

proc K = L L r((d,b)) · (J ·s((d,b)) + j' ·s3(ce)) · K
d:D h:Bi1

The channel K reads frames consisting of a datum from some data type D and an alter
nating bit. It either delivers the frame correctly, or loses or garbles it. In the last case a
checksum error ce is sent. The non-deterministic choice between the two options is mod
eled by the actions j and j'. If j is chosen the frame is delivered correctly and if j' happens
it is garbled or Jost.

The process K can be transformed into linear format by introducing a special variable h
indicating the state of the process K. Just before the r action this state is 1. Directly after
it, the state is 2. The state directly after action j is 3, and the state directly after j' is 4. We
have indicated these states in the equation by means of encircled numbers:

proc K =CDL L r({d,b)) -~(j ·crf({d,b)) + j' ·@~J(ce)) ·CDK
d:IJ b:Bit

With some experience it is quite easy to see that the channel K has the following linear
description:

proc K(d:D,b:Bit,ik:Nat)

= L L r((d', b')) · K(d' /d, b' /b, 2/ h) ·uq(h. 1) e> 8
d':Dh':Bit

+ j · K(3/ik) <i eq(h, 2) t> 8

+ j' · K (4/ ik) <i eq(ik. 2) t> 8

+s((d, b)) · K(l/ik) <ieq(h, 3) e>o

+s(ce) · K(l/ik) <ieq(h,4)e>8.

Note that we have deviated from the pure LPO format: in the last four summands there is
no summation over the data types D and Bit, in the second and third summand j and j' do
not carry a parameter and in the first summand there are actually two sum operators. This
is easily remedied by introducing dummy summands and dummy arguments, and pairing
of variables. Note that linear process equations are not very readable, and therefore, they
are less suited for specification purposes.

Algebraic process ver!fication 1175

3.2. Proofprinciples and elementary lemmata

In order to verify recursive processes, we need auxiliary rules. The axioms presented in
the previous section are not sufficiently strong to prove typical recursive properties. We
introduce here the principles L-RDP (Linear Recursive Definition Principle) and CL-RSP
(Convergent Linear Recursive Spec(fication Principle). All the methods that we present in
the sequel are de1ived from these rules. 1

Processes can be defined as fixed points for convergent LPOs and as solutions for LPEs.
In this chapter we use the term solution for both.

DEFINITlON 3.2. A solution of an LPO <Pisa process p, parameterized with a datum of
sort D, such that for all d:D we have p(d) =<!>pd.

DEFINITION 3 .3. An LPO <1> written as in Definition 3.1 is called convergent iff there is
a well-founded ordering< on D such that for all i EI with c; =rand for all e; :E;. d: D
we have that b; (d, e;) implies g; (d, e;) <d.

For each LPO <1>, we assume an axiom which postulates that <P has a canonical solution.
Then, we postulate that every convergent LPO has at most one solution. In this way, con
vergent LPOs define processes. The two principles reflect that we only consider process
algebras where every LPO has at least one solution and converging LPOs have precisely
one solution.

DE FIN IT!ON 3 .4. The linear Recursive Definition Principle (l-RDP) says that every lin
ear process operator lJ! has at least one solution, i.e., there exists a p such that for all d: D
we have p(d) = lJ! pd.

The Convergent linear Recursive Specification Principle (Cl-RSP) [5] says that every
convergent linear process operator has at most one solution, i.e. for all p and q if p = lf/ p
and q = lJ!q, then for all d:D we have p(d) = q(d).

The following theorem, proven in [5], says that if an LPO is convergent in the part of its
state space that satisfies an invariant I, then it has at most one solution in that part of the
state space. It has been shown to be equivalent to CL-RSP in [5].

DEFINITION 3.5. An invariant of an LPO <!>written as in Definition 3.1 is a function
I: D--+ Bool such that for all i E /, ei:E;, and d:D we have:

bi(d, ei) A J(d)--+ I(g;(d, eil).

THEOREM 3.6 (Concrete Invariant Corollary). let<!> be an lPO. If,fnr some invariant I
of<!>, the lPO A.p.A.d.<J>pd <J ! (d) r> 8 is convergent and for some processes q, q'. parc11n
eterized by a datum of sort D, we have /(d)--+ q(d) = <Pqd and l(d)-+ q'(d) = <Pq' d,
then I (d) --+ q (d) = q' (d).

I Elsewhere we also use Koomen's Fair Abstraction Rule, but as we avoid processes with internal loops, we do

not need KFAR here.

1176 J.F Groote, M.A. Reniers

To develop the theory it is convenient to work with a particular form of LPOs, which we
call (action) clustered. 2 Clustered LPOs contain, for each action a, at most one summand
starting with an a. Thus clustered LPOs can be defined by summation over a finite index
set I of actions.

DEFINITION 3.7. Let Acts; Act U {r} be a finite set of action names. A clustered linear
process operator (C-LPO) over Act is an expression of the form

<P = A.p.A.d:D. L L a(.f;,(d, l'a)) · p(gu(d, e11)) <1 hu(d, e0) t> 8.
aEA('{ ed:h:"

The first part of the following theorem states that it is no restriction to assume that LPOs
are clustered. The second part is a prelude on the general equality theorem, as it requires
that, for each action, the sorts in the sum operators preceding this action are the same in
specification and implementation. A proof is given in [24].

THEOREM 3.8.
(I) Every convergent LPO <P can be rewritten to a C-LPO <P' with the same solution,

provided all occurrences of the same action have parameters of the same type.
(2) Consider convogent C-LPOs <P, l/t such that action a occurs both in <P and in 1./1

(with parameters !>f the same data type). There exist convergent C-LPOs <P', lfJ'
having the same solutions as <P, l/t, respectively, such that a occurs in c/J' and tfi' in
summands with summation over the same sort £ 11 •

The two summands s((d, b)) · K(I/ h) <1 eq(ik. 3) r> o and s(ce) · K (I/ ik) <1eq(h, 4) r>8
of the channel K can be grouped together as

s (if'(eq(h, 3), (d, h), ce)) · K (l / ik) -<1 eq(h, 3) v eq(h, 4) t> 8.

Here we assume that ce is of the same sort as the pair (d, b).

3.3. The general equality theorem

In this section, we are concerned with proving equality of solutions of C-LPOs c/J and 1./1.
The C-LPO c/J defines an implementation and the C-LPO l/t defines the specification of a
system. We use the rnnes and foci proof method of [24].

We assume that r-steps do not occur in the specification l/t. We want to show that after
abstraction of internal actions in a set lnt the solution of t:J> is equal to the solution of l/t.
We assume that c/J cannot perform an infinite sequence of internal actions. It turns out to
be convenient to consider c/J where the actions in lnt are already renamed to T. Hence, we
speak about a C-LPO S which is <P where actions in Int have been abstracted from (so

2 Al some places clustered LPOs have been called deterministic. However, this is a bad name, as the process
underlying a 'deterministic' LPO is not at all a deterministic process, i.e., a process that can for each action ll

always do at most one a transition.

Algebraic process ver(fication 1177

T1111(<P) = S). Note that S is convergent, and hence defines a process. We fix the C-LPOs
S and l/J as follows (where the action names are taken from a set Act):

S = A.pJ.d:Ds. L L:a(fa(d,ea))·p(ga(d,ea))<lba(d,ea)1>8,
aEAct ea:Ea

l/J = A.q.A.d:D\{J. L L a(f,;(d,ea))·q(g;1 (d,ea))<Jb~(d,ea)1>8.
aEACl\{r} e11 :E,,

The issue that we consider is how to prove the solutions of S and IJ! equal.
The main idea of the cones and foci proof method is that there are usually many internal

events in the implementation, but they are only significant in that they must progress some
how towards producing a visible event which can be matched with a visible event in the
specification. A state of the implementation where no internal actions are enabled is called
afocus point, and there may be several such points in the implementation. Focus points are
characterized by a Boolean condition on the data of the process called the focus condition.
The focus condition FCs(d) is the negation of the condition which allows r actions to
occur. The focus condition FC s (d) is true if d is a focus point and false otherwise.

DEFINITION 3.9. The focus condition FCs(d) of Sis the formula -.3e,:E,Cbr(d, er)).

The cone belonging to a focus point is the part of the state space from which the focus
point can be reached by internal actions; imagine the transition system forming a cone or
funnel pointing towards the focus. Figure I in Section 1 visualizes the core observation
underlying this method.

The final element in the proof method is a state mapping h : D s ---+ D"' between the data
states of the implementation and the data states of the specification. It explains how the data
parameter that encodes states of the specification is constructed out of the data parameter
that encodes states of the implementation. This mapping is surjective, but almost certainly
not injective, since the data of the specification is likely to be simpler than that of the
implementation. So in this respect we have a refinement, but in terms of actions we have
an equivalence.

In order to prove implementation and specification rooted branching bisimilar, the state
mapping should satisfy certain properties, which we call matching criteria because they
serve to match states and transitions of implementation and specification. They are in
spired by numerous case studies in protocol verification, and reduce complex calculations
to a few straightforward checks. If these six c1iteria are satisfied then the specification
and the implementation can be said to be rooted branching bisimilar under the General
Equality Theorem (Theorem 3.11). The general forms of the matching criteria are given
in Definition 3.10. Given the particular actions, conditions and mapping for a system, the
matching criteria can be mechanically derived. Of course, the choice of mapping requires
some thought, as does the subsequent proof of the criteria.

Now we formulate the criteria. We discuss each criterion directly after the definition.

DEFINITION 3.10. Leth: Ds ---+ D"' be a state mapping. The following criteria referring
to S, l/J and h are called the matching criteria. We refer to their conjunction by C s.1/1.h (d).

1178 J.F. Groote, M.A. Reniers

(1) S is convergent.

(2) br(d,er)--+h(d)=h(gr(d,er)).

(3) ba(d, ea)--+ b;1 (h(d), ea)·

(4) FCs(d) /\ b;1(h(d), e")--+ b"(d, ea).

(5) b11 (d, ea)--+ .f.1(d, e11) = J;;(h(d), ea)·

(6) b11 (d, e11)--+ h(ga(d, eal) = g:, (h(d), ea)·

Criterion (I) says that S must be convergent. In effect this does not say anything else
than that in a cone every internal action r constitutes progress towards a focus point. Cri
terion (2) says that if in a stated in the implementation an internal step can be done (i.e.,
br (d, er) is valid) then this internal step is not observable. This is described by saying that
the state before the r-step and the state after the r-step both relate to the same state in
the specification. Criterion (3) says that when the implementation can perform an external
step, then the corresponding state in the specification must also be able to perform this
step. Note that in general, the converse need not hold. If the specification can perform an
a-action in a certain state e, then it is only necessary that in every state d of the imple
mentation such that h(d) = e an a-step can be done after some internal actions. This is
guaranteed by criterion (4). It says that in a focus point of the implementation, an action a
in the implementation can be performed if it 1s enabled in the specification. Criteria (5) and
(6) express that corresponding external actions carry the same data parameter (modulo h)

and lead to corresponding states.
Assume that rand q are solutions of S and IJI, respectively. Using the matching criteria,

we would like to prove that, for all d:D, Cs.l/l.Ji(d) implies r(d) = q(h(d)).
In fact we prove a more complicated result. This has two reasons. The first one is that

the statement above is not generally true. Consider the case where d is a non-focus point
of S. In this case, r(d) can perform a r-step. Since q cannot perform r-steps, r(d) cannot
be equal to q(h(d)). Therefore, in the setting of rooted branching bisimulation we can for
non-focus points d only prove T · r(d) = r · q(h(d)).

