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ABSTRACT
In this paper we obtain a construction of the solution to a moment problem. We use our results to
derive a truncation error for sinc-interpolation, which generalizes the error bounds in the literature to
the case of nonuniform sampling.
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0 _INTRODUCTION

In this paper we approximate the solution f to a moment problem, by means of
truncation. The moment problem consists of finding an element f of a Hilbert space H
which satisfies

(froidyy =9i, Vie Z (0.1)

where {g;} € ¢*( Z) and the system of vectors {®i}ic Zzlies in H, which has inner product
(, )3~ The space €%( Z) is the set of sequences of complex numbers {9i};¢ z such that
YieZ |9i|? < oo. Without further conditions on the system {¢i}ic Z» (0.1) need not have a
solution. It turns out that a sufficient condition for (0.1) to have a solution is that {¢:},. 7z
is a Riesz basis, cf. Young [12] . The computation of f involves the inversion of an infinite
matrix. For practical reasons, we want to work with finite matrices. This problem can be
circumvented by first solving the truncated problem,

(fr, i)y = 9i, Vie{-n,.,n}. (0.2)

Repeating this procedure for each n € IN, we obtain a sequence f,. These functions f, are
given in closed form, involving only finite sums and inverses of finite matrices. In section 2
we prove that f can be approximated by fn,

Jim ||f = £l = 0.
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In section 3 we introduce the space of bandlimited functions, i.e. functions whose
Fourier transforms have compact support. It turns out that for bandlimited functions f,
the inner product (f,;) is a point evaluation of f at, say, t;. If ¢; = i for all ¢ € Z, then
we say the function f is sampled uniformly, otherwise f is said to be sampled nonuniformly.
The main application is to derive a bound for the truncation error in the case of nonuniform
sampling, which is an extension of an estimate of Butzer {1] . In the literature Butzer
[1] , Butzer and Splettstdsser [3] , Butzer, Splettstosser and Stens [4] , and Papoulis [9] ,
estimates for the truncation error are given only for uniform sampling. In section 4 we make
some remarks on the estimates from the literature.

1 INARIE

In this section we introduce notions which we use in later sections. A sequence of

vectors {¢i};c 7z is a Riesz basis (see Young [12] p. 31) if there exists a bounded linear
invertible operator T on H such that

Te;=hi, Vie Z, (1.1)

where {hi};. 7 is an orthonormal basis for H. An operator 7' is invertible if its inverse,
denoted by T-!, exists and is bounded.

The next theorem (cf. Young [12] Theorem 9, p. 32) characterizes Riesz bases, in
terms of its Gram matrix and of completeness of a system of vectors. A sequence {¢;} C H
is complete if its linear span, denoted by span{¢;},. 7, lies dense in H. The Gram matrix
of {p;} is defined by

Gij = (05, pi)py, Vi, j € Z.
In the case of a Riesz basis G is the matrix representation of the operator (TT*)~!, with
respect to the basis {h;}. So,
IT=H =G, and [T = |IGTH|M/2. (1.2)

Theorem 1.1 . The following statements are equivalent.

(i) {pi}ic z is a Riesz basis.
(ii) {pi} is complete and there exist positive real numbers A, B such that for eachn € IN
and for each finite sequence {¢;}-n, . n

n n n
AN el < Z cpil <B Y el

i=—n I=—n i=-n

(iii) {¢i} is complete and the Gram matrix G of {i;} generates a bounded linear invertible
operator on £2( Z).

Throughout the rest of this paper the system {p;};. 7 denotes a Riesz basis. By
Theorem 1.1 it follows that the definition of Riesz basis is independent of the choice of the
orthonormal system {h;}.

Two systems {¥;}, {pi} are called biorthogonal if
(@i, 509 = 6i5,¥i,5 € Z.
A Riesz basis {¢;} has a unique biorthogonal system {%;}, given by ¢; = T*h;, fori € Z.
The biorthogonal sequence also is a Riesz basis. Any f € H can uniquely be written as (cf.
Higgins [6] )
f=Y (f et (1.3)
ie Z
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From this it follows that the moment problem (0.1) has the unique solution

F=3 ati (1.4)
ie Z
If we want to compute the system {%;}, we need a formula for the operator T, which
may be hard to find. An alternative formula for {¢;} is obtained by Zwaan [13]

Yi = Z (G=Y)ye5, Vie Z.
eZ
The problem in this formula is the inversion of the infinite matrix G. In section 2 we circum-

vent this inconvenience by inverting the truncated matrix. We thus obtain an approximation
of the system {t;} and of the solution f.

We construct an orthonormal basis {h;},. z for H in such a way that
{Ri}i==n.,...n is an orthonormal basis for

n = Spa’“{‘p—vu sty ‘Pn}’

e.g. by Gram-Schmidt orthogonalization. In this case the operator T" given by (1.1) lcaves
all the subspaces H, invariant, and

T(pi=hi, Vie Z.

