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In this paper, we study diagonally implicit Runge-Kutta-Nystrom methods (DIRKN 
methods) for use on parallel computers. These methods are obtained by diagonally implicit 
iteration of fully implicit Runge-Kutta-Nystrom methods (corrector methods). The number 
of iterations is chosen such that the method has the same order of accuracy as the corrector, and 
the iteration parameters serve to make the method at least A-stable. Since a large number of 
the stages can be computed in parallel, the methods are very efficient on parallel computers. We 
derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with 
s• (p) sequential, singly diagonal-implicit stages where s* (p) = [ (p + 1) /2] ors* (p) = [ (p + 1) /2] 
+l, [·] denotingtheintegerpartfunction. 

Keywords: Diagonally implicit Runge-Kutta-Nystrom methods, predictor-corrector 
methods, parallelism. 

Subject classification: 65M12, 65M20. 

1. Introduction 

Consider the initial-value problem for systems of special second-order, ordinary 
differential equations (OD Es) of dimensiond 

y"(t) =f(y(t)), y(to) =y0, y'(to) =y~, 

(1.1) 

One possibility for solving such problems is the use of singly diagonal-implicit 
Runge-Kutta-Nystrom methods (SDIRKN methods). Compared with linear mul-
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tistep methods (LM methods), SDIRKN methods have the disadvantage of requir­
ing the solution of a sequence of implicit systems of dimension d per step, whereas 
LM methods require the solution of only one such system per step. On the other 
hand, a number of SDIRKN methods available in the literature possess excellent 
stability properties ( cf. [17]), which are much better than those of the LM methods 
derived from the backward differentiation methods for first-order ODEs. In spite 
of that, LM methods are still more popular than SDIRKN methods, because of 
their lower costs on a sequential computer. However, on parallel computers, this 
situation may change. In this paper, we shall construct DIRKN methods tuned to 
parallel computers, such that each processor has to compute relatively few stages 
sequentially. We require that on each processor, these stages are singly diagonal­
Un.plicit, so that effectively the sequential costs of the parallel DIRKN method 
(PDIRKN method) are equal to those of an SDIRKN method. In fact, these meth­
ods are based on a fixed number of iterations of k-stage indirect RKN methods of 
Radau IIA and Gauss-Legendre type (methods of indirect type are understood to 
be methods that are derived by applying an RK method for first-order OD Es to the 
first-order form of (1.1)). Furthermore, the iteration parameters are chosen such 
that A-stability is obtained as soon as the order of the corrector is reached. The re­
sulting methods require k = [(p + 1)/2] processors, where p denotes the order and 
[·]denotes the integer part function. We present a number of A-stable, strongly A-

Table 1 
DIRK.N methods of order p requiring s" singly diagonal-implicit, sequential stages on k processors. 

Method p s" k Main properties Type 

Nsrsett [15] 3 p-l 1 A-stable indirect 
Crouzeix [ 6] 3 p-I 1 Strongly A-stable indirect 
Sharp et al. [17] 3 p-I 1 A-stable, reduced phaselag direct 
Cash [3], Cash and Liem [4] 3 p 1 S-stable indirect 
Burrage[!] 3 p+I 1 A-stable, B-convergent direct 
Nsrsett and Thomsen [16] 3 p+l 1 L-stable indirect 

Iserles and Nsrsett [12] 4 p-2 2 L-stable indirect 
Nsrsett [15] 4 p-l 1 A-stable indirect 
Sharp et al. [17] 4 p-l 1 A-stable, reduced phaselag direct 
Cash [3], Cash and Liem [4] 4 p+l 1 S-stable indirect 

Cooper and Sayfy [5] 5 p 1 A-stable indirect 
Van der Houwen et al. [9] 5 p 3 L-stable indirect 

Cooper and Sayfy [5] 6 p-1 1 A-stable indirect 
Sommeijer [18] 6 p-l 3 A-stable indirect 
VanderHouwenetal. [9] 6 p 3 L-stable indirect 

Van der Houwen et al. [9] 7 p+l 4 L-stable indirect 
8 p 4 L-stable indirect 
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stable and L-stable PD IRKN methods of order p with s* (p) sequential, singly diag­
onal-implicit stages, wheres*(p) = [(p + 1)/2] or s*(p) = [(p + 1)/2] + 1. 

In order to appreciate these methods, we have summarized in table 1 the charac­
teristics of a number ofSDIRKN-typemethods ofordersp = 3 untilp = 8. We in­
cluded DIRKN methods of both direct and indirect type (for a specification of 
indirect RKN methods we refer to [10] and to the appendix of [14]). Furthermore, 
we also listed a few indirect parallel DIRKN methods derivedfromparallelDIRK 
methods. Both the sequential and parallel methods are (effectively) singly diago­
nal- implicit, so that the number of sequential stages s* refers to the number of sin­
gly diagonal-implicit stages to be computed on each of the k processors. 

By means of numerical experiments we will compare the performance of the 
methods constructed in this paper with that of a number of the methods listed in 
table 1. 

2. Diagonal-implicit iteration 

Our starting point is a fully implicit Runge-Kutta-Nystrom (RKN) method of 
the form 

k 

Yn+l = Yn + hy~ + h2 L b;f( Yi) , 
i=l 

k 

Y~+l = y~ + h LdJ(Yi)' 
i=l 

k 

Yi= Yn + cihy~ + h2 Laiff(Yj), i = 1, ... ,k, (2.la) 
j=l 

where b = (bi), c = ( ci) and d = (di) are k-dimensional vectors, and A = ( aif) 
is a nonsingular k-by-k matrix. This method will be referred to as the corrector 
method. . 

