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Mathematical morphology as originally developed by Matheron and Serra is a 
theory of set mappings, modeling binary image transformations, that are invar
iant under the group of Euclidean translations. Because this framework turns out 
to be too restricted for many practical applications, various generalizations have 
been proposed. First, the translation group may be replaced by an arbitrary com
mutative group. Second, one may consider more general object spaces, such as 
the set of all convex subsets of the plane or the set of gray-level functions on the 
plane, requiring a formulation in terms of complete lattices. So far, symmetry 
properties have been incorporated by assuming that the allowed image transfor
mations are invariant under a certain commutative group of automorphisms on 
the lattice. In this chapter we embark on another generalization of mathematical 
morphology by dropping the assumption that the invariance group is commuta
tive. To this end we consider an arbitrary homogeneous space (the plane with the 
Euclidean translation group is one example, the sphere with the rotation group 
another), that is, a set 2e on which a transitive but not necessarily commutative 
transformation group f is defined. As our object space we then take the Boolean 
algebra 0P(2e) of all subsets of this homogeneous space. First we consider the 
case in which the transformation group is simply transitive or, equivalently, 
the basic set 2e is itself a group, so that we may study the Boolean algebra '2?(f). 
The general transitive case is subsequently treated by embedding the object space 
0P(2e) into '2f(f), using the results for the simply transitive case and translating 
the results back to 0P(2e). Generalizations of dilations, erosions, openings, and 
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closings are defined and several representation theorems ~e prov~d. For c~arity 
of exposition as well as to emphasize the connection with classic~ Eucltd~an 
morphology, we have restricted ourselves to the case of Boolean lattices, which 
is appropriate for binary image transformations. 

I. INTRODUCTION 

Mathematical morphology was originally developed at the Paris School of Mines 
as a set-theoretical approach to image analysis [17,29]. It has a strong algebraic 
component, studying image transformations with a simple geometric interpreta
tion and their decomposition and synthesis in terms of set operations. Other as
pects are the probabilistic one, modeling (images of) samples of materials by 
random sets, and the integral geometric one, which is concerned with image 
functionals. Although the main object of our present study is the algebraic ap
proach, we emphasize that our primary motivation comes from the geometric 
side, in the sense that various image transformations used in mathematical mor
phology today (dilations, erosions, openings, closings) have a straightforward 
geometric analogue in a more general context. It is then a natural question to ask 
whether a corresponding algebraic description can be found. From a practical 
point of view the importance of such an algebraic decomposition theory no doubt 
derives from the fact that it enables fast and efficient implementations on digital 
computers and special image analysis hardware. Because we will not deal with 
such questions here, we refer the reader to [7] for an elementary introduction to 
Euclidean morphology with emphasis on implementation. 

In the original approach of Matheron and Serra [ 17 ,29), a two-dimensional 
image of, let us say, a planar section of a porous material is modeled as a subset 
X of the plane. In order to reveal the structure of the material, the image is probed 
by translating small subsets B, called structuring elements, of various forms and 
sizes over the image plane and recording the locations h where certain relations 
(e.g., "Bh included in X" or "Bh hits X") between the image X and the translate Bh 
of the structuring element B over the vector hare satisfied (see Figure la). In this 
way one can construct a large class of image transformations that are compatible 
with translations of the image plane or, to put it differently, are invariant under 
the Euclidean translation group. The underlying idea here is that the form or 
shape of objects in the image does not depend on the relative location with re
spect to an arbitrary origin and that therefore the transformations performed on 
the image should respect this. Notice that the basic object of study, the "object 
space," is not the reference space (the plane in our example) itself but the collec
tion of subsets of this reference space and the transformations defined on this 
collection of subsets. 

In practice, one encounters various situations where this framework is too 
restrictive. One of the earliest examples is mentioned in Serra's book [29, p. 17), 



NONCOMMUTATIVE SYMMETRY GROUPS 207 

a b 

c 

Figure 1. Copies (dark) of a structuring element B under (a) Euclidean translation, 
(b) rotations and scalar multiplication, and (c) perspective transformation. 

where a photograph is shown of the trees in a forest, taken by putting the camera 
at ground level and aiming toward the sky. Such photographs are used to measure 
the amount of sunshine in the woods. The resulting image shows clear radial 
symmetry with intrinsic origin (the projection point of the zenith). It is clear that 
in this case we need image transformations that are adapted to the symmetries of 
this polar structure. It turns out that in fact one obtains a straightforward gener
alization of Euclidean morphology by replacing the Euclidean translations by an 
arbitrary abelian (commutative) group [11,25]. In the case of the example men
tioned above, this would be the group generated by rotations and multiplications 
with respect to the origin. Here the size of the structuring element increases with 
increasing distance from the origin (Figure lb). Another example occurs in the 
analysis of traffic scenes, where the goal is to recognize the shape of automobiles 
with a camera on a bridge overlooking a highway [3]. In this case the size of the 
structuring element has to be adapted according to the law of perspective (Figure 
le). It is not difficult to show that in this case there is again invariance under a 
commutative group. Notice that in the two examples just mentioned we have a 
variable structuring element as a function of position. This has been taken as the 
starting point by Serra and others to introduce arbitrary assignments of subsets to 
each point of the plane and define dilations and erosions accordingly, completely 
giving up invariance under a symmetry group (see also Section IV.A). However, 
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in the examples just given the situation is different in the sense that there is a 
definite group connecting structuring elements at different locations, although 
their sizes differ. Actually, a metrical concept like "size" does not enter at all into 
the definition of the classical morphological operations. Only the group property 
of the Euclidean vector addition is involved, which explains why an extension to 
arbitrary groups is possible. In fact, we will argue that without a concept of 
invariance (under a group, or otherwise), one cannot even give a meaningful 
answer to the question when sets at different locations are "of the same shape" 
or not. 

Instead of changing the symmetry group of the object space, one may gener
alize the object space itself. For example, instead of all subsets of the plane one 
may want to study a smaller collection, such as the open or closed sets or the 
convex sets. In that case the original approach is no longer valid because the 
union of an arbitrary collection of closed or convex sets is not necessarily closed 
or convex, the intersection of an arbitrary collection of open sets is not necessary 
open, etc. These difficulties can be overcome by taking as the object space a so
called complete lattice, that is, an ordered set ;J>, such that any subset of ;f, has a 
supremum (smallest upper bound) and infimum (greatest lower bound), general
izing the set operations of union and intersection. This is the approach initiated 
by Serra and Matheron [30,31], as well as Heijmans [11]. A general study of this 
topic has been made by Heijmans and Ronse [12,27]. If one does not assume any 
invariance property one can only prove generalities. But again invariance under 
a group of automorphisms of the lattice may be introduced, as in [ 11, 12,27], 
where so far the assumption made is always that the group is commutative. This 
enables a complete characterization of dilations, erosions, openings, closings, 
increasing transformations, etc. Another situation in which a lattice formulation 
is in order arises when one wants to go from binary images with their Boolean 
image algebra to gray-level images, that is, junctions, defined on the basic refer
ence space. Following Sternberg [32], one has introduced the so-called umbras 
to deal with this case [29,31,33]. After introducing an extra dimension for the 
function values, one performs the binary Euclidean operations in this enlarged 
space and translates the results back to the original space. However, for a mathe
matically satisfactory approach complete lattices are required; see Ronse [26]. 

In this chapter we want to generalize morphology by dropping the assumption 
that the invariance group is commutative. To this end we consider an arbitrary 
homogeneous space, a set ~ on which a transitive but not necessarily commuta
tive group f of invertible transformations is defined. Here transitive means that 
for any pair of points in the set there is a transformation in the group that maps 
one point on the other. If this mapping is unique we say that the transformation 
group is simply transitive or regular. As the object space of interest from a mor
phological point of view, we take the Boolean algebra of all subsets of this ho
mogeneous space. 



NONCOMMUTATIVE SYMMETRY GROUPS 209 

We present two examples for basic motivation. First of all, one may extend 
Euclidean morphology in the plane by including rotations. This case has been 
extensively discussed in (24]. In many situations one does not want to distinguish 
between rotated versions of the same object. In that case it is appropriate to use 
the full Euclidean group of motions (the group generated by translations and 
rotations) as (noncommutative) invariance group. This is, for example, the basic 
assumption made in integral geometry to give a complete characterization (Had
wiger's theorem) of functionals of compact, convex sets in R" [ 10]. As our sec
ond basic example we mention the sphere with its symmetry group of three
dimensional rotations, again a nonabelian group. Various motivations can be 
given here. First, the earth is spherical to a good approximation and this has to 
be taken into account when analyzing pictures taken by weather satellites. Sec
ond, pictures of virus particles show them to be nearly spherical with antibodies 
attached randomly to the surface, and a morphological description of the particle 
distribution on the surface is of interest. Third, from a theoretical point of view 
we observe that integral geometry and geometric probability on the sphere have 
been well investigated in the past [18,28]. Since there is a clear connection be
tween these fields on the one hand and mathematical morphology on the other 
(see Serra [29, Chapters 4, 13]), it is of interest to develop morphology for the 
sphere as well. Here we can do no more than indicate how the sphere fits into our 
general framework, but clearly this case is important enough to warrant an in
depth study. A more detailed investigation of this case is presented in [23]. An
other area of possible research is the question of how to take the projective ge
ometry of the imaging process into account, because clearly the symmetry of a 
two-dimensional plane is not the same as the symmetry of the three-dimensional 
world of which it is a projection. 

We first develop the theory for simply transitive transformation groups (ail 
abelian transitive transformation groups fall in this category). It is easy to see 
that in this case there is a one-to-one correspondence between elements of 2t' and 
those of f: let w (the "origin") be an arbitrary point in 2t' and associate to any x 

E 2t' the unique transformation in f that maps w to x. Then a bijection between 
2t' and r is obtained. So in the simply transitive case we can assume without loss 
of generality that 2t' coincides with the group f. This will be taken as the starting 
point in Section III, where we study the Boolean algebra (f(f) of subsets of an 
arbitrary group r. Of course, this is precisely the situation in Euclidean mor
phology, where the group is that of the Euclidean translations, the only difference 
being that in the present case the group may be noncommutative. 

Subsequently we will consider the general transitive case, enabling us to ana
lyze the examples mentioned above (the Euclidean plane with the translation
rotation group, the sphere with the rotation group) as particular cases. It turns 
out that the general case can be handled by embedding the object space of interest 
(the set rzf(2t') of subsets of 2t') into another one (the set rzf(f) of subsets off), 
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which has a simply transitive transformation group. So the results for the latter 
case, although rather technical, have to be developed first in depth. The theory is 
illustrated by various examples. The possibility of an extension to non-Boolean 
lattices will be considered in future work. 

Now some remarks about the organization of this chapter. In Section II we 
first review Euclidean morphology together with some lattice-theoretical con
cepts; then the concept of homogeneous spaces is introduced and we give some 
background material needed in the following. In Section III we generalize Eu
clidean morphology to the Boolean lattice of all subsets of an arbitrary group, 
ordered by set inclusion. In particular, we generalize the classical Minkowski set 
operations, as well as dilations, erosions, openings, and closings that are "trans
lation invariant" in a generalized sense, that is, invariant under certain auto
morphisms induced by the transformation group. A complete characterization of 
these operations is given and we also prove a general representation theorem for 
translation-invariant mappings, generalizing earlier results of Matheron [ 17] and 
Banon and Barrera [l]. We point out the connection to the theory of residuated 
lattices and ordered semigroups [4,5]. Section IV then develops the general tran
sitive case. Some interesting differences from the simply transitive case show up. 
We also introduce a concept of "shape" that explicitly depends on the symmetry 
group involved. Section V contains a discussion and we point out the possible 
relevance for some applications. 

This chapter essentially contains the material of [21,22], apart from some 
minor additions and slight changes of notation. To enhance readability we have 
deferred all the proofs to an appendix. Definitions, theorems, etc. have been 
consecutively numbered in each section, e.g. Remark 2.1 is followed by Theo
rem 2.2, etc. The end of a remark is indicated by the symbol D. 

II. PRELIMINARIES 

In this section we first outline some elementary concepts and results from classi
cal Euclidean morphology (Section II.A), followed by a few general lattice
theoretical concepts that are needed below (Section ILB). Then we introduce the 
concept of homogeneous spaces in Section II.C. 

A. Euclidean Morphology 

Let Ebe the Euclidean space R" or the discrete grid Z". By r:.!J>(E) we denote the 
set of all subsets of E ordered by set-inclusion, henceforth called the object 
space. A binary image can be represented as a subset X of E. Now Eis a com
mutative group under vector addition: we write x + y for the sum of two vectors 
x and y, and - x for the inverse of x. Then we can define the following elemen
tary algebraic operations: 
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Minkowski addition: 

Minkowski subtraction: 

X EB A = {x + a: x E X, a E A} 

= LJ X0 = LJ A, 
aEA xEX 

xeA=nx -a 
a EA 

where X0 is the translate of the set X along the vector a: 

X0 = {X + a: x E X} 
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(7.1) 

(7.2) 

(7.3) 

Here we have followed the original definitions of Hadwiger [10], which is also 
the convention in [12,27 ,32,33]. Matheron [17] and Serra [29] use a slightly 
different definition for Minkowski subtraction; see Remark 2.1 below. 

