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Abstract 

Ill the slri11g JJrefix-malching prohlem one is interested in finding the longest 
prefix of a pattern string of length m that occurs starting at each position of a text 
string of length n. This is a natural generalization of the string matching problem 
where only occurrences of the whole pattern are sought. The Knuth-Morris-Pratt 
string matching algori Uun cau be easily adapted to solve the string 1>refix-matching 
problem without making additional comparisons. 

In this paper we study the exact complexity of the string prefix-matching prob­
lem in the deterministic sequential comparison model. Our bounds do not account 
for comparisons made in a pattern preprocessing step. The following results are 
presented: 

1. A family of linear-time string prefix-matching algoritluns that make at most 
L 2",~~ 1 nj comparisons. 

2. A tight lower bound of L 2':" 1 nJ comparisons for auy string prefix-matching 
algorithm. 

We also consider the special case when the pattern and the text strings are 
the same string and all comparisons a.re accounted. This problem, which we call 
the string self-prefix problem, is similar to the failure function that is computed in 
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the pattern preprocessing of the Knuth-Morris-Pratt string matching algorithm a.ud 
used in several other comparison efficie11t algorithms. Hy using the lower bound for 
the string prefix-matching problem we a.re able to show: 

3. A lower bound of 2m - f2Jml comparisons for the self-prefix problem. 

1 Introduction 
Ju the string prefix-matchi-iig problem one is interested in finding the longest prefix of a. 
pattern string P[l..m) that starts at each position of a text string T[l..n]. More formally, 
the i·equired output of the string prefix-matching problem is an integer array 11(1 .. n] such 
that for ea.eh text position i, T[i .. i + Il(i)- 1] = 'P[l..fl(i]) and if Il[i] < m and i + Il[i] :5 n, 
then T[i + II(i)) # 'P(Il[i) + 1]. 

The string prefix-matching problem is a natural generalization of the standard string 
matching prnblem where only complete occurrences of the pattern are sought. The clas­
sical linear time string matching algorithm of Knuth, Morris and Pratt [9] can be easily 
adapted to solve the string prefix-matching problem in the same time bounds without 
making additional comparisons. We assume that the reader is familiar with this algo­
rithm. (Since complete occurrences of the pattern cannot start at text positions larger 
than n-m+ 1, t.he string matching algorithm can stop before reaching the end of the text. 
The prefix-matching algorithm must continue until the eud of the text and therefore, it 
ma.y make at most m extra. comparisons.) 

In this pa.per we study the exact number of comparisons performed by algorithms that 
have access to the input strings by pairwise symbol comparisons that test for equality. 
This work was motivated by recent results on the exact comparison complexity of the 
string matching problem [4, 6, 7, 8, 10): Colussi [6] optimized the Knuth-Morris-Pratt 
(9] string matching algorithm, which makes 2n - m comparisons, using program correct­
ness proof techniques and presented an algorithm that makes n + H n - m) comparisons. 
His algorithm was later improved by Gali! and Giancarlo [8] and further by Breslauer 
and Gali! (4). Recently, Cole and Hariharan [5] discovered au algorithm that makes only 
n + ;;(n - m) comparisons, but requires an expensive pattem preprocessing. {All bounds 
for the string matching algorithms mentioned do not account for the comparisons made 
in a pattern preprocessing step. The pattern preprocessing step of Cole and l-lariharan's 
algorithm takes O(m2 ) time, while the other algorithms use the Knuth-Morris-Pratt pat­
tern preprocessing step that takes linear time.) Cole and Hariharan [5] also improved the 
lower bounds given by Ga.Iii and Giancarlo [7] and Zwick and Paterson [10]. There is still 
a small gap between the lower and upper bounds for string matching. 

The string prefix-matching problem is obviously harder than the standard string 
matching prohlem since each text symbol must be either compared directly to the first 
symbol of the pattern or compared successfully to another symbol, while in the string 
matching problem some text symbols might not be compared at all, as shown by Boyer 
and Moore [2]. Interestingly, this "hardness" introduces more structure that makes the 
analysis of the string prefix-matching problem easier. 