The second reason why we need a more complicated result is of a very general nature.
A specification and an implementation are in general only equivalent for the reachable
states in the implementation. A common tool to exclude non-reachable states is an invari
ant. Therefore we have added an invariant to the theorem below. For a proof of this theorem
we refer to [24].

THEOREM 3.11 (General Equality Theorem). Let S be a C-LPO and let IJI be a C-LPO
that does not contain T-steps. Leth be a state mapping. Assume that rand q are solutions
of Sand 1/1, re1;pectively. If I is an invariant of Sand l(d)--+ Cs.1/1.Ji(d) for all d:Ds.
then

Vd:D:;; (I (d)--+ r(d) <'J FCs (d) r> T · r(d) = q (h(d)) <i FCs (d) r> T · q (h(d))).

Algebraic process verification 1179

3.4. Pre-abstraction and idle loops

The proof strategy presented in the previous section can only be applied to systems for
which the implementation is convergent. This is an all too serious restriction. In this section
we present a generalization of the proof strategy which is also capable to deal with idle
loops.

The most important concept in this generalization is the pre-abstraction function. A pre
abstraction function divides the occurrences of the internal actions into progressing and
non-progressing internal actions. The progressing internal actions are the ones for which
the pre-abstraction function gives true and the non-progressing actions are the ones for
which the pre-abstraction function gives false.

DEFINITION 3 .12. Let <P be a C-LPO and let Int be a finite set of action names. A pre
abstraction function ~ is a mapping that yields for every action a E Int an expression of
sort D x Ea -+ Bool. The partial pre-abstraction function ~ is extended to a total function
on Act by assuming ~(r)(d, e,) =t and ~(a)(d, ea) =fforall a E Act\/nt.

The pre-abstraction function ~ defines from which internal actions we abstract. If the
pre-abstraction function of an action yields true (progressing internal action), the action
is replaced by r, while if the pre-abstraction function yields false the action remains un
changed.

In a nutshell, the adaptation of the proof strategy is that instead of renaming all internal
actions into r-actions we only rename the progressing internal actions. As a consequence
the notions of convergence and focus point need to be adapted. Instead of considering
r-actions, all internal actions involved in the pre-abstraction must be considered.

DEFINITION 3 .13. Let <P be a C-LPO with internal actions Int and let ~ be a pre
abstraction function. The C-LPO <P is called convergent with respect to~ iff there exists a
well-founded ordering < on D such that for all a E Int U { r}, d:D and all ea :Ea such that
~(a)(d, e11) we have that ba(d,ea) implies ga(d, ea)< d.

DEFINITION 3.14. Let~ be a pre-abstraction function. The focus condition of <I> relative
to ~ is defined by

DEFINITION 3 .15. Let <P be a C-LPO over Ext U Int U { r} (pairwise disjoint) and let I/I be
a C-LPO over Ext. Leth: D<J> -+ DI/I and let~ be a pre-abstraction function. The following
six criteria are called the matching criteria for idle loops and their conjunction is denoted
by Cl<J>.1/1.i;.li (d).For all i E IntU {r}, e; :E;, a E Ext, and ea :Ea:

(l) <J> is convergent with respect to ~.

(2) b;(d,e;)-+h(d)=h(g;(d,e;)).

(3) b"(d, e11)-+ b;1(h(d), ea)·

l 180 J.F. Groote, M.A. Reniers

(4) FCs.1111 .~(d) /\ b;1(h(d), ea) ---r ba(d, ea).

(5) b"(d, ea) ---r f;,(d. e11) = .t;;(h(d). ea)·

(6) b0 (d, e0) ---r h (gu (d, ea))= g;, (h(d), eu)·

THEOREM 3. l 6 (Equality theorem for idle loops). Let <P be a C-LPO over Ext U Int U
{ r} (pairwise disjoint) and l[! a C-LPO over Ext. Let h : D<P ---r Dl/J and let ~ be a pre
abstractionfunction. Assume that rand q are solutions c!f'<P and lf! respectively. If I is an
invariant of et> and /(d)---r Cf,P.l/J.~.11(d)forall d:D<P. then

V,1 n"' (I (d) ---r r · r1111 (r (d)) = r · q (h (d))).

A proof of this theorem can be found in [24J.

4. Verification of the Serial Line Interface Protocol

In this section we give a completely worked out example of a simple protocol to illustrate
the use of µCRL and the general equality theorem. The Serial Line Interface Protocol
(SLIP) is one of the protocols that is very commonly used to connect individual computers
via a modem and a phone line. lt allows only one single stream of bidirectional information.

Basically, the SLIP protocol works by sending blocks of data. Each block is a sequence
of bytes that ends with the special end byte. Confusion can occur when the end byte is
also part of the ordinary data sequence. In this case, the end byte is 'escaped', by placing
an esc byte in front of the end byte. Similarly, to distinguish an ordinary esc byte from
the escape character esc, each esc in the data stream is replaced by two esc characters.

In our modeling of the protocol, we ignore the process of dividing the data into blocks,
but only look at the insertion and removal of esc characters into the data stream. For
simplicity we assume that all occurrences of end and esc bytes have to be 'escaped'.
We model the system by three components: a sender (S), inserting escape characters, a
channel (C). modeling the medium along which data is transferred, and a receiver (R),
removing the escape characters (see Figure 2). We let the channel be a buffer of capacity
one in this example.

We use four data types Nat, Bool, Byte, and Queue to describe the SLIP protocol and
its external behaviour. The sort Nat contains the natural numbers. With 0 and S we denote
the zero element and the successor function on Nat as before. Numerals (e.g., 3) are used
as abbreviations. The function eq: Nat x Nat--+ Bool is true when its arguments represent
the same number. The sort Bool contains exactly two constants t (true) and f (false) and we
assume that all required Boolean connectives are defined in a proper way.

Fig. 2. Architecture of the SUP protocol.

Algebraic process verification 1181

The sort Byte contains the data elements to be transferred via the SLIP protocol. As the
definition of a byte as a sequence of 8 bits is very detailed and actually irrelevant we only
assume about Byte that it contains at least two not necessarily different constants esc and
end, and a function eq: Byte x Byte -+ Bool that represents equality.

sort Byte

map esc :-+ Byte

end:-+ Byte

eq : Byte x Byte ~ Boot

Furthermore, to describe the external behaviour of the system, we use the sort Queue as
described in Section 2.1, but this time we take the elements of the queue from the sort Byte.
Additionally, we use the auxiliary function fen which yields the number of elements in a
queue.

sort Queue

map fen: Queue -+ Nat

var b:Byte q: Queue

rew fen([])= 0

fen(in(b, q)) = S(!en(q))

The processes are defined by guarded process declarations for the channel C, the sender
Sand the receiver R (cf. Figure 2). The equation for the channel C expresses that first a byte
h is read using a read action r1 via port 1, and subsequently this value is sent via port 2 using
action s2. After this the channel is back in its initial state, ready to receive another byte.
The encircled numbers can be ignored for the moment. They serve to explicitly indicate
the state of these processes and are used later.

proc C = ® L r1 (b) · Cif2(h) · ®C
h:Byte

Using the r action the sender reads a byte from a protocol user, who wants to use the
service of the SLIP protocol to deliver this byte elsewhere. It is obvious that if b equals
esc or end, first an additional esc is sent to the channel (via action s1) before b itself is
sent. Otherwise, b is sent without prefix.

proc S = ® L r(h) ·CD(s1(esc) ·c;.s1(h) ·@S
h:Byte

<l eq(h, end) v eq(b, esc) 1> s1 (h) · @S)

The receiver is equally straightforward. After receiving a byte b from the channel (via r2)
it checks whether it is an esc. If so, it removes it and delivers the trailing end or esc.
Otherwise, it just delivers h. Both the sender and the receiver repeat themselves indefinitely,
too.

1182 J.F Groote. M.A. Reniers

proc R = Jll L r2(h) · :i{ (L r2 (b') · :;)·(b 1
) ·@R)

/>:Hire h':llrte

<J eq(b, esc) t> s(h) ·@R)

The SLIP protocol is defined by putting the sender, channel and receiver in parallel. We let
the actions r 1 and s 1 communicate and the resulting action is called c1. Similarly, r2 and

.1·2 communicate into c2.

comm s1 I r1 = c1

s2 I r2 = c2

The encapsulation operator iltri .s 1 .r2,,2 f forbids the actions r 1, s 1, r2 and .1·2 to occur on their
own by renaming these actions too. In this way the actions are forced to communicate. The
abstraction operation r 1ci .,.21 abstracts from these communications by renaming them to the
internal action r. For the SLIP protocol the external actions are r and s.

We want to obtain a better understanding of the protocol, because although rather simple,
it is not straightforward to understand its external behaviour completely. Data that is read
at r is of course delivered in sequence at s without loss or duplication of data. So, the
protocol behaves like a kind of queue. The reader should now, before reading further, take
a few minutes to determine the size of this queue. Simultaneously, one byte can be stored
in the receiver, one in the channel and one in the sender. If an esc or end is in transfer,
it matters in which of the processes it is stored. If the esc or end byte is stored in the
sender, no leading esc is produced yet. Hence three bytes can be stored in this case. If
the esc or end byte is stored in the channel, it must have been sent there by the sender.
Obviously the sender in this case has first sent a leading esc byte. This byte is either stored
in the receiver or removed by the receiver. In both cases the receiver contains no byte that
is visible in the environment. Hence in this case at most two bytes can be stored. Finally,
if the end or esc byte is stored in the receiver, the leading esc byte produced by the
sender has been removed already by the receiver. Hence three bytes can be stored in this
case (assuming that no other esc or end byte is in transit). So, the conclusion is that the
queue behaves as a queue of size three, except when an esc or end occurs at the second
position in the queue (the channel), in which case the size is at most two. For this purpose
the auxiliary predicate fit!! is defined.

map filll: Queue_,. Bool

var q: Queue

rew full(q)=eq(!en(qJ,3)

v (eq(/en(q), 2) /\ (eq(toe(untoe(q)), esc)
v eq(toe(untoe(q)), end)))

Algebraic process verification 1183

Using this predicate we obtain the description of the external behaviour of the SLIP pro

tocol below: If the queue is not full, an additional byte h can be read. If the queue is not
empty an element can be delivered.

proc Spec(q: Queue)

= L r(h)-Spec(in(h,q))<i-jit!!(q)r>o
h:Brie

+sf (toe(q)) ·Spee(untoe(q)) <1 -.isempty(q) r> o

The theorem that we are interested in proving is:

THEOREM 4.1. We have SLIP= Spee([]).

