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Abstract. A model for the growth of a size-structured cell population reproduc­
ing by fission into two identical daughters is formulated and analysed. The 
model takes the form of a linear first order partial differential equation (balance 
law) in which one term has a transformed argument. Using semigroup theory 
and compactness arguments we establish the existence of a stable size distribu­
tion under a certain condition on the growth rate of the individuals. An 
example shows that one cannot dispense with this condition. 
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1. Introduction 

In their paper "A model for populations reproducing by fission" [19], J. W. Sinko 
and W. Streif er presented a deterministic model decribing the dynamics of single 
species populations of organisms reproducing by binary fission. Starting from 
the assumption that the important physiological characteristics of these organisms 
can be described by their size alone, they derived a complicated nonlinear 
evolution equation which they solved numerically (moreover, the model is applied 
to populations of the planarian worm Dugesia tigrina and theory and experiments 
are compared with each other). Similar models for the growth of procaryotic cell 
populations have been formulated by A. G. Fredrickson, D. Rarnkrishna and 
H. M. Tsuchiya [ 6]. 

Alth.ough our long-term objective is the analysis of such complicated systems 
of nonlinear equations describing the dynamics of structured populations, we 
shall here concentrate on some aspects of a related but much simpler linear 
problem. More precisely, we study a variant of the Bell-Anderson [2, 3] model 
for size-dependent cell population growth when reproduction occurs by fission 
into two equal parts. (Here one may replace "size" by weight, volume, length or, 
in fact, by any quantity which obeys a physical conservation law.) The environment 
is supposed to be unlimited and all possible (nonlinear) feedback mechanisms 
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are ignored. It is well-known that under such circumstances the solution of the 
initial value problem for age-dependent population growth behaves asymptotically 
for t "oo as 

n(t,a)-Ce"'n(a) 

where (i) u is the Malthusian parameter (intrinsic rate of natural increase), (ii) 
ii(a) is the so-called stable age-distribution, (iii) u and ii(a) do not depend on 
the initial condition (iv) C is a constant which depends on the initial condition 
only (see [11, 12, 17)). Here we address the question whether reproduction by 
fission results similarly in convergence towards a stable size-distribution. As 
anticipated by Bell and Anderson [I, 2, 3] we find that the answer depends heavily 
on the functional relationship (described by a function g, see eq. (2.1)) between 
the growth of organisms and their size x. For instance, the answer is yes if 
g(2x) < 2g(x) for all relevant x, but no if g(2x) = 2g(x). Two of us conjecture 
that the answer remains yes, if the relation g(2x) < 2g(x) is satisfied for values 
of x in a set of nonzero measure. This conjecture is proved for a special case. 

The organization of the paper is as follows. In Sect. 2 we present the balance 
law for size dependent reproduction by fission into two identical parts and we 
rewrite it as a linear evolution problem in a Banach space. In Sect. 3 we prove 
the existence and uniqueness of a solution and we reformulate that result in 
terms of a strongly continuous semigroup of bounded linear operators. In Sect. 
4 we find a representation of the solution in terms of a finite sum of generations. 
In Se<it. 5 we show that the semigroup is compact after finite time if g(2x) < 2g(x). 
In Sect. 6 we discuss the eigenvalues of the infinitesimal generator and we derive 
a characteristic equation for an important special case (the general case is treated 
in [9]). In Sect. 7 we reap the fruits of our preparations and prove the existence 
of a stable size distribution under the condition g(2x) < 2g(x). In Sect. 8 we 
investigate what happens if the condition g(2x) < 2g(x) is not satisfied for all x. 
Finally in Sect. 9, we make some concluding remarks. 

2. The equation and its interpretation 

The subject of our investigation is the equation 

an a 
71/(t, x) + a)g(x)n(t, x)) = -µ,(x)n(t, x)-b(x)n(t, x) +4b(2x)n(t, 2x). (2.1) 

Here the independent variables t and x denote, respectively, time and size. The 
unknown n is a density function: J:: n(t, g) dg is the number of cells with size 
between x, and x2 at time t. The functions µ,, b and g (which are assumed to be 
known) are the rates at which cells of size x die, divide and grow, respectively. 
The second term at the left hand side describes changes due to the growth of 
individuals and the first term at the right hand side describes changes due to 
death or dilution. The last two terms describe the reproduction process. At first 
sight the factor 4 in the source term may seem strange. But a moment of reflection 
should bring about that 4 = 2 x 2, where the first factor accounts for the doubling 
of numbers and the second for the doubling of intervals (those who originate 
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from splitting in (2x, 2x +2 dx) enter into (x, x +dx)); a convincing check can be 
made as follows: multiply by the size x and integrate, then the contributions of 
the last two terms have to cancel each other because of conservation of '"size". 
For the sake of completeness we present a derivation of (2.1) in the Appendix. 

We assume that the cells cannot divide before they have reached a minimal 
size a> 0. Consequently, cells with size less than ~a cannot exist. Mathematically 
we express this fact by the boundary condition 

n(t,!a)=O (2.2) 
which supplements (2.1 ). 

From each "cohort" passing size y a fraction E(x)/ E(y) will reach size x, where 

E(x) = M(x)I'(x), 

M(x)=exp-f x µ.(fl dg, 
a/2 g(fl 

I'(x) =exp -f x b(fl dg. 
a g(g) 

(2.3) 

(2.4) 

(2.5) 

Note that M describes the loss due to mortality and I' the "loss" due to splitting. 
Since we want to describe that the cells have to divide before they reach a maximal 
size, which we normalize to be x = I, we are led to require that the integral 
J: b(g)/ g(g) dg diverges for xt 1 and to interpret the term 4b(2x)n(t, 2x) in 
equation (2.1) as zero whenever x;;;., ~. Clearly we now require a < I. If a;;;.,~ the 
maximal size of a daughter is less than the minimal size of a mother. This realistic 
case is relatively easy and we will pay special attention to it. However, at this 
point we do not yet exclude the case a<~ in which a large cell can undergo two 
divisions immediately after each other so that effectively a division into four parts 
occurs. 