This paper presents matching lower and upper bounds for the string prefix matching 
problem. In particular we give: 
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1. A family of linear-time string prefix-matching algorithms that make at most L 2~- 1 nj 
comparisons. The pattern preprocessing step of these algorithms is almost identical 
to that of the string matching algorithm of Knuth, Morris and P1·att [9]. 

This bound improves on the 2n- l comparisons made by the adapted string matching 
algorithm of Knuth, Morris and Pratt [9]. 

2. A tight lower bound of l 2'7,;1 n J comparisons for auy string prefix-matching algo­
rillun. 

These results show that although the string matching and the string prefix-matching 
problems are closely related, their exact comparison complexities are inherently different: 

• When m ~ oo and n ~ m the comparison complexity of the string matching 
problem approaches n while the comparison complexity of the string prefix-matching 
problem approaches 2n. 

• The lower bound proofs oft.he two problems require different arguments: the pattern 
string that we use for the lower bound is 'abm- 1' while the lower bounds for the 
string matching problem require patterns with more complex periodicity structures 
[5, 7, 10]. 

Finally, we consider the special case when the text a.n<l the pattern strings are the same 
string and all comparisons arc accounted. This problem, which we call the string self-prefix 
problem, is similar to the failure function that is computed in the pattern preprocessing of 
the Knuth-Morris-Pratt [9] string matching algorithm using 2m - 4 comparisons. (These 
are essentially different representations of the same information: one can be computed 
from the other in linear time without additional comparisons. Therefore, the lower bound 
applies also to the computation of the failure funct.ion.) The failure funct.ion is also used iu 
several other string matching algorithms [4, 6, 8] and in the family of algorithms discusses 
in this pa.per. We prove: 

3. A lower bound of 2m - r2Jml comparisons for the self-prefix problem. 

This pa.per is organized as follows. Section 2 describes the family of string prefix­
matching algorithms a.nd Section 3 gives the matching lower bound. Section 4 uses this 
lower bound to prove a lower bound on the self-prefix problem. 

2 Upp er Bounds 

In this section we present a family of string prefix-matching algorithms that make at most 
l 2";,~ 1 nJ comparisons. The discussion below is in the comparison model where we count 
only comparisons and a.II other computation is free. We assume that the algorithms have 
obtained complete information a.bout the pattern in an unaccounted pattern preprocessing 
step which may compare even all (T;•) pairs of pattern symbols. We further assume that 
the algorithms do not make any comparisons that are implied by the answers to previous 
comparisons. The algorithms prcsentetl can Le implemented efficiently in the standard 
random access machine model [1]. 
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Definition 2.1 We say that a pre[u:-ma/.clting algorithm is on-line if be/01·e comparing 
the text symbol T[(] it lws delenninc<l if the 71a/.lem pre{i.xes that 'start at text positions l 
terminate before text positio1i ( for all text positions l, such that l < (. 

Let qrc = {1.b~I( - m < t/if < ·l/J~ < · · · < V'l< = (} be ihc sei of all iexi positions 
for which ll[v''fl can not be <leicrmiucd without examining T[(]. Thai is, T[.,Pr.( - 1] = 
'P[l .. ( - .,pfl a.nd T[(] must be compared to check whether H[V..;J = ( - t/Jf or Il(t/Jf] > 
(-t/J;. In th~s terminology, au on-line prefix-matching algorithm must determine whether 
T[(] = 'P[( -1/Jf + 1], for all 1/•~ E IJ!C, before examining any text position larger than (. 
Note that q,<+1 ~qr< U {( + 1}. 

