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A Galerkin �nite element discretization of a convection�di�usion boundary value
problem is considered on two special types of layer��tted meshes� Shishkin and
Gartland�type meshes� The interpolation and discretization error is estimated for
two typical problems with exponential and parabolic boundary layers� respectively�
For the Galerkin method we obtain uniform convergence �with respect to the
perturbation parameter �� in the ��weighted H� norm� As well as the previously
known result of order O�H ln���H�� for Shishkin meshes applied to exponential
layers� we show that the order of convergence is of order O�H� in all the other
cases considered� where H denotes the mesh diameter� Numerical experiments
shows that the Galerkin �nite element method sometimes yields signi�cantly
better accuracy on Gartland�type meshes than on Shishkin meshes�

�� Introduction

In the development of modern discretization methods for singularly perturbed
problems� there is recently a trend away from methods for general meshes and
towards solution�adapted meshes� In this context� a very promising approach
was introduced by Shishkin ��� ��	� where 
ne equidistant meshes are used
within layers� Although some classes of problems� e�g�� those containing curved
layers� cannot yet be solved satisfactorily by this approach� the analysis of
various discretization methods shows that such special meshes are in many
respects superior to uniform triangulations of the computational domain� For
example� a Galerkin 
nite element method on Shishkin meshes is uniformly

���

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301669548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


convergent with respect to the singular perturbation parameter without any
stabilization see ���	�� The order of convergence for two�dimensional problems
with exponential layers is ON�� lnN� in the ��weighted H� norm� where the
total number of nodes is proportional to N�� This is better than ON������
which is the best result obtained so far for exponentially 
tted 
nite element
spaces on equidistant meshes see ��	��

Despite these promising properties of the Shishkin meshes� their practical
application entails some di�culties� These are related� for instance� to the
solution of the discrete systems of equations as well as the determination of
gradients of the numerical solution� Although Shishkin meshes have some an�
alytic advantages because of their simple piecewise equidistant structure� the
investigation of alternative meshes with comparable analytical properties seems
to be justi
ed because of the above reasons� In this context� Bakhvalov meshes
in particular should be mentioned although up to now few results for them are
known in two dimensions cf� ���	��

In this paper we want to analyze the Galerkin 
nite element method both
for Shishkin meshes and for another type of mesh that is graded in the vicinity
of layers� Because the latter look like the meshes analyzed by Gartland ��	
for a 
nite di�erence method� we refer to them as meshes of Gartland type�

We consider the convection�di�usion problem

Lu� �� ���u� b � ru� c u � f in � � �� ����

u � � on ��
��

Assumption �� In the data of the di�erential equation ���� we assume that
� � � and b� c and f are su�ciently smooth� Furthermore� let kbkL���� � O��
and c� r � b��� � �c � ��

A comparison of both types of meshes that we consider is not possible in general
for �� as we lack analytical statements that describe the layers in the exact
solution� Consequently we restrict our attention to two simple but important
practical cases�

Problem I	 Exponential layers

First we consider the boundary value problem �� with

b � b�� b�� � q��� q��� � �� ���

and some arbitrary q � � see Figure ��� In this case� two exponential layers
are usually present along the out�ow boundary at x � � and y � ��

Problem II	 A parabolic boundary layer

In the second problem that we consider�

b � b�� �� with b� � q�� � ��
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Figure �� Problem statements

We assume that the remaining data in �� are chosen in such a way that
only one parabolic layer arises along the characteristic boundary y � � see
Figure ���

The outline of this paper is as follows� we start in Section � with a short
discussion of the properties of convection�di�usion problems� The focus here is
on estimates for the exact solution near exponential and parabolic layers� these
are obtained using asymptotic expansions� The Galerkin 
nite element method
is introduced in Section � and applied in Sections � and � to the Shishkin and
Gartland�type meshes� Using anisotropic interpolation estimates� we derive
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error estimates in the ��weighted H� norm and show that the method is uni�
formly convergent in all cases� In Section � we present some numerical results
and quantitatively compare the practical behavior of the Galerkin method on
the two types of meshes�

Let us 
nally remark that our analysis is completely di�erent from the
technique used recently in ��	 where L��error estimates are proved�

�� Properties of the continuous problem

The construction of layer�adapted grids and the analysis of 
nite element meth�
ods both require information about the behaviour of derivatives of the exact
solution� Such information can be obtained heuristically by the formal dif�
ferentiation of an asymptotic expansion� but it is di�cult to provide a solid
mathematical foundation for the results obtained see ��	��

In this chapter we discuss the assumptions that are used in our analysis of

nite element methods for Problem I and Problem II�

Problem I	 Exponential layers

For Problem I we assume the following�

Assumption �� The solution u of Problem I has the representation

u � G �E� �E� �E�� ��

where the smooth part G satis
es

kGkWk
���� � C for k � �� �� �� ��

while the derivatives of the layer terms can be estimated by�����i�jE�

�xi�yj

���� � C��i exp

�
�
���� x�

�

�
� �������i�jE�

�xi�yj

���� � C��j exp

�
�
���� y�

�

�
� �������i�jE�

�xi�yj

���� � C���i�j� exp

�
�
���� x�

�

�
exp

�
�
���� y�

�

�
��

for i� j � �� �� ��

Conditions that are su�cient for the existence of such a decomposition are
discussed in ��	�

Now we denote by �E the subdomain of � where layers arise� We shall
de
ne �E in such a way that the 
rst�order and second�order derivatives of the
exact solution are uniformly bounded in � n �E� Thus �� to �� imply that
for the thickness of the layer region we should take

�� �
�

��
� ln����� ��

�� �
�

��
� ln����� ��
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see Figure ��

Problem II	 A parabolic boundary layer

For Problem II we assume� similarly to Problem I� the following�

Assumption �� The solution of Problem � admits the representation

u � G � P� ��

where the smooth part G satis
es ���� while the derivatives of the layer term
can be estimated by���� �i�jP�xi�yj

���� � C��j�� exp

�
�

��y

����

�
���

for i� j � �� �� �� Here �� is an arbitrary paramter and C � C ��� is a constant
that is independent of ��

We are unaware of any rigorous analysis of conditions su�cient for the
existence of such a decomposition for problems with parabolic layers�

The thickness of the layer region �P is now

� �
�
��
���� ln����� ���

�� Galerkin Method on Layer�Fitted Meshes

The layers arising in Problems I and II are straight and aligned with the axes
of the coordinate system� so we shall consider only tensor�product meshes as in
Figure �� We denote the coordinates of the grid lines by � � x� 	 x� 	 x� 	
� � � 	 xNx � � and � � y� 	 y� 	 y� 	 � � � 	 yNy � �� We handle the layers
by using a 
ne anisotropic mesh� In Problem I this comprises the subdomains
��� �� and ��� We shall use the notation �E � �� � �� � �� for the entire
layer part of �� For Problem II� the 
ne�mesh subdomain is denoted by �P �
The width of these subdomains as well as the node distribution depend on the
particular type of mesh used� Both these items are discussed in detail in the
following Sections� In general� we can assume that �E � �E and �P � �P �
i�e�� that 
� � ��� 
� � �� and 
 � �� In the remaining part of ��� we use a
uniform mesh�

The triangulation of � is now de
ned by

T � fK � �xi� xi��	� �yj � yj��	� � � i 	 Nx� � � j 	 Nyg�

We use piecewise bilinear functions to approximate the solution� To do this�
we introduce the spaces

V � H�
� �� � fv 	 H��� j v � � on �g�

VN � fv 	 V j v 	 Q�K� for all K 	 T g�
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Problem II

Figure �� Examples of layer�
tted meshes

Then the discrete problem for the Galerkin 
nite element method can be for�
mulated as follows�
Find u 	 VN such that

BuN � vN � � F vN � for all vN 	 VN � ���

where

Bu� v� � � ru�rv� � b � ru� v� � cu� v�� ���

���



F v� � f� v� ���

for all u� v 	 V �
The Galerkin orthogonality property

BuN � u� vN � � � ���

is satis
ed by this method� The bilinear form B is VN �elliptic with

BvN � vN � � � jvN j
�
H���� � �c kvNk

�
L����

� ���

which follows immediately from integration by parts of the convective term�

b � rvN � vN � � � vN � b � rvN � � vN � r � b� vN �� �

The ��weighted H� norm

jjjvN jjj
�
��� �� � jvN j

�
H���� � kvNk

�
L����

���

satis
es the inequality

BvN � vN � � � jjjvN jjj
�
���� ���

The error estimates in the energy norm and in the norm ��� can be reduced
to the estimation of the interpolation error u� uI we denote the interpolant
of v 	 H��� in what follows by vI �� The layer�
tted meshes do not satisfy
standard regularity assumptions because of the strongly varying mesh size� so
we cannot use standard estimates like see ��	�

jv � vI jHk�K� � C diam K���kjvjH��K�� k � �� �� ��

Instead� we make use of the following anisotropic relations see ��	��

Lemma �� Consider a rectangular element K 	 T � K � �xi� xi��	� �yj � yj��	�
� � i 	 Nx� � � j 	 Ny� Then for v 	 H�K� the following interpolation
estimates hold	

kv � vIkL��K�

� C

�
h�x�Kk

��v

�x�
kL��K� � hx�Khy�Kk

��v

�x�y
kL��K� � h�y�Kk

��v

�y�
kL��K�

�
���

kv � vIk�L��K�

� C

�
h	x�Kk

��v

�x�
k�L��K� � h�x�Kh

�
y�Kk

��v

�x�y
k�L��K� � h	y�Kk

��v

�y�
k�L��K�

�
���

and

k
�

�x
v � vI �k�L��K� � C

�
h�x�Kk

��v

�x�
k�L��K� � h�y�Kk

��v

�x �y
k�L��K�

�
� ���

k
�

�y
v � vI �k�L��K� � C

�
h�x�Kk

��v

�x �y
k�L��K� � h�y�Kk

��v

�y�
k�L��K�

�
� ���

where hx�K � xi�� � xi and hy�K � yj�� � yj �

���



�� Shishkin meshes

��� Node distribution

Let us consider Problem I� We set here Nx � Ny � N and suppose that N is
even� The subdomains ��� � � �� �� are de
ned by


� � minf����
�

��
� lnNg� 
� � minf����

�

��
� lnNg�

We restrict our attention to the convection�dominated case with � 
 N���
which is of practical interest� then 
� and 
� are given by the second arguments
in the above formulas� In this case we also have lnN 
 ln����� so the widths
of the subdomains �E and �P on Shishkin meshes are essentially smaller then
the widths of the layer regions �E and �P �

Each of the four subdomains has an equidistant mesh of N���N�� elements�
The mesh size in �� is given by

hx�K �
��� 
��

N
�

�

N
� hy�K �

��� 
��

N
�

�

N
�

in �� and analogously in �� and ��� we obtain

hx�K �
�
�
N

�
�� lnN

N
� hy�K �

��� 
��

N
�

�

N
�

We introduce the mesh size

H � maxhx�K � hy�K� �
�

N
�

For Problem II� we set Ny � �Nx � N � The mesh is then de
ned by


 � minf����
�
��
���� lnNg� ���

In �P we have

hx�K �
�

N
hy�K �

�


N
�

����� lnN

N
� ���

The mesh size H can again be bounded by ��N �

��� The interpolation error

As shown in ��� ��	� the following interpolation error estimates are valid for
Problem I with exponential layers�

ku� uIkL����� � CN���

ku� uIkL���E� � CN�� ln�N�
���

���� ju� uI jH����� � CN���

���� ju� uI jH���E� � CN�� lnN�
���

and if ���� ln�N � C� then

���



ku� uIkL���� � CN��� ���

For Problem II� the above inequalities apply mutatis mutandis one has to
replace � by ������ In particular we have

���	 k
�

�y
u� uI�kL����� � CN���

���	 k
�

�y
u� uI�kL���E� � CN�� lnN�

���

On the other hand� assuming that ���� ln�N � C� we now prove that

k
�

�x
u� uI�kL���� � CN��� ���

This inequality is obviously satis
ed by the smooth part G � GI of the inter�
polation error� so we need only prove ��� for P � P I �

In ��� we have

k
�P

�x
kL����� � C exp

�
�

��


����

�
� CN���

kPkL����� � C exp

�
�

��


����

�
� CN���

so an inverse estimate yields

k
�

�x
P � P I�kL����� � k

�P

�x
kL����� � k

�P I

�x
kL�����

� CN�� � CH�� kP IkL�����

� CN�� � CN kP IkL�����

� CN�� � CN kPkL�����

� CN��� ���

In �P � we can use the anisotropic estimate ���� Since

k
��P

�x�
k�L���P � � C� k

��P

�x �y
k�L���P � � C������

we invoke the mesh sizes ��� to obtain 
nally the estimate ����

��� The discretization error

For Problem I� Stynes and O Riordan ���	 derived the error estimate

jjjuN � ujjj��� � CN�� lnN� ���

���



We give a brief outline of the proof� The starting point is the ellipticity ���
of the bilinear form B combined with the error orthogonality ���� Applying
these to uN � uI � we obtain

