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For the numerical integration of a stiff ordinary differential equation, fully implicit Runge-Kutta methods 
offer nice properties, like a high classical order and high stage order as well as an excellent stability behaviour. 
However, such methods need the solution of a set of highly coupled equations for the stage values and this is a 
considerable computational task. This paper discusses an iteration scheme to tackle this problem. By means of 
a suitable choice of the iteration parameters, the implicit relations for the stage values, as they occur in each 
iteration, can be uncoupled so that they can be solved in parallel. The resulting scheme can be cast into the 
class of Diagonally Implicit Runge-Kutta (DIRK) methods and, similar to these methods, requires only one 
LU factorization per step (per processor). The stability as well as the computational efficiency of the process 
strongly depends on the particular choice of the iteration parameters and on the number of iterations 
performed. We discuss several choices to obtain good stability and fast convergence. Based on these 
approaches, we wrote two codes possessing local error control and stepsize variation. We have implemented 
both codes on an ALLIANT FX/4 machine (four parallel vector processors and shared memory) and 
measured their speedup factors for a number of test problems. Furthermore, the performance of these codes 
is compared with the performance of the best stiff ODE codes for sequential computers, like SIMPLE, 
LSODE and RADAU5. 

Keywords: Parallelism; stiffness; diagonally implicit Runge-Kutta methods; stability; convergence. 

1. Introduction 

Due to the never-ending demand for more speed in scientific computation, the available 
computer power of new architectures has tremendously increased during the last decades. This 
is mainly obtained by new hardware design and by a prodigious progress in micro-electronics. 
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However, this hardware advancement is not sufficient to meet the requirements as they occur 
in large-scale problems. The main problem in effectively exploiting this huge potential of 
computer power is the fact that there is very little software available for these machines. In 
order to be efficient, this software should be based on algorithms that are well tuned to the new 
architectures. 

Since many numerical algorithms were designed for the traditional sequential computers, the 
existing methods are not necessarily the best. This is particularly true in the field of numerical 
methods for ordinary differential equations. Therefore, it is highly desirable to (re)consider 
these algorithms and, eventually, replace them with more suitable candidates. 

Herewith, we arrive at the major aim of this paper: the constrnction of new algorithms, 
specifically designed for a wide class of new architectures, thus making an attempt to decrease 
the arrears of software with respect to hardware. 

In this paper we will concentrate on numerical methods for the initial-value problem (IVP) 
for the ordinary differential equation (ODE), written in the autonomous form 

(1.1) 

In particular, we shall discuss the construction of algorithms for (1.1) that are suitable in a 
parallel environment. Although parallel computers are available now for quite a few years, it is 
remarkable that this area received only marginal attention and in fact is still in its infancy. A 
possible explanation may be that the integration of an IVP by a step-by-step process is 
sequentially in nature and thus offers little scope to exploit parallelism. 

Nevertheless, there are t-.'me avenues: at first, there is the rather obvious way to distribute 
the various components of the system of ODEs amongst the available processors. This is 
especially effective in e.mlicit methods, since they frequently need the evaluation of the 
right-hand side function _ ·Jr a given vector y, so that the components of f can be evaluated 
independently of one anoL~--~r. Following the terminology of [11], this is called parallelism 
across the problem. A more interesting approach, called parallelism across the method, is to 
employ the parallelism inherently availablf': within the method. Concurrent evaluations of the 
entire function f for various values of its :·: ·ument and the simultaneous solution of various 
(nonlinear) systems of equations are examples of parallelism across the method. Remark that 
this form of parallelism is also effective in case of a scalar ODE (i.e., N = 1 in (1.1)), whereas 
parallelism across the problem aims at large N-values. Also notice that both approaches can be 
combined because they are more or less "orthogonal". Still another approach, which could be 
termed parallelism across the time, is followed in [2]. Contrary to the step-by-step idea, a 
number of steps is performed simultaneously, yielding numerical approximations in many 
points on the t-axis in parallel. In fact, these methods belong to the class of waveform 
relaxation methods. These methods show a significant speedup provided that the number of 
steps is (very) large. In the present paper we will confine ourselves to parallelism across the 
method. 

Unfortunately, many existing algorithms that perform well on a sequential computer can take 
hardly profit from a parallel configuration. This feature necessitates us to construct new 
methods, specifically designed for parallel execution. In doing so, it was in many cases 
unavoidable to introduce some redundancy in the total volume of computational arithmetic. As 
a consequence, it is overambitious to expect a speedup (compared with a good sequential 
solver) in the solution time with a factor s, if s processors are available. 
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In many of the methods considered in this paper, a small number (typically in the range 
from 2 to 6) of concurrent subtasks of considerable computational complexity can be distin
guished. Consequently, (i) these methods are aiming at so-called "coarse-grain" parallelism, 
and (ii) communication and synchronization overhead will be small compared with CPU-time. 

2. Runge-Kutta methods 

The general Runge-Kutta (RK) method to proceed the numerical solution of (1.1) from tn 
over a step h is given by 

s 

Yn+ l = Yn + h L bJ(Y;), (2.la) 
i= 1 

s 

Y;=yn+hLa;;f(lj), i=l, ... ,s. (2.lb) 
j= 1 

Here, Yn:::::: y(tn), a;;, b; are the coefficients defining the RK method and s is called the number 
of stages. The quantities Y;, the stage-values, can be considered as intermediate approximations 
to the solution y. An RK method is said to be explicit iff au= 0, j ~i. Otherwise, it is called an 
implicit RK (IRK) method. For the algorithms described in this paper, our starting point will 
always be an IRK method. 

