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ABSTRACT 
In thil paper we obtain a construction of the solution to a moment problem. We use our results to 
derive a truncation error for sine-interpolation, which generalizes the error bounds in the literature to 
the case of nonuniform sampling. 
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0 INTRODUCTION 

In this pa.per we approximate the solution f to a. moment problem, by means of 
truncation. The moment problem consists of finding a.n element f of a. Hilbert spa.ce 1i 
which satisfies 

(!, cp;}fi = g;, Vi E Z (0.1) 

where {g;} E l 2 ( Z) and the system of vectors {cp;};e zlies in 1i, which has inner product 
( , ht· The space l 2( Z) is the set of sequences of complex numbers {g;};e z such that 
I:;e z Jg;J 2 < oo. Without further conditions on the system {cp;};e z, (0.1) need not have a 
solution. It turns out that a sufficient condition for (0.1) to have a solution is that { cp;} iE z 
is a Riesz basis, cf. Young [12] . The computation of f involves the inversion of an infinite 
matrix. For practical reasons, we want to work with finite matrices. This problem can be 
circumvented by first solving the truncated problem, 

{/n,'Pi}fi=g;, ViE{-n, .. .,n}. (0.2) 

Repeating this procedure for each n E JN, we obtain a sequence fn· These functions fn are 
given in closed form, involving only finite sums and inverses of finite matrices. In section 2 
we prove that f ca.n be approximated by f n, 
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In section 3 we introduce the space of bandlimited functions, i.e. functions whose 
Fourier transforms have compact support. It turns out that for bandlimited functions f, 
the inner product (/, '{);) is a point evaluation off at, say, t;. If t; = i for all i E Z, then 
we say the function f is sampled uniformly, otherwise f is said to be sampled nonuniformly. 
The ma.in application is to derive a bound for the truncation error in the case of non uniform 
sampling, which is an extension of an estimate of Butzer [l] . In the Ii terature Du tzer 
[1] , Butzer and Splettstosser [3] , Butzer, Splettsti:isser and Stens [4] , and Papoulis [9] , 
estimates for the truncation error are given only for uniform sampling. In section 4 we make 
some remarks on the estimates from the literature. 

1 PRELIMINARIES 

In this section we introduce notions which we use in later sections. A sequence of 
vectors {'{);};€ z is a Riesz basis (see Young [12] p. 31) if there exists a bounded linear 
invertible operator T on 'Ji such that 

Ti.p; = h;, Vi E "ll., (1.1) 

where {h;};E z is an orthonormal basis for rt. An operator T is invertible if its inverse, 
denoted by r-1, exists and is bounded. 

The next theorem (d. Young [12] Theorem 9, p. 32) characterizes Riesz bases, in 
terms of its Gram matrix and of completeness of a system of vectors. A sequence { cp;} C rt 
is complete if its linear span, denoted by span{ \Oi};e z, lies dense in rt. The Gram matrix 
of {i.p;} is defined by 

G;j := (cpj,'f'i)rt, Vi,j E "ll.. 

In the case of a Riesz basis G is the matrix representation of the operator (TT*)-1 , with 
respect to the basis {h;}. So, 

(1.2) 

Theorem 1.1 . The following statements are equivalent. 

(i) {cp;};e z is a Riesz basis. 
(ii) {cp;} is complete and there exist positive real numbers A,B such that for eacli n E IN 

and for each finite sequence {c;}-n,. . .,n 

n n n 

A L lc;l2 ::; II L c;cp;ll2 ::; B L lc;l2 • 
i=-n i=-n i=-n 

(iii) { <p;} is complete and the Gl·am matrix G of {cpi} generates a bounded linear invertible 
operator on £2 ( Z). 

Throughout the rest of this paper the system {<f'd;e 7L. denotes a Riesz basis. By 
Theorem 1.1 it follows that the definition of Rlesz basis is independent of the choice of the 
orthonormal system { h;}. 

Two systems {IP;}, { cp;} a.re called bi orthogonal if 

(cp;,'lj;i)rt = D;j,Vi,j E 71.. 

