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0. Introduction 

Let K be an algebraic number field and j(X) E K[X]. The Diophantine problem of 
describing the solutions to equations of the form 

yn = f(x) (n ~ 2) ( +) 

has attracted considerable interest over the past 60 years. Siegel [12], [13] was the 
first to show that under suitable non-degeneracy conditions, the equation ( +) has 
only finitely many integral solutions in K. LeVeque[7] proved the following, more 
explicit, result. Let 

f(x)=a(x-a 1 )r1 ••• (x-ak)Tk, ni=n/gcd(n,ri) for i=1, ... ,k, 

where a EK* and a 1 , ... , ak are distinct and algebraic over K. Then ( +) has only 
finitely many integral solutions unless (n1, ... , nk) is a permutation of one of the 
n-tuples 

(2,2,1,1, .. .,1) or (t,1,1, ... ,1) with t~1. 

We mention that Leveque's theorem was ineffective. When K = Q and f(x) has at 

least two simple zeros with n ~ 3 or three simple zeros with n = 2, Baker [1] has given 
an explicit upper bound for the solutions to (+)which depends on n and/. Under the 
same conditions for K andf, Schinzel and Tijdeman [9] derived an effective constant 0, 
depending only onf, such that if n > C, then (+)has no solutions x, y E "ll with y =I= ± 1. 
Effective upper bounds for solutions to ( +) in S-integers of a number field have been 

given by Trelina[17] and Bindza[2]. Finally, Faltings[S] has shown that if K is an 
algebraic number field and ( +) describes a curve of genus at least 2, then ( +) has 
only finitely many solutions x,yEK. Faltings' theorem is not effective. 

The equation ( +) has also been extensively studied in the case that K is a (one­
dimensional) function field. In this case, if ( +) gives a curve of genus at least 2, 
effective upper bounds for the heights of solutions in K have been given by Schmidt [1 OJ 
and Mason [8]. However, in contrast to the number field case, a bound for the heights 

of solutions does not imply that there are only finitely many solutions. Mason [8] has 
given an effective procedure for finding all the solutions to ( + ). 

It is our aim in this paper to give an explicit upper bound for the number of solutions 
to ( +) whenj(x) has distinct roots (in an algebraic closure of K). We will do this for 
S-integral solutions when K is a number field, and for rational solutions (i.e. in K) 
when K is a function field. In both cases, we have attempted to give bounds which 
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depend minimally on K, S, and f. For example, our bounds depend only on the number 
of primes dividing the discriminant off, and not on which primes are in this set. 'W_ e 
were not able to derive such attractive bounds under LeVeque's more general condi­
tion onj. Our result for number fields is as follows. 

THEOREM 1. Set the following notation: 

K an algebraic number field of degree m. 
S a finite set of places of K, containing the infinite places. 
s = =!!=S. 
R8 the ring of S-integers of K. 
f(X) E R8 [ X], a polynomial of degree d with discriminant disc (f) ER~. 
L / K an extension of degree M. 
Kn(L) then-rank of the ideal cla,ss group of L. 

For n ~ 2, let 
V(R8 ,f,n) = {xER8 :f(x)EK*n}. 

(a) Let n ;;<: 3, d ~ 2, and assume that L contains at least two zeros of f. Then 

* V(Rs,J,n) ~ 17M(6m+s>.n2Ms+Kn(L>. 

(b) Let d ~ 3, and assume that L contains at least three zeros of f. Then 

* V(Rs,f, 2) ~ 7M(4m+9s). 4""2(Ll. 

Remark 1. It is possible to choose L such that M ~ d2 in (a), and M ~ d3 in (b). 

Remark 2. Sprindzuk[16] has given a proof of Theorem 1 (with constants left un­
computed) in the special case that R8 = "ll.,f(X) = X 2-A, and n = 3. 

Remark 3. Let K, S,f be as in Theorem 1, and suppose thatf has degree at least 2. 
One possible generalization of Theorem 1 would be to give an upper bound for the 
number of solutions (x, y, n) ERs x R8 x 7L to the equation yn = f(x) satisfying n ~ 3, 
y =I= 0, and y not a root of unity. It is very likely that by applying Baker's method 
one can compute an explicit constant 0 such that there are no solutions with n > C. 
Shorey, van der Poorten, Tijdeman and Schinzel [11] proved this for K = IQ, although 
they did not give an actual value for 0. Combined with Theorem 1, such a constant 
would immediately give an upper bound for the number of solutions. However, this 
bound would depend not only on the number of places in S, but also on the specific 
places in the set S. 

When K is a (one-dimensional) function field, we can say considerably more about 
the number of solutions to ( + ). First, rather than restrict to integral solutions, we 
deal with arbitrary rational solutions. Second, as in [14], we also allow n to vary. Thus 
we count the number of xE K for whichf(x) is a perfect nth-power for any n ~ 4. The 
precise result is as follows. 