A nice feature of IRK methods is that a high order of accuracy can be combined with 
excellent stability properties [6). Well-known examples of such IRKs are the Gauss-Legendre 
methods (order 2s and A-stable) and the Radau IIA methods (order 2s - 1 and L-stable). A 
serious disadvantage, however, is the high cost of solving the algebraic equations defining the 
stage-values Y;. Since the y; are coupled in general, this is a system of dimension sN, thus 
involving O((sN) 3) arithmetic operations. This compares unfavourably with ODE solvers based 
on linear multistep (LM) methods, where a system of dimension N has to be solved in each 
step. This is the main reason that IRK methods did not receive great popularity to serve as the 
basis for efficient, production-oriented software. In the literature, several remedies have been 
proposed to reduce the amount of linear algebra per step, like Diagonally Implicit RK (DIRK) 
methods [1,7,8,20) and Singly Implicit RK (SIRK) methods [3,5]. However, both approaches 
have their own disadvantages and did not succeed in completely superseding the LM-type of 
methods. Another possibility to realize the excellent prospects that IRK methods offer is the 
use of parallel processors. In [26-28], we analyzed several parallel methods. In the next sections 
we will summarize the main characteristics. 

Motivated by our starting point that parallelism across the method should also be effective 
for scalar ODEs, we will assume throughout that (1.1) is a scalar equation. This has the 
notational advantage that we can avoid tensor products in our formulation. However, the 
extension to systems of ODEs, and therefore to nonautonomous equations, is straightforward. 

In describing the parallel methods, it will be convenient to use a compact notation for the 
RK method (2.1). Introducing A= (a;), b = (b;), Y = ( Y;) and e = (1, ... , l)T, all of dimension 
s, a succinct notation of the RK method reads 

(2.2a) 
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Y=yne+Mf(Y), (2.2b) 

where f(v) := (f(v)), for a given vector v = (v). 

3. Diagonal iteration 

The main problem in the application of an IRK is the solution of (2.2b) for the stage vector 
Y; once this vector has been obtained, (2.2a) is straightforward. A direct treatment to solve 
(2.2b) (i.e., applying some form of modified Newton iteration) offers little scope to exploit 
parallelism, except for the linear algebra part; this aspect is not discussed here, since it is 
"orthogonal" to the subject of this paper, i.e., the parallel calculation of the stage vector Y. To 
that purpose, we introduce the iteration process 

yu> - hDf(Y<i>) = Yne + h[ A -D]f(YU- 1>), j = l, ... , m. (3.la) 

Here, D is a diagonal matrix. This is crucial, since now, given an iterate yU-1), each individual 
component ~U> of the unknown iterate Y(j) has to be solved from an implicit relation of the 
form 

Y U> - hd f(YU>) - '(' - 0 i· - 1 s i i i ...:,,i- ' - , ... , ' {3.lb) 

where !i is the ith component of the right-hand side vector in (3.la) and di is the ith diagonal 
entry of the matrix D. Clearly, all !i depend on y0- 1\ but can be computed straightforwardly 
(even in parallel). The bulk of the computational effort involves the solution of the s equations 
for the components Y;(j), i = 1, ... , s. However, given the !i, the equations (3.lb) are uncoupled 
and can be solved in parallel. Hence, assuming that we have s processors available, each 
iteration in (3.la) requires effectively the solution of only one implicit relation of the form 
(3.lb). This is especially advantageous in case of (large) systems of ODEs, because then each 
iteration in (3.la) requires effectively the solution of a system of dimension N, the ODE 
dimension. As a consequence, the total iteration process has the effect that the solution of one 
system of dimension sN has been transformed into the solution of a sequence of m systems, all 
of dimension N. Moreover, since D is the same in all iterations, the (parallel) LU decomposi
tions of the matrices I -hdi of /oy can be restricted to the first iteration. Summing up, the 
total computational complexity of the iteration process is O(N3 + MmN 2 ), whereas a direct 
treatment requires O(s.3N 3 + Ms 2N 2), with M the number of (modified) Newton iterations 
required. Since typical s-values range from 2 to 6 and because the required number of 
iterations m is quite modest (as we shall see in Sections 3.1 and 3.2), we now arrive at a 
manageable level of arithmetic. Notice that this approach is quite similar to that of a DIRK 
method, where also only one LU decomposition of a matrix of dimension N is required per 
step. In [1,8,20], A-stable DIRKs are analyzed of order p with p - 1 implicit stages, 2 ~ p ~ 4. 
Cooper and Sayfy [7] constructed A-stable DIRKs with five implicit stages. They present a 
method of order 5 and could increase the order to 6 by adding one explicit stage. We are not 
aware of A-stable DIRKs of higher order. However, the parallel approach allows for A-stable 
methods of as high an order as 10 (excluding 9) (cf. Section 3.1) or even arbitrary high order (cf. 
Section 3.2). 

A further advantage of the parallel methods is that the stage order [9] can be made higher 
than that of a classical DIRK method. We postpone the discussion of this aspect until Section 
3.2 and first finish the discussion of the iteration scheme (3. la). 
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To start the iteration (3.la), we need the initial approximation y<0>. One of the possibilities 
to choose this vector is given by 

(3.lc) 

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit 
parallelism (in the same way as described for (3.la)); C is an arbitrary full matrix. Particular 
choices of these matrices will be discussed in the Sections 3.1 and 3.2. In the sequel, the initial 
approximation y<0> will be referred to as the predictor. 

If m iterations have been performed with (3.la), then the new approximation at t11 + 1 is 
defined by (cf. (2.2a)) 

(3.2a) 

Once an underlying IRK has been selected (henceforth called the corrector), the freedom left 
in the iteration process (3.1) consists of the matrices B, C and D, and the number of iterations 
m. With respect to the matrix D we have considered several possibilities: first of all, there is 
the simplest choice, which sets D equal to the zero matrix. In this case we obtain an explicit 
iteration process and, consequently, the resulting scheme is only suitable for nonstiff equations. 
This approach has received relatively much attention in the literature (see, e.g., 
[4,16,17,19,21,25D. Choosing the "trivial" predictor y<0> = y11 e, the order behaviour of the 
resulting algorithm can be formulated as in the following theorem (see also [16-18]). 