PROOF. This follows directly from Lemma 4.2 and Lemma 4.4 that are given below. D

We describe the linear equation for SLIP. We have numbered the different summands

for easy reference. Note that the specification is already linear.

proc linlmpl(h.1: Byte, Ss: Nat, he: Byte, sc: Nat, hr: Byte, Sr: Nat)

(a) = L r(h)·Linlmpl(b, l,hc,Sc,hr,sr)<1eq(s 1 ,0)r>o

(b)

(c)

(d)

(e)

(f)

h:Byte

+ T · Linlmp!(b1., 2, esc, I, br, s,.)

<1 eq(s,. 0) /\ eq(s,. l) /\ (eq(h 1 • end) v eq(b1 , esc)) r> o
+ T · Linlmpl(bh 0, b.1 • 1, b,., s,.)

<1eq(sc, 0) /\ (eq(s,, 2) V (eq(s,, I)/\ -,(eq(h 1 , end)

v eq(h,, esc)))) r> o

+ T · Linlmpl(b,. s,, b,. 0, he, 1)

<1 eq(s,., 0) /\ eq(sc. 1) r> 8

+ T · Linlmpl(b1 , .I\, b,, 0, h,, 2)

<1 eq(s,.. l) /\ eq(b,., esc) /\ eq(s,., 1) r> o

+ s(h,.) · Linlmpl(h,, s,. b,, s,, b,., 0)

<i eq(s,., 2) V (eq(s,., 1) /\ -,eq(hr, esc)) r> o

We obtained this form by identifying three explicit states in the sender and receiver, and

two in the channel. These have been indicated by encircled numbers in the defining equa

tions of these processes. The states of these processes are indicated by the variables s.1.,

s,. and sc respectively. Each of the three processes also stores a byte in certain states. The
bytes for each process are indicated by b,, b,. and be. The Tin summand (b) comes from

abstracting from CJ (esc), in summand (c) it comes from CJ (b 1), in (d) from c2(bc) and

in (e) from c2(hc).

1184 J.F. Groote, M.A. Renier.1·

The following lemma says that Linlmpl. the linear equation for SLIP. indeed equals the
description of SLIP.

LEMMA 4.2. For any h1, b2. b3: Byte it holds that

Linlmpl(b 1, O. In 0, h3, 0) =SLIP.

We list below a number of invariants of Linlmpl that are sufficient to prove the results in
the sequel. The proof of the invariants is straightforward, except that we need invariant 2
to prove invariant 3.

LEtvtMA 4.3. The.fi1/lmving expressions are invariants for Linlmpl:

(1) s., :::;: 2 /\ s, :::;: I /\ Sr :::;: 2:

(2) eq(s,, 2) --+ (eq(b,, esc) v eq(b,, end)):

(3) -.eq(s,, 2)-+ ((eq(s,, 0) /\ --.(eq(s,, I) /\ eq(b,., esc))) V

(eq(s,, 1) /\ ((eq(s,., 1) /\eq(b,., esc)) ++

(eq(b,, esc) V eq(b,., end)))))/\
eq(s,, 2) __,. ((eq(s,. I) /\ eq(b,., esc) /\ --.(eq(s,., 1) /\ eq(b,, esc))) v

(eq(s,, 0) /\ eq(s,., 1) /\ eq(b,, esc))).

The next step is to relate the implementation and the specification using a state mapping
h : Nat x Byte x Nat x Byte x Nat x Byte-+ Queue. For this. we use the auxiliary function
cadd (conditional add). The expression cadd(c, b, q) yields a queue with byte b added to
q if Boolean c equals true. If c is false, it yields q itself.

map cadd: Bool x Byte x Queue-+ Queue

var b: Byte q: Queue

rew cadd(f,b.q)=q

cadd(t, b,q) = in(b, q)

The state mapping is in this case:

h(b,, s,, b,, s,, b,.,s,.)

= cadd(-.eq(s,. 0). b,,

cadd(eq(s,, l) /\ (-.eq(b,, esc) v (eq(s,, I) /\ eq(b,, esc))), b,,

cadd(eq(s,,2) v (eq(s,, l) f\-.eq(b,., esc)), b,, []))).

So, the state mapping constructs a queue out of the state of the implementation, containing
at most b,. b, and b,. in that order. The byte b, from the sender is in the queue if the sender
is not about to read a new byte (-.eq(s,., 0)). The byte b, from the channel is in the queue
if the channel is actually transferring data (eq(s(', 1)) and if it does not contain an escape

Algebraic process verification 1185

character indicating that the next byte must be taken literally. Similarly, the byte b,. from
the receiver must be in the queue if it is not empty and br is not an escape character.

The focus condition of the SLIP implementation can easily be extracted and is (slightly
simplified using the invariant):

(eq(s,., 0) -+ eq(s.1 , 0)) /\

(eq(sc, l)-+ (-.eq(s,., 0) /\ (eq(sr, 1)-+ -.eq(b,, esc)))).

Spee([])= Linlmpl(b1, 0, b2, 0, b3, 0).

PROOF. We apply Theorem 3.11 by taking Linlmp/ for p, Spee for q and the state mapping
and invariant provided above. We simplify the conclusion by observing that the invariant
and the focus condition are true for Ss = 0, Sc = 0 and s,. = 0. By moreover using that
h(b1, 0, b2, 0, bJ, 0) =[],the lemma is a direct consequence of the generalized equation
theorem. We are only left with checking the matching criteria:

(I) The measure 13 - s.1 - 3sc - 4s,. decreases with each r step.
(2) (b) Distinction ons,; use invariant. (c) Distinguish different values of ss; use invari

ant. (d) Trivial. (e) Trivial.
(3) (a) Lets denote the tuple (b.1 ,s8 ,b,.,sc, b,., s,.). We must show that Ss = 0 implies

--ifull(h (s)). From s., = 0 and the definitions of h and full observe thatfull(h (s)) can only
be the case if Sc= I /\ (bc =I esc v (s,. = I /\ b,. = esc)) /\ (s,. = 2 v (s,. = 1 /\ br =I=
esc)) and be= esc v bc =end. In all other cases we easily find that --ifull(h(s)). If
bc = esc we find b, = esc and s,. = 2. We also have s,. = l. Using the invariant we
obtain be¥= esc /\ bc ¥=end. This leads to a contradiction and therefore :ful/(h(s)). If
he= end then using the invariant we find that Sr= I and b, = esc. This contradicts the
above assumption. Therefore also in this case --ifull(h (s)). (f) Trivial.

(4) (a) Lets denote the tuple (b,,ss,bc,Sc,br,sr). We must show that if the focus
condition and --ifull(h(s)) hold, then eq(ss. 0). The proof proceeds by deriving a con
tradiction under the assumption -.eq(ss, 0). If eq(s.1 , I) it follows from the invariant and
the focus condition that len(h(s)) = 3, contradicting that --ifu/l(h(S)). If eq(s.1., 2), then
len(h(S)) = 2, toe(untoe(h(s))) = bs and eq(b,, esc) v eq(b.1 , end) in a similar way. Also
in this case this contradicts -.jull(h(s)).
(t) Let s denote the tu pie (b.,, ss, be, Sc, b,., s,.). We must show that the invariant, the focus
condition and the statement -.isempty(h(s)) imply eq(s,., 2) v (eq(s,., 1) /\ -.eq(br, esc)).

Assume FC and, towards using contraposition, -.eq(s,., 2) /\ (-.eq(s,., I) v eq(b,., esc)).

Using the invariant we deduce eq(s,., 0) v (eq(b,., esc) /\ eq(s,., 1). By the second conjunct
of the FC (contraposition), we obtain -.eq(sc. I), so by the invariant, eq(sc, 0), and by the
first conjunct of FC, eq(s.1 , 0) holds. By the definition of the state mapping h, we easily see
that h (s) = [].

(5) (a) Trivial. (f) Use toe(cadd(c1, bi, cadd(c2, b2, in(b3, [])))) = b3.
(6) (a) Trivial using definitions. (f) Idem. D

I 186 J.F. Groote. M.A. Reniers

5. Calculating with n + 1 similar processes

5.1. Introduction

Distributed algorithms are generally configured as an arbitrarily large but finite set of pro
cessors that run similar programs. Using µCRL this can be neatly described. Assume that
the individual processes are given by P(k), where k:Nat is the index of the process. The
following equation puts n + I of these processes in parallel:

Sys(n:Nat) = P(O) <Jeq(n,0) t> (Sys(n -1) 11 P(n)). (2)

Clearly, the process Sys(n) stands for P (0) II P (l) II ... II P (n).
We find descriptions along this line in verifications of the bakery protocol [17]. Mil

ner's scheduler [33], a leader election protocol [16], grid protocols [6], and a summing
protocol [18].

The description in Equation (2) gives rise to two issues. The first one is whether the
equation defines in a proper way that Sys is the parallel composition of the processes P(k).
It is clear that the parallel composition of processes P(k) is a solution for Sys. In this
section we show that, assuming the principle CL-RSP (see Definition 3.4), this is the only
solution for Sys in (2). So, an equation in the form of (2) is indeed a proper definition.

The second issue is to extract a linear process equation from the description in (2). We
show in general terms how given a linear format for the processes P (k), a process in linear
format equivalent to Sys(n) can be given.

5.2. Linearization of two different parallel processes

To provide the readerof this section with a basic understanding of the issues involved in the
linearization of the parallel composition of processes, we provide a simple example first.
Two LPEs will be composed and a linear process equation for their parallel composition
will be given.

We provide here the linearization of the parallel composition of two linear processes
P (d) and P' (d'). The parameters d and d' of certain arbitrary sorts D and D' denote the
parameters of the LPEs. We assume that the processes are defined by linear equations of
the following form:

P(d:D) = L Lai (ii(d, ei l) · P(gi(d, ei)) <JCi(d, e1) t> o,
iE/ c;:E,

and

P1 (d 1:D1
) = L L a;,(J/<d', e;,)) · P'(g;.(d', e;,)) <Jc;,(d', e;,) t> 8.

i 1 El 1 e',:E'. 1

' I

We also assume that these equations are convergent, since by CL-RSP this guarantees that
they define unique processes.

Algebraic process verification 1187

Now consider the LPE Q(d, d') defined by the following equation:

Q(d:D, d 1:D 1
)

= L La; (Ji (d, e;)) · Q(gi(d, e;), d') <JC; (d, e;) 1> 8
i E/ e,: !:.',

+ L L a;,(J/,(d', e;,)) · Q(d, g;,(d', e;.)) <Jc;,(d', e;,) 1> 8
i'E/' e>:E;,

iEI i'E/ 1 ei:E1 e'.,:E'.,
I I

Q(g; (d, e;), g;,(d', e;.)) <Jc; (d, e;) /\ c;.(d', e;,) 1> 8.