We collect some standard algebraic properties of Minkowski addition and 
subtraction [10]. Here Eis the Euclidean space, o the origin of E, 0 the empty 
set, X an arbitrary subset of E. 

x EB {o} = x, 
x EB 0 = 0, 
X 8 0 = E, 

x e {o} = x 
XE8E =E 

0 ex = 0, 
XE8A=AEBX 

(X E8 A) E8 B = X E8 (A EBB) 
(X e A) e B = x e (A E8 B) 

(X U Y) E8 A = (X E8 A) U (Y Ee A) 

(X n Y) e A = (X e A) n (Y e A) 

X E8 (A U B) = (X EB A) U (X EB B) 

x e (A u B) = (X e A) n (X e B) 

E8X=E 

(7.4) 

The transformations BA : x '"'x EB A and EA : x '"'x e A are called a dilation 
and an erosion by the structuring element A, respectively. There is a simple geo
metric interpretation of these operations: 

Dilation: X E8 A = {h E E: (A)h n X I 0} 

Erosion: X 8 A = {h E E: Ah ~ X} 

where the reflected or symmetric set A of A is defined by 

A ={-a: a EA} 

(7.5) 

(7.6) 

(7.7) 

There exists a duality relation with respect to set-complementation (X< de
notes the complement of the set X): 

X EB A = (X< 8 Ay, (7.8) 
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that is, dilating an image by A gives the same result as eroding the background 
by A. To any mapping ljl : ~(E) -+ ~(E) we associate the dual map
ping ljl' : l"/J>(E) -+ 1!J'(E) defined by ljl'(X) = {ljl(Xc)}c. To avoid confusion with 
other forms of duality to be discussed below, we will refer to 1\1' as the Boolean 
dual ofljl. 
Remark 2 .1. Matheron and Serra define the Minkowski subtraction of X by A 
as follows: x e A = naEA x •. Then one has to write x e A in Eq. (7 .6). The 
advantage of this definition is that the duality relation (7 .8) does not involve a 
reflection of the structuring element. But it complicates the expression of ad junc
tions (see below), which is a notion persisting in lattices without complementa

tion. 0 
Two characteristic properties of dilation are: 

Distributivity w .r.t. union: ( U X;) EFl A = U (X; EB A) (7. 9) 
iEI iE/ 

Translation invariance: (7.10) 

Similar properties hold for the erosion with intersection instead of union. A con
sequence of the distributivity property is that dilation and erosion are increasing 
mappings, that is, mappings such that for all X, YE ~(£), X ~ Y implies that 
ljl(X) C ljl(Y). 

Other important increasing transformations are the opening and closing by a 
structuring element A (the closing is defined slightly differently in [ 17 ,29]): 

Opening: X 0 A: = (X 8 A) EB A = U {Ah: Ah C X} (7.11) 
hEE 

Closing: X e A: = (X EB A) 8 A = n {(k)h: (k)h ~ X} (7.12) 
hEE 

The opening is the union of all the translates of the structuring element that are 
included in the set X. Opening and closing are related by Boolean duality: 
(Xc 0 A)< = X e A. A more general definition of dilations, erosions, openings, 
and closings will be given in the next subsection in the framework of complete 
lattices. 

We end this review of Euclidean morphology by presenting a theorem by 
Matheron [17], which gives a characterization in the Euclidean case of transla
tion-invariant increasing mappings. 

Theorem 2 .2. A mapping 1\1 : ~(£) -+ ~(E) is increasing and translation
invariant if and only if 1\1 can be decomposed as a union of erosions or, alterna
tively, as an intersection of dilations: 

ljl(X) = U X 8 A = n X E8 A 
AE<oli'l 
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where °V(\fs) = {A E rJJ>(E) : o E \ji(A)} is the kernel of 1\1, and tjl' is the Boolean 
dual of ljl. 

B. Lattice-Theoretical Concepts 

The object spaces of interest in mathematical morphology are not restricted to 
Boolean algebras. For example, if one is interested in convex subsets of the plane 
or gray-level images, one has to introduce the notion of complete lattices. This 
approach has been initiated by Serra [30], Serra et al. [31], and Heijmans and 
Ronse [ 12,27]. Although the present generalization of mathematical morphology 
is confined to Boolean lattices, it is nevertheless advantageous to summarize 
a few lattice-theoretical concepts that will be needed below. The reader may 
want to skip this subsection at first reading and refer back to it later. For a full 
discussion, see [12,27]. A general introduction to lattice theory is given by Birk
ho:tf [4]. 

A complete lattice(:£, 5) is a partially ordered set:£ with order relation 5, a 
supremum or join operation written V, and an infimum or meet operation written 
/\, such that every (finite or infinite) subset of:£ has a supremum (smallest upper 
bound) and an infimum (greatest lower bound). In particular, there exist two 
universal bounds, the least element written 0 ;;e and the greatest element I:£· In the 
case of the power lattice rJJ>(E) of all subsets of a set E, the order relation is set
inclusion ~, the supremum is the union U of sets, the infimum is the intersection 
n of sets, the least element is the empty set 0, and the greatest element is the set 
E itself. An atom is an element X of a lattice :£ such that for any Y E :£, 
0:£ s; Y s; X implies that Y = 0:£ or Y = X. A complete lattice:£ is called 
atomic if every element of :£ is the supremum of the atoms Jess than or equal 
to it. It is called Boolean if (1) it satisfies the distributivity laws XV (Y /\ Z) = 
(X V Y) /\ (X V Z) and X /\(Y V Z) = (X /\ Y) V (X /\ Z) for all X, Y, Z E :£, 
and (2) every element X has a unique complement xc, defined by XV Xc = l;;e. 
X /\ xc = 0'£. The power lattice rJJ>(E) is an atomic complete Boolean lattice, 
and conversely any atomic complete Boolean lattice has this form. 

Since we are interested in image transformations, a main object of study is the 
set 0: = ,;£:£of all maps (operators) on:£, that is, mappings ljl: :£ -> :£. Operators 
are generally written in Greek letters, with "f, <!>. &, e being reserved for open
ings, closings, dilations, and erosions. The identity operator X f--i> X is written 
id.:£. The composition of two operators tjl 1 and tjl2 is defined by ljl1tjl2(X) 
= tjl 1(1jJ2(X)), X E.:£. Instead oftjlljl we write tjl 2• 

The power lattice() inherits the complete lattice structure of:£. The ordering, 
supremum, and infimum in{) are denoted by s;, V, /\ as well, and for any subset 
9l. ~ 0 they are defined by 
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1\1, :5 1\12 <:::> 1\11 (X) :5 l\Ji(X), 

(vl}l)(X) = v 'l'](X), 
TJE:D. 

c/\ ~l<X) = /\ 'l'](X), 
T]E9l 

VX E 5£ 

VX E 5£ 

VX E 5£ 

ROERDINK 

(7. l 3a) 

(7.13b) 

(7.13c) 

In the case that 5£ is itself a power lattice <!P(E) with ordering ~, we will use the 
symbols s;, U, and n instead of ::s, v, and/\ in (7.13). 

Let:£ and ff, be complete lattices. A mapping 1\1 : 5£ --+ii is called increasing 
(isotone, order-preserving) when X :5 Y =? l\J(X) :5 l\J(Y) for all X, YE 5£, and 
decreasing (antitone, order-reversing) when X :5 Y =? l\J(X) 2: l\J(Y) for all X, 
Y E :£. An automorphism of :£ is a bijection 1\1 : 5£ --+ :£ such that for any X, 
YE:£, X :5 Y if and only if l\J(X) :5 lji(Y). When a group T is an automorphism 

group of both :£ and ff,, a mapping ljJ : :£ --+ ff, is called T-invariant or a T
mapping if it commutes with all TE T, that is, if l\J(T(X)) = T(l\J(X)) for all X E 

:£,,. E: T. Accordingly, we will speak below of T-dilations, T-erosions, etc. If 
no invariance under a group is required, one may set T = {idoe}. We will refer to 
the elements of T as group translations or T-translations. 

Next we give a general definition of dilations and erosions, which are ex
amples of increasing mappings. 

Definition 2 .3. Let :£ and 9: be complete lattices. A dilation o : 5£ --+ ii is a 

mapping commuting with suprema. An erosion e : :£ --> ff, is a mapping com
muting with infima. In other words, for any subset {X, : i E /}of 5£ it is true that 

o<V X) = V B(X) (7.14) 
iEI iEI 

cc/\ X,) = /\ E(X;l (7 .15) 
iE/ iE/ 

In particular, 8( 0 oe) = O.if and E(/ oe) = I ii:· 
The following definition, which applies only to mappings on a single lattice, 

generalizes the notion of Euclidean openings and closings. 

Definition 2 .4. A mapping ljJ : :£ --+ 5£ is called: 

(a) idempotent, if l\J2 = \(!; 
(b) extensive, if for every X E :£, l\J(X) ~ X; 
( c) antiextensive, if for every X E 5£, ljl(X) :5 X; 
(d) a closing, if it is increasing, extensive, and idempotent; 
(e) an opening, if it is increasing, antiextensive, and idempotent; 
(f) an involution, if \(12 = idoe. 

Of fundamental importance is the concept of adjunction. 
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Definition 2 .5. Let E : :£ -+ Ie and 8 : Ie -+ :£ be two mappings, where :£ and 

Ie are complete lattices. Then the pair (E, 8) is called an adjunction between:£ 

and Ie, if for every X E Ie and YE :£, the following equivalence holds: 

8(X) :::;; Y <:::> X :::;; e(Y) 

If Ie coincides with ;;£ we speak of an adjunction on ;;£. 
The following properties of adjunctions are needed below. For the proof, see 

[8, 12,27]. 

Lemma 2 .6. Let:£ and Ie be complete lattices. Then: 

(a) In an adjunction (e, 8) between;;£ and Ie, E : :£-+ Ie is an erosion and 8 : Ie 
-+:£a dilation. 

(b) For every dilation 8 : Ie -+:£there is a unique erosion e : ;;£-+ Ie such that 

(E, 8) is an adjunction between ;;£ and Ie; e is given by E(Y) = V{X E 
Ie : 8(X) ::5 Y} and is called the upper adjoint of 8. 

(c) For every erosion e : :£ -+ Ie there is a unique dilation 8 : Ie -+ ;;£ such that 
(e, 8) is an adjunction between;;£ and I£; 8 is given by 8(X) = f\{Y E :£ : X 
::5 e(Y)} and is called the lower adjoint of e. 

(d) 8 is T-invariant if and only if e is T-invariant; if so, we call (E, 8) a T
adjunction. 

(e) For any adjunction between;;£ and Ie, we have 8E ::5 id9?, e8 ;:: id.'.£, 8e8 = 8, 
and e8e = e. In particular, 8e is an opening on;;£ and e8 is a closing onie . 

(f) Given two T-adjunctions (e, 8) and (e', 8'), (e'E, 88') is a T-adjunction. 
(g) If (e1, 8) is a T-adjunction for every j E J, ( f\1e1Ei' V;efi1) is a T-adjunction. 

Definition 2.7. Let e : :£-+ Ie be an erosion with adjoint dilation 8 : Ie-+ :£. 
A morphological opening (closing) is an opening (closing) of the form 8e (e8). 

Next we recall some general properties of openings and closings. The supre
mum of a collection of openings is again an opening. The greatest opening on:£ 
is id9?, where the ordering of mappings is defined by (7 .13a). 

Definition 2 .8. The domain of invariance of a mapping tlJ : ;;£ -+ ;;£ is the set 

lnv(t!J): = {X E ;;£: t!J(X) = X} 

Openings are completely characterized by their domain of invariance: -y 1 = -y2 

<:::> Inv(-y1) = lnv(-y2). 

Definition 2.9. Let B be an element of::£. The structural T-opening by the 
structuring element B is the mapping 

'Y!(X) = v {T(B): T E T, T(B) ::5 X}, X E ;;£ (7.16) 
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Similarly, the structural closing <l>X by the structuring element B is defined by the 
formula 

<l>X<X) = A{-r(B): TE T, T(B) ?::: x }, x E 5£ (7.17) 

As the name suggests, structural openings and closings are defined in terms 
of a single structuring element. Notice that (7 .11) is a structural opening by 
the structuring element A and (7 .12) is a structural closing by the structuring 
element A'. 

An important result is the following characterization of T-openings [ 12]: 
Proposition 2.10. Let 'Y be a T-opening on 5£. Then 'Y is a supremum of struc
tural T-openings, that is, 

"{(X) = VbX(X): BE r&,}, x E 5£ (7.18) 

where '83 is the domain of invariance of 'Y. The subset r&, <;;; 5£ in this formula may 
be replaced by any subset r&, I that generates r&, under T-translations and infinite 
suprema. 

In the Euclidean case, a structural opening by B is also a morphological open
ing: 'Yl(X) = 88 E 8 (X) == (X 8 B) EB B. The corresponding representation (7 .18) 
of Euclidean openings on C!.P(E) as a union of morphological openings was origi
nally proved by Matheron [ 17]. 

C. Homogeneous Spaces 

In this subsection we introduce the concept of a homogeneous space and give a 
brief account of prerequisites for later use. For a general introduction we refer 
the reader to [2, 19,20,34]. 

Let 2t' be a non-empty set. A bijection 2t' -+ 2t' is called a permutation of 2t'. 
By Sym11 we denote the group of all permutations of 2£. If 2£ is a finite set 
of n elements, we write ~" instead of Syml'f. A subgroup r of Syml'f is called 
a permutation group or transformation group on 2t'. We also say that f 
is a group action on 2t' or that f acts on 2e. Each element g E f is a mapping 
9,f'. ~ 2t' : x ~ g(x), satisfying 

(i) gh(x) = g(h(x)), (ii) e(x) = x 

where e is the unit element of r (i.e., the identity mapping x ~ X, x E 2t'), and 
gh denotes the product of two group elements g and h. The inverse of an element 
g E r will be denoted by g- I. usually we will also write gx instead of g(x). 

The permutation group f is called transitive on 2e if for each x, y E 2£ there is 
a g E f such that gx = y, and simply transitive or regular when this element g 
is unique. We will sometimes write multitransitive to mean "transitive, but not 
simply transitive" (the more natural phrase "multiply transitive" is avoided be
cause it has a special technical meaning in group theory (20 ,34]). 
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Definition 2 .11. A homogeneous space or a f-set is a pair (f, /!l') where f is a 
permutation group acting transitively on /Je. 
Remark 2.12. In the references cited above, homogeneous spaces are defined 
in terms of group actions or, equivalently, permutation representations of an ab
stract group r on a set /Je. If the representation of this abstract group is faithful, 
then f is isomorphic to a group of permutations on iJe. In that case the above 
definition applies, which is more intuitive and sufficient for our purposes. O 

The following result is standard in group theory [2,20,34]. 

Lemma 2 .13. Any transitive abelian permutation group f is simply transitive. 
Therefore our extension of mathematical morphology has to deal with two 

classes beyond the commutative case: the noncommutative simply transitive case 
and the noncommutative multitransitive case. The situation is summarized in 
Table 1. 

If f acts on iJe, the stabilizer or isotropy group of x E :!:t' is the subgroup 
f x : = {g E f : gx = x}. Stabilizers of different points form conjugated 
subgroups: f gx = gfxg- 1• Let w E iJe be an arbitrary but fixed point of 2£, hence
forth called the origin. The stabilizer f"' will be noted by}; from now on: 

I:= f"' = {g E f: gw = w} (7 .19) 

Definition 2 .14. The canonical projection 'lT"' is the mapping 'lT"' : r ~ iJe given 
by 7r.,(g) = gw. 