Theorem 3.1. The method {(3.la) with D = 0, (3.lc) with B = C = 0, (3.2a)} is of order 
min{p*, m + 1}, where p* is the order of the corrector (2.2). 

Notice that this method is itself an explicit RK method with s(m + 1) stages. However, since 
y<1> = Yne + Mf(yn)e, we see that the first s stages all require the same f-evaluation and hence 
can be collapsed into one stage. As a result, the method defined in Theorem 3.1 can be 
considered as an explicit RK method with sm + 1 stages. On a parallel machine, however, the 
effective number of stages equals only m + 1 (provided that s processors are available). This 
means that if the number of iterations m ~p* -1, then we have obtained an explicit RK 
method where the number of effective stages equals the order. This is an optimal result [16] 
and compares favourably with the situation for classical (uniprocessor) explicit RK methods, 
where the number of stages increases faster than linearly if we want a high order. Furthermore, 
we observe that the number s of required processors is minimal with respect to the order, if the 
generating RK method is of Gauss-Legendre type, since these methods have the highest 
possible order with respect to the number of stages. We do not continue the discussion of the 
case D = 0, since this paper aims at stiff problems, leading us to implicit methods, i.e., to the 
case D =fo 0. 

Before specifying particular choices of D, we first want to discuss an aspect of the corrector 
which is relevant with respect to stiffness. In integrating stiff ODEs, a favourable property of 
the method is that it is "stiffly accurate". This notion has been introduced in (23] and means 
that the RK method satisfies bT = e"JA, with e8 the sth unit vector. Hence, bT equals the last 
row of A, or equivalently, the last component of the stage vector Y is an approximation to the 
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solution at the new step point tn+ 1• Therefore, in case of a stiffly accurate corrector, (3.2a) will 
be replaced by 

Y := eTy(m) 
n+ 1 s · (3.2b) 

Another aspect worth mentioning is, that - for nonstiffly accurate correctors - the final 
evaluation f(yCm>) in (3.2a) has a bad influence on the stability of the iterated scheme [24]. This 
can be avoided by the following modification (see [13]): suppose that the corrector would have 
been solved, i.e., Y satisfies (2.2b). Then (assuming that A is nonsingular), we have 

hf(Y)=A- 1[Y-yne]. (3.3) 
Replacing Y in this relation by y<ml (that is, assuming that (3.3) is reasonably satisfied by y<m)) 
and substitution into (3.2a) leads to 

Yn+1'=Yn+bTA-1[y<ml_yne]. (3.2c) 

In case of a nonstiffly accurate corrector, the use of (3.2c) instead of (3.2a) has two conse
quences for the resulting method: the stability is improved by using (3.2c), since we avoid the 
final evaluation f(yCm>); on the other hand, (3.2a) is more accurate (see also the Remark 
following Theorem 3.2). For a stiffly accurate corrector, however, (3.2a) and (3.2c) are 
equivalent. 

Now, we return to the discussion of the matrix D; we distinguish two cases. 
(i) D is such that after a prescribed number of iterations the resulting method has good 

stability properties. This option was followed in [28] and will be outlined in Section 3.1. In this 
approach the order of the resulting method equals the order of the corrector and the number 
of iterations m is minimal to reach this order. 

(ii) Another option is to solve the corrector and to choose D in such a way that we obtain 
fast convergence in the iteration process (3.la). This strategy has been followed in [26,27] and 
will be the subject of Section 3.2. 

In the following sections these cases will be briefly discussed; henceforth, the above Parallel 
Diagonally-Iterated RK methods will be denoted by PDIRK methods. 

i 

3.1. Diagonal iteration with a prescribed number of iterations 

Here, we consider methods for which the number of iterations m will be fixed. As we shall 
see, this number is dictated by the orders of the corrector and of the predictor. To clarify this 
strategy, we quote a theorem from [28]. 

Theorem 3.2. Let p * be the order of the underlying corrector (2.2). Then the order p of the 
resulting PDIRK method {(3.1), (3.2a), (3.2b)} is given by 

min{p*, m + r}, 

min{p*, m + 1 + r}, 

min{p*,m+2+r}, 

for all matrices B, C and D, 

if (C + B)e =Ae, 

if, in addition, BAe =A2e, 

where r takes the value 1 ifYn+I is defined by (3.2a) (i.e., the nonstiffly accurate case) and r = 0 if 
Yn+l is defined by (3.2b) (the stiffly accurate case). 

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK method has the 
same property. 
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Remark. For the nonstiffly accurate case, we observe that if we change to the modification 
(3.2c), then r should be set to 0 in Theorem 3.2. Since in [26,28], the nonstiffly accurate 
methods were analyzed on the basis of (3.2a), we will confine ourselves in this overview to this 
choice. 

Based on this theorem, we adopted in [28] the strategy to choose m such that p = p *. This 
means that we stop iterating as soon as the order has reached the order of the corrector, since 
a continuation of the iteration process would not increase the order of the PDIRK method. 
Furthermore, in [28], we only considered correctors of Gauss-Legendre type and of Radau IIA 
type. 

With respect to the choice of the predictor, it turned out that employing the C-matrix did not 
yield particular advantage; so, here we only present results for C = 0. For the matrix B we 
choose either B = 0 or B =D. Although B and D may be different diagonal matrices, the 
choice B = D has the computational advantage that the LU decompositions of I - d;h af ;ay, 
which are needed during the iteration (3.la), can also be used in solving (3.lc) for y<0>. 

The diagonal matrix D is chosen such that the resulting PDIRK method has optimal stability 
characteristics. Here, we distinguish two approaches: matrices D with constant and with 
varying diagonal entries. These variants will be discussed in the following subsections, respec
tively. 

