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1. Introduction 

Let Xi, ... , Xn be independent random variables having common probability distribution F. 
Let h(xi, ... , xm) be a kernel of degree m (i.e. a real-valued measurable function symmetric in 
m arguments), and let 

denote the ordered evaluations h(X;1, ••• , X;J taken over the (:) m-tuples in Cn. m= 

{(ii, ... , im): l~i 1< ... <im~n}. Many statistics of interest can be represented in the form 

(:) 
Tn='L Cn;Wn,1 

i=l 

(1.1) 

for a suitable choice of hand constants C.1 generated by some weight function Jon (0, l ), i.e., 

Let HF denote the df of the random variable h(X1, ••• , Xm) and let HF(Y) be estimated by 

the empirical distribution function of U-statistic structure. Since Tn= T(Hn), with T( ·) an 
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L-functional 

T(G)= f J(t)G-1(t) dt 

with a-1(t)=inf{y:G(y);:,t} for any d.f. G, T" is a generalized L-statistic estimating the 

parameter 

The form (1.1) is quite general and provides a unifying concept to various classes of statistics. 

For J=l, Tn becomes the U-statistic based on the kernel h. For m=l and h(x)=x, T" is an 

ordinary L-statistic. Further specific examples, covered by our results, are generalized L-sta

tistics with smoothly trimmed weight functions, introduced by Stigler (1973) for the case m= 1 

and h(x)=x. A further choice is J(t)=6t(l-t), which in the case of ordinary L-statistics 

provides an efficient estimator of location in the case of a logistic distribution. 

Under various sets of regularity conditions on J and Hp, asymptotic normality for gener

alized L-statistics has been recently investigated. Primary references are Serfling (1984), 

Silverman (1983), Helmers & Ruymgaart (1988) and Gijbels, Janssen & Veraverbeke (1988). 

The basic asymptotic normality result for T. is (e.g. see (3.7) in Helmers & Ruymgaart (1988)): 

(1.2) 

where 

a2(T, G)=m2 J J J{G(x)}J{G(y)}{G(x)AG(y)-G(x)G(y)} dx dy. 

Note that given J and G, the quantity a2(T, G) is readily computed. 

In applications one often wishes to establish a confidence interval for r and a studentized 

version of (1.2) is required. The desired result is easily obtained by showing (see section 2) 

that, with a~=a2(T, H.), 

a.--.a(T, Hp), n_,,oo, a.s. [P] (1.3) 

where P denotes probability under F. Together (1.2) and (1.3) directly yield an approximate 

two-sided confidence interval 

(1.4) 

for r based on the normal approximation. Here ua12=<P- 1(1-a/2) and <P denotes the standard 

normal distribution. 

A different approach for construction of confidence intervals for r is based on the bootstrap 

approximation for the d.f. of n112(T.-r) or n 112a-;; 1(T.-r). With F. the empirical d.f., i.e., 

Fn(x)=n- 1L7= 1 l{X;~}, the bootstrap method uses resampling with replacement from the 

observations Xi. ... , X .. Conditionally, given XI> ... , X., we obtain in each resample a 

collection of random variables X/', ... , x: which are conditionally independent with common 

distribution F •. For any n'?!=m, we define 

H:(y)=(:)-I L l{h(X~, ... ,XC)~y}, yER, 
cn,m 
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the empirical d.f. of U-statistic structure based on the bootstrap sample Xi, ... , x:. With 
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r:=T(H:) and a:=a(T, H:), define for n~m and x e R, 

Fr.(x)=P{n112(Tn-r)~x} 

FT,(x)=P* {n 112(T:-Tn)~} 

Gr.(x)=P{n112(T.-r)/a.~} 

Gf.(x)=P*{n112(T:-Tn)/a!~x} 

where P* denotes probability under Fn. In section 4 we show that a.s. [P] 

lim sup IFr,(x)-Ff.(x)l=O 
n-+OO X 

and 

lim sup IGr,(x)-Gf.(x)l=O. 
n-+OO X 
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(1.5) 

(1.6) 

On the basis of these results one easily establishes approximate two-sided confidence intervals 
for r: 

(1.7) 

and 

(1.8) 

where c;and c;• denote the p-th quantile of the bootstrap d.f. Ff. and Gf,. These bootstrap 
based confidence intervals for r provide alternatives to the more familiar confidence interval 
(1.4) based on the normal approximation. 

