
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.F. Groote, A. Ponse

Process algebra with guards
Combining Hoare logic with process algebra

Computer Science/Department of Software Technology Report CS-R9069 December

!.?11), Jt, r:•-

Centrum voor WisklJI ,de en tntormatic;.;&
-m..<1.lt!r•1atP

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Process Algebra with Guards

Combining Hoare Logic with Process Algebra

Jan Friso Groote
Alban Ponse

Department of Software Technology, CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: jfg@cwi.nl - alban@cwi.nl

Abstract

We extend process algebra with guards, comparable to the guards in guarded commands or con­
ditions in common programming constructs such as 'if - then - else - fi' and 'while - do - od'.

The extended language is provided with an operational semantics based on transitions be­
tween pairs of a process and a (data-)state. The data-states are given by a data environment that
also defines in which data-states guards hold and how actions (non-deterministically) transform

these states. The operational semantics is studied modulo strong bisimulation equivalence. For
basic process algebra (without operators for parallelism) we present a small axiom system that

is complete with respect to a general class of data environments . Given a particular data envi­
ronment S we add three axioms to this system, which is then again complete, provided weakest
preconditions are expressible and S is sufficiently deterministic.

Then we study process algebra with parallelism and guards. A two phase-calculus is pro­
vided that makes it possible to prove identities between parallel processes . Also this calculus is

complete. In the last section we show that partial correctness formulas can easily be expressed

in this setting. We use process algebra with guards to prove the soundness of a Hoare logic for
linear processes by translating proofs in Hoare logic into proofs in process algebra.

K ey Words & Phrases: process algebra, Hoare logic, guards, structural operational semantics,

bisimulation, completeness, soundness, partial correctness, conditionals.
1985 Ma.thematics Subject Classification: 68Q55, 68Q60.
1982 CR Categories: D2.4, D.3.1 , F.3.1, F.3.2.

Note: The first author is supported under ESPRIT Basic Research Action no. 3006 (CONCUR)
and both authors are supported by the European Communities under RACE project no. 1046

(SPECS). This document does not necessarily reflect the view of the SPECS consortium.

1 Introduction

Hoare logic has been introduced in 1969 as a proof system for the correctness of programs
[Hoa69] . Since then it has been applied to many problems, and it has been thoroughly studied
(see [Apt81, Apt84] for an overview). In Hoare logic a program is considered to be a state
transformer; the initial state is transformed to a final state. The correctness of a program is
expressed by pre- and post-conditions.

Report CS-R9069
Centre for Mathematics and Computer Science 1
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 1 INTRODUCTION

More recently processes, i .e. the behaviour of systems, have attracted attention. This has
led to several process calculi (CCS [Mil80, Mil89], CSP [Hoa85], ACP [BK84a, BW90] and
MEIJE [AB84]). In these calculi correctness is often expressed by equations saying that a
specification and an implementation are equivalent in some sense . These equivalences are
mainly based on observations: two processes are equal if some observer cannot distinguish
between the two. A classification of process equivalences has been described in [Gla90] .

It seems a natural and useful question how Hoare logic and process algebra can be inte­
grated . In this paper we provide an answer in two steps. First we extend process algebra
with guards. Depending on the state , a guard can either be transparent such that it can be
passed, or it can block and prevent subsequent processes from being executed. Typical for our
approach is that a guard itself represents a process. With this construct we can easily express
the guarded commands of DIJKSTRA [Dij76] and the guards occurring in several languages
such as LOTOS [ISO87] and CRL [Ss90]. A nice property of the guards in our framework is
that they constitute a Boolean algebra.

Using guards a partial correctness formula

{ a} p {,B}

with a, ,B guards and p representing some process can be expressed by the algebraic equation

ap = ap,B

saying that if process p starts in a state where the guard a holds, then it follows that the
guard ,B holds when p terminates. Such equations modelling partial correctness formulas were
first given by MANES and ARBIB [MA86].

We provide process algebra with guards with an operational semantics involving state
transformations. This semantics is based on transitions between configurations (p, s) where
p is a process expression and s is the 'state'. To avoid confusion between the 'state' and
configuration (also often called state) we will consequently use the term data-state. We
assume that data-states are given by some data environment that also prescribes in which
data-states guards hold and how atomic actions (non-deterministically) transform data-states.

We consider the processes modulo strong bisimulation equivalence [Mil80, Par81] and we
come up with several axiomatisations. In the case of Basic Process Algebra (BPA) with
the standard operators+ (choice) and • (sequential composition), termination constants and
guards we present two axiom systems, BPAb and BPAc(S). The system BPAb is complete
for finite processes with respect to a general class of data environments. It contains three
simple and one somewhat more involved axiom besides the nine that are standard for BPA
with termination constants. BPAb enables us to derive general facts about processes with
guards that do not depend on a particular data environment.

The axiom system BPAc(S) applies when one wants to prove equivalences between pro­
cesses if a data environment S has been determined. This axiom system is defined only if
weakest preconditions are expressible and S is sufficiently deterministic. It contains the ax­
ioms of BPAb together with three new axiom schemes that depend on S. We use BPAc(S)
to prove the correctness of a well-known small program in a completely algebraic manner.

Parallel operators fit easily in the process algebra framework. In Hoare logic, however,
parallelism turns out to be rather intricate; proof rules for parallel operators are often sub­
stantial [OG76, Lam80, Sti88]. In our setup we cannot completely avoid the difficulties caused

CONTENTS 3

by parallel operators in Hoare logic, but we can deal with them in a simple algebraic way.
We introduce a new set of axioms, called ACPc that enables us to rewrite every process
term to a term without parallel operators. Then using BPAt; or BPAc(S) we can verify the
equivalences we are interested in. We apply these techniques to an example.

In the last section of this paper we show that process algebra with guards can indeed be
used to verify partial correctness formulas, even in a setting with parallelism. Furthermore we
apply BPAc(S) to show soundness of a Hoare logic for process algebra with linear processes
[Pon89, PV89] . The proof uses a canonical translation of proofs in Hoare logic into proofs in
process algebra.

Acknowledgement

We thank Jos Baeten, Jan Bergstra, Frank de Boer, Tony Hoare, Catuscia Palamidessi, Frits
Vaandrager and Fer-Jan de Vries for their constructive and helpful comments.

Contents

1 Introduction

2 Basic Process Algebra with 8 and E

2.1 Signature and axioms
2.2 Operational semantics and soundness .
2.3 Completeness
2.4 Recursion

3 Basic Process Algebra with guards
3.1 Guards
3.2 Operational semantics and soundness .
3.3 Completeness

4 BPA with guards in a specific data environment
4.1 Axioms and weakest preconditions
4.2 Soundness and completeness . . .
4.3 An example: the process SWAP .

5 Parallel processes with guards
5.1 Axioms and a two-phase calculus
5.2 Operational semantics and soundness .
5.3 Completeness
5.4 An example: a parallel predicate checker

6 Partial correctness and Hoare logic
6.1 Hoare logic for process terms
6.2 Partial correctness formulas and bisimulation
6.3 A proof system for deriving partial correctness formulas
6.4 Soundness of the proof system

1

4
4
6
9

11

12
13
16
19

25
26
28
32

34
34
37
40
41

45
45
45
48
48

4 2 BASIC PROCESS ALGEBRA WITH 8 AND 1:

2 Basic Process Algebra with 8 and E

In this section we introduce the basic theory BPAse. (Basic Process Algebra with 8 and 1:)
that forms the basis for "Process algebra with guards". Contrary to the traditional approach,
we provide BPAoe. with an operational semantics that is based on data-state transformations.
The operational meaning of a process term is defined by a transition system, where the states
of the transition system are configurations, i.e. pairs of a process term and a data-state. We
study this behaviour in the setting of bisimulation semantics. The section is concluded with
a short treatment of processes defined by recursive equations.

2.1 Signature and axioms

We start off in the well developed setting of BPAse. which is an extension of BPA (Basic
Process Algebra, see for instance [BK84b]) with two special constants 8 and f. The constant
8 represents the absence of the possibility to perform any activity and is called inaction.
The constant f denotes a process that can do nothing but terminate and is called the empty
process [KV85, Vra86, BG87]. The theory BPAoe. is parameterised with a set A of atomic
actions with typical elements a, b, ... These atomic actions represent the basic activities that
processes can perform, such as reading input, incrementing counters and so forth. For each
atomic action a the signature of BPAse., denoted as E(BPAse.), contains an identically named
constant a. We also have the binary infix operators + (alternative composition) and · (se­
quential composition) available. We summarise the signature E(BPA0J in table 1.

constants: a for any atomic action a E A
8 inaction (8 </. A)
E empty process (f </. A)

binary operators : + alternative composition (sum)
sequential composition (product)

Table 1: The signature E(BPAse.)

Throughout this text let V = {x,y,z, ... } be a set of variables. Process terms over
E(BPAse.), or shortly terms, are constructed from the variables in V and the elements of
E(BPAse.)- We use letters t, t', .. . to denote terms. Any term not containing variables is
called closed. We let p, q, ... range over closed terms. In terms we generally omit the function
symbol · and, like in regular algebra, we adopt the convention that · binds stronger than +.

We define the depth of a closed term over E(BPAse.) as the maximal number of consecu­
tive atomic actions that can be performed. In the sequel it will play a role as a criterion for
induction in proofs .

2.1 Signature a.nd axioms 5

D efinition 2.1.1 The depth of a closed term p over E(BPA0E), written as !Pl, is some element
of lN, defined inductively as follows (a EA):

181 ~!«:I~ o,
ial~l,
IPql ~f IPI + lql,

IP+ qi~ max(IPI, lql).

D

The axioms presented in table 2 describe the basic identities bet.ween terms over E(BPA0E).
The operator + is commutative, associative and idempotent. The operator · is associative
and right-distributes over +. Note that. left. distributivity of· over + is absent. Furthermore
8 behaves as the neutral element. for +, and t: as the neutral element for ·. We leave out the
brackets in terms whenever this is allowed by associativity. The symbol = is used to denote
syntactic equivalence (modulo associativity) between terms.

x+y=y+x Al x+8=x
x+(y+z)=(x+y)+z A2 8x = 8
x+x=x A3 t:X = .X
(x+y)z=xz+yz A4 Xt: =X
(xy)z = x(yz) A5

Table 2: The axioms of BPA0E

A6
A7
A8
A9

In the sequel results are often proved by reasoning on the structure of process terms. In
order to give some general definitions, let. the symbol I: range over all signatures we consider
in this paper. Any such a signature I: always ext.ends the signature E(BPA0E) defined above.
Terms over I: are constructed in the usual way and may contain variables from V. For any
term t over I:, Var(t) denotes the set. of variables occurring in the term t and f(E) is used
for axiom systems over the signature I:.

We introduce the following elementary notions.

Definition 2.1.2 Let t1, t2 be terms over I:. We call t1 a syntactic summand of t2, not.at.ion
t1 !;: t2, iff

1. t1 =/. t + t' for any t, t' over I:, and

2. t1 = t2, or there are t, t' over I: such that i2 = t + t' and i1 =tor t1 = t'.
□

So eg. x(y + y) + z + z has x(y + y) and z as its only syntactic summands and (x + y)z has
no other syntactic summand than itself.

6 2 BASIC PROCESS ALGEBRA WITH 8 AND t:

Definition 2.1.3 Two process terms t and t' over E are provably equal in r(E), notation

r(E) f- t = t',

iff there exists a proof oft = t' using the axioms of r(E), and the usual inference rules for
equality (stating that '=' is a congruence relation). D

In proofs we sometimes write t = t1 instead of f(E) f- t = t' and ti- t1 instead of f(E) }"- t = t1
•

Example 2.1.4 We illustrate the use of the BPAscaxioms by showing that if for two terms
t and t' over E(BPA0,) we have BPA0, f- t + t' = 8, then also BPA0, f- t = 8:

(End exa.mple.)

BPA0, f- t t + 8
t+t+t'
t + t'
8.

For notational convenience we introduce the notation ~, called summand inclusion: for any
two terms t, t1 over Ewe write t ~ t' fort+ t' = t' and t' ;;2 t fort'= t + t'. In both cases we
say that t is a summand of t1

•

2.2 Operational semantics and soundness

In process algebra process terms are often related to (labelled} transition systems, modelling
their possible behaviour.

Definition 2.2.1 A la.belled transition system A is a tuple (SA, AA, -.A, s.A), where

• SA is a set of states,

• AA is a set of labels,

• -A~ SA x A.Ax SA is the transition relation, and

• SA E SA is the initial state.

Elements (s, a, t) E -A are generally written ass~ t. D

In this paper we let BPA0"-processes operate on data-states. We adopt an abstract view
and assume that data-states are given by a set S. Atomic actions are considered as non­
deterministic data-state transformers. This is modelled by a function effect that, given some
atomic action a and a data-state s, returns the data-states which may result from the exe­
cution of a in s (see also [BKT85, BB88]; in [BB88] the state operator is introduced which
provides an alternative way to handle processes operating on data-states). We demand that
the function effect never returns the empty set, ensuring that an atomic action can always
be executed. We will use the guards introduced in the next section to prevent actions from
happening in certain data-states.

2.2 Opera.tional sema.ntics a.nd soundness 7

Definition 2.2.2 A data environment S
specified by

(S, effect) over a set A of atomic actions IS

• a non-empty set S of data-states, with typical elements s, s', s", ... ,

• a function effect : A x S -+ (P(S) - {0}).

Here P(S) is the power set of S. D

Let S = (S, effect) be some data environment over A . We give an operational semantics in
the style of PLOTKIN [Plo81] . The behaviour of a process p with some initial data-states E S
starts in the configuration (p, s).

Definition 2.2.3 Let E be some signature and Sa set of data-states . A configuration (p, s)
over (E, S) is a pair containing a closed term p over E and a data-state s E S. The set of all
configurations over (E, S) is denoted by C(E, S) . D

f.

a E A (a, s) ~(E, s') ifs' E effect(a, s)

+
(x, s) ~(x', s 1

)

(x + y, s) ~(x' , s1
)

(x,s)~(x',s') a/=- ✓
(xy, s) ~(x'y, s')

(y, s) ~(y', s1
)

(x + y, s) ~(y', s1
)

(x, s) ~(x', s1
) (y, s) ~(y', s11

)

(xy, s) ~(y', s11
)

Table 3: Transition rules for E(BPAoe) (a EA✓)

Let ✓ f/:. A be a special symbol which we use to represent successful termination, and

A✓ d~ A U { ✓} - The rules in table 3, where the label a ranges over A✓, determine the
transition relation --tE(BPA

6
,),S that contains exactly all derivable transitions between the

configurations over (E(BPAoe), S). The idea is that for a EA, the transition (p, s) ~(p', s1
)

expresses that by executing a, the process p in data-state s can evolve into p' in data-state
s1

• In this case we have s1 E effect(a, s) and the configuration (p', s1
) represents what remains

to be executed. The transition (p, s) ~(p', s1
) expresses that the process p in data-state s

can terminate successfully. The empty process f. can terminate successfully in any data-state
s, which is denoted by the transition (E, s) ~(8, s) in table 3. The configuration (8, s) has

8 2 BASIC PROCESS ALGEBRA WITH 8 AND E

no outgoing transit.ions, which expresses that no further activity is possible ('inaction' or
'deadlock' after successful termination).