3.1.1. D-matrices of the form di 
In this relatively simple case we could perform a rather thorough stability analysis, using the 

so-called "£-polynomials" (see, e.g., [6]). In this connection we also mention the work of 
Wolfbrandt [29], who investigated similar stability functions. A few classes of unconditionally 
stable methods are listed in Table 3.1. The values of d can be found in (28]. 

We recall that the Gauss and Radau IIA methods are good choices to serve as a corrector, 
since these IRK.s have a high order with respect to the number of processors required (i.e., 
these methods need a minimal number of stages). It is however interesting to remark that any 
RK method:can be usbd as a corrector, even an explicit one, although in that case we have the 
unconventional situation that an explicit corrector is iterated by means of an implicit iteration 
process. For example, the PDIRK scheme resulting from iterating a pth-order explicit RK 
method ( p ~ 6 or p = 8) using exactly p iterations and B = D = dl can be made L-stable by 
choosing the appropriate d-value. However, the number of processors equals the number of 
stages of the explicit RK method and thus is at least p. 

Table 3.1 
Unconditionally stable PDIRK methods with D =di 

Corrector 

Gauss 
Gauss 
Radau IIA 
Radau IIA 

Matrices B and D 

B=O, D=dl 
B=D=dl 
B=O, D=dl 
B=D=dl 

Attainable order p 

p.;;;4, p=6 
p.;;;;6,p=8 
p.;;;6,p=8 
p .;;;8, p= 10 

Number of 
effective stages 

p-1 
p 
p 
p+l 

Stability 

A-stable 
L-stable 
L-stable 
L-stable 
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3.1.2. Nonconstant D-matrices 
If we omit the restriction of constant elements in D, then we can save one iteration and still 

obtain the same order as in the previous subsection, simply by setting B =D = diag(Ae) (cf. 
Theorem 3.2). The stability function for this case is rather complicated, so that the stability 
region of the methods had to be determined numerically. Some of these methods turned out to 
be only A(a)-stable, however with a close to 90°. In Table 3.2, we collect a few methods with 
good stability properties. 

3.1.3. Numerical example on the ALLIANT FX / 4 
Here, we will show the performance of an L-stable PDIRK scheme with B = D =di (cf. 

Table 3.1) when running on a parallel computer. Based on the four-stage Radau IIA method, 
we perform seven iterations to arrive at order 7. Hence, including the calculation of the 
predictor, this PDIRK scheme requires, effectively, eight stages per step. This method is 
L-stable for a range of d-values, from which we selected d = 0.169 024 637 9. This special 
d-value has the effect that the degree of the denominator in the (rational) stability function is 
tlvo larger than the degree of the numerator, which causes extra damping at infinity. 

We equipped this method with a provisional strategy for error control and stepsize selection. 
Since the PDIRK approach inherently provides a whole set of embedded reference solutions of 
lower order, a simple way to obtain an estimate for the local truncation error is given by 
II e;y<m> - e;yu> II for some j < m. Notice that this estimate does not require additional 

computations, since y<i> is anyhow needed to proceed the iteration process. In our code we set 
j = m - 1 (recall that s = 4 and m = 7). For further details concerning the strategy, we refer to 
[28]. 

We implemented this scheme on the ALLIANT FX/4 computer (four parallel processors 
and shared memory) and applied it to several test problems. The goal of these tests is twofold: 
(i) we want to investigate to what extent the theoretical parallelization can be realized in 
practice; in other words, how close we can approach the ideal speedup factor on this 
four-processor machine; and (ii) we want to compare the performance of the code PD IRK with 
that of a good sequential solver. To that purpose we selected the reliable code SIMPLE of [22] 
which is based on an A-stable DIRK method. Its (fixed) order is 3, which is rather low. 
Moreover, it has stage order 1. Since many problems are more efficiently integrated if 
high-order formulas are available, we also included in our tests the code LSODE of [14]. This 
BDF-based code has formulas up to order 5 available, from which only those of first and 
second order are A-stable. Hence, LSODE is less robust as a general stiff solver, but, on the 
other hand, is generally accepted as a good sequential solver and enjoys considerable usage 
over a long period. 

Table 3.2 
PDIRK methods with a nonconstant D-matrix 

Corrector 

Gauss/Radau IIA 
Gauss /Radau IIA 
RadauIIA 

Attainable order p 

p~5 

p=6, 7 
p=3, 5, 7 

Number of 
effective stages 

p-1 
p-1 
p 

Stability 

Strongly A-stable 
A(a)-stable, a > 83° 
L(a)-stable, a> 89° 
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Table 3.3 
Performance of the codes SIMPLE, LSODE and PDIRK for problem (3.4) 

Method (Effective) number of TOL .1 Ti T4 
implicit relations/step 

SIMPLE 3 10-4 6.5 0.63 0.85 
10-5 7.8 1.38 >Ti 
10-6 9.5 3.67 >Ti 

LSODE 1 10-5 7.4 0.35 >T1 
10-1 8.6 0.80 > T1 
10-9 10.3 1.71 > T1 

PDIRK 8 102 8.5 0.51 0.19 
10° 11.l 1.08 0.37 

One of the test problems described in [28] is the set of reaction rate equations: 

dyl 
dt = -0.04 Y1 + l04y 2 y 3 , y 1(0) = 1, 

d~2 = 0.04 y 1 -104y2y 3 - 3.· 107(Y2)2, Y2(0) = 0, 0~t~108 , 

dy3 2 
dt = 3 · l07(y2) , Y3(0) = 0. 