The first summand describes the cases that an action from P(d) can be executed. The

second summand describes the cases that an action from P' (d') can be executed. The third
summand describes the cases that the two processes try to communicate. In each summand

the change of the state is only due to the original processes involved in the action that is
executed.

Although the process Q is strictly speaking not an LPE, it is obvious that an LPE Q' can
be given that is equivalent. This is left as an exercise to the reader.

THEOREM 5.1. Let P. P', and Q be the LPEs given above. For all d:D and d':D' we
have

P(d) II P 1(d')= Q(d,d').

5.3. Lineari::.atimz ofparallel processes

We shal I now describe the linearization of n + I parallel linear processes P (k, d). The

natural number k (0 ~ k :::::; n) is the index of the process and the parameter d of some
arbitrary sort D denotes the other parameters. We assume that each process P(k, d) is
defined using a linear equation of the form:

P(k: Nat, d:D)

= L La; (.ti (k, d, e1)) · P(k. f?;(k, d, e;)) <Jc; (k. d, e;) 1> 8. (3)
iE/ <';:H,

We also assume that this equation is convergent, as this guarantees that this equation defines

a unique process.
In order to define the parallel composition we need to determine the 'state space' of the

LPE Q. The state space of Q is built from the state spaces of the LPEs P(k,d) that are
composed in parallel. As we do not know in advance the number of processes composed
(i.e., 11) we define a new sort DTable, which is a table indexed by natural numbers contain

ing elements of the sort D. In this table the kth entry represents the state space of process

1188 J.F. Groate, M.A. Reniers

P(k. d).In order to do so, we also need an auxiliary function if: Bool x D x D-+ D for
(f' - then - else.

map if: Bool x D x D -+ D

var d. d':D

rew (f'(t,d.d')=d

(((f. d. d') = d'

In the sequel we assume an equality function eq: D x D-+ Boo!.
The constant emT of sort DTahle is the empty table. The function upd places a new entry

with an index in the table and the function get gets a specific entry from the table using its
index. We characterize these operators by one single equation. Note that we do not specify
what happens if an element is read from the empty table. We refer to the characterising
axiom for tables as the table axiom. Besides this axiom, we use the fact that tables are
generated from the empty table by the update function. This allows us the use of induction
on these two operations.

sort DTab!e

func emT:-+ DTable

upd: Nat x D x DTab/e-+ DTable

map get: Nat x DTable-+ D

var 11,m:Nat

d:D

dt: D'Iab!e

rew get(n, upd(m, d, dt)) = if'(eq(n, m), d, get(n, dt))

In the remainder we write dt[i] instead of get(i, dt).
We can use the following process definition to put n of the processes P(k, d) in parallel.

Sys(n: Nat, dt: DTable)

= P (0. dt[OI) <J eq(1i. 0) 1> (P (n, dt[n l) II Sys(11 - 1, dt)). (4)

We assume that there is a commutative and associative communication function y that ex
plains how two actions can synchronize. In case two actions do not synchronize it yields 8.
In this section we assume the so-called handshaking axiom, that says that no more than two
actions can synchronize. In other words, for all actions a 1, a2 and a3, y (a 1. y (a2, a_,)) = o
(cf. [81).

In this section we work towards a linear desciiption of Sys(n,dt) (Lemma 5.3). As a
bonus we get that Sys(n, dt) has at most one solution (Corollary 5.5). We also provide
an alternative transformed linear description which we believe to be more convenient in
concrete instances (Theorem 5.6).

The following lemma will be useful in the calculations in the sequel.

Algebraic process verification

LEMMA 5.2. Fon·i, c2:Bool, d, di, d2. cl): D. 111, mi, 1112. n:Nat, and dt: DTable:

(1),(ci /\ q) _,.. if'(ci, di, if(c2, d1, d,)) = if(c2, d1, !/'(c1, di, d3));
(2) m > n-+ Sys(n, dt) = Sys(n, upd(111, d, dt));

1189

(3) mi =/= m2-+ upd(m i. di, upd(m2, d2. dt))[n] = upd(m2. d1. upd(m 1 , d 1, dt))[n].

PROOF. The first two facts are straightforwardly proven by induction on ci and n. re

spectively. The last fact follows directly by the table axiom and the first item of this lem
ma. D

Below we present the main lemma of this section. It gives an expansion of Sys. As

has been stated above, we find the form of this expansion not very convenient as it has
the condition k i > k1 in its second group of summands. The more convenient form in
Theorem 5 .6 restricts the number of alternatives by requiring i 2 :(ii. However. contrary to
the linearization in Theorem 5 .6 we can prove this lemma by induction on 11.

LEMMA 5.3. The process Sys as defined in Equations (3) and (4) is a solution.fin-Qin
Equation (5) below.

Q(n: Nat, dt: DTab/e)

= L L La;(.ti(k,dt[k],e;))· Q(n,upd(k,g;(k,dt[k],e;).dt))
iE/ k:Not e;:E;

<JC;(k,dt[k], e;) /\k :(n 1>8

+ L L L L L L y(a;1,ai2lU;1(k1,dt[k1].e;1l)· (5)
i 1E/ i1EI k1:Not k2:Nllt ei 1 :E; 1 ei2 :E1~

Q (n, upd(k 1. g;1 (k1, dt[k1], e; 1), upd(k2. g; 2 (k2. dt[k2]. e;2). dt)))

<lC/1 (k1,dt[k1l. e;I) /\C;2(k2,dt[k2],e;,) /\

eq(Jj 1(ki,dt[k1],e; 1),f12 (k2,dt[ki].e;2))11k1 >k2/\ki :(n1>8.

LEMMA 5 .4. Equation (5) is convergent.

PROOF. As (3) is convergent, there is a well-founded relation< on Nat x D. such that if

c1(k,d,e1) and ai = r, then (k,g;(k,d,e1)) < (k,d).
Using < we can define a well-founded relation-< on Nat x DTable as follows:

(n 1, dti) -< (n2, dt2) iff eq(n 1, n2)

/\ for all 0 :(k (n 1 : (k, dt i [k]) ((k, dt2 [k])
/\ for some 0 :(k :(n i : (k, dti [k]) < (k, dt2[k])

where (k 1,d 1) :((k2.d2) iff(ki,d1) < (k2,d2),oreq(k1,k2) andeq(d1.d2).

It is easy to see that -< is a convergence witness for Equation (5). D

COROLLARY 5 .5. Equation (4) has at most one solutionf(Jr the variable Sys.

1190 J.F. Groote, M.A. Reniers

PROOF. Lemma 5.3 says that any solution for Sys in (4) is a solution for Q in (5). By
Lemma 5.4 and CL-RSP there is at most one solution for Qin (5). Henceforth. Equation (4)

has at most one solution. tuo. D

We consider the following theorem the main result of this section. as it provides a linear
equivalent of Equation (4) that is easy to use and to obtain. We assume that there is a total
reflexive ordering (on I. As I is an index set, this is a very reasonable assumption.

THEOREM 5.6. The process Sys as defined in Equations (3) and (4) is the (unique) solu
tion f()r Q in the (convergent) equation he/ow; so Sys(n, dt) = Q(n, dt) .for all n: Nat and
dt:DTahle.

Q(n:Nat, dt:DTahle)

= L L L a;(.fi(k. dt[k], e;))Q(n, upd(k. g;(k. dt[k], e;). dt))
it'! LVar e,L;

<1C;(k.dt[k],e;) /\k (111>8

Q(n, upd(k1, g; 1 (k 1, dt[k 1], e; 1), upd(h, g; 2 (k2, dt[k2], e12), dt)))
<1c; 1 (k1, dt[k1], e; 1) /\ c;2 (k2, dt[hl. e;2) /\

eq(f; 1 (k1. dt[k1], e; 1), f;, (h, dt[k2J. e;2)) /\

--.eq(k1, k2) /\ k1 (n /\ k1 (n 1> 8.

6. The Tree Identify Protocol of IEEE 1394 in µ CRL

We apply the cones and foci technique (Section 3.3) and the linearization of a number of
similar parallel processes (Section 5) to a fragment of the software for a high performance
serial multimedia bus. the IEEE standard 1394 [29], also known as "Firewire".

Briefly, IEEE 1394 connects together a collection of systems and devices in order to
transport all forms of digitalized video and audio quickly. reliably. and inexpensively. Its
architecture is scalable, and it is "hot-pluggable", so a designer or user can add or remove
systems and peripherals easily at any time. The only requirement is that the form of the
network should be a tree (other configurations lead to errors).

The protocol is subdivided into layers, in the manner of OSI, and further into phases, cor
responding to particular tasks, e.g., data transmission or bus master identification. Various
parts of the standard have been verified using various formalisms and proof techniques.
For example. the operation of sending packets of information across the network is de
scribed using µCRL in [34] and shown to be faulty using E-LOTOS in [46]. The former
is essentially a description only, with five correctness properties stated informally, but not
formalized or proved. The exercise of [46] is based on the µCRL description, adding an
other layer of the protocol and carrying out the verification as suggested, using the tool
CADP [15].

Algebraic process verification 1191

In this section we concentrate on the tree identify phase of the physical layer which
occurs after a bus reset in the system, e.g., when a node is added to or removed from the
network. The purpose of the tree identify protocol is to assign a (new) root, or leader,
to the network. Essentially, the protocol consists of a set of negotiations between nodes to
establish the direction of the parent-child relationship. Potentially, a node can be a parent to
many nodes, but a child of at most one node. A node with no parent (after the negotiations
are complete) is the leader. The tree identify protocol must ensure that a leader is chosen,
and that it is the only leader chosen.

The specification of the external behaviour of the protocol merely announces that a sin
gle leader has been chosen. In the implementation, nodes are specified individually and
negotiate with their neighbours to determine the parent-child relationship. Communication
is by handshaking. These descriptions may be found in Section 6.1. They were derived
with reference to the transition diagram in Section 4.4.2.2 of the standard [29].

We prove, using the cones and foci technique, that the implementation has the same be
haviour with respect to rooted branching bisimulation as the specification, thereby showing
that the implementation behaves as required, i.e., a single leader is chosen. The proofs may
be found in Section 6.2.

Several papers deal with the formal description and analysis of parts of the PI 394 pro
tocol. See, e.g., [13,34,46,48].

6.1. Description of the Tree Identify Protocol

The µ,CRL data definitions used here (e.g., Nat, NatSet, NatSetList) are assumed and not
presented; they are straightforward and examples of these or similar types may be found
in [34].

The most abstract specification of the tree identify protocol is the one which merely
reports that a leader has been found. The network is viewed as a whole, and no communi
cations between nodes are specified. We define

Spee= leader· 8.

In the description of the implementation each node in the network is represented by
a separate process. Individual nodes are specified below as processes Node. Nodes are
described by three parameters:
• a natural number i: the identification number of the node. This is used to parameterize

communications between nodes, and is not changed during any run of the protocol;
• a set of natural numbers p: the set of node identifiers of potential parents of the node.

