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We study high frequency Nikkei stock index series and investigate what certain wavelet 
transforms suggest in terms of volatility features underlying the observed returns process. 
Several wavelet transforms are applied for exploratory data analysis. One of the scopes is 
to use wavelets as a pre-processing smoothing tool so to de-noise the data; we believe that 
this procedure may help in identifying, estimating and predicting the latent volatility. 
Evidence is shown on how a non-parametric statistical procedure such as wavelets may 
be useful for improving the generalization power of GARCH models when applied to 
de-noised returns. 
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1. Introduction 

Volatility models have characterized the field of financial time series in the last two 
decades; they work through equations for the conditional variance together with the 
conditional mean and aim to improve the quality of predictions for stock returns, 
rates and many other derivatives. The idea is to better exploit the available infor
mation, since this comes with the data under some particular form of dependency, 
precisely the one in the conditional variance. At the same time, the goal of provid
ing effective models for financial returns generating stochastic processes has found 
an original solution with the autoregressive conditional heterescedasticity (ARCH) 
models [8] and their generalized representation (GARCH) [2]; many other related 
characterizations for this kind of stochastic processes followed afterwards. 

Since then, new mathematical and statistical tools have become available for 
applications in financial time series [14]. From an empirical viewpoint there are 
also several new perspectives; for instance, in line with the direction of studies [12] 
which aim to see financial markets as a place where people act according to different 
time horizons for what concerns their investment decisions, one may try to interpret 
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the observed returns as a signal that can be examined at different resolution levels, 
which reflect the investors' time horizons. We also consider the fact that in general 
a signal might seem stationary at first observation, but at a more detailed level of 
analysis discontinuities can appear so that previously undetected non-stationarity 
behaviour could now show up. This aspect might be relevant in financial time series 
analysis, where wavelets could be useful for dealing with the task of exploring latent 
data features; their inherent multiresolution property may help in explaining the 
time/space and frequency varying components in a signal. It is important to find 
new flexible tools for modelling non-stationary stochastic processes, especially when 
it is important to emphasize the contribution that local features of the observed 
signals can offer in order to find information relevant for forecasting purposes. 

In Sec. 2 we briefly introduce wavelets. In Sec. 3 we describe the data set that 
we use for the analysis, together with the wavelet families we adopted. In Sec. 4 
we present some results of the exploratory analysis performed on the observed 
time series of daily Nikkei index returns. In Sec. 5 we look at various wavelet 
decomposition techniques and show their reconstruction power. Data de-noising is 
the topic of discussion in Sec. 6, and an interesting example of application of a 
wavelet estimator is described in Sec. 7. In Sec. 8 we report the conclusions. 

2. Wavelets and their Properties: A Brief Review 

Financial time series data sets are temporal series inherently perturbed by noise; 
stock market prices can be affected by so many factors and by so many different 
institutions and individuals that no theory can suggest a safe way of modelling data 
to reflect price movements. Therefore for financial time series there exists no tool 
for extracting the true signal and thus separating it from the noise in the observed 
values; of course one can hope to build a model which is able to approximate the 
sought for signal, but how well this happens through the pa.rt of price variation that 
the designed model manages to explain is simply not known because of the presence 
of noise and because of the same limitations and contraints imposed by the model. 

We think that the ability to separate the true underlying volatility-carrier signal 
from the pure noise might potentially be improved if we could look deeply into the 
data, i.e. by analyzing the signal at different resolution levels. One goal is to find the 
best strategy for decomposing the signal through a wavelet expansion, with basis 
functions able to capture the main characteristics of the time series and suitable to 
be interpreted. The multi-resolution view of a signal is the strength of the wavelet 
transform; with a simple prototype function we can perform a fine spatial/temporal
and-frequency analysis through a contracted (high frequency) and a dilated (low 
frequency) version of the same function respectively. The wavelet transform is useful 
from this last perspective, more than other techniques, since it gives a resolution 
which is sharper in time(space)/frequency at respectively high/low frequencies and 
therefore offers more flexibility from its localization power. 

Consider a general function f which we want to expand in terms of some basis 
functions with certain time-frequency localization properties; given the scaling 
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function (or father wavelet) <:/> such that its dilates and translates constitute 
orthonormal bases for all the Vj subspaces that are scaled versions of the subspace 
Vo to which <:/> belongs, we can form a Multiresolution Approximation (MRA) 
of L 2 (R) once some properties are satisfied (see [6, 11] for technical definitions and 
details). 

