NUMER. FUNCT. ANAL. AND OPTIMIZ., 11(5&6), 601-608 (1990)

APPROXIMATION OF THE SOLUTION TO THE MOMENT PROBLEM

IN A HILBERT SPACE

M. Zwaan

Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.

ABSTRACT

In this paper we obtain a construction of the solution to a moment problem. We use our results to derive a truncation error for *sinc*-interpolation, which generalizes the error bounds in the literature to the case of nonuniform sampling.

1980 Mathematics Subject Classification: 40A99, 40A60, 46C99, 46E20. Keywords & phrases: Riesz basis, biorthogonal system, moment problem, minimum norm solution, Paley-Wiener space, sinc-function, truncation error.

0 INTRODUCTION

In this paper we approximate the solution f to a moment problem, by means of truncation. The moment problem consists of finding an element f of a Hilbert space \mathcal{H} which satisfies

$$\langle f, \varphi_i \rangle_{\mathcal{H}} = g_i, \quad \forall i \in \mathbb{Z}$$
 (0.1)

where $\{g_i\} \in \ell^2(\mathbb{Z})$ and the system of vectors $\{\varphi_i\}_{i \in \mathbb{Z}}$ lies in \mathcal{H} , which has inner product $\langle , \rangle_{\mathcal{H}}$. The space $\ell^2(\mathbb{Z})$ is the set of sequences of complex numbers $\{g_i\}_{i \in \mathbb{Z}}$ such that $\sum_{i \in \mathbb{Z}} |g_i|^2 < \infty$. Without further conditions on the system $\{\varphi_i\}_{i \in \mathbb{Z}}$, (0.1) need not have a solution. It turns out that a sufficient condition for (0.1) to have a solution is that $\{\varphi_i\}_{i \in \mathbb{Z}}$ is a Riesz basis, cf. Young [12]. The computation of f involves the inversion of an infinite matrix. For practical reasons, we want to work with finite matrices. This problem can be circumvented by first solving the truncated problem,

$$\langle f_n, \varphi_i \rangle_{\mathcal{H}} = g_i, \quad \forall i \in \{-n, ..., n\}.$$
 (0.2)

Repeating this procedure for each $n \in IN$, we obtain a sequence f_n . These functions f_n are given in closed form, involving only finite sums and inverses of finite matrices. In section 2 we prove that f can be approximated by f_n ,

$$\lim_{n\to\infty}\|f-f_n\|=0.$$

601

Copyright © 1990 by Marcel Dekker, Inc.

Bibliotheek Centrum voor Wiskunde en informatic Amsterrier In section 3 we introduce the space of bandlimited functions, i.e. functions whose Fourier transforms have compact support. It turns out that for bandlimited functions f, the inner product $\langle f, \varphi_i \rangle$ is a point evaluation of f at, say, t_i . If $t_i = i$ for all $i \in \mathbb{Z}$, then we say the function f is sampled uniformly, otherwise f is said to be sampled nonuniformly. The main application is to derive a bound for the truncation error in the case of nonuniform sampling, which is an extension of an estimate of Butzer [1]. In the literature Butzer [1], Butzer and Splettstösser [3], Butzer, Splettstösser and Stens [4], and Papoulis [9], estimates for the truncation error are given only for uniform sampling. In section 4 we make some remarks on the estimates from the literature.

1 PRELIMINARIES

In this section we introduce notions which we use in later sections. A sequence of vectors $\{\varphi_i\}_{i \in \mathbb{Z}}$ is a Riesz basis (see Young [12] p. 31) if there exists a bounded linear invertible operator T on \mathcal{H} such that

$$T\varphi_i = h_i, \quad \forall i \in \mathbb{Z}, \tag{1.1}$$

where $\{h_i\}_{i \in \mathbb{Z}}$ is an orthonormal basis for \mathcal{H} . An operator T is invertible if its inverse, denoted by T^{-1} , exists and is bounded.

The next theorem (cf. Young [12] Theorem 9, p. 32) characterizes Riesz bases, in terms of its Gram matrix and of completeness of a system of vectors. A sequence $\{\varphi_i\} \subset \mathcal{H}$ is complete if its linear span, denoted by $\operatorname{span}\{\varphi_i\}_{i \in \mathbb{Z}}$, lies dense in \mathcal{H} . The Gram matrix of $\{\varphi_i\}$ is defined by

$$G_{ij} := \langle \varphi_j, \varphi_i \rangle_{\mathcal{H}}, \quad \forall i, j \in \mathbb{Z}$$

In the case of a Riesz basis G is the matrix representation of the operator $(TT^*)^{-1}$, with respect to the basis $\{h_i\}$. So,

$$||T^{-1}|| = ||G||^{1/2}$$
, and $||T|| = ||G^{-1}||^{1/2}$. (1.2)

Theorem 1.1. The following statements are equivalent.