We employ a similar iteration technique as applied in [11] which automatically 
leads to DIRKN methods. Let ~µ) denote the µ,th iterate to Yi, and define the 

.. X dX(µ) transformed stage vector quant1t1es i an i 

X . ·- y. - x· x\µ) ·= y\µ) - Xi, Xi := Yn + Cihy~, i = 1, ... ,k. (2.lb) I.- I ll I . I 

These new variables are introduced in order to reduce round-off errors ( cf. 
[8,p.128)). In terms of Xi andxi, the stagevectorequationin(2.la)reads 

k 

xi = h2 I:aijf(Xj + Xj), i = 1, ... ,k. 
j=l 

(2.l'a) 
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For each of these equations. we define the iteration process 

xr) - 6;h2f(X}µ.) + x;) = h2 (t aijf(Xjµ.-l) + Xj) - 8if(X}µ-l) + x;)) ' (2.2a) 
J=l 

where i= 1, ... ,k;µ= 1, ... ,m, the 8; are positive iteration parameters, and 
where the initial approximations X~o) are to be provided by means of a predictor 
formula. 

In this paper, we shall try to determine the iteration parameters such that the 
method is A-stable, strongly A-stable or L-stable as soon as the order of the correc­
tor is reached. As we will see in sections 3 and 4, this can be achieved for a number 
of correctors derived from classical collocation correctors for first-order equa­
tions (indirect collocation correctors, specified in the appendix. of the institute re­
port [14]) using one-step predictor formulas of the form 

x~O) = 88;h2f(X~O) + x;), i = 1, ... 'k, (2.2b) 

where either B = 0 or B = 1. These formulas will be referred to as predictor formu­
las of type I and II, respectively. The type I predictor Y~o) = x; = Yn + c;h'Y'n is the 
trivial "last step value" predictor. which does not introduce amplification of stiff 
error components and does not require any additional computational effort. The 
type II predictor Y}0l = Yn + c;h'Y'n + 6;h2f(Y}0l) is implicit and may be considered 
as a "backward Euler type" predictor. Its strong stability properties may have a 
stabilizing effect on the whole method (strong damping of stiff components). For 
example, in the case of Radau correctors, it is possible to achieve L-stability by 
using type II predictors (see section 4). However, the price to be paid is an addi­
tional system of k implicit equations, the computational costs of which may be com­
puted as an additional iteration (notice that the predictor formula of type II can 
use the same LU decomposition as needed in the subsequent iterations). Both types 
of predictors are first-order accurate. Within the class of one-step predictors, it is 
possible to achieve second-order accuracy. For example, we may define the explicit 
predictor 

k 

x~O) = h2 L aijf(yn), i= 1, . .. ,k. 
j=l 

However, such predictor formulas give rise to amplification of stiff components 
and is not suitable for our purposes. Since we preferred to stay within the class 
of one-step predictor-corrector methods, we did not investigate multistep 
predictors. 

In [11] it was shown that the formulas for the step values defined in the corrector 
(2.1) can be presented in the form 

k 

Yn+l = Yn + hy~ + L a;X;, 
i=l 

k 

Y~+l = Yn + h-1 L {3;X;' 
i=I 



Nguyen huu Cong I Diagonally implicit RKN methods 267 

bodyO>where ai and (Ji are the components of the vectors a:= bT A-1,p := dT A-1. 

This suggests defining the step values Yn+l and fn+1 corresponding to the iterated 
method as 

k 

Yn+l = Yn + hy~ + L aiX~m), 
i=l 

k 
I _ I h-1 ""/3 x(m) 

Yn+l - Yn + L...J i i · (2.3) 
i=l 

Since a and Pare not available in the literature, we have listed these vectors for 
the indirect collocation RKN correctors to be used in our numerical experiments 
(table2). For stiffly accurateRKN correctors as RadauIIA, a= eI. 

We remark that for m fixed the method {{2.2), (2.3)} fits into the class of 
DIRKN methods that can be characterized by the Butcher array 

X(O) OD 

X(l) A-D D 

X(2) 0 A-D D 

(2.4) 

0 0 0 0 A-D D 
- - -- --... -.. -... ---- --- -- ___ .. -·- ------ -- ... ---- _______ .,. _______ ..... _,.. ------- --------- -----_ .... , 

oT . . . oT bT A-1 (A - D) bT A-1 D 

oT . . . oT dT A-1(A - D) dT A-1D 

where D is the diagonal matrix with diagonal entries Si. However, in an actual 
implementation, we shall use the representation {(2.2), (2.3)} which avoidsf-eva­
luations in the step point formula. 

Table2 

Vectors a and p for various indirect collocation RKN correctors. 