Define an equivalence relation on fas follows g ~ h ~ h- 1g EI. So two 
elements g and h of the group are equivalent if gw = hw, that is, if they map the 
origin to the same point of /Je. If gx is an arbitrary element of r that maps the 
origin to x, then one easily sees that the collection of all elements equivalent to 
gx is the subset g):, : = {g_.s : s E I} of f. This set is called a left coset with 
respect to the subgroup l. The collection of equivalence classes is called the left 
coset space associated to I and is denoted by f/I (read "f modulo l"). 

From the above it follows that there is a bijection between OC and the coset 
space f/I: each point x E iJe is identified with the coset gx!.. So instead of the 
pair (f ,/!l') we might as well study (f ,f /l). If facts regularly on iJe, the stabilizer 
reduces to the unit element of the group: }; = {e}. So in that case we are left 
with the pair (f ,f), which will be studied in Section III. 

Table 1. Classification of Transformation Groups and the Associated Morphologies 

Commutative 

Noncommutative 

Simply Transitive 

Euclidean morphology 
(Section II.A) 
Morphology on groups 
(Section III) 

Multitransitive 

Morphology on homogeneous spaces 
(Section IV) 
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There are several ways in which a group acts on itself. Two standard transitive 
actions are introduced in the next definition. 
Definition 2.15. Let r be a group and g be an arbitrary element of the group. 
The left and right translations by g are the mappings, 

A8: r-. r, 
p8 : r-. r, 

A/h) = gh (left translation) 

p8(h) = hg (right translation) 

Notice that AgAh = A8h, p8ph = Phc' so the permutation group P. : = {A8 : g 
E f} is isomorphic to funder the correspondence g <-> A8 , and the permutation 
group fP : = {p8 : g E r} is isomorphic to f under the correspondence g <-> 

p- I. The group r is a homogeneous space under both the actions p and f P. It is g 

customary in group theory to use the expression "translations" for these standard 
actions on a group. Of course, this should not be confused with "translations" in 
the sense of the Euclidean parallel displacements, which form an abelian group. 

In the following we present a number of examples of homogeneous spaces. In 
each example f denotes the group and 2e the corresponding f-set. The fourth and 
fifth examples will be considered in more detail in Section IV. A nice exposition 
of symmetry groups in nature can be found in the book by Wey! [36]. 

Example 2.16. 2e = Euclidean space Rn, r = the Euclidean translation 
group. r is abelian, therefore simply transitive (the only translation having a 
point fixed is the zero translation). 

Example 2. 17. 2e = discrete space Z"; f = the discrete subgroup of the 
Euclidean translation group that is transitive on 2e and leaves the grid invariant. 
Again f is abelian, therefore simply transitive. 

Example 2.18. 2e = R 2\{0}; f = the rotation-multiplication group. f is 
abelian; see also [ 12 ,25]. 

Example 2.19. 2e =Rn (n;:::: 2); f =the Euclidean motion group £+(n) 
(proper Euclidean group, group of rigid motions), that is, the group generated by 
translations and rotations (see [24]). The subgroup leaving a point fixed is the set 
of all rotations around that point. r is not abelian. For drawing purposes we will 
replace 2e by a hexagonal grid and r by the subgroup '!Je of r consisting of all 
motions leaving the grid invariant. We will refer to '!Je as the "hexagonal" group 
in the following. 

Example 2.20. 2e = the sphere S2 ; f = the group S0(3) of rotations in 3-
space (see [23]). The subgroup leaving a point fixed is the set of all rotations 
around an axis through that point and the center of the sphere. r is not abelian. 

Example 2.21. 2e = finite set of n elements {l, 2, ... , n}; r = the sym
metric group Sn (full permutation group) on n elements. The subgroup leaving an 
element fixed is the group Sn- i of all permutations of the remaining n - 1 ele
ments. r is not abelian for n;:::: 3. 

Example 2.22. 2e = the vertices of a regular polyhedron; f = the discrete 
subgroup of S0(3) consisting of all rotations that leave the polyhedron invariant. 
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The group of the tetrahedron is stl4 , that of the cube and the octahedron is S4 , and 
that of the dodecahedron and icosahedron is .stl5• Here .stln denotes the alternat
ing group on n points, that is, the subgroup of Sn containing only even permuta
tions [2]. 

Example 2.23. Let E be a finite set of vertices of a graph. Let ?£ be the 
complete graph generated by E and r the group of all permutations of E, which 
extends to a group acting on ?£ in the obvious way [31]. r is in general not 
abelian. 

Ill. THE SIMPLY TRANSITIVE CASE: MATHEMATICAL 
MORPHOLOGY ON NONCOMMUTATIVE GROUPS 

Our aim in this section is to generalize Euclidean mathematical morphology as 
reviewed in Section II.A to the space eJl(?e), where 2l': is a homogeneous space 
under a group r acting simply transitively on?£. Because in this case there is a 
bijection between 2l': and r' as explained in the last subsection, we can identify :t:(; 

with r without loss of generality. Hence in the remainder of this section we will 
study the power lattice 9J>(f), that is, the set of subsets of r ordered by set
inclusion, where r is an arbitrary group. The classical Euclidean case corre
sponds to the case in which r is the abelian group of vector additions (transla
tions). Our first step will be to find a generalization of the Minkowski operations, 
the main problem being how to overcome the noncommutativity of the group r 
(Section III.B). Subsequently we define generalized dilations and erosions invar
iant under r, followed by a discussion of ad junctions as well as openings and 
closings (Section Ill.C). Finally, we consider characterization theorems for the 
generalized morphological transformations (Section Ill.D). But first we will look 
at a pair of automorphism groups of eJl(f) that are essential in what follows. 

A. Left and Right Translations on 9P(f) 

Let f be an arbitrary group. To be consistent with the notation in Section IV, we 
denote elements of r by g, h, k, etc., and subsets of r by the corresponding 
capitals G, H, K. The product of two group elements g and his written gh. For a 
fixed g E f, one can define the mappings h H- gh and h H- hg for any h E f. 
These mappings are called left translation by g and right translation by g, respec
tively [2,20,34]. This definition can be trivially extended to subsets of the group 
as follows: 

left translation: X.g: 2P(f) --> 9J>(f), X./H) = {gh: h E H} (7 .20a) 

right translation: pg: 2P(f)--> 2P(f), pg(H) = {hg: h EH} (7.20b) 

Instead of X. (H) and p (H) we will usually write gH and Hg. It is straightforward 
g g • 

to check that the left translations on the lattice 2P(f) preserve umons, intersec-
tions, and complements: 
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g(G UH) = (gG) U (gH), 

g(G n H) = (gG) n (gH), 

ROERDINK 

(gGY = gGc 

and similarly for right translations. So the sets P : = {A8 : g E r} and 
fP: = {pg: g En are both automorphism groups ofQl>(f). 

Remark 3.1. Notice that A8Ah = A8h, p8ph = Phg• so f1. is isomorphic to funder 
the correspondence g...-. A8 , and fP is isomorphic to funder the correspondence 
g +-+ p8-

1• This is related to the concept of the dual f* of a group f, which is 
obtained by defining a dual product "*" in r by g * h = hg. It is easy to see that 
the groups P and fP are dual. So we only need to give proofs for invariance with 
respect to left translations, say. The right-invariant counterparts then follow by 
group duality. For easy reference we nevertheless give most results in left- and 
right-invariant form. 0 

A simple yet fundamental observation is that left and right translations com
mute. Summarizing: 

Lemma 3 .2. Let f be a group. Then the groups P and f P of left and right 
translations are: (1) automorphism groups of the lattice QJ>(f) and (2) isomorphic 
to f. Moreover, left and right translations commute: "'f8Ph = Ph"'tg for all g, 
h E f. 

Finally, we define left and right translation-invariant mappings. 

Definition 3 .3. A mapping l)i : QJ>(f) --+ QJ>(f) is called left translation-invariant 
when, for all g E f, A81ji = ljih8 (i.e., lji(gG) = glji(G), VG E Ql>(f)). Similarly, 
a mapping ljl : Ql>(f) -+ QJ>(f) is called right translation-invariant when, for all 
g E f, p8ljl = ljlp8 (i.e., ljl(Gg) = (ljl(G))g, VG E QJ>(f)). 

For brevity we will speak of left-invariant or A-mappings and right-invariant 
or p-mappings. 

B. Generalization of the Minkowski Operations 

Since r is a group, we can use the group operation to define a multiplication on 
subsets off, which leads to the generalization of the Minkowski addition. 

Definition 3 .4. Let G ,H be subsets of the group f. The product of G by H, 
r 

denoted by G EB H, is the subset off defined by 
r 

G EB H = {gh: g E G, h E H} 
r r 

GEB0=0EBG=0 

r 

(7 .2la) 

(7 .21 b) 

Here we have explicitly indicated the dependence of the product ffi on the 
r r 

group f. It is immediate that, with e the unit element off, G ffi {e} = {e} ffi G 
= G. Notice that, in general, the product operation is noncommutative, that is: 

(7.22) 
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Remark 3 .5. We notice in passing that 0J>(f) is a monoid under the multiplica
r 

tion EB, that is, a semigroup with unit element {e}. Since 0J>(f) is a complete 
r 

lattice as well, and the multiplication EB is distributive over unions (see the next 
proposition), we have an example here of a so-called complete lattice-ordered 
monoid or cl-monoid; see Birkhoff [4] or Blyth and Janowitz [5]. D 

We can write (7 .21a) in the alternative forms 

G ffi H = LJ gH = LJ Gh (7.23) 
gEG hEH 

The similarity with the Minkowski addition (7. l) is clear. Next we generalize the 
Minkowski subtraction. 

Definition 3 .6. Let G, H be subsets of the group f. The left residual of G by 
A 

H, denoted by G 8 H, is the subset off defined by 
)\ 

G 8 H = {g E f: gH <;;;,, G} (7 .24a) 

p 

The right residual of G by H, denoted by G 8 H, is the subset off defined by 
p 

G e H = {g E r: Hg <;;;,, G} (7.24b) 

Remark 3. 7. The above definition of residuals is standard in the theory of resi
duated semigroups. The left residual of G by H is characterized by the property 
that it is the largest subset K of r such that when multiplied on the right by H it 
is included in G: 

A f 
(i) (G 8 H) EB H <;;;,, G 

f !. 

(ii) K EB H <;;;,, G :::} K <;;;,, G 8 H 

with a similar statement for right residuals; see Birkhoff [4] or Blyth and Janowitz 
[5]. Definition 3.6 also applies if r is just a semigroup instead of a group. Of 
course, the fact that we assumer to be a group enables us to derive more specific 
results. As far as notation is concerned, in residuation theory one usually writes 

r l\ P 

CH, G ·. H, G . · H instead of G EB H, and G 8 H, and G 8 H, respectively. 
With our choice of notation we maintain some resemblance to the symbols EB, 
e used in Euclidean morphology. D 

Using the group nature off, we easily derive the following equivalences: 

gH <;;;,, G <;:,> gh E G, Vh EH<;:,> g E Gh- 1, Vh EH 
<;:,> g E n eh - I 

hEH 

Hence, 

GS H = n Gh- 1 , (7 .25) 
hEH hEH 
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where the result for the right residual can be shown similarly. Both formulas 
reduce to the Euclidean Minkowski subtraction G 8 H if the group r is com
mutative, as a glance at Eq. (7.2) makes clear. Note that 

r r 
{g} ffi G = gG, G EB {g} = Gg 

A p 

Ge {g} = cg- 1, c e {g} =g- 1G 
(7.26a) 

(7 .26b) 

Next we state a number of algebraic properties of the set product and the 
residuals*, generalizing the formulas (7.4). For a proof of (a)-(f) in an abstract 
lattice-theoretical context, see [4,5]. 
Proposition 3.8. Let G, H, K \;;; f and g, h, k E f. Then the following hold: 

r r r 
(a) G EB (HU K) = (G EB H) U (G EB K) 

r r r 
( G U H EB K = ( G EB K) U (H ffi K) 

r r r r 
(b) (G ffi H) ffi K = G ffi (H EB K) 

A A A 

(c) (G n H) 8 K = (G 8 K) n (H 8 K) 
p p p 

cc n H) e K = cc e K) n CH e K) 
>. A >. 

Cd) c e CH u K) = cc e H) n cc e K) 

(e) 

(f) 

p p p 

c e CH u K) = cc e H) n cc e K) 
r >. p 

GEBH~K~G\;;;K8H~H~K8G 
A >.. A f 

(Ge H) e K = G e (K ffi H) 
P P P r 

(G e H) e K = G e (H ffi K) 
p A >. p 

(G e H) e K = (G e K) e H 
r r r r 

(g) ( gH) E8 K = g(H EB K); H EB (Kg) = (H ffi K)g 
>.. A p p 

(gH) e K = g(H e K); (Hg) e K =(He K)g 
A >. ),_ 1. 

(h) He (gK) =(He K)g- 1; He (Kg)= (Hg- 1) e K 
p p p p 

He (gK) = (g-1H) e K; H8 (Kg)= g- 1(H e K) 

U-distributivity 

associativity 

n-distributivity 

iteration 

I'-invariance 

As in the Euclidean case, there exists a duality by complementation. First we 
need some definitions. 
Definition 3.9. Let G be a subset of r. The inverted set of G is the set G = 
{g- 1 : g E G}. The complement of G is the set G" = {g E f : g E G}. The 
complement of the inverted set is denoted by G : = (G)'. 

*Proofs are given in the Appendix. 
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Notice that in the Euclidean case inversion of a set reduces to reflection of a 
set as defined in (7. 7), hence our use of the same symbol. 