With a DWT (i.e. a Discrete Wavelet 'Iransform) we are basically con
structing a map f -+ w from the signal domain to the wavelet coefficient domain, 
or in other words we apply the transformation w = W f. Consider now a mother 
wavelet '!/; and its derived terms indicated with '1/;jk (j is the dilation or level index 
and k is the translation or shift index), which are obtained as: 

(1) 

For certain 7./;'s, the 7./;jk form an orthonormal basis for functions in some particular 
spaces. A general wavelet decomposition is described by f(x) = L,jk fjk7./;jk(x), 
where fjk give the information about the function f near time point 2j k and near 
frequency proportional to 2J. The rp and 7/J pair of functions generate the series 
of approximating spaces Vj addressed above. At a more specific level of analysis, 
the DWT algorithm is able to produce coefficients for fine scales, thus capturing 
high frequency information, and for coarse scales, thus capturing low frequency 
information. Therefore, a sequence of smoothed data and a sequence of details 
not previously accounted for that give information at finer resolution levels, are 
obtained. We come up with a representation like: 

f(x) = L Cjo,k<:/>jo,k(x) + L L dj,k7/Jj,k(x), (2) 
k j>jO k 

where <:/>jo,k is a scaling function with the corresponding coarse scale coefficients 
CjO,k and dj,k are the detail (fine scale) coefficients; the first term of the right hand 
side of (2) is the projection of f onto the coarse approximating space Vjo while 
the second term represents the detail. We can define Cj,k = ~ L,~=1 r/>j,k(Xi) and 
dj,k = ~ L,~=l 7./;j,k(xi)· A clear advantage of an orthogonal wavelet expansion is 
the resulting independence among coefficients; this mapping from the signal to 
the wavelet coefficients domains allows one to perform statistical inference in the 
projected domain. 

3. The Data Set and the Wavelet Family for the Analysis 

The data set we analyze is the daily Nikkei index, with observations ranging from 
May 17, 1949 to 31 July 1996, for a total amount of 13505 data. We construct these
ries of returns in the usual fashion, i.e. rt = ln(pt/ Pt-l)) x 100. a The wavelet family 

aThere are clearly few big outliers due to well-known shocks occurred worldwide. We do not 
eliminate them from the sample at hand, for the reasons that first it is always an hard task with 
time series but particularly because we want to leave their treatment to some de-noising procedure 
able to discriminate between pure signal and disturbance. We observed that by using a robust
cleaner wavelet smoother, we ended up losing too much structure in the sample and thus we avoid 
pre-processing the data in this way. 
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chosen among the many available is the symmlet; for this data set symmlets and 
coiflets, another family with similar features, behave similarly. Symmlets-8 have 
a compact support, are orthogonal, nearly symmetric and with good smoothness 
properties [6]; therefore they are well localized in time, thus delivering good spa
tial adaptivity, and where a smooth signal is found they can be represented with 
relatively few coefficients, i.e. satisfy the principle of sparsity of representation. 

With wavelets we basically adopt a :flexible degree of smoothing according to 
the resolution level. Thus, by increasing the resolution level j we decrease smooth
ing and vice versa when we decrease j, just as in the case of using a variable 
bandwidth for each time location in a kernel smoother. Other considerations have 
to be done with regard to the choice of working with decimated wavelets instead 
of (ST) stationary ones, i.e. non-decimated. The main consequence is the number 
of coefficients retained in the analysis at each resolution level investigated; in the 
first case every time we switch from one level to another we have half the number 
of coefficients available compared to the number used in the previous higher resolu
tion level, while for stationary wavelets this decimation does not occur. The reason 
behind the importance of using all the coefficients in some applications, comes from 
the fact that a more precise alignment with data features can be found at every 
resolution level. The price to pay is that many more coefficients remain in the 
analysis. 

Models for time series or econometric analysis should be built according to the 
principle of parsimony, which means to use as bare a structure (i.e. parameters) 
as possible. In wavelets the same aspect is brought in by the concept of sparsity, 
which means to be able to approximate a function belonging to a certain space by 
projecting it onto a sequence of sub-spaces at different resolution levels and using 
relatively few coefficients in the function representation. Thus, the advantage of a 
sparse representation is obtained when many components of the coefficient vector w 
can be considered negligible for reconstructive power purposes, and therefore elim
inated. However, two problems are encountered with financial time series models: 
(a) the non-parametric nature of the wavelet transform does not offer the usual in
terpretation for the estimated coefficients as expected by financial econometricians 
(but by no means should this aspect prevent them from being studied) (b) care 
must be taken in analyzing the coefficients selected due to the highly noisy nature 
of these data; one thus needs reliable procedures to get rid of coefficients considered 
not useful for the signal reconstruction. 

4. Exploratory Analysis of Nikkei Index Data 

The notation we adopt here follows the one used in [3]. Thus, with Sj,k and 
dj,k we indicate the smooth and detail coefficients that appear in the sig
nal decomposition. Generally speaking, with decimated wavelets and the sam
ple size n divisible by 2J we have ~ coefficients di,k, i.e. the finest scale, :;f 
d2,k (the next finest scale) and so forth until we find F dJ,k (the coarsest 
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Table 1. Energy percentages by resolution levels. 

resolution levels dl d2 d3 

coiflet-6 0.435 0.282 0.138 

symmlet-6 0.459 0.262 0.138 

symmlet-8 0.455 0.257 0.142 

Table 2. Energy percentages by number of coefficients. 