The initial value is the set of all neighbours, decreasing to either a singleton (containing
the parent node) or the empty set (indicating that the node is the elected leader);

• a natural number s: the current state of the node. We use two state values: 0 corresponds
to "still working" and l to "finished". The initial value is 0.

The identification number of nodes has been introduced to aid specification and does not
appear in [29]. In reality a device has a number of ports and knows whether or not a port is
connected to another node; there is no need for node identifiers.

1192 J.F. Groote, M.A. Renier.1·

A node can send and receive messages: an action s(i, j) is the sending of a request by
node i to node j to become its parent, and an action r(i, j) is the receiving of a parent
request from node i by node j. When the nodes of the network are composed in parallel,
these two actions synchronize with each other to produce a c action. An action c(i, j) is
the establishment of a child-parent relation between node i and node j, where i is the child
and j is the parent.

We define the actions and the communications by the following µCRL specification:

act s,r,c:NatxNat

leader

comm s I r =c

If a node is still active and its set of potential parents is empty, it declares itself leader by
the execution of the leader action. By definition, nodes in state l are equivalent to dead
lock. An individual node with identification number i is defined by means of the process
Node(i, p, s). The processes Node(i, p, s) are defined by the following LPE.

DEFINITION 6.1 (Implementation of a node).

Node(i:Nat, p:NatSet, s:Nat)

=leader· Node(i, p, 1) <1 s = 0 /\ isempty(p) t> 8

+ L r (j, i) · Node(i, p \ {j}, s) <1 s = 0 /\ j E p t> 8
j:Nar

+ L:s(i,j)-Node(i,p, l)<1s=O/\p={j}t>8.
j:Nar

The implementation then consists of the parallel composition of n + 1 nodes where
the loose send and receive actions are encapsulated: H = {s, r). This implementation is
described by the process Imp(n, Po), with Po describing the configuration of the network:

lmp(n: Nat, Po:NatSetList) = aH (Nodes(n, Po)),

where

Nodes(n, Po) = Node(O, Po[O], 0) <111 = 0 t>

(Node(n, Po[n], 0) II Nodes(n - 1, Po)).

Po is a list of sets of connections for all nodes indexed by node number; it gives the initial
values for the sets of potential parents. Initially all nodes are in state 0.

6.2. Correctness of the implementation

As mentioned earlier, the protocol operates correctly only on tree networks, i.e., under the
assumption of a good network topology. Networks with loops will cause a timeout in the

Algebraic process verification 1193

real protocol, and unconnected nodes will simply be regarded as another network. The
property of GoodTopology is formalized below.

DEFINITION 6.2. Given n: Nat, the maximal node identifier in the network, and a list

Po:NatSetlist giving a set of neighbours for all nodes in the network, the conjunction
of the following properties is called GoodTopology(n, Po):

• Po is symmetric: Vi.} (i E Po[}]++ j E Po[i]).
• Po is a tree, i.e., it is a connected graph with no loops.

As a preliminary step to applying the cones and foci proof method, the process Spee

defined in Section 6.1 must be translated into linear form. Jn order to do so, a data parameter

must be added on which to base a state mapping from the data of process Imp. We define

L-Spec(b:Bool) =leader· L-Spee(f) <lb r> 8.

Then, the process L-Spee(t) and the original specification Spee are equivalent.

THEOREM 6.3. Let Spee and l-Spec be as above. Then l-Spec(t) =Spee.

PROOF. The following computation clearly establishes the equivalence: L-Spec(t) =
leader · L-Spee(f) <l t r> 8 = leader · l-5'pec(f) = leader · (leader · l-Spec(f) <l f 1> 8) =
leader· 8 =Spee. D

The linearization of Imp is given by the following LPE for l-lmp.

L-lmp(n: Nat, P: NatSetList. S: Nat list)

= L leader· L-lmp(1 / S[i]) <l S[i] = 0 /\ isempty(P[i]) /\ i :S; n e> 8

i:Nar

+ L c(j,i)·L-lmp((P[i]\{j})/P[i],I/S[IJ)
i.j:Nu1

<l S[j] = 0 /\ P[j] = {i} /\ S[i] = 0 /\ j E P[i] /\ i # j /\ i, j (; n e> 8.

This linearization can be derived straightforwardly from the definition of individual

nodes using the linearization technique of Section 5.

THEOREM 6 .4. Let So: Nat List be the list of initial state values for the nodes, so for all

i:Nat we have So[il = 0. Then lmp(n. Po)= L-lmp(n. Po, So).

The proof of c01Tectness also requires an invariant on the data states of the implementa

tion. The invariant I (n, P. S) is the conjunction of the invariants listed below. These invari

ants hold in every state that can be reached from the initial state (n, Po, So). The variables

i and j are universally quantified over {O, ... , n}. The notation singleton(X) represents the

predicate IX I = I, i.e .. it expresses that the set X contains precisely one element.

I1: S[i]=OvS[i]=I.

l 194 J.F. Groote, M.A. Reniers

I2: j E Po[i] B- j E P[i] Vi E P[j].

I.1: j E Po[i] /\ j "/:. P[i]-+ S[j] =I.

Li: S[il = l-+ singleton(P[i]) v isempty(P[i]).

l:;: j E P[i] !\ S[i] = 0-+ S[j] = 0 /\ i E P[j].

The proofs of these invariants are straightforward, and omitted here. Invariant l 1 ex
presses that each of the components is in state 0 or in state I. Invariant 12 expresses that if
the nodes i and j are connected initially, then at all times one is a potential parent of the
other. This means that no connections are removed. Invariant l3 expresses that the potential
parent relationship between a node j and a node i is only destroyed if i becomes the parent
node of j. Invariant 14 states that if a node is done there is at most one potential parent left.
Invariant ls expresses that if a node is still busy and has another node as its potential par
ent then also this potential parent is still busy and considers the other node as a potential

parent.
The linearization of l-Imp is not sufficient to allow us to apply Theorem 3.11. A pre

requisite for applying the cones and foci technique is that the indices of the alternative
quantifications preceding a visible action must be the same in the specification and the
implementation; clearly this is not the case. The summation over the node identifiers pre
ceding the leader action in l-lmp correctly reflects that any node can be the root, i.e., there
are multiple foci. However, it is not important which node is the root. only that one is cho
sen, and the Boolean condition guarding the leader action in l-Imp ensures that this is the
case. We adapt the specification in such a way that the leader action there is also preceded
by an alternative quantification over the node identifiers. Clearly the linear specification
obtained in this way is equal to the old linear specification.

l-Spec(b:Bool) = L leader· l-Spec(f) <1 b /\ i (111> 8.

i:Nar

The theorem to be demonstrated can now be stated as:

THEOREM 6.5. Under the assumption of GoodTopology(n, Po) and I (n, Po, S0),

r · l-Spec(t) = r · r!ci(l-lmp(n, Po, So)).

In the special case where 11 = 0 (there is only one node in the network) we have

l-Spec(t) = r1ci(L-lmp(n, Po, So)).

This is a direct instantiation of Theorem 3.11 with the initial state, because in the initial
state the focus condition (defined below) is true if and only if 11 = 0. In order to prove
Theorem 6.5 the matching criteria must be satisfied. To show that the matching criteria
hold we first define the focus condition and the state mapping for T{c} (l-lmp). The focus
condition FC is the condition under which no more r steps can be made, i.e., it is the
negation of the condition for making a r step:

FC(n. P, S) = 'v'i.):%;n(S[i] =Iv P[i] -f. {j} v S[j] =Iv i.;:_ P[.i] v i = J).

Algebraic process verification 1195

The state mapping h is a function mapping data states of the implementation into data

states of the simple specification. In this case h is defined so that it is t before the visible
leader action occurs and f afterwards:

h(n, P, S) = -,(\/;'(11 (S[i] = 1)).

If a node can do the leader action then all other nodes are in state l. So, if a node declares

itself the leader, then it is the first to do so, and because after this all nodes are in state l,
there will be no subsequent leader action.

LEMMA 6.6 (Uniqueness of root).

\1;(;11 (isemply(P [i])) --+ \IJ(;n (j 'Ii ~ S[Jl = l).

PROOF. We assume nodes i, j ~ n such that i 'I j /\is empty(P [il) /\ S[j] = 0, and derive

a contradiction. By GoodTopology there is a path of distinct nodes i = io ... i 111 = j, such

that \lk<m Uk+l E Po[ik]). By I2 and isempty(P[io]) we see that io E P[i1]. Then by l3
S[ii] = 1, and by L.1 singleton(P[i 1]). In a similar way we derive for all 0 < k ~ m that

P[id = {h-il and S[ikl = l. So in particular S[j] = 1. O

The matching criteria. Given the particulars of L-Imp, L-Spec, FC and h, the match

ing criteria may be mechanically derived from the general forms of Definition 3.10. The
instantiated matching criteria are stated below, together with the proofs that they hold.

(l) The implementation is convergent. Each r step decreases the number of nodes i for

which S[i] = 0 by one.
(2) In any data stated= (11, P, S) of the implementation, the execution of an internal

step leads to a state with the same Ii-image.
Suppose an internal action is possible, i.e., there are nodes i, j ~ 11 such that

Sf i] = 0 I\ P[i] = {.i} I\ S[j] = 0 I\ i E P[j] /\ if. j.

We see that S[i] = 0 and S[j] = 0 and hence h (d) = t. We have to show that if we
reach a state d' = (n, P', S') by the communication between nodes i and j, then

h(d') = t. We easily find that S'[k] = S[k] for 0 ~ k ~ n and k f. j and S'[.il = 1.

Hence S'[i] = 0. Therefore h(d') = t.
(3) If the implementation can do the leader action, then so can the specification:

(:l; (11 (S[i] = 0 /\ isempty(P [i]))) ~ :l; (; 11 h.

Trivial.
(4) If the specification can do the leader action and the implementation cannot do an

internal action, then the implementation must be able to do the leader action:

(:l;(; 11 h) I\ FC ~ (:l1(n (S[i] = 0 I\ isempty(P[i]))).

1196 J.F. Groote, M.A. Reniers

The specification can do the leader action if it is in a state where its only parameter
b equals t. This means that for the corresponding state d in the implementation we
have S[i] -=fa l for some i ~ 11. Using invariant 11 we thus obtain S[i] = 0. Now we
only have to show that isempty(P[i]).
So suppose that -.isempty(P[i]). Let i1 E P[i]. From invariant Is it follows that
S[i 1] = 0 /\ i E P[i 1 J. From FC /\ S[i] = 0/\S[i1] = 0/\i1 E P[i] it follows that
P[i 1] -=fa {i }. Thus there exists i2 E P[i 1], i2 -:f. i such that S[i2] = 0 /\ i 1 E P[i2]. In
this way an infinite sequence i = io, i 1, i2, i 3, ... can be constructed such that for all
k:Nat we have S[k] = 0 /\ h E P[h+il /\ ik -=fa h+2· By h we see that this infinite
path is also a path in Po. This contradicts GoodTopology.