THEOREM 2. Set the following notation. 

k a field of characteristic 0. 
K / k a (one-dimensional) function field of genus g over k. 
S a finite set of valuations of K containing s ;;:i: 1 elements. 
R8 the ring of S-integers of K. 
f(X) eR8 [X], a monic polynomial of degreed;;<: 3 with disc (f) ER;. 
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We further assume that f(X) is non-degenerate. (See section 2 for the precise definition. 
In essence, this means that f does not arise by change of variables from a polynomial in 
k[X].) Then the set 

contains at most 
{xEK:f(x)EK*n for some n;:;;: 4} 

elements. 

1. The equation yn = f(x) over algebraic number fields 

Let K be an algebraic number field of degree m, and let Mx denote the places of K. 
Let S c MK be a finite set of places, containing all infinite places and t finite places, 
corresponding to the prime ideals µ1, ... ,µt respectively. Let R8 be the ring of S­
integers of K, l(K) the group of fractional ideals of K, s = =If S, and Kn(K) then-rank 
of the ideal class group for K. For av . .. , arE K, we let (av ... , a-r) denote the fractional 
ideal of K generated by av .. ., ar. Finally, if a, {J El(K) and n ;:;;: 2 is a rational integer, 
then we write 

a= :OmodS, 

if ao-1 = µ1k1 ••• µtkt for some k1, ... , kt E Z; and 

a= omod(n,S), 

if ab-1 = .):>1k1 ... .lJlicn for some k1, ... , ktE land CEl(K). 

LEMMA 1. Let aEl(K) and n;:;;: 2. Then 

=If {zEK*/K*n: (z) = amod(n,S)} ~ ns+Kn<K>. 

Proof. Suppose that there exists a z0 EK* with (z0) = amod(n,S). Then for each 
zEK*, we have (z) = amod(n,S) if and only if (z/z0) = (1)mod (n,S). Hence it 
suffices to prove Lemma 1 in the case that a= (1). 

Let d denote the group {zEK*: (z) = (1)mod (n, S)}, let~ denote the ideal class 
group of K, let ~(S) denote the subgroup of~ generated by the ideal classes .):>1, ••. , .\Jt, 
and let (~ /~(S))[n] be the subgroup of~ /~(S) consisting of elements of order 
dividing n. There is a natural inclusion i: RMR~n~d/J<ln; and we define a map 
j: d/d"'~(~/~(S))[n] as follows: if (z) = abn with a,bEl(K) and a= (1)modS, 
thenj(zmod.s!fn) is the cosetin ~ /~(S) of the ideal classofb. Oneeasily checks that this 
gives an exact sequence 

Now R~ is the direct product of s cyclic groups, so =If (RM R~n) ~ n8 ; while by definition 
of Kn(K), we have 

=IF(~ /~(S))[n] ~ :jf ~[n] ~ nt<n<K>. 

Therefore =If (d/Jatn) ~ ns+Kn<K>. This proves Lemma 1 for a= (1). 

LEMMA 2. Let w EK* and n ;:;;: 3. Then the number of~ EK* with 

(1-w~n) = (1,w~n)modS 

is at most 

where 
_ 16n - 2 ( 16n _ 2) (Sn+l5)/(8n-17) 

U(n)- Sn-17 8n+15 · 

(1) 
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Proof. Let K be an algebraic closure of K, and let H: .i(.....;.. [1, co) be the absolute 
height on K. In Evertse[3] (chap. 6, theorem 6.2) it was shown that (1) has at most 
2(nU(n))8 solutions s EK* with H(wtn) ;:?: 3n510. In Evertse[4] (lemma 1) it was shown 
that for every ()EK and for every C;:?: 1, the number of zeK* with H(Oz) ~ C is at 
most 5(203)m. Combining these results (with() = w11n and C = 3i+io/n) yields Lemma 2. 

PROPOSITION 1. LetnE"ll.withn;:?: 3, aEl(K),anilput 

Vi= {zEK*: (z) = amod(n,S) and (1-z) = (1,z)modS}. 

Then 

Proof. For wEK*, let l'i(w) = {zEf;.: z/wEK*n}. By Lemma 1, Vi is contained in at 
most ns+"n<K> sets of the form l'i(w). Moreover, since U(n) < 17 for n ;:i: 3, and s ;:i: !m, 
we see that Lemma 2 implies that each set Vi_(w) has cardinality at most 

5(2. 3a+aO/n)m+ 2(nU(n))s ~ 176m+s. ns. 

This proves Proposition 1. 

LEMMA 3. Let a, :0 El(K), and put 

W={zeK*:(z)=amodS and (1-z)=omodS}. 

