
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

(DEPARTMENT OF COMPUTER SCIENCE) 

L.G.L.T. MEERTENS & J.C. VAN VLIET 

ON THE MC ALGOL 68 COMPILER 

~ 
MC 

IW 189/81 DECEMBER 

kruislaan 413 1098 SJ amsterdam 



Ptunted a.t :the Ma.themazlc.ai. Centlte, 413 KP'.L<,6laa.n, Amh:tvu:J.am. 

The Ma.thema.Uc.ai. Cen.tfle , 6ou.nded :the 11-:th 06 FebJuuVLy 1946, hi a non
p1Lo6U .ln.6.tltuti.cm ai.mlng a.t :the pMmo.tlon 06 puJLe ma.themati.C!i and .lt6 
app.Ue,a,tlon.6. 1:t hi .6pon601Led by :the Ne:theld.an.d6 Govell.nment :thlLOugh :the 
Ne:thelli.and-6 Ongan,[zazlon 6olL :the Advanc.ement 06 PU/Le RueaJr.c.h (Z.W.O.). 

1980 Mathematics subject classification: 68B20 

ACM-Computing Reviews-category: 4.12 



On the MC ALGOL 68 compiler 

by 

L.G.L.T. Meertens & J.C. van Vliet 

ABSTRACT 

From 1969 until 1980, research has been done at the Mathematical 
Centre regarding various aspects of ALGOL 68 implementation. This has 
resulted in many publications, each treating an aspect in isolation. 
Several of these publications deal with issues arising in the construc
tion of a portable ALGOL 68 compiler for the full language, including the 
Standard Hardware Representation and the modules and separate compilation 
facility. These publications deal especially with the first stages: the 
construction of a parser, and the last stage: an abstract ALGOL 68 
machine. The purpose of the present report is to indicate where these 
various results would find their place in the construction of an ALGOL 68 
compiler. 

KEY WORDS & PHRASES: ALGOL 68, compiler, parsing, error recovery, 
abstract machine 



1. INTRODUCTION 

From 1969 until 1980, research has been done at the Mathematical 
Centre regarding various aspects of ALGOL 68 implementation. This has 
resulted in many publications, each treating an aspect in isolation. 
Several of these publications deal with issues arising in the 
construction of a portable ALGOL 68 compiler for the full language, 
including the Standard Hardware Representation [1] and the modules and 
separate compilation facility [2]. These publications deal especially 
with the first stages: the construction of a parser, and the last stage: 
an abstract ALGOL 68 machine. The purpose of the present report is to 
indicate where these various results would find their place in the 
construction of an ALGOL 68 compiler. 

The compiler consists of a number of phases, each of which 
transforms its input stream in an output stream. The first phase has a 
given source text as input stream, the last phase has runnable code for 
some target machine as its output stream. The global structure of the 
compiler is fairly standard: the first phases build the parser, and 
result in a decorated parse tree. Following phases transform this parse 
tree into code for the abstract ALGOL 68 machine. Finally, the abstract 
machine code is transformed into code for some target computer. 

1 

In most programming languages, a program is allowed to use certain 
identifiers which have not been declared in the program, but are somehow 
known to the system, such as "sqrt" or "print". In the Revised Report on 
the Algorithmic Language ALGOL 68 [3], these are given as a sequence of 
declarations in a superlanguage of ALGOL 68. These declarations together 
constitute the "standard prelude". Since the "transput" part of the 
standard-prelude is very substantial in size, but can largely, and 
without undue loss of efficiency, be described in proper ALGOL 68 {see 
[4]), we have defined a superlanguage of ALGOL 68 suitable for dealing 
with the standard-prelude. The standard-prelude can then simply be 
compiled like any other "user-prelude", thus automatically creating a 
large part of the runtime system. This superlanguage is called ALGOL 68+. 
It is such that a very minor restriction gives a sublanguage which is 
identical again to ALGOL 68. The definition is given in [5]. 