A Rlesz basis {i.p;} has a unique biorthogonal system {'if;;}, given by 'if;;= T•h;, for i E 7l.. 
The biorthogonal sequence also is a Rlesz basis. Any f E rt can uniquely be written as ( cf. 
Higgins [6] ) 

t = :L u. i.p;)rr.'I/;;. 
iE Z 

(1.3) 
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From this it follows that the moment problem (0.1) has the unique solution 

1 = I: g;V;i· 
iE "71. 
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( 1.4) 

If we want to compute the system {1/'>i}, we need a formula for the operator T, which 
may be hard to find. An alternative formula for N";} is obtained by Zwaan [13] 

1/>; = L cc- 1 );j'P], Vi E "ll... 
jE "Jl. 

The problem in this formula is the inversion of thc infinite matrix G. In section 2 we circum
vent this inconvenience by inverting the truncatrd matrix. We thus obtain an approximation 
of the system { 1/>;} and of the solution f. 

We construct an orthonormal basis {h;};E "71. for Hin such a way that 
{hi}i=-n, ... ,n is an orthonormal basis for 

e.g. by Gram-Schmidt orthogonalization. In this case the operator T given by (1.1) leaves 
all the subspaces Hn invariant, and 

T<p; = h;, Vi E "Jl.. 

Note that the adjoint of T need not leave the subspaces Hn invariant. Define the restriction 
of T to Hn by Tn := T1H •. Denoting the adjoint of Tn in Hn by T,7, the system { 1,&r}-n,. . .,n C 
Hn can be defined as 

V'i := T~h;, Vi E {-n, ... ,n}, ( 1.5) 

which is the unique biorthogonal system of {'Pi}-n,. . .,n in Hn. An alternative formula for 
1/'>l' is 

n 

1,&i= L (Cr;:;1);/.Pi· 
j=-n 

Here Gn is the truncated Gram matrix, 

(Gnlii := G;j, Vi,j E {-n, ... ,n}. 

A (not necessarily unique) solution to (0.2) can now be given as 

n 

!n = I: gd"i. ( 1.6) 
i=-n 

(1.6) is not unique, because other solutions can be obtained by adding elements to fn, 
which are orthogonal to span { 'P-n, ... , 'Pn}· The following result ( cf. Young [12] Proposition 
1, p.147) characterizes solutions to a.n arbitrary moment problem. 

Proposition 1.2 . Let ll C :.! be an arbitrary index set and let {gi} E e2 (ff). If the 
problem 

(f,'Pi)H =% Vi E ff, ( 1. 7) 

has a solution, then there exists a t1niq11c mi11im11m norm solution which lies in th<' subspace 
span{cp;};Ef C 7t. 
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It follows that fn E 1tn, given by formula (1.6), is the unique minimum norm solution 
to (0.2) in 1t. 

2 CONSTRUCTION OF THE SOLUTION TO THE MOMENT PROBLEM 

The aim of this section is to prove that II/ - J nil -+ O, (for n -+ oo) where J E 1t 
and fn E 1tn are the unique and the unique minimum norm solution to (0.1) a.nd (0.2), 
respectively. 

Introduce the projection operator Pn : 1t -+ 'Hn, by 

n 

Pnf = L (!, <pi)Ji_?/if' (2.1) 
i=-n 

where the system {,,Pr} is given by formulii (1..5). Pn is a normal operator (P;Pn = PnP;) 
from 1i. onto 1tn and it reduces to the identity operator on Ti.n, i.e. Png = g for g E Hn. If 
f E 1t is the solution to (0.1), then the minimum norm solution fn to (0.2) can be written 
as fn = Pnf· For any g E 'hn we have 

(/ - Pn)J =(I - Pn)(J - g). 

Hence 

II(! - Pn)/11:::; Ill - Pnlldist(f, Hn), (2.2) 

where 

We know that for all J E H 
lim <list(!, 1tn) = O. 

n-oo 
(2.3) 

Note that II(! - Pn )/II is the error due to truncation of the moment problem (0.1 ). The next 
theorem proves that III - Pnll ::; c, where r is a constant independent of n. 

Theorem 2.1 . 
Then 

Let { <p; };E 7L be a Riesz basis for H, and Jet Pn be given by (2.1). 

