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This paper deals with the Van der Pol relaxation oscillator with a large sinusoidal forcing term. By using singular 
perturbation techniques asymptotic solutions of such a system are constructed. These asymptotic approximations are locally 
valid and may take the form of a two time scale expansion in one region and a boundary layer type of solution in a next region. 
Integration constants are determined by averaging and matching conditions. From these local solutions a difference equation is 
constructed. There is an equivalence between solutions of the difference equation being an iterated mapping on a compact 
interval and solutions of the system itself. This equivalence makes it possible to analyze subharmonics and chaotic type of 
solutions to the full extent. As a result of this we find domains in the parameter space, where regular subharmonics exist. These 
domains overlap so that for some parameter values different subharmonics coexist. For parameter values in this range chaotic 
type of solutions are found as well. They are described by using concepts of symbolic dynamics. 

1. Introduction 

Recent studies of difference equations [14, 18, 
25] have revealed unexpected phenomena which in 
literature are characterized by the term "chaotic". 
Some of these equations are meant to model bio­
logical phenomena such as the annual change in 
densities of biological populations. It has been 
found that differential equation models with state 
variables depending continuously on time may too 
exhibit chaotic behavior. The Lorenz equations, a 
"simple" model for the onset of turbulence in the 
context of meteorological problems, is a well­
known example of such a system, see [17, 21]. It is 
understood that this system contains a so-called 
strange attractor. 

In electronic circuits it has been observed that 
periodically forced nonlinear oscillators may be­
have chaotically in certain parameter ranges [ 4, 
16]. In this paper we carry out an asymptotic 
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analysis of such a system, the forced Van der Pol 
oscillator, 

d 2x 2 dx 
- 2 +P(x -1)-d +x=Pb(v)kcoskt, 
dt t 

b(P) =a+ /3/P, 0 <a< 2/3, (1.1) 

for large values of P. Eventually, we will construct 
an interval mapping that contains all necessary 
quantitative and qualitative information for de­
scribing the possible solutions of this system. Be­
sides the well-known stable solutions of period 
T= 2'1T(2n -1)/k, also irregular types of solu­
tions are analyzed. Existence of such solutions was 
expected by Littlewood [15] and made plausible by 
Levinson [13] in a study of a related piece-wise 
linear equation. The horse shoe mapping created 
by Smale [23, 24] turned out to be an important 
tool in establishing the existence of these irregular 
solutions. Levi [11, 12] used this concept and 
symbolic dynamics (see also Guckenheimer [10]) 
in his study of a modified version of (1.1) which 
comes close to the piece-wise linear variant of 
Levinson. Our results agree qualitatively with those 
of Levi. Furthermore, (1.1) has been solved 
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numerically by Flaherty and Hoppensteadt [3]. A 
comparison shows that there is also a good agree­
ment between the outcome of their work and that 
of our asymptotic investigation. 

In section 2 a qualitative description of the 
solutions of (1.1) is given. Most of it is based on 
the work of Levi. In section 3 we derive matched 
local asymptotic solutions for the regular sub­
harmonic solutions of (1.1). Furthermore, we con­
struct domains Dn in the b, v-plane, where the 
conditions for the existence of a formal asymptotic 
solution of period T= 2w(2n - 1)/k are satisfied. 
In section 4 the same asymptotic method is used 
for analyzing irregular solutions, which, in 
Littlewood's terminology, exhibit dips and slices. 
We also construct the interval mapping P. There 
exists an equivalence relation between the solu­
tions of (1.1) and the iterates of the mapping P. In 
section 5 the properties of P are analyzed in 
detail. Using symbolic dynamics we are in the 
position to handle also the irregular solutions. 
Finally, in section 5.4 we numerically trace a sta­
ble irregular periodic solution. 

2. The annulus mapping and symbolic dynamics 

2.1. Properties of the Poincare mapping 

Following Levi [11 ], we consider (1.1) in the 
form of a system of two first order differential 
equations 

x = P(y-1/3x3 + x), 

y = -x/v+ bkcoskt, 

and introduce the Poincare mapping D: 

(2.la) 

(2.lb) 

D(x(O), y(O)) = (x(2w/k ), y(2w/k )) . (2.2) 

It can be shown that a properly chosen annulus A 
in the x, y-plane is mapped into an annulus N 
under Dm form sufficiently large with N having a 
thickness l9( exp(-cv2 )) near the branches of y = 

1/3x3 - x and of order <!J(v- 112 ) at the horizontal 

parts where it jumps from one branch to the other, 
see fig. 1. Taking iterates at times t = cp + 2'1Tj/k, 
j = 1, 2, . . . we find an annulus shifted downwards. 
At cp =.,, /k this shift is at its maximum. Then the 
annulus A' is found from the present one by 
reflection with respect to the origin. 