To prove the validity of the bootstrap approximations (1.5) and (1.6) we assume J Lipschitz 
and we rely on a Berry-Esseen rate associated with the convergence in (1.2). Our proof 
resembles that of Singh (1981), who employs the classical Berry-Esseen theorem as his main 
tool to establish the asymptotic validity of the bootstrap approximation for the d.f. of the 
sample mean. Similarly, our proof will rely on a Berry-Esseen result for generalized L-statis
tics. Also instrumental in our proof will be certain Glivenko-Cantelli results for the empirical 
d.f. Hn, established in Helmers, Janssen & Serfling (1988), and parallel results for H:. 

In section 2 we derive strong laws for an and a:; the Glivenko-Cantelli result for H:, which 
we will also need, is proved in the appendix. In section 3 we obtain a Berry-Esseen bound for 
generalized L-statistics. Our bootstrap results (1.5) and (1.6) are derived in section 4. Some 
refinements and possible extensions are briefly discussed in section 5. 

We conclude this section by noting that the bootstrap results (1.5) and (1.6) extend the work 
of Bickel & Freedman (1981) on the asymptotic validity of bootstrap approximations for the 
distribution function of non-degenerate U-statistics and L-statistics. Further relevant back
ground includes Bretagnolle (1983), treating von Mises statistics, and Boos, Janssen & 
Veraverbeke (1988), where resampling plans for two-sample U-statistics with estimated 
parameters are studied. 

2. Strong consistency for "• and 0-: 

In this section we show that an and a: are consistent estimators of a. Recall that a.=a(T, Hn), 
a:=a(T,H!) and a=a(T,Hp). 
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Theorem 1 
Suppose that 

(i) J is bounded on (0, l); 
(ii) Eih(X1> ... , Xm) l2+b<co, for some o>O; 
(iii) a2=a2(T, HF)>O. 

Then 

an-'> a, 11-'> oo, a.s. [P] 

and, with ?-probability 1, 

a~-'>a, n-'>oo, a.s. [P*]. 

Proof. To prove (2.1), note that 

where 

An=m2 f J l{HF(y)}J{HF(z)}[{Hn(y)/\Hn(z)-Hn(y)Hn(z)}-

Bn=m2 ff [J{Hn(y)}J{Hn(z)}-J{HF(y)}J{HF(z)}][Hn(y)i\Hn(z)-

Hn(y)Hn(z)] dy dz. 

Since J is bounded we obtain An-'>0, 11-'> oo, a.s. [P] by showing that 
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(2.1) 

(2.2) 

(2.3) 

I J l{Hn(y)/\Hn(z)-Hn(y)Hn(z)}-{HF(y)/\HF(z)-HF(y)HF(z)} I dy dz-'>0, (2.4) 

11-'> oo, a.s. [P]. To check (2.4) note that by the strong law for U-statistics 

Hn(y)Hn(z)-'>Hp(y)HF(z), n-'>oo, a.s. (P] 

and, using the inequality u/\ v-uv:%:{u(l-u) }112{ v(l-v) }112 , for O<u, v<l, that the integrand 

in (2.4) can be bounded by 

[Hn(Y){l-H.(y)} ]112[Hn(z){l-Hn(z)} ]112+[HF(y){l-HF(Y)} ]u2[ HF(z){ 1-HF(z)} ]112 • 

The strengthened Glivenko-Cantelli theorem for the empirical d.f. of U-statistic structure 

(Theorem 2.2 in Helmers, Janssen & Serfling (1988) implies for every 17>0 the existence of a 
natural number n0 , depending only on 1/ and the particular realization, such that for all n~n0 

and all xeR, 

Hn(y )"5;H F(Y) + 17q { H F(Y)} 

l-Hn(y):%:l-HF(y)+17q{HF(y)} 

(2.5) 

(2.6) 

where q(t)= {t(l-t) }1- 2', O<t<l and e=o/2( 4+o). Note that the condition on q required in 

theorem 2.2 in Helmers, Janssen & Serfling (1988) is satisfied. Furthernote that Condition (ii) 
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and a result similar to lemma 2.2.1 in Helmers (1982) implies 

J HF(y){l-HF(Y)} dy<oo, f q{HF(y)} dy<oo and J q112{HF(y)} dy<oo. (2.7) 

From (2.5) and (2.6) it is easily seen that, for a particular realization and the n0 just defined, we 
have for n~n0 

(2.8) 

By (2.7) we have integrability of the r.h.s. of (2.8), so we can apply Lebesgue's dominated 
convergence theorem to get the a.s. [ P] convergence to zero of An. 