(5) The implementation and the specification perform external actions with the same
parameter. Trivial; the action leader involves no data.

(6) After the implementation and the specification perform the leader action, the map
ping h still holds: if the implementation can reach data state d' by the execution of
the leader action, then h(d') =f.
Assume that the implementation can perform the leader action: i.e., S[i] = 0 /\
isempty(P[i]) for some i ~ n. Then also the specification can do the leader ac
tion by item (3) Hence b = t. After the execution of the leader action the state of the
specification is given by b =f. Then by Lemma 6.6 we see that all nodes other than
i are in state 1. We also see that by the execution of the leader action the state of
node i becomes l. So after the action all nodes are in state l, so then the value of h
will be f.

By Theorem 3.11 it follows that for all n, P, S

I (11, P, S) ~ L-lmp(n, P, S) <J FC(n, P, S) 1> r · L-lmp(n, P, S)

=L-Spec(h(n. P, S)) <JFC(n, P, S) 1> r · L-Spec(h(n, P, S)).

Instantiation of this equation gives

l(n, Po, So) ~ L-lmp(n, Po, So) <JFC(n, Po, So) 1> r · L-Imp(n. Po, So)

= L-Spec(h(n, Po, So)) <JFC(n, Po. So) 1>

r · L-Spec(h(n, Po, So)),

which reduces to

L-lmp(n, Po, So) <Jn= 01> r · L-lmp(n, Po, So)

= l-Spec(t) <Jn = 0 1> r · L-Spec(t).

7. Confluence for process verification

7 .l. Introduction

In his seminal book [38] Milner devotes a chapter to the notions strong and observation
confluence in process theory. Many other authors have confirmed the importance of con
fluence. For example, in [28,44] the notion is used for on-the-fly reduction of finite state
spaces and in [38] it has been used for the verification of protocols.

Algebraic process verification 1197

We felt that a more general treatment of the notion of confluence is in order. The first
reason for this is that the treatment of confluence has always been somewhat ad hoe in the
setting of process theory. This strongly contrasts with for instance term rewriting, where
confluence is one of the major topics. In particular, we want to clarify the relation with
r-inertness, which says that ifs ~ s', then s and s' are branching bisimilar.

The second reason is that we want to develop systematic ways to prove distributed sys
tems correct in a precise and formal fashion. In this way we want to provide techniques
to construct fault free distributed systems. For this purpose the language µCRL is used.
Experience with several protocols gave rise to the development of new and the adaptation
of existing techniques to make systematic verification possible [4,5]. Employing conflu
ence also belongs to these techniques. It appears to enable easier verification of distributed
systems, which in essence boils down to the application of r-inertness.

In Section 7.2, we address the relationship between confluence and r-inertness on tran
sition systems. We introduce strong and weak confluence. We establish that strong con
fluence implies r-inertness and we establish that, for convergent transition systems, weak
confluence implies r-inertness.

To be able to deal with systems with idle loops, for instance communication protocols
over unreliable channels, we distinguish between progressive and non progressive internal
actions. This leads to a notion of weak progressive confluence that only considers the pro
gressing internal actions. We find that weak progressive confluence is enough to guarantee
r-inertness for transition systems that are convergent with respect to progressing internal
steps.

In Section 7.3, we direct our attention to establishing confluence. It does hardly make
sense to establish confluence directly on transition systems, because these are generally
far too large to be represented. Therefore, we try to establish confluence on processes de
scribed by LPEs [5] because these can represent large transition systems in a compact
symbolic way. In Section 7.4, we show how we can use r-inertness and confluence to re
duce state spaces both on transition systems and on linear processes. Finally, we provide an
example illustrating that the application of confluence often reduces the size of state spaces
considerably and simplifies the structure of distributed systems, while preserving branch
ing bisimulation. This is in general a very profitable preprocessing step before analysis,
testing or simulation of a distributed system.

7.2. Confluence and r-inertness

Throughout this section we fix the set of actions A, which contains an internal action r.

DEFINITION 7. l. A transition system is a pair (S, --!>) with Sa set and --!> ~ S x
A x S. The set of triples --t> induces a binary relation ~ ~ S x S for each a E A
as follows: for alls, t ES we have (s, t) E ~ iff (s, a, t) E --!>.We writes~ t
instead of (s, a, t) E --1> and (s, t) E ~. The relation ~ ~ S x S denotes the
reflexive, transitive closure of the relation ~.

A transition system (S, --I>) is called convergent iff there is no infinite sequence of
theforms1 2-t>s2 ~s3 ~ · · ·.

1198 J.F. Groote, M.A. Renier.1·

A relation R s; S x S' is called a branching bisimulation on (S, --1>) and (S1 , ~)
iff for all s E S and s' E S' such that s Rs' we have

(!) s ~ t--? (a= r /\ t Rs') v (3,,, 11 -(s 1 ~ u ~ u' /\ s Ru/\ t Ru')), and
(2) s' ~ t'--? (a= r /\ sRt') v (3u,u' (s ~ u ~ u' /\ uRs' /\ u' Rt')).
We say that R is a branching bisirnulation on (S, --1>) iff R is a branching bisirnu

Jation on (S. --1>) and (S, --1>). The union of all branching bisirnulations is denoted
as±±,,.

Next, we present three different notions of confluence on transition systems, namely
strong c01~fluence, weak confluence and weak progressive confluence. We investigate
whether or not these different notions of confluence are strong enough to serve as a condi
tion for

(6)

to hold. Transition systems that satisfy Equation (6) for alls, t ES are called r-inert with
respect to ±ZJJ.

DEFINlT!ON 7 .2. A transition system (S. --1>) is called strongly confluent iff for all
pairs s -"-1> t and s ~ s' of different steps there exists a state t' such that t _r_I> t 1

and s' ~ t'. In a diagram:

(/ s ·--[>f

r l a r l
s' - - -r>t'

Omitting the word 'different' in Definition 7 .2 would give a stronger notion. This can be
seen as follows: the transition system represented by s _r_I> t is strongly confluent, but
would not be strongly confluent when the word 'different' was omitted.

THEOREM 7. 3. Strongly crmfluent transition systems are r-inert with respect to ±Zf>.

The converse of Theorem 7.3 is obviously not valid. A transition system that is r-inert
with respect to ±±1>, is not necessarily strongly confluent. As a counter-example one can
take the transition system

t<J-r-s~u. (7)

This counter-example means that strong confluence is actually a stronger notion than
we need since we are primarily interested in r-inertness (with respect to ±Zh). Hence we
introduce a weaker notion of confluence, which differs from strong confluence in that it
allows zero or more r-steps in the paths from t to t' and from s' to t'.

Algebraic process verification 1199

DEFINITION 7.4. A transition system (S,--!>) is called weakly confluent iff for each
pairs ~ t and s ~ s' of different steps one of the following holds:
• there exist states t', r;, t~ such that t __!_'.'__[> t' and s' ~ t; ~ t~ ~ t'. In a

diagram:

a s ----------f>t

'l " s' - - -r>t;

r* I

ll I T"' ~
- - -f>t2 - - -f>t

• a == r and there exists a state t' such that t ~ t' and s' -4 t'. In a diagram:

r s --f>t

r I r* I

~ * ~
s' - .:_ -r>t'

Weak confluence is too weak to serve as a condition for Equation (6) to hold, i.e., weakly
confluent transition systems are not necessarily r-inert with respect to ±±h. However, if
we also assume that the transition system is convergent, then weak confluence implies
r-inertness.

THEOREM 7 .5. Let (S, --[>) be convergent and weakly confluent, then (S, -E>) is
r-inertwith respect to ±±/J.

Theorem 7 .5 relies on convergence of the transition system in question. However, many
realistic examples of protocol specifications correspond to transition systems that are not
convergent. As soon as a protocol internally consists in some kind of correction mechanism
(e.g., retransmissions in a data link protocol) the specification of that protocol will contain
an idle loop.

Since we strongly believe in the importance of applicability to realistic examples, we
considered the requirement that the transition system is convergent a serious drawback.
Therefore, we distinguish, as in Section 3.4, between progressive internal actions, denoted
by r > and non-progressive internal actions, denoted by r <. This enables us to formulate
a notion of confluence, which is sufficiently strong for our purposes and only relies on
convergence of the progressive r -steps.

CONVENTION 7 .6. We use the following notations:
• s ~ t for a progressive r-step from s tot,
• s -2.::..._[> t for a non-progressive r-step from s to t,
• s ~tfors~tors ~t.

1200 J.F. Groote, M.A. Reniers

From now on we try to prove r>-inertness with respect to ±::±1,, instead of r-inertness
with respect to ±±,,.In a formula:

(8)

It should be noted that the definition of branching bisimulation is not affected by the dis
tinction of progressive and non-progressive r-steps. We first provide the definition of weak
>-confluence.

DEFINITION 7. 7. A trans1t1on system (S,---[>) is called weakly >-confluent (pro
nounce: weakly progressive confluent) iff for each pair s ~ s' and s ~ t of dif
ferent steps one of the following holds:
• there exist states t', s;, s; such that t ~ t' and s ~ s; ~ s~ ~ t', or

• a = r and there exists a state t such that t ~ t' and s ~ t.

THEOREM 7 .8. let (S, --1>) be >-convergentandweakly >-confluent, then (S, --1>)

is r >-inert with respect to ±::± b·

7 .3. Confluence of linear process equations

We want to use the notion confluence to verify the correctness of processes. In order to
do so, we must be able to determine whether a transition system is confluent. This is in
general not possible, because the transition systems belonging to distributed systems are
often too large to be handled as plain objects. In order to manipulate with large state spaces,
processes described by C-LPEs can be used as in these the state space is compactly encoded
using data parameters.

In this section we describe how a C-LPE can be shown to be confluent. In the next
section we show how confluence is used to reduce the size of state spaces.

Recall the definition of a clustered linear process equation of Definition 3.7. A clustered
linear process equation is an expression of the form

p(d) = L L a(f,1(d, e11)) • p(g11 (d, ea)) <J b11 (d, ea) l> 8. (9)
aEAct ea:Ea

We assume that the internal action r (r> and r < if progressing and non-progressing r 's are
distinguished) has no data parameter.

It is straightforward to see how a linear process equation determines a transition system.
The process p(d) can perform an action a(j;,(d, ea)) for every a E Act and every data
element ea of sort Ea, provided the condition b,,(d, ea) holds. The process then continues
as p(ga(d, ea)). Hence, the notions defined in the previous sections carry over directly.
Thus, if b11 (d, ea) holds then

Algebraic process verification 1201

As we distinguish between progressing and non-progressing r 's, we use the notion con
vergence with respect to the progressing r 's (i.e., r >).

DEFINITION 7. 9. A clustered linear process equation as given in Equation (9) is called
>-convergent iff there is a well-founded ordering < on D such that for all a E Act with
a= r> and for all d:D, ea :Da we have that b0 (d, ea) implies g" (d, e11) <d.