- (i) $\{\varphi_i\}_{i \in \mathbb{Z}}$ is a Riesz basis.
- (ii) $\{\varphi_i\}$ is complete and there exist positive real numbers A, B such that for each $n \in \mathbb{N}$ and for each finite sequence $\{c_i\}_{n,\dots,n}$

$$A\sum_{i=-n}^{n} |c_{i}|^{2} \leq ||\sum_{i=-n}^{n} c_{i}\varphi_{i}||^{2} \leq B\sum_{i=-n}^{n} |c_{i}|^{2}.$$

(iii) $\{\varphi_i\}$ is complete and the Gram matrix G of $\{\varphi_i\}$ generates a bounded linear invertible operator on $\ell^2(\mathbb{Z})$.

Throughout the rest of this paper the system $\{\varphi_i\}_{i \in \mathbb{Z}}$ denotes a Riesz basis. By Theorem 1.1 it follows that the definition of Riesz basis is independent of the choice of the orthonormal system $\{h_i\}$.

Two systems $\{\psi_i\}, \{\varphi_i\}$ are called biorthogonal if

$$\langle \varphi_i, \psi_j \rangle_{\mathcal{H}} = \delta_{ij}, \forall i, j \in \mathbb{Z}.$$

A Riesz basis $\{\varphi_i\}$ has a unique biorthogonal system $\{\psi_i\}$, given by $\psi_i = T^*h_i$, for $i \in \mathbb{Z}$. The biorthogonal sequence also is a Riesz basis. Any $f \in \mathcal{H}$ can uniquely be written as (cf. Higgins [6])

$$f = \sum_{i \in \mathbb{Z}} \langle f, \varphi_i \rangle_{\mathcal{H}} \psi_i.$$
(1.3)

From this it follows that the moment problem (0.1) has the unique solution

$$f = \sum_{i \in \mathbb{Z}} g_i \psi_i. \tag{1.4}$$

If we want to compute the system $\{\psi_i\}$, we need a formula for the operator T, which may be hard to find. An alternative formula for $\{\psi_i\}$ is obtained by Zwaan [13]

$$\psi_i = \sum_{j \in \mathbb{Z}} \overline{(G^{-1})}_{ij} \varphi_j, \quad \forall i \in \mathbb{Z}.$$

The problem in this formula is the inversion of the infinite matrix G. In section 2 we circumvent this inconvenience by inverting the truncated matrix. We thus obtain an approximation of the system $\{\psi_i\}$ and of the solution f.

We construct an orthonormal basis $\{h_i\}_{i\in\mathbb{Z}}$ for \mathcal{H} in such a way that $\{h_i\}_{i=-n,\ldots,n}$ is an orthonormal basis for

$$\mathcal{H}_n := \operatorname{span}\{\varphi_{-n}, \dots, \varphi_n\},\,$$

e.g. by Gram-Schmidt orthogonalization. In this case the operator T given by (1.1) leaves all the subspaces \mathcal{H}_n invariant, and

$$T\varphi_i = h_i, \quad \forall i \in \mathbb{Z}.$$

Note that the adjoint of T need not leave the subspaces \mathcal{H}_n invariant. Define the restriction of T to \mathcal{H}_n by $T_n := T_{|\mathcal{H}_n}$. Denoting the adjoint of T_n in \mathcal{H}_n by T_n^* , the system $\{\psi_i^n\}_{-n,\dots,n} \subset \mathcal{H}_n$ can be defined as

$$\psi_i^n := T_n^* h_i, \quad \forall i \in \{-n, ..., n\},$$
(1.5)

which is the unique biorthogonal system of $\{\varphi_i\}_{-n,...,n}$ in \mathcal{H}_n . An alternative formula for ψ_i^n is

$$\psi_i^n = \sum_{j=-n}^n \overline{(G_n^{-1})}_{ij} \varphi_j.$$

Here G_n is the truncated Gram matrix,

$$(G_n)_{ij} := G_{ij}, \quad \forall i, j \in \{-n, ..., n\}.$$

A (not necessarily unique) solution to (0.2) can now be given as

$$f_n = \sum_{i=-n}^{n} g_i \psi_i^n.$$
 (1.6)

(1.6) is not unique, because other solutions can be obtained by adding elements to f_n , which are orthogonal to span{ $\varphi_{-n}, ..., \varphi_n$ }. The following result (cf. Young [12] Proposition 1, p.147) characterizes solutions to an arbitrary moment problem.