Clearly we now choose the domain of x to be the interval na, I]. Concerning 
the growth, death and division rates we assume 

Hg: g is a strictly positive continuous function 
H,,.: µ. is a nonnegative continuous function 
Hh: b(x)=O for xEna, a] and b(x)>O for xE(a, I). 
Moreover b is continuous and satisfies Iimx 11 J~ b(g) dg = +oo. 

In all these assumptions we can weaken the continuity requirement at the 
expense of some small technical difficulties. 

Strictly speaking the interpretation suggests no other condition on n(t, x) as 
a function of x than the integrability of the functions b( · )n(t, ·) and n(t, · ). 
Nevertheless we shall assume that the initial condition nu in 

n(O, x) = n0(x) (2.6) 

is such that n0( ·)/I'(·) is continuous (in particular this assumption requires that 
n0(x) ~ O at a certain rate as xii) and we shall show that n(t, ·) inherits this 
property. Here we are guided by the interpretation of I' and by the desire to 
avoid technical details. As a side remark we mention that the smoothing properties 
of(2.l) hinge upon properties of g(2x)-2g(x) on the one hand (cf. Sects. 5 and 
8) and the behaviour of I"(x) for x i I on the other. 
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The transformation 

g(x) 
m(t, x) = E(x) n(t, x) 

leads to the evolution problem 

!
Am= -g(x) Am(t, x) +k(x)m(t, 2x) 
At Ax 

(EP) m(t,!a) = 0 

m(O, x) = <f>(x) 

where by definition <f>(x) = [g(x)/ E(x)]n0(x) and 

k(x) = 4 g(x) b(2x) E(2x) 
E(x) g(2x) 
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(2.7) 

(2.8) 

and where, here and in the following, one should interpret k(x)m(t, 2x) as zero 
for x;;;. !. Note that g(x)n( t, x) is the flux of individuals at (t, x) and that E(x) is 
a factor which, in some sense, accounts for the "loss" due to mortality and fission. 

Although b has a non-integrable singularity, k is integrable and we shall 
exploit this property in, e.g. the proof of Lemma 3.1. In fact this "reduction of 
the singularity" is an extra motivation for the transformation (2.7). 

Our approach will be to look for solutions as functions of t with values in 
the space 

X = {!/! E C[!a, IJll/IC!a) = O} 

provided with the supremum norm. Thus we can rewrite (EP) as the abstract 
Cauchy problem 

{
dm 

(ACP) dt=Am 

m(O) = </> 

where A is the unbounded operator defined by 

l(Al/l)(x) = -g(x)l/l'(x) + k(x)l/!(2x) 

~(A)={l/IEXll/I is C' on [!a,!)u(!, I]; the limits 

!!~ [ -g(x)l/l'(x) + k(x)l/!(2x)] and l_!~ [ - g(x)1//(x)] exist and (2.9) 

equal each other; -g(!a)l/l'(!a)+k(1a)l/l(a)=O}. 

A is a closed, densely defined operator on X. Now we are ready to apply the 
theory of semigroups of operators [13, 16]. 

3. Existence and uniqueness of a solution 

One possibility to show that A generates a strongly continuous semigroup of 
bounded linear operators on X is to verify the Hille-Yosida conditions [13, 14]. 
Although this is not too difficult (one can use the results of [9]) we prefer another 
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approach. Formally A= B + C where 

(Bl/l)(x) = -g(x)1j/(x) 

( Cl/f )(x) = k(x)l/f(2x). 
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(3.1) 

(3.2) 

We consider B as an unbounded operator from L 1Ua, I] into itself, with domain 
of definition 

0J(B)={l/Jll/J is absolutely continuous and lfi(~a)=O} 

and C as a bounded operator from X into L 1 [~a, I]. Clearly B generates the 
semigroup e 8 ' defined by (e 8 'l/J)(x)=l/J(I'(-t,x)), where I'(t,x) is the solution 
operator of x = g(x). Explicitly we have 

(e 8 'l/f)(x)= l/l(G- 1(G(x)-t)) (3.3) 

where by definition 

f x dg 
G(x)= -

a/2 g(g) 
(3.4) 

and 0- 1 is the inverse of the monotone function G on [O, G( I)] and defined to 
be !a on (-oo, O]. Note that G(x) is the time which a cell needs to grow from ~a 
to x and that G- 1(t) is the size at time t when the cell had size ~a at time zero; 
so o- 1(t) is the solution of du/ dt = g(u) with initial condition u(O) =~a. 

We observe that e 8 ' leaves (the embedding of) X invariant. Moreover, 
(e 8 '<,D)(x)=O fort~ G(x) and so, in particular, e 8 '=0 fort~ G(l). 

Again formally the problem 

dm 
-=(B+C)m 
dt 

m(O) = <P 

leads to the integral equation (variation-of-constants formula) 

m(t) = e 8 '1> +ft eH(l-T)Cm( T) dT. 
0 

(3.5) 

Our plan is as follows. First we shall show that (3.5) has a unique solution 
m = m(t; <P ). Next we prove that T(t)<f> = m(t; <,b) defines a semigroup on X and, 
finally, that A is the generator of T(t). 

If m is an X-valued function then e8 u-r>cm(T) is an L 1-valued function. It 
turns out that the integration with respect to T produces a continuous function 
of x: 

Lemma 3.1. The formula 

(Lm)(t)= L e 8 c' r)Cm(T) dT (3.6) 

defines a bounded linear operator from C([O, T]; X) into itse(f. For T sufficiently 
small, the norm of L is less than one. 
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Proo.f. Explicitly we have the following expressions for (Lm)(t)(x): 

I',_ k(Dm(G(g)-G(x)+t,2q) d(:)' forx:o;;;~ 
G (G(.\)· II g !> 

JI.I:! dq 
k(Dm(GW- G(x) +t, 2g) (t:)' for x ~!and t ~ G(x)- G(~). 

G 1(G(.x)-1) g '> 

0, forx~~and 1:o;;;G(x)-G(~) 

(here we used the transformation g = a-1( G(x)- t + T)). Hence it follows that: 
(i) for fixed t this is a continuous function of x (which is zero for x =~a); 

(ii) the supremum norm with respect to x depends continuously on t; 
(iii) for T t 0 the supremum norm with respect to x and t goes to zero uniformly 

for m in the unit-ball of C([O, T]; X). D 

A standard contraction mapping and continuation argument yields 

Corollary 3.2. For arbitrary</> EX and T> 0 equation (3.5) has a unique solution 
in C([O, T]; X). This solution depends continuously on </>. 