Correctors 

RadauIIA 
Gauss-Legendre 

RadaulIA 
Gauss-Legendre 

RadaulIA 
Gauss-Legendre 

p 

3 
4 

5 
6 

7 
8 

a and ft 

ft= (-9/2, 5/2)T 
a= (-1.732050807569, l.732050807569)T 

p = (-16.392304845413, 4.392304845413) T 

p = (5.531972647422,-7.531972647422, 5)T 

a= (5/3, -4/3,5/3)T 
p = (32.909944487358, -16, 7.090055512642)T 

p = (-6.923488256444, 6.595237669626, -12.171749413180, 17 /2) T T 

a= (-1.640705321739, 1.214393969799, -1.214393969799, 1.640705321739) T 

p - (-54.681428514064,26.155201475250,-22.420557316693, 10.946784355507) 
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Since the k systems that are to be solved in each iteration step of (2.2) can be 
solved in parallel and each has a dimension equal to that of the system of OD Es, the 
iteration process (2.2) is, on a k-processor computer, of the same computational 
complexity as an (m +B)-stage SDIRKN method on a one-processor computer. 
Thus, the method { (2.2), (2.3)} has only s* := m + e sequential, singly diagonal-im­
plicit stages. 

THEOREM2.1 
Let p be the order of the k-stage corrector method (2.1) and let 

m := [(p + 1)/2]. Then the method {(2.2), (2.3)} is ans-stage DIRKN method of 
order p with s* sequential, singly diagonal-implicit stages, where s and s* are de­
fined bys= k[(p + 1)/2] + 1 + B(k - 1) ands* = [(p + 1 )/2] +e. 

Proof 
The expressions for sands* immediately follow from the Butcher array (2.4). 

The order of the method is obtained by considering the iteration error of the meth­
od. Since (2.2b) defines a first-order predictor formula, we have x}0l - xi 
= 0( h2). Furthermore, subtracting (2.1 'a) and (2.2a) yields 

X~µ) - Xi - 8ih2(f(X}µ) + Xi) - f(Xi + Xi)) = -8ih2(f(Xr-l) + Xi) 

k 

-f(Xi + xi)) + h2 L aiJ(f(xjµ-l) + xi) - f(Xi + xi)). 
j=l 

Assuming that f has a bounded Lipschitz constant, it follows that x}µ) - Xi 
= o(h2)(xr-1l -X;),sothat 

(2.5) 

In order to avoid confusion, let us denote the step values associated with the correc­
tor by Un+! and u:i+i · Subtracting the corrector step values and the iterated step 
values shows that 

k 

Un+l - Yn+l = L ai(X; - x}m)) = O(h2+2m), 
i=l 

k 

«n+l - Y~+l = h-l Lf1;(X; - x~m)) = O(h1+2m). 
i=l 

Let y( t) be the local exact solution. Then the local truncation error is given by 

y(tn+l) - Yn+l = y(tn+i) - Un+l + Un+l - Yn+l = O(h1'+l) + O(h2+2m), 

y'(tn+i) -Y~+l = y'(tn+i) -«n+1 + «n+1 - Y~+I = O(h1'+1) + O(h1+2m), (2.6) 

where p is the order of the corrector. Thus, we need only m = [(p + 1)/2] iterations 
toreachtheorderofthecorrector,sothats* :=m+B= [(p+ 1)/2] +8. o 
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It follows from (2.6) that there are three sources of local errors which together 
constitute the global error, i.e., the truncation error of the corrector (of order p + 1) 
and the iteration errors corresponding to Yn+i and Yn+i (of orders 2m + 2 and 
2m + 1 ). In addition to these orders, the order constants also play a role. The magni­
tude of the order constant associated with the corrector is usually rather small. 
The order constants of the iteration errors decrease with m and are expected to be 
rather large for small values of m (see also table 3). As the value of m is relatively 
small, the iteration errors may easily dominate the global error, so that the order of 
the corrector is not always shown in actual computation. For example, if the itera­
tion error corresponding to Yn+l dominates, then the effective order p* is given by 
p* = 2m + 1 = 2[ (p + 1) /2] + 1. Likewise, if the iteration error corresponding to 
Yn+i dominates, thenp* = 2m = 2[(p + 1)/2]. However,iftheintegrationstepsizeh 
is sufficiently small, then the iteration errors should become negligible, so that the 
truncation error of the corrector method dominates, and the theoretical order of 
the corrector should be shown (see table 7). 

3. Stability 

The linear stability of the method { (2.2), (2.3)} is determined by applying it to 
the scalar test equation y11 = A.y, where A. runs through the eigenvalues of 8f /8y, 
which are supposed to be negative. Defining the matrix 

Z(z) := z[J - zDr1 [A - D], Pe(z) := z[I - zAr1 [A - OD][! - 9zDr1, 

and the vectors 

Z ·- \ L2 .- /\TI I 

Wn+l := ( ;;+1 ) , Dn+l := ( ;:+l ) , 
n+l Yn+l 

it can be shown ( cf. [11]) that the following recursions hold: 

Wn+I - Vn+l = Em(z)on, 

Wn+l = M(z)on, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Hence, by eliminating the corrector values Wn+l from (3.3) and (3.4), we find the 
recursion 

Vn+l = [M(z) - Em(z)]vn . (3.5) 

We shall call the matrix M(z) - Em(z) the stability matrix of the method and its 
spectral radius the stability function, i.e., the function: 

Rm(z) := p([M(z) - Em(z)]). 

The method {(2.2), (2.3)} is called A-stable if Rm(z) assumes values in (-1, 1) for 
z<O, strongly A-stableifitisA-stablewithRm(z) bounded away from 1 outside the 
neighbourhood of the origin, and L- stable ifit is A-stable with Rm ( oo) = 0. 