Proposition 1.2. Let $I \subset \mathbb{Z}$ be an arbitrary index set and let $\{g_i\} \in \ell^2(I)$. If the problem

$$\langle f, \varphi_i \rangle_{\mathcal{H}} = g_i, \quad \forall i \in \mathbb{I},$$
 (1.7)

has a solution, then there exists a unique minimum norm solution which lies in the subspace $\overline{\text{span}}\{\varphi_i\}_{i \in I} \subset \mathcal{H}.$

It follows that $f_n \in \mathcal{H}_n$, given by formula (1.6), is the unique minimum norm solution to (0.2) in \mathcal{H} .

2 CONSTRUCTION OF THE SOLUTION TO THE MOMENT PROBLEM

The aim of this section is to prove that $||f - f_n|| \to 0$, (for $n \to \infty$) where $f \in \mathcal{H}$ and $f_n \in \mathcal{H}_n$ are the unique and the unique minimum norm solution to (0.1) and (0.2), respectively.

Introduce the projection operator $P_n : \mathcal{H} \to \mathcal{H}_n$, by

$$P_n f = \sum_{i=-n}^n \langle f, \varphi_i \rangle_{\mathcal{H}} \psi_i^n, \qquad (2.1)$$

where the system $\{\psi_i^n\}$ is given by formula (1.5). P_n is a normal operator $(P_n^*P_n = P_nP_n^*)$ from \mathcal{H} onto \mathcal{H}_n and it reduces to the identity operator on \mathcal{H}_n , i.e. $P_ng = g$ for $g \in \mathcal{H}_n$. If $f \in \mathcal{H}$ is the solution to (0.1), then the minimum norm solution f_n to (0.2) can be written as $f_n = P_n f$. For any $g \in \mathcal{H}_n$ we have

$$(I - P_n)f = (I - P_n)(f - g).$$

 $\operatorname{dist}(f, \mathcal{H}_n) = \operatorname{inf}_{h \in \mathcal{H}_n} \|f - h\|_{\mathcal{H}}.$

Hence

$$\|(I - P_n)f\| \le \|I - P_n\|\operatorname{dist}(f, \mathcal{H}_n), \qquad (2.2)$$

where

We know that for all $f \in \mathcal{H}$

$$\lim_{n \to \infty} \operatorname{dist}(f, \mathcal{H}_n) = 0.$$
(2.3)

Note that $||(I - P_n)f||$ is the error due to truncation of the moment problem (0.1). The next theorem proves that $||I - P_n|| \le c$, where c is a constant independent of n.

Theorem 2.1. Let $\{\varphi_i\}_{i \in \mathbb{Z}}$ be a Riesz basis for \mathcal{H} , and let P_n be given by (2.1). Then $||I = P_n|| \leq 1 + (||G|||1|||G|||1||2) + |I| = P_n$

$$||I - P_n|| \le 1 + (||G^{-1}|| ||G||)^{1/2}, \quad \forall n \in IN.$$
(2.4)

Proof:

Using $\psi_i = T^* h_i$, and (1.5), we obtain

$$\|P_n f\| = \|\sum_{i=-n}^n \langle f, \varphi_i \rangle \psi_i^n\| = \|\sum_{i=-n}^n \langle f, \varphi_i \rangle_{\mathcal{H}} T_n^* h_i\| \le \|T_n\| \|\sum_{i=-n}^n \langle f, \varphi_i \rangle_{\mathcal{H}} h_i\| \le \|T\| \|\sum_{i\in\mathbb{Z}} \langle f, \varphi_i \rangle_{\mathcal{H}} T^{*^{-1}} \psi_i\| \le \|T\| \|T^{-1}\| \|f\|.$$

Hence, by (1.2) and Theorem 1.1. (iii),

$$||I - P_n|| \le 1 + (||G||||G^{-1}||)^{1/2} < \infty, \quad \forall n \in IN.$$

This proves the estimate. \Box

By (2.2) and (2.4) it follows that,

$$\|(I - P_n)f\| \le (1 + (\|G^{-1}\| \|G\|)^{1/2}) \operatorname{dist}(f, \mathcal{H}_n).$$
(2.5)

Hence, by (2.3), for all $f \in \mathcal{H}$,

$$\lim_{n \to \infty} \| (I - P_n) f \| = 0.$$
 (2.6)

We have proved the following result.

