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A-1040 Vienna, Austria

Major lines of the development of time series econometrics are discussed. The
presentation is primarily aimed to system theorists. Emphasis is both on history
and on recent developments. A discussion of basic ideas and driving forces and
of important model classes (more than of identification procedures), together
with a critical view on the relevance for application is given. !

1. INTRODUCTION

The use of statistical methods in order to extract information from economic
data has a long history dating back to the last century. In this contribution the
focus is on data-based model building (rather than e.g. on seasonal adjustment
or the construction of stylized facts) from time series (rather than e.g. from
cross sectional) data.

There is a wide range of aims for time series econometrics. The main
aims are: forecasting, policy simulation, estimation of deep i.e. economically
meaningful parameters and empirical evaluation of conflicting theories.

The main areas of application for time series econometrics are macroeco-
nomics and finance. For along time macroeconometrics was the most important
part of econometrics. The idea was to provide a tool for forecasting the gross
national product and its components and for quantitative economic policy on
the one hand, and for problems of economic theory on the other hand.

At present, applications in finance have attracted great attention. The
increasing importance of financial markets together with new products on these
markets such as options, has created a demand for new tools, for instance, to

1 The author thanks two anonymous referees and the editor for valuable comments on a
previous version of this paper
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name one example, for option pricing. The particular features of finance data,
such as varying volatilities, together, partially at least, with large sample sizes,
have led to special models and methods. Recently, in addition applications of
time series econometrics to microdata, e.g. for forecasting of sales or inventories
in firms are increasing in number.

For a long time econometric research and applications were concentrated
on a few countries such as the English speaking countries and the Netherlands.
In the late fifties and in the sixties of our century, econometrics spread over
to many countries and in the sixties and early seventies many econometric
models were built. However e.g. in German speaking countries, at this time
still a substantial number of ecomomists were against econometrics, partly
from principal reasons, such as that econometrics is inappropriate for a market
economy or that mathematics is of no use for economics. On the other hand,
at the same time, many econometricians were much too optimistic about the
practical value of econometric models. The first oil crisis showed the fragility
of model-based forecasts and caused an ‘oil crisis of econometrics’. Today the
range in evaluating the contribution of econometrics has become narrower from
both sides. It has become clear that econometrics is auxiliary in character: In
order to make reasonable use of econometric tools, economic expertise and good
judgement are required. This makes econometrics still to a certain degree to an
art, where results very much depend on assumptions, which are hard to verify.
The idea, that econometric analysis can be performed in an ‘automated’ way,
in the sense that from data alone, without economic reasoning, only by using
mathematics and computers, valid models may be obtained, has turned out to
be too optimistic.

Due to the nature of the subject, econometrics faces specific difficulties: In
many cases a qualitative understanding of the main basic forces and economic
mechanisms still is the primary aim of analysis. The targets of economic pol-
icy are shifting according to new situations and needs, and so does the angle
of looking at the economy. In particular in macroeconomics, data are sub-
ject to substantial measurement errors and contain only a limited amount of
information, and also theories are very imprecise. Usually the data are nonex-
perimental. The economy is changing in time and there are no ‘real constants’
in economic theory. New phenomena may evolve in the economy, which are not
reflected in past observed data or the corresponding past data are too short for
a reasonable analysis. All this creates an intrinsic tension between precision
and actuality in econometric analysis.

Both, (model based) time series econometrics and system identification are
concerned with finding a good model from data. Thus time series economet-
rics, time series statistics and system identification show common features. One
thing, time series econometrics and system identification have in common, is
the analysis of ’structural’ properties such as identifiability, which are rather
neglected or ’assumed away’ in many cases in statistics. Nevertheless the inter-
actions and exchanges of ideas between econometrics and systems theory are
surprisingly limited. The Kalman filter had an impact in econometrics too,
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and conversely so did the results on maximum likelihood estimation and on
causality testing obtained in econometrics for system identification. There has
been an increasing intensity of interaction in the sixties and seventies of our
century. In the authors opinion the work of Hannan and coworkers on ARMA
and

ARMAX model identification is the best example for this interaction. During
the last fifteen years however, the two areas drifted apart again. Certainly,
fields like neural nets, wavelets or chaos did attract attention in both areas,
however major developments in each area turn out to be widely unknown among
workers in the respective other area. As far as econometrics is concerned, one
reason for this is the emphasis on models and methods which are genuine for
the specific features of economic data and theories.

