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ABSTRACT 

We use the theory of Weinstcin-Aronszajn determinants to prove that the 
multiplicity of z as a root of the characteristic equations equals the algebraic 
multiplicity of z as an eige>nvaluc of the infinitesimal generator. 

1. INTRODUCTION 

Let ( be an n x n-matrix valued normalized bounded variation function. 
the retarded functional differential equation 

dx (t) = t d((r)x(t - r) 
dt lo 

one can associate the characteristic equation 

det 6(z) = 0, 

With 

(1.1) 

(1.2) 

JOI 
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where 

(1.3) 

Zeros of the characteristic equation yield exponential solutions of (1.1) and higher 
order zeros yield polynomial-exponential solutions. 

The definition 

(T(t)<P) (r) = x(t + r; cp) for - h :5 r :5 0, (1.4) 

where t 1-+ x(t;cp) denotes the unique solution of (1.1) corresponding to the initial 
condition 

x(r) = cp(r) for - h :5 r :5 0 (1.5) 

yields a C0-semigroup of bounded linear operators on C = C ([-h, OJ; en). Its infinites­
imal generator is given by (cf. Hale [6]) 

1J(A) = {cp E C1 : cp(O) = ((,cp}}, Acp = cp, (1.6) 

where ((, cp) denotes the functional f0h d((r)cp(-r). One easily verifies that z E a(A) 
if and only if (1.2) holds. It is well known, but less easy to prove, that 

THEOREM. The algebraic multiplicity of z as an eigenvalue of A equals the multiplicity 
of z as a root of the characteristic equation (1.2). 

The first proof of this theorem is due to Levinger (7]. A second proof was published by 
Kappel and Wimmer [9]. The aim of the present note is to show that the theorem actu­
ally is a straightforward consequence of the general theory of the Weinstein-Aronszajn 
determinant (Kato (10]). One cau make this observation as soon as one realizes that 
( 1.1) can be considered as a finite rank perturbation of the "trivial" functional differ­
ential equation 

dx 
-(t) = o. 
dt 

(1.7) 

The correct setting for such a perturbation point of view involves dual semigroups 
(Clement et al [1,2,3], Diekmann [5]) and the embedding of C into the space en x 
Loo[-h, O]. Here we shall exploit this space en x L00 and some notation suggested by 
dual semigroup theory, but not the theory itself. 

2. PROOF OF THE THEOREM 

Let D : Loo --> Loe be the unbounded operator with domain 1J( D) =Lip, the set of 
equivalence classes containing a Lipschitz continuous function, and action 

Dcp = cp. (2.1) 

For every z E e we define a pseudo-inverse 

(2.2) 
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Note that indeed (z - D)Ps(z - D)-1 = I, but that 

(Ps(z - D)-1 (z - D)cp)(r) = cp(r) - ez(r)cp(O) for cp E 'D( D ), (2.3) 

where 
ez(r) := ez1". (2.4) 

Next we define the "unperturbed" operator A~* : en x 1 00 --+ en x L 00 by 

(2.5) 

A straightforward calculation yields 

(zI -A~*)-1 = ( =-~1 0 ) 
z ez Ps(z - D)-1 • 

(2.6) 

We conclude that z E p(Ag'*) if and only if z f. 0 and that z = 0 is an eigenvalue of 
algebraic multiplicity n, with eigenvectors eoa. 

The perturbation has domain D( B) = en x C (where C denotes the set of 
equivalence classes which contain a continuous function) and action 

B=(~~), (2.7) 

where ( denotes the functional t.p ...... ( (, t.p). Finally, we define 

(2.8) 

Note that B is relatively bounded and has finite dimensional range. The identity 

shows that we can analyse the spectrum of A0• by combining information about the 
spectrum of A~* and information concerning 

This is exactly the key idea of the 

WEINSTEIN-ARONSZAJN THEOREM (Kato [10) Theorem IV.6.2). 

ii(z; A 8 *) = ii(z; A2'*) + v(z; det (I - B (zI - A~·r1 )), (2.10) 

where for any closed operator T 

{ 
0 if z E p(T) 

ii(z;T) = d
00

im 'R (spectral projection) if z is an isolated point of u(T) (2.11) 
otherwise 
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and for any meromorphic function f 

So, in particular 

{ 
k if z is a zero of order k of f 

v(z; !) = -k if z is a pole of order k off 
0 otherwise. 

v(z· A~*) = { 0 
' n 

for z =/= 0 
for z = 0. 