Then 

Proof. Suppose that W is non-empty, and let A be a fixed element of W. Putµ = 1- A. 
Then z E W if and only if z = J\£ and 1 - z = WI for some £, 17 ER~. Now Lemma 3 
follows immediately from Evertse [ 4] (theorem 1), which states that for fixed A,µ EK*, 
the equation J\g + µr/ = 1 has at most 3. 7m+2s solutions with£, 'I'/ ER~. 

PROPOSITION 2. Let a, b EI (K), let y EK*' y =F 1, and let ~ be the set of pairs 

(zv z2) EK* x K* 
with the fallowing properties: 

(z1) = a mod (2, S) and (z2) = b mod (2, S): 

(1-z1)/(1-z2) = y; 

(2) 

(3) 

(1-z1) = (1,z1)modS, (1-z2) = (l,z2)modS and (z1 -z2) = (z1,z2)modS. 
(4) 

Then 

Proof. For w1, w2 EK*, let 

~(w1 , w2) = {(zv z2) E "J'2: zi/w1 E K*2 and z2/w2 E K*2} 

and Tf:i(wvw2 ) = {(s1,s2)EK*xK*: (w1 t~.w2 ti)E~(wvw2)}. 

Then * "J'2(w1, w2) ~ ! * ~(wv w2). 

Furthermore, by Lemma 1, "J'2 is contained in at most 4s+1:2<Kl sets of the type "J'2(w1, w2). 

Hence it suffices to prove that 

(5) 
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Let wI> w2 EK*, let L = K(.jwI> .jw2 ), and let T be the set of places of L lying above 
the places in S. We will use the symbol ( ... ) to denote a fractional ideal in L. For 
(t;1, t;2) EK* x K*, we put 

1-..Jw1 <.1 
A(t;vt;2) = .Jw2s2-..fw1t;1· 

Then A(t;v t;2) EL*. Further, if (t;,1, t;2) E ll~(w1 , w2), then (3), (4), and the inclusions 

(1 ± .jwi t;,i) c: (1, .jwi t;i> (i = 1, 2) and <..Jw1 r;,1 ± .jw2 t;,2) c: (.jw1 t;,1 .jw2, r;,2), 

imply that 

Together with Lemma 3 and the fact that [L: K] ~ 4, this implies that 

* {AEL*: A= A(t;,1, l;,2) for some (sv t;,2)ETf;(w1, w2)} ~ 3. 74Cm+2s). (6) 

Let A EL*, and suppose that A = A(s1, s2) for some (sv S2) E Tf;(wv W2). Then (3) and 
a straightforward computation yields 

1+2(A- 1) .jw1 t;1 + (A-1)2 w1 si = A 2w2 t;~ = (A2/y) (w1 si +')'-1). 

Hence for each A EL*, there are at most two pairs (l;,1 , l;,2 ) E Tf;(wv w2) with A(l;,1 , l;,2 ) = A. 
By combining this with (6), we obtain 

:ff: Tf;(wv w2) ~ 6. 74(m+2s) ~ 41-s. 74m+9s. 

This completes the proof of ( 5) and of Proposition 2. 

LEMMA 4. Let% be afield endowed with a valuation v satisfying v(%*) = 1:; and let 
f(X) = adXd+ ... +a0 E%[X] be a polynomial such that v(ai) ~ 0 for all 0 ~ i ~ d, 
v(disc (j)) = 0, and f has d distinct roots a 1, •.. ,ad in%. 

(a) Forall 1 ~ i <j ~ d, 

v(ai - a1) = min {O, v(ai)} + min {O, v(a1)}. 

(b) Forall 1 ~ i <j ~ dandallxE%withv(x) ~ 0, 

min{v(x-ai), v(x-a1)} = v(ai-a1). 

(c) Let n ;:<: 2, and suppose that xE% satisfiesf(x) e%*n. 
(i) If v(x) ;:<: 0, then for all 1 ~ i ~ d, 

v(x-ai) = min{O,v(ai)}+min{O,v(x)} (modn). 

(ii) If v(x) < 0, then there exists an l, 1 ~ l ~ d, such that 

v(x-a1) = min{O, v(a1)}+ min{O, v(x)}-dv(x) (modn); 

v(x-ai) = min{O,v(a.i)}+min{O,v(x)} (modn) for all i =l= l. 
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Proof. For each i, choose /Ji,yiE.f satisfying ai =Yd A and min{v(/Ji),v(yi)} = 0. 
Then v(/Ji) = -min {O, v(ai)}. Let a = aa/(/31 ... /3al· Then 

f(X) =a TI (f:JiX-yi) and disc(j) = a2a-2 TI (/:Jiy1-/l1%)2• 
l~i~d l~i<j~d 

By Gauss' lemma, v(a) ;:,: 0. Moreover, since v(disc (f)) = 0, we see that 

and v(a) = 0. 