n. coefficients 1 136 271 406 876 1351 2026 3377 

coiflet-6 0.014 0.262 0.359 0.427 0.523 0.668 0.756 0.860 

symmlet-6 0.016 0.262 0.357 0.423 0.519 0.662 0.750 0.856 

symmlet-8 0.016 0.268 0.363 0.430 0.527 0.665 0.751 0.856 

scale), for a total amount of n = ~ + 1i + · · · + -f!y coefficients. b The detail 
coefficients embed information about finer and finer resolution levels, thus of
fering the true advantage of wavelets compared to other smoothing techniques. 
We can represent the wavelet coefficients as w = [sJ, dJ, ... , di]', where SJ = 
[sJ,i, SJ,2, ... , SJ,p-]', ... , •.. , ... , di= [di,1, di,2, ... , di,~]'. The original signal can 
be decomposed according to Sj,k(t) = Sj,kc/>j,k(t), Dj,k(t) = dj,k'l/lj,k(t), so that we 
have Sj(t) = L:k Sj,k(t) and Dj(t) = L:k Dj,k(t), and the the signal can be rep
resented as f(t) = SJ(t) + DJ(t) + DJ-i(t) + · · · + D1(t). This is an MRA of the 
signal and the goal now is to operate a selective Multi-resolution Decomposition of 
it by extracting the most informative components. 

Table 1 gives the percentages of energy distributed in the three most relevant 
resolution levels for decimated wavelets; Table 2 gives instead the percentages of 
energy distributed according to groups of coefficients ordered by decreasing size. 
The total energy (see [5]) is given by E = I:~=l R = Ej + ~f=i Ef, where 

E s i "°' f.r 2 d Ed i "°' 27 d2 · 1 J J = E L,.,k=l sJ,k an j = E L,.,k=I j,k, J = , · · ·' · 
One can see that the choice between one or another family, at least according to a 

visual inspection and a comparison of energy percentages, doesn't represent an issue 
indeed, provided that a certain smoothness is allowed (here the smoothness index 
is the number attached to the wavelet name). We chose to work with symmlet-8 
(Fig. 1) and when we reconstruct the original signal with the Inverse DWT function, 
we may notice how the reconstruction improves by going from level d3 to di (Fig. 2). 

The energy enclosed by coefficients in the remaining resolution levels does not 
turn out to be so relevant, also at a visual inspection, even if they still enclose 

bThe number of coefficients at the various levels is not exact if n is not divisible by 2J, but only 
approximate, but still the total number of coefficients is n, even if not exactly ~ at scale 2j . 
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Fig. 1. (a) symmlet-8 transform. (b) coifiet-6 transform. (c) original signal. (d) signal recon
structed from syrnmlet-8. 

residual energy. With ST wavelets, where decimation does not occur, n coefficients 

appear at every resolution level. We found the following percentages of energy 

distributed among levels for a ST symmlet-8: d1 = 0.109; d2 = 0.133; d3 = 0, 133; 

d4 = 0.137; d5 = 0.132; d6 = 0.169; 86 = 0.188. 

At first it seems that such a homogeneous distribution of energy does not help 

too much in separating the components relevant for the reconstruction. But we 
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Fig. 2. Reconstruction from d3 ((a),(b)), d2 ((c),(d)) and dl levels. 

also have to consider the result in the light of the nature of the signal at hand, 
i.e. a financial time series, where we expect to find out short-, mid- and long-term 
information related to the various market horizons of different agents operating in 
the market. From Fig. 3 we can notice a better resolution power at almost every 
level, but the redundancy of coefficients that by default comes with ST wavelets is 
also relevant from the perspective of selectively reconstructing the signal (i.e. by 
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Fig. 3. Multiscale decomposition with decimated (left) and ST symmlet-8. 

levels of resolution) when compared to the decimated wavelets shown before.c The 
relevant numbers of coefficients present in the decimated symmlet-8 are 6752 in d1, 
3376 in dz and 1688 in d3; for the stationary wavelets the corresponding values are 
of course the same at every level. 

cThe length of the lines is relative to the magnitude of the coefficients for each level according to 
a particular scale and the coefficients are spaced so to observe their localization properties, which 
helps in explaining where in the function significant changes occur. 
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A final observation is made: structure mixed with noise to different degrees is 
discovered in different resolution levels in both cases, i.e. with decimated or not 
decimated wavelets, thus suggesting the possibility that latent volatility features 
characterizing different scales may reflect different market horizons for operators. 