Lemma 3.10. Let G, H be subsets off. Then, 

(a) 
(b) 
(c) 
(d) 

(e) 
(f) 

(g) 

(h) 

(i) 

(G')' = (Gf = (Gr = G 
(G)' = (G'Y 
(gG)' = gG'; (Gg)' = G<g 
(gar = cg- 1; (Ggr = g·- 16 

r , r , 
(G EB Hf = H EB G 
( G U H)' = G' n H, ( G U Hf = 6 U fJ, 
(G n Hf = 6 n fJ, (Gu Hr = 6 n fJ 

r l\ , P , 

( G EB H)' = G' 8 H = H 8 G 
l\ , P , 

(G 8Hf = G 8 H 
r , P , " 

( G EB Hf = G e H = H e G 

By making use of duality by complementation one may derive pairs of equiv
r 

alent results; for example, consider Proposition 3.8(g). Start with ( gH) EB K = 
r 

g(H EB K). Take complements of both sides and use Lemma 3. I O(g) to find ( gH') 
l\ , l\ , >. l\ 

8 K = g(H' 8 K). Since Kand H ar arbitrary, we get ( gH) 8 K = g(H 8 K), 

which is the third item of Proposition 3.8(g). All this is completely analogous to 
the Euclidean case. 

Remark 3.11. It is easy to show that the group product (7.23) has the following 
geometric interpretation, which is a straightforward generalization of the Eu
clidean result (7 .5): 

r , 
G EB H = {k E r: kH n G * 0} = {k E r: Gk n H * 0} 

The geometric interpretation of the residuals is implicit in Definition 3. 6. O 

C. Dilations, Erosions, Openings, and Closings 

Now that we have generalized the Minkowski operations we are in a position to 

define various morphological transformations that are invariant under the group 

f. We start with a discussion of dilations and erosions. 
Because of the noncommutativity of the set product (7 .21) there are two pos

sibilities for generalizing the dilation (7.5). We may consider, for a fixed HE 
r r 

QP(f), the mapping G >---7 G EB H, as well as the mapping G >---7 H EB G. This leads 

to the following definition. 

Definition 3 .12. Let H E Qll(f). The left dilation 5~ and right dilation 5~ by the 
structuring element H are the mappings: QP(f) -+ QP(f) defined by 
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r 
G EB H, 

- r 
8f;(G) = H EB G 

That these mappings are dilations (i.e., commute with arbitrary unions; see Def
inition 2.3), is readily proved by extending Proposition 3. 8(a) to distributivity 
with respect to infinite unions. The reason for the terminology is that left (righo 
dilations are left (right) translation invariant; see Proposition 3 .8(g). 

Next we show that left and right dilations can be decomposed in terms of the 
automorphisms of the lattice 0J>(f). From (7. 23) is it immediate that 

SMC) LJ Gh = LJ gH (7 .28a) 
hEH gEG 

Sf;( G) LJ hG = LJ Hg (7.28b) 
hEH gEG 

Defining the union and intersection of left and right translations pointwise (i.e., 
by the ordering inherited from 0J>(f); see Section II.B), (7 .28) can be written rn 
operator form as 

(7 .29) 

Since left and right translations commute, we see that 8t commutes with left 
translations and 8f,, commutes with right translations. Below we will show that 
all left- and right-invariant dilations have this form. In a similar way we define 
left- and right-invariant erosions. 

Definition 3. 13. Let HE 0J>(f). The left erosion et and right erosion £~ by the 
structuring element H are the mappings 0J>(f) --> 0J>(f) defined by 

!. 

et(G) =Ge H, 
p 

f;f,,(G) = G 8 H (7 .30) 

We also write A.-dilation/A.-erosion instead of left dilation/left erosion, with a 
similar convention for the right-invariant counterparts. 

Again we decompose left and right erosions in terms of left and right transla
tions. Just as there are two equivalent forms for the left and right dilation (7. 28), 
one can derive two forms for the erosions. To see this take the complement of 

r 
(7.28a), which by (7.27) equals the complement of G EB H: 

n G'h = n gW = cc ffi H)' = o· e f.J 
hEH gEG 

where we have used Lemma 3 .1 O(g). Since this formula holds for arbitrary G , H 
E 0J>(f) we find (the proof for the right erosion is analogous) 

et(G) n Gh- 1 = n gH (7 .3 la) 
hEH gEG' 

n h- 1c = n fig (7.3lb) 
hEH gEG' 
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where, as before, f! = ifc. In operator form, 

E~ = n Pi: I' ef, = n \-1 
hEH hEH 

(7.32) 

The following lemma shows that as soon as we have proved a result for left
invariant dilations, there is a corresponding result for right-invariant dilations, as 
well as for left- or right-invariant erosions. First we need a definition. 

Definition 3.14. Let ljJ : \?P(f) -+ \l.P(f) be an arbitrary mapping. The Boolean 

dual t!J' of t1J is the mapping defined by ljl'(G) = (ljl(Gc))". The reflection~ of ljJ 

is the mapping defined by t]I( G) = ( ljl( G)f. The dual reflection of ljJ is the map

ping~ defined by ~(G) = (ljl(G)r. 

Lemma 3.15. Let ljJ : \l.P(f)-+ \l.P(f) be an arbitrary mapping. Then, 

(a) Ct!J')' = ct]Ir = <~r = ljl. 

(b) (ij'J)' = (t!J'r. 

(c) ljJ is an increasing A-mapping ~ t!J' is an increasing A-mapping; ljJ is a 

dilation~ ljl' is an erosion. In particular, (S~)' = E:~. 

(d) ljJ is right-invariant~ tfi is left-invariant. 

In particular, (Ahr = ph- 1, cs~r = 8~, (e:~r = e~. 

(e) cs~r = e:r,. 
Remark 3 .16. Here is an example of how this lemma can be used. Suppose the 
following statement has been proved: ljJ increasing:::} ljl' increasing. To show the 
converse, apply this statement to ljl'. Then we find: ljl' increasing :::} ljl" increas
ing, but since the complementation operator is an involution W' = ljl) the proof 
is complete. In a similar way we can use results for left-invariant dilations to 
derive counterparts for right-invariant dilations (using c\fir = ljl) or for right

invariant erosions (using <iVr = t!J). 0 
Next we make a few remarks about adjunctions. By Proposition 3.8(e) we 

have the equivalences 

S~(G) ~ K ~GS: sMK) 

Sf,( G) ~ K ~ G ~ 6f,(K) 

(7.33a) 

(7.33b) 

We call (E:~, 8t) a left-invariant adjunction (A-adjunction) and similarly we call 

(sf,, Sf,) a right-invariant adjunction (p-adjunction). In particular all the proper
ties of adjunctions as summarized in Lemma 2.6 hold for these adjunctions. 

So 6ft is the supper adjoint of St, St is the lower adjoint of ~. etc. Lemma 
3.15(c-e) expresses the relation between the duality by complementation, reflec
tion and ad joint pairs. 
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From the properties of adjunctions (see Section II.B) we know that we can 
build so-called morphological openings and closings from dilations and ero
sions. In particular, the mappings 8~€~ and ~ff, are left- and right-invariant mor
phological openings, and the mappings €~8~ and Ef,ft are left- and right-invariant 
morphological closings. As in the Euclidean case, these mappings are also so
called structural openings and closings (see Definition 2.9). Explicitly: 

Proposition 3 .17. For all G, H E :J>(f). 
;. r 

-y~1(G): = 8~E~(Gl = <G e m EB H U{gH: gH c G} 

U{Hg: Hg c G} 

<f>~(G): = E~S~(G) = (G ~ H)BH = n {gH: gH :;i G} 

<f>~(G): = E~~(G) = (H ffi G) e H = n {Hg: Hg d G} 
~El' 

This proposition contains the geometric interpretation of the morphological 
openings and closings. For example, the left-invariant opening 8~€~(G) is the 
union of all left translates of H that are contained in G, etc. All this is completely 
analogous to the situation in Euclidean morphology. The following properties 
related to behavior under translations are immediate: 

'YMgG) = g)'~(G), (7.34) 

Similar properties can be proved for closings and the right-invariant counterparts 
of both by using the identities 

(7 .35) 

which follow from Lemma 3 .15. 
Summarizing the results so far, we have generalized the Minkowski opera

tions and the associated dilations and erosions, forming adjoint pairs invariant 
under either left or right translations. Finally, we have constructed the morpho
logical openings and closings that correspond to these adjunctions and provided 
a simple geometric interpretation for them. The questions we take up in the final 
section is whether all ad junctions, openings, and closings are of the form found 
above. Also, the representation theorem of Matheron for increasing translation
invariant mappings will be generalized. 

D. Characterization Theorems 

This section treats the representation theorems for adjunctions, openings and 
closings, as well as general translation-invariant mappings. We start with the 
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characterization of adjunctions. Then follows a discussion of kernels of map
pings I)! : 2/l(f) --> 2/l(f). Subsequently, we extend the results of [ l] concerning a 
representation theorem for arbitrary translation-invariant mappings, obtaining 
decompositions of increasing or decreasing translation-invariant mappings as 
special cases. We end with a discussion of openings and closings. 

The question whether all left- and right-invariant dilations and erosions have 
the forms (7.29) and (7.32), respectively, is answered by the following proposi
tion. 

Proposition 3 .18. General form of ad junctions on 2/l(f). A pair ( £, o) of map
pings from 2/l(f) to itself is a left-invariant adjunction if and only if 

0 = 8>- = u p £ = ~ = n n-1 H h' H tfl (7.36) 
hEH hEH 

for some HE 2/l(f). A corresponding statement holds for right-invariant adjunc
tions. 

Next we need to make a few remarks about kernels. 

Definition 3.19. The kernel of a mapping ljJ : 2/l(f)--> 2/l(f), denoted by "V(\jl), 
is the family of subsets of r defined by (e denotes the unit element of the 
group f) 

°V(ljl) = {G E 2/l(f): e E ljJ(G)} 

Proposition 3.20. There is a 1-1 correspondence between subsets of the lattice 
2/l(f) and A-mappings (p-mappings) I)! : 2/l(f)--> 2/l(f). More precisely, to any A.
mapping (p-mapping) ljJ corresponds a family '&, of subsets of r, where <!13 is the 
kernel of ljJ. Conversely, to any subset <!13 ~ 2/l(f) corresponds one X.-mapping I)!' 
defined by ljl>-(G) = {h E f : G E h<!/3} and one p-mapping l)JP defined by \jJP(G) 
= {h E f : GE @;h}, both with kernel <!13. 

Here we have used the notation h<!/3 = {hB : B E <!13}, <!J?ih = {Bh : B E <!13}. 
The proof is completely analogous to the Euclidean case (see, e.g., Matheron 
[ 17, chapter 8]) and is omitted here. 

The following lemma shows the relation between the kernel of a mapping and 
that of its dual, reflection, and dual reflection, respectively. The proof is easy and 
left to the reader. 

Lemma 3.21. Let I)! : 2/l(f)--> 2/l(f) be a mapping with kernel "V(\jl). Then the 
kernels of the dual l)J', the reflection ~. and the dual reflection ~are given by 

(a) "V(l)J') = {G E 2/l(f): G' tf "V(l)J)} 

(b) "V(t\i) = {G E 2/l(f): GE "V(l)J)} 

(c) "V(~) = {G E 2/l(f): G tf 'V(\jl)} 

In a recent paper, Banon and Barrera [l) generalized Matheron's theorem 
(Theorem 2.2) to arbitrary translation-invariant mappings (not necessarily in-
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creasing) on <lf>(E), where E denotes Euclidean space. Following the simplified 
proof in [13], we extend this result here to the case <lf>(f) with fa noncommuta
tive group, getting as a by-product a generalization of Matheron's theorem. We 
only formulate the left translation-invariant case. The right translation-invariant 
case is obtained by left-right symmetry. 

Define, for F, G, H E <lf>(f), the left wedge transform of G by the pair (F, H) 
by 

A 
G (/) (F, H) : = {g E f: gF \;;;; G \;;;; gH} 

A A 
= (G 8 F) n (Ge 8 He) 

where the second line follows from the definition Eq. (7. 24a) of the left residual. 
In the Euclidean case, this operation is a slight niodification of the hit-or-miss 
transform [29]. Clearly, the mapping G >-+ G Q'.)l (F, H) is left translation
invariant. Two cases are of special interest: 

A A 

1. G Q (F, f) = G ~ F 
2. Ge'.Sl(0,H) = G<8H< 

Define also the "interval" [F, H] between two arbitrary sets F and H as 

[F, H] ={GE (i]>(f): F \;;;; G k H} 
>. 

Clearly, [F, H] and G (/) (F, H) are both empty if F rt,,H. 
Definition 3.22. Let ljJ be a mapping on <lf>(f), with kernel 'V(ljl) given by Defi
nition 3 .19. The bikernel of ljJ is defined by 

°W(ljl) = {(F, H) E (i]>(f) x <lf>(f): [F, H] \;;;; "V(ljl)} 

If ljJ is increasing and Fis an element of 'V(ljl), then the whole interval [F, H] 
is included in 'V(l\I) if H :;2 F. Similarly, if ljJ is decreasing and H E "V(l\J), then 
[F, H] is included in 'V(ljl) if F \;;;;H. Hence 

iii increasing, 

iii decreasing, 

Now we can state: 

F E 'V(l\J) =? (F, f) E "W(l\I) 

H E "V(\js) =? (0, H) E "W(l\J) 

(7.37a) 

(7.37b) 

Theorem 3 .23. Representation of translation-invariant mappings. The map
ping iii : <lf>(f) --> <!J>(f) is left translation-invariant if and only if 

ili(G) = u A 

G (/) (F, H) (7.38) 
(F.HlE'WClj!) 

Corollary 3.24. Representation of monotone translation-invariant map
pings. Ifili: <lf>(f)--> <lf>(f) is an increasing A-mapping it can be decomposed as 
a union of A-erosions, or an intersection of A-dilations: 
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iJ!( G) = u G e F = n G ffi F 
FE°V(l\I) FE°V(l\I') 

where iJ!' is the Boolean dual of iJI. If iJi : QJ>(f) 
mapping, it can be similarly decomposed: 

iJ!( G) = U Ge S H< = n Ge ffi fJ 
HE°V(l\I) HE°V(ljl') 
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(7 .39a) 

-+ QJ>(f) is a decreasing A.-

(7.39b) 

Recall from Section 11.B that the domain of invariance of a mapping 
iJi : ~(f) -+ Ql>(f) is the subset of Ql>(f) defined by Inv(iJ!) = {G E Ql>(f) : 
iJ!(G) = G}. 

Theorem 3.25. Representation of openings. A mapping iJi: QJ>(f)-+ QJ>(f) is a 
left-invariant opening if and only if iJi has the representation 

iJi (G) = U )'1{G) (7.40) 
HE'!/3 

>.. r 
for some subset 0'3 of the lattice Ql>(f), with 'Y ~ ( G) = ( G 8 H) Ef> H. Moreover, 
lnv(iJ!) is the class of sets generated by 0'3 under left translations and infinite 
unions, and any subset 0'3 which generates Inv(iJ!) in this way defines the same 
opening iJ!. 