On the basis of this result we define bounded linear operators T(t) on X by 

T(t)</> = m(t; </>), (3.7) 

where m(t; </>) is the solution of (3.5). If we take in (3.5) the argument t + s and 
subsequently rearrange the terms, we arrive at the identity 

m(s+t)= e 11'm(s)+f 
1 

e8(t-T)Cm(s +T) dr. 
() 

Consequently, uniqueness of solutions implies the semigroup relation 

T(t +s) = T(t)T(s). 

Corollary 3.3. { T( t)} forms a strongly continuous semigroup of bounded linear 
operators on X. 

Theorem 3.4. A is the infinitesimal generator of T(t). 

Proo.f. Let A be the infinitesimal generator of T( t). In order to show that A= A, 
we let u E D(A), Au= v. Then, if Re A is large enough, u =(Al -Ar 1(Au -v) = 
J,~ e-A'T(t)(Au -v) dt. (See [16]). The Laplace transform of (3.5) with</>= Au -v 
yields 

with Band C regarded as operators from X to L1• Thus u E 9J(B) and (B + C)u = 

v. Sin~e v EX, u E 9J(A) a!1d Au= v. This consideration implies that 9J(A) c :?il(A) 
and Au= Au for u E :?il(A). 

9J(A) c 9J(A) is proved by reading these arguments backwards. D 

Thus we showed that A generates a semigroup which corresponds exactly to 
solving the integral equation (3.5). 
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The solution m(t, x) is not necessarily differentiable with respect to t and x 
separately. So the question arises in what sense it satisfies the first-order p.d.e. 
The following two observations clarify the situation: 

(i) the solution is differentiable along the characteristics t - G(x) =constant, 
(ii) but in x = ~ one has to distinguish between the right- and left derivative 

since k(x)m(t, 2x) (interpreted as zero for x~s) is not necessarily continuous in 
x=~. 

Mathematically this amounts to the relation: 

I. m(t + E, 0- 1( G(x) + E ))- m(t, x) 
1m = k(x)m(t, 2x) 
F~O E 

where for x =~the two limits E 1' 0 and E 10 have to be taken separately if k(~) # 0. 

4. Representation of the solution: The generation expansion 

Defining m0(t) = e 8 '</J we can rewrite (3.5) as 

m = m0 +Lm. 

By the method of successive approximations we find formally 

"' 
m = m0 + 2.: L"mo. 

n=I 

(4.1) 

(4.2) 

It turns out that the infinite sum contains, in fact, a finite number of terms only. 

Lemma 4.1. Fix T> 0. L, as an operator from C([O, T]; X) into itself, is nilpotent. 
More precisely, L" = 0 for n ~ 2 Tlglcx/ a+ k where k is such that 

and [gl,x := max {[g(x)[ I ~a~ x ~I}. 

Proof We shall first deal with the special case that g is identically one. We split 
the iterative procedure into two steps: 

w"(t) = Cm"(t), n =0, 1,2, ... , 

n=l,2,3, .... 

From (3.2) and (3.3) we deduce that 

w0(1)(x)=O for x~~~m 1 (t)(x)=O for x~~+t 

~ w1(t)(x)=O for x~i+~t~mi(t)(x)=O for x~Ht 

~~I 0

1(l)(X) = 0 for X ~ T 1 +~t~ m,(t)(x) = 0 for X ~ T 1 + t. 
So wk(t)(x) = O for x ~a/ 4 +11. But, since also wk(t)(x) = 0 for x:;:;:; a/2, it follows 
that 
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Hence mk+i(t)(x)=O for those combinations of x and t for which x-t+r;;:;, 
a/ 4 +~r for all 7 E [a/2, I] n [O, t], i.e. for x ;:?! t and for t ~a/ 2. Continuing like 
above we find that mk+i(t)(x)=O for x;;:;, t-(1- l)a/2 and fort~ l(a/2). As soon 
as l(a/2);;:;, T, mk +l is identically zero. For the special case this concludes the proof. 

In the general case we have 

m,,(t)(x)=f r wn_ 1(7)(G- 1(G(x)-t+7)) dT. 
l) 

We claim that fort~ 7 and x ~ lgloc(t- r) + g, the inequality 0- 1( G(x)- t + r) ~ q, 
holds. Indeed, the definition (3.4) of G implies that 

and consequently 

from which it follows that 

G- 1(G(x)- t +T)~ q. 

Using this result one can repeat the induction steps above. In all (intermediate) 
formulas one has to replace t and 7 by lglxt and !gloc7. D 

We conclude that (4.2) gives a valid and useful representation of the solution. 
Moreover, each term has a clear interpretation which we now describe. 

The contribution to the solution of those cells which were present at t = 0, 
but have not yet divided, is given by m0 , the zero'th generation. Inductively the 
l'th generation m1 = L1m0 gives the contribution of those organisms which arose 
from divisions of the (/ - I )'th generation and have not yet divided themselves. 
Lemma 4.1 expresses the intuitively obvious fact that at each time instant at most 
finitely many generations are present in the population. We note that each 
generation will go extinct in finite time, but that still the number of generations 
present in the population becomes unbounded as t-> +oo. 

5. Compactness 

From the generation expansion (4.2) one can compute the solution for finite (and 
especially small) times, but this does not give any information about the asymptotic 
behaviour for t-> +co. In order to obtain such information we shall try to 
characterize the spectrum of T(t) in terms of the spectrum of A, about which we 
know a lot (see [9] and the next section). It is known that this characterization 
is easy when there is compactness in the problem [8, 16). 

Somewhat imprecisely one can say that growth and division lead to shift and 
multiplication operators, and these are not compact. However, when division 
occurs distributed, some kind of smoothing may (but need not to) take place. 
We shall show that the way in which the growth rate g depends on x has a 
decisive influence. 
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Lemma 5.:1 .. Assume that 2g(x) > g(2x) for ~a~ x ~ ~- Fix t > 0. The mapping 

</> >-'> f I eB(l-T) c eBT <P dr 
() 

from X into itself is compact. 