159 

(3.4) 

This problem is also used in [14,22] to illustrate the codes SIMPLE and LSODE. Initially, the 
solution changes rapidly and small stepsizes are necessary; gradually, the problem reaches a 
steady state and an efficient integration requires the stepsize to be increased significantly. In a 
typical situation, we observed stepsizes in the range [10-3, 106]. For several values of TOL (the 
local error bound), the results of the various codes are given in Table 3.3. Here, T1 and T4 

denote the CPU-time (in seconds) when the program is run on one and four processors, 
respectively. The accuracy is measured by means of L1, which is defined by writing the 
maximum norm of the global (absolute) error in the endpoint in the form 10-.d. 

From this experiment we can conclude the following. 
(i) Concerning the parallelization of the PDIRK code we observe a speedup (defined by 

T1/T4 ) with a factor :::::: 2.8. The main reason for not obtaining the ideal factor 4 is that the 
various processors needed a different number of Newton iterations to solve their "own" 
implicit relations. We counted the total number of Newton iterations (over the whole integra
tion interval) for each individual processor and obseIVed that the two extreme values differ by 
about 20%. 

(ii) The scalar codes SIMPLE and LSODE run faster on one processor than on four. 
Apparently, the parallelization overhead degrades the performance. Moreover, the dimension 
of the ODE (3.4) is too small to take any advantage from the vectorization capabilities of the 
ALLIANT. 

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in the 
high-accuracy range. This is obviously due to its low order. LSODE is more efficient in this 
range but, when compared to PDIRK, its CPU-tim~ is approximately four times as large to 
obtain 8.5 digits (absolute) precision. 
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(iv) Finally, we observe that the value for TOL used by PDIRK is several orders of 
magnitude larger than the value used by either SIMPLE or LSODE to achieve the same global 
error. This can be explained as follows. Due to its high order, the local truncation error of 
PDIRK is usually relatively small. Therefore, if crude tolerances are used, the error control 
mechanism signals that a large stepsize can be used in order to balance the estimated and the 
requested local error. On the other hand, the Newton process imposes a limitation on the 
stepsize. In our implementation, the Newton processes to solve for (the components of) y<O) are 
given the value Yn as initial iterate. Unfortunately, for large values of h (as suggested by the 
error estimator) this initial iterate is not always inside the contraction domain for the Newton 
process, resulting in an adequate reduction of the stepsize. As a consequence, this high-order 
scheme, using a small(er) stepsize, will produce a local error which is much smaller than 
requested. In conclusion, for this test problem, the restriction on the stepsize imposed by the 
Newton process is more stringent than that imposed by the local error control, unless very small 
values for TOL are used. We have also integrated some linear ODEs (for which the 
convergence problems are not relevant, of course) and observed a relation between TOL and 
the global error similar to that of SIMPLE and LSODE. 

3.2. Diagonal iteration until convergence 

PDIRK methods with a fixed number of iterations, as considered in the previous subsection, 
are in fact special DIRK_methods. It is well known [9] that DIRK methods possess a low 
so-called stage order (viz., 1) which, in general, drastically reduces the accuracy. As a matter of 
fact, in many stiff problems the actually observed order equals the stage order (or, sometimes 
the stage order + 1). As a consequence of this so-called order-reduction phenomenon, the 
relevance of methods with a high algebraic (i.e., classical) order and a low stage order is 
questionable. Therefore, apart from the "fixed-m-strategy" we also considered the approach 
where the corrector is iterated until convergence. This implies that we can rely on all the 
characteristics of the corrector, like stability and accuracy behaviour and, in particular, the 
stage order. For example, s-stage IRK methods of Gauss and Radau type both have stage order 
s. In addition, they have a very high algebraic order (superconvergence) but, as observed above, 
this property seems to be of minor importance in many stiff problems. Therefore, we also 
considered (A-stable) Newton-Cotes and Lagrange type IRKs (cf. [26]); in these (collocation) 
methods the superconvergence is exchanged for an increase by one of the stage order. This is 
obtained by adding one explicit stage to the s implicit stages. The time needed for this extra 
explicit stage is quite negligible compared with the time involved in solving the implicit stages. 
Thus, we arrive at correctors with algebraic order= stage order= s + 1, which are suitable for 
parallel iteration on an s-processor machine. 

Having decided to solve the corrector, we can now consider (3. la) as an iteration process, 
where "iteration" has the classical meaning. This leads us automatically to a criterion for 
choosing the matrix D: this matrix should be such that we have fast convergence in (3. la). 

In [26] it was shown that the iteration error Y - yU>, in first approximation, satisfies the 
recursion 

Y-yU>=Z(z)(Y-YU- 1>], j=l, ... ,m, z:=hA., (3.Sa) 
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where the iteration matrix Z is defined by 

z ( z) := zD [ I - zD] -- I [ n- 1A - I] . 

161 

(3.5b) 

Here, A denotes an approximation to the derivative af /ay and should be understood to run 
through the spectrum of the Jacobian matrix in case of systems of ODEs. The convergence 
behaviour of (3.la) is determined by the iteration matrix Z and we have the matrix D at our 
disposal to obtain fast convergence. 

The main difficulty in choosing D is that Z depends on z, i.e., on the problem. Therefore, 
we cannot expect to find a uniformly "best" D-matrix. Since we are aiming at the integration of 
stiff equations, we considered the influence of Z on the eigenvectors of of ;ay corresponding to 
eigenvalues of large modulus. For I z I ----'} oo, Z behaves as I - D-':A. Thus a strong damping of 
these eigenvectors leads us to the minimization of the spectral radius of I -n-1A. Observe 
that the "nonstiff' eigenvectors (corresponding to small values of I z I) are already damped 
since Z behaves as z[A -D] for I z I ----'} 0. With this approach we obtained fast convergence on 
a broad collection of test examples (cf. [26]). However, we do not claim that this choice of D is 
the best possible. For example, a more sophisticated strategy might be the minimization of 
(some norm of) Z( z) over the whole, or the "stiff part" of the left half-plane. 