Within the annulus A' one may cut out a small 
part R such that for alls= (x, y) EA, Dis e R for 
certain j EN. Note that there is even an infinite 
sequence jk, k = 1, 2, ... with Dhs E R. Therefore 
it is sufficient to study the mapping P: R ~ R, 
where Ps =Dis with j being the first integer for 
which Dis ER. By taking D(s) = s for s ER we 
obtain a continuous mapping P on R. Identifica­
tion of the upper and lower sides of R makes R an 
annulus. Note that no points in R correspond with 
each other under P. Thus, the study of the Poin­
care mapping D is reduced to the analysis of the 
annulus mapping P: R ~ R. Because of the sym­
metry with respect to the origin there is a same 
area R' in the opposite quadrant of the x, y-plane. 
Clearly, it is sufficient to study the mapping P: R 
~R'asP=PoP. 

Fig. 1. Contraction of an annulus by repeated mappings D. 
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2.2. A circle mapping 

In a first approach we ignore the thickness of R 
and interpret p as a circle mapping from S1 to S1• 

Graphically, P behaves qualitatively as follows 
(see fig. 2). A smaJl arc .1 of order l!l(v- 1 ) of S1 is 
stretched by P to, say, 1.5 times the length of S1, 

while the remaining part S1 \.1 is deformed simply 
by closing the image of .1. As we will find out, an 
increase of the forcing b means a clockwise rota­
tion of the image P(Ll). This immediately leads to 
the presentation in fig. 3, where for two different 
values of b we have given the graph of P. The two 
cases A and B correspond to mappings P with 
quite different properties. Levi [11] makes these 
differences visible in the associated graphs of the 
annulus mapping P with R being essentially an 
annulus and not a circle. 

2.3. The annulus mapping 

In fig. 4a we depicted the simple configuration 
of one stable fixed point p and an unstable saddle 
point z for the mapping P. By rotation we arrive 

a. b 

oo 
Fig. 2. Circle mapping. a) Case A; b) case B. 

/ --"--

0 l'----1H--~,, 21T 
/ 

/ 
/ 

Fig. 3. Graphs of the two cases. 

at the more complicated configuration of fig. 4b: it 
has two stable fixed points p1, p2 and two unstable 
saddle point type of fixed points z1 and z2• There 
is still another set of points C, which cannot 
decide to which basin of attractors they belong. C 
is a Cantor set of measure zero, which is invariant 
under P. In fact C contains a nontrivial "attractor" 
of the type known as the horseshoe, see Smale 
[23, 24]. Symbolic dynamics (see e.g. [22]) gives a 
description of P restricted to C, see Moser [19]. 
We set 

(2.3a) 

see fig. 4b, and define V0, V1 and V3 by 

P(v;)=H;, i=0,1,3 (2.3b) 

Furthermore, let H 2 = V0 n P(.Gl), then V2 is de­
fined by 

(2.3c) 

We now introduce the transition matrix M by 

MiJ = 0, if v; n H1 = 0 

and 

MiJ = 1 otherwise, 

a 

Fig. 4. The annulus mapping. (a) Case A; (b) case B. 
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so 

0 1 1 1 

M= 0 1 1 1 
1 0 0 0 

(2.4) 

0 1 1 1 

2.4. The use of symbolic dynamics 

The basic idea of symbolic dynamics is to intro­
duce a space 2 of all possible biinfinite strings of a 
given set of symbols. Referring to the indices of Vi 
and Hi of section 2.3 we take the symbols 0, 1, 2 
and 3: 

2= {O,l,2,3}z. 

Thus, an element a= ( ... , a_ 1, a 0 ,a1, ... ) E 2 
may read 

... 01121322110 .... 

By posing restrictions upon the type of symbol 
that follows a given symbol one introduces a sub­
space of 2: 

2M= {a E 2\Maa = 1}. 
J 1+ l 

Let M be given by (2.4). The mapping P: C -7 C 
is topologically conjugate with the shift a: 2 M"""' 

2 M• where <I satisfies 

[a(a)];=a;+l• iEl. 

Thus, there is a one to one corresponding () be­
tween C and 2M: 

p 
c~c 

o l lo 
a 

2~2 
M M 

2.5. Some remarks about the annulus mapping 

Returning to the annulus (or circle) mapping we 
observe the following dependence of this mapping 
upon b. There is a subdivision of the b-interval 
(0, 2/3) into subintervals Ak and Bk separated by 
small intervals gk, such that for b E Ak P acts as 
given in fig. 4a (or fig. 2a), while for b E Bk the 
behavior can be understood from fig. 4b (or fig. 
2b ). In summary we conclude that for b E A k there 
is only one stable solution and except for one 
saddle point all solutions tend to this stable one. 
For b E Bk two stable solutions exist. Except for a 
Cantor set of measure zero all solutions tend to 
one of the attractors. 