2. A SuORT HISTORY OF ECONOMETRICS
The history of econometrics may be divided into three parts: The ‘Pre-Cowles-
Commission Time’, the ‘Cowles Commission Time’ and ‘Modern Times’ be-
ginning shortly after 1970. It should be noted, that recently two books on the
history of econometric ideas (EPSTEIN [7], MORGAN [20]) have been published.
We will not deal with the ‘Pre-Cowles Commission Time’ here, despite of
the fact that a number of important developments, such as periodogram anal-
yses of the business cycle or the development of MA and AR models by Yule,
fall into this period. The term ‘Cowles-Commission Time’ here will be used in
the broad sense. The formation of econometrics as a field of its own can be
dated to the thirties of our century. The Econometric Society was founded in
1930, the Cowles-Commission in 1932 and the first volume of ‘Econometrica’
appeared in 1933. The birth of econometrics is closely related to Keynesian
macroeconomics and the development of national accounting schemes. In the
thirties mathematical economists like Frisch, Kalecki and Samuelson used (lin-
ear) difference- or differential equation systems for explaining ‘macrodynamics’
in particular business cycles. For economic analysis and in particular for quan-
titative economic policy (such as deficit spending) the numerical values of the
coefficients of these equation systems were of interest. For this reason in partic-
ular Frisch and Tinbergen tried to estimate these coefficients using correlation
analysis or ordinary least squares. Tinbergen’s models for the Netherlands and
the United States mark the first peak in this development. The linear (dif-
ference) equation systems used were in ‘structural form’, i.e. in a form where
the equations came from economic theory, containing considerable a priori in-
formation, e.g. in form of zero restrictions on some coefficients. As a simple
example consider the Keynesian system

Ct = a+ ﬂY;f + Ut (1)
Y; Ci + I

where consumption C; and income Y; are endogenous, investment I; is ex-
ogenous and u; is noise. a and 3 are unknown parameters. The system above
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shows instantanious feedback (called simultaneity in econometrics) between the
output variables C; and Y;. As a consequence, due to nonorthogonality of Y;
and wuq, ordinary least squares gives inconsistent estimates.

The subsequent work of the Cowles Commission has triggered an intellec-
tual revolution. The motivation for this work was the idea that Tinbergen’s
macromodels were basically correct and that only ‘technological innovations’
for estimation were needed for the final breakthrough. The main innovations
were the use of stochastic models (obtained by stochastic assumptions on the
noise term, HAAVELMO [12]), which made estimation and testing part of math-
ematical statistics, and a theory of identification for (in general MIMO) linear
static or ARX systems (KKOOPMANS ET AL. [17], MANN & WALD [19]). In
the latter context the careful analysis of the problem of identifiability and
the quasi maximum likelihood estimation (MLE) have to be emphasized. The
MLE’s are consistent and asymptotically efficient. A major problem at this
time was the computational burden associated with MLE. For this reason, in
the years following numerically simpler estimation procedures such as two stage
least squares have been developed, which still are consistent, however in gen-
eral lack asymptotic efficiency. The first model, which has been estimated with
Cowles Commission methods, was the Klein I model for the USA. It should be
said however, that despite of the fact that the inconsistency of ordinary least
squares in simultaneous equations was one of the main reasons for the devel-
opment of the Cowles Commission methods, many models are still estimated
by ordinary least squares.

The emphasis of the methodological work of the Cowles Commission was
on parameter estimation for models specified by economic theory. Problems
of data driven specification (selection of variables, determination of maximum
lags or of the correlation structure of the noise from data) received much less
attention. This corresponded to the prevailing idea, that macroeconomic theory
would be able to formulate the specification of the ‘true model” a priori, and
that only the unknown parameters have to be determined from data.

The methodological contributions of the Cowles Commission have turned
out to be pioneering, despite of the fact that today in econometrics there is
much less emphasis on simultaneous estimation methods. On the other hand,
the Cowles Commission was much too optimistic as far as the practical rele-
vance of the models was concerned. In this context it is interesting to read the
famous Keynes-Tinbergen debate (see MORGAN [20]).