5. Other Wavelet Decomposition Techniques 

5.1. Wavelet packets 

There are other procedures which are based on the wavelet transform and are 
useful for our analysis. Wavelet packets, for instance, allow for the presence of an 
oscillation parameter to consider periodic behaviour in the series; since we can 
combine wavelet functions so as to build tables or dictionaries, we obtain a 
better domain of wavelets, compared to the basic one, from which to select a basis 
that represents the signal. We can still select an orthogonal transform from the 
so-called Wavelet Packet Table (WPT), something perfectly equivalent to the 
DWT employed before. But we can do more indeed; we can try to choose the best 
basis according to the procedures suggested by [5]. In general, when we extract 
components from a WPT we obtain, following [3], a decomposition like: 

Wj,o(t) = LWj,o,kWj,o,k(t) (3) 
k 

where the W components play the same role of the D's before. We can select entire 
resolution levels (see Fig. 4) in order to test their individual reconstructing power 
and we can design special WPT from which to search the best basis representing 
the signal through a specific selection of sets of coefficients. A crystal is a set of 
wavelet coefficients, which for the WPT is indexed by the level j and the oscillation 
b: Wj,b = (wj,b,1, Wj,b,2, · · ·, Wj,b,n/2i )'. 

The level 1 crystals in Fig. 4 have scale 2 and correspond to the DWT coefficients 
previously indicated by s1 and d1; therefore, it brings signal information at the 
highest resolution level and it is ordered by increasing oscillation index. The 
decomposition is thus obtained, as from (3). The same applies for the level 2 crystals 
and decomposition. 

5.2. Cosine Packects 

With cosine packets we use instead cosine functions localized in time that form 
smooth basis functions. The Discrete Cosine Transform (DCT) is the dis
cretized version of the Fourier Cosine Transform of a signal, i.e. DCTk = 
/f;,sk 2:~:01 fi+ 1 cos( (2i~~)k1r ), where k = 0, 1, ... , n- land Skis the scaling factor 

equal to 1, if k = 0 or k = n, or to 1/./2, if k is different from the previous values. 
An orthogonal transformation that maps a signal from the time to the frequency do
main is thus obtained. For the DCT, depending on the taper functions we choose, 
we can design cosine packets which improve the time localization power and thus 
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Fig. 4. Reconstructed signal from wl and w2 crystals (a) and from Wl and W2 signals. 

capture local features in the data. One simply creates smooth basis functions by 
letting cosine functions go to 0 in a selected interval. 

We have computed experiments with the Cosine Packet Table (CPT), and 
one was the application of the best basis algorithm of [5], i.e. a global optimiza
tion procedure for finding the transform that best matches the signal features. It 
is applied by searching for the minimum of the cost function Lj,o E(Wj, 0 ), which 
is like searching for a minimum entropy transform. We have noted that in terms 
of reconstructing the signal we have pretty much the same power as we had before 
with the DWT. Thus, we analyzed another algorithm, presented in the following 
sub-section, which is more effective in dealing with non-stationary signals and cap
turing local features. 
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Table 3. Number of largest coefficients per type of transform and level with associated percentage 
of energy according to the MP algorithm decomposition. 

levels 

wp-transf. 

cp-transf. 

0 

19(0.799) 

18(0.731) 

dwt-transf. 23(0. 713) 

2 3 5 

13(0.152) 8(0.038) 

7(0.092) 4(0.039) 11(0.106) 

14(0.221) 8(0.053) 

5.3. Matching pursuit basis selection 

The Matching Pursuit (MP) algorithm of [9] decomposes a signal as a sum of atomic 
waveforms belonging to dictionaries, like WPT or CPT, and other function families 
too. The MP decomposition is not a global optimization procedure and does not 
obtain an orthogonal decomposition. It is a greedy algorithm which iteratively, at 
successive steps, decomposes the residual term left from a projection of the signal 
onto the elements of a selected dictionary in the direction of that atom which best 
matches the signal features. In summary, the algorithm approximates a function 
as J (t) = :Z::~ 1 hiHy, (t) + resi(t) by computing at each H'Y, the quantity µ'Y,i = 
Jresi-1(t)Hy(t)dt and by finding 'Yi = argmi~Er llresi-1(t) - µ"f,iH'Y(t)ll· Then 
the updated residual is given by resi(t) = resi-i(t) - hiH'Y,(t) and the procedure is 
repeated until i $ n. 

The results reported in Table 3 show the better localization at the high 
frequencies for MP on WPT compared to CPT and DWT. The reported values 
correspond to the largest coefficients found at each level after the decomposition, 
with the energy percentages appearing in parentheses. For the WPT the MP finds 
that 0. 799 is the percentage of energy explained by the 19 largest coefficients, 
which is a better performance compared to the MP applied on CPT, which ex
plains less, 0. 731, with almost the same number of coefficients, 18, and compared 
to the equivalent DWT (obtained as a special case with a linearly independent 
wavelet packet transform), which needs 23 largest coefficients to explain less energy 
percentage, 0. 713. These results are obtained for the best resolution available, by 
choosing coarser levels CPT spreads more information than WPT and DWT needs 
comparatively more coefficients, and thus is less sparse as a representation than the 
one obtained when MP runs on WPT. 