Note that the adjoint of T' need not leave the subspaces H, invariant. Define the restriction
of T to Hn by Ty, := Tl'H..' Denoting the adjoint of Ty, in Hp, by Tx, the system {¥}-n,...n C
Hy can be defined as

Y7 = Trhi, Vie {-n,..n}, (1.5)
which is the unique biorthogonal system of {®¥i}-n,.,n in Hn. An alternative formula for

Pris

n

YF = ) (GRh)yei

i=—_n

Here G, is the truncated Gram matrix,
(Gn)ij = Gija VI,] € {—n, ,'fl}

A (not necessarily unique) solution to (0.2) can now be given as

fa= ) gt (1.6)

i=—n

(1.6) is not unique, because other solutions can be obtained by adding elements to fn,
which are orthogonal to span{¢_n,...,¢on}. The following result (cf. Young [12] Proposition
1, p.147) characterizes solutions to an arbitrary moment problem.

Proposition 1.2 . Let I C Z be an arbitrary index set and let {g;} € (*(I). If the
problem

(fioi)y =91, Viel, (1.7)

has a solution, then there exists a unique minimum norm solutjon which lies in the subspace
span{pi}ier C H.
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1t follows that f, € Hn, given by formula (1.6), is the unique minimum norm solution
to (0.2) in H.

2 _CONSTRU N OF THE SOLUTION TO THE MOMENT PROB

The aim of this section is to prove that ||f — fal| — 0, (for n — o) where f € H
and fn, € My, are the unique and the unique minimum norm solution to (0.1) and (0.2),
respectively.

Introduce the projection operator P, : H — Hp, by

Pnf = Z (fa 991)7-”[)?7 (21)

1=-n

where the system {¢?} is given by formula (1.5). P, is a normal operator (Py P, = P,P})
from H onto H, and it reduces to the identity operator on H,,i.e. P,g =g for g € H,. If
J € H is the solution to (0.1), then the minimum norm solution f, to (0.2) can be written
as fn = Pof. For any g € H,, we have

(I = Po)f = (1= Po)(f-29)
Hence
1T = PSIl < I = Paldist(f, Ha), (22)
where
dist(f, Hna) = inf, gy [If = hllp-

We know that for all f € H

lim dist(f,Hn)=0. (2.3)

N~ 00
Note that [|(/ — P,)f||is the error due to truncation of the moment problem (0.1). The next

theorem proves that ||/ — P,|| < ¢, where ¢ is a constant independent of n.

Theorem 2.1 . Let {goi}ie z be a Riesz basis for H, and let P, be given by (2.1).
Then

I = Pall < 14+ (G IGID'2, ¥n € IN. (24)

Proof:
Using ¥; = T*h;, and (1.5), we obtain

IPfll= 11 Y (frodFll = Z (froin Trhill <

i=—n i==—n

T E (Fedahill SITIESS (Froadgg T il < ITIT = 11-

1=-—-n i€ Z

Hence, by (1.2) and Theorem 1.1. (iii),

= Pall < T+ (UGG ) < 0, ¥m e IN.

This proves the estimate. o
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By (2.2) and (2.4) it follows that,

(7= Po)fI < (L4 (IGTHIGIN'?) dist(f, Ha). (2.5)
Hence, by (2.3), for all f € H,

lim (1 = P)f|| = 0. (26)

We have proved the following result.

Corollary 2.2 . If {¢i};¢ 7 is a Riesz basis and if f, (formula (1.6)) is the minimum
norm solution of the truncated problem (0.2), then {fn}nemn converges to the solution of
problem (0.1).

This applies in particular to biorthogonal sequences {#:},. 7 of a Riesz basis. It
follows by definition of P, that ¥ = P, for i € {~n,...,n}. Hence by (2.6)

lim |[¢F — i = 0, (2.7)
T =—r OO

for ¢ € Z. This procedure of solving the truncated problem (0.2), instead of (0.1), is an
application of a projection method of Natterer (8] .

3 TRUNCATION ERROR FOR NONUNIFORM SAMPLING

In this section we derive a formula for the truncation error in the case of nonuniform
sampling of a bandlimited function. We apply the results of the previous section in the case
that H is the space of bandlimited functions and ¢; := sincy(. — tiw/7), where {£;} is a
sequence of real numbers. Here the sinc-function is given for t € IR, by

sin(rt)
—, t#0
sinc,(t) := rt # .
L, t=0

The space of bandlimited functions, also refered to as the Paley-Wiener space, consists of
all L2>(IR)-functions f such that the Fourier transform of f, denoted by f, is zero outside
the interval [—7,7].