Another possibility could be to minimize the principal stiff error constants in the resulting 
PDIRK method; this option has been studied in [27]. Several other options to choose D were 
discussed in [26]. Many of these have been used in numerical tests, but it turned out that the 
behaviour of the strategy based on the minimization of the spectral radius p of I - D- 1A could 
not be improved. 

Based on this approach, methods have been constructed for s = 2, 3, 4 (cf. [26}). Only for 
s = 2 it is possible to determine D analytically such that p(/ - n-1:A) = 0. For the larger values 
of s, the D-matrices had to be calculated numerically. The µ-values found increase with s and 
are (for the several correctors) in the range (0.004, 0.01) if s = 3 and in the range (0.02, 0.1) for 
s = 4. 

In [26), we also made a mutual comparison of several stiffly accurate correctors. It turned out 
that, in general, the Radau IIA and the Lagrange based methods are superior to the Lobatto 
IIIA and Newton-Cotes based methods. This is probably due to the fact that the first methods 
have damping at infinity, whereas the latter type of methods are only weakly stable at infinity. 
Furthermore, we also considered the nonstiffly accurate method based on the Gauss corrector. 
This method showed poor stability behaviour, but as mentioned before, this can be improved 
upon if we use (3.2c) instead of (3.2a). Evidently, the final iteration error Y - y<ml depends on 
the initial error Y - y<0l (see (3.5a)). In [26), only the "trivial" predictor y<O) = Yne (i.e., 
B = C = 0 in (3.lc)) has been used. In [27), also the implicit variant is considered (B = D, C = 

0), as well as predictors that use information from the previous step. This is a natural way to 
increase the accuracy of the predictor, since all methods are based on the collocation principle. 
This implies that the stage vector y<m) calculated in the preceding step defines a collocation 
polynomial which can be extrapolated to the present step. Needless to say that, in general, the 
increased accuracy of y<0> results in fewer iterations. 

Apart from the convergence behaviour we also studied the stability of the iterated methods 
for several, but fixed values of m. It can be shown that the stability functions of the methods 
based on the Lobatto IIIA and Newton-Cotes correctors (using y<O) = yne) are only A-accepta
ble in the limit, i.e., for m----'} oo (cf. [26, Table 4.1)). For the Radau IIA and Lagrange based 
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methods the stability function of the PD IRK method is already A-acceptable for modest values 
of m. These m-values for various choices of y<0> can be found in [27, Table 2]. However, for 
many problems the requirement of A-stability is unnecessarily strong and can be weakened to 
A(a)-stability with a sufficiently large. It turns out that the angles a corresponding to the 
Radau IIA and Lagrange correctors are close to 90" after only a few iterations, especially if y<0> 

is defined implicitly (B =I= O); these a-values can be found in [27, Table 3]. 

3.2.1. Numerical example on the ALLIANT FX / 4 
Similar to the "fixed-m-strategy" discussed in Section 3.1, we have implemented a PDIRK 

method based on the "minimal-spectral-radius-strategy". For the corrector, we selected the 
four-stage Radau IIA method of order 7; the predictor y<0> is obtained from extrapolation of 
the collocation polynomial calculated in the preceding step. This pair is recommended in [27] as 
the most efficient combination. 

For the error control, we calculate a reference solution of the form 

4 

Yref = ayn + f3ohf(Yn) + E /3;l';(m), (3.6) 
i=l 

where the y;<m> are the final iterates, and the coefficients in (3.6) are determined to make this 
reference solution fourth-order accurate. This requirement leaves one coefficient free, say J30 , 

which is set to 0.1. Following an idea of Shampine, the local truncation error is estimated by 

( af}-i 
local error:::::: I - d 4 h ay ( Yref - Yn+ 1) , (3.7) 

where d4 is the last entry of the diagonal matrix D. The premultiplication with (I - d 4 h 3f /oy)- 1 

in (3. 7) serves to obtain a bounded estimate if hA ~ oo for problems of the form y' = A y (see 
also [13, p.134]). We remark that the LU factorization of I - d4 h of /oy does not require 
additional computation, since this factorization is available from the iteration process (cf. (3.1) 
and the discussion following this formula). Hence, the computation of the local error is cheap. 

The resulting code is termed PSODE. In contrast to the code PDIRK, where we used a fixed 
number of iterations, PSODE is equipped with a strategy to terminate the iteration (3.la). The 
stopping criterion for this iteration is related to TOL and a test on the rate of convergence is 
performed in each iteration. If this test predicts that it is unlikely that convergence will be 
obtained within ITERmax (in PSODE set to 10) iterations, then the process is interrupted and 
restarted with a smaller stepsize. 

There is however another difference between the two codes, which is of greater impact. In 
PDIRK, each iterate Y(j) in (3.la) is solved up to machine precision by a modified Newton 
process (similar to the approach followed in conventional DIRK methods). Especially for small 
j-values, this is a waste of effort, since II Y - yrn II will be relatively large at the start of the 
iteration process. Moreover (and this is the essential difference between PDIRK methods and 
conventional DIRKs), y<i) is no longer needed once we have calculated yu+ 1>, because both 
are approximations to the exact solution at the same points. 

Therefore, each implicit relation in PSODE is "solved" by just one (modified) Newton 
iteration. As a result, the number of iterations in (3.la) to solve (2.2b) will increase, but it 
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turned out that the overall process is more efficient. An additional advantage of this new 
approach is that we now obtain a perfect load-balancing, since all processors perform exactly 
the same number of Newton iterations. Hence, a degradation of the performance as observed 
for the code PD IRK is avoided. 