As b crosses a separation interval gk there is a 
sequence of bifurcations and the remarkable phe­
nomenon occurs that for uncountably many b E gk 
there exist infinitely many stable fixed points of P 
or of its iterates (see e.g. Newhouse and Palis [20]). 
In trying to understand this complicated bifurca­
tion pattern we need more information about the 
mapping P. Intuitively, it is felt that these bifurca­
tions are related with the disappearance of inter­
sections V; n Hj, see fig. 4b, and that therefore 
certain finite sequences in 2 M are forbidden. 

It is obvious that an exact description of the 
mapping P on the interval as sketched in fig. 3 is 
the first step in the full understanding of the 
bifurcation pattern. It is our goal to give a 
complete description of this mapping and its de­
pendence upon the parameters. In the following 
sections we will construct matched local asymp­
totic solutions of (1.1), which eventually lead to a 
mapping on an interval with the same properties 
as P. 

Finally, it is noted that the study of interval 
mappings has become a field of growing impor­
tance in the analysis of dynamical systems, see e.g. 
[20]. Various bifurcation problems have been 
solved by using the concept of mapping on an 
interval, but there still remain many questions 
about the exact description of families of interval 
mappings. In particular we mention the chaotic 
behavior of mappings within certain parameter 
ranges. 
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3. Matched local asymptotic solutions 

3.1. Outline of the method 

A solution of (1.1) has a behavior that is char­
acteristic for singular perturbation problems. Lo­
cally, the solution exhibits a boundary layer type 
of action like one meets in problems of fluid 
mechanics. On the other hand it passes a large 
time interval, where a two time scales expansion 
can be applied. Finally, we distinguish a sequence 
of points, determined by the intersections with the 
lines x = ± 1, where the local behavior of the 
solutions is analyzed by a stretching procedure in 
both the dependent and independent variable. For 
a complete picture of the different regions which 
are successively crossed by the solution we refer to 
fig. 5. The regions Am, Bm, C and A indicated in 
this figure will be intrinsically defined by the local 
asymptotic behaviour of the solution of (1.1). The 
method of matched asymptotic expansions (see 
e.g. [1]) yields formal local asymptotic solutions in 
which the integration constants are determined by 
averaging conditions and by matching pairs of 
local solutions of adjacent regions. These compu­
tations have been carried out in [6, 7]. In the next 
sections we summarize the results. It is emphasized 
that this approach is formal and that, for the type 
of problem we are dealing with, there is no proof 
of correctness that justifies this approach. How­
ever, the present method results in a clear qualita­
tive picture of the solution and, in addition, 
provides us with quantitative information about 
the existence of subharmonic and other solutions. 
Comparing this outcome with analytical and 
numerical results for the same or related problems 
[2, 11], we observe a good agreement. Furthermore, 
matching methods require a high degree of inter­
nal consistency. That is: two neighboring local 
solutions match, if they exhibit the same behaviour 
in a relatively broad domain of overlap. Thus, 
there always are checks on the correctness of the 
solutions. This type of consistency we also meet in 
the final result: we analyse here the case 0 < a < 
2/3 and derive conditions for f3 in order to have a 

2 

x A 

t-

c 

Fig. 5. Regions for local asymptotic solutions. 

subharmonic of order n. In the limit a~ 0 and 
a ~ 2/3 these conditions need to match the ones 
obtained from studying the special cases a = 0 and 
a= 2/3, see [5, 8). As will be seen this turns out to 
be correct indeed. 

3.2. The regions Am and Bm 

A region Am, where the solution has a typical 
local asymptotic behaviour, is defined as follows. 

Definition 3.1. A solution of (1.1) is said to be in 
region Am of the x, !-plane if for 

tm + Lv-1/2 < t < tm+I - Lv-112, 

tm = ( -7T/2 + 27Tm)/k, 

with L arbitrarily large (but independent of v) the 
inequality lx(t)I > 1 holds, and if, moreover 

and 

Let us first analyse the local asymptotic solution 
for a region Am above the t-axis with m a positive 
integer, see fig. 5. It is assumed that the solution 



200 . J. Grasman et al./ The forced Van der Pol relaxation oscillator 

can be expanded as 

(3.1) 

Substitution in (1.1) yields after grouping of terms 

of order (!)(v) and (!7(1) the following equations for 

xmi> i = 1,2, 

(3.2) 

(3.3) 

or after integration 

1/3x!o - Xmo = l\'.Sin kt + CJm), (3.4) 

( 2 1) dxmo jt (-) -
Xmo - Xml = - -at - Xmo t dt 

lm-1 

+ f3 sin kt + c{m>. (3.5) 

Since for t i tm x approaches the value l, we have 

CJ ml= a - 2/3 and asymptotically 

(3.6) 

with 

K = -la2 +(-c(ml+a+211'1) 
m 2 1 ~ ' 

4 
a= hak 2 , 

(3.7a, b) 

xm0 (t) = 2cos [tarccos { -io:sinkt + -io:-1} 

2 ·] +J'll'} ' (3.8a,b) 

where j= 0. 
Next we deal with the region Bm. 