In any case, results indicate that there is no great change in performance when 
switching from one transform to another, the reason being that the signal at hand 
is less characterized by periodicities than it is instead by time non-uniformities 
observed in the series. This fact has an high relevance when one tries to exploit 
the power of redundant but richer classes of functions, like WPT or CPT, like it 
has been shown in [4] with intradaily data. Here the two function approximations 
for WPT and CPT are given by j(t) = Ljok Wj,o,k Wj,o,k(t) + resi(t) and f(t) = 
Ljok Cj,o,kCj,o,k ( t) + resi ( t). 
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6. Denoising with Wavelets 

The wavelet shrinkage principle of [7] applies a thresholded de-noising procedure 
to the data by shrinking wavelets coefficients to zero so that a limited number of 
them will be considered for reconstructing the signal. The fact that the noise is re
moved from the signal to obtain a better reconstruction might be crucial for financial 
time series in order to capture the underlying volatility structure. From the perspec
tive of statistical inference, we are clearly employing a non-parametric procedure 
given that it does not rely specifically on assumptions about the underlying nature 
of the function f(t) and it adopts a criterion similar to a locally adaptive band
width. Thus, denoising with wavelets is useful for spatially heterogeneous signals 
like financial time series. 

The following algorithm implements the wavelet shrinkage principle: 

• D WT is applied to the data to make the empirical wavelet smooth and detail 
coefficients 

• the wavelet coefficients, in particular at the finest scales, are shrunken toward 
zero by thresholding 

• the inverse DWT is applied to the thresholded coefficients to reconstruct the signal 

Figures 5 and 6 show the signal and residuals extracted through de-noising runs 
with decimated and undecimated symrnlets respectively. One can observe that in 
the right upper parts of the two figures box plots of level-by-level wavelet coefficients 
are reported and the coefficients within the marked central bands are eliminated 
because they are no not different from noise, according to thresholding procedure 
we adopted. The signal-to-noise ratio, still on a level-by-level basis, reported in the 
right bottom part of the figures, reflects a different number of wavelet coefficients 
used at each resolution level with the two different transforms. 

The results indicate that decimated and ST wavelets are able to discriminate 
between signal and residuals quite clearly and in a different way according to 
the resolution level considered. A level-adaptive threshold is chosen for both the 
cases because from the experiments done it is the method that allows for a better 
signal/noise separation. It works according to the soft shrinkage rule selected as: 

oc(x) = sign(x)(lxl - c) (4) 

when lxl > c; otherwise oc(x) = 0. The threshold which adapts to each resolution 
level is based on the principle of minimizing at each resolution level the Stein Un
biased Risk Estimator, or SURE, such that the resulting estimator is quoted in the 
literature as SureShrink. It takes the following form Aj = argmint"?.oSU RE( dj, t), 
with 
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Fig. 5. Denoising with ST symmlets {adaptive threshold). 



524 E. Capobianco 

-~~li'·,~-~·lt-' 
~· tt· 1rwt~~l"1 

• ~ "i'~' 
A- • ir :1 urn 1 : 1 HI* 11rn u 111 r: ur 

0.0 0.2 04 0.6 0.8 1.0 

d1 ~rl)I o( ,,,,,.. ~ "1.11- lr~4~· ~ Id 

1 ~~ 

d2 r1 .. ,, • •\ ~ , ,,.1,,,rJJ, ,,, l~ u,, .• 
d3 "",.a •' .,., . ,.. I 1•o1• ,, ,,, ~~d. 

d4 '1 ·1~ ' 
.,,,, 

ii 1 L/'" ) ,,,., .1 

d5 J,;"~ • .. ~II I II I"~ II '•II "i ~ ~ .. ll-~11 

d6 ,J-.1 tJ I , "J• • 1' \ \ ' ' 
I I ) '"".,. 

s6 

1 OOO 2000 3000 4000 5000 6000 7000 

s6 dS d5 d4 d3 d2 d1 

Energy (100%) 

Fig. 6. Denoising with decimated symrnlets (adaptive threshold). 



Wavelet Transforms for the Statistical Analysis 525 

and where the shrinkage function depends also on the estimate of the scale of the 
noise; we found that performances are pretty much similar when different estimated 
scale functions are tried out. 

Residual diagnosticsd show that the autocorrelation functions and the residuals 
quantile plots for detecting deviations from the Gaussian distribution, suggest that 
model misspecification is still present; this is a real dilemma with unknown solution, 
and there is few things that either parametric or nonparametric statistical inference 
can do. However, one can choose to learn more about what is behind the data, like 
for instance to look at the volatility structure as we chose to do, since conditional 
mean misspecification may not be so unbearable as to prevent a reliable inves
tigation of it and still allow for consistent conditional variance predictions to be 
achieved, as shown by [13]. 

Reducing the number of wavelet coeffcients is a problem that one has to deal 
with when an effort is made to build up a wavelet-based model. With regard to the 
de-noising procedures we adopted, there is still an high number of decimated wavelet 
coefficients left for recontructing the signal; at the dl level, for instance, signal 
coefficients in the various experiments (i.e. with different parameters in SURE) 
range from 1720 to 1751, in level d2 from 729 to 1061 and in level d3 from 460 to 
822, while for ST wavelets (for one choice of parameters in SURE) the correspondent 
values are 4219, 5216 and 5988, with a number equal to n for coarsest scales (the 
ones not affected by the shrinkage algorithm because considered less noisy). 