Comparison efficient on-line prefix-matching algorithms a.re somewhat restricted with 
the choices of comparisons they can make. It is easy to see that they gain no advantage 
by comparing pairs of text symbols. Furthermore, all comparisons at text position ( must 
be between T[(} and some 'P[(-t/J~ + l] or oihc1·wise can be answered by an adversary as 
unequal without giving the algorithm any useful information, provided that the alphabet 
is large enough. In the rest of this section '{ie consider on-line algorithms that compare 
T[(] to 'P[( - t/Jf + 1], for some t/J; E IJ!'. The only difference between these algorithms 
is the order in which the pattern symbols 'P[( - t/Jf + l] are compared to T[(]. These 
algorithms continue comparing T[(] until T[(] = 'P[( - t/i; + 1] for some t/i;, or until 
T[() # 'P[(-1/J; + l] for all 1/Jf, and only then move to the next text position. Note that 
by the assumption that the algorithms do not to make comparisons which are implied 
by answers to previous comparisons, and since ihe algorithms have complete information 
about the pattern, not a.II the symbols 'P[( - t/if + l] have to be compared: 

1. If 'P[(-1/J; + l] = T[(], then 'P[(-1/J~ + l] = T[(], for some t/i~ E IJ.I', if and only if 
'P[( -t/if + 1) == 'P[( -1/J~ + 1). In this case a comparison model algorithm "knows" 
which symbol is at text position ( and it moves to the next text position. 

2. If 'P[( - t/if + 1] f:: T[(], then 'P[( - 'I/Ji+ l] :/: T[(], for all t/i~ E w<, such that 
'P[( - 'l/Jf + l] = 'P[( - 'l/l~ + 1). Ideally, a comparison model algorithm should not 
compare the text symbol T[ (] to 'P[( - t/i~ + 1]. However, this is not essential for the 
proofs in this paper as long as the algorithms do not compare some 'P[( - t/Jf + l] 
more than once. 

This leads to the definition of a family :F of all on-line comparison model siring prefix­
ma.tching algorithms that may compare T[(] only to some 'P[( - t/Jf + 1]. The data 
structures that a.re used by Breslauer and Ga.Iii [4} to implement a family of similar string 
matching algorithms can be used to implement all algorithms A E :F in linear time with 
a pattern preprocessing step that relies on the Knuth-Morris-Pratt failure function. 

Theorem 2.2 Let A E :F. Then, exce1it possibly the rule which chooses the order accord­
ing to which the 'P[(-v'•~+ l] 's are compared to T[(], A can be implemented in the standard 
model in linear time with the Knuth-Morris-Pratt linem· time pattern 1>repmcessing step 
that makes at most 2m - 4 com71arisons. 

The algo~ithms in the family :F are comparison efficient as we show next: 
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Lemma 2.3 Let A E :F. Then A makes at most 2n - 1 compai·isons. 

Proof: It is obvious that A does not need to make more iha.n n comparisons which result 
in equal answers. In every comparison which results. in unequal answer A determines that 
at least one prefix of ihe pattem which starts at some text position .,p; terminates at text 
position(. Therefore, A does not make more than n comparisons which result in unequal 
answers. However, if all pattern prefixes that start at text positions in w' terminate at 
text position (, then A moves to the next text position without a comparison that is 
answered as equal. 

Consider the last text position ( = n. It is clear that if all comparisons at this text 
position result in unequal answers, then A got at most n - 1 equal answers. On the other 
hand, if a comparison was answered as equal, then there is at least one pattern prefix 
which starts at some text posit.ion ·iP; and was not terminated by an inequality answer 
and, thus, A got at most n - 1 unequal answers. Therefore, A makes at most 2n - 1 
comparisons. O 

The adapt.eel Knuth-Morris-Pratt [9] prefix-matching algorithm is in the family :F. 
There are cases in which it would actually make 2n - l comparisons; e.g. P(l..2] = 'ab' 
and T[l..n] = 'an•. Note that this algorithm compares T[(] to P[( - .,p; + l] in an 
increasing order of .,p;_ This order is the worst possible order as we show in the next 
theorem. 

Define a family of algorithms J:: of all A E :F that compare P[( - .,Pf + 1] only last. 
Namely, if an algorithm A E J::, then A compares T[(] to P[(-.,pf + l] only if an unequal 
answer implies that all pattem prefixes that start at text positions in w' terminate at 
text position (. Note that if P[( - tfif + l] = P[( -1/J; + 1], for T/Jf =f. 1/J;, then A may 
compare this pattern symbol at any time. 

Theorem 2:4 Lel A E J::. Then .A makes at mosl L 2m,;1 n J comparisons. 