� jjjuN � uI jjj���� � BuN � uI � uN � uI� � Bu� uI � uN � uI��

Using integration by parts of the convection term� the bilinear form B can be
transformed into

Bu� v� � �ru�rv�� u� b � rv� � !c u� v��

where !c �� c� r � b�� The di�usion and reaction parts can be estimated using
��� and ������ � ru� uI��ruN � uI�� � !c u� uI�� uN � uI�

��
� � ju� uI jH����juN � uI jH����

�k!ckL����ku� uIkL����kuN � uIkL����

� max�� k!ckL����� jjju� uI jjj���jjjuN � uI jjj���

� CN�� lnN jjjuN � uI jjj���� ���

Applying ��� and an inverse estimate� the convection part in �� is bounded
by �� u� uI � b � ruN � uI����

�� � C ku� uIkL����� kbkL�����

H�� kuN � uIkL�����

� CN�� jjjuN � uI jjj���� � ���

The inequality ��� holds true on the subdomain �� without the hypothesis
���� ln�N � C�� In �E we have�� u� uI � b � ruN � uI���E

�� � ku� uIkL���E� kbkL���E� k

ruN � uI�kL���E�

� C ku� uIkL���E� meas �E���� juN � uI jH���E�� ���

From ��� and meas �E���� � C���� ln���N it follows that�� u� uI � b � ruN � uI���E
�� � CN�� ln�N ln���N jjjuN � uI jjj���E � ���

The combination of ���� ��� and ��� yields the estimate ���� �

For Problem II� we have to modify the Stynes " O Riordan technique since
the transition from ��� to ��� is not possible here as meas �E���� � O���	��
Nevertheless� the estimate

�� b � ru� uI�� uN � uI�
�� �

���� b� �

�x
u� uI�� uN � uI�

����
� C k

�

�x
u� uI�kL����kuN � uIkL���� ���

���



can be applied to the convection term� Then a direct estimate� using ��� and
the inequality�� � ru� uI��ruN � u�� � c u� uI�� uN � u�

��
� Cjjju� uI jjj���jjjuN � uI jjj���

� C
�
���	N�� lnN �N��

�
jjjuN � uI jjj����

which is valid for ���� ln�N � C� leads to the result�

jjjuN � uI jjj��� � CN��� ���

Finally� we can formulate the following statement for the parabolic layer
problem�

Theorem �� Let assumptions � and � for Problem II be satis
ed and let uN
be the Galerkin approximation of the solution of the given problem using a
piecewise bilinear trial space on a Shishkin mesh� If ���� ln�N � C� then the
error estimate ���� is valid�

Remark �� In the case of an exponential layer� if we specify the transition
point by the formula 
 � 
��� � � lnN � then we obtain error terms of the form


�N
�� lnN �N��������

The choice 
� � � is therefore advisable� This is true also for parabolic layers
where the factor � in ��� allows a favorable estimate of the layer correction
����

Remark �� For Shishkin meshes the number of nodes is bounded in each
direction by

H�� � N � �H��� ���

so the estimate ��� can also be written in the form

jjjuN � uI jjj��� � CH�

Meshes with this property are called meshes of #yoghurt$ type in ���	� As we
show in the next section� there is no relationship between N and H as simple
as ��� for Gartland�type meshes� there the product HN increases albeit ex�
tremely slowly� as � become smaller see Section ����� so these meshes are not
uniformly of #yoghurt$ type�

�� Gartland�type meshes

���� Node distribution

For meshes of Gartland type� the 
ne mesh regions �E and �P and the layer
parts �E and �P coincide� that is� we choose


� � ��� 
� � ��� 
 � ��

���



The 
ne subdomains near the layers are therefore essentially wider than in the
case of Shishkin meshes�

Outside the layers i�e�� in ���� we use in both Problems a uniform equidis�
tant mesh with M �M elements� The mesh size can be estimated here by

H � maxhx�K � hy�K� �
�

M
� ���

In the layer parts� the aspect ratio of elements adjacent to the part of the
boundary � on which exponential or parabolic layers arise is equal to � and �����
respectively� It is thus of the same order as on Shishkin meshes� But the mesh
sizes perpendicular to the layer increase with the distance to � until the aspect
ratio becomes � at the transition to ��� This guarantees a smooth change
of mesh size in the whole domain �� Furthermore� the graded distribution of
elements in the layer part has a positive e�ect on the number of nodes used�

For Problem I� we use a distribution of elements in the layer part �� for
which the aspect ratio is de
ned by

hx�K
hy�K

� � exp

�
����� x	K�

��

�
� ���

Here the distance from the element K to the boundary x � �� at which the layer
contained in �� is located� is denoted by �� � x	K � In ��� we use an relation
analogous to ���� As the asymptotics for the parabolic layer are di�erent� for
Problem II in �P we de
ne

hy�K
hx�K

� ���� exp

� �� �y	K�

�����

�
� ���

A certain optimality of these meshes with respect to the interpolation error
of the boundary layer will be discussed in the next section see Remark �����

Remark �� Meshes of this type were 
rst used by Gartland ��	 in an analy�
sis of a compact 
nite�di�erence method for one�dimensional boundary value
problems� The interval ��� �	 was however subdivided by two points

x� � K� lnK�H�� x� � K� ln�����

which is di�erent from the de
nition of our mesh� The parameter K corre�
sponds to the order of the method�� In the so�called inner region ��� x�	 a graded
mesh was applied following ���� In the so�called transition region �x�� x�	� the
mesh sizes were de
ned by a geometric sequence� Outside these regions an
equidistant mesh was used�

Gartland introduced the transition region in order to ensure that the mesh
is locally quasi�uniform� This property is not needed in our analysis of the
Galerkin method�

The remainder of this section deals with the determination of the number
of elements in the layer parts �E and �P � Furthermore� we derive here a

���
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Figure �� Distribution of elements in a layer part

relation between the mesh size H and the total number of elements in �� This
information is needed in the subsequent error estimates�

The determination of the number of elements m in a layer part in the
direction perpendicular to the boundary � will follow from relations ��� and
���� In order to simplify the notation� we index the elements beginning from
the boundary � as shown in Figure �� For each element K�i�� we denote the
distance to the boundary by �i� and the #width$ of K by h�i�� Then the aspect
ratio of the element is de
ned by the recursive formula�

h�i�

�H
�
�i��� � �i�

�H
� �� exp

�
� �i�

���

�
� ���

where

� � �i� � � �
��

�
�� ln�����

The parameter � depends on the type of the boundary layer� in �� and �� we
have � � �� while in �P we have � � ���� In the above formula� the #length$
of the elements is denoted by �H cf� ���� �����

Let us now consider the 
rst m� � ���� �H� � �����M elements� The
mesh size h�i� increases with increasing �i�� so for all these elements it is greater
than h��� � �� �H � Hence the width of the 
rst m� elements exceeds

�� �� m� h��� �
��

�
���

���



j

j��P
i��

h�i��
�
for

� � � � � ���

m� � � � � � ���
�m� � �e� � ����� � ����	�

�m� � �e�e
�

� �����	 � ���	��

	m� � �e�e
�e�

� ��� � ��� � �����

�m�
�
�
� � ������

�m�
�
�
� � ��		�

m�
�
�
� � ������

�m�
�
�
� � ��� � ����

Table �� Total width of j elements within the layer part

The mesh size of the next m� elements m� � i 	 �m�� is

h�i� � h�m
�� � �� exp

�
���

���

�
�H � ��e� �H�

so the total width of these �m� elements is at least

�� �m� h�m
�� � �� � � e�� � �� e��

This procedure can be continued� The results are summarized in Table ��
The width of the layer part equals � � �� ln����� so one can conclude

from the entries in Table � that the number of elements perpendicular to the
layer is� for practical values of �� at most �m��� � ��� �H�� In order to state
this result precisely� we de
ne a function �� � IN � IR by

���� � �� ��k � �� � � e���k� for k 	 IN�

where n��� is de
ned as the greatest positive integer for which

��n���� � ln�����

Then we see that m � n���m�� For � � ��������� we obviously have n��� �
��� and in practice n��� can be regarded as bounded�

We can derive a lower bound for m by using the monotonic dependence of
the mesh size h�i� on the coordinate �i��


Z
�

�

h�
d �


Z
�

�
�� �H exp

�
� 

���

����

d �
�

� �H
�� ����

Because of the uniformity of the mesh in ��� we have

�

C
H � �H � CH�

The number of elements m in the layer part is thus bounded by

���



C ��� ���H�� � m � C ��n���H��� ���

The total number of elements used in Problem I can therefore be estimated by

C ��� ����H�� � NxNy � C ��� � n�����H�� ���

and for Problem II by

C ��� ���H�� �M Ny � C ��� � n����H��� ���

Finally� let us prove the following lemma which plays a role in the interpo�
lation error estimates in the next section�

Lemma �� Let the mesh sizes h�i� be de
ned by ���� Then the estimate

mX
i��

exp

�
�
� �i�

���

�
� C �H�� ���

is valid�

Proof� We use the technique already applied in determining the upper bound
for m� viz�� a step�by�step estimation for sections of m� elements� We obtain

mX
i��

exp

�
�
� �i�

���

�
�

�X
i��

exp

�
�
� �i�

���

�
�

m�
�

� � e�� � e��e
�

� e��e
�e�

� � � �
�
�

It can be easily shown that for � � � and � � ��� we have�
� � e�� � e��e

�

� e��e
�e�

� � � �
�

�
�

�

�
� � e�� � e��� � e��� � � � �

�
�

�

�

�

�� e��
�

�

�
�

Consequently�

mX
i��

exp

�
�
� �i�

���

�
�

�m�

�
�

�

� �H
� C �H��

is also valid� �

���� The interpolation error

In this section� we derive interpolation error estimates for Gartland�type meshes
that are analogous to those of Section ����

���



Theorem �� For Problem I� the interpolation error satis
es

ku� uIkL���� � CH�� ���

ju� uI jH�����

���� ju� uI jH���E�

�

�

CH�

CH�
���

ku� uIkL��D� � CH� measD����� ���

where D � ��
For Problem II� the estimates ��� and ��� remain valid� Instead of ����

we have

ju� uI jH�����

���	 ju� uI jH���P �

�

�

CH�

CH
���

and in particular

k
�

�x
u� uI�kL���� � CH� ���

Proof� The starting point for the proof of the interpolation estimates is� as for
Shishkin meshes� the decompositions �� and ��� Let us 
rst consider Problem
I and the interpolation error in the L� norm� The exact solution u is bounded
in ��� so the standard estimate

ku� uIkL����� � CH�

can be applied here� In ��� the inequality ��� is satis
ed in each element K�
Taking into account ��� and �� or

k
��E�

�xi�y��i
kL��K� � C��i exp

�
�
����� x	K

�

�
for i � �� �� ��

we obtain immediately

kE� �EI
�kL����� � CH��

Because G �E� �E� is bounded in ��� the inequality

ku� uIkL����� � CH� ���

is also satis
ed� Analogous results for the subdomains �� and �� 
nally yield
����

Let us now consider the interpolation error in the ��weighted H� seminorm�
Standard estimates remain valid in ��� It can be easily shown that� for each
element in ��� �

�x E� � EI
� � is the dominant derivative of the gradient in the

decomposition �� � According to ��� we have

k
��E�

�x�
k�L��K� � C��	 exp

�
�

��� ��� x	K
�

�
hx�KH�

k
��E�

�x �y
k�L��K� � C��� exp

�
�

��� ��� x	K
�

�
hx�KH�

���



Then the anisotropic interpolation estimate ��� and the aspect ratio ��� for
the element K together yield

k
�

�x
E� �EI

� �k�L��K� � C��� exp

�
�
�� ��� x	K

��

�
H	�

Summing over all elements of �� and using ���� we obtain

���� k
�

�x
E� �EI

� �kL����� � CH �

so
���� ju� uI jH����� � CH

is also true� Analogous estimates for �� and �� result in ����
The estimate of the interpolation error in the L� norm can be done in the

same way� For example� let us consider again the boundary layer correction E�

in the subdomain ��� We have here

kE� �EI
�k

�
L��K� � C measK�H	�

The sum over all elements yields

ku� uIkL����� � C meas ������H��

Thus ��� is valid�
The proofs of ��� and ��� for Problem II are analogous to those for Prob�

lem I� and the inequality ��� can be derived analogously to ���� The di�er�
ences in the ��weighting can be explained by the di�erent asymptotics of the
parabolic layer i�e�� now � � �����

For ���� we can start from the fact that u is bounded in ��� then ��� is
just a standard estimate� In �P we have

k
��P

�x�
k�L��K� � C hy�KH� k

��P

�x �y
k�L��K� � C��� exp

�
�

� �� �y	K
�

�
hy�KH�

On each element K� the anisotropic estimate ��� yields

k
�

�x
u�uI�kL��K� � C

�
H� � ��� exp

�
�

� �� �y	K
�

�
h�y�K

�
hy�KH � Chy�KH

��

Hence the sum over all elements in �P leads to

k
�

�x
u� uI�kL���P � � C� ln����H� � CH�

and ��� is therefore satis
ed� �

Remark �� It can be shown easily that the estimate ��� is valid not only
globally but is also sharp with respect to an arbitrary element K 	 T � In this
case� the constant C depends on neither the form aspect ratio� of the element
nor on the parameter �� This attractive property motivated us to investigate
such graded meshes in detail� Only afterwards did we discover a resemblance
to the meshes used by Gartland�

���



���� The discretization error

We use the same technique as in Section ��� for the proof of the error estimate�
In the ��weighted H� norm� we have as a starting point

� jjjuN � uI jjj���� � C jjju� uI jjj���jjjuN � uI jjj��� �
�� u� uI � b � ruN � uI��

�� �
For the convection term� it follows from ��� that in �E we have�� u� uI � b � ruN � uI���E

�� � ����� ku� uIkL���E� �
��� juN � uI jH���E�

� CH� ln���� jjjuN � uI jjj���E �

In ��� using an inverse estimate� we obtain�� u� uI � b � ruN � uI����

�� � ku� uIkL�����H
�� kuN � uIkL�����

� CH jjjuN � uI jjj���� �

Obviously
jjju� uI jjj��� � CH

is satis
ed� This yields immediately

jjjuN � uI jjj��� � CH� ���

Considering Problem II� we take the convection term in its original form�
which leads to

� jjjuN � uI jjj���� � C jjju� uI jjj���jjjuN � uI jjj��� �
�� b � ru� uI�� uN � uI�

�� �
While

jjju� uI jjj��� � C
�
���	H �H�

�
�

the convection term yields using ��� in ������ b � ru� uI�� uN � uI�
�� � CH jjjuN � uI jjj����

Altogether� we obtain the estimate ��� for Problem II with a parabolic layer�
The results are summarized in the following statement�

Theorem �� Let the assumptions �� � and � for Problem I and II be satis
ed
and let uN be the Galerkin approximation of the solution of the given problems
using a piecewise bilinear trial space on a Gartland�type mesh� Then the error
estimate ���� is valid�

�� Numerical Results

In this section� we verify that our error estimates hold true numerically for
some examples� In particular� we are interested in seeing whether or not there
are quantitative di�erences between the practical convergence behaviour of the
Galerkin method on Shishkin and Gartland�type meshes�

���



The 
rst test problem is of type I� The coe�cients of the di�erential equation
�� are

b �

�
�� y
�� x

�
� c � �� f � x �� x� � y �� y��

Homogeneous Dirichlet boundary conditions are given on the whole boundary�
so exponential layers appear along x � � and y � � see Figure ��� Far from

a� b�

0

1 0

1
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1

uH

x

y 0

1 0

1

0

1

uH

x

y

Figure �� Example I� A numerical solution of for � � � � ���� on a Shishkin
a� and a Gartland�type b� mesh

the layers� the exact solution converges to the solution of the reduced problem
u� � xy as �� ��

The second test problem is de
ned by

b �

�
�
�

�
� c � �� f � ��

The boundary conditions are

u � � at x � ��

u � exp

�
��

�

x �� x�

�
at y � ��

n � ru � � at x � � and y � ��

In this case there is a parabolic layer along the boundary y � � see Figure ���
The derivatives of the exponential function that describes the solution on the
boundary vanish at x � � and x � �� Our numerical tests have shown that
this property guarantees that no oscillations appear in the discrete solution at
the corners �� �� and �� �� of �� In other cases� corner singularities arise�

The meshes described in the previous sections for Problem II do not however
avoid a weak layer at x � �� The corresponding layer correction we denote it
by E�� in the asymptotic expansion of the exact solution can by estimated by
an inequality of the type�����i�jE�

�xi�yj

���� � C���i exp

�
�
���� x�

�

�
�

���



a� b�

0

1

0

1

0

1

uH

y

x

0

1

0

1

0

1

uH

y

x

Figure �� Example II� A numerical solution of for � � ���� on a Shishkin a�
and a Gartland�type b� mesh

The width of the layer part is then equal to

�� �
�

��
� ln�����

In order to approximate the solution as exactly as possible� we introduce a

ne mesh on a strip in the vicinity of the out�ow boundary� For the Shishkin
mesh� we set