In the case of BPA 0, we define

A(p, s) ~f (C(E(BPA0,), S) , A✓ , -------tE(BPA
6
,),S , (p, s)).

As an example consider the following (partially depicted) transition systems A(a + aE, s) and
A(a, s) , where the initial states are marked with a little arrow and effect(a , s) = {s'} .

(a, s)

a

✓

(8, s1
)

Observe that the transition system A(a+aE, s) is shaped as two transition systems for A(a, s).
With respect to operational behaviour it does not matter whether the a-side or the aE-side
is executed. Therefore we would like to consider both transition systems as equivalent . This
can be achieved by identifying bisimilar configurations (see [Mil80, Par81]), as bisimilarity is
the coarsest equivalence that respects the operational characteristics of a transition system
[Vaa89]. Following the traditional approach in semantics based on data-state transformations,
processes with different data-states in their configurations are not considered as equivalent
(See eg. [Man74]) . Therefore we adapt the standard notion of bisimilarity in the following
way.

Definition 2.2.4 Let E be a signature, S a data environment with data-state space S and
-E,S a transition relation over C(E, S).

• A binary relation R ~ C(E, S) x C(E, S) is an S-bisimulation iff R satisfies the transfer
property, i.e. for all (p, s), (q, s) E C(E, S) with (p, s)R(q, s):

1. whenever (p, s) ~E,S (p', s1
) for some a and (p1

, s1
), then, for some q1

, also

(q,s)~E ,S (q',s') and (p',s')R(q1 ,s1
),

2. conversely, whenever (q, s) ~E,S (q', s1
) for some a and (q', s1

), then, for some p1
,

also (p, s) ~E,S (p', s') and (p', s')R(q1
, -~') .

• A configuration (p, s) E C(E, S) is S-bisimilar with a configuration (q, s1
) E C(E, S),

notation (p, s) t=ts (q, s1
), iff s = s1 and there is an S-bisimulation containing the pair

((p, s), (q, s')) (note the equality of the data-states!).

• A transition system A(p, s) = (C(E, S), A✓, -------tE,S, (p, s)) is S-bisimilar with a tran­

sition system A(q, s') = (C(E, S), A✓, -------tE,S, (q, s')), notation A(p, s) t=ts A(q, s1
), iff

(p, s) t=ts (q, s') .

2.3 Completeness 9

• Two closed terms p, q over E are S-bisimilar, notation p ~sq, iff A(p, s) ~s A(q, s)
for all s ES.

□

We introduced the symbol ~s instead of the more consistent symbol t::► E,S to avoid lengthy
notation. We take care that E is known from the context when we use ~S . Note that
the symbol ~S is also overloaded in another way. It denotes either a relation between
configurations, between transition systems or between closed terms.

For any data environment S it follows in the standard way that the relation ~s between
closed terms over E(BPA,5£) is a congruence relation.

Lemma 2.2.5 For a.ny da.ta. environment S the rela.tion ~S between closed terms over
E(BPA,5,) is a, congruence with respect to the opera.tors of E(BPA,5,). □

Moreover, it is not hard to prove that BPA0, is a sound axiom system with respect to S­
bisimulation equivalence for any data environment S.

Theorem 2.2.6 (Soundness) Let p, q be closed terms over E(BPA0,) . If BPA0, I- p = q,
then p tts q for a.ny da.ta. environment S .

Proof. Standard (for an idea, see the proof of theorem 3.2.5) . □

2.3 Completeness

We show that the ax.jom system BPA0, completely ax.jomatises S-bisimilarity with respect to
the closed terms over E(BPAs,) - So, given some data environment S, we show that for any
two closed terms p, q over E(BPA0,)

p ~sq ==} BPA0, I- p = q.

The technique we use in proving this result is based on the following notion of 'normal form'.

Definition 2.3.1 A closed term p is in prefix normal form over E(BPA0,) iff

P ::= 8 I€ I ap IP+ P

where a ranges over A. □

By induction on the structure of closed terms, the following lemma is not difficult to prove.

Lemma 2.3.2 For a.ny closed term p over E(BPAsc) there is a. term q in prefix normal_ form
over E(BPAs,) such that BPA0, I- p = q. □

We can derive information about the actual structure of a term in prefix normal form from
its operational behaviour. We will use this to conclude from the S-bisimilarity of terms in
prefix normal form their provable equality.

2 BASIC PROCESS ALGEBRA WITH 8 AND €

Lemma 2.3.3 Let S = (S, effect). For a.ny term pin prefix norma.l form over E(BPA0E) the
following properties hold:

1. If:h ES such tha.t (p, s) _:L(r, s'), then € [: p,

2. If :3s E S such tha.t (p, s) ~(r, s1
) (a E A), then there is a. term r 1 in prefix normal

form over E(BPA0,) such tha.t ar' [:; p and ff 1 = r .

Proof. We apply induction on the structure of p. For the cases p = 8 and p =€both results
follow easily by inspection of the transition rules.

p = bq (with b EA). In this case (bq, s) _:L(r, s1
) is not derivable. Furthermore (bq, s) ~(r, s1

)

can only be derived if b = a, and r = £q.

p = q + q1
• In this case (q + q', s) ~(r, s1

) for some b E A✓ can only be derived from a

transition (q, s) ~(r, s1
) or a transition (q', s) ~(r, s1

). In both cases we can apply the
induction hypothesis. By definition of the relation [: (see 2.1.2) we are done. D

In the next lemma we can now present an intermediate result which not only implies com­
pleteness, but is also used later in the paper.

Lemma 2.3.4 Let Pl,P2 be terms over E(BPA0,) in prefix normal form over E(BPA0,), a.nd
S = (S, effect) a. data. environment. Then

:3s ES ((p1, s) !:::!S (p2, s)) ===> BPA,5, I- Pl= P2 ·

Proof. We show that Pl = P2 by proving that any syntactic summand of Pl is provably
equal to a syntactic summand of p2 and vice versa. We apply induction on IP1 I+ IP2I - The
case IP1 I + IP2 I = 0 is trivial, so assume IP1 I + IP2 I > 0. By symmetry it suffices to show that
if t [: Pl for some term t, then we can find a term t' such that BPA0, I- t = t' and t' [:; P2 ·
Let s E S satisfy the condition of the lemma.

Suppose ar [:; Pl- For any s' E effect(a, s) we have (p1, s) ~(ff, s1
) . By assumption

(p2,s)~(r',s') for some term T1, satisfying (ff,s') =:?S (T',s'). By lemma 2.3.3 there is a
term T

11 in prefix normal form such that ff 11 = T
1 and aT

11
[:; p1

. So (ff, s') !::? s (ff 11
, s

1
), and

thus (T, s
1

) =:?S (T
11

, s
1

) . By the induction hypothesis T = T
11

, and hence aT = aT
11

.

In case€[: Pl, we can show in the same way that€[: P2 · D

This last result immediately implies that BPA0, completely axiomatises the relation =:?S for
any data environment S.

Theorem 2.3.5 (Completeness) Let T1, T2 be closed terms over E(BPA0,) and S be some
data environment. If r1 t:::!S r2, then BPA0, I- r1 = r2 .

Proof. By lemma 2.3.2 we can find terms Pl,P2 in prefix normal form satisfying Pi = Ti

(i = 1, 2), and hence by soundness Pi t:::!S Ti. So we have Pl =:?S P2 and using the previous
lemma 2.3.4 we derive BPA0, I- r1 = Pl = P2 = T2 . D

Combining lemma 2.3.4 and the soundness theorem, we obtain the following corollary that
says that data environments have no particular effect with respect to bisimulation semantics.

2.4 Recursion 11

Corollary 2 .3.6 If for some pa.rticula.r da.ta. environment So = (So, effect), da.ta.-sta.te so E So
a.nd closed terms p,q over :E(BPA0£) we ha.ve that (p,so) ~ s0 (q,so), then for a.ny da.ta.
environment Sa.Isa p ~sq. □

Remark that if we allow the functions effect to return the empty set, this corollary is not true
any more. However, soundness and completeness are still provable in this case.

2.4 Recursion

We extend our process language with a mechanism that enables us to specify infinite processes
by recursive equations.

Definition 2.4.1 A recursive specification E = { x = tx Ix E VE} over a signature :E is a set
of equations where VE is a (possibly infinite) set of variables and tx a term over :E such that
Var(tx) s;: VE . □

A solution of a recursive specification E = { x = tx I x E VE} is an interpretation of the
variables in VE as processes, such that the equations of E are satisfied. For instance the
recursive specification { x = x} has any process as a solution for x and { x = ax} has the
infinite process "aw" as a solution for x. We introduce the following syntactical restriction
on recursive specifications .

Definition 2.4.2 Let t be a term over a signature :E . An occurrence of a variable x in t is
guarded iff t has a subterm of the form a· M with a E AU { S}, and this x occurs in M.
Let E = {x = tx Ix E VE} be a recursive specification over :E . We say that Eis a guarded
specification iff all occurrences of variables in the terms tx are guarded. □

Now the signature :EREC, in which we are interested, is defined by:

Definition 2.4.3 The signature :EREC is obtained by extending :E in the following way: for
each guarded specification E = {x = tx Ix EVE} over :Ea set of constants { <x I E>I x EVE}
is added, where the construct <x IE> denotes the x-component of a solution of E. □

We introduce some more notations: let E = {x = tx Ix EVE} be a guarded specification over
:E, and t some term over :EREC· Then <t IE> denotes the term in which each occurrence
of a variable x E VE int is replaced by <x IE>, e.g. <aax I {x = ax}> denotes the term
aa < x I { x = ax}> . If we assume that the variables in recursive specifications are chosen
uniquely, there is no need to repeat E in each occurrence of <x IE>. Variables reserved in this
way are called formal variables and denoted by capital letters. We adopt the convention that
<.TIE> can be abbreviated by X once E is declared. As an example consider the guarded
recursive specification { x = ax}: the closed term aaX abbreviates aa<x I { x = ax}>.

For the new :E-constants of the form <x IE> there are two axioms in table 4. In these
axioms the letter E ranges over guarded specifications. The axiom REC states that the
constant <x IE> (x E VE) is a solution for the x-component of E. The conditional axiom
RSP (Recursive Specification Principle) expresses that E has at most one solution for each
of its variables: whenever we can find processes Px (x E VE) satisfying the equations of E,
then Px = <x IE>. This axiom was first formulated in [BK86]. The format adopted here
stems from [GV89].

12 3 BASIC PROCESS ALGEBRA WITH GUARDS

<x I E> = <ix I E> if x = ix E E and E guarded REC

E
if x E VE and E guarded RSP

x = <xlE>

Table 4: Axioms for guarded recursive specifications

Example 2.4.4 Consider the guarded specifications E = { x = ax} and E' = {y = ayb}
over E(BPA 0e)- We can show that BPAoe +REC+ RSP f- X =Yin the following way:

Xb=X, (1)

and secondly

Xb R~C aXb ~ aXbb ~ Xb=Y

Hence BPAoe +REC+ RSP f- X = Xb = Y. (End example.)

In order to associate transition systems with processes defined by guarded specifications,
we define in the case of E = { x = ix I x E VE} being a guarded recursive specification
over some signature Ethe general transition rule in table 5. With respect to BPAoe, this rule

recurs10n
(<ix IE>, s) ~(y, s')

if X = ix EE
(<x IE>, s) ~(y, s1

)

Table 5: Transition rule for guarded recursive specifications (a E A✓)

immediately implies the soundness of REC. We state without proof that BPAoe+REC+RSP
is sound (the interested reader is referred to [BW90]) .

Theorem 2.4.5 (Soundness of REC and RSP) Let p, q be closed terms over E(BPA&)REC·
If BPAoe +REC+ RSP f- p = q, then p t:::}S q for any data. environment S. □

Note that RSP is not valid in the case of unguarded recursion: the unguarded recursive spec­
ification { x = x} would otherwise lead to provable equality between all terms over E(BPA0e)-

Remark 2.4.6 The terminology guarded recursive specification is established and therefore
we respect it. The adjective "guarded" has nothing to do with the "guards" that form the
main subject of this paper. D

3 Basic Process Algebra with guards

In this section we extend BPAoe with guards. These guards are comparable to those in the
guarded commands of DIJKSTRA [Dij76], or to the conditions in programming constructs as

3.1 Gua.rds 13

if - then - else - fl and while - do - od. Typical for our approach is that a guard itself
represents a process that, depending on its current data-state, either terminates successfully
(so behaves as 1:), or can do nothing (cf. 8) . The process algebra operators+ and · are used
to express Boolean operations on guards . In this section we study these guards in the sett i i--.g
of bisimulation semantics, and present an axiomatisation that is complete with respect to
S -bisimilarity in all data environments S .

3.1 Guards

Let Cat be a non-empty set of atomic guards disjoint with a fixed set A of atomic actions, and
also disjoint with { 8, l' } . We extend Cat to the set G of basic guards with typical elements
cf>, '0, ... , where basic guards are defined by the following syntax:

</> ::= 8 I 1: 1-,<f> I '0 E Gat ·

In particular the special constants 8 and 1: are considered as basic guards: 8 is the guard that
always blocks, and 1: is the guard that can always be passed. Furthermore -, is the negation
operator on basic guards. Now the signature E(BPAc) is defined by adding all elements of
G - { 8, l'} as constants to the signature of BPAk We summarise the signature E(BPAc) in
table 6. The depth of a closed term p over E(BPAc) is defined by extending definition 2.1.1

with the inductive clause l</>I ~f O for any basic guard</> E E(BPAa).

constants: a for any atomic action a E A
</> for any basic guard </> E G

(recall 8, l' E G)
binary operators: + alternative composition (sum)

sequential composition (product)

Table 6: The signature E(BPAc)

The intended meaning of a basic guard </> in any data environment S is that it behaves as
8 or 1:, depending on the data-state it is evaluated in. Either </> holds in a data-state s, in
which case (</>, s) behaves as (1:, s), or this is not the case and then (</>, s) behaves as (8, s).

The axjoms in table 7 describe the basic identities between terms over E(BPAa). In this
table </> ranges over G and a E A. The axioms Al - A9 are the ordinary BPA0.,-axioms. The
axioms Gl - G3 describe the expected identities between guards. Gl and G2 express that a
basic guard always behaves dually to its negation: </> holds in a data-state s iff -,<f> does not
and vice versa. The axiom G3 states that + does not change the interpretation of a basic
guard </>. It does not matter whether the choice is exercised before or after the evaluation of
cf>. Notice the BPA0,-derivability for the 8 and 1:-instances of G3.