2. THE PARSER 

The purpose of the parser is to analyze a given source text, and to 
produce a decorated parse tree suitable for code generation. In the first 
phase, the source text is considered as a sequence of individual 
characters. This sequence is read, and greater units, like identifiers, 
are built. This phase is known as lexical analysis. Subsequently, it is 
checked whether this sequence of lexical units conforms to the syntax of 
the language. This is known as syntax analysis, and the result is a parse 
tree. Lastly, the meaning of each construct is determined from its 
context: for each applied occurrence, the corresponding defining 
occurrence is sought for, and the like. This is known as semantic 



analysis, and it adds information to the parse tree: the parse tree is 
decorated. 

2 

At a very early stage in the design of the compiler, we decided to 
use a top-down parsing method based on an LL(1) grammar. A context-free 
grammar underlying the ALGOL 68+ syntax, such as the one given in [6], is 
not of typie LL(1), but it seems possible to construct an LL(1) grammar 
for "context-free ALGOL 68+". However, in doing this the original 
syntactic structure is lost. Another possibility is to apply beforehand a 
simple transduction scheme, operating from right to left, which brings 
the source text in prefix form. This transduction scheme can also be 
applied to the context-free grammar, resulting in an LL(1) grammar 
suitable for top-down parsing. In this way, syntax analysis is comprised 
of two phases: a syntax-directed transduction, followed by a top-down 
analysis o:f the transformed input text. 

All o:f the pertinent results obtained have to do with these early 
phases of the parser. They are further discussed in the sections below. 
As regards semantic analysis, the following breakdown has been envisaged: 

i) Mode-1equivalencing: The information gathered on the modes of all 
constiructs are brought into standard form, so that two modes that 
are d1escribed in a different way, but are equivalent, coincide. This 
algorithm does not transform some input stream into some output 
stream, but is a transformation of information gathered in tables. 

ii) Identification: For each "indicator" occurring in the input text, 
the corresponding definition is determined. Because of the 
possilbility of overloading operators, context information must be 
taken into account here. 

iii) Coerc:ion: Most constructs in an ALGOL 68 program have both an a 
priori and an a posteriori mode. During coercion, both these modes 
and the transformation path in between are determined from the 
construct and its context. 

2.1. Lexical analysis 

In 1976, the Standard Hardware Representation for ALGOL 68 was 
published [1]. This proposal allows for three different stropping 
regimes: _E:oint stropping, upper stropping and res stropping. These 
stropping regimes mainly differ in the way in which bold words are 
represented. In point stropping, each bold word is written as a point 
(".") followed by the letters and digits of the word. In upper stropping, 
one may in addition represent bold words in the upper-case font. In res 
stropping, one is allowed to omit the point from the reserved bold words 
given in section 9.4.1 of the Revised Report. 



3 

A finite-state machine accepting text in each of the three stropping 
regimes (plus a fourth local regime) is given in [7]. It is described in 
a very simple language, allowing semi-mechanical translation to an 
arbitrary language. This machine forms the kernel of the lexical analysis 
phase. 

2.2. Error recovery 

During the design of the compiler, much attention has been paid to 
error recovery. Three techniques have been developed: state switchers, 
parenthesis skeleton and synchronization. Each of these techniques 
assumes that the previous one has taken place. 

ALGOL 68 contains a number of parentheses which play a very special 
role, viz.,",¢,#, £2_, comment, pr and pragmat. Not only does one same 
symbol serve both as opening parenthesis and as closing parenthesis of 
certain constructions, but, more important, the pieces of text delimited 
by these symbols (the inside of comments, pragmats and string
denotations) lack syntactical structure. Also, such a piece of text may 
not contain another similar construction. One may view these parentheses 
as handles at which the "state" switches from "program text" to, e.g., 
"comment", and vice versa. An error in the "state switcher skeleton" will 
in general derail the parser in a serious way: comment will be treated as 
program text, and program text as comment. A practical algorithm for 
repairing incorrect state switcher skeletons is given in [8]. It can best 
be incorporated as a subphase of lexical analysis, to be invoked when an 
error is found; after the state switcher skeleton has been repaired, 
lexical analysis must be re-initiated. 