During the sixties and early seventies of our century, econometrics became
a well established discipline, at least in western countries. In many countries
large ‘structural’ macro models were built and used for forecasting and policy
simulation (e.g. for the fine tuning of the business cycle). Some of these models
had several hundreds of equations. Most of the models were ‘overidentified’ in
the sense that they contained a great number of (e.g. zero) restrictions, which
significantly reduced the dimension of the parameter space.

In the early seventies however there was an increasing criticism of conven-
tional structural macroeconomic model building. A comparison of the fore-
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casting performance with small SISO models, identified by the Box-Jenkins
methodology, showed that the latter models outperformed the large models,
at least in the short run. The first oil crisis (1974-1975) with its significant
nonstationarities in the data, led to serious mispredictions with large models
and caused a marked change of minds. This was what the author calls the
end of the Cowles Commission time and the beginning of Modern Times in
econometrics.

In general econometricians now became much more aware of the limitations
of their tools. To a good part the econometric community responded to the
new challenges by technological innovations. Thereby the following main lines
can be identified:

1. The first line was to develop tools for data-driven specification. It was
understood that one problem with the building of big macro models was a
rather careless use of a priori specifications. Consequently tests and diag-
nostic checks e.g. for determining the noise structure, the functional form
of the relations or for structural breaks have been developed. Now typically
a whole battery of such specification tests is used. In doing so, clearly a
reuse of sample problem arises. At about the same time information crite-
ria, e.g. for order estimation in AR and ARMA models or for determining
the number of regressors in linear regressions were developed in system
theory and statistics e.g. by Akaike and Rissanen and subsequently used
in econometrics. Whereas the basic intention with information criteria was
to further automize identification procedures, also the ideas of exploratory
and interactive data analysis, advanced in particular by Tukey found at-
tention in econometrics. A third area related to the specification problem
was the analysis of sensitivity (Leamer [18]) and robustness with respect
to a priori assumptions.

2. The second main line was the further development of time series economet-
rics. The development of tests for causality (GRANGER [10]) and vector
autoregressive (VAR) modeling (S1Ms [25]) have to be mentioned in this
context. VAR modeling in a certain sense was a counterrevolution against
structural model building. No a priori classification of the observed vari-
ables into inputs and outputs was required and no a priori zero restrictions
on the parameters were imposed; the idea was to obtain such information
from the data (e.g. by testing for zeros on coefficients). Clearly in this
context the curse of dimensionality is a major problem, since in macroe-
conometrics a system with say 8 or 10 variables (inputs plus outputs) is
rather small. The idea of Sims and coworkers was to partially overcome
this difficulty by Bayesian modeling with a special prior (favouring unit
root models), whose hyperparameters have to be estimated. Nevertheless
VAR models are comparably small. In macroeconometrics now both, the
conventional structural approach (complemented with a number of speci-
fication tests), where a lot of a priori restrictions are imposed, and more
data driven approaches, such as the VAR approach, are used. In the first
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approach, clearly more weight is given to economic theory, with the argu-
ment that macrodata are very imprecise (which is correct). In the second
approach, more weight is given to information coming from data, with the
argument that theory is very imprecise (which is correct too).

Up to now, there is no clearcut opinion forming, which approach to prefer;
however there is a tendency to use structural model building, where the
main economic mechanisms are reflected in the model, if the main purpose
is economic analysis, policy simulation or medium term forecasting. On
the other hand, for short term forecasting VAR or black box type models
are favored.

A rather complete theory of identification of stable MIMO ARMA and
ARMAX systems, consisting of the modules structure theory (realization
and parametrization), maximum likelihood type estimation and order esti-
mation, has been worked out in the seventies and eighties (DUNSMUIR &
HANNAN [4], HANNAN & KAVALIERIS [13], HANNAN & DEISTLER [14]),
which however had not much resonance in econometrics.

Nonlinear models of various kinds have been considered. Nonlinear black
box models as well as highly structured model classes are considered. In
the latter case the specific nonlinear structure may come from modeling of
specific data features or from economic theory. A, in a certain sense, rather
complete estimation theory for parametric nonlinear models is given e.g.
in GALLANT [8] or POTSCHER & PRUCHA [22]. The (unsolved) difficulty
thereby are the rather complicated assumptions, which reflect the fact, that
in these cases no structure theory is available.