We have implemented the code PSODE on the ALLIANT FX/4 and applied it to a number 
of test problems. Again, the aim of these tests is to measure the speedup of the code on this 
parallel machine and, additionally, to compare its performance with a good sequential solver. 
Since for many problems LSODE is an efficient stiff solver on sequential machines, this code is 
again an obvious reference method. Furthermore, we selected the recent (sequential) code 
RADAU5 of [13]. This choice is motivated by the observation that it solves a Radau IIA 
method (viz., the three-point fifth-order one); this starting point is quite similar to that of 
PSODE, although the approach to obtain the Radau-solution is completely different. Since the 
DIRK-based code SIMPLE is of a different nature and also because of its inefficient behaviour 
in the high-accuracy range, we decided to cancel this code as a reference method. 

In comparing the parallel code PSODE with the two sequential codes, we do not take into 
account effects originating from a possible "parallelization over the loops". By this we mean 
that a long loop is cut into s smaller parts which are then assigned to the s processors. In the 
Introduction, this effect is termed "parallelism across the problem" and can in fact be used by 
any ODE solver. Here we merely want to test intrinsic parallelism (called "parallelism across 
the method"). In order to exclude the effects of "parallelism across the problem", LSODE and 
RADAU5 are run on a single processor. In fact, the amount of intrinsic parallelism offered by 
LSODE and RADAU5 is very modest (see also the Remark at the end of this section). 

Of course, if one is interested in "parallelism across the problem", then the sequential codes 
could be implemented on an s-processor machine. However, in that case a fair comparison 
would require assigning 4s processors to PSODE, since in each of the four concurrent subtasks 
of PSODE, the "parallelism across the problem" can equally well be exploited. 

Summarizing, we may say that PSODE needs four times the number of processors given to a 
sequential code, simply because it possesses a four-fold amount of intrinsic parallelism. The 
large number of processors utilized by PSODE reflects the current tendency in parallel 
computing, since modern architectures - and certainly those entering the market in the 
coming years - have an "almost unlimited" number of processors (massive parallelism). 

Another aspect which is of utmost importance for the performance of a stiff code is the 
amount of linear algebra per step, which in turn strongly depends on the dimension of the 
ODE. Prior to the specification of our test problem,' we will briefly discuss the characteristics of 
the various codes with respect to this aspect. 

A common feature of the three codes is that they need from time to time an LU 
decomposition of the matrix involved in their respective iteration processes to solve the 
nonlinear relations. Since the factorization of a general N-dimensional matrix requires approxi
mately tN 3 arithmetic operations, this will dominate the total costs of the integration for 
large-scale problems. Here we may think of complicated problems from circuit analysis or 
semi-discretized (higher-dimensional) partial differential equations. In such applications, sys
tems of ODEs with several thousands of equations are quite usual. In this connection we 
remark that both LSODE and PSODE deal with matrices of dimension N. Hence, it is to be 
expected that their mutual comparison is only marginally influenced if N increases and all 
other aspects are left unchanged. 
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Matters are different for the code RADAU5, since it has to deal with matrices of dimension 
3N. By exploiting the special structures in these matrices, Hairer and Wanner [13] are able to 
reduce the total work of the LU decomposition to ~0 N 3 operations, thus gaining a factor 5 
compared with a direct treatment, which would have required i(3N)3 operations. However, 
this number ~0 N 3 compares unfavourably with the number iN3 (associated with LSODE and 
PSODE), and causes a serious drawback for RADAU5 when applied to large-scale problems. 

To get some insight in the performance of the codes, we have applied them to a small test 
problem originating from circuit analysis. It was first described in [15] and extensively discussed 
in [10], [12, p.112]. This (stiff) system describes a ring modulator, which mixes a low-frequency 
and a high-frequency signal. The modulated signal is then used as input for an amplifier. The 
resulting system of fifteen ODEs is defined by 

where 

y i = c-1 [ y 8 - o .5 y 10 + o .5 y 11 + y 14 - ~ ] , 

y 2 = c-1 [ y 9 - o .s y 12 + o .s Y 13 + Y 1s - ~ ] , 

Y3 = cs-1[Y10 - g(z1) + g(z4)], Y~ = c;1[ -Yu+ g(z2) - g(z3)), 

Y~ = C;1[ Y12 + g(z1)- g(z3)), Y~ = C; 1[ -Y13 -g(z2) + g(z4)), 

y;=c; 1 [-~~ +g(z1)+g(z2)-g(z3)-g(z4)]. y~= -Lh 1y1, 

I - L-1 Y9 - - h Yz, 

Yi1 =L; 1[-0.5 Y1 +y4 -17.3 Yu], 

Yi3=L; 1[-0.5 Y2+Y6-17.3 Yn], 

Yis=L; 1[-y2-636.3 Y1s], 

Yio=L; 1[0.5 Y1 -y3-l7.3 Y10J. 

Yi2 =L; 1[0.5 Y2 -ys -17.3 Y12 ), 

Yi4 =L; 1[-y1 +e1(t)-86.3 Y14], 

Z1 := Y3 -ys -Y1 - e2(t), 

Z3==y4+Ys+Y7+e2(t), 

Zz := -y4 + Y6 -Y1 - e1(t), 

Z4== -y3-y6+y7+e2(t), 

and the function g, which models the characteristics of the diodes, is defined by 

g(z) := 40.67286402 · 10-9 [exp(17.7493332 · z) -1]. 