The last new axiom G4 (recall the notation ~. introduced at the end of section 2.1) is
necessary for our completeness result. It can be explained as follows : the process a(<f>x+-,<f>y),
where a is an atomic action, behaves either like ax or ay, depending on the data-state resulting
from the execution of a. As a consequence the process a(</>x + -,<f>y) should be a provable

14 3 BASIC PROCESS ALGEBRA WITH GUARDS

summand of ax+ ay. The a in this axiom may not be replaced by a larger process expression.
If it is for instance replaced by the expression a· b then after a has happened, it is in general
not clear whether ¢ or ,¢ will hold after b. Hence ab(rpx + ,cpy) need not be a summand of
abx + afyy. Note that the axiom G4 is not derivable from the first three 'guard'-axioms.

The axioms in table 7 constitute the axiom system BPAb. The superscript 4 expresses
that there are four axioms referring to guards. We will not always consider all of these. In
particular the system BPAb , containing all BPAb-axioms except G4 will play a role in this
paper.

x + y = y + x Al ¢ · ,<p = 8 Gl
x+(y+z)=(x+y)+z A2 </>+,<p=E G2
x + x = x A3 </>(x + y) = <pX + <py G3
(x+y)z=xz+yz A4
(xy)z = x(yz) A5
x + 8 = x A6
8x = 8 A7 a(rpx + ,rpy) <;;,ax+ ay G4
EX= X
XE= X

A8
A9

Table 7: The axioms of BPAb where cp E G and a EA

We now give a result expressing some useful properties of basic guards, in which the ax­
iom G4 is not used. Note clause (v), which expresses that the sequential composition is
commutative for basic guards.

Lemma 3.1.1 Let <p, 'ljJ E G. The following identities are derivable in BPAb:

(i) ,8=E,
(ii) ,E=8,
(iii) -,-,4> = <p,
(iv) <p'I/J,rp = 8,

(V) rp'lp = '1/Jrp.

Proof . In the proofs of (i) and (ii) the axiom G3 is also not used.

(i) ,8 : :_+ ,8 I (ii) ,E : ~-- ,E

In the proof of (iv) we use t + t' = 8 ===> t = 8 (see example 2.1.4) . In (v) we use ,</>'1/J</> = 8,
which is a direct consequence of (iii) and (iv) .

(iii) -,-,<f> (¢ + ,</>),,¢ (iv) 8 </>,¢ (v) <p'lp = ¢'1/J(¢ + ,¢)
¢,,¢ + 8 <I>('Ip + ,'1/J),¢ <p'lp<p + rp'I/J,rp

= ¢,,¢ + ¢,¢ </>('1/J,rp + ,'1/J,rp) - </>'I/Jr/>+ ,</>'I/Jr/>
- ¢(-,-,¢ + ,¢) rp'I/J,</> + cp,'1/J,cp (¢ + ,rp)'1/J</>

<p. ===> rp'I/J,</> = 8. 'lp<p.
D

3.1 Guards 15

Up till now we only defined 'atomic' and 'basic' guards. We use the general name guards
for terms over E(BPAc) that contain only basic guards. Let the symbols a,/3, .. . range over
guards.

Definition 3.1.2 A guard a over E(BPAc) has the following syntax

a: := ¢ja+aja-a

where¢ E G. D

On guards the operators + and · correspond to the Boolean operators V and A, respectively.
Let ¢, 7/J E G, then the guard ¢ + 7/J holds in a data-state s whenever </> or 7/J holds in s. The
guard ¢ 7/J holds in s iff both ¢ and 7/J hold in s. In order to have the Boolean operator -, on
guards, we introduce the abbreviations

-,(a/J)
-,(a+/3)

for -,a+ -,{3,
for -,a-,{3.

It is not hard to prove that all identities on basic guards that are derivable in BP Ab (or
BPAt), are derivable in BPAb (BPAt;, respectively) for all guards:

Theorem 3 .1.3 Let a be a guard over E(BPAc), then the following identities are derivable
in BPAb (cf Gl - G3):

(i) a--,a=8,
(ii) a+-,a=E,
(iii) a(x+y)=a·x+a·y.

The following identity is derivable in BPAt (cf G4):

(iv) a(a·x+-,a·y) ~ax+ay.

where a EA. D

Moreover, restricting the signature E(BPAa) to terms without atomic actions, the axiom
system BPAb constitutes a Boolean algebra. According to [Sio64], the following five equations
form an equational basis for a Boolean algebra (Gat,+, •,-,):

Bl. xy = yx
B2 . x(y + z) = xy + xz
B3. x + y-,y = x
B4. x(y + -,y) = x

BS. X + (y + -,y) = y + -,y_

The only equation here that does not immediately follow from BPAb is BS:

a + (/3 + -,{3) a + E

a+ (a +-,a)

(a+ a) +-,a
a+-,a

f3 + -,{3_

16 3 BASIC PROCESS ALGEBRA WITH GUARDS

To illustrate the elegance of adopting guards as a special kind of processes, we make a short
comparison with the algebraic approach advocated by HOARE cs. in [HHJ+87] . There,
processes ('programs') have a syntax comparable to ~(BPAse)REC with conditionals, the
latter being constructs of the form

P<Jbe>Q

where P, Q are programs, and b is a Boolean expression that evaluates the current (execu­
tion) state. When b evaluates to true, P is executed and otherwise Q takes place. So this
conditional represents the programming construct if b then P else Q fl. Assuming that
atomic guards are the atomic propositions from which Boolean expressions are constructed
(and hence guards as such represent all Boolean expressions), a conditional

p<JaC>q

can be represented in ~(BPAc)REC by the closed term

ap +-iaq.

As a consequence we can do with about 12 simple algebraic laws, which should be compared
with the about 30 laws for recursion-free programs presented in [HHJ+87] . Of course the
advantage of 'conditionals' is that they refer to a well-known and established programming
construct. Nevertheless it can be argued that for analytical purposes, guards as introduced
here constitute a simpler and more fundamental approach .

3.2 Operational semantics and soundness

In this section we adapt the operational semantics of section 2 to accommodate guards.
We extend the definition of a data environment by adding a predicate test that determines
whether an atomic guard holds in some data-state.

Definition 3.2.1 A data environment S = (S, effect, test) over a set A of atomic actions
and a set Cat of atomic guards is specified by

• A non-empty set S of data-states,

• A function effect: S x A -t (P(S) - {0}),

• A predicate test~ Cat x S .

D

Whenever test(<P, s) holds, this denotes that m data-state s the atomic guard <P may be
passed. In thi s case we say that <p holds in s. In order to interpret basic guards, we extend
the predicate test in the obvious way.

Definition 3.2.2 Let (S, effect, test) be some data environment. We extend the domain of
test to G x S as follows:

• for alls ES: test("-, s) holds and test(o, s) does not hold,

3.2 Operational semantics and soundness 17

• for alls ES and¢ E G: test(,¢, s) holds iff test(¢, s) does not hold.

D

This gives us the means to easily define transition rules. Let S = (S, effect, test) be a data
environment. In table 8 we display a set of transition rules extending those of BPA0E (see
table 3) . The difference with the transition rules introduced previously is that we now have
added axioms for the elements of G (implying the old transition scheme (t:, s) ~(8, s)) . The
transition rules in table 8 and the transition rule for guarded recursive specifications (see
t able 5) determine the transition relation --+E(BPAa)REc,S over E(BPAc)REC· Let p be a
closed t erm over E(BPAc)REC. For any s E S the transition system A(p, s) is defined as

A(p, s) ~f (C(E(BPAc)REC, S), A✓ , --+E(BPAc)REc,S , (p, s)) .

a E A (a, s) ~(t:, s1
) if s1 E effect(a, s)

¢ E G (¢, s) ~(8, s) if test(¢, s)

+
(x, s) ~(x', s') (y,s) ~(y1,s1

)

(x + y , s) ~(x', s1
) (x + y, s) ~(y', s')

(x, s) ~(x', s1
) a i- ✓ (x, s) ~(x', s1

) (y, s) ~(y1
, s 11

)

(xy, s) ~(x'y, s1
) (xy, s) ~(y' , s11

)

Table 8: Transition rules for E(BPAc) (a EA✓)

Example 3.2.3 Consider the data environment ({so, s1, s2, s3}, effect, test) and the following
transition system A(cpa + b'lj; + ec, so):

a

✓ ✓

18 3 BASIC PROCESS ALGEBRA WITH GUARDS

The information about the function effect and the predicate test implicitly present in this
transition system tells us that apparently

and we have

effect(a,so) = {s1} and effect(b,so) = {s2,s3}
test(</J,so), test('lj;,s3) and not test(e,so), test('lj;,s2)

(<f;a + b'lj; + le, so) t±s (a+ b'lj;, so)

in (S, effect, test) . If eg. test(l, s1) holds, then

<f;a + b'lj; + e C tfo s a, + b'lj;

for only the left term has a ~ transition from s1. (End example.)

Next we show that BPA[; +REC+ RSP is a sound axiom system. This result says that
the axioms of BPAEJ are valid in all data environments as defined in this section, and hence
express identities that are independent of a particular data environment.

Lemma 3.2.4 For a.ny da.ta environment S the relation t±S between closed terms over
E(BPAa)REC is a. congruence with respect to the opera.tors ofE(BPAa).

Proof. Standard . □

Theorem 3.2.5 (Soundness) Let p, q be closed terms over E(BPAa)REC· If BPAi;+REC+
RSP f- p = q, then p t:7S q for a.ny da.ta. environment S.

Proof. The relation t± s between the closed terms over E(BPAa)REC is a congruence and
all the axioms of BPA0, are sound (cf. theorem 2.2.6). Also REC and RSP are sound (cf.
theorem 2.4.5). We have to show the soundness of Gl - G4. We skip the proofs of Gl - G3,
which are straightforward, and only show that G4 is sound.

Assume that S = (S, effect, test), a E A, <P E G and p, q are closed process expressions over
E(BPAa)REC· We have to show (ap + aq + a(</Jp + -,<jJq), s) t:7S (ap + aq, s) for alls ES. We
define the relation R as follows:

R def Id U {((ap + aq + a(</Jp + -,q;q), s), (ap + aq, s)) Is ES}
U {((1:(</Jp + -,q;q), s), (1:p, s)) Is ES and test(</;, s)}
U {((t:(<f;p + -,<jJq), s), (1:q, s)) Is ES and test(-,<P, s)}

where Id is the identity on C(E(BPAa)REC, S) x C(E(BPAa)REC, S). In the standard way
it follows that R is an S-bisimulation satisfying (ap + aq + a(</Jp + -,<jJq), s)R(ap + aq, s) for
alls ES. □

3.3 Completeness 19

3.3 Completeness

In this section we prove the completeness of BPAt with respect to S-bisirnilarity. This result
differs from the completeness theorem 2.3.5 in the following sense: let p, q be closed terms
over E(BPAa)-

If for all data environments S we have p t:::!S q, then BPAt; f- p = q.

So completeness says that the axioms of BPAt are strong enough to prove all identities
between closed terms over E(BPAa) that are valid in all data environments, and that S­
bisimilarity between terms that cannot be proved in this way depends on the particular
parameters of S. If for example the atomic guard <P holds in all the data-states of some
data environment S, we have <P t:::!S E. Of course we cannot derive BPAt f- <P = E, as <P is
not interpreted as E in all data environments. Proving identities that are dependent on a
particular data environment is the topic of the next section.

Observe that some of the results proved in this section concern the axiom system BPA;!;
(the system containing all axioms of BPAt, except G4). In order to show that BPAi; is
complete we first extend the previously defined notion 'prefix normal form over E(BPAsE)'
(see 2.3.1) to the closed terms over E(BPAa)-

Definition 3.3.1 A closed term JJ over E(BPAa) is in prefix normal form over E(BPAa) iff

P ::= 8 IE I <PP I ·<PP I apl P + P

with <P E Gat and a E A. □

The following lemma states that for proving the completeness of BPAi; it is sufficient to
restrict our attention to the terms that are in prefix normal form over E(BPAa)-

Lemma 3.3.2 Jf pis a closed term over E(BPAa), then there is a term p' in prefix normal
form over E(BPAc) such that BPA;!; f- p = p'.

Proof. By induction on the structure of closed terms. □

We proceed in a similar way as was done in proving the completeness of BPAsE- Because
the syntactic format of prefix normal forms over E(BPAa) is not yet adequate for proving
the completeness of BPAt, we introduce reference sets that will be used to define suitable
normal forms.

Definition 3.3.3 (Reference)

1. Let p be a closed term over E(BPAa)- By Ref(p) we denote the set of atomic guards
to which p makes reference:

Ref(p) ~f {<PE Gat I <P occurs in p}.

2. Any non-empty, finite subset of Gat is called a reference set. We use symbols R, R 1, R2 , ...

to denote reference sets. For technical convenience we assume that reference sets are
ordered.

20 3 BASIC PROCESS ALGEBRA WITH GUARDS

3. Let R = { ¢0 , ... , ¢n} be some (ordered) reference set. A 'sequential' expression "Po· .. . ·"Pn
is called a complete guard sequence over Riff for i = 0, ... , n we have that either "Pi = <Pi
or "Pi = •<Pi - Such sequences are abbreviated by symbols ¢, ;/, ... and we write Rco for
the set of all complete guard sequences over R.

□

We demonstrate two properties of reference sets by a simple observation and a lemma. Let
R be some reference set . First observe that if¢,;/ E Rc0

, then

This observation holds because R is ordered: if { ¢, 1j;} is an unordered reference set, we have
by lemma 3.1.1 for instance BPAb I- (¢1j;)(1j;rp) = ¢1j;.

In order to denote terms in a convenient way we further use the E-notation: let I be some
finite index set , then

if I= 0,
if I = { io, ... , in}.

Note that due to the axioms Al and A2 the actual enumeration of the terms ti . does not
]

matter.
The following lemma establishes a second property of reference sets that we will often use.

Lemma 3.3.4 For a.ny t over E(BPAa) a.nd reference set R we ha.ve

BPAb 1-t = L ¢t.
¢EW0

Proof. By induction on the cardinality of R:

R = { ¢}. In this case t = d = (¢ + ,</J)t = ¢t + ,</Jt = "£jERco ¢t.

R = {¢a, ... , <Pk+d- Let R1 ~f R - { </Jo} - First applying the induction hypothesis we derive

(¢a+ ·¢a) - 2:: ;ft
,iJE R1o

□

3.3 Completeness 21

Using reference sets, we introduce the following two categories of terms over E(BPAa) that
constitute the normal forms we will use in the sequel.

Definition 3.3.5 Let R be some reference set.

1. A closed term p is called G-basic over R iff

where for each ¢ E Rco the term qi is an A-basic term over R.