Nonparametric methods are used increasingly, because of their flexibility
and since in fields like finance large sample sizes are not uncommon (see e.g.
Robinson [23]). This area has many different facets such as nonparametric
cointegration analysis or nonparametric ARCH models, two give two ex-
amples. Neural nets have been further developed and extensively used in
econometrics in particular for finance data.

Problems related to chaos, e.g. test procedures for discriminating chaos
from stochastic behaviour have been investigated; however it is fair to say
that chaos modeling up to now has not become popular in the field of
econometrics.

Given the limitations of space we will present two very important areas,
namely a particular form of nonstationarity and long memory on the one
hand, and ARCH models, as a special class of nonlinear models on the other
hand, in more detail. However also this presentation will be rather short
and, since these models are relatively unknown to a systems engineering
audience, introductory. Emphasis is put on the description of the models
rather than on identification procedures. As in the whole paper also here
the number of references has been reduced to a minimum by even omitting
very important ones, because of space limitations.
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3. Finally, the third main line in responding to the criticism of classical econo-
metrics was the rapid development of microeconometrics with special mod-
els such as qualitative response models or models for censured data. We
will not deal with these really important developments here, since the time
series aspect in these cases is not dominant.

3. LINEAR NONSTATIONARITIES AND LONG MEMORY: INTEGRATED
PROCESSES, COINTEGRATION AND FRACTIONAL INTEGRATION

Many economic time series show apparent nonstationarities such as trends in
means and variances. In the classical approach often, using transformations
such as differencing, the data were transformed to stationarity. The disadvan-
tage of differencing is that information at frequency zero is lost. As will be
pointed out below this information is essential for economic analysis, since it
contains the information about steady state equilibria. From this point of view,
the idea to model, rather than to remove, nonstationarities was suggesting it-
self.

A very important class of nonstationary models are linear unit roots models,
which generate integrated processes:

A stochastic process (y: | ¢ € N) is called integrated (of order one) if its
first differences (1 — z)y; (where z denotes the backward shift) are stationary,
whereas (y;) is not stationary. The definition can be extended in an obvious way
to orders two etc., however we do not consider this case here. For simplicity,
here we will assume that (1—z)y; is stationary ARMA. In this case an integrated
process can be generated by an ARMA model, which has stable roots and roots
equal to one (called a unit root model). An example for an integrated process
is a random walk with drift

Yyt =Yt—1tc+ee

which shows linear trends in means and variances. Here ¢; is white noise and
c is a constant.

The statistical analysis of integrated models shows that the convergence of
estimates may be faster than in the stationary case and that the limiting laws
are no longer Gaussian. As a simple example consider the scalar AR(1) system

Yt = pYi—1 + & (2)

where g; is white noise.
As is well known, in the stationary case (|p| < 1), the ordinary least squares
estimator pp of p (T denotes sample size) is consistent and has the property

VT(pr = p) 5 N (0,1 p?)

where % denotes convergence in law and N (,u, 02) denotes a Gaussian distri-
bution with mean p and variance 2.

For p = 1, the situation is different. Let us assume that the initial value is
zero; then
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Y¢ = €1+ -+ &t
Let 02 = E<? and

0 for 0§7‘<%

nofor L<r<2

T T > T
Xr(r) =<3 . :

2 for r=1

Then we have the functional central limit theorem

where W (.) is the standard Brownian motion.
Now

1
Y1 Yyr-1
/0 XT(T')dT':ﬁ-F-F T2

Using the continuous mapping theorem we obtain

% Eytflst L %{W(1)2 - 1}
T ~~,2 1 5
7= 2 Y Jo W(r)2dr

T(pr —1) =

This in particular shows that the ordinary least squares estimator in this case
converges faster than in the stationary case (‘superconsistency’ i.e. T- rather
than v/T-consistency). The limiting distribution for pr can be used for testing
the null hypothesis p = 1 against the stationary alternative.

It should be emphasized, that the nonstationarities of integrated processes
are very special ones. Even in a general ARMA context, when one also al-
lows for poles of the transfer function on other places at the unit circle and
inside the unit circle (the latter case is the explosive one) unit roots are highly
nongeneric, not to speak of nonlinear nonstationary models. Clearly in an eco-
nomic context both stationary and integrated processes can only serve as rough
approximations for a certain time period; but even with this understanding, in
the author’s opinion, in a number of applications, modeling of nonstationarities
with integrated processes is used too uncritical.