Definition 3.2. The solution of (1.1) is said to be 

region Bm, if for 

tm - Lv- 112 < t < tm + L11- 112 , 

t m = ( - 11' /2 + 2 rr m) / k, 

with L arbitrary there exists a constant M such 

that l!x(t)I - 11 < Mv- 112• 

From (3.6) we conclude that one may expect a 

different asymptotic behaviour of the solution in a 

,,- 112-neighborhood of (x, t) = (1, tm). We, there­

fore, introduce the local variable g = (t - tm)v112 

and expand x as follows: 

Substitution in (1.1) yields for the leading terms of 
(!)( pl/2) 

(3.10) 

Furthermore, Vmo should match (3.6) or 

Vm 0 a)= -~a 2g+Km(a2gr1, asg--7 -oo. 

(3.11) 

After carrying out a transformation of type Vmo = 

Z '/ Z, we find the following solution for (3.10) 
and (3.11): 

Vmo(g) = -aDKm/a2(-a~)/DKm/a2(-ag), 

(3.12) 

where DP(x) denotes the parabolic cylinder func­

tion of order p. 
Let us assume that Km is negative, then the 

parabolic cylinder function DKm/a2 has no zeroes 

and Vmo remains regular. The asymptotic solution 
will lose its validity for g --7 oo, as 

(3.13) 

Now the solution enters the region Am+l• where 

(3.1)-(3.8) hold with m replaced by m + 1. For 
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t t t m' this solution behaves as 

Xm+ 1(t)"" 1+1a2(t- tm) 

-Km+1{a 2 (t-tm)v}- 1• (3.14) 

Consequently, the matching conditions result m 

the recursive relation 

(3.15) 

Similar matched local solutions are found for 
the regions Am and Bm below the x-axis with 
m = 1/2, -1/2, - 3/2, .... For such regions Am 
(3.8b) holds with j = l. Clearly, there exists a 
value of m for which 0 <Km< 21Tl. Without loss 
of generality this may be for m = 1/2 below the 
t-axis, see fig. 5. The same occurs above the t-axis 
the first time for m = n ~ 1 with n integer. 

For Kn> 0 the parabolic cylinder function has 
one or more zeros. Let g0 be the first zero one 
meets coming from - oo. For~ i g0 we have 

vn(n.:::::(~-~0)- 1 

+ ta 2 ( ta 2~5 - Kn - t )( ~ - ~o) (3.16) 

and the solution leaves there the v- 112-neighbor­
hood of (x, t) = (1, tn). A similar behaviour is 
found in the region B 112 . 

There is a strong similarity between the map­
ping Q(K) of (3.15) and D(x, y) of (2.2). As 
explained in section 2.1 Levi derived from D a 
mapping P: R ~ R', where R is a strip in the 
phase plane and R' its reflection with respect to 
the origin. Likewise we will construct a mapping 
P( K) of this interval [O, 2111] into itself. Starting 
in region B112 with K 112 within this interval we 
look for the smallest integer n ~ 1 such that Kn 
returns in this interval, then P(K112 ) =Kn. In 
order to derive an explicit expression for P( K) we 
have to construct matched local solutions for the 
remaining regions C and A. 

3.3. The region C 

At t=t112 +~0v- 112 the solution leaves the 
B11rregion and enters the boundary layer re­
gion C. 

Definition 3. 3. If for some t = t c the solution of 
(1.1) satisfies x(t J = 0, then it is said to be in 
region C for tc - Lv- 1 < t < tc + Lv- 1 with L ar­
bitrary (but independent of v). 

We introduce the local variable 

- ( t t. -1/2) 11- -t1;2-sov v. (3.17) 

Assuming that the solution can be expanded as 

x(t,v)= Jt0(11)+v- 1W1 (11)+v- 2Wz(1J)+ ···, 

(3.18) 

we arrive at a recurrent system of equations for 
w;, 

a2 wo ( 2 ) dW0 --+ w, -l -=0 
d 112 0 d 1) ' 

(3.19) 

a2 w1 ( 2 ) aw1 dJtO 
--2 + w0 -l -d +2JtOW1-d =O, .... 

d11 1) 1) 

(3.20) 

According to (3.16), the local solution (3.18) 
matches the asymptotic solution for region B112, if 
for 1J ~ - co 

(3.2la) 

(3.2lb) 

Condition (3.2la) is satisfied by solutions of (3.19) 
of the form 

1 1 { W0 -2 } _ 1 _ Wo + 3 In _ 1 _ Wo = -11 + constant, 

(3.22) 
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while because of (3.21b) the integrated equation 

(3.20) must have the form 

dW1 ( 2 ) 2(1 21:2 1) d1j + W0 - 1 W1 = -a 4a ~o - K 112 - 2 • 

(3.23) 

As 1J ~ oo the boundary layer region is left at 

exponential rate 

3.4. The two variable expansion for region A 

In the region A the solution has an oscillatory 

with a solution above the line x = 1 

x 0 ( t, T) = 2 cos [ t arc cos {~a sin kt + ~ C0 ( T)}] . 