2. A closed term q is called A-basic over R iff

q = L UiPi[+1:]
iEl

where for each i E J it holds that ai E A and the term Pi is a G-basic term over R. The
notation [+1:] means that the occurrence of the syntactic summand E is optional.

□

We show that any closed term over E(BPAa) is provably equal to a G-basic term over some
reference set . As a consequence we can further restrict our attention to basic terms in the
forthcoming completeness proof.

Lemma 3.3.6 If pis a closed term over E(BPAa) and R some reference set satisfying R 2
Ref(p), then there is a G-basic term p' over R such that BPAb f- p = p1

•

Proof. By lemma 3.3.2 we may assume that pis in prefix normal form over E(BPAa)- We
apply induction on the structure of such normal forms :

p = 8 or p = E. By lemma 3.3.4 we have

8 = L ¢8 and E = L ¢1:, respectively,

for any reference set R.

p = </>q. Let R 2 Ref(p), then R 2 Ref(q). By the induction hypothesis we have

q = I: fq;
¢EW0

with all the terms qi A-basic over R. Let for each ¢ E Rco

then

, _ { q;; if cp occurs in ¢,
q ◄ = 'f'

<P 8 otherwise,

~ ¢q'◄ J-' <p
<f,ERCO

is a G-basic term over R that is provably equal top.

22 3 BASIC PROCESS ALGEBRA WITH GUARDS

p = -.cpq. Likewise.

p = aq. Let R 2 Ref(p), then R 2 Ref(q) . By the induction hypothesis we have

q = I: fq;;
¢ER<O

with all the terms qi A-basic over R. By lemma 3.3.4 we have a= L-fERco ¢a and we
can take

I: la· I: fqi
¢ERCO ¢ERCO

which clearly is a G-basic term over R provably equal top.

p = q + r. Let R 2 Ref(p), then R 2 Ref(q) and R 2 Ref(r). By the induction hypothesis
we have

q = L ¢qf and r = L ¢qi
¢E nco ¢E nco

with all the terms qf, qi A-basic over R. Hence

Observe that the sum of two A-basic terms over R is provably equal to an A-basic term
over R : change to one index-set or remove a 8-summand and replace double occurrences
of t:-summands. So for each ¢ E Rco there is an A-basic term qJ; over R such that

+ I II H qi qi = qi" ence
~ - II
~ </>qi

¢ERCO

is a G-basic term over R provably equal top. □

The syntax of an A-basic term is sufficiently strict to derive information about its (syntactic)
structure from its operational behaviour (cf. lemma 2.3.3).

Lemma 3.3.7 Let S = (S, effect, test) , a.nd R be some reference set. For any A-basic term
q over R the following properties hold:

1. If 3s ES such that (q, s) ~(r, s1
), then t: [;:;; q,

2. If 3s ES such that (q, s) --2:...(r, s') (a EA), then there is a G-basic term p over R such
tha.t ap [;:;; q and Ep = r.

Proof. By using representations of the form

LaiPi[+E]
iE/

and applying induction on the cardinality of J. □

3.3 Completeness 23

We will also need the following result, which is in fact a generalisation of the axiom G4.

Lemnm 3.3.8 (Saturation) Let R be some reference set. For any a EA, terms to, ... , tn over
E(BPAc) and function f: Rco - {to, ... , tn} we have

n

BPAbf-Lati2a· L ¢·!(¢) .
i=O ¢ERCO

Proof. By induction on the cardinality of R.

R = {¢}. Then

a · L ¢ · !(¢) = a(</itj + -,qitk)
¢ERCO

for some j , k E { 0, ... , n}. By the axiom G4 we conclude that atj + atk 2 a(</itj + -i</Jtk),
hence

n

L ati 2 a(¢t1 + -,qitk)-
i=O

R = {<Po, ... , <Pk+l }. Let f : Rco - {to, ... , tn} be given, and R1 ~f R - { ef>o}.
Take gi : R'f_° - {to, ... , tn} (i = 1, 2) such that

1 def 2 def
g ('lj;) = f(ef>o'lj;) and g ('lj;) = J(-,ef>o'lj;) .

First applying the induction hypothesis two times and then the axiom G4 we derive

:) a· L ;j. gl (;J) + a . L J. i(J)
;fERfO ;fERfo

:) a(<po L ;J. gl(;J) + -ief>o L J · i(J))
;fERfo ,$ER10

a(L ¢oJ. gl(;J) + L -i</JoJ · g2(J))
,$ER10 ;fER10

a· I:¢·!(¢).
¢ERCO

□

The two previous results give us the means to prove a key lemma, in fact stating that whenever
two G-basic terms over some reference set R do not obey certain provable characteristics, then
we can find a data environment S such that p t:ps q. Such a data environment is then defined
in terms of R.

24 3 BASIC PROCESS ALGEBRA WITH GUARDS

Definition 3 .3.9 Let R be some reference set. We define the data environment S(R)
(Rco, effect, test) by

aEA

¢ E Cat

.., def
==> effect(a, ¢) = Rc0

,

==> test(¢, ¢) iff ¢ occurs in ¢, or if ¢ r/ R.

□

The idea is that S(R) is sufficiently discriminating to distinguish any two G-basic terms over
R that are not provably equal.

Lemma 3.3.10 Let Pl,P2 be G-ba.sic terms over some reference set R. If there is a. synta.ctic
summa.nd ¢Jq1 of Pl such tha.t for a.ny A-basic term q' over R we ha.ve

4 / ... ' BPAc f- q1 = q ==> rpq g P2,

Proof. Apply induction on jp1 I+ jp2j. The case IP1 I+ IP2I = 0 is trivial, so let IP1 I+ jp2j > 0.
By definition P2 has a syntactic summand efJq2 and by assumption q1 # q2. At least one of
the following should hold:

1. E [;;;; q1 a.nd E Sf'.; q2,

3. ar [;;;; q1 and ar Sf'.; q2 for some a E A and G-basic term r over R,

4. ar [;;;; q2 and ar Sf'.; q1 for some a E A and G-basic term r over R.

(If not, then q1 ~ q2 by 1 and 3, and q2 ~ q1 by 2 and 4, so q1 = q2, contradicting the
assumption) .

In cases 1 and 2 we have that for one of (Pl,¢), (p2, ¢) there is a derivable ✓-transition,
whereas by lemma 3.3.7 this is not the case for the other (for f. Sf'.: q2 ==> E g q2). Hence
(p1 , ¢) <p S(R)(P2, ¢) . We evaluate case 3 (the last case can be dealt with in a similar fashion):

either q2 has no syntactic summand of the form ar' . Now (pi,¢) <p S(R)(P2,¢), for (pi,¢)

has an a-transition, whereas (p2, ¢) has no such transition by lemma 3.3.7;

or q2 ha.s n+l syntactic summands starting with a, say aro, ... , arn and ro, .. . , Tn G-basic terms
over R. Now there is ;ft,$[;;;; r such that for all A-basic terms t1 over R we have

t;p = t' ==> Vi E {O, ... , n} ;ft' g Ti

If this were not the case, then _,there would be a function f : Rco -----+ { ro, ... , r n) such th_:i-t
for any syntactic summand ¢t;; of r there is at';; satisfying t;; = t';; and ¢t';; [;;;; /(¢).

25

Using 'saturation' (see lemma 3.3.8) we derive
n

I:a,Ti =:) a· L ¢· !(¢)
i=O /EWo

aT.

We conclude aT ~ q2, which is a contradiction in this case.

By the induction hypothesis we have for i = 0, ... , n that (T, f) tp S(R)(Ti, f). Now

(p1 , ¢) !: .. t(t,T, f) is a derivable transition that can only be mimicked from (p2, ¢) by a
transition (p2, ¢) ~(ETi, ,,;;) for some i. As (Er, f) t:t S(R)(T, f) and (Eri, f) t:t S(R)(Ti, f)
it follows that (p1 , ¢) tp S(R)(P2, ¢). □

With this key lemma on the specific data environment S(R) , the main result of this section
follows easily.

Theorem 3.3.11 (Completeness) Let T1,T2 be closed terms over E(BPAc)- IfT1 ~ST2 for
aJl data environments S, then BPAi; f- T1 = T2.

Proof. We prove the theorem by contra.position. Suppose ri # T2 . We have to find a data
environment S such that Tl tps T2 .

According to lemma 3.3.6 there are G-basic terms Pl, P2 over some reference set R ;;2
R ef(T 1) U Ref(T2) such that BPAi; f- Ti= Pi (i = 1, 2) . By soundness (see theorem 3.2.5) we
have Ti ~s Pi for all S . Because BPAi;)I- Pl = P2, either Pl has a syntactic summand ¢q
such th at for any A-basic term q' over R we have BPAi; f- q = q1 ===> ¢q1 il P2, or vice versa:
if this were not the case, then

This means that the previous lemma 3.3.10 can be applied, hence (p1, ¢) tp S(R)(P2, ¢) and

therefore (T1, ¢) tp S(R)(T2, ¢). So T1 tp S(R)T2, which concludes the proof. D

4 BP A with guards in a specific data environment

Up till now we have studied process algebra with guards with respect to the general class
of data environments. But often one wants to consider a data environment that is already
determined, for instance in the case where actions are assignments and guards are Boolean
expressions . Therefore we now investigate bisimulation semantics for BPA& with guards in a
specific data environment. For any data environment satisfying some constraints we present
a complete axiomatisation by adding some new axioms to the system BPAi;. Finally, we
show by an example how we can prove the (partial) correctness of a small program in process
algebra.

26 4 EPA WITH GUARDS IN A SPECIFIC DATA ENVIRONMENT

4.1 Axioms and weakest preconditions

Let A be a set of actions and Cat a set of atomic guards. In this section we fix a data
environment S = (S, effect, test) over A and Cat· Now the axiom system BPAb need not be
complete. Consider for instance two basic guards</> and 1/; that satisfy test(</>, s) ¢::::::} test(1/;, s)
for alls E S, i.e. </> and 1/; behave the same in all data-states. Obviously we have that</> t--ts 1/;,
but this cannot be shown using BP Ab because in general </> tp s 1/;. For another example,
assume that the process a, starting in a data-state where</> holds, always ends in a data-state
where 1/; holds. In this case </>a ~s </>a'lj;. Again this cannot be proved in BPAb.

x+y=y+x Al <I>· -,cp = 8 Gl
x+(y+z)=(x+y)+z A2 </> + -,cp = E G2
x+x=x A3 </>(x + y) = </>x + <PY G3
(x+y)z=xz+yz A4
(xy)z = x(yz) AS <Po· .. . · <Pn = 8 SI
x+8=x A6 if Vs ES 3i::; n not test(</>i,s)
8x = 8 A7
EX= X A8 wp(a, </>)a</>= wp(a, </>)a WPCl
XE= X A9 -,wp(a, </>)a-,cp = -,wp(a,</>)a WPC2

Table 9: The axioms of BPAc(S) where </>, <Pi EC and a EA

In table 9 we present the axiom system BPAc(S) (implying BPAt) by which we can prove
these identities. It contains the first three axioms for guards and three new axioms depending
on S (this explains the Sin BPAc(S)).

The axiom SI (Sequence is Inaction) expresses that if a sequence of basic guards fails in each
data-state, then it equals 8. Note that SI implies Gl. The equivalence <p ~S 1/; mentioned
above implies that cp-,'lj; = 8 and -,cp'lj; = 8 are in this case instances of SI. We can prove
BPAc(S) f- </> = 1/; as follows:

<I> <I>(1/; + -,'lj;)
= </>1/; + cp-,'lj;
= #

</>1/; + -,cp'lj;
(<I> + -,cp)1/;

= 'lj;.

In the axioms WPCl and WPC2 (Weakest Preconditions under some Constraints) the ex­
pression wp(a,</>) represents . the basic guard that is the weakest pre.condition of an action a
and an atomic guard ¢. Weakest preconditions are semantically defined as follows:

Definition 4.1.1 Let A be a set of actions, Cat a set of atomic guards and S = (S, effect, test)
be a data environment over A and Cat • A weakest pre.condition of an action a E A and an
atomic guard </> E Cat is a basic guard 1/; E C satisfying for all s E S:

test('lj;, s) iff Vs' E S (s' E effect(a, s) ==> test(</>, s')).

4.1 Axioms a.nd wea.kest preconditions 27

If 1/; is a weakest precondition of a and </>, it is denoted by wp(a, cp). Weakest preconditions
are expressible with respect to A, Cat and S iff there is a weakest precondition in C of any
a E A and cp E Cat· □

In the remainder of this section we assume that weakest preconditions are expressible with
respect to S. The axioms WPCl and SI can be used to prove that cpa = cpa-ij; (see above)
whenever process a, starting in a data-state where ¢ holds, always ends in a data-state where
'lj; holds. In this case, in all data-states where wp(a, 1/J) holds,¢ holds as well. So we have the
axioms</>· ,wp(a, 'lj;) = 8 (SI) and wp(a,-ip)a = wp(a, 'lj;)a'lj; (WPCl). We derive:

¢a - cp(wp(a,'1/1) + ,wp(a,'1/;))a
</Jwp(a,'lj;)a
cpwp(a, 'lj;)a'lj;

- cpwp(a, 'lj;)a'lj; + cp,wp(a, 'lj;)a-ij;
¢a-ij;.

The expressibility of weakest preconditions is not yet sufficient to give an axiomatic char­
acterisation of their properties. For this we also need a constraint on the non-determinism
defined by the function effect, called sufficient determinism.

Definition 4.1.2 Let A be a set of actions and Cat a set of atomic guards and let S =
(S, effect, test) be a data environment over A and Cat· We say that S is sufficiently deter­
ministic iff for all a E A and cp E Cat:

Vs, s', s" ES (s', s" E effect(a, s) ==} (test(</>, s') ¢:=:} test(</>, s''))).

□

Remark that a data environment with a deterministic function effect is sufficiently deter­
ministic. Now if S is also sufficiently deterministic, then the axioms WPCl and WPC2
characterise (the properties of) weakest conditions in an algebraic way: WPCl expresses
that wp(a,¢) is a precondition of a and ¢, and WPC2 states that wp(a,</>) is the weakest
precondition of a and ¢. The following lemma states that the soundness of BPAc(S) implies
sufficient determinism.

Lemma 4.1.3 Let S be some da.ta. environment over a. set A of a.tomic a.ctions a.nd a. set Cat
of a.tomic gua.rds. If weakest preconditions a.re expressible a.nd BPAc(S) is sound, then Sis
suffi.ciently deterministic.

Proof. Suppose S is not sufficiently deterministic. So there are a E A, </> E Cat and s E S
such that we can find s', s" E S with

1. {s',s"} ~ effect(a,s), and

2. test(</>, s1
) holds and test(</>, s11

) does not hold.