Corollary 2.2. If $\{\varphi_i\}_{i \in \mathbb{Z}}$ is a Riesz basis and if f_n (formula (1.6)) is the minimum norm solution of the truncated problem (0.2), then $\{f_n\}_{n \in \mathbb{N}}$ converges to the solution of problem (0.1).

This applies in particular to biorthogonal sequences $\{\psi_i\}_{i \in \mathbb{Z}}$ of a Riesz basis. It follows by definition of P_n that $\psi_i^n = P_n \psi_i$, for $i \in \{-n, ..., n\}$. Hence by (2.6)

$$\lim_{n \to \infty} \|\psi_i^n - \psi_i\| = 0,$$
(2.7)

for $i \in \mathbb{Z}$. This procedure of solving the truncated problem (0.2), instead of (0.1), is an application of a projection method of Natterer [8].

3 TRUNCATION ERROR FOR NONUNIFORM SAMPLING

In this section we derive a formula for the truncation error in the case of nonuniform sampling of a bandlimited function. We apply the results of the previous section in the case that \mathcal{H} is the space of bandlimited functions and $\varphi_i := \operatorname{sinc}_r(.-t_i\pi/r)$, where $\{t_i\}$ is a sequence of real numbers. Here the *sinc*-function is given for $t \in \mathbb{R}$, by

$$\operatorname{sinc}_r(t) := \begin{cases} \frac{\sin(rt)}{rt}, & t \neq 0\\ 1, & t = 0 \end{cases}.$$

The space of bandlimited functions, also refered to as the Paley-Wiener space, consists of all $L^2(\mathbb{R})$ -functions f such that the Fourier transform of f, denoted by \hat{f} , is zero outside the interval [-r, r].

Definition 3.1. $I\!\!P_r := \{f \in L^2(I\!\!R) | \text{supp } \widehat{f} \subset [-r, r] \}$

If we define the inner product \langle , \rangle_{P_r} on \mathbb{P}_r by,

$$\langle f,g\rangle_{P_r} := \int_R f(x)\overline{g(x)}dx,$$

then $I\!\!P_r$ is a Hilbert space. By the theorem of Paley-Wiener (see Young [12] Theorem 18, p. 101) any $f \in I\!\!P_r$ can be extended to an entire function $f : \mathcal{C} \to \mathcal{C}$ which satisfies $|f(z)| \leq ||f||_{P_r} e^{r|Imz|}$, for all $z \in \mathcal{C}$. Hence any element of $I\!\!P_r$ satisfies the inequality,

$$||f||_{\infty} \le ||f||_{P_r}, \quad \forall f \in \mathbb{P}_r.$$

$$(3.1)$$

Here the ∞ -norm is defined by $||f||_{\infty} := \sup_{t \in R} |f(t)|$.

The system $\{\varphi_i\}_{i \in \mathbb{Z}}$ is a Riesz basis for \mathbb{P}_r if the sequence of t_i 's satisfies

$$|t_i - i| \le \alpha < 1/4, \quad \forall i \in \mathbb{Z}.$$

$$(3.2)$$

If $t_i = i$ for all $i \in \mathbb{Z}$, then $\{\varphi_i\}$ is an orthonormal basis for \mathbb{P}_r . The point evaluation can be written in terms of the φ_i 's,

$$\langle f, \varphi_i \rangle_{P_r} = (\sqrt{\pi/r}) f(t_i \pi/r), \quad \forall f \in I\!\!P_r.$$

So, with (1.3) we write an arbitrary element f lying in $\mathcal{H} = I\!\!P_r$ as

$$f = \sum_{i \in \mathbb{Z}} (\sqrt{\pi/r}) f(t_i \pi/r) \psi_i, \qquad (3.3)$$

and the projection from f onto \mathcal{H}_n as (cf. definitions (2.1) and (1.5))

$$f_n := P_n f = \sum_{i=-n}^n (\sqrt{\pi/r}) f(t_i \pi/r) \psi_i^n.$$

The distance from f to \mathcal{H}_n can be expressed in terms of the system $\{h_i\}$ (cf. section 2),

$$\operatorname{dist}(f, \mathcal{H}_n) = \left(\sum_{|i|>n} |\langle f, h_i \rangle_{P_r}|^2\right)^{1/2}$$