III - Pn II :::; 1 + rnc- 1 1111c11)112 , 'r/n E IN. (2.4) 

Proof: 

Using 1/1; = T"h;, and (1.5), we obtain 

n n 

llPn/ll =II L (/,ipMill =II L (/,ip;)JtT;h;Jj:::; 
i=-n i=-n 

n 

llTnllll L (!, ip;)'}ih;ll :::; llTllll L (J,ip;)Ji.T*- 11/l;JI :::; llTllllT- 1 1111111· 
i=-n iE 7f.. 

Hence, by (1.2) and Theorem 1.1. (iii), 

This proves the estimate. D 
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By (2.2) and (2.4) it follows that, 

11(1 - Pn)fll S (1 + (jjG-1 Jl llGll)112 ) <list(!, 1tn)· (2.5) 

Hence, by (2.3), for all f E 7t, 

lim II(! - Pn)fll = O. 
n-->oo 

(2.6) 

We have proved the following result. 

Corollary 2.2 . If { <p;};E 7l. is a Riesz basis and if fn (formula (1.6)) is the minimum 
norm solution of the truncated problem (0.2), tlien {/n}neN converges to tlie solution of 
problem (0.1). 

This applies in particular to biorthogonal sequences { 1/';};E 7l. of a Riesz basis. It 
follows by definition of Pn that 1/'i' = Pn'l/!i, for i E {-n, ... ,n}. Hence by (2.6) 

lim llit>i -1/1dl = o, 
n-->oo 

(2.7) 

for i E 7L This procedure of solving the truncated problem (0.2), instead of (0.1), is an 
application of a projection method of N atterer [8] . 

3 TRUNCATION ERROR FOR NONUNIFORM SAMPLING 

In this section we derive a formula for the truncation error in the case of nonuniform 
sampling of a bandlimited function. We a.pply the results of the previous section in the case 
that His the space of bandlim.ited functions and r.p; := sincr(. - t;'ir/r), where {t;} is a 
sequence of real numbers. Here the sine-function is given fort E JR, by 

. ( sin(rt), t f. 0 
Sl!1Cr(1):= rt . 

1, t = 0 

The space of bandlimitcd functions, also r('fcred to as the Paley-Wiener ~ace, consists of 
all L 2 ( JR)-functions f such that the FouriC'r trnnsform of f, d('llOt('d by J, is ZNO outside 
the interval [-r, r]. 

Definition 3.1. 1Pr := {! E L2(IR)lsupp JC [-r,r]} 

If we define the inner product ( , ) I', on 1Pr by, 

(f,g}p, := fn f(x)g(x)d.t, 

then 1Pr is a Hilbert space. By the theor('m of Paley-Wiener {see Young [12] Tll('orem 18, 
p. 101) any f E 1Pr can be extended to an entire function J : re--+ rE which satisfies 
lf(z)I ~ 11/IJP, erllm•I, for all z E <C. Hence any element of 1Pr satisfies the inequality, 

llfll.oo S llfllP., V f E /l', .. (3.1) 

Here the oo-norm is defined by llflloo := Sl!Ptenl/(t)I. 

The system { <p; Le 7l. is a Riesz basis for ll'r if the sequence oft; 's satisfies 

lt;-ilsa<l/1, ViE z. (3.2) 
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If t; = i for all i E "ll., then { <p;} is an orthonormal basis for !Pr. 
The point evaluation can be written in ti:rms of the 'Pi 's, 

(f,'fJi)Pr = ( ;-:;/r)J(t;rr/r), YJ E !Pr. 

So, with ( 1.3) we write an arbitrary element flying in H = ll'r as 

f = L(#)f(i;7r/r)1/J;, 
iE "ll. 

and the projection from f onto 'ltn as ( cf. definitions (2.1) and ( 1.5)) 

n 

fn := 1',J = L ( 0)J(l;7r/T)V'i'-
i=-n 

ZWAAN 

(3.3) 

The distance from f to Hn can be expressed in krms of the systPrn {h;} (cf. section 2), 

1/0 
dist(f, Hn) = ( L I(!, h;)p, 12) - · 

lil>n 

BecausP {.;;}is a Riesz basis, we obtain by ( 1.1 ), 

Generalizing Butzer [I], we assume T* J to satisfy, 

(:l .4) 

fort E IR \ {O} and -y > 1/2. llrrc> Afr. f is a constant which dqJPnds on T* f. It follows by 
a straightforward computation (for n > 0), and by (:JA) that 