Putting m = [(p + 1)/2], we obtainpth-order accuracy for any D. We shall ex­
ploit the matrix D to obtainpth-order A-stable, strongly A-stable or L-stable meth­
ods. However, it turns out that various choices of D generate such highly stable 
methods. From these methods we selected the methods with smallest truncation er­
ror. Recalling that the truncation error of the PDIRKN method will usually be 
dominated by the iteration error, we are led to consider the iteration error defined 
by (3.3). Since the nonstiff error components in the iteration error corresponding to 
small values of lzl are sufficiently damped by the matrix Em(z) (note that 
Em(z) = O(zm+1)), we shall concentrate on the stiff error components. From (3.2), 
(3.3) and (3.4) it follows that 

Wn+l - Vn+l = Em(z)vn 
= Em(z)[M(z) - Em(z)]vn-1 
= Em(z)[M(z) - Em(z)tvo. 

Restricting our considerations to the iteration error associated with Yn+1, we 
deduce that Un+I - Yn+l can be bounded by 

llun+l - Yn+lll = lleTEm(z)[M(z) - Em(z)tvoll 

~ lleT Em(z)ll 11 [M(z) - Em(z)rll llvoll 

::::: const.n11- 1[Rm(zWlleTEm(z)llllvoll as n-oo, (3.6) 

where 11 denotes the maximum dimension of the Jordan box corresponding to the 
maximum-modulus-eigenvalues of the matrix M(z) - Em(z). This estimate shows 
that the stiff error components can be suppressed if the stability function Rm(z) is 
small for large lzl-values. We remark that a similar estimate can be derived for 
il,,+1 - Yn+i ·The following theorem may be helpful in selecting methods possessing 
this property: 

IBEOREM3.1 
Let the predictor be given by (2.2b) and let the corrector (2.1) be obtained from 

a consistent RK method for first-order equations given by the parameter arrays 
{A*, b*, c}, then the following assertions hold: 
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(a) If(J = 0, then 

R (oo) = ( 1 - (b*)T A*Qme 1 - (b*)T A*Qmc) 
m p -(b*)TQme 1- (b*)TQmc ' 

Qm := (A*f2[/ - [I - D-1(A*)2rJ. 
(b) If(}= 1, then Rm(oo) = ll - (b*)T(A*f1el for all m and D, and if the RK 

method {A*, b*, c} is stiffly accurate, thenRm(oo) = 0 for allmandD. 

Proof 
If the corrector (2.1) is obtained from an RK method for first-order equations 

{A*,b*,c},then 

A= (A*)2, b =(A*) Tb*, c = A*e, d = b*. (3.7) 

Furthermore, we have that Z(oo) =I -D-1A and P0(oo) = (0- 1)1, where() is 
either 0 or 1. Hence, 

M( ) _ E ( ) = ( 1 - bT Qmoe l - bT Qmoc) 
00 m 00 dTQ l dTQ ' - moe - mOC 

Qmo := A-1 [/ + (0 - l)[I - n-1Arl. 
(a) On substitution of 0 = 0 and (3. 7) into (3.8), part (a) is immediate. 
(b) Fore= 1 and using (3.7), we see that(3.8)reduces to 

(
1-(b*)T(A*f1e 1-(b*le ) 

M(oo) - Em(oo) = -(b*)T(A*)-2e 1- (b*)T(A*)-le . 

(3.8) 

(3.8') 

Because of the consistency we have that (b*) Te = 1, so that the eigenvalues of 
M(oo) - Em(oo) are given by 1 - (b*)T (A*f1e. lfthe corrector {A*, b*, c} is stiffiy 
accurate, then 

(b*) T = eIA* , (3.9) 

so that Rm ( oo) vanishes for all m and D. 

This theorem shows that for explicit predictors of type I (e = 0), the behaviour 
of the stability function at infinity depends on D, so that we can exploit the matrix 
D by selecting methods with the smallest value Rm(oo). It is interesting to note 
that we obtained strongly A-stable PDIRKN methods although the corrector is 
only A-stable(e.g., in the case ofGauss-Legendrecorrectorslistedin table 3). 

For implicit predictors of type II (0 = 1), the behaviour of the stability function 
at infinity is completely determined by the corrector, so that D cannot be used for 
selecting small values of Rm(oo) in the estimate (3.6). However, (3.6) indicates that 
the iteration error is also influenced by the magnitude of l!ef Em(z)ll- Since 
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Table3 
PDIRKN methods of order p requiring s* singly diagonal-implicit, sequential stages on k processors. 

{Predictor-Corrector} Iteration parameters 81 p s* k Stability Emax Eoo 

{I - Radau IIA} (111200, 1071225) 3 p-1 2 Strongly A-stable 0.35 0.06 

{II- Radau HA} (1/5, 1/5) 3 p 2 L-stable 0.14 0.00 

{I-Gauss-Legendre} (115, 11/20) 4 p-2 2 Strongly A-stable 1.35 1.35 

{II- Gauss-Legendre} (223110000, 31111000) 4 p-1 2 A-stable 0.25 0.00 

{I - Radau IIA} (1/40, 1/4,3/5) 5 p-2 3 Strongly A-stable 0.73 0.16 

{II-RadauIIA} (639/5000,17/1250,409/2500) 5 p-1 3 L-stable 0.51 0.00 

{I- Gauss-Legendre} (1/5, 112,3/4) 6 p-3 3 Strongly A-stable 1.44 0.51 

{II- Gauss-Legendre} (1/100,1/5,9/20) 6 p-2 3 A-stable 1.32 0.00 

{I- Rad.au IIA} (1/5,4/5,4/5,19/20) 7 p-3 4 Strongly A- stable 1.43 0.77 

{II-RadauIIA} (91200, 1/40,9/40,91/200) 7 p-2 4 L-stable 1.09 0.00 

{I-Gauss-Legendre} (13/20,13/20,3/4,19/20) 8 p-4 4 Strongly A- stable 1.60 1.60 

{II- Gauss-Legendre} (1/10, 1/5,3/10,2/5) 8 p-3 4 A-stable 1.55 0.00 

eJ Em(z) vanishes at infinity, we selected methods with a small value of lleT Em(z) II 
in the whole interval (-oo, 0). 