Proof Let F = F(x, </>) and a = a(x, t) be defined by 

F(x, </>)= L (e 8 «-nce 87</J)(x) d7, 
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a(x, t) = 0- 1( G(x)- t). (This quantity has a clear biological interpretation: it is 

the size of an individual at time 0 given that its size at time t equals x.) By 
definition a(x, t) =~a if G(x) < t. Now 

F(x, </>) = L k( a(x, t - r))</>( 0- 1 ( G(2a(x, t - r))- 7)) d7, 

where the integrand should be interpreted as zero whenever a~ ~a or a ~ ~­
Putting 

we find 
g = G(2a(x, t- 7))- T 

dg 2g(a) 
-=---1>0. 
dr g(2a) 

So we can use g as a new integration variable: 

F(x, </>)= f G(lx)-r k(a(x, t-7(fl))</>(G- 1(g)) 
G(2G._ 1(G(x)-r)) 

g(2a(x, t- 7(g))) d 
x . ~ 

2g(a(x, t-r(g)))-g(2a(x, t-r(g))) 

Since now x does not appear in the argument of</> anymore, it is easy to show, 
using the continuity of g, G, 0· 1 and a and the fact that k E L 1, that 

where E(x 1, x2H 0 as lx1 - x2I t 0. (In view of the proof of Lemma 5.2 we remark 

that for each T> 0, E(Xi. x2) can be chosen such that the estimate holds for any 

t E [O, T].) Hence, on account of the Arzela-Ascoli theorem, we conclude that 

each bounded set is mapped onto a precompact set. D 

Lemma 5.1 gives a compactness criterion for the first generation m1(t, <{J) = 
s~ e 81 '-T 1C e 87</> d7. Essentially the same argument leads to 

Lemma 5.2. Assume that 2g(x) > g(2x) for ~a~ x ~ 1. Define, as before, the nth 

generation by 

m,,(t, </>)=fr e 8 (1-T)Cm,,_ 1(7, </>) dr, 
() 

n ?- 1. 
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Fix t > 0 and n EN. The mapping 

from X into itself is compact. 

Corollary 5.3. If g(2x) < 2g(x) for all x E [~a, n then T( t) is compact for t ;e, G( I). 

Proof For t~G(l), m0(t,-)=0 and consequently T(t) equals a finite sum of 
compact operators. D 

Precisely the same conclusion follows from the biologically unrealistic 
assumption 2g(x) < g(2x) for all x. The importance of such a condition on g 
becomes clear in Sect. 8. 

6. The spectrum of A 

In this section we restrict our attention to the case a~~ (i.e. the maximal size of 
a daughter cell is less than the minimal size of a mother cell). We refer to Heijmans 
[9] for a detailed study of the general case, which turns out to be essentially the 
same but computationally much more difficult. 

The inhomogeneous equation (A- Al)ifi = f can be rewritten as 

-g(x)ijJ'(x)-AijJ(x) = f(x), 

-g(x)1//(x)-Aijl(x) = f(x)- k(x)ifi(2x), 

The solution of the first equation is given by 

ijl(X) = i/Jd) eA(G(jJ G(x)) -f x eA( G(/;)-G(x)) j( g) dg, 
1/2 g(g) 

Using this expression we can solve the second equation: 

ifi(x)= Ix eA<G<fl-G<xn{ifi(~) eA(G<)J-0<2/;JJk(fl 
a/2 

i/J(~a) = 0. 

(6.1) 

-j(g)-k(£)f21; eA(G("T/)-G(2fl)j(77) d77} dg. (6.2) 
1/2 g(77) g(g) 

Finally, the requirement of continuity in x =!yields the compatibility condition 

( 1T(A )- I )t/F(~) = ((A,f) (6.3) 

where 

I 1/2 . k( I::) 
7r(A)= eA(G{g)·-G12rn_~-d£ 

a/2 g(g) 
(6.4) 

((AJ) = f 112 
eA<Ci<I'>- 01)>J{f(£) +k(fl f ~< eA<O<YJ) a12rnf(77) dT/} dg . 

all 1/2 g(77) g(£) 
(6.5) 

If 7T(A) ,c I we can solve (6.3) for t/F(!) and for that special value of t/J(~) the 
function t/F defined by (6.1)-(6.2) is a solution of (A-Al)ifi = f which depends 
continuously on f Hence A is an element of the resolvent set if 7r(A) ,,t I. If, on 
the other hand, 7r(A) = I then (6.1 )-(6.2) with f = 0 defines for arbitrary tjJ(!} a 
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solution of (A-Al)!/!= 0. It follows that A is an eigenvalue if 7T(A) =I. For 
obvious reasons we shall call the equation 

7T(A) =I (6.6) 

the characteristic equation. Since 1T is analytic its roots are isolated points. 
Using the definitions (2.3)-(2.5) and (2.8) we can rewrite the definition of 

1T( A) as follows 

7T(A) = 2 J 1 b(fl exp (-f ~ A + µ,( 77 ) + b( 77 ) d77) dg 
u g(fl t/2 g( 17) 

f I ( II' A+µ,(77) ) = 2 exp - d71 d(I -F(g)) 
a g;2 g(77) 

(6.7) 

(here we also used that the support of bis contained in [a, 1]}. As an intermezzo 
we now show that 7T(0) admits a simple biological interpretation. Clearly any 
newborn cell has to pass size a before it can possibly produce offspring. So the 
contribution of an arbitrary cell passing size a to the growth of the population 
can be effectively measured by the number of her daughters that will grow up to 
at least size a. Ifwe consider cells passing size a, the average number of daughters 
which grow up safely to size a can be calculated as follows: 

(i) The chance that the potential mother reaches size g is given by 

( JE; µ(17)+b(17) d ) 
exp - a g( 1/) 17 . 

(ii) The chance density that fission occurs at § is given by b(§)/ g(§) (here 
the factor I I g( §) accounts for the conversion of chance per unit of time to chance 
per unit of size). The number of daughters is exactly two. 

(iii) The chance that a daughter born with size i§ does not die before reaching 
size a is given by 

exp (-Ja µ,(1)) d17). 
U2 g( 77) 

Summing all contributions with respect to a<§< I we find that the average 
number of daughters at a is precisely 7T(O). 