On a next higher level, an ALGOL 68 program can be viewed as a 
sequence of nested parenthesized constructs. Most of these constructs are 
relevant to the range structure. Therefore, it is not uncommon for 
compilers to give up if, after lexical analysis, the parenthesis 
structure of the source text has been found incorrect. An algorithm for 
repairing incorrect parenthesis skeletons is given in [9]. It can, 
similar to the algorithm for repairing incorrect state switcher 
skeletons, be incorporated as a subphase of lexical analysis. 

The synchronization method is closely related to the syntax-analysis 
method chosen. During the transduction phase, the source text is brought 
into prefix form. For instance, a formula A+B is transformed into +AB. If 
in the subsequent phase, parsing gets stuck in the operand A, we want it 
to resume at the place where the operator+ occurred. This is in general 
only possible if some mark is left behind by the transducer at the place 
where it picked up the operator. Leaving such a "resynchronization 
symbol" behind has the additional advantage that one pan be sure to 
always find a point at which parsing may be resumed. This method is 
further discussed in [10]. 



4 

2.3. Syntax analysis 

A transducer which brings source texts in prefix form can be easily 
constructed for an operator-precedence grammar. It is a straightforward 
variant of the operator-precedence parsing algorithm given in [11], pp. 
170-171. This algorithm only needs to know the precedence relations 
between the symbols of the grammar. In order to let the transducer work 
for all input texts, it is necessary to define precedence relations for 
all pairs of symbols. For an arbitrary operator-precedence grammar, it is 
not at all clear how to fill the empty entries in the table of precedence 
relations in such a way that a reasonably consistent treatment of 
incorrect input texts is obtained. Therefore, some further restrictions 
on the grammar have been introduced, leading to the notion of an 
operator-priority grammar. Such an operator-priority grammar for ALGOL 
68+ has been given in [12]. 

The syntax-directed transduction is based on the grammar from [12]. 
Care has been taken to ensure that, when the transduction is applied to 
the grammar, the resulting grammar is of type LL(1), so that the LL(1) 
parsing method can be applied next. Both the algorithm for the 
transduction scheme and the subsequent top-down parsing method are 
discussed in [10], which also contains the LL(1) grammar for ALGOL 68+. 

The operator-priority grammar in [12] differs from the underlying 
context-free grammar in [6] in various ways. Most notably, symbols 
represented by the same mark have been distinguished, and various symbols 
have been inserted in the grammar. When actually parsing, the same 
modifications must be applied. In [13], an algorithm is derived which 
transforms ALGOL 68+ texts into sentences produced by the operator
priority grammar. Most of these changes can be taken care of during 
lexical analysis. Some, however, require knowledge of the types of the 
various bold words in the program, and can therefore not be made until 
(the input of) the transduction phase. 

3. THE ABSTRACT ALGOL 68 MACHINE 

The work on the design of an abstract ALGOL 68 machine, called MIAM, 
derives its motivation from the objective of portability. However 
portable a compiler may be, at some stage the actual target computer has 
to enter the generation of runnable code. A code generator generates MIAM 
code, which, subsequently, has to be "transformed" into code for an 
actual target computer. So the abstract machine is the last common 
stepping stone before the ineluctable divergence. For that reason, the 
MIAH has been designed such that the solutions for the many problems in 
code generation that can be solved in a machine-independent way can be 
expressed in the machine-independent code generation ,phase. This may 
sound as a design objective that is easily reached, but in reality it 
requires a careful analysis. Moreover, a secondary design objective in 
designing the MIAM was that the design complexity of the whole of code 
generation and transformation would be reduced. Without such a 



5 

requirement, the result might be that the primary design objective would 
be reached at the expense of the machine-dependent stage. This has led to 
the adopti<:m of a design philosophy, the "Cut Principle", described in 
[14]. A formal definition of the MIAM is given in [15]. 