(3 .28) 

For the second equation we obtain 

o2x 0 ( 2 )( Bx0 Bx1 ) Bx0 -af2 + Xo - 1 OT + Tt + 2xax1 Tt + Xo 

= {3kcoskt (3.29) 

or 

( 2 ) _ Bx0 J 1 ( _ _ 
x 0 - 1 x 1 - -Tt- G0 t, T) dt 

11;2 

+ {3 sin kt + C1 ('r), (3 .30) 

behaviour in the 0(1) time scale and its average with 

value decreases slowly in the @(v) scale. 

Definition 3.4. Let at time t = t* the solution of 

(1.1) satisfy Jx(t*)I = 2 + @(v- 1) then x(t) is said 

to be in region A for t;;::: t* until lx(t)I s 1 + 
Lv- 1! 2 for L arbitrarily large but independent 

Of II. 

Using the two variable expansion procedure, as 

explained in Cole [1], we write the solution for the 

region A above the t-axis as 

x=x0(t,T)+v- 1x 1(t,T)+v- 2x2(t,T)+ ···, 

(3.25) 

with T = (t - t112 )/v. The coefficients satisfy a re­

current system of differential equations. The first 

one is 

(3.26) 

or 

tx6- x 0 =a sin kt + C0 ( T ), (3.27) 

(3 .31) 

In order to remove secular terms in x 1 we set the 

following averaging condition: 

1tv+2'TT/k 
G0 (t,T)dt=0, 

TP 

(3.32) 

or 

acQ - -k 1TV+2rrjk ( ) -8---2 x 0 t,T dt. 
T 7T TV 

(3.33) 

Since at time t = t112 the solution starts at the 

value x = 2, C0(0) takes the value 2/3 - a. It will 

leave the region A at a time t m = ( -77 /2 + 27Tm )/k 
as then the line x = 1 is approached. This takes 

place as C0 ( 7') reaches the value - 2/3 + a. From 

(3.33) it follows that in the slow time scale this will 
be for 

( ) 27T !2/3-a { (2rr/k }-1 
T a = k lr x 0 (t; C0 ) dt dC0 • 

-2/3+a 0 

(3.34) 
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It is easily verified that indeed T(O) = 3 /2 - In 2 
and 1'(2/3) = 0. Finally, we derive from the aver­
aging condition for x 2(t, T) and explicitly solvable 
equation for C1(r). Substituting t=t112 +~0 11- 1 12 

in (3.25) we obtain 

(3.35) 

The equation for C1 yields 

(3.36a) 

p( a)= }5_ JTexp { }5_ jr [fv+2'1T/k_?_l _dtdf} 
27T 0 27T Ojfv Xi)-1 

1rv+2w/k sin kt 
X - 2 -dtdT, 

rv x 0 - 1 
(3.36b) 

( ) { -k 1Tlrv+2'1T/k 1 d d } q a =exp - - 7 - t T • 
27T 0 TV Xi) - 1 

(3.36c) 

When the solution approaches a 11- 112-neigh­
borhood of (x, t) = (1, tm) the expansion (3.25) 
behaves asymptotically as 

X""'l-!a 2(t-tm)+{-!a 2+,8-C1(T) 

- C0 ( T)( t m - t112 - Tv) }{ a 2 ( t - t m) 11} - l. 

(3.37) 

From (3.6) we conclude that the solution for re­
gion A matches the ones from regions An_ m for m 
and n of order @(11) giving 

c{ml - I= C1 ( T) + CQ( T)( t - t112 - Tv) (3.38) 

or as/= -27TCQ(T)/k, 

qm)=C1(T)-(m-~)/ +(27r/k)- 1!Tv. 

(3.39) 

21TI~----~ 

t 
PK 

0 K­
a 

/ 
/ 

/ 
/ 

21TI 

21TI 

' PK 

0 K- 21TI 
b 

Fig. 6. The interval mapping P( K). a) Case An; b) case Bn. 