Note that this definition of progressive convergence is in line with the normal notion of
convergence (Definition 3.3) in the sense that only the progressive r-steps are considered.

We provide sufficient criteria for p to be strongly confluent. Let p be the clustered linear
process equation given in Equation (9).

THEOREM 7. I 0. The process p as defined in Equation (9) is strongly confluent iffor all
d:D, a EAct, ea:Ea, er:Er such that

(i) if a= r then gu(cl, ea) i= gr(d, er).

(ii) ba(d, ea). and
(iii) br (d, er)

the following property holds: there exist e;, :E,, and e~ :Er such that

f;,(d, e") = f,, (gr(d, er), e;,)
/\ ba (gr (d, er), e;,)
/\ hr(g0 (d, ea). e~)

/\ g"(gr(d, er), e;,) = gr(g"(c/, ea). e~).

The criteria can best be understood via the following diagram.

p(d) ---------i>p(gy(d,er))

<1(_/;,id.c"))l

p(ffo(d, e1.1))

a(./; 1 (g 1 id.e,).e;, JI I

~'
_r - I> p (gr C~a (d, ea), e~)) = p (ga (gr (d, er), e;,))

Note that in this diagram p(g"(d,e")) and p(gr(d,er)) are supposed to be different if
a= r (see condition (i) in the above definition).

Now that we have derived a rather simple condition for strong confluence we turn our
attention to weak progressive confluence. This is more involved, because we must now
speak about sequences of transitions. In order to keep notation compact, we introduce
some notation. Let a, a',... range over lists of pairs (a, e") with a E Act and e" :Eu. We
define 9i1 (a) with d E D by induction over the length of a:

9<1(A) = d,

9<1(a(a,ea)) = g11(!Jd(a).ea)·

1202 J.F Groote. M.A. Re11ier.1·

Each a determines an execution fragment:

/) ((, (l) al/"19.tl(T).e"ll f> (CJ ((e))) p(l ---t>p Jd a -~~--- p _<fa a, "

determined by (T

is the execution fragment detem1ined by a (a, e0). This execution fragment is allowed for

p(d) iff the conjunction l3d (a) of all conditions associated to the actions in a evaluates to

rrue. The Boolean B.1 (a) is also defined by induction to the length of a:

Bi1(A) = true,

B,1(a(a. ea))= Bi1(a) /\ ha(9i1(a), ea)·

We write rr 1 (IT) for the sequence of actions that is obtained from a by applying the first

projection to all its elements. For example, rr1 ((a, e0) (b, eh))= ah.

In the following theorem we provide sufficient criteria for a C-LPE p to he weakly

>-confluent. Due to its generality the theorem looks rather complex. However, in those ap

plications that we considered, the lists that are existentially quantified were mainly empty,

which t1ivializes the main parts of the theorem.

THEOREM 7 .11. The process p as defined in Equation (9) is weakly >-cm~fluent !f' p is

>-com·e1xentamlf(1rall d:D, a EAct, e,,:E", er.:Er.. such that

(i) u·a=T, thenlfo(d,e")-=f.gr.(d,er),

(ii) h11 (d, e11), wzd
(iii) hr (d, e,)

the.fi1l!owing property holds: there exist a1, a2. a3 and e;,:E;, such that

rr1 (ai) = r: .frH all i = l, 2, 3

/\ f;,(d, ea)= f;,(9g, 1d.e,J(a1), e;,)
/\ l3g,,ld .e,, 1 (a3)

/\ Bg,. id.e, 1 (a)

/\ 9g"(d.e,,1(a3) = 9g, id.e,)(a),

7.4. State space reduction

In this section, we employ the results about confluence and r-inertness that we have ob

tained thus far to achieve state space reductions and to simplify the behaviour of processes.

First, we present the results on transition systems in general, and then on linear process

equations. This is done as for transition systems the results are easy to understand. How

ever, as argued in the previous section, the results can be applied more conveniently in the

setting of linear process equations.

Algebraic process verification 1203

DEFINITION 7.12. Let T1 = (S, --!>)and T2 = (S, -----..) be transition systems. We
call T2 a Tau-Prioretized-reduction (TP-reduction) of T1 iff

(i) -----.. £--I>,
(ii) for alls, s' ES ifs~ s' then s ~ s' ors~ s" for some s".

Clearly, T2 can be obtained from T1 by iteratively removing transitions from states as
long as these keep at least one outgoing progressive r-step. It does not need any comment
that this may considerably reduce the state space of T1, especially because large parts may
become unreachable.

The following theorem says that if T1 is r>-inert with respect to ii1i, then a TP-reduction
maintains branching bisimulation. As confluence implies r-inertness, this theorem explains
how confluence can be used to reduce the size of transition systems.

THEOREM 7.13. Let T1 = (S, --!>)and T2 = (S, -----..) be transition systems. lfT1 is
r>-inert with respect to iih and T2 is a >-convergent TP-reduction of T1 then for each
states ES: Sii!JS.

As has been shown in the previous section, weak >-confluence can relatively easy be
determined on C-LPEs. We provide a way to reduce the complexity of a C-LPE. Below
we reformulate the notion of a TP-reduction on C-LPEs. We assume that p is a C-LPE
according to Equation (9) and that the data sort Er is ordered by some total ordering-<.

DEFINITION 7 .14. The TP-reduction of p is the linear process

Pr(d) = L L a (fa (d, ea)) ·Pr (ga(d, ea))<. ba(d, ea)/\ Ca (d, ea)~ 8,
aEActca:Ea

where

(d) _ r. · •h ' •· {
--.3,, ·1:· b(d er)

Ca ,ea - --.3eh:E,,(ea-<er, /\b(d,er.))
if a -:f. r»
ifa=r>-

Note that for the sake of conciseness, we use an existential quantification in the condition
c11 (d, ea), which does not adhere to the formal definition of µCRL.

THEOREM 7 .15. If the linear process p is >-convergent and weakly >-confluent, then for
all d:D

7.5. An example: Concatenation of two queues

We illustrate how we apply the theory by means of an example, where the structure of
the processes is considerably simplified by a confluence argument. Consider the follow
ing linear process Q(q1, q1) describing the concatenation of two queues q1 and q1. The
architecture of this process is given in Figure 3.

1204 J.F Groote, M.A. Reniers

Fig. 3. Architecture of the concatenation of the queues.

d:{)

+ r · Q (u11toe(q1), in (toe(q 1), q2)) <J -.isempty(q1) 1> 8

+ s(toe(q2)) · Q(q1, untoe(q2)) <J -.isempty(q2) 1> o.

As we can see, the process Q(q1. q2) can always read a datum and insert it in q1. If q2 is
not empty then the "toe' of q2 can be sent. The internal action r removes the first element
of q 1 and inserts it in q2.

Using Theorem 7.10 we can straightforwardly prove that Q(q1, q2) is strongly confluent.
Let us consider the strong confluence in more detail with respect to the read action r(d).

Q(q1, q2) __ r ___ C> Q(untoe(q1), in(toe(q1), q2))

r(dil

Q(in(d, l]I), q2)

This situation can only occur if both the read action r(d) and the r action are enabled: t
and -.isempty(q1). To establish strong confluence in this specific case we must find:

Q(untoe(q1), in(toe(q1). q2))

r(d') I

~
Q (in (d', untoe(q 1)) , in(toe(q 1) • c12))

Q(in(d, l/J), q2) - _! -C> Q(untoe(in(d, q1)), in(toe(in(d, q1)). Cf2))

for some d':D such that the data parameters of the two read actions are equal (d = d').
Furthermore. we need that the states resulting after the execution of these actions are equal.
The state after the r (d') action is given by (in(d', untoe(q 1)), in (toe(q 1), q2 J) and after the
r action by (untoe(in(d, q1)), in(toe(in(d, q1)), q;.)) respectively. With the observation that
the equality of states is defined to be pairwise equality we obtain the following condition:
for all queues q1, l/2 and d:D

-.isempty(q1)--+ 3i1':0 (d = d'

/\ -.isempty(in(d, en))
/\ in(d', untoe(q1)) = untoe(in(d, qi l)
/\ in(toe(q1), <J2) = in(toe(in(d, qi)), q2)

).

Algebraic process verification 1205

Similarly, we can formulate the following conditions for the action s. For all queues
q,, q1

-.isempty(q2) /\ -.isempty(q 1)

~ (toe(q2) =toe(in(toe(q1),q2))

/\ -.isempty(in(toe(q1), q1))

/\ -.isempty(q 1)

/\ untoe(q1) = untoe(q1)

/\ untoe(in(toe(q1), q1)) = in(toe(q1), untoe(q2))

) .

With the appropriate axioms for queues, the validity of these facts is easily verified.
For the a = T we find that the precondition a = T ~ 8a (d, ea) =/= 8r (d, er) is instan

tiated to T = T ~ (untoe(q 1) =/= untoe(q 1) v in(toe(q1), q2) =/= in(toe(q1), q1)), which is a
contradiction.

Now, by Theorem 7.15, the following TP-reduced version (see Definition 7.14) of
Q(q1, q1) is branching bisimilar to Q(q1, q7_).

Qr(q1, q1)

= L:r(d) · Q,.(in(d, qi), q1) <l isempty(q1) t> 8
d:/J

+ T • Qr (untoe(q 1), in(toe(q1), q1)) <l --.isempty(q1) t> 8

+ s (toe(qz)) · Q,. (q 1, untoe(q2)) <J -.isempty(q2) /\ isempty(q1) t> 8.

Note that after the TP-reduction qi never contains more than one element!

Acknowledgements

We would like to thank Harm van Beek, Michie! van Osch, Piet Rodenburg, and Mark van
der Zwaag for their valuable comments on several versions of this chapter.

References

11 l H.P. Barendregt, The Lambda Calculus, North-Holland (1981).
121 M.A. Bezem, R.N. Bo! and J.F. Groote, Formalbng process algebraic verifications in the rnlcu/us ofco11-

.1·tmctions, Formal Aspects ofComput. 9 (1997), 1-48.
[31 H. Bekic, Towards a mathematical theory of processes, Technical Report TR25.125, IBM Laboratory,

Vienna (1971).
[41 M.A. Bezem and J.F. Groote, A correctness proof c!f' a one-bit sliding window protocol in µCRL, The

Comput. J. 37 (4) (1994), 289-307.
[51 M.A. Bezem and J.F. Groote, Invariants in process algebra with d(lfa, CONCUR'94: Concurrency The

ory, Uppsala, Sweden, Lecture Notes in Comput. Sci. 836, B. Jonsson and J. Parrow, eds, Springer-Verlag
(1994), 401-416.

1206 J.F. Groote, M.A. Reniers

[6] J.A. Bergstra. J.A. Hillebrand and A. Ponse. Grid protocols based on synchronous communication, Sci.
Comput. Programming 29 (1997). 199-233.

171 J.A. Bergstra and J.W. Klop. Process algebra for synchmnous communication, Inform. and Control 60 (1-3)
(1984), 109-137.