IV. MATHEMATICAL MORPHOLOGY ON SPACES WITH A 
TRANSITIVE GROUP ACTION 

In this section we study a homogeneous space (f, ~).where f is a group acting 
transitively on ~. The object space of interest is again the Boolean lattice QT>(~) 
of all subsets of~, ordered by set inclusion. In the following we first informally 
sketch the basic idea of our construction of morphological operations on this 
homogeneous space with full invariance under the acting group f (Section IVA). 
Then we outline in Section IVB a general strategy of handling the transitive case 
by making use of the results for the simply transitive case developed above. In 
Section IVC we define a "lift" and "projection" between the lattices Ql>(2t') and 
QJ>(f) and state several properties of the associated operators 'TT and 11 (to be de
fined). Two examples are given that allow an easy visualization of the results. 
Section IVD contains the characterization of set mappings on QT>(~) (adjunctions, 
openings/closings, translation-invariant mappings). Section IVE briefly de
scribes the situation where the group r has a subgroup /),,. that acts transitively on 
~. In this context we also introduce a concept of "shape" that explicitly takes 
into account the group which is involved. 

A. The Basic Idea 

It may be helpful to the reader if we first give some motivation and sketch the 
main ingredients entering into our generalization of mathematical morphology. 
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To fix ideas, let us consider the question of how morphological operations could 
be defined on the sphere S2 with invariance under the rotation group S0(3) as the 
acting group r (see Example 2.20). By invariance we mean the requirement that 
a mapping ljJ : W>(i!t) ~ W>(i!t) satisfies 

ljl(gX) = gljl(X), 'IX k i!t (7 .4 l ) 

for all g E r. If ljJ satisfies (7.41) it will be called f-invariant. That such 
mappings exist is easy to see. Let Y be a fixed subset of the sphere and define 
1.\1: s2 ~ s2 by 

ljJ(X) = U{gY: gY k X} (7.42) 
gEf 

That is, l.\l(X) is the union of all rotated copies of Y that are included in X. The 
reader will recognize this mapping as the generalization of the Euclidean opening 
(7. l l ). From the definition it is immediate that this mapping is f-invariant: open
ing the set X and then rotating the sphere will give the same result as first rotating 
the sphere and then performing the opening. All this is obvious from a geometric 
point of view. The question is whether corresponding algebraic definitions can be 
found which will give a decomposition of morphological operations into elemen
tary ones, just as in the Euclidean case. 

Let us start with an attempt to generalize the Minkowski operations. A first 
obvious possibility (see, e.g., [16]) to define a generalized Minkowski addition 
is to take a subset G of the group r (the "structuring element") and let it act on a 
subset X of i!t as follows: 

x EB G:= u gX (7.43) 
gEG 

where 

gX:= {gx: x EX} (7.44) 

is the image or "f-translate" of the subset X under the transformation g. Also, as 
an analogue of the Minkowski subtraction one could consider 

xe G:= n g- 1X (7.45) 
gEG 

It is not difficult to show that the mappings 8 and i:: defined by 

8(X) = X ffi G, i::(X) = X 8 G (7.46) 

are a dilation and erosion, respectively, and that in fact the pair (e, 8) forms an 
adjunction. However, what about the generalization of translation invariance? 
For the dilation we have 

8(gaX) = u ggJ( 
gEG 
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Now one can see a problem emerging: if we could interchange g and g0 in the 
equatl.on above the result would be g08(X), since the group translations commute 
with unions (see the next subsection). But since r is a noncommutative group, 
this interchange will in general not be allowed. Therefore we look for another 
definition of dilations and erosions so that full invariance is obtained. 

Now if the reader looks back to the previous section, the thought may occur 
that we should try to mimic the definition of left-invariant dilations and erosions: 
in other words the set X should somehow be "on the left" and the structuring 
elements "on the right." However, now we seem to be in trouble again since the 
group elements act from the left on subsets X. So let us try to find a solution in a 
"geometric" way. 

First we recall the construction of dilations on ~(ge) without any invariance 
property, as given by Serra [31, Chapter 2, Proposition 2.1]: a mapping 8 : 0>(ge) 
-+ 0>(ge) is a dilation if and only if there exists a function 'Y : ge -+ 0>(2t'), called 
"structuring function," such that 

8(X) = u ')'{X) (7.47) 
xEX 

This statement can be interpreted as follows. Attach to each point x of ge a subset 
"{(x) of ge; that is, think of ge as being completely "covered" by a collection 
of subsets of itself. Then the dilation 8(X) is the union of all the subsets that 
are attached to points of X. An illustration is given in Figure 2a for the case 
of a plane. It is easy to see that the erosion E associated (by adjunction) to 8 is 
given by 

i::(X) = {y E 2t': "{(y) ~ X} (7.48) 

Next we assume that ge is a homogeneous space under a group r that acts 
simply transitively on ge. Now we construct a dilation as above with the only 
difference that the subsets "{(x) will be formed as translates (under f) of a fixed 

(a) +-( b) 

y 

(c) 

Figure 2. Dilations (hatched) of a subset X of the plane consisting of three points: (a) 
no invariance, (b) invariance under the Euclidean translation group, and (c) invariance 
under the Euclidean motion group. 
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structuring element Y ~ ge_ To be more precise, let w be an arbitrary point of X, 
called the "origin" (see Section 11.C). The choice of w is immaterial (this is pre
cisely what homogeneous means). Since f is simply transitive on~. there exists 
for each x E ~ a unique group element gx that maps w to x. Let Y be a fixed 
subset of ge_ Then the mappings given by (7.47) and (7.48) with -y(x) = gX are 
a dilation and erosion, respectively, which in addition are f-invariant. For an 
illustration see Figure 2b, where we cover the plane with copies of a triangle and 
take the Euclidean translation group as the acting group f. More examples in this 
category were presented in Figure 1. 

Finally, we return to the example of the sphere, which belongs to the multi
transitive case. Now there exists more than one rotation that "moves" Y from an 
initial position to an arbitrary point x. Following the construction above, we 
simply attach to x all the rotated sets gY, where g runs over the complete collec
tion of rotations that move the origin to x, and repeat this process for all x E X. 
Now define 

8(X):= LJ u gY (7.49) 
xEX {ger: gw=x} 

It is plausible, and will be proved below, that in this way one indeed obtains a 
dilation 8 that is rotation invariant. Moreover, we will show that all rotation
invariant dilations are of this form. The adjoint erosion of (7.49) is formed by 
associating to a subset X the collection of points y E ~such that gY ~ X for all 
rotations g E f that move the origin to y. More details on the spherical case can 
be found in [23]. 

The construction sketched above for the sphere can in fact be generalized to 
any homogeneous space (f, X), for example, to the plane with the translation
rotation group £+(3) as the acting group. For the latter case a sketch of the f
dilation by a structuring element Y consisting of a line segment is given in Figure 
2c. From this figure it is clear that the line segment may be replaced by a disk, 
which is rotation invariant. More generally we will see below that dilations/ero
sions on any homogeneous space can be reduced to a form involving structuring 
elements that are invariant under all elements of r that leave the origin w invar
iant. 

In contrast to the Euclidean case, the dilations and erosions on the lattice '2P(2e) 
constructed above are not the building blocks for other morphological transfor
mations such as the opening (7.42). For this purpose we have to introduce dila
tions and erosions between the distinct lattices '2Jl(g(;') and '2P(f). Before we can 
explain this, we need to develop the ideas sketched above in full detail, to which 
we proceed now. 

B. General Strategy 

From now on we will write ;.£ instead of '2P(2e) and !£ instead of '2P(f). It will be 
convenient to introduce a notation that clearly distinguishes between subsets of 
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2e and subsets of r, as well as between mappings on :£ and mappings on :£; see 
Table 2. 

Elements of the set 2e will be denoted by lower case letters x, y, z, x', y', z'; 
subsets of 2e by the corresponding capitals X, Y, Z, X', Y', Z'. For the group r 
we use the notation of the previous section, i.e. g, h, k, g', h', k' for the group 

elements and G, H, K, G', H', K' for the subsets of r. Mappings[£ ...... [£ will be 
denoted by a tilde, e.g., {ii, to distinguish the from mappings \)I : :£ --+ :£ 

As explained in Section 11.C, the fact that f is a group acting on 2e means that 
each g E r defines a mapping 2e _,. 2e : x ~ gx. This mapping can be extended 
to subsets of2e as in Section III.A: define, for each g E f, a mapping -y8 by 

-y8: :£--+ :£, -y8(X):= {gx: x EX} (7.50) 

where instead of -y/X) we usually write gX. We call the mapping (7.50) transla

tion by g. On fe = (l}>(f) we have the left and right translations, 

t..g: ;£ ...... :£, 

pg: ;£ ...... :£, 

A./H) = gH: = {gh: h E H} 

p/H) = Hg:= {hg: h E H} 

(7.51a) 

(7.51b) 

It is easy to check that -y8 commutes with unions, intersections, and complements 

on :£ for each g E f, just as is the case for A.8 and p8 on f£. So the group f 
induces: 

1. An automorphism group of:£ = (l}>(2e), acting transitively on C£ 

2. Two mutually commuting automorphism groups of fe = (JJ>(f), acting 
simply transitively on r 

In order to avoid a proliferation of symbols we will replace the notation (7.43) 
for the action of a subset G of r on a subset X of C£ by 

GX: = LJ gX (7.52) 
gEG 

We define a mapping on :£ to be translation-invariant or a f-mapping when it 

commutes with f-translations; see (7 .41). On fe we have left and right translation 
invariance; see Section III.A. We also need to study set mappings between:£ and 

:£.To define translation invariance for such mappings, we use left translations on 

Table 2. Notation for the Elements and Subsets of 2l'.' and f 

Reference space Elements 

x, y, z, x', y', z' 

g, h, k, g', h', k' 

Subsets 

X, Y, Z, X', Y', Z' 
G,H, K, G',H',K' 

Lattice 

!£ = 0'>(3e) 

££ = 0'>(f) 
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:f. That is. a mapping tjJ : 5£ --+ !£ is called translation-invariant or [-invariant 

when, for all g E I', 

i.!il'g = \l)J. i.e., tjJ(gX) = glji(X) \IX E 5£ (7.53) 

and similarly for mappings tjJ : fe _. 5£. 
Our strategy in defining dilations, erosions, etc. on the lattice 5£ and proving 

representation theorems for such mappings is now as follows: given a mapping ljJ 
on 5£ we extend or '"lift" it to a mapping ii/ on fE. Then we apply the results of 
Section HI on !£ and finally "project" the results back to the original lattice 5£; 
see Figure 3. We proceed by describing the lift and projection in detail. 

C. lift and Projection and Their Properties 

We start by defining the projection of subsets off to subsets of 7£. To do this the 
canonical projection 'lTW : r -> 7£ of Definition 2.14 is extended to subsets of 7£ 
in a standard way. 
Definition 4. J. The projection 1T : fE _,. 5£ is the mapping given by 

1T(Gl = {1Tw(g): g E G} = {gw: g E G} (7.54) 

The preimage of a point x E 7£ under 1Tw is the set 

\J,Ji:): = {g E f: TI"'(g) = x} = g,'k (7 .55) 

Here k is the stabilizer of the origin w in 2f and {} jx) is the left coset associated 
to the point x, that is, the collection of all elements of the group r that map w to 
x (see Section Il.C). Again we can extend this mapping to subsets of 'le. 
Definition 4.2. The lift{} : 5£ --> :£is the mapping given by 

ft(X\ = LJ {}w(x) = {g E G: 1T)g) EX} (7.56) 
xEX 

.z: 

Figure 3. Relations between mappings on ;J, and ff. 'IT and{} are the projection (7.54) 
and the lift (7 .56 ). 
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So ft(X) consists of all elements off that project onto elements of X under 1Tw. 
For the subsequent discussion it will be useful to have a simple geometric 

picture of the lift and projection defined above. Such a graphical interpretation is 
introduced in the next two examples. 

Example 4. 3. The translation-rotation group on the plane [ 24]. Consider the 
plane 2C = R 2, acted upon by the translation-rotation group f; see Example 2.19. 
Elements off are parameterized as g,_q,, with t E R2, <J> E [O, 21T). The action is 
given by 

(7.57) 

Let the origin w be the point (0, 0). The stabilizer 2. is equal to the group ?Jl of 
rotations around the origin. If we define,.> as the unique (Euclidean) translation 
that maps the origin to the pointy, the lift of any pointy is the coset T,?ll. To 
represent elements off graphically, we associate to each point of the plane the 
collection of all unit vectors emanating from that point. A pointer p is a pair 
(x, v), where x E R 2 and v E S1 a unit vector. We call x the base-point of p. 
Define a base-pointer b to be the pair (w, e 1), where e 1 = (1, 0). Given any 
pointer p = (x, v), there is a unique transformation in the group r which maps b 
top (this can also be expressed by saying that f acts regularly on pairs of equi
distant points). So, although f does not act regularly on 3e, it acts regularly on 
the extended space :i' = {(x, v): x E 3e, v E S1} of pointers. Hence, as we have 
seen in Section II.C, there is a 1-1 correspondence between~ and f. Any pointer 
p E ~represents a unique element off: if p = (x, v) , where v = (cos <J>, sin 
<P), then this element is gx.<J>. In this representation, ?Jl is the set of unit vectors 
attached to the origin and the left coset T,?ll is the collection of all unit vectors 
attached toy E R2 . The reader may refer to Figure 4, where we use a hexagonal 

(a)-
b 

Figure 4. Representation of elements of the subgroup 7JC of the Euclidean motion 
group. b, base-pointer; p, pointer with base-point x; g,.2:, the collection of group elements 
that map the origin w to y. Each pointer represents a unique group element. 
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lattice as the set 2l and where the group f is the hexagonal group 'iii (see Example 

2.19). The allowed rotations are over an integer multiple of -rr/3 and a coset is 

represented by the six unit vectors corresponding to the allowed rotations. On 

the hexagonal lattice, subsets of?£ are indicated by collections of heavy dots and 

subsets of ·'R· by heavy dots with one or more unit vectors attached to them. 