To show that Bn-o, n- oo, a.s. [P] note that (use Condition (i) and arguments as used 
above to deal with An) it is sufficient to show the a.s. [P] convergence to zero of 

s~p IH.(y)-HF(Y)I J f [Hn(y){l-H.(y)}]112[Hn(z){l-H.(z)}] 112 dy dz. (2.9) 

From the discussion concerning A. we know that that the integral in (2.9) can be bounded. 
Therefore B.-o, n-oo, a.s. [P) since 

sup IH.(y)-HF(Y)l-O, n-oo, a.s. [P] 
y 

(see corollary 2.1 in Helmers, Janssen & Serfling (1988)). So we have established that a~-d2, 
n- oo, a.s. [ P], which proves (2.1) 

Next we consider (2.2). To prove this we follow the argument leading to (2.1), with some 
modifications. First replace H. by H: in the defining equations of An and Bn and denote the 
resulting expressions by A: and B:. We first prove that, with ?-probability 1, A:-o, n- 00 , 

a.s. [P*J. To check this we employ the strong law of large numbers for bootstrapped U-statis
tics, (Athreya et al. (1984)) and we need a bootstrap version of theorem 2.2. in Helmers, 
Janssen & Serfling (1988). More precisely, we must show that, for any q satisfying the 
assumptions of that theorem, with P-probability 1, 

(2.10) 

where llfll"' denotes sup lf(x)I. A proof of this assertion is in the appendix. Combining the 
x 

preceding results with the argument leading to (2.1) we see that, with P-probability 1, A:-o, 
n- oo, a.s. [P*]. Verification finally that, with P-probability 1, also B:-o, n- oo, a.s. [P*] is 
straightforward. We follow the proof given for B. and employ the modifications given above. 
This completes the proof of (2.2). D 

3. Berry-Esseen bounds for generalized L-statistics 

We assume the weight function J to be Lipschitz of order 1, i.e., 

IJ(s)-J(t)l~Kls-tl, O<s, t<l, for some K>O, 

in which case also J is bounded: IJl~M<oo. As further notation, put 8=Eh(Xi. ... , Xm), 

g(x)= f ... J h(x, X2, ••• , Xm) dF(x2) ••• dF(xm)-e 
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and define for n;?::m 

FT,(x)=P{n 112(Tn-r)/a(T, H1):<5':x}, xER. 

Finally recall that <l>(x) denotes the standard normal distribution. 

Theorem 2 
Suppose that 

(i) J is Lipschitz of order 1; 
(ii) Eig(X1) l3<oo and Eh2(Xi. ... , Xm)«xi; 
(iii) a2=a2(T, HF)>O. 

Then there exists a universal constant C>O such that for all n;?::2m 

sup If Tn(x)-<l>(x) !:<5':Cn- 112 

x 

where Ym is a constant depending only on m. 

(3.1) 

Proof. Let Gi, G2 be d.f. 's satisfyingf IJ(t)G;- 1(t) I dt<oo, i=l, 2. As in Serfling (1980), p. 265 

we have 

(3.2) 

where 1jJ(u)= fMJ(t) dt. The Lipschitz condition on J implies that 

lip{ G2(Y) }-1/l{ G1(Y) }-( G2(y)-G1(y))J { Gi(y)} i~K { Gz(y)-G1(Y) }2. (3.3) 

From (3.2) and (3.3) follows 

[Tn-<+ f {Hn(y)-HF(y)}J{HF(y)} dy[:<5':KJ {Hn(y)-Hp(y)} 2 dy. (3.4) 

Now note that 

(3.5) 

where 

with 

h1(Xi, ... , Xrn)=-J (l{h(xi, ... , Xm):<5':y}-HF(y)]J{HF(y)} dy. 

For the r.h.s. of (3.4) we have 

K f {H.(y)-HF(y)}2 dy=Wn+R. (3.6) 

Scand J Statist 17 
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with 

wn=(:f2 
and 

Rn=(:r2 
where L*, resp. L* *,denotes the sum over all pairs of m-tuples (i1, ... , im), U1 ... , jm) E en. m 
having all indices different, resp. at least two indices equal and with 

Note that Wn is a U-statistic with kernel h2r1 depending on n. Indeed 

(3.7) 

where L+ denotes the sum over all (~m) summands hi{x;1, ••• , x;m, x11 , ••• , xiJ for which 

{ib ... , im, ji, ... , jm{ ={kb k2, •.. , k2m}. For the second term Rn in the r.h.s. of (3.6) we will 
exploit that its magnitude is of lower order. 