[81 J.C.M. Baeten and W.P. Weijland, Process AIJ?ebra, Cambridge Tracts in Theoret. Comput. Sci. 18, Cam
bridge University Press (1990).

[91 K.M. Chandy and J. Misra, Parallel Program DesiJ?n: A Foundation, Addison-Wesley (1989).
[10] CW!.µ CRL: A language and too/set to study communicating processes with data (2000). http://www.cwi.

nlrmcrl/.
[11 J J.W. de Bakker and E. de Vink, Control Flow Semantics, MIT Press (1996).
[12] G. Dowek. A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring and B. Werner, The

Coq pmof assistant user's guide, Version 5. 9, Technical Report, INRIA-Rocquencourt and CNRS-ENS
Lyon (1993).

[13] M.C.A. Devillers. W.O.D. Griffioen, J.M.T. Romijn and F.W. Vaandrager, Verification t~f'a leader election
protocol -ji1rma/ methods applied to IEEE I 394, Technical Report, Computing Science Institute, University
of Nijmegen (1997).

[14] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification: Equations cmd Initial Semantics, EATCS
Monographs on Theoret. Comput. Sci. 6, Springer-Verlag (1985).

[15] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu, CADP (CAE
SAR?ALDEBARAN Development Package): A protocol validation and verification toolbox, Proc. CAV'96,
Lecture Notes in Com put. Sci. 1102, R. Alur and T.A. Henzinger, eds, Springer-Verlag (1996), 437-440.

[16] L.-A. Fredlund, J.F. Groote and H. Korver, Formal verification of a leader election protocol in process
algebra, Theoret. Comput. Sci. 177 (1997), 459-486.

[17] J.F. Groote and H. Korver, Correctness pmoft!f'the bakery protocol in µCRL, Algebra of Communicating
Processes. Workshops in Computing. A. Ponse, C. Verhoef and S.F.M. van Vlijmen, eds, Springer-Verlag
(1994), 63-86.

[18] J.F. Groote, F. Monin and J. Springintveld, A computer checked algebraic verification ofa distributed sum
ming protocol. Technical Report 97114, Department of Mathematics and Computing Science, Eindhoven
University of Technology (1997).

119] J.F. Groote, F. Monin and J. van de Pol. CheckinJ? verifications <!f' protocols and distributed systems by
computer, Proc. CONCUR'98, Sophia Antipolis, Lecture Notes in Comput. Sci. 1466, D. Sangiorgi and
R. de Simone, eds, Springer-Verlag (1998), 629-655.

120! J.F. Groote and A. Ponse, Prooftheoryj(Jr µCRL: A /anguaf?e j(Jr pmcesses with data, Semantics of Spec
ification Languages, Proceedings of the International Workshop on Semantics of Specification Languages,
Utrecht. The Netherlands. 25-27 October 1993, Workshops in Computing, D.J. Andrews, J.F. Groote and
C.A. Middelburg, eds, Springer-Verlag (1994), 232-251.

[21] J.F. Groote and A. Ponse, The syntax and semantics ofµ CRL, Algebra of Communicating Processes,
Utrecht 1994, Workshops in Computing, A. Ponse, C. Verhoef and S.F.M. van Vlijmen, eds, Springer
Yerlag (1995). 26-<i2.

[221 J.F. Groote, A note on n similar parallel processes, ERCIM Workshop on Fonnal Methods for Industrial
Critical Systems. S. Gnesi and D. Latella, eds, Cesena. Italy (1997), 65-75.

[23] J.F. Groote, The syntax and semantics of timed µCRL, Technical Report SEN-R9709, CW!, Amsterdam
(1997).

124] J.F. Groote and J. Springintveld, Focus points and convergent process operators. A proof strategy for pm
tocol 1'erificatio11, Technical Report 142, University Utrecht, Department of Philosophy (1995).

[25] J.F. Groote and M.P.A. Sellink. Cmifluencef<Jr process verification, Theoret. Com put. Sci. 170 (1-2) (1996),
47-81.

[26] J.F. Groote and J.C. van de Pol, A bounded retransmission protoco/,f(Jr /arJ?e data packets. A case study in
rnmp11ter chffked 1'erification, Proc. AMAST'96, Munich, Gennany, Lecture Notes in Comput. Sci. 11 O I,
M. Wirsing and M. Nivat, eds, (1996), 536-550.

[27] C.A.R. Hoare, Communicating Sequential Processes, International Series in Comput. Sci., Prentice-Hall
International (1985).

[28] G.J. Holzmann and D. Peled, An improvement in.formal verification, Proc. FORTE '94, Berne, Switzerland
(1994).

Algebraic process verification 1207

[29] IEEE Computer Society, IEEE Standard jiJr a high pnfomumce serial bus (1996).

[30] ITU-T, Recommendation Z.100: Specification and Description la11g11<1ge (SDLJ, ITU-T, Geneva (June
1994).

[31] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, EATCS Monographs
on Theoret. Comput. Sci., Springer-Verlag, Berlin (1992).

[32] J.J.T. Kleijn, M.A. Reniers and J.E. Rooda, A process a/fiebra bast.'d verification of a pmduction system,
Proc. 2nd IEEE Conference on Formal Engineering Methods, Brisbane, Australia, December 1998, J. Sta
ples, M.G. Hinchley and S. Liu, eds, IEEE Computer Society Press (1998). 90-99.

[33] H. Korver and J. Springintveld, A computer-checked verification of Milner's scheduler, Proc. Internal. Sym
posium on Theoretical Aspects of Computer Software (TACS'94), Sendai, Japan, Lecture Notes in Comput.
Sci. 789. M. HagiyaandJ.C. Mitchell, eds, Springer-Verlag (1994). 161-178.

[34] S.P. Luttik, Description and formal specification of the link layer of Pl394, Technical Report SEN-R9706,
CW!, Amsterdam (1997).

[35] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann (1996).

[36] A. Mazurkiewicz, Basic notion.1· of trace theory, Linear Time, Branching Time and Partial Orders in Logics
and Models for Concurrency, Lecture Notes in Comput. Sci. 354, J.W. de Bakker, W.-P. de Roever and
G. Rozenberg, eds, Springer-Verlag (1988), 285-363.

[37] R. Milner, A mathematical model of computinfi agents, Proceedings Logic Colloquium 1973. H.E. Rose
and J.C. Shepherdson, eds, North-Holland (1973). 158-173.

[38] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Comput. Sci. 92, Springer-Verlag
(1980).

[39] R. Milner, Communication and Concurrency, International Series in Computer Science. Prentice-Hall In
ternational (1989).

[40] S. Mauw and G.J. Veltink, A process specification jimnalism, Fundamenta lnformaticae XIII (1990), 85-
139.

[41] L.C. Paulson, Isabelle: the next 700 theorem provers, Logic and Computer Science, P. Odifreddi, ed., Aca
demic Press (1990), 361-386.

[42] L.C. Paulson, Isabelle: A Generic Theorem Pn!l'er, Lecture Notes in Comput. Sci. 828, Springer-Verlag
(1994).

[43] I.C.C. Phillips, Refi1sal testing, Theoret. Comput. Sci. 50 (1987), 241-284.

[44] H. Qin, Efficient verification <!{determinate pmcesses, CONCUR'91, Proc. 2nd International Conference
on Concurrency Theory, Amsterdam, The Netherlands, Lecture Notes in Comput. Sci. 527, J.C.M. Baeten
and J.F. Groote, eds, Springer-Verlag (1991), 471-494.

[45] W. Reisig, Petri Nets: An Introduction, EATCS Monographs in Theoret. Comput. Sci. 4, Springer-Verlag,
Berlin (1985).

[46] M. Sighireanu and R. Mateescu, Validation <!f"the link layer protocol of the IEEE-1394 serial bus (Fire Wire):
An experiment with E-LOTOS, Technical Report 3172, INRIA (1997).

147] N. Shankar, S. Owre and J.M. Rushby, The PVS pro<!t" checker: A reference manual, Technical Report,
Computer Science Laboratory, SRI International, Menlo Park, CA (1993).

[48] C. Shankland and M.B. van der Zwaag, The tree identify protocol of IEEE 1394 in µCRL, Formal Aspects
of Comput. 10 (1998), 509-531.

149] R.J. van Glabbeek, The linear time - branching time spectrum, CONCUR'90 - Theories of Concurrency:
Unification and Extension, Amsterdam. Lecture Notes in Comput. Sci. 458. J.C.M. Baeten and J.W. Klop,
eds, Springer-Verlag (1990), 278-297.

[50] R.J. van Glabbeek, The linear time -branching time .1pectrwn II. The semamics of sequential pmcesses with
silent moves, CONCUR '93, Proc. International Conference on Concurrency Theory, Hildesheim, Germany,
Lecture Notes in Comput. Sci. 715, E. Best, ed., Springer-Verlag (1993), 66-81.

[51] J.J. van Warne!, Verification techniques fi1r elementary daw types and retransmission protocols, Ph.D. The
sis, University of Amsterdam (1995).

[52] G. Winskel, Event structures, Petri Nets: Applications and Relationships to Other Models of Concurrency,
Lecture Notes in Comput. Sci. 255, Brauer, Reissig and G. Rozenberg, eds, Springer-Verlag (1987), 325-

392.

1208 J.F Gmote, M.A. Reniers

Subject index

>-convergence, see convergence. progressive

abstract data type, 1154
abstraction, 1169, !170
action, 1 162
- internal, 1169
- - non-progressing, 1 179, 1199
- - progressing, 1179. 1199
action name, l 162
alternative quantification, 1165

branching hisimulation, l l 98

communication function, I 170
communication merge, l 171
composition
- alternative, 1162, 1163
- parallel, 1169
- si;;quential, l 162, 1163
Concrete Invariant Corollary, 1175
conditional operator, 1164, 1165
cone, 1177
cones and foci, 117 6
contluenc.::
- strong, 1198
- weak, 1198, 1199
- weak progressive, l 198
convergence
- progressive, 1201
convergent, 1175, 1179, 1197
Convergent Linear Recursive Specification Princi

ple, 1175

deadlock, 116\ 1164

encapsulation, 1168, 1 169

focus condition, I 177. 1179
focus point, 1177

General Equality Theorem, 1177, 1178

idle loop, 1179, 1199
induction, 1159
invariant, 1175

left merge, 1171
linear process equation, 1173. 1186
- clustered, 1 200
linear process operator, 1173
- clustered, 1176
Linear Recursive Definition Principle, 1175

matching criteria, 1177, 1179

pre-abstraction function, 1 179

renaming, 1172

solution, 1175
state mapping, 1177
state space, 1173, 1200. 1202
state space reduction, 1202
state transformation, 1173
sum elimination, 1168
sum operator, see alternative quantification
surnmand inclusion, 1163, 1168

r-inertness, 1198
r> -inertness, 1200
r <,see non-progressing, internal, action
r,, see progressing, internal, action
TP-reduction, 1203
transition system, 1197, 1200

weak >-confluence, see confluence, weak progres
sive