(n l/'1)(1-2-y)/2 
<list (f,Hn) ~ J2 Mr·1 (r/7r)h-l/2) -~ (3.5) 

Define the truncation error as etr :=II/- fnlloo- By Th0orern 2.1, and (3.!i) WP h;we 

( - 1/·1)(1-2"!)/2 
etr < (1 + (llG- 1 llllCll)112 ) (J2 Ah·1 (r/7r)h-t/2l n ). (3.G) - )21 - 1 

A n•mark is i11 order. In tlw case of uniform sampling (i.e. u = 0 or, equivalently, I;= i 
for i E "ll.) T* is the identity operator on U',.; G and c;- 1 are the identity matric<'s. !knee, 
in the case of uniform sampling the biorthogonal system { ~';} is l'qual to the initial system 
{ip,} and formula (3.3) reduces to the classical Shannon sampling series. 111 the case of 
nonuniform sampling (i.e. o ;f 0) the norn1s of G and c-1 are estirnat<'d in Zwaan [H], 

where>. := 1 - cos"°'+ sin '/fa. 
In the following section\\'(' compare formula (:l.G) with n•sults from the litPrat11re. 
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4 CONCLUSIONS AND REMARKS 

From (3.fi) it follows that the moment problem (0.1) is stable for truncation (i.e. 
Jim fn == f, for n ---+ oo ), if the t;'s satisfy (3.2). The rate of convergence is govern0d by 
the norms of the matrices G and c- 1• In the case of uniform sampling (i.e. a = 0 or, 
alternatively I; = i, for i E Z) the number J!Cf!llC- 1 JI is equal to one, but if we sample 
nonuniforrnly, especially when a is close to 1/1, this term may become large. So, in the case 
of uniform sampling, the truncated solution fn may converge faster to the solution f than 
in the case of nonuniform sampling. 

Next we make some rf'marks on estimates of the truncation error which arc given in 
the literature. The estimates given by flutzer [1] , Butzer and Splettstiisser [3] , Butzer, 
Splettstosser and Stens [·1] are valid for functions f which are sampled uniformly. Further
more f is assurrH.'d to lie in the Lipschitz class of order n, given by 

{! E C(ll?)\sup1h1dJ/(. + h)- /(.)JI :S Lo"}. 

The estimate from Butzer [1] . Lemma. 2, 

II L krf(iir/rlll:::; J2M1(r/irr1- 1l 2 1P-2-rl/2 , 

/i/>n 

holds for functions f that satisfy I.he additional ('Stirnatp 

lf(t)\::: A11 1/\11-r, 

(4.)) 

(4.2) 

fort E 1R \ {O}. This can be proved by straightforward co1nputat.ion. Note that for uniform 
sampling T* is the id\'lltity opPrator on !/',.;(;and c;- 1 are the identity matrices. Hence 
condition (3.'I) reduces to (·1.2) and (3.G) r0d11crs to an error bo1111d which is similar· to (4.1). 
By using de la \'al/ee l'oussin kPrnels, Th('OJ'('lll (i.l. of Butzer and Spkttst.iisser [:l] provides 
the error bound, (if f satisfks (·!.2) and ifs is such that t ~ is f(t) belongs to the Lipschitz 
class of order °') 

n 

etr :== \\/(.)- L /(iir/r)sincir(. - iir/rlll :S: c n-s-"11111. 
i=-n 

Here c depends on /, L, and f. In Butz('!' [I] and But.Z('r, Spldtstiisscr and Stens [4] a 
similar error is stated for functions fin a sp('cial subspac<' of !)(!R), 

The truncation error is ex1iress<'d in tern1s of its own enNgy, by P;1poulis [9] , p. 1·12, in the 
following manner. Define, for f E 1Pr, 

" 
etrU) := /(1)- L .;:;F-J(iir/r)sincir(I- iir/r). 

i=-n 

Since etr E 1Pr, it follows by (:l.J) that lcti.(1)\ :S lhr(.)\IP· 

In this paper we obtain0d a new bound for the truncation Nror in the cas0 of nonuni
form Rampling, for functions f E D,r· We approxi111at0d the solution to the monwnt problem 
(0.1) and used this procedme to derive the Nror bound (:l.6). 
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