As in Helmers (1981), see also Helmers (1982), we now use (3.4)-(3.6) to approximate 

Tn-T(HF) from above and below by Un+ Wn+Rn and Un-Wn-Rn, i.e., for all n~2m 

Un-Wn-Rn,;:;Tn-T(Hr),;:;Un+ Wn+Rw 

From this approximation we directly see that 

P{n 112a- 1(Un+ W.+ ERn),;:;x-n- 112}+P{\Rn-ERn\~an- 1 },;:;F r"(x) 

,;:;P{n112a- 1( Un-Wn-ERn),;:;x+n- 112 } +P{\R.-ERn\:;;oan-1 }. (3.8) 

Since both Un-Wn and Un+ Wn are U-statistics of degree 2m with varying kernels h;=h1.±h2n 
where h2r1 is defined by (3.7) and 

(n ) (n )-1 (n-m)-1 
h1.(xk1, ••• , Xki.n)= Zm m m 

with L+ as in (3.7), the Berry-Esseen result for U-statistics due to va~ Zwet (1984) applies. So, 

using also the inequality, 

sup \<l>(x+q)-<l>(x)\,;:;\q\ we get for u.-wn-ERn 
x 

sup \P{n112a- 1( U.-W.-ER.),;:;x+n- 112 }-<l>(x)\ 
x 

,;:;sup I P{n 112a- 1( Un-Wn),;:;x}-<l>(x) I +sup I <l>(x+n· 112+n 112a- 1ER.)-<l>(x) I 
x x 
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where 

gn(x)= f ... f h;;(x, x1, ..• , x1,,,) dF(x1) ... dF(X1ml· (3.10) 

The discussion just given deals with the first term of the upper bound for F TJx) given in (3.8). 
To handle the first term of the lower bound a similar argument holds. We therefore restrict the 
discussion for the lower bound to the remark that, since h2n is a degenerate kernel, an 
alternative way to define gn(x) is 

g.(x)= f ... J h~(x. Xz, ... , X2,,,) dF(x2) ... dF(X2m). 

Hence h";; and h;; have the same projection. 
Now it can be shown, by some elementary calculations, that 

(3.11) 

(3.12) 

(3.13) 

Finally note that 

(3.14) 

The latter equality follows since h1n is obtained by rewriting the kernel h1 of Un in such a way 
that U", a U-statistic with kernel of degree m, transforms into a U-statistic of degree 2m and 
since hu., being a degenerate kernel, has no contribution to gn. From (3.9) to (3.14) the 
appropriate bound for the first term in the r.h.s. of (3.8) is obtained. 

It remains to show that the second term in the r.h.s. of (3.8) is of the right order. To verify 
this note that 

(3.15) 

Since R. is a linear combination of U-statistics of degree at most 2m-1 with coefficients which 
are at most of the order n-1, a simple calculation (using lemma A(i) in Serfling (1980), p. 183) 
yields 

(3.16) 

where Ym is a constant depending only on m. From (3.15) and (3.16) we get that 

0 

The following extension of theorem 2 provides the appropriate order bound for application 
in section 4. 
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Corollary 1 

Assume the conditions of theorem I with Efg(X1) f3<oo replaced by E[g(X1)[2+0<oo,for some 
O<o~l. Then there exists a positive constant C0, depending only on o, such that for all n'21:2m 

sup [F r,(x)-<l>(x) I 
x 

(3.17) 

with M, Kand Ym as in theorem 2. 

Proof. First note that only minor changes are needed to obtain the appropriate modification 
of the Berry-Esseen theorem for U-statistics as proved in van Zwet (1984). The classical 
argument leading to his (3. 7) must be replaced by a similar computation with n- 112 replaced by 
n- 012 and Efg(X1)[ 3<oo by E[g{X1)[ 2+6<oo (see e.g. Petrov {1975), p. 115). This provides an 
appropriate modification of (3.9). Finally note that the inequality (3.12) is now replaced by 

Efgn(X1)[ 2+0~C3M2+0 [Efg(X1)[ 2+0+ {Ef h(Xi. ... , Xm)f }2+6 ] 

with C3 a positive constant depending only on o. 