We derive

a wp(a, cp)a + ,wp(a, </>)a

= wp(a, cp)acp + ,wp(a, cp)a,cp

28 4 BPA WITH GUARDS IN A SPECIFIC DATA ENVIRONMENT

but obviously (a, s) f#s (wp(a, ¢)a¢+,wp(a, ¢)a,¢, s), which contradicts the supposition. D

We conclude the introduction of BPAc(S) with some small observations . First observe that
BPAc(S) is not meaningful if weakest preconditions cannot be expressed in S (we cannot
even read its axioms) . Furthermore remark that the axiom SI cannot be replaced by the
simpler axiom

¢ = 'lj; if Vs E S (test(¢, s) {::::::::} test('lj;, s)).

1f eg. ¢ holds in data-states so, s 1 and 'lj; only holds in so, then ¢'lj; t:7S 'lf;, but ¢'lj; = 'lj; cannot
be derived with the scheme above. Finally, note that the axiom G4 (a(¢x +•<PY) ~ ax+ ay)
does not occur in table 9, as this axiom is derivable in the following way:

BPAc(S) f- ax+ ay (wp(a, ¢) + ,wp(a, ¢))(ax+ ay)
:J wp(a, ¢)ax+ ,wp(a, ¢)ay

wp(a, ¢)a¢x + ,wp(a, ¢)a,¢y
wp(a, <P)a¢(¢x + •<PY) + ,wp(a, <P)a,¢(¢x + •<PY)
wp(a, ¢)a(¢x +•<PY)+ wp(a, ,¢)a(¢x + •<PY)

- (wp(a, ¢) + ,wp(a, ¢))a(¢x + ,¢y)
= a(¢x + ,¢y).

Remark 4.1.4 Weakest preconditions can be extended to guards as follows (adopting the
use of-, on guards as defined in 3.1) :

wp(a, ,a)
wp(a, a+ {J)
wp(a, a{J)

abbreviates ,wp(a, a)
abbreviates wp(a, a)+ wp(a, {J)
abbreviates wp(a,a) · wp(a,{J) .

Weakest preconditions of guards behave as expected: they satisfy the axiom schemes WPCl
and WPC2 of BPAc(S), i.e. we have:

BPAc(S) f- wp(a, a)aa = wp(a, a)a

for any a E A and guard a over G. We show this in case a = ,{J:

WPCl: ,wp(a,{J)a,{J
WPC2: ,,wp(a,{J)a,,{J

4.2 Soundness and completeness

,wp(a, fJ)a (from WPC2)
,,wp(a,{J)a (from WPCl).

D

In the following let S be a data environment over A and Gat such that weakest preconditions
are expressible and Sis sufficiently deterministic. As stated in lemma 3.2.4, the relation t±s
is a congruence. We state without proof that BPAc(S) +REC+ RSP is sound with respect
to S (see theorem 3.2.5, and it is easy to check that the 'new' axioms are sound).

Theorem 4.2.1 (Soundness) Let S be a data environment that has weakest preconditions
and that is sufficiently deterministic. Let p, q be closed terms over ~(BPAc)REC·
If BPAc(S) +REC+ RSP f- p = q, then p t±s q. □

4.2 Soundness a.nd completeness 29

We show that the axiom system BPAc(S) completely axiomatises bisimulation equivalence
in S, i.e. the relation ~s , between the closed terms over E(BPAc). In order to do so we
will use some results of sections 2 and 3, though we do not need the concepts of A-basic and
G-basic terms over E(BPAc) from section 3. Reason for this is that weakest preconditions
allow us to manipulate closed terms over E(BPAc) in such a way that any basic guard
different from 8, f. can occur only at 'head level'. This makes it possible to use a much simpler
type of basic terms in proving completeness. We first illustrate what kind of manipulation
we mean. As an example consider the term a,¢,c(b + 1:.). We derive

a,¢c(b+1:.) - wp(a,</>)a,¢c(b+1:.) +,wp(a,¢,)a,</Jc(b+E)

wp(a, ¢)a¢,¢c(b + 1:.) + ,wp(a, ¢,)ac(b + E)
wp(a, ¢)a8 + ,wp(a, ¢,)ac(b + 1:.)

with all basic guards different from 8, f. at head level. Using the possibility to push basic
guards to head level as illustrated above, it suffices to slightly extend the notion of prefix
normal form over E(BPA,5e) (see definition 2.3.1) to the following syntactic category.

Definition 4.2.2 A term p over E(BPAc) is called basic over some reference set Riff the
following conditions hold :

1. Al, A2 f- p = L-jEwn ¢qj,

2. for all ef> E Rco the term qi is a term in prefix normal form over BPAoe·

D

In the following two lemma's we show that for any closed term p over E(BPAc) there exists
a basic term p' (over some reference set) satisfying

BPAc(S) f- p = p' .

Hence we may restrict our attention to basic terms in proving completeness, and exploit their
syntactic structure. Particularly, if two basic terms p, q are not provably equal, then there is
a data-states such that (p, s) tµs (q, s).

Lemma 4.2.3 Let a EA and R be some reference set . For a.ny term t over E(BPAc)

BPAc(S) f- t = ~ wp(a, efJ) · t.
iERCO

Proof. By induction on the cardinality of R. D

Lemma 4.2.4 (Basic form) If p is a. closed term over E(BPAc), then there is a. basic term
p1 over some reference set R such tha.t BPAc(S) f- p = p1

•

Proof. By lemma 3.3.2 we may assume that pis a term in prefix normal form over E(BPAc)
and we apply induction on the structure of p:

30 4 BPA WITH GUARDS IN A SPECIFIC DATA ENVIRONMENT

p = 8 or p = E. By lemma 3.3.4 we have

8 = L efy8 and E = L efy1:, respectively,

for any reference set R .

p = <f>q. By the induction hypothesis there is a reference set R such that

def { } with all the terms qi in prefix normal form over E(BPA0E)- Let R1 = </> U R. By
lemma 3.3.4 we have

<f>q = I:: i<t> - I:: Jqi
-$ER? iERc0

where for all ;/ E R'f°

q~ if</> occurs in;/ and efJ occurs in ;/, ,p
8 otherwise.

Furthermore

is clearly a basic term over R1 .

p = -,<f>q. Likewise.

p = aq. By the induction hypothesis there is a reference set R such that

with all the terms qi in prefix normal form over E(BPA0E)- We derive

aq = a · L ;f q;f
-$ERCO

= L wp(a, efJ) ·a· L ;fq;f
¢ERCO ;$ERCO

L wp(a, ¢) · a · ¢q;
¢ERCO

L wp(a, efJ) · a · q;j
¢ERCO

(by lemma 4.2.3)

4.2 Soundness a.nd completeness 31

Let wp(a, R) ~f {Ref(wp(a, ¢)) I <p E R} . Note that wp(a, R) may be empty (for
instance in case R ={¢}and wp(a, ¢) = 1:). Let

for some arbitrary <p E Gat · Obviously R1 is a reference set, and we derive

aq = L wp(a, J) · a · q,i = L '1fa · L a · q,i
¢ERco JER1° {,iERc 0 Jc/>·wp(a.¢)=JV-,cJ>•wp(a.¢)=J}

with the rightmost term basic over R1.

p = q + r . By the induction hypothesis there are reference sets R1, R2 such that

q = L -ifaq,j and r = L 0r8
JER~ 0 BER':J.°

def
with all the terms q,j, r8 in prefix normal form over E(BPA&)- Let R = R1 U R2. By
lemma 3.3.4 we have

where for all J E Rco the terms q',j, r',; are defined as follows:

We derive

provided -ifa occurs in J,
provided 0 occurs in ¢.

and clearly the right hand side term is basic over R. □

The syntax of a basic term is sufficiently strict to derive information about its (syntactic)
structure from its operational behaviour. As announced before, we show that if two basic
terms over some reference set R do not obey certain provable characteristics, then we can find
a data-state s E S such that the associated transition systems with initial data-state s are
not S -bisimilar. The proof of this fact uses properties of the subsystem BPA0E of BPAa(S),
and it is quite easy compared to the proof of the related lemma 3.3.10.

Lemma 4.2.5 Let PI, P2 be basic terms over some reference set R. If there is J E Rco such
that

1. lli [;;, Pi (i = 1, 2),

2. BPAa(S) V- j = 8,

32 4 BPA WITH GUARDS IN A SPECIFIC DATA ENVIRONMENT

3. BPA0f Y- q} = qj,

then :ls ES ((p1, s) rps (p2, s)).

Proof. Assume that ¢ satisfies the condition of the lemma. So in particular we can find
s ES such that (¢, s) ~(5, s) (otherwise the axiom SI violates the second condition) .

Now suppose (p1 , s) t:JS (p2 , s) by some S-bisimulation B . Adding the tuple ((q}, s), (q}, s))

to B would by the first condition result in an S-bisimulation establishing (q},s) t:JS (qj,s).

But by lemma 2.3.4 this contradicts the third condition. Hence (p1,s) rps(p2,s) . D

Connecting all the results proved so far, we can prove the completeness of BPAa(S) m a
simple way.

Theorem 4.2.6 (Completeness) Let S be a data environment that has weakest preconditions
and that is sufficiently deterministic. Let T1,T2 be closed terms over E(BPAa) . IfT1 !:::!ST2,

then BPAc(S) ~ T1 = T2.

Proof. We prove the theorem by contraposition. Suppose T1 f. T2. We have to show
T1 rps T2 . According to lemma 4.2.4 there are basic terms Pi, p~ over reference sets R1, R2,

respectively, such that Ti= Pi (i = 1, 2). By lemma 3.3.4 we can find basic terms Pl,P2 over
R = R1 U R2 such that Pi = Pi, and hence Ti = Pi (i = 1, 2). By soundness (see theorem

3.2.5) we have that Ti t:::!S Pi · Because Pl f. p2, there must be ¢ E Rea satisfying

By the previous lemma 4.2.5 we can find some s ES such that (p1,s) rps(p2,s). As t:::!S 1s
an equivalence relation, we conclude (T1, s) rps (T2, s), which finishes our proof. D

4.3 An example: the process SWAP

Process algebra with guards can be used to express and prove partial correctness formulas in
Hoare logic. In section 6 we elaborate on this idea. Here a simple example that is often used
as an illustration of Hoare logic is presented and its correctness is shown.

First we transform BPAa(S) into a small programming language with Boolean guards and
assignments. Our language has the signature ofE(BPAc) and we have some set V = {x, y, ... }
of data variables . Atomic actions have the form:

X := e

with x E V a variable ranging over the set ~ of integers and e an integer expression. We as­
sume that some interpretation [·] from closed integer expressions to integers is given. Atomic
guards have the form

e=f

where e and f are both integer expressions. For readability we sometimes write angular
brackets around guards and square brackets around assignments.

4.3 An example: the process SWAP 33

The components of the data environment S = (S, effect, test) are straightforward to define:

S=~v

i.e . the set of mappings from V to the integers. We write p, a- for data-states in S, and
we assume that the domain V of these mappings is extended to integer expressions in the
standard way. The function effect is defined by:

effect(x := e, p) = p[[p(e)]/x]

where p[n/x] is as the mapping p, except that xis mapped ton. We define the predicate test
by:

test(e = f,p) <===> ([p(e)] = [p(f)]).

Note that the effect function is deterministic, so S is certainly sufficiently deterministic.
Weakest preconditions can easily be expressed:

The axiom SI cannot be formulated so easily, partly because we have not yet defined integer
expressions very precisely. We characterise SI by the scheme:

if \Ip ES we can find is; n such that [p(ei)] -=I= [p(fi)].
In this language we can express the following tiny program SWAP that exchanges the initial

values of x and y without using any other variables.

SWAP = x:=x+y

y := X -y

X := X -y.

The correctness of this program can be expressed by the following equation:

(x = n)(y = m)SWAP= (x = n)(y = m)SWAP(x = m)(y = n).

This equation says that if SWAP is executed in an initial data-state where x = n and y = m,
then after termination of SWAP it must hold, i.e. it can he derived, that x = m and y = n.
So SWAP indeed exchanges the values of x and y.

The correctness of SWAP can be proved as follows:

SI
(x = n)(y = m)SWAP = ((x + y) -y = n)((x + y) - ((x + y) - y) = m)SWAP

SI,~Cl

WPCl

WPCl

(x = n)(y = m)[x := x + y](x -y = n)(x - (x -y) = m)[y := x -y][x := x - y]

(x = n)(y = m)[x := x + yl[y := x -y](y = n)(x - y = m)[x := x -y]

(x = n)(y = m)SWAP(x = m)(y = n).

34 5 PARALLEL PROCESSES WITH GUARDS

5 Parallel processes with guards

In this section Basic Process Algebra with guards is extended with operators for parallelism.
We give Plotkin-style rules to express the operational behaviour of these operators and show
that S-bisimilarity is not a congruence any longer. We deal with this problem by introducing
another bisimulation equivalence, called global S-bisimulation equivalence which is finer than
S-bisimilarity. Global S-bisimulation equivalence is a congruence, but it is not so natural.
Moreover, the axioms WPCl, WPC2 and G4 are not valid anymore in global S-bisimulation.

We present the axiom system ACPc which is based on ACP (the Algebra of Communi­
cating Processes [BK84a]). ACPa is sound for global S-bisimilarity, and for finite processes
also complete. This axiom system enables us to prove S-bisimulation equivalence between
processes: using ACPa every closed process term can be proved equivalent to one without
parallel operators, and then BPAb or BPAa(S) can be used to prove S-bisimilarity. This
section is concluded with an example in which the correctness of a parallel process is proved
in this way.

5.1 Axioms and a two-phase calculus

We extend the language of :E(BPAa) to a concurrent one, suitable to describe the behaviour of
parallel, communicating processes. Communication is modelled by a communication function

1 : A x A ---+ A,, that is commutative and associative. If ,(a, b) is 8, then a and b cannot
communicate, and if 1 (a, b) = c, then c is the atomic action resulting from the communication
between a and b.

Concurrency is described by three operators, the merge II, the left-merge IL and the
communication-merge I-

p II q represents the parallel execution of p and q. It starts when one of its components starts,
and terminates if both of them do.

p IL q is asp II q, but under the assumption that the first action that is performed comes from
p (it may be the case that the behaviour of p starts with the evaluation of a guard).

p I q is asp II q, but the first action is a communication between p and q.

We present encapsulation operators 8H (for any HS: A) that block actions in H by renam­
ing them into 8. Encapsulation is used to enforce communication between processes. The
signature :E(ACPa) is summarised in table 10.
For the terms over :E(ACPa) we have the axioms given in table 11, where a, b E A, H S: A
and ef; E G (note that the axiom a(ef;x+,ef;y) S: ax+ay (G4) is absent). Most of these axioms
are standard for ACP (see [BK84a]), and, apart from Gl, G2 and G3, only the axioms EMlO,
EMll and DO are new. The axiom EMlO (EMll) expresses that a basic guard ef; in q;x [l y

(</;x I y, respectively) also may prevent that y happens.
Using ACPa any closed term over :E(ACPa) can be proved equal to one without merge

operators, i.e. a closed term over :E(BPAa).