The characteristic function rr is monotone decreasing as a function of real A. 

Since 7T(-ro) = +ro and 7T( +a::i) = 0 there exists precisely one real root of the 
characteristic equation, which we shall call Ad. Clearly Ad > 0 if rr(O) > I and 
A.d < 0 if rr(O) < I. Other roots occur in complex conjugate pairs. Their position 
relative to Ad depends heavily on the function g(x) (see Sect. 8). 

If g(2x) < 2g(x), one can use the transformation r = G(§)- Gd§J to rewrite 
1T(A) as the Laplace transform of a nonnegative function and, consequently, all 
complex roots satisfy Re A:;;; Ad - e for some e > 0 (and, moreover, there are at 
most finitely many roots in any vertical strip). 

A straightforward computation based on (6.1 )-(6.5) shows that a root of 
7T(A) = I corresponds to an algebraically simple eigenvalue of A if and only if 
7r'(A)""' 0. Hence Ad is a simple eigenvalue. The corresponding eigenvector of A 
which we denote by i/Jd is positive. One can decompose the whole space as the 
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direct sum of the null space and the range of A - AdI: 

X = .Y(A-Adl)EB 0'i'(A-Adl) (6.8) 

(here we use that A has a compact resolvent: if 7T(A)7" I, (6.1)-(6.2) with l/J(i) 
the solution of (6.3) defines a compact inverse of A-AI). if;" can be found from 
(6.1 )-(6.2) with,.\= Ad andf = 0. We normalize ij;d by the condition !/Id(~)= e \/;i~i. 
Then }t(A-Adl) is the one-dimensional subspace spanned by ij;d and the projec­
tion on this subspace according to (6.8) is given by 

(6.9) 

This formula follows directly from our explicit calculations, but a more systematic 
derivation can be based on the theory of adjoint operators. See [9, Sect. 7]. In 
that paper it has been shown that there exists an Lx-function i/Jt which is positive 
almost everywhere, such that 

( 6.10) 

As a side remark we mention that Sudbury [20] has studied related models 
starting from the adjoint formulation. (He considers the backward equation 
whereas our starting point has been the forward equation, cf. Feller [5, Ch. X]). 

We summarize those results of this section which remain true if the restriction 
on a is dropped. 

Theorem 6.1 [9]. The spectrum of A consists of isolated points which are eigenvalues. 
On the real axis there is a greatest eigenvalue AcJ, which is algebraically simple. The 
corresponding eigenvector ij;d is positive on (~a, I] and no other eigenvector has this 
property. The decomposition (6.8) holds. If 2g(x) > g(2x) all other eigenvalues 
satisfy Re ,.\ ,s; ,.\d - £ for some £ > 0 and in each vertical strip there are at most 
finitely many of them. 

7. The stable size distribution 

Let, as before, ij;" denote the eigenvector spanning "V(A- Adl) and let P denote 
the projection operator on i/Jd according to the decomposition (6.8). Then P 
commutes with T(t) and one can study the action of T(t) on the two invariant 
subspaces separately. The action on i/J<1 is 

T(t)t/Jd = e;'-<11 ij;cJ. 

Our aim is to deduce an exponential estimate for the action of T(t) on !Yl(A-AcJI) 
from information about the position of the remaining eigenvalues of A relative 
to A". 

Theorem 7.1. Assume g(2x) < 2g(x) then there exist positive constants£ and K such 
that 

llU- P)T(t)<t>ll ~Ke<\, ' 1'111>11. 
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Proof Take some s-;:; G(I). Corollary 5.3 implies that T(s) is compact. It follows 

that the nonzero part of the spectrum of T(s) consists of eigenvalues. Eigenvalues 

of T(s) are necessarily of the form eA' with .A some eigenvalue of A (the point 

spectrum of the semigroup is "faithful" to the point spectrum of the generator; 

see [ 16, Sect. 2.2]). Theorem 6.1 implies that for the restriction to 912 (A - .Adi) the. 

inequality Re .A ~ .A.d - e holds for some e > O. Exploitation of the semigroup 

property then yields the required estimate, see Hale [8, Sect. 7.4]. D 

The constant e has to be estimated by analysing the characteristic function 
7T( .A). 

Corollary 7.2. Assume g(2x) < 2g(x) then 

m(t, ·; </>)= T(t)<f> = eAd'(P</> +o(I)), t-> +oo. 

In words this says that the dominant term in the asymptotic expansion for 

t-> +oo is factorized as the product of an exponential function of t, a function 

o/J(x) and a scalar factor. The initial function manifests itself in the scalar factor 

only. Note that for nonnegative </>, P</> ~ 0 unless </> = 0 (see (6.9) or [9]). Since 

e-Vm(t, · ; </>)converges to a multiple of ijld we call !f;d the stable size distribution 

of m. If a-:;:;~ then ifJd is given by ( 6.1 )-(6.2) with I= O and .A. =.Ad the real root 

of (6.6). The computation of ifJJ for a<~ is presented in [9]. From !/J<t one can 

compute the stable size distributions 1/l'd of n: l[rd = (E/ g)t/;<1 (see (2.7)). 

Let n( t, x; n0 ) be the solution of our original equation (2.1) supplied with the 

boundary condition (2.2) and initial condition (2.6) where n0 is such that 

n0( ·)/I'(·) is continuous on [!a,!], then we have the following result. 

Corollary 7.3. Assume g(2x) < 2g(x) for all x E [~a, n then n(t, ·; n0) = 
eAJr ( C · 1/l'd + o( l )), t-> oo, where C is a constant depending on the initial condition 

only. 

Since the total population size behaves like exp (.A.dt) we call .Ad the Malthusian 

parameter. 

Remark I. The relation between n and m can be formulated more precisely in 

the following way. A function if! EX is called £-bounded if t/J( · )/ E( ·) is a 

bounded function. (This is equivalent to saying that t/J( ·)/I'(·) is bounded). Let 

X0 be the space of E -bounded functions in X supplied with the norm 

{ l!f!(x)l I } ll1"llF. =sup E(x) ~a~x~ 1 . 