4. Bootstrapping generalized L-statistics 

Let T., r, a2(T, G) and Fr., Ff., Gr •• Gf. denote the quantities as defined in section 1 and Fr. 
as in section 3. Also define, with r:= T(H;) and for n'21:m and x ER, 

F 'f.(x)=P*{n 112(T;-Tn)/ a.~x}. 

Our main result is the following theorem. 

Theorem3 
Suppose that 

(i) J is Lipschitz of order I; 

(ii) max E[h(X;,, ... , X; )[2+.1<00 for some O<o~l; 
l:Eii1E: .. . :Eiim~m "' 

(iii) a2=a2(T, HF)>O. 

Then with P-probability 1, 

lim sup ff\(x)-Ff.(x)[=O 
n-+oo x 

Jim sup [Fr.(x)-Ft.(x)f=O 
n-+OO X 

lim sup f Gdx)-Gf.(x)f =0. 
n-+oo x 

(4.1) 

(4.2) 

(4.3) 

Remark. As indicated in the introduction (see (1.5)-(1.8)) the bootstrap results (4.2) and 
(4.3) may be used to establish bootstrap confidence intervals for r: based on n1n(Tn-r:) or 
n1n(Tn-r:)/ an. The bootstrap result (4.1) is oflittle practical value: computation ofa bootstrap 
confidence interval for r: based on n 112(Tn-r:)/a would require a priori knowledge of 
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a=a(T, HF) which is usually not available. On the other hand relation (4.1) is the bootstrap 
counterpart to the Berry-Esseen result (3.1). 

Proof of theorem 3. We first prove (4.2). Note that 

sup IFr.(x)-Ff.(x)l~Cn+Dn+En 
x 

where Cn=suplFr.(x)-<I>(xa- 1)!, Dn=sup!Ft_(x)-<I>(xa;;- 1)!, with df.=a2(T,Hn), and 
x x 

En= sup! <I>(xa-1)-<I>(xa;;-1) I. The term Cn is not random, whereas Dn and E. are random. 
x 

To see that Cn-+0, n-+oo, apply theorem 3.2 in Serfling (1984). 
To show that Dn-+0, n-+co, a.s. [P] a more refined argument is needed. Let E* denote 

expectation under F. and define 

n n 

On=E*h(Xi, ... , X,':;)=n-m 2: ... 2: h(X;,, ... , X;J, 
i1=l im=l 

the natural estimator of 8=Eh(X1, ••• , Xm), and 

An application of corollary 1 yields 

612 {E*Jg:(Xl')iw+(E*ih(Xt, .. . , X!)i)2+0 E*h2(Xt, ... , X,':;) 
D.~C;; 2+o + -2 

an un 

E*ih(XI', .. ., X!)I} + , 
On 

(4.4) 

where C is a constant depending on o, Mand K only. To proceed we evaluate the (conditional) 
moments appearing in the r.h.s. of ( 4.4) An application of Jensen's inequality for conditional 
expectations in combination with the inequality I a-b l 2 +0~22+0 (la 12+0+ I b 12+0 ) yields 

E*lg:(xi')l2+o~22+0 {E* lh(Xi' ... , X,':;) l2+o+I e.12+cl}. (4.5) 

Clearly 

n n 

E*Jh(Xi, ... , X!)l 2+0=n-m 2: ... 2: lh(X;, ... ., X;,,,)lw. (4.6) 
i1=l fm::::;:l 

By condition (ii) the strong law of large numbers for von Mises statistics applies. Therefore the 
r.h.s. of (4.6) converges to Eih(Xi. ... , Xm)l2+c1 a.s. [P] and 

(4.7) 

From (4.5) to (4.7) we obtain, with probability one, that E*lg:(XI') 12+6 is bounded by some 
finite constant. Again by the strong law for von Mises statistics we have for r= 1, 2 that 

n n 

E*Jh(Xi, .. ., X!)l'=n-m L ... 2: ih(X;,, ... , Xi..)l'-+E*lh(Xi. .. ., Xm)i', 
i1=1 im=l 

n-+ oo, a.s. [P]. (4.8) 

Note that for (4.8) condition (ii) becomes effective again. 

Scand J Statist 17 
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From ( 4.4) to ( 4.8) it is clear that to obtain Dn~ 0, n~ oo, a.s. [ P] it remains to verify that 

0~~02 , n~ oo, a.s. [P]. But the latter result was already obtained in theorem l. 