Example 4.4. The rotation group on the sphere [23]. Consider the unit 2-

sphere &:· = S'. acted upon by the three-dimensional rotation group I' = 50(3 ); 

see Example 2.20. As in the previous example. define a pointer p to be a pair 

(x. v). where x E S' and v a unit tangent vector at the base-point x. Choose the 

north pole J-.f as the origin of the sphere, and define a base-pointer b to be an 

arbitrarily chosen (fixed) pointer with base-point N. Then again any pointer p 
represents a unique rotation. i.e .. the one that maps b top. The stabilizer L and 

the left coset g,'2: are represented by the collection of unit tangent vectors at

tached to H and x. respectively; see Figure 5. where we have drawn six repre

sentative pointers belonging to g,l. 
Having introduced this geometric picture, it is now easy to visualize the action 

of the mappings {} and -rr defined above. Any subset G of r is represented by a 

set of pointers and -rr maps G to the set of base-points of the pointers in G (Figure 

6a). Conversely. {} maps a subset X of 9£ to the set of pointers in r that have their 

base-points in X (Figure 6b ). 
In a moment we will list several properties of the lift {} and the projection -rr 

that will enable us to settle the case of a transitive group on fr by making use of 

the results for the simply transitive case. But first we need to introduce a special 

dilation and corresponding erosion. 

l 

x 

Figure 5. Representation of elements from the rotation group S0(3). b. base-pointer; 
g,~. left coset representing all rotations that map N to x. 
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r r 

? . A. 

-~~f * x 
- }; v _ - - y 

~ !6 

x y x y 

(11) (b) 

Figure 6. (a) Action of TI on a subset off; (b) action of 0 on a subset of :?t'. 

Definition 4.5. The dilation ~ : i£ ~ If and erosion EI : ff~ ff by the stabi
lizer l are the mappings defined by 

(7.58) 

Here we have used the set-product and left residual on If = eJ>(f); see Section 

IIl.B. Clearly, (EI, ~)is a A.-adjunction on!£. Furthermore, we have 

Lemma 4.6. The adjunction (El., ~)satisfies 

(7.59a) 

(7.59b) 

This lemma says that El. is not only an erosion but also a (morphological) 

opening, and~ is not only a dilation but also a (morphological) closing. 

The effect of the closing 8I on a subset G of l is to make G "l-closed," that 
is, invariant under right multiplication by l. To put it differently, 8I augments G 
by all group elements that are equivalent to some g E G (recall from Section 11.C 
that two group elements g, h E fare called equivalent if gw = hw). Pictorially, 
any pointer p = (x, v) is extended to the set of pointers p"i. : = {(x, v') : v' E 
S1}. Similarly, the opening EI extracts from a subset G of r all the "complete 
cosets" present in G, that is, the subset G* ~ G which is such that if g E G*, all 
the elements equivalent tog are also in G*. 

We also need to introduce a modified projection as follows. 

Definition 4. 7. Let 'IT be the projection (7 .54) and EI the erosion (7 .59a). Then 

TI:! : If~!£ is the modified projection defined by 

(7.60) 

It follows from this definition that ir I ( G) = {gw : g l ~ G}, so the projection ir I 

maps G E f£ to the subset of!£ consisting of only those base-points of pointers 
in G to which a complete set of unit vectors is attached. 

The next proposition contains a collection of properties of the operators it 
and 1T. 
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Proposition 4.8. Let 1T : ff-->;£, {} : ;£ ->ff, and 1Ti : ff--> :£ be defined by 
(7.54), (7.56), and (7.60), respectively. Then the following hold: 

(a) 1T, {}, 1T 1 are increasing and translation-invariant. 
(b) {}commutes with unions and intersections. 
(c) 1T commutes with unions, 1Ti commutes with intersections. 
(d) {} = 8!{) = ~{}. 

(e) TI-0 = id.:e, -011" = 81; 1T1-0 = id.:£, -011"1 = 81. 
(f) x ~ y ~ {}(X) ~ {}(Y); x 1)' y ~ {}(X) 1)' {}(Y). 

(g) (-O(X))< = -O(X<), (1T(G))' = 1T1 (G'). 

(h) ({}, 1T) forms an adjunction between;£ and ff: TI(G) ~ X <:::> G C -0-(X). 

(i) (1T1 , {})forms an adjunction between ff and;£: -O(X) ~ G ~X ~ 7r~(G). 

Here X 1)' Y (X "hits" Y) is a shorthand notation for X n Y * 0. 
We discuss a few items of this proposition, which can be nicely illustrated by 

the pictorial representation introduced above; see [24]. 
Entry (c): the fact that 1T does not commute with intersections can easily be 

seen by considering two pointers p = (x, v) and q = (x, v') with the same base
point x and v-:/= v'. Clearly {p} n {q} = 0, hence 1T({p} n {q}) = 0, but 7r({p}) 
n 1T({q}) = {x} n {x} = {x}. If we first open subsets of r by €l:, we obtain 
complete cosets pl. Projecting sets of this form obviously commutes with inter
sections, which explains why 1Ti does. 

Entry (d): the lift {}(X) of a subset X ~ 2e consists of complete cosets p"'£. 
hence is invariant under the closing by l as well as the opening by "'£. 

Entry (e): lifting a subset X means pictorially adding a complete set of unit 
vectors to each point x ~ X. Projecting the result back by either 'TT or 7T~ gives 
the original set X. Conversely, start with a pointer p = (x, v): projection by 'TT 

gives x, lifting this again by{} gives the coset p"i,; hence -011" equals the closing 

8! by l. 
The next lemma gives us all the tools we need to derive properties of map

pings on ;£ from those on :£. 

Lemma 4.9. The following hold: 

(a) ljJ is an increasing f-mapping ? {}ljl1T and -0\jJTI~ are increasing 
on;£ A-mappings on f"E. 

(b) ( E , S) is an ad junction on ;£ ? (-0e1T1, -081T) is an adjunction 

on ff. 
(c) -yl<!> is an opening/a closing on;£ ? t>-yTI1/{}<!>1T is an opening/a 

closing on f"E. 
Conversely, 
(a') iJi is an increasing A-mapping ? 'TT\il{} and 1Tiiii-O are increasing r-

on~ mappings on ;!, . 
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(b i) - -(€, o) is an adjunction on ;£, =? (TI,;€-0, TI8-it) is an adjunction on 
5£. 

(c') -y;<f> is an opening/a closing on 9? =? TI)''1/TI ,;<!>-& is an opening/a clos-
ing on;£,. 

Remark 4.10. In a similar manner one can show that if (c., 8) is an adjunction 

on;£,, then (-OE, 8TI) is an adjunction between 5£ and!£ and (rn2., {}8) is an 

adjunction between f£ and;£,. Similarly, if (c. i, 8 L) is an adjunction between;£, 

and f£, then (c. 1 TI,;, -08 L ) and (TI,; E l , 8 L -0) are ad junctions on f£ and ;£,, respec
tively. And so on. 0 

D. Characterization Theorems 

In this subsection we give a characterization of f-adjunctions, f-openings and 
f-closings, and finally of (increasing) f-mappings on 5£, using the correspond
ing results on fe of Section III.D. 

First we consider ad junctions. As a preliminary we need 

Definition 4.Jl. Let f be a permutation group on 21:, with l the stabilizer 
of the origin win~. A subsetX of~ is called l-invariant if X = X, where X: = 
lX = UsE2. sX. If X is not 2.-invariant, X is called the l-invariant extension 
of X. 

Examples of l-invariant sets are given in [24] for the Euclidean motion group. 
Now we can state our first result. 
Proposition 4.12. Representation of I'-adjunctions. The pair (E, o) is a f
invariant adjunction on QP(2£') if and only if, for some HE QP(f), it is true that 8 
= TI3H{} and E = TI2.£H{}, that is, 

r /\ 

8(X) = TI[ it(X) EB H], E(X) = TI,;[-O(X) 8 HJ (7 .61) 

where (E:H, 3H) is the left-invariant adjunction with structuring element Hon QP(f) 
given in Proposition 3 .18. Equivalently, 

r r 
o(X) = 8f(X): = TI[it(Xl EB -it(Y)J = TI [it(X) EB -it<fll 

A A 

E(X) = ~ (X): = TI,; [it(X) 8 {}(Y)] = TI[ {}(X) 8 {}(}')] 

(7.62a) 

(7.62b) 

where y = TI(H) and y is the l-invariant extension of Y. In particular ( Ef, on is 
invariant under the substitution Y --> Y. 
Corollary 4.13. Geometric interpretation ojT-adjunctions. The pair (t., 8) is a 
f-invariant adjunction on QP(2£') if and only if, for some Y t;;;; 2£1, 

8(X) = of(X) = LJ gY (7.63a) 
gEi)(Xl 

= {y E ~: gY* 11' X for some g E {}w (y)} 
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c(X) = 4 (X) = n g Y* (7.63b) 
gEfl(X') 

= {y E :?e: gY C X for all g E -& .. (y)} 

where Y* = 1T(-3(Y)) and Y* = (Y*)'. Here -&..(y) is the coset representing _v, 
that is, the collection of all group elements that map w to y. 

Here we have written '6(X) instead of (-&(X) f, and Y ii' X (read: Y hits X) is a 
shorthand notation for y n x * 0. 

The proposition above shows that any dilation on::£ can be reduced to a dila
tion of involving a 2.-invariant structuring element Y; the same is true for ero
sions. Also, in (7 .63a) we may replace "some" by "all": since Y is 2.-invarian t 
(easy to show), gY* will hit X for all g E -&..,(y) as soon as it hits X for some 
element gy of this coset. For example, in the case of the Euclidean motion group 
acting on the plane, it would be natural to take for g.v the Euclidean translation T, 

that maps w toy. Also, (7.63b) may equivalently be written as Ef(X) = lv E 2£': 
g)'CX}. 

A second consequence of the corollary is that the morphological opening 
cfof and closing off} associated to an ad junction ( c;:, of) with Y an arbitrary 
subset of ?£ are also equivalent to the morphological opening or closing by the 
structuring element Y. This raises the question of how to decompose f-openings 
that are not reducible to openings by a 2.-invariant structuring element. Consider 
the structural opening and closing by a subset Y of?£ defined by 

l'f(X) = LJ {gY: gY C X} (7.64a) 
gEI' 

cpf(X) = n{gY: gY ;J X} (7.64b) 
gEI' 

In other words, l'f(X) is the union of all translates gY of Y that are included in X. 
For example, let X be a union of line segments of varying sizes in the plane and 
Ya line segment of size L with center at the origin. Take r equal to the transla
tion-rotation group .M,: = £+(3). Then y1\(X) consists of the union of all seg
ments in X of size Lor larger, but oj!li:4·(X) = 'Yfy(X) = 0, since Y is a disk of
radius L/2 and does not fit anywhere in X; see Figure 7. 

So in general we can not build the opening l'f from a f-erosion Ef on <!P(i!C') 
followed by a f-dilation of on \!P(?:f). However, Theorem 2.7 of [5] guarantees 
that, given an opening or closing tjJ on a lattice::£, there exists another lattice Y:' 
such that tjJ can be decomposed into erosions and dilations between 5£ and::£'. In 
the present case the situation is clarified by the next proposition. 

Proposition 4.14. Decomposition of structural openings and closings. The 
structural opening l'f : ::£ ..... ::£ defined by (7. 64a) is the projection of the r-

opening -Y~m on 5£, that is, 
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x 
A 

y y (X) 

/ I 
(a) (b) 

Figure 7. (a) X, a subset of the plane consisting of line segments; Y. a segment of 

size l at the origin. (b) opening '(:(X) by the Euclidean motion group AIL The opening 

o;te~'(X) = yf(X) is empty. 

I. r 
1T[{1'7(X) 8 1'7(Y)} EB 1'7(Y)J (7 .65) 

with (Eftin· 8ftm) the left-invariant adjunction !£with structuring element {}(Y). 

Equivalently, "Yf is the product of a r-erosion E 1 : :£ ...... !£ followed by a r
dilation 0 I: s£ --> :£, where (E 1 , ol) : = (Eftm 1'}, 1T8,~ 1 n) is a f-adjunction be

tween:£ and i£. 
Similarly, the structural closing cj>f: :£ ...... :£defined by (7.64b) has the decom-

position 
[' I. 

<j:>f(X) = (1TlE,sw 1 8.scY'> 1'J)(X) = 1T[{1'J(X) EB '3(Y')} 8 '3(Y')] (7.66) 

Equivalently, <j:>f has the decomposition <!>f = EI o T where (EI , o 1) : = 

(1TlElilY'>' 81icY') 1'7) is a f-adjunction between !£and:£ 

Remark 4 .15. We could have introduced the following generalization of the 

Minkowski operations on rf(2l'.'): 
r r I. ). 

x EB Y : = 1T[ 1'J(X) EB 1'J(Y)l, x e r : = 1T1[1'1(X) e 1'7(Y)J 

f >. 
where EB and 8 denote the set-product and left-residual on 01'(!'), respectively. 

But since the basic building blocks for structural f -openings and f-closings are 
f I. 

not the dilation X EB Y and erosion X 8 Yon:£, but dilations/erosions between 

:£and!£, we have refrained from doing this. D 
By Proposition 2.10 (see also [27]), every f-opening l' : :£ ...... :£ is a union of 

structural openings "Yf, where Y ranges over a subset 0!J i;: :£. Combining this 

with Proposition 4.14, we therefore can decompose any r-opening into r-
openings of the form 1T8ft1n£ft1n1'1. The formulation of the precise result, parallel

ing Theorem 3.25, is left to the reader. 
Finally, we discuss the characterization of increasing f-mappings. We first 

need: 
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Definition 4.16. Let$ : 5£-> 5£ be an arbitrary mapping. The kernel of l(J is the 
subset of 5£ defined by "V($) = {X E 5£: w E ljl(X)}, where w is the origin of 2e. 

Lemma 4. 17. Let$ : 5£-> 5£ be a mapping with lift \ii: fE -> fE defined by \ii = 
{}ljJTI. Then. 