3.5. Symmetric solutions of period T = 27T(2n -
l)/k 

The construction of a symmetric periodic solu­
tion of period T = 27T(2n - l)/k with x(t) = 

-x(t-7T(2n-1)/k) is completed as follows. 
From the relations (3.7a), (3.15), (3.35), (3.36) and 
(3.8) we derive the mapping from K 112 with range 
(0, 27T/) to Kn within the same range: Kn= 
P(K112 ). It turns out to be a simple linear or 
piece-wise linear relation, see fig. 6, 

P(K) = -qK + R(n(K)), (3.40a) 

R = (1 + q + pq )f3- !a2 (1+q)+27r(n - !)I 

-k!Tv, (3.40b) 

with n such that P(K) remains within the range 
(0,27T/). The functions /(a) and T(a) are sketched 
in fig. 7. Fig. 8 depicts the auxiliary functions p (a) 

.8 2 

T 

0 ex- 2/3 

Fig. 7. The period T(a) and characteristic function /(a). 
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.1 

0 

t 
q 

Fig. 8. The auxiliary functions p(a) and q(a). 

and q(a). As p increases the line P(K) shifts 
upwards and as it reaches the upper boundary we 
lower n by 1. It is possible to compute the P-inter­
vals (fti, Pn) where P has a fixed point that corre­
sponds with a solution of period T = 2'1T(2n -

t 
I /v 

.100 

.075 

.050 

.025 

l)/k. These intervals overlap, 

(3.41) 

Thus, there exist P-intervals with one fixed point 
(case An) and with two fixed points (case Bn). In 
fig. 9 we give the domain Dn in the b, v-plane with 
a solution of period T= 2'1T(2n -1). The following 
procedure has been carried out to find these do­
mains for k = 1, n = 1, 2, 3 and 4. Step 1: a value 
of JI is fixed. Step 2: a is determined such that 
T(a)v = 2'1T(n - !). Step 3: the fi-interval is com­
puted for which P has a fixed point. Step 4: the 
line JI= constant is within the domain Dn for 
b =a+ P/v with p within the computed interval. 
The procedure is repeated for different values of v. 
The domains Dn agree quite well with the corre­
sponding domains by Flaherty and Hoppensteadt 
[3]. For b < 1/v we used the asymptotic solution 
of [8]. 

.8 
b -+ 

Fig. 9. The domains !Jn in the parameter plane with subharmonics of period T= 2w(2n -1). 
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4. Irregular solutions: dips and slices 

4.1. The additional local asymptotic solutions 

When K112 or Kn is near one of the end points 
of the interval (0,271'/) the solution will follow a 
completely different path before entering a type A 
region. In fig. 10 we explore this phenomenon by 

0 ... 
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solving (1.1) numerically for two sets of starting 
values that agree up to the fifth decimal. Fig. 11 
gives the regions, where the solution has its own 
local asymptotic behaviour. We consider the case 
where 

K 112 = a exp ( - d v) , (4.1) 

with a= ± 1. This choice of K112 will produce a 

-------­ ~~~ 
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Fig. 10. Two numerical solutions for a=l/3, {3=0, v=lS and x'(?T/2)= -0.0521795, x('IT/2)=1.8711914 (dip). x(?T/2)= 
1.8711901 (slice). 
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Fig. ll. Regions for local asymptotic solutions in the case of dips and slices. a) Slice; b) dip. 
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local behaviour near the line x = -1, which we 
indicate by dips and slices of the solution, see 
fig. 11. 

If for a moment we take a= 0, then the expan­
sion (3.1) of regions A112 remains regular and at 
t = t112 the solution smoothly switches to a differ­
ent expansion with leading term 

x 312 (t) = 2cos [ tarccos(~asin kt +~a - 1) 

+177] (4.2) 

being the second branch of (3.4). This solution will 
hold asymptotically for the region 2 312 with t > 

11;2· 
We will deal with a regular asymptotic solution 

x(t; P) Of the form (3.1), which has tWO distinct 
representations: one for t < t112 being (3.1)-(3.5) 
with m = ! and cp12> such that K112 = 0, and 
another one for t > t112 given by (3.1) with m = 

3/2, see (4.2). The equation for x 312,1(t) is of type 
(3.5) with 

C(3/2l _ ,,, _ la2 
Zl - JJ 2 • 

This regular solution is perturbed as follows: 

(4.3) 

Substitution in (I.I) yields for the leading terms 
in V 

d2V d -+v-{(x2 -l)V}=O 
dt 2 dt . 

Using (3.6) we obtain the condition 

which is satisfied by 

V=O'exp{-v(A(t)+d)}[v'1T/(2a2 v) 

-r exp { vA(i) }di], 
f1;2 

A(t)= r {x2(i;O)-l}di. 
11;2 

(4.4) 

( 4.5a) 

( 4.5b) 

( 4.5c) 

This asymptotic solution breaks down as t ap­
proaches t * satisfying 

A(t*) =-d. (4.6) 

Assuming that t* < i312 we have to introduce 
another boundary layer type of solution for the 
region C: 

x=JVo(11)+v- 1W1(11)+ ···, 11=(t-t*)v, 

(4.7) 

with W0 satisfying 

ln/?T /(2a 2v) 
= -11 + 2 1 , 

z* -
(4.8) 

in which z * = x(t*; 0) and a* and x * are the two 
other roots of the algebraic equation 

1/3JVa3 - W0 = l/3z i - z *' (4.9) 

with a*< -1 and x* > 1. For W1 we have 

W{ + ( W02 - 1) W1 = a11k cos kt* 

-f* .X( t; O)dt + /3 sin kt* - /3 + !a2 • ( 4.10) 
t1;2 

Taking a = 1 we find that W0 -+ x * as 1/ -+ oo 
and matches the solution of region A, see (3.25), if 

f t* 
C10 = -/3+!a2 - x(t;O)dt. 