Perhaps the most important development in modern time series economet-
rics is cointegration analysis (GRANGER [11], ENGLE & GRANGER [6]). Coin-
tegration analysis is concerned with special integrated processes.

Formally, an integrated vector process (y;) is called cointegrated, if there
exists an a € R",« # 0 such that (ay;) is stationary.

The main idea is to model an equilibrium relation between the nonstation-
ary components of a vector process (y;) in the sense that « describes a long
run (static equilibrium) relation, because ‘stationarity’ is interpreted as ‘rel-
atively small’. The number of linearily independent vectors «, such that ay;
is stationary, is called cointegrating rank. The idea of cointegration is closely
related to the idea of error correction (ENGLE & GRANGER [6]).
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Cointegrated processes may be represented as follows: Let

(1—2)ye = up = a(2)b(2)ey

be a unit root model, where a(z) = 3" A;27, A; € R™*", Ay = I, and b(z) is
defined analogously, where () is white noise and (u;) is stationary ARMA,
with spectral density unequal to zero at frequency zero. Writing

a H2)b(z) = k(2) = k(1) + k(2)

where k(1) = 0, we obtain
ye = (1 —2) k(De; + (1 — 2) Tk(2)e (3)

where (1 — z)~'k(z)e, is stationary. In the cointegrated case k(1) must be
singular and unequal to zero (in the case k(1) = 0 the process (y;) would be
stationary). (1 — z) 'k(1)e; can be interpreted as common trends generated
by a lower dimensional, integrated, factor process. Thus (3) gives a factor
(or errors-in-variables) model interpretation of cointegration, whith stationary
noise (1 —z)~'k(z)e;. Note however that in general the two terms on the r.h.s.
of (3) are not uncorrelated.

Let A denote a matrix, whose rows form a basis for the left kernel of k(1).
Clearly these rows are cointegrating vectors. Now A can be interpreted as
a static long run equilibrium relation, which is exact for the first term on the
r.hs. of (3),i.e. A(1—2)""k(1)e; = 0, and the stationary part A(1—z)~""k(2)e;
describes the (in the long run relatively small) deviations from equilibrium.

A very elegant setting for cointegration can be developed in an autoregres-
sive framework as follows: Assume that

a(2)ye = & (4)
where det a(z) # 0,|2] < 1 and |z| = 1 except for z = 1. Then we may write
=2y =T1(1=2)y1+-+Tp (L =2)ys—p1 + Iyt + & (5)

where IT = —a(1). If II has full rank n, then (y;) is stationary; if IT = 0,
then (y;) is integrated but not cointegrated. Let r denote the rank of IT (which
is the cointegrating rank) and assume 0 < r < n. Then II = BA', where
A, B € R"*" and A is a matrix, whose rows are the cointegrating vectors.

Based on these properties a full information (Gaussian) ML procedure has
been developed (JOHANSEN [15, 16]) consisting of tests for the cointegrating
rank and estimation of A and B. Johansen’s approach commences from a
Gaussian likelihood in the parameters I'y,---,Tp_1,Q = Eeie}, B and A, de-
pending in addition on the integer r. By stepwise concentrating parameters
out, a concentrated likelihood, depending on A and r, L(A,r) say, is obtained.
Johansen proposes two likelihood ratio tests for the nullhypothesis of (at most)
r(< n) (linearily independent) cointegrating vectors; the first test is against
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the alternative of r 4+ 1 cointegrating vectors and the second test is against the
alternative of no cointegration (i.e. stationarity). The nonstandard limiting
distributions corresponding to the null hypothesis have been derived. Johansen
also derives the asymptotic properties for the MLE’s Ar and By of A and B
respectively under the assumption that A and B are identifiable by imposing
suitable restrictions. In particular the limiting distribution of T(AT —A) is
shown to be a mixture of Gaussian distributions.

For an important alternative approach see PHILLIPS [21].