Combining (2.6) and (2. 7) we find 

1 (I ~- 1 (' e ' -(', Ps(z1-D)-1 ·') I-B(zI-A~·r = -.., 0 .,, zf ., I 

and 

COROLLARY. 

v(z; A0 *) = v(z; det .6.(z)). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

To conclude the proof it only remains to show the relationship between A 0 * and 
A. 

Let j : C -> en x L00 be the embedding 

(2.16) 

Since V( A~*) c jC the resolvent maps into jC and eigenvectors belong to jC. So 
without loss of generality, we may restrict our spectral analysis to jC. Now A0 *jtp E 
jC if and only if cp E C1 and rp(O) = ((, 'P)- Moreover, in that case j-1 AO*jcp:::: ip. It 
follows that A is, modulo the embedding j, the part of A 0 • in C. 

3. REMARKS 

(i) In Kaashoek and Verduyn Lune! [8], the authors develop a general procedure to 
construct characteristic matrix functions and use the idea of equivalence to prove 
the above multiplicity theorem for various classes of equations. For the opera­
tors appearing in the present paper the equivalence in [8] leads to the formulas 
mentioned next. 

(ii) One can write 

(3.1) 

and 

(3.2) 
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where 

(3.3) 

and 

E(z) = ( ~ Ps(z ~ D)-1 ) (3.4) 

are regular operator valued functions. The formula 

(3.5) 

then clearly shows the equivalence of ( zI - A 0•) -l and .6. - 1 ( z) and one can, 
among other things, derive the precise relationship between generalized eigen­
vectors of A0 * and Jordan chains of A from that formula. (See Kaashoek and 
Verduyn Lunel [8].) 

(iii) A spectral theory of unbounded operator matrices is currently being developed 
in Tiibingen by Nagel [11] and others. 

(iv) A related but somewhat different perturbation point of view is presented in the 
work of Desch and Schappacher [4]. 

ACKNOWLEDGEMENT 

We thank A. van Harten for bringing the Weinstein-Aronszajn determinant to our 
attention. 

REFERENCES 

[1] CLEMENT, PH., DIEKMANN, 0., GYLLENBERG, M., HEIJMANS, H.J.A.M. AND 
H.R. THIEME, Perturbation theory for dual semigroups; The sun-reflexive case, 
Math. Ann. 277 (1987), 709-725. 

[2] -, Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. 
Edinb. 109 (1989), 145-172. 

[3] , Nonlinear Lipschitz continuous perturbations in the sun-reflexive case, 
Volterra Integro-Differential Equations in Banach Spaces and Applications (G. 
Da Prato and M. Iannelli, eds.), Pitman Research Notes in Mathematics 190 
(1989), 67-89. 

[4] DESCH, w. AND w. SCHAPPACHER, Spectral properties of finite-dimensional 
perturbed linear scmigroups, J. Differential Eqns. 59 (1985), 80-102. 

[5] DIEKMANN, 0., Perturbed dual semigroups and delay equations, Dynamics of 
Infinite Dimensional Systems (S.-N. Chow and J.K. Hale, eds.), Springer ASI­
Series F 37 (1987), 67-73. 



106 Diekmann and Verduyn Lune/ 

[6] HALE, J.K., Theory of Functional Differential Equations, Springer-Verlag, 
New York, 1977. 

[7] LEVINGER, B. W., A folk theorem in functional differential equations, J. Differ­
ential Eqns. 4 (1968), 612-619. 

[8] KAASHOEK, M.A. AND S.M. VERDUYN LUNEL, Characteristic matrices and 
spectral properties of evolutionary systems, to appear in the IMA preprint 
series, September 1990. 

[9] KAPPEL, F. AND H.K. WIMMER, An elementary divisor theory for autonomous 
linear functional differential equations, J. Differential Eqns. 21 (1976), 134-147. 

[10] KATO, T., Perturbation Theory for Linear Operators, Springer-Verlag, New 
York, 1976. 

[11] NAGEL, R., The spectrum of unbounded operator matrices with non-diagonal 
domain, J. Funct. Anal. 89 (1990), 291-302. 