Theorem 5.1.1 (Elimination) Let p be a closed term over E(ACPa), then there is a closed
term over q over :E(BPAa) such that ACPa f- p = q.

5. I Axioms a.nd a. two-phase calculus

constants:

unary operators:
binary operators:

a for any atomic action a E A
¢ for any basic guard ¢ E G

aH encapsulation, for any H ~ A
+ alternative composition (sum)

sequential composition (product)
II parallel composition (merge)
lL left-merge
I communication-merge

Table 10: The signature E(ACPa)

Proof. By induction on the structure of terms.

35

D

ACPc and BPAb or BPAb(S) cannot be combined in bisimulation semantics; if G4 is added
to ACPc we can derive the following:

ACPc + G4 f- a(b 11 d) + a(c 11 d) + d(ab + ac)

(ab+ ac) II d

G
4

(ab+ ac + a(</Jb + ,</Jc)) II d

:) a(</Jbd +,</Jed+ d(¢b + ,</Jc)) . (2)

So, in (2) after an a step we arrive in a state where we still can do both ab or c step, assuming
that the effect of b yields data-states where ¢ holds and data-states where ,¢ holds. This
cannot be mimicked in (1) . Therefore, every term with (2) as a summand is not bisimilar to
(1) for any reasonable form of bisimulation. So ACPc + G4 is not sound in any bisimulation
semantics.

Because we still want to derive S-bisimilarity between closed terms containing merge op­
erators, we introduce a two-phase calculus that does not have these problems. Derivability
in this calculus is denoted by f- c·

Definition 5.1.2 Let P1,P2 be closed terms over E(ACPc)REC· We write

ACPb f-c Pl= P2

iff there are closed terms q1, q2 over E(BPAc)REC such that ACPa f- Pi= qi (i = 1, 2) and
BPAb f- q1 = q2. Furthermore, we write

ACPa(S) f-c PI = P2

iff there are closed terms q1, q2 over E(BPAc)REC such that ACPc f- Pi= qi (i = 1, 2) and
BPAc(S) f- q1 = q2.

We sometimes put REC + RSP in front off-c which means that we may use REC and RSP
in proving Pi= qi (i = 1, 2) and q1 = q2 . D

36 5 PARALLEL PROCESSES WITH GUARDS

x + (y + z) = (x + y) + z Al <P. ,</; = 8 Gl
x+y=y+x A2 </;+ ·<P = E G2
x +x=x A3 </J(X + y) = <pX + <py G3
(x+y)z=xz+yz A4
(xy)z = x(yz) A5
x+8=x A6
8x = 8 A7
EX= X A8
XE= X A9

alb=,(a,b) CF

X II y = X IL y + y IL X + X I y EMl <pX [Ly= <p(x [Ly) EMlO
E[Lx=8 EM2 </;x I y = ¢(x I y) EM11
ax [Ly= a(x II y) EM3
(x+y)[Lz=x[Lz+y[Lz EM4
xly=ylx EM5 8H(¢) = <p DO
EI E = E EM6 8H(a,) = a if a(/. H Dl
EI ax= 8 EM7 8H(a) = 8 if a EH D2
ax I by = (a I b) (x II y) EM8 8H(x + y) = 8H(x) + 8H(Y) D3
(x+y) I z=x I z+y I z EM9 8H(xy) = 8H(x)8H(Y) D4

Table 11: The axioms of ACPc where <p E G, a, b EA and H ~ A

5.2 Opera.tional sema.ntics a.nd soundness 37

5.2 Operational semantics and soundness

Let S = (S, effect, test) be some data environment over a set A of atomic actions and a set
Cat of atomic guards. The transition rules in table 12 and the transition rule for guarded
recursive specifications (see table 5) determine the transition relation ---tE(ACPo)REc,S over
E(ACPc)REC · Remark that these rules formalise the informal description of the new opera­
tors given earlier, and that all rules given for E(BPAc) in table 8 are included. Let p be a
closed term over E(ACP G)REC . For any s E S the transition system A(p, s) is defined as

A(p, s) ~ (C(E(ACPc)REC, S) , A✓ , ---tE(ACPo)REc,S , (p, s)).

We first show by an example that the notion of 'S-bisimilarity' as defined in 2.2.4 for the
configurations over E(AGPc)REC gives in general no congruence relation between the closed
terms over E(ACPc)REC ·

Example 5.2.1 Consider the data environment ({so,s1}, effect, test) in which

• Vs ES (effect(a,s) = {so}) for some a EA;

• Vs ES (effect(b,s) = {s1}) for some b EA;

• test(</>, so) and not test(rp, s1) for some rp E G.

In this case we have ab t::!S a-,rp but not ab II b t::!S a-,rp II b, for the transition system
A(a-,rp II b, so) has an execution path

that is not present in A(ab II b, so). (End exa.mple.)

We define a different bisimulation equivalence, called global S-bisimilarity, that is a con­
gruence for the merge opera.tors. The idea behind a global S-bisimulation is that a context
p II (.) around a process q can change the data-state of q at any time and global S-bisimulation
equivalence must be resistant against such changes. So, a configuration (Pl, s) is related to a
configuration (p2, s) if (p1, s) ~(q1, s') implies (p2, s) ~(q2, s') and, as the environment may
change s', q1 is related to q2 in any data-state:

Definition 5.2.2 Let E be a signature, S a data environment with data-state space S and
--ts a transition relation over C(E, S).

• A binary relation R ~ C(E, S) x C(E, S) is a global S-bisimulation iff R satisfies the
following (global) version of the transfer property: for all (p, s), (q, s) E C(E, S) with
(p, s)R(q, s):

1. whenever (p, s) ~ s (p', s') for some a and (p', s'~ , then, for some q1
, also

(q,s) ~s (q1,s1
) and Vs" ES ((p1,s11)R(q1,s11

)),

2. conversely, whenever (q,s) ~s (q',s') for some a and (q',s'), then, for some p',
also (p, s) ~s (p', s') and Vs" E S ((p', s")R(q', s")).

38 5 PARALLEL PROCESSES WITH GUARDS

a EA (a, s) ~(E, s') ifs' E effect(a, s)

ip E G (ip, s) _:L(8, s) if test(ip, s)

+

II

lL

(x, s) ~(x', s')

(x + y, s) ~(x', s')

(x, s) ~(x', s')
af J

(xy, s) ~(x'y, s')

(x, s) ~(x', s 1
)

------afJ
(x II Y, s) ~(x' II Y, s')

(y, s) ~(y', s')

(x + y, s) ~(y1
, s')

(x, s) _:L(x', s1
) (y, s) ~(y1

, s")

(xy, s) -5!:...t(y', s")

(y,s) ~(y',s1
)

af ✓
(x II Y, s) -5!:...t(x II Y1

, s')

(x,s)~(x1,s1
) (y,s)~(y1,s11

)
-y(a,b) ,(a,b) f 8, a,b f J and s111

E effect(,(a,b),s)
(x II y, s) --t (x' 11 y1

, s'")

(x, s) _:L(x', s1
) (y, s) _:L(y', s')

(x 11 y' s) L (x' 11 y'' s')

(x, s) -5!:...t(x', s')
------- afJ
(x [Ly, s) -5!:...t(x' 11 y, s')

(x, s) ~(x', s') (y, s) ~(y', s11
)

-y(a,b) ,(a, b) # 8, a, bf J and s111
E effect(1 (a, b), s)

(x I y, s) ~ (x' 11 y1
, s111

)

(x,s)_:L(x1,s1
) (y,s)_:L(y',s')

(x I y, s) L(x' II y1
, s')

(x s) ~(x' s')
' ' if a ,t HCA

(8H(x), s) ~(8H(x'), s') -

Table 12: Transition rules for ACPc (a, b E A✓, H s;;; A)

5.2 Opera.tional semantics a.nd soundness 39

• A configuration (p, s) E C(E, S) is globally S-bisimilar to a configuration (q, s') E

C(E, S), notation (p, s) ~S (q, s'), iff s = s' and there is a global S-bisimulation
containing the pair ((p, s), (q, s')).

• A transition system A(p, s) = (C(E, S), A✓, -----ts, (p, s)) is globally S-bisimilar with a

transition system A(q, s1
) = (C(E, S), A✓, -s, (q, s')), notation A(p, s) ~S A(q, s'),

iff (p, s) ~s (q, s').

• Two closed terms p, q over E are globally S-bisimilar, notation p ~Sq, iff

A(p, s) ~s A(q, s)

for alls ES.

□

By definition of global S-bisimilarity we have for any two closed terms p, q over E(ACPa)REC

p~sq ==> p!:::!Sq.

It is not difficult to see that for any data environment S the relation ~s is an equivalence
relation over the closed terms over E(ACPa)REC·

Our goal, i.e. global S-bisimilarity being a congruence relation, has been achieved:

Lemma 5.2.3 For a.ny data. environment S the relation ~s is a. congruence with respect
to the opera.tors of E(ACP G).

Proof. We only prove the lemma for the merge operator. Let S = (S, effect, test) and
assume that p ~s p1 and q ~s q1

• So for alls E S we have global S-bisimulations R; and

R; such that (p,s)R;(p1,s) and (q,s)R~(q1,s). We have to show (p II q,s) ~S (p1 II q1,s) for

all s E S. Fix so E S, and let RP~ UsEsR; and Rq ~f UsESR~. We define a relation Ras
follows:

R ~ {((r II u,s),(r' II u',s)) I (r,s)Rp(r',s), (u,s)Rq(u',s)}

We have (p II q, so)R(p' II q', so) and we show that R is a global S -bisimulation. Suppose

(r II u, s)R(r' II u', s) and (r 11 v,, s) ~(v II w, s1
).

We systematically check which application of the transition rules may have led to this tran­
sition:

(r, s) ~(v, s'), u = w and a =/= J . Because (r, s)Rp(r', s) and Hp is (also) a global S­
bisimulation, there is av' such that (r', s) ~(v', s 1

) and \/s"((v, s")Rp(v', s11
)).

We derive (r' II u', s) ~(v' 11 u', s1
). As \/s"((r', s")Rp(v', s11

)) and \/s"((u, s")Rq(u', s11
)),

we have \/s"((v II u, s")R(v' II u', s")) by definition of R .

(v., s) ~(w, s'), r = v and a=/= J . Likewise.

40 5 PARALLEL PROCESSES WITH GUARDS

(r, s) ~(v, s11
), (v,, s) ~(w, s111

), a = ,(b, c) and s1 E effect(a, s). In a similar way as
above we can find v' and w' satisfying (r1

, s) ~(v', s 11
) and (u', s) ~(w', s111

), and
hence (r' II u',s) ~(v' II w',s') for some s1 in effect(a,s). Furthermore we have
Vs"((v, s")Rp(v', s")) and Vs"((w, s")Rq(w', s")). We conclude Vs"((v II w, s")R(v' II
w',s")).

(r , s) -L(v, s'), (u, s) -L(w, s') and a= ✓- Likewise. □

Theorem 5.2.4 (Soundness) Letp,q be closed termsoverE(ACPc)REC · IfACPc+REC+
RSP I- p = q, /,hen p ~sq for any da.ta. environment S.

Proof. All the axioms of ACPc, REC and RSP are sound and ~s is a congruence. As
an example we prove the soundness of the axiom EMl. Let S = (S, effect, test) be a data
environment over A and Cat and let p, q be closed over E(ACPc)REC· Consider the relation

R ~ Id u { ((p 11 q) s)) (p ll q + q [l_ p + p I q) s)) I s E S}

where Id is the identity relation on C(E(ACPa)REC, S) x C(E(ACPc)REC, S). It is not
difficult to see that R is a global S-bisimulation satisfying (p JI q)R(p [l_ q + q [l_p + p I q). □

With this result we immediately obtain the soundness of two-phase derivability.

Corollary 5.2.5 (Soundness) Let p, q be closed terms over E(ACPc)REC·

1. If A CPi; + REC + RSP I-c p = q, then p 'd sq for any data environment S .

2. Let S be a data. environment such that weakest prec,onditions are expressible and that
is sufficiently deterministic. If ACPc(S) +REC+ RSP 1-c p = q, then p 'dS q. □

5.3 Completeness

We show that the axiom system ACPc completely axiomatises global S-bisimilarity in all
data environments for the closed terms over E(ACPc). From theorem 5.1.1 and lemma 3.3.6,
it follows that we can restrict our attention to the G-basic and A-basic terms over E(BPAc)
defined in section 3. Due to the fact that global S-bisimilarity is a finer equivalence than
ordinary S-bisimilarity, we are able to prove the related version of lemma 3.3.10 in a simple
way. Note that the results from section 3 that are used here, are all proved using BPAb.

Lemma 5.3.1 If p1,P2 are G-basic terms over some reference set Rand ACPa Y- Pl= P2,

then there is a data.-sta.te 4> in S(R) such that (p1, 4>) t/t S(R)(P2, 4>) .

Proof. By induction on IP1 J + IP2 I- The case IP1 I+ IP2 I = 0 is trivial, so assume Jp1 J + JP2 I > 0.
If Pl =f. P2, then Pl Sf: P2 or P2 Sf: Pl. Assume Pl Sf: P2, so there is an A-basic term q1 over R
such that ¢qi [;;;; Pl and ¢qi Sf: P2 (otherwise just sum up all syntactic summands of Pl and
conclude Pl ~ P2) .

By definition P2 has a syntactic summand ¢q2, but q1 Sf: q2 (otherwise ¢q1 ~ ¢q2 ~ p2).
One of the following holds:

5.4 An exa.mple: a parallel predicate checker 41

2. ar ~ q1 and ar Cf:. q2 for some a E A and G-basic term r.

(If all syntactic summands of q1 would be provable summands of q2, then q1 ~ q2 .) In the
first case we have (p1, ¢) ~-- ·, whereas by lemma 3.3.7 (p2, ¢) has no such transition, so
(pi,¢) its(p2,¢). We evaluate case 2:

either q2 has no syntactic summands starting with a . Now (p1, ¢) it S(R)(P2, ¢), for (p1, ¢)
has an a-transition, whereas (p2, ¢) has no such transition by lemma 3.3.7;

or q2 has n + l syntactic summands starting with a, say aro, ... , arn. It holds that Ti =/ r
for all i = 0, ... , n (otherwise ar = ari ~ q2 for some i). By the induction hypothesis
(r,,J;i) it S(R)(ri,,J;i) for a data-state ,J;i E S(R). By lemma 3.3.7 we have for all

i, j = 0, ... , n (p1, ¢) ~(f.T, ,J;i) and (p2, ¢) ~(f.Tj, ,J;i)- Suppose (p1, ¢) ~ S(R)(P2, ¢),
then by definition of global S-bisimilarit.y (ET,,J;i) ~ S(R)(f.Tj,,J;i) for all i,j, and hence

(r, ,J;i) ~ S(R)(rj, ,J;i)- But this was contradictory in case i = j.