Finally, we remark that the preceding discussion of the error Un+l - Yn+l can 
also be given for the derivative error U,,+1 - Y~+l• presumably leading to other ma­
trices D. As a consequence, the PDIRKN methods using the D matrices indicated 
above aim at problems where our first interest is in an accurate computation of the 
solutiony(t), rather thany'(t). 

4. Survey of PDIRK.N methods 

In table 3, we list the main characteristics of the A-stable, strongly A-stable 
and L-stable PDIRKN methods we found by means of the approach described in 
the preceding sections. In this table, Emax denotes the maximum value of 
lleT Em(z)ll 00 in the interval (-oo, 0) andE00 denotes the value of lleT Em(oo)llcxi· The 
predictors are of the form (2.2b) with (} = 0 (predictor I) and (} = 1 (predictor II), 
and the correctors used are the indirect collocation-type RKN methods based on 
the Gauss-Legendre and Radau IIA RK methods for first-order equations. Speci­
fication of the parameters of the resulting methods can be found in the appendix 
to [14]. 

Comparing the main characteristics of the methods listed in table 3 with those 
listed in table 1, we conclude that the computational costs per step of the lower­
order methods (order three or four) are comparable, but the higher-order methods 
in table 3 are much cheaper. On the other hand, the error constant Emax of the itera-
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tion error associated with Yn+I is relatively large. However, as we have shown in 
the discussion of theorem 2.1, the order in h of these iteration errors is also larger, 
which may compensate the large error constants. Hence, we may hope for im­
proved efficiency for the new PDIRKN methods. 

5. Numerical experiments 

We shall numerically investigate the following aspects of the PDIRKN meth­
ods: (i) the stability, in particular, the damping of perturbations of the initial condi­
tions, (ii) the effective order, in relation to the order of the generating corrector, 
(iii) the predictor, mutual comparison of the explicit and implicit predictor formu­
la, and (iv) the efficiency, in comparison with available sequential SDIRKN meth­
ods from the literature. 

All problems are taken from the literature and possess exact solutions in closed 
form. Initial (and boundary) conditions are taken from the exact solution. Most 
experiments are performed on a 14 digit computer. Only the results reported in ta­
ble 7 are performed in double precision (28 digits). Furthermore, because of 
round-off errors, we cannot expect 14 digits or 28 digits accuracy. As a conse­
quence, the tables of results do contain empty spots whenever the corresponding 
numerical result was in the neighbourhood of the accuracy-limits of the machine 
and therefore considered as unreliable. 

5.1.STABILITYTEST 

We first test the stability properties of the various PDIRKN methods by inte­
grating a nonautonomous problem with varying stiffness: 

11 ) = (-2a(t) + 1 -a(t) + 1) (t) 
y (t 2(a(t)-1) a(t)-2 y ' 

y(O) = (~), y'(O) = ( ~l). O~t~T, 

a(t) = Ji+t3 + ~. (5.1) 
1 + t3 

The Jacobian matrix of the system has the eigenvalues -1 and -a(t), so that the 
spectral radius, and therefore the stiffness, increases with t. We compared the nu­
merical solution of ( 5.1) with the numerical solution obtained by perturbing the in­
itial conditions, i.e., instead of the initial conditions y(O) and y'(O) we used the 
initial conditions y(O) +Ee andy'(O) + u. Denoting the numerical solutions by Yn 
and y:, we may expect from any stable method that llYn - Y:ll does not increase 
with n. For various PD IRKN methods, table 4 lists the values 



274 Nguyen huu Cong I Diagonally implicit RKN methods 

Table4 
Values of the amplification factor Cn for problem (5.1) with T = 4000, n = 4000 and with 
T = 6000, n = 6000 for various Predictor-Corrector pairs. 

Type I Methods p C4000 C5000 Type II Methods p C4000 Coooo 

1-RadauIIA 3 0.30E-23 0.84E-36 II- Radau IIA 3 0.43E-11 0.35E-17 

I - Gauss- Legendre 4 0.44E-12 0.22E-18 II -Gauss-Legendre 4 0.44E-Ol 0.38E-Ol 

I-RadauIIA 5 0.53E-29 0.48E-44 II - Radau !IA 5 0.64E-Ol 0.67E-02 

I- Gauss- Legendre 6 0.17E-23 0.12E-35 II -Gauss-Legendre 6 0.34E-13 0.93E-14 

I-RadauIIA 7 0.88E-21 0.63E-31 II-RadaulIA 7 0.40E-09 0.61E-l5 

I - Gauss- Legendre 8 0.53E-25 0.13E-38 II -Gauss-Legendre 8 0.44E-12 O.SlE-13 

Cn := llYn - Y~ll/llYo - Yoll 
= llYn - Y~ll/e for n = 4000 and n = 6000. 