This definition provides for a clear interface between code 
generation and transformation. By virtue of this interface, it is 
possible to solve important parts of the problem of realizing the MIAM on 
an actual computer in a still machine-independent way. The most important 
of these problems is that of memory management, including garbage 
collection and compaction. By using a "MIAC", being a "primitive" version 
of the MIAM with a few instructions only, the algorithms can be expressed 
in a way that lends to easy realization on actual computers ([16]). 

REFERENCES 

[1] HANSEN, W.J. & H.J. BOOM, The report on the standard hardware 
representation for ALGOL 68, SIGPLAN Notices~' 5 (May 1977), 
pp 80-87. 

[2] LINDSEY, C.H. & H.J. BOOM, A modules and separate compilation 
facility for ALGOL 68, ALGOL Bulletin 43 (1978), pp 19-53. 

[3] VAN WIJNGAARDEN, A. et al, Revised Report on the Algorithmic 
Language ALGOL 68, Acta Informatica .2. (1975), pp 1-236. 

[4] VAN VLIET, J.C., ALGOL 68 transput, Part II: An implementation 
model, Mathematical Centre Tracts 111, Amsterdam, 1979. 

[5] MEERTE:NS, L.G.L.T. & J.C. VAN VLIET, ALGOL 68+, a superlanguage of 
ALGOL 68 for processing the standard-prelude, Report IW 168/81, 
Mathematical Centre, Amsterdam, 1981. 

[6] MEERTE:NS, L.G.L.T. & J.C. VAN VLIET, An underlying context-free 
grammar of ALGOL 68+, Report IW 171/81, Mathematical Centre, 
Amsterdam, 1981. 

[7] JONKERS, H.B.M., A finite state lexical analyzer for the standard 
hardware representation of ALGOL 68, ALGOL Bulletin 44 (1979), 
pp 16-51. 

[8] MEERTE:NS, L.G.L.T. & J.C. VAN VLIET, Repairing the state switcher 
skeleton of ALGOL 68 programs, Report IW 15/74, Mathematical 
Centre, Amsterdam, 1974. 

[9] MEERTE:NS, L.G.L.T. & J.C. VAN VLIET, Repairing the parenthesis 
skeleton of ALGOL 68 programs: proof of correctness, in G.E. 
Hedrick (Ed.), Proceedings of the 1975 International Conference 
on ALGOL 68, Oklahoma State University, Stillwater, June 10-12, 
1975 (also registered as Mathematical Centre Report IW 52/75). 



[10] MEERTENS, L.G.L.T. & J.C. VAN VLIET, On top-down parsing of ALGOL 
68+, Report IW 182/81, Mathematical Centre, Amsterdam, 1981. 

[11] AHO, A.V. & J.D. ULLMAN, Principles of compiler design, Addison
Wesley, 1977. 

[12] MEERTENS, L.G.L.T. & J.C. VAN VLIET, An operator-priority grammar 
for ALGOL 68+, Report IW 173/81, Mathematical Centre, 
Amsterdam, 1981. 

6 

[13] MEERTENS, L.G.L.T. & J.C. VAN VLIET, Making ALGOL 68+ texts conform 
to an operator-priority grammar, Report IW 180/81, Mathematical 
Centre, Amsterdam, 1981. 

[14] MEERTENS, L.G.L.T., On the design of an abstract machine for a 
portable ALGOL 68 compiler, in J.C. van Vliet & H. Wupper 
(Eds.), Proceedings International Conference on ALGOL 68, 
Bochum, BRD, March 30-31, 1981, Mathematical Centre Tracts 134, 
Amsterdam, 1981. 

[15] MEERTENS, L.G.L.T., Definition of an abstract ALGOL 68 machine, 
Report IW 188/81, Mathematical Centre, Amsterdam, 1981. 

[16] JONKERS, H.B.M., Abstraction, specification and implementation 
techniques, with an application to garbage collection, Ph.D. 
Thesis, Mathematical Centre, Amsterdam, 1982. 