Because $\{\varphi_i\}$ is a Riesz basis, we obtain by (1.1),

$$\operatorname{dist}(f, \mathcal{H}_n) = \left(\sum_{|i|>n} |\langle T^*f, \varphi_i \rangle_{P_r}|^2\right)^{1/2} = \left(\sum_{|i|>n} (\pi/r)|(T^*f)(t_i\pi/r)|^2\right)^{1/2}.$$

Generalizing Butzer [1], we assume T^*f to satisfy,

$$|(T^*f)(t)| \le M_{T^-f} \ 1/|t|^{\gamma}, \tag{3.4}$$

for $t \in \mathbb{R} \setminus \{0\}$ and $\gamma > 1/2$. Here M_{T^*f} is a constant which depends on T^*f . It follows by a straightforward computation (for n > 0), and by (3.4) that

dist
$$(f, \mathcal{H}_n) \le \sqrt{2} M_{T-f} (r/\pi)^{(\gamma-1/2)} \frac{(n-1/4)^{(1-2\gamma)/2}}{\sqrt{2\gamma-1}}.$$
 (3.5)

Define the truncation error as $e_{tr} := ||f - f_n||_{\infty}$. By Theorem 2.1, and (3.5) we have

$$e_{\rm tr} \le \left(1 + (\|G^{-1}\|\|G\|)^{1/2}\right) \left(\sqrt{2} \ M_{T^*f} \ (r/\pi)^{(\gamma-1/2)} \ \frac{(n-1/4)^{(1-2\gamma)/2}}{\sqrt{2\gamma-1}}\right). \tag{3.6}$$

A remark is in order. In the case of uniform sampling (i.e. $\alpha = 0$ or, equivalently, $t_i = i$ for $i \in \mathbb{Z}$) T^* is the identity operator on \mathbb{P}_r ; G and G^{-1} are the identity matrices. Hence, in the case of uniform sampling the biorthogonal system $\{\psi_i\}$ is equal to the initial system $\{\varphi_i\}$ and formula (3.3) reduces to the classical Shannon sampling series. In the case of nonuniform sampling (i.e. $\alpha \neq 0$) the norms of G and G^{-1} are estimated in Zwaan [14],

$$||G||^{1/2} \le 1 + \lambda$$
 and $||G^{-1}||^{1/2} \le \frac{1}{1-\lambda}$,

where $\lambda := 1 - \cos \pi \alpha + \sin \pi \alpha$.

In the following section we compare formula (3.6) with results from the literature.

4 CONCLUSIONS AND REMARKS

From (3.6) it follows that the moment problem (0.1) is stable for truncation (i.e. $\lim f_n = f$, for $n \to \infty$), if the t_i 's satisfy (3.2). The rate of convergence is governed by the norms of the matrices G and G^{-1} . In the case of uniform sampling (i.e. $\alpha = 0$ or, alternatively $t_i = i$, for $i \in \mathbb{Z}$) the number $||G|| ||G^{-1}||$ is equal to one, but if we sample nonuniformly, especially when α is close to 1/4, this term may become large. So, in the case of uniform sampling, the truncated solution f_n may converge faster to the solution f than in the case of nonuniform sampling.

Next we make some remarks on estimates of the truncation error which are given in the literature. The estimates given by Butzer [1], Butzer and Splettstösser [3], Butzer, Splettstösser and Stens [4] are valid for functions f which are sampled uniformly. Furthermore f is assumed to lie in the Lipschitz class of order α , given by

$$\{f \in C(\mathbb{R}) | \sup_{|h| \leq \delta} ||f(.+h) - f(.)|| \leq L\delta^{\alpha} \}.$$