The methods are specified by the generating Predictor-Corrector pair where the 
predictor is indicated by its type. It turned out that Cn is almost independent of e for 
e ~ 1/10. The results in table 4 demonstrate the strong damping of the initial pertur­
bation by all PDIRKN methods. 
We remark that with respect to the scalar test equation (see also (3.6)), the estimate 

llYn -y~ll = llef(Mm(z)-Em(z))n(Yo -yo)ll 
~ const.n11- 1[R(z)te 

shows that Cn depends on the stability behaviour of the PDIRKN method for a par­
ticular value of z, and it is expected that for an A-stable PDIRKN method and a 
given problem with specified stepsize, Cn will decrease as n increases. This beha­
viour is demonstrated by the results listed in table 4. 

Another observation is that for this linear problem, the explicit predictors give 
a better damping than the implicit predictors. The damping effect turns out to be 
strongly problem-dependent as is shown by the following example: 

y"(t) = -1000(y(t)-cos(t))3 -cos(t), y(O) = I,y'(O) = O,O~t~T. (5.1') 

Applying the same test strategy as before, the results listed in table 5 show that 
the implicit and explicit predictors give rise to a similar damping effect for this pro­
blem. Moreover, the damping is much weaker when compared to the previous 
example. 

5.2. EFFECTIVE ORDER AND EFFICIENCY OF THE EXPLICIT AND IMPLICIT 

PREDICTOR 

In this section, we show that the effective order of the PDIRKN methods may 
exceed the order of the corrector. In addition, we compare the efficiency of the 
explicit and implicit predictor. In all experiments the accuracy is given by means of 
the number of minimal correct digits (NCD) defined by NCD(h) = - log( II global 
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Tables 
Values of the amplification factor Cn for problem (5.1 ')with T = 1000, n = 10000 for various Predic­
tor- Corrector pairs. 

Type !Methods p s• k Cn Type II Methods p s• k Cn 

1-RadauIIA 3 2 2 0.36E+OO II· Radau IIA 3 3 2 0.63E+OO 
I· Gauss- Legendre 4 2 2 0.44E+OO II-Gauss- Legendre 4 3 2 0.12E+OO 
1-RadauIIA 5 3 3 0.82E+OO II-RadauIIA 5 4 3 0.58E+OO 
I· Gauss- Legendre 6 3 3 0.89E+OO II-Gauss- Legendre 6 4 3 O.lOE+Ol 
1-RadauIIA 7 4 4 O.lOE+Ol II· Radau IIA 7 5 4 0.64E+OO 
I- Gauss- Legendre 8 4 4 O.lOE+Ol II-Gauss- Legendre 8 5 4 0.48E+OO 

error at the endpoint of the integration interval 11 00 ), and the computational effort 
is measured by the number of sequential stages per unit interval. The (fixed) step­
size is chosen such that the number of sequential stages per unit interval ( approxi­
mately) equals a prescribed number M. To be more precise, let Nsteps denote the 
total number of integration steps for the integration interval [to, T}, then 
M = Nstepss* / ( T - to), which leads us to 

[M(T- to) ] 
Nsteps = s* + 0.5 ' 

T-to 
h=-­

Nsteps ' 

where [·] denotes the integer part function (the effect of the [·] operation causes 
that the actual number of sequential stages may be slightly different from the pre­
scribed number M). 

Table 6 lists results for the linear Kramarz problem (see [13]) 

" ( 2498 4998) Y (t) - y(t) O::;;;t:;.;;;100, 
- -2499 -4999 ' 

(5.2) 

Table6 
Effective order p• and values ofNCD and M for problem (5.2). 

Predictor-Corrector p s• k M=25 M=50 M=lOO M=200 p• 

1-RadauIIA 3 2 2 2.8 3.8 4.7 5.6 3 

II- Radau IIA 3 3 2 2.4 3.3 4.2 5.1 3 

I· Gauss-Legendre 4 2 2 3.3 4.5 5.7 6.9 4 

II· Gauss-Legendre 4 3 2 4.0 5.4 6.7 8.0 4 

1-RadauIIA 5 3 3 4.2 6.0 7.8 9.6 6 

II-RadauIIA 5 4 3 5.1 6.8 8.5 10.0 5 

I - Gauss-Legendre 6 3 3 3.9 5.8 7.6 9.4 6 

11- Gauss-Legendre 6 4 3 4.6 6.7 8.8 11.0 7 

1-RadaullA 7 4 4 4.5 6.9 9.3 12.0 8 

11-RadauIIA 7 5 4 5.4 8.1 10.8 9 

I- Gauss-Legendre 8 4 4 4.4 6.8 9.2 12.8 8 

II - Gauss-Legendre 8 5 4 5.2 7.7 10.l 8 
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Table? 
Effective order p* and values ofNCD and M for problem (5.2) obtained by some specified PDIRKN 
methods with small stepsizes. 