11;2 

(4.11) 

For a= -1, Wa tends to the other stable root 
a* < -1 and matches the asymptotic solution for 
region A 312 given by x = a(t; v) satisfying 
(3.1)-(3.8) with j = 1, CJ312> = - a+ 3 /2 and 

cp12>= c¥(2>+ f*.x(t;O)dt. 
1112 

(4.12) 
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-TTI K- TTI 00 

a b 

Fig. 12. a) The discontinuous (outer) expression for P(K); b) the local (inner) expression for P(K) with K= aexp(-Pd). 

In the B312-region a solution of type (3.9)-(3.14) 
holds with 

K312= - f'".x(t;O)dt- J:312a(t;O)dt. 
11;2 I 

(4.13) 

After crossing the unstable interval lxl < 1, the 
system arrives at the region A, where it matches 
(3.25) because of (3.35) with K112 replaced by 
K 312 . In [7] the case where d is sufficiently large 
(including a = 0) has been studied in the B312-

region. We do not present this result here as it 
does not affect the matching relations given above. 

4.2. The interval mapping P( K) 

In order to analyse the mapping P(K) with 
K=lV(exp(v)) we shift the interval to (-711,TT!) 

so that K = 0 becomes an internal point. Bringing 
all matching relations together, we express Kn in 
K112 for K112 = ±exp(-dv) with d= lV(l): 

Kn=P(K112)= C±(t*)+R(n(K112)), 

(4.14) 

with 

c+(t*)=qf''" x(t;O)dt-1k(t*-t112 ), (4.15) 
11;2 

c-(t*)=q{f'".x(t;O)dt+ J:312a(t;O)dt} 
11;2 t 

-27Tl, (4.16) 

where t* = t*(K112 ) is given by (4.1) and (4.6) 
and R(n(K112 )) by (3.40b). It is noted that this 
mapping P(K) matches (3.4) for K leaving the 
exponentially small neighborhood of K = 0, see 
fig. 12. 

A composite asymptotic expression for the map­
ping P holding uniformly for [ - 7r I, 'IT I] is con­
structed as follows, let d312 = -A(t312 ), then 

K= ±7rlexp{-d(t*)v}, 05'd5'd312 (4.16a) 

P(K) = C±(t*(K)) + R(n(K))-qK. (4.16b) 

5. Properties of the interval mapping P 

5.1. The case /3 E An 

In the discontinuous approximation we only 
found the stable fixed point; the unstable one is 
situated in the boundary layer, as is seen in fig. 13. 
Note that the interval has been shifted in order to 

PK 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

K-

, 
/ 

Fig. 13. The interval mapping for {3 e A .. 
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have K = 0 in the interior of the interval. For any 
starting value different from the unstable fixed 
point the iterated solution will approach the stable 
fixed point. 

5.2. The case /3 E Bn 

Besides the two stable fixed points of the discon­
tinuous approximations, there are also two unsta­
ble ones within the boundary layer. The situation 
is now more complicated, as it is incorrect to 
assume that for any starting value not coinciding 
with the unstable points, the iterated solution will 
tend to the two stable fixed points. There exists a 
non attracting subset of zero measure in which the 
iterated solution may go around in an irregular 
way. In order to describe this class of solutions we 
use symbolic dynamics, see sections 2.2 and 2.3. 
As given in fig. 14 we consider subintervals V. I 
( i = 0, 1, 2 and 3) and keep track of the mapping of 
points remaining in UY; in the transition matrix 

1 
1 
0 
1 

1 
1 
0 
1 

(5.1) 

if Mij = 1 a point V; is mapped in ~. while for 
Mij = 0 such a mapping is not possible. As we 
described in section 2.3, the topological subspace 
2 M consisting of all biinfinite sequences of the 
symbols 0, 1, 2 and 3 is introduced allowing only 
combinations ij for which Mij = 1, i.e. forbidden 
combinations in the set of sequences are 
00, 10, 21, 22, 23 and 30. It is noted that the two 
unstable solutions are represented as sequences of 
just the symbol 1 and the symbol 3, respectively. 
Furthermore, it is seen that the interval mapping 
discloses the dynamics of (1.1) to the same extent 
as the annulus mapping of section 2.2. The iterated 
solutions that correspond with an element of 2 M 

have zero measure. Nevertheless they give us in­
sight in the behavior of (1.1) with starting values 
chosen in such a way that the solution remains in 
u Y; for a large, finite number of iterations of P 

I 
PK / 

/ 

/ 

/ 

/ 

K-

/ 

/ 

Fig. 14. The interval mapping for fJ E B11 • 

before locking into a stable subharmonic. Initially 
such solutions behave in the irregular way as de­
scribed here and the set of starting values has a 
measure different from zero. 