To repeat, cointegration is one of the most important developments in re-
cent, time series econometrics, with a great number of applications in macro-
economics and finance. This is partly because integrated processes are reason-
ably good models for a number of evidently nonstationary economic variables
and partly because relations ‘at frequency zero’ (which previously often have
been removed from data) are important for economic analysis. Despite of its
undoubted success and importance, in the author’s opinion this area is overem-
phasized at present. In many applications integration is not the only reasonable
alternative to stationarity and the linear static relations expressed by the coin-
tegrating matrix A are a very simple form of economic relations. In addition
the whole concept of cointegration is very much oriented towards a priori ideas
from economics; this might be one reason, why it never spread out to systems
engineering.

In many cases, in testing for integration versus stationary ARMA, the re-
sults are not clearcut. This was one reason for introducing long memory (long
range dependence) models in econometrics. These models serve as a bridge be-
tween integrated and stationary ARMA processes. Other major reasons for the
interest in long memory were phenomena of persistence of shocks in data and
rates of decay in sample autocorrelations, which were neither consistent with
integrated nor with stationary ARMA processes. Long memory models first
have been used in physical sciences. As far as empirical evidence in economet-
rics is concerned, finance data are most important. A particulary interesting
aspect is long memory in volatilities in certain finance data.

Fractionally integrated, in particular ARFIMA models

(1—2)%y = w (6)

are the most popular class of long memory models, see e.g. BAILLIE & KiING
[2]. Here d € (0,1) is called the order and (u;) is stationary ARMA, with
a spectral density having no zeros. For noninteger d, from the Taylor series
expansion, we obtain:

2

d_ z
(L-2)'=1-de+d(d-1)5 -

and by inverting this expression the solution for (6) is obtained. The param-
eters, which have to be identified, are the ARMA parameters of (u;) and the
order d. The system (6) is infinite dimensional; it is stable (in the sense that
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y¢ is stationary) for d € (0,0.5) and unstable otherwise. In the stable case, (y;)
is linearly regular with a Wold decomposition

oo
Yr = Z kjet—;
=0

where the coefficients clearly satisfy Y ||k;||> < oo, where however 3 ||k;|| =
oo. Therefore for d € (0,0.5) fractionally integrated processes have a spectral
density, which has a pole at frequency zero (which gives a nice interpretation of
long memory). For d = 0.5, and (u) white noise, (y;) is already nonstationary
and a discrete-time version of 1/ f noise. From a more abstract point of view, for
the stationary case, ARFIMA processes provide a particular parametrization
for spectral densities of the form (for simplicity of notation the scalar case is
considered):
2

e i —i\|—
L) = Flae Pl — e

2w La(e=™) ) 7
fu()\)|1—e_l>‘|_2d ( )
where the ARMA process (u;) (with spectral density f,) is of the form u; =
a~1(2)b(2)ey, (£¢) white noise and 02 = Fe?.

Several approaches for estimation and testing for ARFIMA models have
been used. From (7) we obtain

log(fy(A)) = log(fu(0)) — dlog(4sin®(A/2)) + log(fu(X)/fu(0))

In GEWEKE & PORTER-HUDAK [9] a semiparametric estimation procedure
for d has been suggested inspired by the formula above. They estimate d from
a regression, using in a log-log scale the periodogram of y; and the frequencies
A in a neighborhood of zero. The asymptotic properties of this estimator have
been investigated e.g. in ROBINSON [24].

An alternative is (Gaussian) MLE of d and the ARMA parameters (simul-
taneously).

ARFIMA models are standard in econometrics now (also in combination
with other models), however they have not attained a popularity comparable
to cointegrated processes.

4. ARCH AND RELATED MODELS FOR VOLATILITY CLUSTERING
Finance data often have a number of special features such as volatility cluster-
ing (episodes of high variation and episodes of low variation), leverage effects
(i.e. movements in means are negatively correlated with volatility) or unequally
spaced observations e.g. in case of tick by tick data. This led to the develop-
ment of models which are able to reproduce these features.

On the other hand, commencing with BACHELIER [1] a number of ‘theo-
retical’ stochastic models have been developed to explain features of finance
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data or to justify and extend algorithms for option-pricing, such as the famous
Black-Scholes formula. There is now an increasing tendency to empirically de-
termine unknown parameters in such models. Even in more empirical models,
in general in finance, there is much more justification for the use of stochas-
tic models compared to macroeconomics, where genuine stochastic theories are
rare.