Predictor- Corrector p s* k M=800 M=1600 M=3200 M=6400 p* 

1-RadauIIA 5 3 3 13.1 14.8 16.5 18.1 5.3 
II - Gauss-Legendre 6 4 3 15.3 17.3 19.2 21.0 6 
1-RadauIIA 7 4 4 16.5 18.7 20.9 7.3 
II - Radau IIA 7 5 4 18.5 20.7 22.7 6.7 

with exact solutiony(t) = (2cos(t),-cos(t))T. These results show that for some 
higher-order methods (indicated in bold face), the measured effective order p* is 
greater thanp (see the discussion of theorem 2.1). In order to show that this "high­
er-order behaviour" is caused by a dominance of the iteration error, we applied 
these "higher-order" PDIRKN methods again to the Kramarz problem (5.2), but 
now with very small stepsizes. Using a high-precision computer (28 digits), we ob­
tained the results listed in table 7, showing that the corrector-order is more or less 
retained. 

Finally, we observe that usually the implicit predictor (type II) produces better 
results, in spite of the additional implicit stage. Therefore, in the following, we shall 
confme our considerations to the type II predictor. 

5.3. EFFICIENCY TESTS 

In this section, we compare the efficiency of the PDIRKN method with methods 
from the literature. We selected the following methods from table 1: 

Tables 
Values ofNCD andMforproblem(5.2). 

Methods p s* k M=25 M=50 M= 100 M=200 

Nmrsett3 3 2 1 2.1 3.0 3.9 4.8 
SFB3 3 2 1 1.8 2.7 3.6 4.5 
B3 3 4 1 1.2 2.1 3.0 3.9 
II - Radau IIA 3 3 2 2.4 3.3 4.2 5.1 

Nmrsett4 4 3 1 2.8 3.8 4.9 6.1 
SFB4 4 3 1 3.2 4.5 5.7 6.9 
II - Gauss-Legendre 4 3 2 4.0 5.4 6.7 8.0 

CSs 5 5 1 4.1 5.6 7.1 8.6 
II - Radau IIA 5 4 3 5.1 6.8 8.5 10.0 

cs6 6 5 1 5.5 7.0 8.4 9.0 
II· Gauss-Legendre 6 4 3 4.6 6.7 8.8 11.0 

II - Radau IIA 7 5 4 5.4 8.1 10.8 
II-Gauss-Legendre 8 5 4 5.2 7.7 10.1 
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third-order method ofN 0rsett; 
fourth-order method ofN0rsett; 
third-order method of Sharp et al.; 
fourth-order method of Sharp et al.; 
third-order method of Burrage; 
fifth-order method of Cooper and Sa yfy; 
sixth-order method of Cooper and Sayfy. 

5.3.1. Linear Kramarz problem 

277 

Table 8 presents results for these sequential methods and for our PDIRKN 
methods when applied to the Kramarz problem (5.2). In most cases, the PDIRKN 
methods are by far the most accurate ones. Notice that the CS6 method does not 
show its order 6 in the high accuracy range. This is caused by an insufficient accu­
racy of the method parameters. As a consequence, the CS6 method may well be 
competitive with the sixth-order PDIRKN method. 

5.3.2. Linear Strehmel-Weiner problem 
In [19] we find the following linear, stiff problem: 

(-20.2 0 -9.6) c50cos(!Ot)) 
y"(t) = 7989.6 -10000 -6004.2 y(t) + 75 cos(lOt) , 

-9.6 0 -5.8 75 cos(lOt) 

O~t~lOO, (5.3) 

Table9 
Values ofNCD andMfor problem (5.3). 

Methods p s• k M= 100 M=200 M=400 M=800 

N0rsett3 3 2 1 1.1 2.0 2.9 3.8 

SFB3 3 2 l 0.8 1.7 2.6 3.5 

B3 3 4 1 0.3 1.1 2.0 2.9 

II-RadauIIA 3 3 2 1.4 2.3 3.2 4.1 

N0rsett4 4 3 1 1.2 2.5 3.8 5.0 

SFB4 4 3 1 2.3 3.4 4.7 5.9 

II- Gauss-Legendre 4 3 2 3.1 4.9 6.7 7.3 

CSs 5 5 1 3.0 4.5 5.9 7.4 

II- Radau IIA 5 4 3 4.9 6.6 7.6 9.0 

cs6 6 5 1 3.6 5.5 7.5 8.2 

II- Gauss-Legendre 6 4 3 3.2 5.3 7.4 9.4 

II- Radau IIA 7 5 4 3.9 6.6 9.4 10.0 

II -·Gauss-Legendre 8 5 4 4.4 6.5 8.8 10.0 
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with exact solution 

(
cos(t) + 2cos(5t) -2cos(10t)) 

y(t) = 2cos(t) + cos(5t) - cos(lOt) . 

-2cos(t) + cos(5t) - cos(lOt) 

Unlike the Kramarz problem, this problem has slowly and rapidly oscillating solu­
tion components (nonstiff and stiff solution components) which are appearing 
with comparable weights. This implies a severe test for the PDIRKN methods 
because of the strong damping, and therefore inaccurate approximation, of the stiff 
solution components. In spite of that, they are generally superior to the sequential 
methods. Again, taking into account the inaccurate method parameters of CS61 

we see from the results listed in table 9 that this method is competitive. 

5.3.3. Nonlinear Strehmel-Weinerproblem 
In [19] we also find a nonlinear, stiff problem: 

y~(t) = (y1 (t) - Y2(t)) 3 + 6368y1 (t) - 6384y2(t) + 42cos(10t), 

y~(t) = -(y1(t) - y2(t))3 +12768y1(t) ..,..12784y2(t) +42cos(10t), 

O~t~lO, (5.4) 

with exact solution y 1(t) = y2(t) = cos(4t) - cos(lOt)/2. Table 10 demonstrates 
that the PDIRKN methods similarly compare with the sequential methods as for 
the linear Kramarz and Strehmel-Weiner problems. 