This method leads naturally to a selection of coefficients that embed the signal 
features of the data at hand, thus allowing for an excellent reconstruction. One 
could also select the resolution levels to which the coefficients belong, and try to 
pick out the specialized information brought at every scale. Then, one possibility 
is to use the information brought by these coefficients as regression coefficients in 
a model with a regression matrix composed of wavelet dilations and translations. 
It would be even better to allow these coefficients to be dynamically changing, in 
the style for instance of state space models, where we could set them into the state 
vector subject to recursive estimation by a Kalman Filter type of algorithm. The 
framework we have introduced here is in other words open to further refinement 
toward the idea of making wavelets more leading to build a model for representing 
observed data and related dynamics and thus for approximating signals, rather than 
simply pre-processing data, even if in a very informative way. 

7. An Application of the SureShrink Estimator Combined with 
GARCH Modelling 

We build our model with a simple framework, that of a signal+ noise model, 
i.e. Yt = ft + Et, and apply it to the observed returns: the wavelet transform. In 
statistical terms one would say that the given model represents a semi-parametric 

d Available from the author. 
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regression fit, where the ft signal that we want to detect is assumed to behave as 
an ARCH process, i.e. ft= etut, with ut =./hi and ht =:Li bdl-i, as in the case 
for the ARCH natural generalization, the GARCH process, where lagged volatility 
values are included. In this way, we are basically emphasizing two facts: (i) our 
true signal component is inherently noisy and (ii) we want to limit the influence 
of noise on our data features. The non-parametric regression model derives from 
superposing the signal+noise model to a signal with GARCH-type disturbances; 
these disturbances will be assumed to follow a Student's t distribution, for deal
ing with the leptokurtosis of returns, while the additive noise is instead a general 
i.i.d. process. The model can be described as follows: 

Yt =ft+ Et (6) 

(7) 

(8) 

where Et ,...., i.i.d.(O, a;), !tlil!t-1 ,...., i.i.d.(O, ht) and et ,...., N(O, 1), and given the set 
of past information il!t-1· 

The semi-parametric form of the model thus depends on the choice of leaving 
unknown the conditional mean noise distribution, while selecting a specific para
metric family for the disturbance affecting the GARCH-type signal. 

This model, which we estimate in a sequential, i.e. two-step, fashion, may be 
more soundly justified when higher frequency or tick-by-tick data sets are used, 
perhaps, since in these contexts financial theory finds the presence of noise at a 
microstructural level. Nevertheless, we think it is interesting to analyze daily data 
because in this case the measurement error is relevant for the accuracy of predicting 
the volatility function. We aim to confirm that by de-noising the data. We got 
similar results just as if we had increased the frequency of observation, and thus 
could obtain better volatility predictions, confirming what has been shown in other 
studies [1). We do not claim that one gets a better fit without the noise in the 
data, simply because the data to which the models apply are different; but we 
believe it is a legitimate argument to look at which of the two specified models 
turn out to be more informative for our purposes. Thus, we try to let a different 
signal-to-noise ratio be our discriminatory measure; this allows us to detect the 
part of the noise process affecting the observed data that once removed suggests a 
better identification of the latent structure in the volatility process. 

The experiments in this section are conducted with the wavelets module written 
in S-Plus by Bruce and Gao (1994). Our goal is thus to investigate whether de
noising the data with wavelets and applying the waveshrink estimator can improve 
the ability to detect the latent volatility structure characterizing the observed time 
series. We compare model performances for original and transformed time series 
and use the best model selected among many others tested. The original series 
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is indicated by SERl, and the other series derived from the application of the 
waveshrink algorithm with non-decimated wavelets to the original series, first, and 
a normalization procedure after; we indicate the second series by SER4. 

Many volatility models have been tested and the one with the best fit was found 
to be a GARCH{l,1), while the conditional variance for a GARCH(p,q) process is 
given by: 

p q 

ht = a + L ad'f_i + L biht-i . (9) 
i=l i=l 

The conditional mean equation, which in Eq. (6) was indicated as a semi-parametric 
regression model, can be further modelled in its term Ii; in particular, we allow for 
a lag or an equivalent MA(l) term, to account for the influence of lagged residuals, 
and for a regressor matrix that includes exogenous variables designed to limit the 
inevitable residual misspecification, i.e. holiday and weekend dummies, the series of 
index levels, running means computed over 5, 7 and 15 days and the correspondent 
running volatilities over 5 and 7 days (all of these variables are selected among 
others on the basis of significance tests). The model thus should be written with a 
conditional mean equation like this: 

Yi = const. + zi + Ei (10) 

where, in Zi = a.Xi + /3fi, the X matrix includes the exogenous variables described 
before and the signal vector includes the error fi-i, i.e. the MA{l) term. 