Definition 3.1. P, := {f € L*(R)|supp f C [-,7]}
If we define the inner product (, )p, on PP, by,
(ayr = [ S,
R
then JP, is a Hilbert space. By the theorem of Paley-Wiener (see Young [12] Theorem 18,
p. 101) any f € [P, can be extended to an entire function f : € — € which satisfies

If()] < |Ifllp, €™l for all z € €. Hence any element of [P, satisfies the incquality,

[l < 11f

Here the co-norm is defined by ||f||s = sup e gl f(2)]-

p., VfeDl. (3.1)

The system {<,o,-}ie z is a Riesz basis for I, if the sequence of t;’s satisfies

lti—i|<a< 1/, Vie Z. (3.2)



Ift, = iforall i € Z,then {¢;} is an orthonormal basis for /.
The point evaluation can be written in terms of the ¢;’s,

(fro0p, = (V) ftn[r), Vf€ P,

So, with (1.3) we write an arbitrary element flyingin H = P, as

f=Y (Ja/nfm /), (33)
ie Z

and the projection from f onto Hy, as (cf. definitions (2.1) and (1.5))
fui= Pof =Y (Vr[r)f(n/r)eE.
i=—n

The distance from f to H, can be expressed in terms of the system {h;} (cf. section 2),

dist(f, 1) = (5 1 )

[{|>n

Because {¢;} is a Riesz basis, we obtain by (1.1),

2\ 172 . o\ 172
dist(f.Ha) = (3 KT fopi)rl?) = (30 (r/mlr= p)tan/r))
[i>n Ji|>n
Generalizing Butzer [1] , we assume 7™ f to satisfy,
(T (O] € Myeg 1/, (3.4)

for t € R\ {0} and v > 1/2. Here Mp-; is a constant which depends on 7™ f. It follows by
a straightforward computation (for n > 0), and by (3.4) that

y=1/2) (n— 1/4)(1—27)/2.

dist (f,Hn) < V2 Mq- ( 3.5
(f ) > T f (T/W) \/,27—_1' ( )
Define the truncation error as ey := || f - falleo- By Theorem 2.1, and (3.5) we have
eqr < (1 + (”0—1””@”)1/2) (\/'2' My (r)m)r=1/2 (L—_}._M) (3.6)
V2y =1

A remark is in order. In the case of uniform sampling (i.e. a = 0 or, equivalently, t; =1
for i € Z) T* is the identity operator on IPp; G and G~ are the identity matrices. Ience,
in the case of uniform sampling the biorthogonal system {#:} is equal to the initial system
{¥i} and formula (3.3) reduces to the classical Shannon sampling series. In the case of
nonuniform sampling (i.e. @ # 0) the norms of G and G~! are estimated in Zwaan [14],

IGIM? <14 A and G712 < —,
T
where A := 1 - cosma + sin ra.

In the following section we compare formula (3.6) with results from the literature.
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4 CONCLUSIONS AND REMARKS

From (3.6) it follows that the moment problem (0.1) is stable for truncation (i.e.
lim fn = f, for n — o0), if the t;’s satisfy (3.2). The rate of convergence is governed by
the norms of the matrices G and G~!. In the case of uniform sampling (i.e. o = 0 or,
alternatively t; = 4, for 1 € Z) the number ||G||]|G™!| is equal to one, but if we sample
nonuniformly, especially when e is close to 1/4, this term may become large. So, in the case
of uniform sampling, the truncated solution f, may converge faster to the solution f than
in the case of nonuniform sampling.

Next we make some remarks on estimates of the truncation error which are given in
the literature. The estimates given by Butzer [1] , Butzer and Splettstdsser [3] , Butzer,
Splettstdsser and Stens [1] are valid for functions f which are sampled uniformly. Further-
more f is assumed to lie in the Lipschitz class of order a, given by

{/ € C(R)lsupjpesllf (- + R) = FOI < L6

The estimate from Butzer [1], Lemma 2,

> Va/rftin o)l < V2My(rfx) =2 plt=2/2, (4.1)

li|>n
holds for functions f that satisfy the additional estimate
£ < My ], (4.2)

for t € IR\ {0}. This can be proved by straightforward computation. Note that for uniform
sampling 7 is the identity operator on Py ¢ and G=! are the identity matrices. Hence
condition (3.4) reduces to (4.2) and (3.6) reduces to an error bound which is similar to (4.1).
By using de la Valleé Poussin kernels, Theorem 6.1. of Butzer and Splettstosser [3] provides
the error bound, (if f satisfies (1.2) and if s is such that ¢ — ¢° f(t) belongs to the Lipschitz
class of order @)

epp = /()= Y flim/r)siner (. —in/r)| S e n™°"“Inn.

Here ¢ depends on 7, L, and f. In Butzer [1] and Butzer, Splettstésser and Stens [4] a
similar error is stated for functions f in a special subspace of L'(RR),

ep = O(nl=2 7).

The truncation error is expressed in terms of its own encrgy, by Papoulis [9] . p. 142, in the
following manner. Define, for f € Py,

eqp(t) = f(t) - Z V/rfin/rsineg(t — in/r).

i=—n

Since ey € P, it follows by (3.1) that |eq ()] < [legp (|12
In this paper we obtained a new bound for the truncation error in the case of nonuni-
form sampling, for functions f € IP.. We approximated the solution to the moment problem

(0.1) and used this procedure to derive the error bound (3.6).
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