Table 10 
ValuesofNCDandMforproblem(5.4). 

Methods p s* k M=IOO M=200 M=400 M=800 

Nersett3 3 2 I 2.9 3.9 4.8 5.7 
SFB3 3 2 I 2.7 3.6 4.5 5.4 
B3 3 4 1 2.3 3.6 5.2 6.2 
II-RadauIIA 3 3 2 3.3 4.1 5.1 6.0 

Nersett4 4 3 1 3.0 4.2 5.3 6.5 
SFB4 4 3 1 3.7 4.9 6.1 7.3 
II - Gauss- Legendre 4 3 2 4.8 6.1 7.4 8.7 

CSs 5 5 1 4.9 6.4 7.9 9.4 
II - Radau IIA 5 4 3 5.8 7.6 9.4 11.1 

cs6 6 5 1 5.9 7.6 9.2 9.9 
II - Gauss- Legendre 6 4 3 5.5 7.6 9.7 11.8 

II - Radau IIA 7 5 4 6.4 9.0 11.6 
II - Gauss- Legendre 8 5 4 5.8 8.2 10.6 
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5.3.4. Fehlbergproblem 

An often used test problem is the orbit equation ( cf. [7]) 

Y7(t) = -4t2y1(t) - 2Y2(t) , 

J YT(t) + ~(t) 
( ) .;;/2 ~t ~31f' (5.5) 

y~(t) = -4t2y2(t) + 2YI t , 

Jyr(t) + ~(t) 
with the exact solution y 1(t) = cos(t2),y2(t) = sin(t2). Results are presented in 
table 11. Usually this type of equations has to be solved with stringent accuracy 
demands. From table 11 we conclude that the high-order PDIRKN methods are 
more efficient in the high accuracy range. 

5.3.5. Semi-discrete partial differential equation 
Consider the following initial-boundary-value problem (see [11]): 

Eflu 4-n2u2 Eflu 2 
at2 = l+ 2x- 2x2 ax2 +4-n2u[4cos (27rt)-l], O~t~l, O~x~l, (5.6) 

with Dirichlet boundary conditions and exact solution u = (1+2x - 2x2) 
cos(27rt). By using second-order symmetric spatial discretization on a uniform grid 
with mesh Lh = 1/20 we obtain a set of 19 ODEs. Table 12 shows that the 

Table 11 
ValuesofNCDandMforproblem(5.5). 

Methods p s* k 

Nersett3 3 2 1 
S~3 3 2 1 
B3 3 4 1 
II-RadauIIA 3 3 2 

Nersett4 

SFB4 
II- Gauss-Legendre 

CSs 
II- Radau HA 

CS5 
II- Gauss-Legendre 

II- Radau IIA 
II- Gauss-Legendre 

4 
4 
4 

5 
5 

6 
6 

7 
8 

3 
3 
3 

5 
4 

5 
4 

5 
5 

1 
1 
2 

1 
3 

I 
3 

4 
4 

M = 98 M= 196 M= 392 M= 783 

0.9 1.8 2.7 3.6 
0.6 1.5 2.4 3.3 
0.2 0.9 1.9 2.7 
0.9 2.0 2.9 4.0 

0.7 
1.2 
1.7 

1.7 
2.1 

1.9 
1.2 

1.1 
1.1 

1.5 
2.4 
3.2 

3.1 
3.8 

3.5 
3.1 

3.3 
3.2 

2.7 
3.6 
4.5 

4.7 
5.6 

5.3 
5.1 

5.9 
5.6 

4.0 
4.8 
5.9 

6.2 
7.3 

7.1 
7.2 

8.5 
8.0 
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Table 12 
Values ofNCD andMforproblem (5.6). 

Methods p s* k M=200 M=400 M=800 M= 1600 

Nersett3 3 2 1 3.5 4.3 5.1 5.9 

SFB3 3 2 1 3.6 4.5 5.4 6.3 

B3 3 4 1 * 4.3 5.4 6.4 

II - Radau IIA 3 3 2 3.7 5.1 6.0 6.8 

N0rsett4 4 3 1 3.4 4.2 5.2 5.9 

SFB4 4 3 1 5.5 6.4 7.6 8.8 
II - Gauss-Legendre 4 3 2 5.0 6.3 7.8 9.2 

CSs 5 5 4.0 5.3 6.6 7.7 
II - Radau IIA 5 4 3 4.2 5.2 6.3 7.7 

cs6 6 5 1 3.1 4.4 5.5 6.9 
II - Gauss-Legendre 6 4 3 3.8 4.7 6.2 8.1 

II - Radau IIA 7 5 4 * 4.7 6.0 8.5 
II- Gauss-Legendre 8 5 4 3.6 4.4 5.5 7.0 

PDIRKN methods are at least competitive and often more efficient than the 
sequential methods of the same order. 

6. Concluding remarks 

In this paper, we have shown that diagonally implicit iteration of fully implicit, 
pth-order RKN correctors leads to parallel DIRKN methods of order p with rela­
tively few sequential stages. For Radau IIA and Gauss-Legendre correctors, the 
iteration parameters are determined in such a way that the methods are A-stable, 
strongly A-stable or L-stable. Numerical experiments clearly demonstrate the 
superiority of the parallel methods over most of the sequential SD IRKN methods 
available in the literature. 
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