"V(\(i) = {G E ff: TI(G) E °V(l/I)} 

Now we can state: 

Theorem 4.18. Representation of increasing I'-mappings. A mapping$ : el'(i!i'.') 
-> '2?(2e) is an increasing f-mapping if and only if $ is a union of projected 
erosions or, equivalently, an intersection of projected dilations: 

'1;(X) = LJ 7r[ft(X) G ft(Y)] (7.67a) 
YE1"{1jil 

= n TI.,[{t(X) EB ~(Y)] (7.67b) 
hcl'Wi ~ 

where °V(l/J) is the kernel of l(J and l(J' is the Boolean dual of l(J. 
It is important to notice that, in contrast to the situation in the simply transitive 

case (Corollary 3 .24), l/J is in general not a union of f-erosions on '2?(2e): X ~ 

' 7r[ft(X) 8 ft(Y)] is not an erosion since 7r is not.* Nor is l(J an intersection off-r 
dilations on !'f>(i!i'.'): X ~ 7ri[fr(X) EB -&(Y)] is not a dilation since 1Ti is not.* For 
example, the opening 'Y~ cannot be written as a union off-erosions Ez on 5£; in 
the case of Figure 6. E2 (X) = Ez.(X) is empty for all Z =I= {w} and equal to X when 
Z = {w}. 

The above theorem can be extended to arbitrary translation-invariant map
pings (see Theorem 3.23 of Section IILD). The result is given here without 
proof. 

Define, for F, G, HE SE and W, X, YE 5£, 
I-

C ('.) (F,H) = {g E f : gF k: G k gK} 

and 

[F. H] = {G E fE: F k G k H}, [W, Y] = {X E 5£: W k X k: Y} 

Then one can prove: 

Theorem 4.19. Representation of I'-mappings. The mapping l(J : el'(i!i'.')-> el'(i!i'.') 
is a r-mapping if and only if 

l(J(X) LJ 7r[ft(X) ~ (ft(W), ft(Y))] 
[W.Y]E'\f(wl 

*An exception occurs when Y is ~-invariant. 
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where "W(lji) = {(W,Y) E \?P(21:) x \?P(21:): [W,Y] ~ 'V(ljil} with 'V(lji) the kernel 
of tjl. 

E. The Role of Symmetry Groups in Shape Description 

In this final subsection we make a few succinct remarks that are relevant in the 
present context and on which further research is needed. 

A first remark concerns the problem how to define "shape," which is known 
to present great difficulties and is a recurring theme in the image processing lit
erature. Often, shape is defined as referring to those properties of geometric fig
urs which are invariant under the Euclidean similarity group [ 14]. Intuitively, one 
first has to bring figures to a standard location, orientation, and scale before 
being able to "compare" them. Now it is not necessary to restrict oneself to the 
similarity group, although in the absence of any form of group invariance there 
is no way at all to compare figures. In the present context the following definition 
seems appropriate. 

Definition 4.20. Let 21: be a set, f a group acting on 21:. Two subsets X, Y of 
21: are said to have the same shape with respect to f, or the same [-shape, if 
they are f-equivalent, meaning that there is a g E r such that Y = gX. If no such 
g E r exist, X and Y are said to have different !'-shape. 

In essence this definition goes back to F. Klein's Erlanger Programm (1872), 
which considers geometry to be the study of transformation groups and the prop
erties invariant under these groups [ 15]. So in Euclidean morphology, all trans
lates of a set X by the Euclidean translation group '3" have the same '3"-shape. 
Adding rotations to get the Euclidean motion group .M, rotated versions of X or 
its translates have the same .M-shape as X. Extreme cases are (1) r = {id}, so 
that all sets have different shape, and (2) r = Sym:l", in which case all sets with 
the same cardinality have the same shape. 

A related observation is the following: if the group f contains two subgroups 
Ll 1 and Ll2 such that any g E f has a unique decomposition g = d 1d2 (d1 E Ll 1, d2 

E Ll 2), where Ll 1 acts itself transitively on 21:, we can accordingly decompose 
f-mappings. For example, in the case of the Euclidean motion group M, each 
g E M has the form g = tr, where t E '3" and r E <!A, with '3" and <!A the two
dimensional translation and rotation group, respectively. It is easy to see that in 
this case every At-dilation () has the form 3(X) = 3ff(X): = X EBB, where B is an 
<!it-invariant structuring element and EB denotes the Euclidean Minkowski addi
tion (7. 1). Also, we have the following decomposition of the structural .M
opening 'Y: by the structuring element Y: 

'Yf!(X) := LJ {gY: gY ~ X} LJ U{trY: trY ~ X} 
gEM. rE?Jl tE?f 

u 'Y~(X), 
rEffi 
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where -y~.(X) = [X 8 (rY)] EB(rY) is the Euclidean opening by the (not necessar

ily 0l-invariant) structuring element rY. This shows that one can perform the 

opening 'Yi~1 by carrying out the Euclidean openings -y?fv for all rotated versions of 

the structuring element Y and taking the union of the results. On the sphere such 

a decomposition cannot be found, since there is no proper subgroup of S0(3) that 

acts transitively on the sphere [2, Chapter 1.8]. 
A decomposition that is possible for any homogeneous space (f, i!e) is the 

following. Consider the partitioning into cosets of the group f by the stabilizer 

"k. and choose, for all x E ir, a representative g, for the coset associated to x. Let 

Ll denote the collection (in general not a group) of all representatives: 

Ll = {g,: x E 31':} 

Then the dilation and erosion by the structuring element Y can be written 

o(:(X) = LJ gY = LJ LJ g,sY = LJ gxY =: of(X) 
gE{t(XJ \EX sE:?: .lEX 

c\:(X) = {y E 2t: gY ~ X Vg E {}Jv)} 

= lV E 3e: g_x ~ X} =: Ef(X) 

where, for any Z ~ 31':, 

ot(X) : = LJ g:Z,, 
.tE:t" 

(7 .68a) 

(7.68b) 

(7.69) 

So f-dilations!f-erosions by the structuring element Y are identical to dilations/ 
erosions "with respect to 6." by the structuring element Y. 

In the case of structural opening by Y we have 

-yf(X) LJ {gY : gY ~ X} LJ LJ {g,sY : g,sY ~ X} 
gEr sEl xEif (7. 70) 

u 'Y;y(X) 
sE~ 

where 'Y2 is the opening defined by 

-Yt<X) : = LJ {g:Z, : g:Z, ~ X} 
tEif 

(7.71) 

In general (i.e., if z is not k-invariant) neither the dilation ot/erosion i::t nor 

the opening 'YI possesses invariance properties, unless 6. is a group (i.e. , a 

subgroup of f). In that case 'YI is invariant under A-translations (e.g., 

07.(gX) = go7.(X) for all g E Ll), but not under translations by elements s E l. 
An example has been given above for the Euclidean motion group, where 6. = '!!" 
and 2. = 0l. 
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V. DISCUSSION AND EXAMPLES 

In this chapter we have generalized Euclidean morphology to arbitrary homoge
neous spaces (~' n' where the group r acting on ~ is not necessarily commuta
tive. The case where facts simply transitively on~. considered in Section III, 
leads to the study of transformations of subsets of an arbitrary group that are 
invariant under either left or right group translations. The general case where f 
acts transitively on~ has been treated in Section IV by (1) mapping the subsets 
of i'£ to subsets off, (2) using the results for the simply transitive case, and (3) 
projecting back to the original space. The main result is that the scope of mathe
matical morphology is widened to situations where a noncommutative group is 
involved. Examples are the translation-rotation group acting on the plane, the 
rotation group acting on the sphere, or a subgroup of the symmetric group S" 
acting on a finite set of n points. Although the emphasis of our work has clearly 
been on the mathematical framework, we want to finish by mentioning a few 
areas of possible practical relevance. As indicated in the introduction, we expect 
that other applications will be found as well. 

A first example is that of the search for structures in a graph; see [31, p. 90]. 
As in Example 2.23, let E' be a set of vertices of a graph and E the complete 
graph generated by E'. Then rJJ'(E) is the set of subgraphs of E. The group f 
acting on E is generated by the set of all bijections of E' to itself. Let B be an 
arbitrary subgraph of E, which plays the role of the structuring element. Then 
the opening )'~ applied to a graph X C E is the union of all the subgraphs of X 
that are isomorphic to B; see Figure 4. 9 of [31]. 

A second example, which occurs in the problem of motion planning for ro
bots, has been considered in great detail in [24]. The problem is to find a path for 
a robot moving in a plane E with obstacles. Since a robot has a finite size, one 
can find allowed positions of the (arbitrarily chosen) center of the robot by an 
erosion El of the obstacle-free space Erree' where the structuring element Bis the 
robot itself and ?I is the Euclidean translation group. Here we assume that only 
translations of the robot are allowed. Equivalently, one may perform the dilation 
oJ by the reflected set B on the set Eob of obstacles to find the forbidden positions 
of the center of the robot. In this connection we refer to related work by Ghosh 
[6], on spatial planning and other problems using the classical Minkowski oper
ations (i.e., only Euclidean translations allowed). 

If the robot has rotational degrees of freedom, one has to perform dilations 
with all rotated versions of the robot (Verwer [35]). In the framework of this 
chapter, the situation can be described as follows: given a set B (the robot), find 
the collection of all locations in the plane and all orientations of the robot at those 
locations such that the displaced robot fits into the obstacle-free space £free· In the 
terminology of Section IV.C, this is precisely the erosion £"11 i (Erree) : = {(t, r) E 
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Figure 8. The forbidden positions and orientations for a robot with translational and 
rotational degrees of freedom are found by the dilation 0:1 (E0 b) of the obstacles bv the 
robot B, where "JC is the hexagonal group. Heavy dots, the obstacle space; arrows att;ched 
to heavy and open dots, the dilated set &: 1 (E0 b) of forbidden states. The underlining in B 
indicates the origin and bis the base pointer (taken from [24]). -

'positions' by taking the complement of c:1l I (Erree), which equals the dilation 

(see [24]) 81} I (E0 b) = LJ bEEob Tb-0-(B), where Tb is the unique Euclidean trans

lation that maps the origin to b. An example for the hexagonal grid is given in 
Figure 8. 
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APPENDIX: PROOFS 

Proof of Proposition 3 .8. In cases where pairs of statements occur which 
differ only by left-right symmetry, we prove only one of them. In all proofs we 
use without comment that translations commute with unions and intersections. 

r 
(a) G EB (HU K) = LJ gecg(H UK)= LJ gec(gH U gK) 

= ( u gH) u ( u gK) = ( G EB H) u ( G ffi K), 
gEG gEG 

which proves the left distributivity of the set product. 
(b) Using that multiplication in a group is associative, we find 

r r 
(G EB H) EB K = u gEG.hEH,kEK (gh)k = u gEG,hEH,kEK g(hk) 

r r 
= G EB (H EB K) 



NONCOMMUTATIVE SYMMETRY GROUPS 247 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(g) 

(h) 
(i) 

(c) 

(G n H) e K = n (G n H)k I = n (Gk- 1) n (Hk-1) kEK kEK 

=en Gk- 1) n (n Hk- 1) kEK kEK 

' ' = cc e K) n CH e K). 

G 8 (Hu K) = nmEHUKcm-I = cnmEHGm- 1) n cnmEKGm- 1) 

>. A 
= cc e H) n cc e K). 

r 
G EB H ~ K <=> Vh E H: Gh ~ K <=> 'r:/h E H: G ~ Kh- 1 

r <=> G ~ nhEH Kh- 1 = KG H. Similarly, 
G EB H ~ K <=> Vg E G: gH ~ K <=> 'r:/g E G: H ~ g- 1K 

<=> H ~ n REG r I K = K e G. 

(GGH)eK= nkEK(GGH)k- 1 = nkEK(nhEHGh- 1)k- 1 

= nhEHkEKG(kh)-I = n ~Gm-I= GG(KfBH). 
· mEK~H 

P P P r 
In a similar way one proves that (G 8 H) 8 K = G 8 (H EB K). Finally, 

p A n t- P cc e H) e K = hEH.kEKh- 1ck- 1 =<Ge K) e H. 
Follows from (b) and the identities (7.26). 

HG (gK) = n Hm- 1 = n H(gk)- 1 = n (Hk-I)g-1 mEgK kEK kEK 

= cnkEK Hk- 1)g I = (H 8 K)g- 1• The other results are proved simi
larly. 

Proof of Lemma 3. JO. We only prove (g)-(i). The other items are obvious. 

r 1-

( G EB H)' = cUhEHGh)' = nhEHGch =Ge efl. Also, 

(G fB H)' = ( LJ . gH)c = n gH = H' e G REG gEG • " n n, ,P, 
(G8Hr=c hEHGh- 1f= hEHhG=G8H. 
Follows from (e) and (g). 

Proof of Lemma 3.15. Items (a) and (b) follow from Lemma 3. IO(a,b). 

Let ljJ be increasing. Then if G ~ H, G' ;;;;) H', so ljl(G') ;;;;) ljl(H'). There
fore if G ~ H, then ljl'(G) = (lji(G'))' ~ (ljl(H'))' = ljJ'(H), hence ljl' is 
increasing. The converse is proved similarly. Also, let ljJ be left-invariant, 
g E f, H ~f. Then lji'(gH) = {lji((gH)')}' = {ljl(gH')}' = {gljl(H')}' = 
g{ lj!(H) }'· = gljJ' (H), hence ljl' is left-invariant. Next, let ljJ be a dilation. 
Then ljl'(n XJ = {l.\i((n X;Y)}' = {lji(U X~)}' = {U ljl(X~)}' = n{ljl(X~)}' = 
n ljl'(X), hence lji' is an erosion; the reverse implication is proved simi-
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(d) 

larly. Finally, (8~)'(G) (8MG'))' 
where we have used Lemma 3. lO(g). 

r 
(G' EB H)' 

A 

G e Ii = £~, (G). 

Let \\f be right-invariant, g E f, H S: f. Then ~( gH) = { l.j;( ( gHf)} -
{\\f(Hg- 1)f = {\\f(H)g- 1f = g{\\f(H)}' = ~(H), wher~ we used Lemma 
3. lO(d). So we have shown that if tjJ is right-invariant, tjJ is left-invariant. 
The reverse statement is proved similarly. 
Also, 

(A.)~(H) = {A.p/)f = {gHr = Hg- 1 = p; 1(H) 

and 

c8~r = < U Phr = U <Phr = U A.; 1 = 8~ 
hEH hEH hEH 

The result for the erosion follows in the same way. 
(e) Follows from (c) and (d). 