The case P2 Cf:. Pl can be treated likewise. □

By this lemma, the previous completeness results and theorem 5.1.1 we obtain the following
results.

Corollary 5.3.2 (Completeness) Let r1, r2 be closed terms over E(ACPc) .

1. Ifr1 ~Sr2 for a.11 da.ta environments S, then ACPc f-- r1 = r2.

2. Ifr1 :::?Sr2 for a.11 da.ta. environments S, then ACPt f--c r1 = r2.

3. Let S be a. da.ta. environment such tha.t weakest preconditions a.re expressible a.nd that
is sufficiently deterministic. Ifr1 :=?Sr2, then ACPc(S) f--c r1 = r2. D

5.4 An example: a parallel predicate checker

In this section we illustrate the techniques that we introduced up till now by an example.
Let f ~ IN be some predicate, eg. the set of all primes. Now, given some number n, we
want to calculate the smallest m ~ n such that f(m). Assume we have two devices Pi and
P2 that can calculate for some given number k whether f(k) holds. In figure 1 we depict
a system that enables us to calculate m using both A and P2 . A Generator/Collector G
generates numbers n, n + l, n + 2, ... , sends them to P1 and P2, and collects their answers.
Furthermore G selects the smallest number satisfying f from the answers and presents it to
the environment.

42 5 PARALLEL PROCESSES WITH GUARDS

! -checker

Generator/ Collector G

!-checker

Figure 1: The parallel predicate checker Q

To describe this situation, we extend example 4.3 with the atomic actions (i = 1, 2):

s(!x) send value of x,

s0 k(!xi) send the value Xi for which the evaluation of f(xi) was a succes,

Bnotok indicate that an evaluation of f was not succesful,

r(?xi) read a value for Xi,

r0 k(?y) read a value for y for which f(y) succeeded,

Tnotok read that an evaluation off has failed,

Cnotok a communication between Tnotok and Bnotok,

w(!x), w(!y) write value of x, y to environment .

These atomic actions communicate according to the following scheme:

,(s(!x), r(?xi)) = ,(r(?xi), s(!x)) =[xi:= x],
,(s(!xi), r(?y)) = 1 (r(?y), s(!xi)) = [y := Xi],
,(snotok, Tnotok) = ,(rnotok, Bnotok) = Cnotok·

All new atomic actions do not change the data-state, i.e. for each new atomic action a :

effect(a, s) = { s}.

Probably, one would expect that for instance effect(r(?y), s) = { s[new value/y]} as r(?y) reads
a new value for y. But this need not be so: the value of y is only changed if a communication
takes place.

We add new atomic guards f(xi) to the setting of example 4.3 . These guards have their
obvious interpretation: test(f(xi),p) holds iff f(p(xi)) holds.

The parallel predicate checker Q can now be specified by:

G
G1
G2

pi
P' •

Q

-

[x := n] s(!x) [x := x + 1] s(!x) G1,
Tnotok [x := X + 1] s(!x) G1 + T0 k(?y) G2,
,(x = y) w(y) + (x = y)(r0 k(?y) w(y) + rnotok w(x)),

r(?x) Pf+ E,
(f(xi))sok(!xi) + ,(!(xi)) Bnotok Pi+ E,

5.4 An exa.mple: a. pa.rallel predica.te checker 43

with H = { r(?xi), r ok(!y), Tnotok, s(!x), S0 k(!xi), Snotok I i = 1, 2}.
Q is correct if for an atomic action w(x) (or w(y)), x (or y) contains the smallest number

m ~ n such that f(m) . We define the test a(x, y) to express this formally:

test(a(x,y),u) <=> CT(x) ~ CT(y) A (

Q is correct if we can prove that

I\
n ~ J < CT(y)

J-/= CT(x)

ACPc(S) +REC+ RSP h Q = Q'

where Q' is defined by:

with H, Pi and P2 as above and G':

G' [x := n] s(!x) [x := x + 1] s(!x) G1,
Gi Tnotok [x := X + 1] s(!x) G1 + T0 k(?y) G~,
G~ -,(x = y) · a(y, y)(f(y)) · w(y)

-,J(j)).

+(x = y)(r 0 k(?y) · a(y, y)(f(y)) · w(y) + Tnotok · a(x, x)(f(x)) · w(x)) .

Note that a, is unnecessarily complex to state the correctness of Q. But this formulation is
useful in the proof of ACPc(S) +REC+ RSP 1-c Q = Q'.

This proof is given by first expanding Q and Q' to the merge-free forms R and R'. R is
defined by:

R1 (f(x1)) [y := xi] R2+
(J(x2)) [y := x2] R3+
(-,(f (x1))cnotok [x := x + 1] [x1 := x]+
-,(j(x2))cnotok [x := x + 1] [x2 := x]) · R1

R2 -,(x = y) w(y)+
(x = y)(-,(f(x2)) Cnotok w(x) + (f(x2)) [y := x2] w(y))

R3 = -,(x = y) w(y)+
(x = y)(-,(f(x1)) Cnotok w(x) + (f(x1)) [y := x1] w(y))

R' is defined likewise, except that w(x) and w(y) are replaced by (a(x, x)) (f(x)) w(x) and
(a(y, y)) (f(y)) w(y), respectively. We state the following fact without proof.

Fact 1.

ACPc +REC+ RSP I- Q = R a.nd ACPc +REC+ RSP I- Q' = R' .

44 5 PARALLEL PROCESSES WITH GUARDS

In order to show that BPAa(S) +REC+ RSP f- R = R' we need the following instances
of ST, WPCl and WPC2 in addition to those given in example 4.3. Let t, u, ... be integer
expressions containing the variables x1, x2, x, y and F some function on integer expressions .

<P Cnotok <P = <P Cnotok for all <P E G
-i(t = t) = {j

(t = u) -i(u = t) = {j

(t = u) (u = v)-,(t = v) = {j

(t1 = u1) · .. . · (tk = uk)-,(F(t1, ... , tk) = F(u1, .. . , uk)) = {j

(t + 1 = u) (t = u) = {j

-i(f (t)) (a(t, u)) -i(a(u, u + 1)) = {j

-i(f(t)) (a(u, t))-i(a(u, t + 1)) = {j
(a(t,u - 1)) (t = u) = {j

Note that these identities are sound. We define

It is easy to show that

and

are solutions for T, T1, T2 and T3, respectively, in the following specification:

T1 /3(x,x1,x2)((f(x1)) [y := x1]T2+
(f(x2)) [y := x2] T3+
(-i(f(x1))cnotok [x := X + 1] [x1 := x]+
-i(f(x2))cnotok [x := x + 1] [x2 := x]) · T1)

T2 (y = x1)(f(x1))/J(x,x1,x2)(-,(x = y) w(y)+
(x = y)(-,(j(x2)) Cnotok w(x) + (f (x2)) [y := x2] w(y)))

T3 (y = x2)(f(x2))/3(x, x1, x2)(-,(x = y) w(y)+
(x = y)(-i(f(x1)) Cnotok w(x) + (J(x1)) [y := x1] w(y)))

Hence it follows by RSP that R and R' are equal. Concluding we have the following fact:

Fact 2.

ACPa(S) +REC+ RSP f-c Q = Q'.

45

6 Partial correctness and Hoare logic

In this section we show that we can capture Hoare logic for process terms [Pon89, PV89)
in the algebraic framework developed thus far. We consider partial correctness formulas of
the form {a} p {,B} , where p is a closed term over E(ACPa)REC and a , ,B are guards over
E(ACPa) . It turns out that the validity of partial correctness formulas can be elegantly
expressed with S -bisimulation equivalence: { a} p {,B} is valid in S iff ap tiS ap,B. We further
show a soundness result for a Hoare logic for linear processes over E(BPAa)REC by translating
proofs in Hoare logic into process algebra proofs.

6.1 Hoare logic for process terms

Hoare logic is meant for proving the correctness of programs. Proof systems are mostly given
in a natural deduction format (see eg. [Dal83] for 'natural deduction') and are parameterised
with

1. a class of programs, and

2. a language of assertions to express correctness properties of programs (usually some
first-order language with equality) .

In general a partial correctness formula has the syntax

{pre} P {post}

where pre, post are assertions and P is a program. The intuitive meaning of {pre} P {post}
is that whenever the assertion pre holds before the execution of P and P terminates, then
the assertion post holds after the execution of P.

Given a set A of atomic actions and a set Cat of atomic guards, we here consider the guards
over E(ACPa) as a language of assertions, and we take the closed terms over E(ACPa)REC
as the class of programs.

With respect to data-state transformations there are hardly any constraints on the way
we provide process terms with an (operational) semantics. Therefore this instantiation is
on a rat.her abstract level, and is suitable to express many programming primitives and
constructs (cf. the examples in sections 4.3, 5.4 or Hoare's conditionals). We only consider
data environments that are sufficiently deterministic and such that weakest preconditions are
expressible . These are no serious restrictions that occur often in some related form in the
study of Hoare logic (cf. [Bak80, Apt81)) .

6.2 Partial correctness formulas and bisimulation

We now present formal definitions for the interpretation of partial correctness formula:s and
assertions in any data environment S = (S, effect, test) . The main work is already done
in section 5, where the operational semantics for the closed terms over E(ACPc)REC was
defined. Let S = (S, effect, test) be some data environment . In this section we use the
transit ion relation -E(ACPa)REc,S as defined in section 5.2 which is here simply written as --

46 6 PARTIAL CORRECTNESS AND HOARE LOGIC

The interpretation of basic guards is such that a basic guard </> holds in s E S iff

✓ (</>, s) ---'--t(8, s) .

We define the interpretation of our assertions in S using J-transitions.

Definition 6.2.1 Let a be an assertion and S = (S, effect, test) some data environment.

1. The assertion a holds ins ES, notation SF a[s], iff (a, s) _:L.(8, s).

2. The assertion a is valid in S, notation SF a, iff Vs ES (SF a[s]).

□

In order to define the interpretation of partial correctness formulas , we introduce sequences
of transitions. Let A* be the set of finite strings over A, with typical elements u, u', ... and

>. denoting the empty string. We define for all u E A* relations ~ and ~ that describe
sequences of transitions:

>.
• (x,s)---tt (x,s)

(x, s) ~ (x', s') (x', s') ~(x", s11
)

•
(x,s) ~ (x 11 ,s11

)

Now the interpretation of a partial correctness formula in Sis defined as follows:

Definition 6.2.2 A partial correctness formula {a}p{,8} is valid in S, notation SF {a}p{,8},
iff for all s E S and all u E A*:

SF a[s] and (p, s) ~ (p1
, s') =? SF ,B[s'].

□

We show that for any partial correctness formula {a} p {,8} it holds that S F {a} p {,B} iff
ap t:!S ap,8. This alternative characterisation of validity of partial correctness formulas gives
us the means to use process algebra for proving partial correctness formulas.

Lemma 6.2.3 (Decomposition) Let S = (S, effect, test) be some da.ta environment. For a.ny
closed term p over E(ACPc)REC, gua.rd a over E(ACPc) and u E (AU { ✓})* the following
properties hold:

1. If (ap, s) ~ (p1
, s1

) and u =/=. >., then (a, s) _:L.(8, s) and (p, s) ~ (p1
, s1

).

2. If (pa, s) ~ (p1
, s1

), then (p, s) ~ (p1
, s1

) and (a, s1
) _:L.(8, s1

).

Proof. By induction on the length of u (first proving some intermediate properties of
sequences of non-terminating transitions). □

6.2 Pa.rtial correctness formulas a.nd bisimula.tion 47

Lemma 6.2.4 Let p be a. closed term over E(ACPc)REC, a some guard over E(ACPc) a.nd
S = (S, effect , test) a da.ta environment. Then the following statements are equivalent:

(i) . For alls ES and CJ EA* it holds tha.t (p , s) ~ (p' , s') ==> (a, s') ~(8, s').

(ii). p t::!Spa.

Proof. First observe that if (p, s) ~(p', s1
), then p1 = 8 and s' = s.

(i) ==> (ii) . Fix some s ES and take

R ~f {((8, s'), (8, s')) I s1 ES} U {((r , s1
), (ra, s')) I (p, s) ~ (r, s') for some CJ EA*}

Note that (p, s)R(pa, s). We show that R is an S -bisimulation. For pairs ((8, s'), (8, s'))
it is trivial to check the transfer property. Assume (q, s')R(qa, s1

).

• Suppose (q,s1)~(q1,s11
) with a EA. We derive (qa,s')~(q'a,s11

) and by defi­
nition of R also (q', s")R(q1a, s11

).

• Suppose (q, s') ~(8, s'), so (p, s) ~ (8, s') for some CJ. By assumption we have
(a, s') ~(8, s1

) and we derive (qa, s') L(8, s') . By definition (8, s')R(8, s').

• Suppose (qa, s') ~(q' , s") with a EA. By 'decomposition' it follows that q' = q11 a
and (q, s1

) ~(q", s11
). By definition (q", s")R(q1

, s 11
).

• Suppose (qa, s1
) ~(8, s1

). It follows that (q, s1
) ~(8, s1

) and (a, s1
) ~(8, s1

). By
definition (8, s')R(8, s1

) .

(ii)==> (i). Suppose (p, s) ~ (p', s1
) for some CJ EA*. By assumption then also (pa, s) ~

(p' , s1
), and by decomposition we have (a, s') ~(8, s') .

□

Now we can easily prove the following characterisation of the S-validity of partial correctness
formulas in terms of S-bisimilarity.

Theorem 6.2.5 Let p be a. closed term over E(ACPc)REC, a,/3 guards over E(ACPc) and
S = (S, effect, test) a data environment. Then

S p= {a} p {/3} {=} ap t::? s ap/3 .

Proof.

==> Suppose Sp= {a}p{/3}. By the previous lemma it is sufficient to show that if (ap, s) ~
·(p', s1

), then (/3, s1
) ~(8, s1

). So let (ap, s) ~ (p', s'). By 'decomposition' we have

(a, s) ~(p1
, s) and (p , s) ~ (p', s1

). By S p= {a:} p {/3} this implies (/3, s1
) ~(p', s1

).

<== Suppose S ~ {a} p {/3} , so for some s ES and a EA*:

(a ,s) -L(8,s) and (p,s) ~ (p' ,s') and S ~/3[s'] .

We derive (ap,s) ~ (p',s') and by S-bisimilarity we have (ap/3,s) ~ (p1,s1
) . By

'decomposition' this implies that ((3, s') ~(8, s1
), which contradicts the supposition.