The signals e1 and e2 are defined by 

e1(t) == 0.5 sin(2 · 103'TTt), ez(t) := 2 sin(2 · 104?Tt). 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

The technical parameters have been given the values C = 16·10-9, R = 25000, CP = 10- 8, 

Ri = 50, Lh = 4.45, L 5 = 0.0005 and L 1 = 0.002, resulting in a heavily oscillating solution. Not 
yet fixed is the value of the capacity Cs. In our test, we give it the value 10-9, which seems 
technically meaningful. It is reported [12] that small Cs-values cause serious difficulties. In the 
limit, i.e., on setting C5 = 0, we end up with a differential-algebraic system. The integration 
interval in our test is [O, 10-3]; the initial values are given by yi(O) = 0, i = 1, ... , 15. For several 
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Table 3.4 
Performance of the codes RADAU5, LSODE and PSODE for the circuit problem (3.8) 

Method TOL Nsteps m i::lrel Ti T4 
RADAU5 10-2 1275 9.0 1.1 33.1 

10-3 2277 7.6 2.6 48.6 
10-4 3922 6.7 3.8 72.4 
10-s 6761 6.1 4.9 110.9 

LSODE 10-3 7054 1.5 1.4 33.6 
10-4 9772 1.4 2.8 44.1 
10-s 13 266 1.4 2.9 57.7 
10-6 17 887 1.3 3.8 74.7 
10-1 23 310 1.3 4.5 93.1 
lo-s 30253 1.2 4.9 114.3 

PSODE 10-2 1185 7.3 1.4 80.0 21.4 
10- 3 1561 7.3 3.1 104.5 27.8 
10- 4 2272 7.1 4.1 146.4 39.6 
10- 5 3437 6.9 5.2 212.1 57.7 

values of the local error bound TOL the results obtained by the codes RADAUS, LSODE and 
PSODE are collected in Table 3.4. Again, T1 and T4 denote the CPU-time (in seconds) when 
the program is run on one and four processors, respectively. Recall that we restrict the timings 
for the sequential codes to Ti- The accuracy is measured by means of Llrel• which is defined by 
writing the maximum norm of the global (relative) error in the endpoint in the form 10-.t,•1• 

Furthermore, Nsteps denotes the number of (successful) integration steps and m stands for the 
average number of (effective) /-evaluations per step. 

These results give rise to the following conclusions. 
(i) We see that the speedup factor for PSODE (obviously defined by T1/T4 ) is approxi

mately 3.7, which is pretty close to the "ideal" factor 4 on this machine. This factor rapidly 
converges to 4 if the dimension of the problem increases. 

(ii) Furthermore, we observe a remarkable similarity between RADAU5 and PSODE: both 
codes need approximately seven /-evaluations per step; moreover, to produce the same 
accuracy, the required number of steps is of the same order of magnitude (for the more 
stringent values of TOL, the difference in the number of steps increases, which is probably due 
to the higher order of PSODE). There is however a striking difference between the two 
Radau-based codes and LSODE; this code is very cheap per step, but needs much more 
integration steps to produce the same accuracy. For example, to obtain a relative accuracy of 
about five digits, PSODE needs = 3400 steps, RADAUS twice as many, whereas for LSODE 
this number is nine times as large. Taking into account the computational effort per step of the 
various codes, the comparison with PSODE yields a double amount of time both for LSODE 
and RADAUS. Approximately the same ratios are observed in the low-accuracy range (say, 
.L\rel = 3). 

As mentioned before, this example is only a model problem describing a small (part of an) 
electrical circuit, and is still far away from a real-life application. However, even for this small 
system of OD Es, the performance of (this provisional version of) PSODE is already superior by 
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a factor 2 to that of the (well-established) codes LSODE and RADAU5. Summarizing, we can 
say the following. 
- The PSODE-approach is much more promising to serve as the basis for an efficient, 
"all-purpose" stiff solver than the LSODE-approach. This is due to the improved mathematical 
qualities, viz., the high order in combination with A-stability. 
-In comparison with RADAUS, PSODE has the advantage that in large-scale problems, the 
(dominating) LU factorizations require a factor 5 less computational effort. In this connection 
we remark that a few preliminary experiments with a problem of dimension 75 reveal that the 
overall gain of PSODE is already more than a factor 4. 

For really large-scale problems we expect that the speedup factor will be in the range 6-8, 
depending on the required accuracy. This number is composed of the asymptotic factor 5 
coming from the algebra part and the remaining factor 1.2-1.6 originating from the higher 
order of PSODE. 

Remark. It should be mentioned that RADAU5 offers a possibility to exploit a small amount of 
intrinsic parallelism. In using two processors, the total number of arithmetic operations to 
perform the LU decomposition can be reduced from ~0 N 3 to ~N3• We refrained from adapting 
the code RADAUS in order to exploit this feature. 

4. Concluding remarks 

In this paper we proposed an iterative approach to solve the stage vector equations occurring 
in a fully implicit Runge-Kutta method. By a suitable choice of the iteration parameters, the 
resulting scheme can be cast into the class of A-stable Diagonally Implicit Runge-Kutta 
(DIRK) methods. However, the new schemes can be given a much higher order than the 
classical DIRKs available in the literature. The iterated methods have the special feature that 
many of the implicit relations can be solved in parallel, which offers a great computational 
advantage. Moreover, because of the "DIRK-nature" of the new schemes, they require only 
one LU factorization (of a matrix with the ODE dimension) per step (per processor). 

In this paper we discussed two different iteration stategies and, for both strategies, optimal 
iteration parameters are derived. For both approaches, a variable stepsize code has been 
implemented on an ALLIANT FX/ 4 computer. On the basis of two test problems, the 
speedup factors have been measured; these factors, which depend on the dimension of the 
ODE, vary between 2.5 and 3.7, which is pretty close to the "ideal" factor 4 on this machine. 

Furthermore, the performance of the codes is compared with that of the best sequential stiff 
ODE codes: SIMPLE, LSODE and RADAU5. For a relatively simple ODE of small dimen
sion, the parallel code is slightly more efficient than LSODE and much more efficient than 
SIMPLE. For a more difficult problem of a larger dimension (viz., fifteen ODEs), the parallel 
code needs considerably less time than the sequential codes. 

Finally, it should be remarked that the parallel codes are still in a research phase and need a 
further tuning of their parameters on the basis of extensive testing. Furthermore, we plan to 
extend the codes with the facility to treat ODEs of the form My'(t) = f(y(t)), where M is a 
matrix which may be singular, resulting in a differential-algebraic system. 
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