Proof of Proposition 3.17. We only prove the first and third formulas. From 
/.. r 

the defining Eq. (7. 24a) of the left residual we have ( G 8 H) E8 H = ( LJ _ . 
,o.,•t-....::.1 

{g: gH S: G}) EB H = LJ gEr{gH: gH S: G}, which proves the result for the left-

invariant opening. Using Boolean duality, we have n ger{gfJ : gH ;;;;? G} 

n {gf!: g(H)' c G'} = cU {gH: gH c G'})' = ((G' e H) EB H)· gEr - xEr -
r A 

( G EB H) 8 H, proving the third line. 
Proof of Proposition 3.18. We have seen above that (7 .36) is a J\-adjunction. 

Therefore it remains to prove the "only if" part. So assume that ( £, o) is a A.
ad junction. Let H = o({e}), where e is the unit element of f. Then, for each 
g E f, 

o({g}) = o('Ax{e}) = A.go({e}) 'A/H) 

Hence, for each G E 0'.>(f), 

o(G) = o( U {g}) = U o({g}) = U A./H) 
r 

G<fJH 
gEG gEG gEG 

proving that each left-invariant dilation has the form as in (7 .36). To complete 
the proof, observe that if£ is a A-erosion, then its lower adjoint o is a .\-dilation. 
so o = 8~ for some H E ~(I'), whose unique upper ad joint is €~. Hence E = E:~. 

Proof of Theorem 3.23. It is clear that Ij.i as given by (7.38) is a left-invariant 
mapping, since it is a union of such mappings. Conversely, let l.j; be a left-
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invariant mapping. 'fie show that 1\1 has the form (7.38). Given GE ~(f), let z 
= LJ !F.Hl EW<llil G rtY (F, H).We show that lji(G) = z. 

)\ 

(a) lji(G) ;;;;i Z: Let g E G rtY (F, H) for some (F, H) E 'W(lji). Then gF ~ G ~ 
gH, hence F ~ g- 1G ~Hand so g- 1G E [F, H] ~ °V(lji) by assumption 
on (F, H). It follows that e E 1\1( g- 1G) = g- 11\i( G), where e is the identity 
off and we used left invariance of lji. Therefore g E lji(G), hence lji(G) ;;;;i 
z. 

(b) lji(G) ~ Z: Let g E lji(G). Then, using left invariance, e E g- 11\i(G) = 
l\f(g- 1G), hence g- 1G E °V(lji) and therefore (g- 1G, g- 1G) E 'W(lji). Com

" bining this with the obvious fact that G rtY ( g- 1G, g- 1G) ;;2 {g}, we con-
clude that g E Zand so lji(G) ~ Z. 

Proof of Corollary 3.24. By application of the above theorem to an increas
>-

ing A-mapping, and using (7.37a) combined with the obvious fact that G rtY (F, 
H) is increasing in H, we have 

lji(G) = LJ G (y (F, f) = U G G F 
FE'V'(llJ) FE"Viljil 

To prove the representation as an intersection of dilations, observe that the dual 
mapping lji' of 1\1 is itself left-invariant and increasing; see Lemma 3.15. So, 
applying the decomposition just proved to lji', we get 

lji'(G) = LJ G G F 
FE"VW) 

Now we take again the Boolean dual of lji', using Lemma 3. lO(g) and the fact 
that lji" = \js to find 

l\f(G) = ( u G< e F)" = n G ffi p 
FE"lfWl FE'V'iliJ'l 

This completes the proof for increasing A-mappings. The proof for decreasing A.
mappings is analogous. 

Proof of Theorem 3.25. We only have to prove the "only if" part, since a 
union of A-openings is a A-opening (see Section 11.B). So assume that lji is a A.
opening. Applying Proposition 2.10 of Section 11.B with T = P, one finds that 
1\1 has the form (7 .40) with)'~ the structural A-opening by the structuring element 

H. Since from Proposition 3 .17, )'~ = 5~e~, the proof is complete. 
f >. 

Proof of Lemma 4.6. Since I is a group, I EEl I = I = I 8 I, so 
l\ >. f l\ >. 

G e I = G e CS EEl I) = (G 8 2.) 8 I 

where we used Proposition 3.8(f). Also, 



250 ROERDiNK 

'l:/s El, 
,\ 

ls = l::} G 8 l LJ G G (ls) = LJ (G G l)s 
sEL 

,\ r 
(G 8 l) EB 2 

This proves (7 .59a). To prove (7.59b), apply the Boolean duality relation Lemrna 
3. IO(g) to (7.59a). 

Proof of Proposition 4.8. We prove (a) to (i), but not necessarily in the 
stated order. 

(a): Since 1T and {} are extensions of the point mappings 1T"' and -l\, to sets 
they are increasing. So we will prove that Tr and {} are r-invariant, which the~ 
automatically implies that 1T1 is an increasing r-mappin~, since £1 is increasing 
and translation-invariant. Let g0 E f; then, for any GE:£, -rr(g0G) = {gw : g E 
g0G} = {g~'w: g' E G} = g0{g'w: g' E G} = g0Tr(G). Similarly, one proves 
the r -invariance of {}. 

(b) and the first part of (c): These follow from the fact that TI is the extension 
of a point mapping Tr'": r-> :?£'to subsets of f. The second part of (c) is proved 
below. 

(e), first part: Using (a) and the fact that {}({w}) = !, one has for any G E ~<'!.£·. 
XE :£, 

Tr{}(X) = TI {g E r: Trjg) EX} = {1T"'(g) : g E r, -rrjg) EX} = X 

{}Tr(G) = {}Tr [U {g}] = LJ tt({gw}) = LJ gl = G ffi I = 5~ ( c > 
gEG gEG gEG 

(d): From (e), first part, we have{} = {}Tr{} = &1 {}, and, using Lemma 4 _ 6, 
8l{} = ~~{} = ~{}. 

(e), second part: From (d), Trl{} = -rr£1{} = Tr{} = id'1" tt-rry = {}-rrE::;: = 8:::,: €;:,:. 
= Ey. 

(c), second part: Since {}Tr1 = £1 , with ~ an erosion, we have, using (b). 

'11Tr.,( n. G) = n. {}Tr.,(G,.) = {} [ n. 7r.,(G,.)] for any index set/. Oper-- 1El tEI - 1E/ ,,;... 

ating On both Sides Of this quality by 1T and USing 1T{} = id;,e, We get 'IT:;:( n iE/ 

G,.) = n TI.,(G.). 
iE/ - I 

(f,::}): Follows from (a). 
(f,{=): Let {}(X) ~ {}(Y). Then, since 1T is increasing and 7r'3' = id.;e, '1T-0-(X) 

~ -rr{} (Y), so X ~ Y. 
(g): First, ({}(X))' = {g E G: 7r'°(g) EX}' = {g E G: ·njg) t£:. X} = {g E G 

f A -
: -rrjg) EX'} = {}(X''). Using this identity and the fact that (G EB !)'" = G 8 :::S 
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A v 

G 8 I (since I is a group, I = I), we find (1T(G)Y = 1T{}(1T(G)Jc = 
'TT[{{}'TT(G)}cj = 1T[BI(G)]< = 1TEI(Gc) = 'TTI(G'). 

(h,=?): 1T(G) ~ X::? G ~ {}1T(G) k {}(X), since {}TI = 8I is a closing and{} 
is increasing. 

(h,{::): G ~ {}(X) ::? TI(G) ~ 1T{}(X) = X, since 'TT is increasing and 'TT{} = 
idx. 

(i,=?): {}(X) k G::? X = 1TI{}(X) k 'TTI(G), since 1TI is increasing and 1Ti{} 
= idoe. 

(i,{::): X k 1TI(G)::} {}(X) ~ -&1Ti(G) k G, for -&1Ti = EI is an opening and 
{} is increasing. 

Proof of Lemma 4.9. (a) and (a') are obvious. We prove (b) and the part of 
(c) and (c') concerning openings. The other entries can be proved similarly. 

(b): Let e be an erosion on;:£ with adjoint o. Then -&e1Ti is an erosion on ff, 
and, since the adjoint of a product is the product of the adjoints in reverse order 
(see Lemma 2.6(f)), the corresponding dilation is {}o'TI'. 

(c): Let 'Y be an opening. Then 'Y : = {}yrrI is increasing, antiextensive (since 
{}"Y'lTI ~ -&1Ti = EI k id~) and idempotent, for '92 = {}'Y'lTI{}'Y'Tl'i = {}'Y2'1TI = 
{}"Y1Ti = -y. Hence 'Y is an opening. 

(c'): Let 'Y be an opening. Then 'Y : = 71''9{} is increasing and antiextensive, 
since 'Y = TI'Y{} ~ TI{} = idx. Therefore 'Y2 k 'Y· but also 'Y2 = 'TT'Y{}'Tl'-y-& = 
'Tt'"f'Bi"f'{} ~ TI-9 2{} = 'TI'")'{} = 'Y· hence 'Y2 = 'Y· So 'Y is an opening. 

Proof of Proposition 4.12. We give the proof in operator form. Since (EH, 

BH) is a f-adjunction On 5£, the pair(£, 0) as defined in (7.61) forms a f
adjunction on ;f, by Lemma 4.9(a' ,b'). Conversely, let (e, o) form a f-adjunction 

on;:£. Then by Lemma 4.9(a,b), the pair (-&e1Ti, -&o1T) is a f-adjunction on ff. 
Hence we know from Section III.D that 8: = {}o1T = 8H, E: = {}e'lTI = EH for 

some H E ;£, where (EH, 8H) is the left-invariant adjunction (7.36) on ff with 
structuring element H. Using that 'TI'{} = 'TI' I{} = id.'£, we find that o = "ITBH {}, e 

= 1TiEH{}. This proves (7.61). Now 1T = 'TTBi, hence 8 = ir8I8H{} = 'TTBHJiI{} 

= TIB{).,,.(ffi{}' and {} = EE-&, hence e = 'TTIEHEI{} = 1TiEmfo{} = 'TTIEh(I{){}. 
Writing Y instead of TI(H), we thus have found 8 = of:= 'TTBam-0-, e = ef: = 
1T I E{)(Y) {}. 

Since 1T = TIBI, {} = BI{}, one has that 8 = 1TBi8H8I-& = ir8I£H£I{} = 

'TTB{)m{}, and from 1TI = 1TiE;r, {} = EI{}, one has e = 'lTEiEHEI{} = '1TE:r£H£I{} 
= 1TE{}<YJ{}, where as before Y = 'TT(H). It is clear that nothing changes when we 
replace Y by Y. This completes the proof. 

Proof of Corollary 4.13. From Proposition 4.12 we have that any ad junction 
hastheform(e, 8) = (ef, Sf) where 
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8f(X) = 7r[ {}(X) ffi {}( Y)] = u g Y 
gEi'l!Xl 

Ef(X) = '!Tl:[{}(X) e {}(Y)] = n gY* 
gEi'ltX''l 

Here Y* = Til[(~(Y))"] and we have used the form of adjunctions on i£ in (7 .28) 
and (7.32). Using Proposition 4.8g we also have Y* = [7r('6(Y))]< = CY*)' with 
Y* = 7r(.a(Y)). This proves the first part. 

r -
Second, using Proposition 4.12 again, 8f(X) = 7r[1't(X) ffi {}(Y)] = TI{g E f: 

r 
g'6(lY) ~ {}(X)} = 7r{g E f: g(~ (Y) ffi l) 1[- {}(X)} = TI{g E f: g-i't(TI~ (Y)) 1[-
{}(X)} = TI{g E f: gY* 11' X} = lv E 7£: gY* 11' X for some g E -i't)y)}. Here we 
have made use of the geometric interpretation of dilations on q})(f) (see Remark 
3.11) and the obvious equivalence {}(X) 11' {}(Y) ~ X 11' Y. Finally, for the erosion 

" we have Ef(X) = 7rl:[{}(X) 8 {}(Y)] = '!Tl:{g E f: gY <.;;;; X} = {y E 7£: gY <.;;;; X 
for all g E -i't.,(y)}. 

Proof of Proposition 4.14. By explicit computation, we find 

- " r " 7r8amEi'lm-i't(X) = 7T [({}(X) 8 {}(Y)) EB {}(Y)] = ({}(X) e {}(Y))Y 

= [ LJ {g: g{}(Y) <.;;;; -i't(X)}]Y = [ LJ {g: gY <.;;;; x}]Y 
~r ~r 

= LJ {gY: gY <.;;;; X} 
gEf 

Here we have used the notation (7.52) for the action of a subset G off on a 
subset X or 7£. This proves (7 .65). Second, for the closing <!>f we have 

<t>r<X) = l'YY"·(X<)J< = r 7T8i'l<Y'iEaye-i't(X<) l' 

= 7Tl:Ea<l"'1 Saw1 1't(X) = TIEa1l"'18ao"'1 -i't(X) 

where we used Proposition 4.8(g) and Boolean duality for adjunctions on i£, as 
':Yell as the fact that '!Tl:Eltwi = 7TE6<ri• which follows from the I-invariance of 
{}(Y'). 

Proof of Lemma 4.17. 'V(~) = {GE:£: e E ~(G)} = {GE if: 7r({e}) E 
IJ!(TI(G))} ={GE:£: w E IJ!(TI(G))} ={GE if: TI(G) E 'V(IJ!)}, where we have 
used that e E ij}(G) = {}IJ!(TI(G)) ~ 7r({e}) E IJ!(TI(G)). 

Proof of Theorem 4.18. Clearly, iJi as given by (7.67) is an increasing r
mapping. Conversely, assume that iJi is an increasing f-mapping. Then~ = {hjm 
is an increasing >...-mapping (Lemma 4. 9). Hence 

~(G) = u. EH(G) 
HEVii!Jl 
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>. 

where EH(G) = Ge His the left-invariant erosion on 2. Now, from Proposition 
4.8(e), i1J = '1T~tt, so 

ilJ(X) = '1T~tt(X) = '1T [ U _ EH tt(X)] = u '1TEH ,'J(X) 
HE'V(IJ!l HE'V(ljl) 

Since f.H\t = f.Hf.:stt = f.H~Sq = ~,,.<Hitt, we have from Lemma 4.17 

ilJ(X) = LJ LJ '1TEa"'<Hl tt(X) = U '1TEam tt(X) 
YE'VCIJ!l H:1T(H) = Y YE'V(iji) 

which completes the proof of (7 .67a). Equation (7 .67b) follows by applying 
(7 .67a) to the Boolean dual ilJ'. 
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