Here we will consider models for time-varying (conditional) second moments
only. As has been mentioned already, time varying variations are a significant
feature in many financial time series; in addition they are of particular interest
for option pricing. A particularly important class of models are the ARCH
(Autoregressive Conditional Heteroskedasticity) models (ENGLE [5]) and their
generalizations (BOLLERSLEV ET AL. [3]).

For simplicity, consider the scalar case only. Consider a stationary Gaussian
AR(1) process (2); then clearly its expected value Ey; is equal to zero, whereas
its conditional expectation E(y; | yt—1,¥y¢—2,---) is time-varying. An ARCH
process is the analogon for second moments. We have:

& = Ot2t (8)
2 _ P 2
of = c+ )i aEp
where z; is i.i.d with Ez; = 0,Ez? = 1 and ¢, q; are parameters satisfying

¢ > 0 and a; > 0. For stationarity of (e;) the condition Y a; < 1 has to be
imposed. Note that in the stationary case (g;) is white noise in the sense of
being uncorrelated in time, however

2 2 2
E(e; | et—1,64—2,-+-) =c+ouef_; +---+ QpEi_p

which gives a nontrivial forecast for the conditional variances.

In ENGLE [5], a ML procedure (under a Gaussian assumption for z;) for
parameter estimation and for testing for oy = --- = @, = 0 is described. A
number of other procedures e.g. based on the Generalized Method of Moments
are available now.

A number of linear and nonlinear generalizations for the ARCH model (8)
are available now, such as GARCH models of the form

14 p
2 _ 2 2
o =c+ E gy ; + E Bioi_;
i=1 i=1

which allow for more flexible lag structures. In order to assure a well defined
process it is assumed that B(z) =1 — 3" B;iz* # 0,]2| < 1 and that ¢ > 0,a; >
0, 3; > 0 holds.

In addition (&) is stationary if

(a1 +B1)+- -+ (ap+06p) <1

holds.
ARCH, GARCH and also other models for time varying (conditional) vari-
ances are very COMmMINON Now.

176



5. CONCLUSIONS

As far as the practical relevance of time series econometrics is concerned, there
are still differences in judgement. In the author’s opinion modesty, but not
resignation is appropriate. The area shows, like other fields too, a certain
tendency to be self-referential, trendy and partly also redundant. There is
still a tendency of being led astray by doing mathematics for its own sake
and of doing empirical analysis without critically evaluating assumptions, tools
and the relevance of results. The danger of narrowing the point of view by
using mathematical instruments and even more of unrealistic claims, of an
‘econometric fundamentalism’ and of ‘mathematical omnipotence fancies’ is
still present. In the author’s opinion econometrics has to be understood as
auxiliary, in the sense that its developments, in the long run at least, are only
justified if they really contribute to empirical economic analysis. In applications
common sense and intellectual honesty are required. Econometricians have to
learn from the needs and experiences of applications.

On the other hand there is no reason for resignation. As has been pointed
out, recently a great number of new models and methods as reactions to failures
in the past have been developed. Compared to the seventies, the progress in
this respect is enormous. In the eighties, econometrics, or its vanguard at least,
has become mathematically ‘high tech’, e.g. by applying and further developing
nonstandard asymptotics. An interesting feature during the last ten years was
the emphasis on models taking into account genuine features of economic data
and theories. This is a reason why, after a period of convergence, time series
econometrics and systems identification in engineering drift apart now.

Data banks, software for methods and computer capacities have increased
both, the comfort and the number of applications, drastically; in addition
economists with less formal training now have easy access to econometric
tools for empirical research. Econometrics of finance has become a particu-
larly promising and vibrant area, where now models and methods have been
developed in order to take into account special features of finance data. Both,
because of its attractivity and because of demand, e.g. from banks, a relatively
large number of econometricians moved into this area recently; even system
theorists are becoming interested or work in the field. There is a substantial
number of real applications; the final judgement concerning success stories how-
ever here should be given in ten years. Macroeconometrics definitely at present
is not an indispensable tool for economic policy. Nevertheless macromodels are
used to a limited extent for forecasting and policy simulations, in most cases as
a supplement to or in combination with judgement of experts. As far as com-
peting macroeconomic theories are concerned, econometric analyses are often
used to corroborate a specific theory; SUMMERS [26] claims that econometric
results almost never finally resolved such a discussion.
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