□

48 6 PARTIAL CORRECTNESS AND HOARE LOGIC

6.3 A proof system for deriving partial correctness formulas

In this section we present a proof system H in a natural deduction format for deriving partial
correctness formulas over :E(BPAc)REC (cf. [Pon89, PV89]). The proof system His displayed
in table 13. Notice that the rules of H refer to terms over :E(BPAc)REc that need not be
closed. Let r be a set of assertions and partial correctness formulas. We writer f-H {a}t{,8}
iff we can derive {a} t {,8} in H using elements of r as axioms .

• The axiom scheme I only makes sense if weakest preconditions are expressible, and it
is only valid in data environments that are sufficiently deterministic. Weakest precon­
ditions are defined in definition 4.1.1 and remark 4.1.4.

• The axiom scheme II introduces partial correctness formulas for basic guards.

• Rules III and IV express how the operators + and • may be introduced in partial
correctness formulas.

• Rule V, consequence, is a standard proof rule in Hoare logic. The intended interpretation
of a.n expression a-+ ,8 is as expected: Sp (a-+ ,B)[s] iff Sp a[s] ===}Sp ,B[s].

• Rule VI, an instance of Scott's induction rule (see eg. [Bak80, Apt81]), is suitable to
derive partial correctness formulas with recursive terms over :E(BPAc)REC· This rule
allows cancellation of hypotheses, indicated by the square brackets in its premises: let
E = {x = ix Ix E VE} be a guarded recursive specification and ax,,8x (x E VE) be
guards. If for ally E VE we can derive (indicated by the dots in the rule) {ay} iy {,By}
from a set of hypotheses r y containing no other partial correctness formulas with free
variables in VE than those in {{ax} x {,Bx} I x E VE}, then for any z E VE the partial
correctness formula { az} <z IE> {,Bz} can be derived from

LJ fx - {{ax} X {,Bx} IX EVE},
xEVE

6.4 Soundness of the proof system

In this section we prove a soundness result for H with respect to a data environment
S = (S, effect, test) over A and G such that weakest preconditions are expressible and S
is sufficiently deterministic. Let Trs be the set of assertions that are true (valid) in S. We
prove that

Trs f-H {a} p {,6} ===} Sp {a} p {,6}

provided that recursive specifications have a finite number of equations and are linear (cf.
linear context free grammars [HU79]):

Definition 6.4.1 A process term t over :E(BPAc) is called linear over V' ~ V iff

t ::= p IX I pt I tp It+ t

where pis a closed term over :E(BPAc) and x EV'. A recursive specification E = {x = ix I
x E VE} is linear whenever the terms ix are linear over VE , □

6. 4 Soundness of the proof system

I a:rioms for a E A

II axioms for </> E G

III alternative composition

IV sequential composition

V consequence

{ wp(a, a)} a {a}

{a} t {,B} {a} t' {,B}

{a} t + t' {,B}

{a} t {a'} {d} t' {,B}

{a} t · t' {,B}

a -t a 1
{ a'} t {,B'} ,B' -t ,B
{a} t {,B}

VI Scott's induction rule For E = { x = ix J x E VE} a guarded recursive specification

z EVE

Table 13: The proof system H (a EA,</> E G)

49

50 6 PARTIAL CORRECTNESS AND HOARE LOGIC

In [Pon89, PV89] only processes definable by regular recursion were considered in the context
of Scott's induction rule . This class is contained in the class of processes definable by guarded,
linear recursion.

By lemma 6.2.4 and the soundness ofBPAc(S)+REC+RSP, the soundness of H follows
from the statement

Trs f-y {a} p {,B} ==} BPAc(S) +REC+ RSP f- ap = ap,B.

In the rest of this section we prove this statement by translating H-derivations in a canonical
way to proofs in process algebra.

We first show that H is sound for the (recursion-free) terms over E(BPAa).

Lemma 6.4.2 (Soundness of H for recursion-free terms) Let p be a dosed term over E(BPAa)
and a,,B guards over E(BPAc) . Then

Trs f-y {a} p {,B} ==} BPAc(S) f- ap = ap,B.

Proof. By induction on the length of derivations. The soundness of I - IV is straightforward.
We only show that rule V (consequence) is sound (we need not consider rule VI, as this rule
introduces recursively defined processes). Rule V contains expressions of the form a -t ,B
with the interpretation S p (a -t ,B)[s] iff S p a[s] ==} S p ,B[s]. It is easy to show that
such expressions can be algebraically characterised as follows:

a - ,BE Trs ¢=:=} BPAa(S) f- a· ,B = a.

Assume
Trs f-y {a'} p {,81

} and a - a',,B' - ,BE Trs.

By induction we can prove a 1p = a'p,81
, aa' = a and ,B',B = ,B' in BPAc(S). We derive

ap

as was to be shown.

aa1p
aa'p,81

aa'p,81,B
aa'p,B
ap,B

D

Using this fact we can prove a general result concerning linear terms that connects H­
derivability under Trs to provable equality in BPAc(S).

Lemma 6.4.3 Let t(x1, ... ,xn) be a term over E(BPAa) and a,,8,ai,,Bi be guards over
E(BPAa) for i = 1, ... , n. If t(x1, ... , xn) is linear over { x1, ... , xn}, and

Trs,{{ai} Xi {,Bi} Ii= 1, ... ,n} f-y {a} t(x1, .. . ,xn) {,B},

then

6.4 Soundness of the proof system 51

2. BPAc(S) I- a· t(xi/Ji, ... , Xn/3n) =a· t(xi/Ji, ... , Xn/3n) · /3.

Proof. By induction on the length of the derivation of

Trs, { { O'.i} Xi {/3i} I i = 1, ... , n} I-H {a} t(x1 , ... , Xn) {/3}.

The cases in which one of I - III is applied last are straightforward. We give a proof for the
cases in which IV or V is applied last (note that by definition of linearity rule VI of H again
need not be considered):

ad IV. Because all terms in the proof are linear, we may assume that
t(x1 ,---,Xn) = p · u(x1,- --,Xn) or t(x1, -- ·,xn) = u(x1,---,Xn) · p, with pa closed term
over E(BPAc)- Let t(x1, ... , xn) = p · u(x1, ... , xn) and

1rs,{{ai} Xi {/Ji} Ii= l, .. . ,n}

{a}p{a'} {a'}u(x1, ... ,xn){/3}

{a} p · u(x1, ... , Xn) {/3}

Apparently Trs 1-H {a} p {a'}, so we have by lemma 6.4 .2 that BPAc(S) I- ap = apd.
We derive

1 . ap·u(a1x1, ... ,anxn) apa1 ·u(a1x1, ... ,anxn)
IH = apa1

• u(x1, ... , Xn)
= ap · u(x1, ... , Xn)-

2. ap · u(x1/31, --- ,Xn/3n) apa'·u(x1/31,- -- ,Xn/3n)
IH

apa' · u(x1/31, ... , Xn/3n) · /3
ap · u(x1/31, ... , Xn/3n) · /3.

The case in which t(x1,- -·, xn) = u(x1, ---,xn) · p with pa closed term over E(BPAc)
can be proved likewise.

ad V. Assume

Trs, {{ ai} Xi {/3i} I i = 1, ... , n}

a ---t a' { a'} t(x1, ... , Xn){/3'} /31
--+ /3

{a} t(x1, ... , Xn) {/3}

52 6 PARTIAL CORRECTNESS AND HOARE LOGIC

By induction we have BPAa(S)-derivations of aa' = a and /31/3 = /31
• We derive

IH
aa' · t(x1, ... , Xn)
a · t(x1, ... , Xn)-

□

This result can be used to show the soundness of the proof system H for the following subset
of terms over E(BPAa)REC ·

Theorem 6.4.4 (Soundness of H) Let p be a. closed term over E(BPAa)REC in which a.11
occurrences of the form <xlE> refer to a. (gua.rded) recursive speciflca.tion E over E(BPAa)
that is linear and contains only finitely many equations. Let a, /3 be guards over E(BPAa).
Then

Trs f-H {a} p {/3} =} BPAa(S) +REC+ RSP f- ap = ap/3
=} ap t7 s ap/3
{==} SI= {a} p {/3}.

Proof. By theorems 4.2.1 and 6.2.5 we only have to prove the first implication. We apply
induction on the length of H-derivations. The proof of the soundness of I - V is straight­
forward (cf. the proof of lemma 6.4.2). We only give a proof of the soundness of VI. Let
E = { Xi = ti(x1, ... , xn) I i = 1, ... , n} be a guarded linear recursive specification and assume

for j = 1, ... , n. So we have an H-derivation of the premises of Scott's rule. We have to show

BPAa(S) +REC+ RSP f- a ·X · - a ·X ·/3 · JJ-JJJ

for j = 1, ... , n . In order to do so we use the recursive specifications

and show for any j E {1, ... ,n} that

REFERENCES 53

3. Zj = Yj.

As a consequence we can derive

as has to be shown. So we are left to prove 1,2 and 3. Observe that E', E" are guarded linear
recursive specifications, so we ma.y use both RSP a.nd the previous lemma 6.4.3.

ad]. We first show that O'.jXj = Yj for all j E {1, ... , n }. We derive

So a1X1, .. . , anXn are solutions of Yl, ... , Yn in E'. With RSP we conclude O'.jXj = Yj
for j = 1, ... ,n.

ad 2. We show that Zjf)j = Zj for all j E {1, ... , n }. We derive

Z ·f)· J J
REC

6.4.3.2
=

O'.j · tj(Z1fJ1, •··, ZnfJn) · fJj

O'.j · tj(Z1fJ1, •··, ZnfJn)
O'.j · tj((Z1fJ1)fJ1, ... , (ZnfJn)fJn) -

So Z1fJ1, --·, ZnfJn are solutions of z1, .. . ,Zn in E" . With RSP we conclude Zjf)j = Zj
foralljE{l, ... ,n}.

ad 3. We show (using 2) Zj = Y; for all j E {1, .. . , n} as follows:

So Z1, ... , Zn are solutions of Yl, ... , Yn in E'. With RSP we conclude Zj = Y; for all
jE{l, ... ,n}. □

References

[AB84] D. Austry and G. Boudol. Algebre de processus et synchronisations. Theoretical
Computer Science, 30(1):91- 131, 1984.

(Apt81] KR. Apt. Ten years of Hoa.re's logic: a survey - Part I. ACM Transactions on
Programming Languages and Systems, 3(4) :431-483, 1981.

[Apt84] KR. Apt. Ten years of Hoare's logic: a survey - Part II; Nondeterminism. Theo­
retical Computer Science, 28:83- 109, 1984.

[Bak80] J.W. de Bakker. Mathematical theory of program correctness. Prentice Hall Inter­
national, 1980.

[BB88] J .C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete process
algebra. Information and Computation, 78(3):205-245, 1988.

54 REFERENCES

[BG87] J .C.M. Baeten and R.J. van Glabbeek. Merge and termination in process alge­
bra. In K.V. Nori, editor, Proceedings 7th Conference on Foundations of Software
Technology and Theoretical Computer Science, Pune, India, volume 287 of Lecture
Notes in Computer Science, pages 153-172. Springer-Verlag, 1987.

[BK84a] J.A. Bergstra and J .W. Klop. The algebra of recursively defined processes and
the algebra of regular processes. In J . Paredaens, editor, Proceedings 11th IC ALP,
Antwerp, volume 172 of Lecture Notes in Computer Science, pages 82- 95. Springer­
Verlag, 1984.

[BK84b] J .A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60(1/3):109- 137, 1984.

[BK86] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol by means
of process algebra. In W. Bibel and K.P. Jantke, editors, Math. Methods of Spec .
and Synthesis of Software Systems '85, Math. Research 31, pages 9-23, Berlin,
1986. Akademie-Verlag. First appeared as: Report CS-R8404, CWI, Amsterdam,
1984.

[BKT85] J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asynchronous
communication mechanisms. In S.D. Brookes, A.W. Roscoe, and G. Winskel, edi­
tors, Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science,
pages 76-95. Springer-Verlag, 1985.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theo­
retical Computer Science 18. Cambridge University Press, 1990.

[Dal83] D. van Dalen . Logic and Structure. Springer-Verlag, 1983.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, Engle­
wood Cliff, 1976.

[Gla90] R.J. van Glabbeek. The linear time - branching time spectrum. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of
Lecture Notes in Computer Science, pages 278-297. Springer-Verlag, 1990.

[GV89] R.J . van Glabbeek and F.W. Vaandrager. Modular specifications in process algebra
- with curious queues (extended abstract) . In M. Wirsing and J.A. Bergstra,
editors, Algebraic Methods: Theory, Tools and Applications, Workshop Passau
1987, volume 394 of Lecture Notes in Computer Science, pages 465-506. Springer­
Verlag, 1989.

[HHJ+87] C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communica­
tions of the ACM, 30(8) :672-686, August 1987.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
oft.he ACM, 12(10), October 1969.

REFERENCES 55

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

[HU79] J .E. Hopcroft and J .D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[1SO87] ISO. Information processing systems - open systems interconnection - LOTOS
- a formal description technique based on the temporal ordering of observational
behaviour, 1987. ISO/TC97 /SC21/N DIS8807.

[KV85] C.P.J . Koymans and J.L.M. Vrancken . Extending process algebra with the empty
process E. Logic Group Preprint Series Nr. 1, CIF, State University of Utrecht,
1985.

[Lam80] L. Lamport. The 'Hoare logic' of concurrent programs. Acta Informatica, 14:21- 37,
1980.

[MA86] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts
and Monographs in Computer Science. Springer-Verlag, 1986.

[Man74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Book Co., 1974.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall International, 1989.

[OG76] S. Owicki and D. Gries . An axiomatic proof technique for parallel programs. Acta
Informatica, pages 319- 340, 1976.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages
167- 183. Springer-Verlag, 1981.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

[Pon89] A. Ponse. Process expressions and Hoare's logic . Report CS-R8905, CWI, Ams­
terdam, March 1989. To appear in Information and Computation.

[PV89] A. Ponse and F .J. de Vries. Strong completeness for Hoare logics of recursive
processes: an infinitary approach . Report CS-R8957, CWI, Amsterdam, 1989.

[Sio64] F .M. Sioson . Equational bases of Boolean algebras. Journal of Symbolic Logic,
29(3):115- 124, September 1964.

[Ss90) SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

[Sti88] C. Stirling. A generalization of Owicki-Gries's Hoare logic for a concurrent while­
language. Theoretical Computer Science, 58:34-359 , 1988.

56

[Vaa89]

[Vra86]

REFERENCES

F.W. Vaandrager. Specificatie en verificatie van communicatieprotocollen met
procesalgebra. Dept. of Computer Science, University of Amsterdam, 1989. Lec­
ture notes, in Dutch.

J .L.M. Vrancken. The algebra of communicating processes with empty process .
Report FVI 86-01, Dept . of Computer Science, University of Amsterdam, 1986.