Since the Gaussian GARCH models do not seem to completely capture the de
gree of leptokurtosis observed in the data, by leaving residuals with a clear evidence 
of a heavy tailed conditional distribution, a Student's t g(x) = c ; !!±..!.,where 

(1+ ·"'-2) 2 

c = r(~) is selected; note that x = fih;!, i.e. the standardized residuals 
(7r(v-2)) r( ~) ei, and that the degrees of freedom are estimated with the other parameters, say 

e, in the model. 
A leverage term is also inserted in the conditional variance equation and is 

estimated to allow for the consideration of asymmetric effects of positive and neg
ative returns. This term is therefore to be accounted, together with the GARCH 
structure, for measuring the combined effects. With the leverage term included, a 
conditional variance equation assumes the following form: 

p q 

ht =a+ L ai(lft-il + 'Ydt-i)2 + L biht-i. (11) 
i=l i=l 

7 .1. Estimation and prediction performance 

The selected model was estimated over the two series available by using the S
Plus GARCH module [10]. We used the entire set of data for estimating the model. 
By the prediction error decomposition, the log-likelihood function for a sample 
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Table 4. Estimated parameter values for the time series, along with the t statistics (in 
parenthesis). 

Parameters SERl SER4 

MA(l) -0.017 0.618 

(-1.97) (108.48) 

B4 -0.945 0.243 

(-11.17) (19.54) 

B5 1.994 0.493 

(30.58) ( 46.18) 

B6 -0.086 0.099 

(-1.82) (17.04) 

lev 0.118 0.201 

(7.64) ( 4.65) 

ARCH 0.053 0.691 

(7.13) (22.95) 

GARCH-1 0.763 0.212 

(7.80) (11.81) 

GARCH-2 0.061 0.036 

(0. 72) (4.33) 

Yi, ... , Yi is given by Zi(e) = logLr(6) = 2:f=1 log f(Yilwi_i) = -~ "Li=1 log hi+ 

2:f=1 logg(~), where g(·) is the Student's t distribution described before. The 

maximum llkelihood estimation procedure gives the following values for the four 
series investigated: -14485 (SERl) and 9980 (SER4). 

Our estimation analysis is summarized in Table 4. In short, these results indicate 
that the MA{1) coefficient, inserted into the conditional mean equation to take into 
account the one-step behind residuals, increases its absolute value by going from 
SERl to SER4, and becomes significant. The leverage term, i.e. lev, is relatively 
small in its absolute value and only modestly significant. Note that the running 
means (B4 for 7 days, B5 for 5 days and B6 for 15 days) and volatilities inserted in 
the conditional mean equation are computed by run.meann,t = ~ L~-n+l rt and 

run.voln,t = J n.:_l L~-n+l (rt - run.meann,t) 2 , where rt are the returns.e 
The significant MA{1} might indicate misspecification, bringing to the conclu

sion that profit-taking strategies are easily available to market agents in the long 
run. It is reasonable that these profit opportunities wouldn't stay undetected for 
long periods of time, thus explaining the fact that a not significant value would be 
more in line with the market efficiency theory. However, recent empirical findings 
in market microstructure studies address many possible sources of correlation in 

ewe report only some of these values in the table, having the excluded variables resulted not 
significant across experiments. 
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observed returns, and the impact of several factors should be taken into account. 
Therefore, it might be that instead of just thinking that de-noising can destroy the 
characteristics of the observed data and thus emphasize features unknown before, 
but contradicting the proper market behaviour, de-noising might indirectly con£rm 
the presence of non-efficiency in the market. This condition might not be limited to 
the short term, due to the possible presence of regimes which remain hidden when 
analysing the original data or the presence of long run dependence, together with 
the short run easily uncovered. 

We also note that pure ARCH effects show up more clearly when the decimated 
and ST waveshrunken estimators are applied to the data; their absolute value in
creases and they become even more significant. The GARCH coefficients behave 
in a different way: the GARCH-2 component, which we included for being able to 
capture some more dependency, is small and not significant for SERl, while is only 
modestly significant for SER4. For this reason we do not consider its relevance neg
ligible and include it in our model specification; the GARCH-1 coefficient reduces 
its absolute value when computed for SER4, remaining sufficiently significant. 

At first sight, we observe that a more precise isolation of the pure ARCH effects 
in the structure of volatility can be important in those circumstances when their 
presence could be easily questioned, due to particular complex dynamics character
izing the underlying stochastic processes. Moreover, the fact that past volatilities 
become less important with waveshrunken series in determining the current value 
of the same variable can suggest that an effective separation of noise and signal 
helps for understanding how the recursive effects propagate both temporally and 
spatially/ The investigator ignores, of course, a priori what is the best, as far as the 
influence of these delayed effects on the most recent observation is concerned, but 
it makes sense to consider the fact that even though with autoregressive dynamics 
one can hope to predict better, in high volatility market phases the abovementioned 
propagation effects would probably prevent the analyst from effectively detecting 
the true latent features, due to the dominant role that noise would have under these 
circumstances. 