To complete the proof of (4.2) we must check E"~o, n~oo, a.s. [P]. Since 

sup I <t>(xa- 1)-<P(xa;;- 1) 1~(!!._v <:.::.)-1 
x ~ a 

(4.9) 

the proof follows from the a.s. convergence of a~ to a2 (theorem 1). 
The proof of ( 4.1) is similar, now starting with 

sup [Fr.(x)-Ff.(x)[ .:::sup ifr.(x)-<P(x)[+sup lFf.(x)-<P(x)[. 
x x x 

( 4.10) 

To check (4.3), we note that Gn(x)=Fr,(xan) and G;(x)=Ff.(xa;). From the proof of (4.2) 
we infer that a.s. [P] 

sup I Fr.(xan)-<t>(xa.a- 1) [ ~ 0, n~ oo 
x 

and 

sup [Ff.(xa;)-<P(xa;a- 1)[~0, n~oo. 
x 

An argument like ( 4. 9) ensures that it remains to prove that a"~ a, n~ oo, a.s. [ P], and that, 

with ?-probability 1, a:~a, n~oo, a.s. [P*]. Both these a.s. statements were already 

established in theorem 1. This completes the proof of the theorem. D 

5. Refinements and possible extensions 

Going through the proof of relation ( 4.1) it is easy to see that the result can be strengthened to 

sup lFr.(x)-Ff.(x)[=O(n- 112) a.s. [P] 
x 

provided that we replace condition (ii) in theorem 3 by 

E[h(X;,, ... , X;Jl 3<oo. 
Is:;i1s:; . .. ~im:;;;.m 

max 

We need only apply theorem 2 to each of the terms appearing in the r.h.s. of ( 4.10) and argue 

as in the proof given for (4.2). A similar a.s. order bound for 

sup [Fr,(x)-Ff,(x)[ 
x 

requires an investigation of the a.s. rate at which a; tends to a 2• In any case we expect on a.s. 

rate O(n- 112) under an appropriate set of moment conditions. We shall not pursue this point 

here. 
Better a.s. rates, typically of order a(n- 112 ), can be obtained for 

sup IGr,(x)-Gf.(x)[. 
x 

Results of this type have been established by Babu & Singh (1983) for studentized smooth 

functions of sums of i.i.d. vectors and by Helmers (1990) for studentized U-statistics. Exten

sions of the present results to the case of studentized generalized L-statistics, i.e., to 

n 112(Tn-r:)/a"' will be developed in a separate paper. Though the result by Helmers (1990) 

appears to be a crucial step, validating such an extension will be quite laborious, and therefore 

outside the scope of this paper. 
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Extending the results of Theorem 3 to the case of generalized L-statistics based on trimmed 
weightfunctions (hence J is not Lipschitz) is presently under investigation. It requires a 
different methodology based on bootstrap results for quantile processes of U-statistic 
structure. 

6. Appendix: proof of (2.10) 

To show (2.10) some changes have to be made in the proof of theorem 2.2 of Helmers, Janssen 
& Serfling ( 1988). With q as in that theorem and 80 as in their proof of the theorem the details 
are as follows. Their corollary 2.1 directly yields that, with P-probability 1, llH:-Hd!.,-o, 
n- co. a.s. [P*], where 

n n 

HF.(y)=n-m L ... 2: l{h(X;,, .. ., X;J~y}, yeR 
i1=1 im=l 

We also require that l!HF.-HFl!.,-o, n-co, a.s. [P]. This Glivenko-Cantelli result is not 
explicitly stated in Helmers, Janssen & Serfling (1988), but it is easily obtained from their 
theorem 2.1 utilizing a representation of HF. as a linear combination of empirical distribution 
functions of U-statistic structure, with kecrels of degree at most m, and with coefficients which 
are at most of order 1. Combining these results we directly see that, with P-probability 1, 
llH:-HFl!.,--+O, n--+ co, a.s. [P*], i.e., we have proved(2.10) forthe special case q=l. ltisclear 
from theorem 2.2 in Helmers, Janssen & Serfling (1988) that to establish (2.10), the only 
missing ingredient is to check that, with P-probability 1, 

( n )-1 L l{h(X~,. ~·, X;;~e:} -f 8" {qoHF(y)}-1 dHF(y), 
m c •. m qoHF{h(X;1, ••• , X;J} _., 

n--+ co, a.s. [P*]. But this follows directly from the strong law of large numbers for bootstrap
ped U-statistics (Athreya et al. (1984)) and the proofof (2.10) is complete. D 
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