5.3. The transitional case f3 E gn 

In the discontinuous approximation of section 
4.2 a third type of structure remained out of sight. 
We are aiming at the case of one stable fixed point 
with the point T below the unstable fixed point S, 
see fig. 15. Then higher order stable fixed points of 
the iterated mapping are possible, as pointed out 
by Levi [11]. His statement is based on a theorem 
of Newhouse and Palis [20]. In fig. 15 we sketch 
such a solution, while in the next section we will 
trace one numerically in a specific example. 

I 
PK 

K-

Fig. 15. The interval mapping for fJ E g •. 
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5.4. A numerical approximation for a= 1/3 and 
II= 7.5 

Using analytical and numerical methods we 
found for a= 1/3: 

I= 3514 { 2E(arc sinV2/3(1 - 1/3/3), 1/3/2 - v'3 ) 

- F( arc sin V2/3(1 - 1/3/3) , 1/2/2 - v'3 ) 

+ 1/3(2 - /3)h4+14/3}/'IT=1.47597, 

(5.2a) 
p = -0.061926, q = 0.788070, T = 0.392236, 

(5.2b,c,d) 

where 

E ( </>, k) = t' h - k 2 sin2 0 d 0, 
0 

F(<f>,k)= fo<1>(h-k 2 sin2 or 1do. 

(5.3a) 

(5.3b) 

In order to carry out the iterations of the map­
ping we approximate the mapping as follows. The 
composite expression (4.16) is evaluated numeri­
cally in a set of points that have increasing density 
near K = 0: for n points we take 

K(j) = ± 'ITl exp { -jvd312/n}. (5 .4) 

In the computations a four point-interpolation 
formula is used for the points (5.4), where P(K) is 
computed with a 6 decimal accuracy. Using this 
scheme we trace a stable fixed point of the second 
iterate by shifting the mapping in a vertical direc­
tion until in the iterated mapping two new fixed 
points arise, one of them being the stable fixed 
point we are looking for, see fig. 16. It turns out 
that the stable solution has a very small domain of 
attraction and that it is only stable over an ex­
tremely small range of {3. Therefore, we only give 
the value of the two new fixed points, which 
coincide within the accuracy we are working with. 
They arise at 

K = - 1.63402626 

K- K-
a b 

Fig. 16. The occurrence of a stable irregular subharmonic. 
a) A stable fixed point of period one; b) an additional stable 
fixed point of period two. 

as /3 takes one of the values 

/3=9.3770-5.3320(n-!), n=l,2, .... 

6. Concluding remarks 

As a result of our asymptotic analysis, we have 
obtained a completely determined relation be­
tween a continuous dynamical system and a map­
ping on a compact interval (a one-dimensional 
difference equation). This result is new in the sense 
that up to now, there has not been yet such a 
description of a continuous system having chaotic 
type of solutions in terms of a difference equation. 
For the Lorenz equations [17] with its strange 
attractor a comparison with a system of difference 
equations such as the Henon attractor is made, but 
the relation only refers to the occurrence of a 
typical set of limit points in both cases. In the 
study of Levi a more specific qualitative relation 
between a continuous system and a difference 
equation was established. Levi expected the inter­
val mapping to act upon a specific domain of the 
state space, see section 2.2. From the present study 
we learn that there exists a typical difference vari­
able which in this case turned out to be the order 
of a parabolic cylinder function, being part of a 
local asymptotic solution. It suggests that one has 
to look for characteristic quantities of a continu­
ous system in order to relate it to a set of dif­
ference equations. 
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From the interval mapping the bifurcation pat­
tern is understood for the various values of b. For 
the transitional domains gk the bifurcation struc­
ture turned out to be quite complex. It would be 
worthwhile to describe it in more detail using 
symbolic dynamics, as suggested in section 2. 

Constructing a numerical approximation of the 
interval mapping as done in section 5.4, we touched 
upon two points needing some consideration. 
Firstly, the boundary layer solution appeared to be 
not differentiable in the end points, which was 
overcome by introduction of an asymptotically 
small correction term. Secondly, for P = 7.5 it was 
not possible to determine a stable irregular sub­
harmonic for some {3. From sharper calculations 
we concluded that even an accuracy of 14 decimals 
did not suffice. The reason for this is that the 
boundary layer in the interval mapping has a 
thickness of (l)(exp( - v )). Consequently, the graph 
of P 2 has an extremely sharp peak at the point 
where it is about to be tangent to the diagonal, see 
fig. 16. For stability it is necessary that idP2 /dKI 
< 1 which is only the case for f3 just past the point 
of tangency. 
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