Then X 0 is a Banach-space and the linear mapping H: X0 -> X given by 

is an isomorphism. Now the transformation from n to m can be written abstractly 

as m(t,.) = Hn(t, · ). Now T(t) = ff- 1 T(t)H, t ~ 0, defines a strongly contipuous 

semigroup on X 0 and the solution of the original equation is n( t, · ; n0 ) = T(t)n0, 

if n0 E X 0 . 
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(2) Using expression (6.10) the constant C in Corollary 7 .3 can be computed 
explicitly 

C = f 1 g(x) !/f~(x)n0(x) dx. 
a/1 E(x) 

(3) From a mathematical point of view we are dealing with positive semi­
groups. We refer to [21, 22] for a number of relevant general results in this area. 

8. Exponential individual growth 

In Corollary 5.3 it has been proved that the semigroup T(t) is compact after 
finite time if g satisfies the condition g(2x) < 2g(x), 1a ~ x ~ 1 (or g(2x) > 2g(x)). 
In this section we shall investigate what happens if this condition is not satisfied 
for all x. We will distinguish between two cases 

(A) g(2x) = 2g(x), all x E [1a, !J 
(B) g(2x) = 2g(x), x E 0 1 

g(2x) < 2g(x), x E 02 

where 0 1 u 02 =[!a, !J and both sets have a non-zero measure. 
The general solution of the functional equation g(2x) = 2g(x) is g(x) = 

x<P(ln x) where <P is a In 2-periodic function. We restrict ourselves to a special 
solution, namely g(x) = ex where c is some constant. By scaling the time we may 
set c = I. This case which is characterized by exponential individual growth seems 
to be the most relevant from a biological point of view. See [l, 2, 3]. (However, 
our method of proof works equally well in the general case.) 

Let us first deal with case (A). 

g(x) = x, 

Clearly 
2x a 

G(x)=ln-; and o- 1(t)=2e'. 

For the Oth and lst generation of the population we find, respectively, (see Sect. 
4) m0(t, x; </>) = <f>(x e- 1 ) and 

m1(t,x;<f>)=<f>(2xe-') I: k(xe-T)dT 

where by definition <f>(x) = 0 if x ~!a. Similar expressions for higher generations 
show that the solution is related to the initial condition by periodic continuation 
and multiplication. No information is lost, no smoothing occurs. Although non­
negativity is preserved, it is not reinforced: the solution has zeros for arbitrary 
large time if it has zeros initially. 

The exceptional position of exponential individual growth is found once more 
if one looks at the characteristic equation. A straightforward calculation shows 
that for a;:;,:~ (see (6.7)): 



On the stability of the cell size distribution 241 

where 

C=2f
1 exp(-f~ µ(1/) d11)d(l-I'(fl) 

a iJ2 g( T/) 

and all roots A = ( l /In 2)(ln C + 2bri), k E "1l. lie on the vertical line Re A = Ad = 
In C I In 2; in other words, there is no distance e > 0 between the dominant (real) 
eigenvalue Ad and the real parts of the other eigenvalues of A. The total population 
size still behaves like exp Adt but convergence in shape does not take place. 
Instead the initial size distribution turns around and around while numbers are 
multiplied. 

This striking behaviour in the case of exponential individual growth has 
already been noticed by Bell and Anderson (2, 3]. The following Gedanken 
experiment illustrates the biological reason. Consider two cells A and B with 
equal size and assume that at some time instant t0 cell A splits into a and a. 
During the time interval [t0, 11], a, a and B grow and at t 1 cell B splits into b 
and b. If g(x) =ex, the daughter cells a and b will have equal sizes just as their 
mothers A and B. In other words, the relation "equal size" is hereditary and 
extends over the generations. The growth model behaves like a multiplicating 
machine which copies the size distribution. 

Of course the situation changes if we abandon the point of view that fission 
results into two exactly equal daughters. One of us (Heijmans) currently 
investigates a model with g(x) =ex and a smooth probability density function 
for the mother-daughter size ratio [I O]. 

Now a very interesting question arises: what happens in situation B, i.e. the 
situation that the functional equation g(2x) = 2g(x) is satisfied on a subset of 
[!a,~]? 

Heuristic reasoning in terms of probabilities can give some insight (the 
characteristic equation appears to be very helpful. See below). 

To begin, let us restrict ourselves to the following situation. 

(B') a;;;;t g(x)=x foda:o:;;x:o:;;,B, g(x)<x for {3<x~ !, 

where f3 is some value between a and !. We shall prove that in this case there 
exists a stable size distribution. 

The idea is the following. Suppose Ad = 0, then the average cell which under­
goes fission has one viable descendant (i.e. a daughter which undergoes fission 
as well). The ~pulation can be seen as the union of two distinct groups. A cell 
is a member of the first group iff all of its ancestors have been dividing before 
reaching the size x = {3. If at least one of its ancestors has divided at a size x > ,8, 
then it is a member of the second group. The semigroup T(t) corresponding to 
the total population never becomes compact because the first group (the reproduc­
tion of those members should be compared to a copying-machine, as mentioned 
in the first part of this section) never goes extinct (assumed that it had members 
at t = 0). The membership in the first group, however, decreases to zero as t"" oo, 
because the probability that a member's descendant n generation afterwards is 
also member of the first group is pn, where p is the probability that a daughter 
cell born at a size smaller than f3 will divide before reaching size ,B. Note that 
there is only a one-way traffic from the first to the second group. Members of 
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the second group have at least one ancestor which has run through the dispersion­
machine generated by the non-exponential individual growth, which is enough 
"to make this group compact". 

The rest of this section is devoted to the precise elaboration of this idea. Let 
us assume that Ad= 0. (This can always be achieved by the transformation 
ii(t, x) = e-A.i'n(t, x) in the original equation (2.l) and replacement of µ(x) by 
µ(x) +Ad.) 