Since predicting the structure of volatility is our goal here, we also report plots 
of the predictions obtained for the series of volatility values. We have some evidence 
that once the noise in the observations is reduced, the forecasted volatility function, 
despite the evidence of some diminutive power compared to the squared returns 
series, is such that the gap between the two series is sensibly reduced and they 
appear more similar in the pattern they follow. Therefore, the de-noised squared 
realized returns can be a better indicator to track the variability of the latent 
volatility function. We compute the out-of-sample predictions as follows: we first fit 
our model to 13490 observations, for every series, and predict one step ahead with 
the selected GARCH model, i.e. we make a forecast for the observation at time 

fin this last case via the so-called volatility clusters, which can be detected by the observation of 
occasional but temporally persistent bursts of activity in the data. 
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t = 13491; next we update the sample by using 13491 observed values, re-fit the 
model, predict the value at t = 13492, and so forth until we predict at t = 13505. We 
end up with a small sample of 15 one step ahead predictions with which we compare 
the prediction power of our estimated model on the original and waveshrunken 
series. The correspondent plots of realized squared returns vs. volatility forecasts 
are reported, together with some diagnostic plots and measures. 

One can observe in Fig. 7 that the waveshrunken estimators do a good job 
in emphasizing the presence of GARCH effects in the squared de-noised returns. 
While the autocorrelation functions of the squared standardized residuals still re
port evidence of structure left, due to a certain degree of misspecification in the 
conditional mean equation, the Ljung-Box test statistic Q computed for the squared 
standardized residuals turns out to be 10.49 and 5.53 for respectively SERI and 
SER4. Therefore the two series reveal that we cannot reject at either 1 % or 5% 
levels the null hypothesis of white noise residuals, being Q ,....., x~2 1Ho. 

We also compared the one-step ahead forecasted volatility with the squared 
realized returns (see Fig. 8), and notice a higher variability of the prediction curve 
for the waveshrunken series, which follows more closely the pattern of the squared 
returns dynamics. This conversely means that squared returns can investigated 
more usefully to understand the latent volatility behaviour. In terms of quantita
tively measuring the prediction performance, we compute the Root Mean Square 
Error, i.e. RMSE = (~ I:f=i[Yi -yi]2 )~ = (~ I:f=1 en~. which gives the values 
2.26686 for SERI and 0.60964 for SER4g. 

It thus seems that some latent structure previously hidden has been detected; 
one reason for this is that by limiting the influence of our measurement error we 
manage to better separate noise and signal structures, hence our squared returns 
can be better estimators for the underlying latent volatility. Literature reporting 
experiments done with higher frequency data [1] show how increasing the frequency 
of observation reduces noise and improves volatility prediction. We obtained similar 
results for daily data, directly de-noising them. 

Returning to the correlation appearing from the estimates of Table 4, the non
vanishing MA{1) term seems to only apparently violate the expected picture of a 
rapidly decaying autocorrelation function of returns, since by looking at the same 
function computed for the squared de-noised series (Fig. 7) one may note that there 
is a slow decay instead, thus emphasizing the presence of possible long memory, 
which thus should be further investigated before judging definitely the meaning 
of the significant moving average coefficient. The autocorrelation function of the 
squared standardized estimated residuals leaves the reader with the same impres
sion, i.e. that something of the structure of both the series is not completely cap
tured, and only with the de-noised return series is the same idea is clearly conveyed 
[Fig. 7(c)]. 

gin the RMSE formula, T is the number of predictions and they and i) are respectively the squared 
realized returns and the GARCH predicted conditional variances. 
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Fig. 7. (a) ACF squared SERl; (b) ACF squared st. residuals from GARCH estimates on SERl; 
(c) and (d) show in the same sequence results for SER4. 
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Fig. 8. (a) and (b) QQ plot st. residuals from GARCH applied respectively on SERl and SER4; 
(c) and (d) comparison of squared returns and volatility predictions with GARCH applied on 
respectively SERI and SER4. 
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8. Conclusions and Future Directions 

We studied the impact of Wavelet Multi-resolution analysis on financial time series 
and showed that it offers interesting insights for discovering the presence of volatil
ity structure at various resolution levels. In financial time series it's possible that 
information affects the market at different time horizons, such that its effects on 
returns can correspondingly be analyzed at different time scales and frequencies. We 
observed that (1) signal structure shows up mostly at very fine scales (2) the number 
of wavelet coefficients is big and thus the risk of overfitting is high when modelling 
directly with them (3) wavelet packets suggest rich dictionaries of functions from 
which a good basis can be selected, via best basis or matching pursuit algorithms 
( 4) denoising the series via the wavelet shrinkage algorithm allows for a substan
tial reduction in the number of coefficients, thus suggesting a more selective signal 
reconstruction. We show results about modelling with GARCH when the data are 
noisy and when they are pre-processed via wavelet transforms. A better volatility 
prediction power for one step ahead forecasts arises in the case of de-noised data, 
thus indicating that latent volatility features can be better detected. This result is 
usually achieved when less measurement noise is allowed through an higher sampling 
frequency for the observed signal. 
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