 � �
�

��
� lnN�

subdivide � by the lines x � � � 
 � and y � � � 
 see ���� and de
ne the
triangulation in each of these subdomains by a equidistant mesh consisting of
N�� � N�� elements� The modi
cation of the Gartland�type mesh is a little
more complicated� In this case we apply a graded mesh near the boundary
x � �� It is constructed in such a way that the aspect ratio of the elements is
equal to

hx�K
hy�K

� ���� exp

�
����� x	K

��

�
�

For further details see ��	�
The Galerkin 
nite element method has been proved to be uniformly conver�

gent in the ��weighted norm for both types of meshes considered� This pleasant
property does not inevitably mean� however� that the resulting algebraic sys�
tems of equations are easy to solve� In fact� no robust convergence behavior
could be established with standard iterative methods for non�symmetric sys�
tems such as GMRES or BiCGSTAB� In order to avoid the use of direct solvers�
we have applied the following defect correction method�

BGLSu
���
N � vN � � F vN ��

BGLSu
�i���
N � u

�i�
N � vN � � F vN ��Bu

�i�
N � vN �� i � �� �� � � � �

���
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Figure �� Example I� Convergence behavior on a Shishkin �� and a Gart�
land�type �� mesh

The bilinear form BGLS corresponds to the Galerkin%least�squares 
nite ele�
ment method which was analyzed for Gartland�type meshes in ��	� The systems
of equations obtained by this stable discretization can be solved by standard
iterative methods� We 
nd that a combination of the BiCGSTAB method and
SSOR preconditioning is quite e�cient for Problem I� On the other hand� GM�
RES��� seems to be more suitable for Problem II� The stopping criterion for
both solvers was de
ned in such a way that the error of the iterative solution
can be neglected in comparison with the discretization error�
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Figure 	� Example II� Convergence behavior on a Shishkin �� and a Gart�
land�type �� mesh

The discretization error was computed in our numerical experiments using
the so�called #double�mesh principle$� but we discovered that a 
ne mesh gen�
erated by bisection of mesh size of the original mesh was not 
ne enough for a
precise approximation of the exact solution� Consequently we applied double
re
nements in constructing the re
ned mesh� The discretization error was then
computed as the di�erence between the discrete solution uH obtained on the
original mesh and the solution uIH�	 from the re
ned mesh� where the solution

uIH�	 was projected into the trial space of the original mesh�

���



Shishkin mesh

H NxNy kuH � uI
H�	

kL��
� r jjjuH � uI
H�	

jjj��
 r

�������e��� ��� �������e��� �������e���
���	���e��� ���� ����	e��� ��	�� ���	���e��� ���
����	��e��� 	��� ������e��� ��	�� 	�	����e��� ��	��

Gartland�type mesh

H NxNy kuH � uI
H�	

kL��
� r jjjuH � uI
H�	

jjj��
 r

���	���e��� 	�� �������e��� ���	��e���
���	���e��� ���� �������e��� ����	 ��	����e��� ����
������	e��� 	�� �������e��	 ����� ���	���e��	 �����

Table �� Example I� Discretization error for � � ����

Shishkin mesh

H NxNy kuH � uI
H�	

kL��
� r jjjuH � uI
H�	

jjj��
 r

�������e��� ��� 	������e��� �������e���
���	���e��� ���� ������e��� ���	� �����e��	 �����
����	��e��� 	��� �����	�e��� ��	� ����	��e��	 �����

Gartland�type mesh

H NxNy kuH � uI
H�	

kL��
� r jjjuH � uI
H�	

jjj��
 r

���	���e��� ��� 	��	���e��� �������e��	
���	���e��� ��� �����	�e��� ����� ������e��� ��		�
����	��e��� �	�� ��	��	�e��	 ���	� ����	�e��� ����

Table �� Example II� Discretization error for � � ����

We have analyzed the error in the L� norm and the ��weighted H� norm�
Results for � � ���� and various mesh sizes H as well as the numerical con�
vergence rates

r �
�

ln �
ln

	
kuH � uIH�	k���

ku�H � uIH��k���



and r �

�

ln �
ln

	
jjjuH � uIH�	jjj���

jjju�H � uIH��jjj���




are listed in Tables � and ��
In our numerical tests� we have also veri
ed that the Galerkin method is

in practice uniformly convergent with respect to the parameter �� The con�
vergence behaviour for � � ����� ����� ���� and ����� shown in graphs in
Figures � and � con
rms this property�
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