We are going to investigate solutions m(t, x) of the evolution problem (EP). 
At each instant t the population is composed of two so-called subpopulations 

m(t, x) = m(t, x) + m(t, x) (8.1) 

where m(t, x) represents the members of the first group and m(t, x) the members 
of the second group. As has been done in Sect. 4 we can write down a generation 
expansion for both m(t, x) and m(t, x) 

x 

m(t, x) = L: m;(t, x) (8.2a) 
i....-() 

00 

m(t, x) = L: m;(t, x). (8.2b) 
i-= I 

Note that the Oth generation is not present in the subpopulation m(t, x). Thus 

rflo(t, x) =<fa( c- 1( G(x)- t)). (8.3) 

We can write down the following recurrent relations for m; and m;. Let, as in 
Sect. 5 

a(x, t) = o- 1(G(x)- t) 

then 

f (l,t+G(1/3)-G(X)I 

rfl;+1(t,x)= 0 k(a(x,t-7))m;(T,2a(x,f-7))d7 (8.4) 

m;+1(f, X) = f 1 
k(a(X, f - 7))m;( 7, 2a(X, f- 7)) d7 

() 

+ r.1+Gc~/3J- G(x))- k(a(X, f- 7))m;( T, 2a(X, /- 7)) dT (8.5) 

where U1, f2)- = min (ti, t2). Note that 7;;,, t + G(~/3)- G(x) implies a(x, t-T) ~ if3. 
Note that the second term at the right-hand side of (8.5) is identically zero if 
x < if3. The assumption Ad = 0 together with (6.7) yields 

Now let 

then p <I. 

f 1/2 k(g) 
-dg=l. 

an g(fl 

f /312 k(fl 
p= -dg, 

a/2 g(g) 
(8.6) 
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Lemma 8.1. lm;(t, x)l:;;;P;ll<t>ll, i=O, 1,2, ... and m;(t, x)=O (i.e. the ith m gener­

ation goes extinct) for 

(
i+I /3) f I dg 

t~ln -- + --. 
a /3 g(fl 

Proof: Let ii;(t, x) be the restriction of m;(t, x) to the subinterval [~a, ,B]. Let 

ii(t, x) = I:0 ii;(t, x) then ii(O, x) = <fa(x) where <fa is the restriction of</> to [~a, ,B]. 

Using the recurrence relation (8.4) we find 

ii 1(t,x)=if;(2xe-') L k(xe-T)dT, 

where k(x) = k(x) if x:;::; ~{3 and k(x) = 0 elsewhere. 

By iteration we find 

ii;(t, x) = if;(2;x e-')k;(t, x), 

where k0(t, x) = 1 and 

i = 0, 1, 2, ... 

k;(t,x)= L k(xe 7 )k;_ 1(t-r,2xe-T)dr. 

Using these expressions for ii; we find 

and by iteration we find 

(8.7) 

One can also see from the expressions above that ii;( t, x) vanishes identically 

from time 

( 2i+l[3) 
t,. =In -a- on. Let i ~ 1. 

All individuals contained in m,-(t, x) are daughters of individuals contained in 

ii,._ 1(t, x). From (8.4) we find 

I (t,t +Gti/3)-~0(x)) lfz;(t, X) = k(a(X, (- T))ii;-1( T, 2a(X, { - r)) dr 
() 

and this together with (8.7) gives us 

The generation m,. goes extinct a time J ~ dg I g( fl after ii;. This proves the 

lemma. D 

Now we are able to prove that the contribution of m( t, x) to the total population 

becomes very small for large t. 
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Theorem 8.2. II m( t, · ; </>)II ,;;; Me -qr II</> II. t;;:. 0, where M > 0 is some constant not 
depending on t or</> and q =-In p/ln 2 > 0. 

Proof: Suppose t > 0. There are finitely many generations i, i + 1, ... , j present 
in the sub-population m(t, x) where i is larger or equal to the smallest integer v 
satisfying 

(2vf3) f I dg 
In ~ + f3 g(g);:. t. 

(The precise value of j is not important for our purposes). Hence m( t, x) = 
l:~=i m1(t, x) from which it follows that 

x, "°' p'' 
Jm(t, x)J ,s;; ,~,, llm1(t, ·)II~ l. p'll<!>ll == l -p 11<1>11· 

The definition of v yields 

t lna/{3 
v - I ,;;; - + (} ~ v where (} == --

In 2 ln2 

and the result follows. D 

For the remaining sub-population m(t, x) we can prove a compactness result. 

Theorem 8.3. The linear map </> ~ m(t, · ; <P) is compact for all t;;:. 0. 

Proof m0(t, x) == 0 by assumption. (8.3) and (8.5) yield that 

m,(t, x) ==ft k(a(x, t - T))</>( 0- 1( G(2a(x, t - r))- T)) dr. 
(t.1+G<){3J-G(x)). 

As in Lemma 5.1 we substitute 

g == G(2a(x, t-T))- T 

and find that dg/dT>O for all values of x, t and T where a(x, t-T);;.!{3. Now 
arguments similar to those used to prove Lemma 5.1 yield the result. D 

Corresponding to the subpopulations m(t, x) and m(t, x) we define two 
families of operators f(t) and T(t): 

f(t)</J == m(t, ·; </J), f(t)<f> = m(t,.; <!> ). 

One should note that neither of them defines a semigroup. Theorem 8.2 states 

II T(t)ll ~Me-qt 

and Theorem 8.3 can be summarized by saying that 

T(t) is compact for all t;;:. 0. 

(8.8) 

(8.9) 

Now we introduce the notion of a measure of non-compactness. We refer to [15] 
for more details. 
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Let B be a Banach-space, and V be a bounded subset of B. The measure of 

non-compactness (or Kuratowski-measure) y( V) of Vis defined to be 

y( V) = inf{d > O!there exist a finite number of sets Si, ... , Sn 

such that diameter (S;) ~ d and V = U7~ 1 S;}. 

Two important properties are 

y( V) = 0 iff V has a compact closure 

y( V + W) ~ y( V) + y( W) where V + W = { v + wl v E V and w E W} 

and V, W are bounded subsets of B. 

(8. l Oa) 

(8.!0b) 

The measure of non-compactness of a bounded operator L: B"' B is defined to be 

y(L) = inf {£ ~ Oiy(L( V))~ q( V), for all bounded sets Ve B}. (8.11) 

(8.IOa) and (8.!0b) yield 

y(L) = 0 iff Lis compact, (8.12a) 

y( L1 + L2) ~ y( L1) + y( L 2), where Li. L 2 are bounded operators on B. 