The estimate from Butzer [1], Lemma 2,

$$\|\sum_{|i|>n} \sqrt{\pi/r} f(i\pi/r)\| \le \sqrt{2} M_f(r/\pi)^{\gamma-1/2} n^{(1-2\gamma)/2}, \tag{4.1}$$

holds for functions f that satisfy the additional estimate

$$|f(t)| \le M_f \ 1/|t|^{\gamma},\tag{4.2}$$

for $t \in \mathbb{R} \setminus \{0\}$. This can be proved by straightforward computation. Note that for uniform sampling T^* is the identity operator on \mathbb{P}_r ; G and G^{-1} are the identity matrices. Hence condition (3.4) reduces to (4.2) and (3.6) reduces to an error bound which is similar to (4.1). By using *de la Valleé Poussin* kernels, Theorem 6.1. of Butzer and Splettstösser [3] provides the error bound, (if f satisfies (4.2) and if s is such that $t \to t^s f(t)$ belongs to the Lipschitz class of order α)

$$e_{tr} := ||f(.) - \sum_{i=-n}^{n} f(i\pi/r) \operatorname{sinc}_{\pi}(. - i\pi/r)|| \le c n^{-s-\alpha} \ln n.$$

Here c depends on γ , L, and f. In Butzer [1] and Butzer, Splettstösser and Stens [4] a similar error is stated for functions f in a special subspace of $L^1(\mathbb{R})$,

$$e_{\rm tr} = O(n^{(-s-\alpha)}).$$

The truncation error is expressed in terms of its own energy, by Papoulis [9], p. 142, in the following manner. Define, for $f \in \mathbb{P}_r$,

$$e_{\mathrm{tr}}(t) := f(t) - \sum_{i=-n}^{n} \sqrt{\pi/r} f(i\pi/r) \mathrm{sinc}_{\pi}(t - i\pi/r).$$

Since $e_{tr} \in \mathbb{P}_r$, it follows by (3.1) that $|e_{tr}(t)| \le ||e_{tr}(.)||_{L^2}$.

In this paper we obtained a new bound for the truncation error in the case of nonuniform sampling, for functions $f \in \mathbb{P}_r$. We approximated the solution to the moment problem (0.1) and used this procedure to derive the error bound (3.6).

ACKNOWLEDGEMENT I gratefully thank Dr. P.P.B. Eggermont for drawing my attention to projection methods in connection with the moment problem and for his useful remarks. Furthermore I want to thank Prof. Dr. G.Y. Nieuwland, Dr II.J.A.M. Heijmans, and Dr. J.B.T.M. Roerdink for their thorough reading of the manuscript.

REFERENCES

- P.L. Butzer. A Survey of the Whittaker-Shannon Sampling Theorem and some of its extensions. J. Math. Res. Exposition, (1983) <u>3</u>, 185 - 212.
- [2] P.L. Butzer, W. Engels. On the Implementation of the Shannon Sampling Series for Band-Limited Signals. *IEEE Trans. Inf. Theory* <u>IT-29</u>, (1983) 314 - 318.
- [3] P.L. Butzer, W. Splettstösser. On Quantization, Truncation and Jitter Errors in the Sampling Theorem and its Generalizations. Signal Process. <u>2</u> (1980) 101 - 112.
- [4] P.L. Butzer, W. Splettstösser, R.L. Stens. The Sampling Theorem and Linear Prediction in Signal Analysis. Jahresber. Deutsch. Math. Verein <u>90</u>, (1988) 1 - 70.
- [5] I.C. Gohberg, S. Goldberg. Basic Operator Theory. Birkhäuser, Boston, 1980.
- [6] J.R. Higgins. Completeness and Basis Properties of Sets of Special Functions. Cambridge University Press, Cambridge, 1977.
- [7] F. Natterer. The Mathematics of Computerized Tomography. John Wiley and Sons, Chichester, 1986.
- [8] F. Natterer. Regularization of Ill-Posed Problems by Projection Methods. Numer. Math. <u>28</u> (1977) 329-341.
- [9] A. Papoulis. Signal Analysis. McGraw Hill, New York, 1977.
- [10] S.E. Ries, V.W. Spletstösser. On the Approximation by Truncated Sampling Series Expansions. Signal Process. <u>7</u> (1984) 191-197.
- [11] I. Singer. Bases in Banach Spaces I. Springer Verlag, Berlin, 1970.
- [12] R.M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New York, 1980.
- [13] M. Zwaan. Dynamic MRI Reconstruction as a Moment Problem Part II. Riesz Bases in L²-Spaces of Vector Valued Functions. Report AM8907, April, 1989.
- [14] M. Zwaan. Error Estimates for Nonuniform Sampling. To appear in: Numerical Functional Analysis and Optimization.

Received:	January	19,	1990
Accepted:	August	31.	1990