Proof: As in Lemma. 2.3, every comparison between T[(] t.o P[( -1/;; + 1] which results 
in an unequal answer determines that the pattem prefix which starts at text position 
iP; terminates at text position (. We charge such a comparison to text position .,p; and 
charge comparisons that result in equal answers to the text position compared. Using this 
chnrging scheme ii is obvious that each text position can be charged with at most two 
comparisons and I.hat comparisons to T((] cannot be charged l.o any text position that is 
smaller than .,Pf. . 

When A reaches text position (, the number of comparisons that are charged to the 
text positions 1/!f, · · · , ( - 1 is at most 2( ( - ~·f) - (I w' I - 1). This is so since each of these 
( - 1/!f text positions has a comparison tha.t resulted in equal answer charged to it, but 
at least llJ!'I - 1 of the text positions do not have a comparison that resulted in unequal 
answer charged to them. 

We prove by induction I.hat the number of comparisons charged to text positions 
smaller than .,Pf is at most L2mm-1 (1/!f - l)J. This is obviously true at the beginning when 
( = 1. The only concern is when A advances from ( to ( + 1 and .,Pf < 1/;f +i. 

Let I = tfif +1 -1/!f. The number of comparisons that were charged to the text positions 
.,Pf, · · ·, tfif +1 ,- 1 is at most 2/ - 1 since either at most I text positions were charged with 
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comparisons that resulted in equal answers and '1/lf Wi:IS not charged with an unequal 
answer, or 1pf was charged with au unequal answer hut then 4{+1 = ( + 1 and text 
position ( was not charged with an equal answer. But I ~ m and by simple ar~thmetic, 

2m - l ( 2rn - 1 c +I l--(1/11 - l)j + (2/ -1) ~ l--(411 - l)j. m 111 

When A reaches text position ( = n + l, the number of comparisons satisfies, 

2m - 1 ( < C 2m - l l--(1/;1 - l)j + 2(( - i/>1) - (jl[J I -1) ~ l--nJ. D 
; m 1n 

3 Lower Bounds 

In this section we show a lower bound 011 the number of comparisons required by any 
string prefix-matching algorithm which may have an unaccounted pattern preprocessing 
step. We describe au adversary tha.t. e<Lll force such an algorithm to make at, least l 2':~ 1 nj 
comparisons. 

Theorem 3.1 Any prefi;r-malching algorithm must make al least l 2";,,-1 nj comparisons. 

Proof: Fix the pattern to P[l..m] = 'abm- 1' and assume that the text alphabet has at 
least three symbols. We show that an adversary can answer comparisons made by any 
prefix-matching algorithm in a way that if the algorithm claims to have comput.ed Il[l..n] 
in less than l 2";;,-1 n J comparisons, then it can be fooled. 

Consider first algorithms that cannot compare pairs of text symbols. The adversary 
will maintain e1ich text. symbol in one of three states: unknown, potential 'a' or 'b ', a11d 
fixed 'a ' or ·~ '. 

Initially the adversary sets all text symbols at positions l, such that l = 1 mod m, to 
be potential 'a's and all other text symbols to be unknown. A comparison between an 
unknown text symbol to 'a' or to 'b' is answered as unequal and the text symbol is set to 
be a potential 'b' or 'a', respectively. A potential 'a' or 'b' is revealed to the algorithm at 
the cost of one comparison after which it becomes fixed. 

If au algorithm claims it has computed fI[l..n] before all text symbols are fixed, the 
adversary has the freedom of setting one of the unknown or potential symbols to an 
alpha.bet symbol other than 'a' and 'b'. Let u be a text position that is not fixed and 
assume that a.11 other text symbols become fixed. If T[u] is a potential 'b', then there 
exists v such that u - 111. < v < u and T[v .. u - 1 J = 'abu-v-t ', and the adversary can alter 
IT[v] by fixing T[u] to 'b' or 'c'. Similarly, the adversary can alter H[·u] if T[u] is unknown 
or apotentia.l 'a'. Thus, any algorithm must make two comparisons at each text position 
exce1>t at the text positions that are set initially to be potential 'a's, where it has to make 
only one comparison. The total number of comparisons is at least L 2n;n-t nj. 