(8.12b) 

Moreover, it is obvious that 

y(L)~ JILll- (8. I 2c) 

The Browder essential spectrum ue,,(L) of the operator Lis defined by,\ E Uess(L) 

if at least one of the following conditions holds 

(I) i1R (Al - L) is not closed 
(2) ,\ is a limit point of u( L) 

(3) Uk"'1 ./'f((AJ-L)') is infinite dimensional. 

It can be proved that 

,\ E o-(L)\uess(L):::;, ,\ E Po-(L). 

(These are called normal eigenvalues). 

Let re,,(L) be the radius of the essential spectrum 

ress(L) =sup {I"- I I"- E O"ess(L)}. 

Nussbaum [ 15] proved the following result. 

Lemma 8.4. ress(L) = lim,,_x (y(L")) 11 ". 

(8.13) 

Now we return to the original problem. We can prove the following important 

result on the semigroup T(t). 

Theorem 8.5. Assume B' holds. Supposeµ Ea-( T(t)) and Iµ\> e- 41 then there exists 

a A E Hr(A) such that µ = eAt. 

Proof: fess( T(t)) =limn ~oc ( y( T(nt))) 11 ". y( T(nt)) ~ y( f(nt)) + y( T( nt)) = 

y(T(nt)) ~II T(nt)ll ~Me 411 ', where we have used (8.8), (8.9) and (8.12a, b, c). 

Consequently r0,JT(t))~e- 4'. Now suppose µEu(T(t)) and 111-l>e 4 ', then it 

must be thatµ E Po-(T(t)), and as we already saw in the proof of Theorem 7.1 

there must be some ,\ E Po-(A) such that µ = eA'. D 
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The characteristic equation in situation B' is given by 

f 1/2 k(i:) 
1 = 7r(A) = p. r>- + -~- e-A(G(2~J-GWJ dg 

/3/2 g(g} 

(where p was given by (8.6)) and it follows that the results of Theorem 6.1 remain 
valid for this wider class of functions g. Hence there exists an e1 > 0 such that 

A E a(A)\{O} 

(recall that Ad = 0) and the conclusion of Theorem 7. l remains valid if we chose 
e = min (e 1, q). 

We can state our main result now 

Corollary 8.6. If B' is satisfied then m(t, · ; </;i) = eV(P</;i + o( l)), t-+ +co. 

Of course the conclusion of Corollary 7.3 remains valid as well, if B' is satisfied. 
If a :;;;. t extension to the more general case B is straightforward. In that case 

(8.6) should be replaced by 

p = f k(g) dg. 
Q, g(g) 

Furthermore we were able to prove that the result stated in Corollary 8.6 remains 
valid if the first condition in B' is replaced by a :;;;. !f3. In their study of the inverse 
problem in [ l ], Anderson et al. found that the growth-rate g satisfied the condition 
in B'; but unfortunately Fig. 4(B) in [ 1] suggests that neither a :;;;. ! nor a :;;;. ~/3 is 
satisfied. It seems to two of us that extension to situations where a < !/3 should 
be possible, although one probably has to deal with intransparent and troublesome 
technical problems which do not provide new insight; the third of us has some 
doubts about it. 

9. Concluding remarks 

It is rather difficult to make dynamic observations of individual micro-organisms 
and consequently the "data" b, g and µ, are hard to obtain. In fact it might be 
easier to measure the stable distribution and one may want to derive information 
about b, g andµ, from such measurements. We refer to Bell and Anderson [l, 2, 3] 
for a discussion of this inverse problem (also see [ 4]). 

The present study can serve as a starting point for an investigation of nonlinear 
problems. More precisely we think of situations where the growth of the 
individuals depends on the availability of a certain substrate, which in turn is 
influenced by the consumption [6, 7, 14]. In [4] Diekmann et al. argue that there 
are several ways to describe reproduction by fission under changing conditions, 
each of them corresponding to a different intrinsic mechanism. Using the results 
of this paper they show that for one of these mechanisms the stable distributions 
in a chemostat is independent of controllable parameters like the dilution rate 
and the inflowing substrate concentration. 

We shall deal with other generalizations such as fission into not necessarily 
equal parts and time-periodic (seasonal) growth, death, and fission rates in 
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forthcoming publications. We intend to study models of size- and age-dependent 
population growth [2, 3, 18] in the near future. 
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Appendix 

Choose x 1 and x2 with x 1 < x, and let h > 0 be small. Individuals which have at time t + h a size 

between x 1 and x2 fall into two different categories: 

(i) those who had at time ta size between x 1 -hg(x1)+o(h) and x 2 -hg(x2)+o(h) and which 

have neither split nor died 

(ii) those which were born between t and r + h as daughters of mothers with a size between 

2x1 +O(h) and 2x2 +0(h). Or, in formula 

f. ,, n(t +h, x) dx = f yhg(x,) n(t, x)[l -h(µ.(x) +b(x))] dx 

\J X1 - hg(,Xj) 

f 2x,+O<h) 

+2h b(x)n(t,x)dx+o(h). 
2x1·t-0(1i) 

Rearranging the terms and dividing by h we find 

_!_f''[n(t+h,x)-n(t,x)]dx+_!_{J'' n(t,x)dx-J'' 11(1,x)dx}+o(I) 
h X1 h x~-h.\{(X~) X1-- l1g(xi) 

= - f' (µ.(x) + b(x))n(t, x) dx +4 t' b(2x)n(t, 2x) dx. 

The right-hand side is independent of h. In the limit h-+ 0 the left hand side yields 

f ''iln 
-(t, x) dx + g(x,)n(t, x2)- g(x 1)n( t, x,). 

X1 elf ,_ "" 

If we now divide both sides by x2 - x, and subsequently take the limit x2 -x,10 we find the balance 

law (2.1). 
Of course taking the limits h-+ 0 and x2 - x 1 10 is not justified a priori and, in fact, not even a 

posteriori (see the end of Sect. 3). Nevertheless this formal procedure is a helpful intermediate step 

towards the calculation of n(t, x). In Sect. 3 we employ the concepts of a semigroup of bounded 

linear operators and its infinitesimal generator to give a precise mathematical formulation of the 

relation between the balance law and its solution. 
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