When pairwise comparisons of texL symbols arc permitted, the lower bound arguments 
are slightly more complicated. To keep track of the comparisons the adversary maintains 
a graph with n + 2 vertices that correspond to the n text symbols and the pattern symbols 
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'a' and 'b'. The edges of the graph correspond to comparisons and are labeled with their 
outcome ("ec1ual" or "uuequal"). 

The adversary maintains a two-level re1JI·esentation of the edges. This representation 
satisfies the following invariants: 

1. A subgraph that cont.a.ins the edges that arc labclcd "unequal" and all vertices. 

We refer to the connected components in this subgraph as comvone11ts. The adver­
sary will maintain the property that components are bipartite graphs. 

2. A subgraph that contains the edges that a.re labele<l "equal" and all vertices. 

We refer to the conuccte<,l components in this subgra.ph a.s su]Jer-verlices. By transi­
tivity, a.II verLiccs in a super-vertex correspond to equal symbols. The adversary will 
maintain the property that vertices which a.re in the same super-vertex a.re always 
in the same side of a single component. 

Iuitia.lly, the graph has 1 + r;;-1 edges: between the pattern symbol 'a' and the pattern 
symbol 'b' and between the pattern symbol 'b' and every text position l, such that l = 
1 mod m. These edges arc labelecl "unequal"; the invariants are clearly satisfied. The 
adversary a.nswe1·s compa.risous as follows: 

• A comparison between symbols which correspond to vertices that belong to different 
components is answered as unequal. 

The two components are merged into a single component which is still bipartite. 

• A comparison between symbols which correspond to vertices that belong to the 
same component is answered as equal if and only if the two vertices are on the same 
side of the component. 

This may cause two super-vertices to be merged into one. Note that comparisons 
between vertices that belong Lo the sa.me component but are on different sides 
and comparisons between two vertices in the same super-vertex do not contl'ibute 
anything to Lhe component or super-vertex structure and are practically answered 
for free. 

The invariants are obviously maintained after each comparison is answered. Note that 
vertices which a.re in the same super-vertex as one of the pattern symbols correspond to 
fixed symbols; vertices which arc in the same component as the pattern symbols corre­
spond to potential symbols and vertices which are in other components correspond to 
unknown symbols. 

A prefix-matching algorithm can terminate correctly when there is only one component 
and two super-vertices. Since every connected component with l vertices must have at 
least l - 1 edges, there a.re at least n + 1 edges labeled "unequal" and at least n edges 
labeled "equal" at termination. Thus, the total number of comparisons is at least 2n + 
1- (1 + r-;-1) = L2':"1 nj. D 
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4 Lower Bounds for the Self-Prefix Problem 

In this section we consider the special case where the pattern and the text striqgs are the 
same string and all comparisons are accounted. This problem is solved in the preprocessing 
step of the Knuth-Morris-Pratt l9J string matching algorithm in linear time and 2m - 4. 
comparisons. 

Theorem 4.1 Fix a positive integer constant k. Then, any self-prefiz algorithm that is 
given an input string of length m, such that m ~ k, must make at least L21c;1 mj - k 
comparisons. 

Proof: The adversary fixes the first k symbols of the string to 'abk-l • and reveals them 
to the algorithm for k - 1 comparisons. By Theorem 3.1 the algorithm must make at 
least l2kk"1 (m-k)J more comparisons. But, L2";1(m-k)J +k-1 = L2";1mj-k. D 

If the length of the input string is known to the adversary in advance, it can maximize 
the lower bound as the next corollary shows .. In the on-line case, where the string is given 
a symbol a.t a time and its length not known in advance, there seems to be a tradeoff 
between maximizing the number of comparisons in the short term and in the long term. 

Corollary 4.2 The lowe1· bound i1l Theo1·em ,f.1 has a maximal value of 2m - r2Jml. 

Proof: It is easy to verify that the maximum is achieved for k = L Jmj and also for 
k = rv'ffll. D 

5 Concluding Remarks 

The lower and upper bounds presented in this paper are shown to be tight only for the 
pattern string 'abm-1•. Recently, we have been able to obtain bounds that depend on the 
given pattern string [3]. 
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