(8) 

(9) 

I ... emma 4a follows immediately from (8). Further, in view of (9), w~ may henceforth 
assume that 

f(X) = n (f:JiX-yi) with min{v(/Ji), V{/'i)} = 0 for all 1 ~ i ~d. (10) 

Let xE.Jf', and choose f,,,?JE:X:' such that x = f,,/17 and min{v(f,,), v(17)} = 0. Then 
v(17) = -min{O, v(x)}. Using (8), a little bit of algebra yields 

whence (11) 

Now Lemma 4b follows from (8), (11), and the fact that v(x) ;:,: 0 implies v(17) = 0. 
It remains to prove Lemma 4c. Let x, f,,, 1J be as above, and suppose thatj(x) = yn 

for somo y E .f* and some n ;:,: 2. Then, by ( 10), 

Combining this with (11) shows that there is an l such that 

and 

Since 

v(j]if,,-yi?J)=O (modn) forall i=!=l. 

v(j3if,,-Yi'l/) = v(x-ai)-min{O,v(x)}-min{O,v(ai)} for all 1 ~ i ~ d, 

and since v(17) = -min{O,v(x)}, we obtain Lemma 4c(i) and (ii) by taking v(x);:,: 0 
and v(x) < 0 respectively. 

Proof of Theorem 1. We use the notation as in the statement of Theorem 1. Factorize 
j(X) as f(X) = a(X -a1) ... (X - aa) over an algebraic closure K of K. Relabelling the 
a/s if necessary, we may assume that a 1,a2 EL if n;:,: 3, and a 1,a2,a3 EL if n = 2. Le, 
T be the set of places of L lying above the places in S. We will denote fractional ideals 
in L by( .. .). 

For i,j E{1, 2} if n ;;::: 3, and i,j E{1, 2, 3} if n = 2, for each xEK we let 
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Then for xE V(R8 ,j, n), the following relations hold: 

<z _ (1,a,) l ii(x)) = (l, a;) mod (n, T) 

(1-Zi1(x)) = (1,Zi1(x)) modT. 

(12) 

These relations follow from Lemma 4c (i) and 4b respectively, in view of the facts that 
f(X) ER1,[X] and disc (j) ER~. 

Letn;;.: 3. From (12),Proposition 1,and thefactthat[L: K] = M, weseethattheset 

{Z12(x): XE V(R8 ,f,n)} 

has at most 17M<am+s>. n2Ms+Kn<L> elements. Since x is completely determined by Z12(x), 

this proves (a). 
Now let n = 2. For x E V(R8 ,f, 2), we have 

and by (12), 

1-Z13(x) = a1 -Cta # l · 
1-Z23(x) a2 -a3 ' 

(Z13(x)-Z23(x)) = (Z13(x), Z23(x)) mod T. 

Together with (12), Proposition 2, and the fact that [L: K] = M, thisshowsthattheset 

{(Z13(x), Z23(x)): XE V(R8 ,f,2)} 

has cardinality at most 7M<4m+9s>. 4K2<L>. Since x is completely determined by the pair 
(Z13(x), Z23 (x)), this completes the proof of (b). 

2. The equation yn = j(x) over function fields 

The following notation will be used throughout this section. 

k an algebraically closed field of characteristic 0 
K/k a one-dimensional function field of genus g over k 
Mg a complete set of valuations on K, normalized so that v(K*) = Z 
S a finite subset of Mg containing s ;;.: 1 elements 
R8 the ring of S-integers of K 
hx the (logarithmic) height on K relative to Mx: for zeK, z =I= 0, 

hg(z) = ~ max {O, v(z)} = i ~ jv(z)i. 
veMg veMg 

Definition: An element z EK* is an (idelic) nth-power modulo S, denoted 

z = 0 mod(n,S), 

if the ideal zR8 is the nth-power of a (fractional) ideal of R8 . (In terms of divisors, this 
means that 

with Support(D2) c S.) 

LEMMA 5. (a) The group 

{zeK*/K*n: z = 0 mod(n,S)} 

contains at most n2u+s elements. 
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(b) Theset 

contains at most 22II+28 elements. 
(c) LetzEK,zrtk. Then the set 

{aEk: 1-ctzER~} 
contains at most s - 1 elements. 

Proof. (a) Let PicO(K) [n] be the group of elements of order n in the divisor clas: 
group of K. Then there is an exact sequence 

i j 

0-?PicO(K) [n]-7-{zEK*/K*n: z = Omod (n,S)}-7(l/nl)8 , 

where i andj are defined by 

i{class{D}) = zmodK*n for (z) = nD; 

and j(zmodK*n) = (v(z)modn)veS· 

Now PicO(K) is isomorphic to an abelian variety (over k) of dimension g, so 

PicO(K) [n] ;;;; (l/nZ)2U. 

This and the exact sequence give the desired estimate. 
(b) Let zER~ with hx(z) ~H. Write the divisor of z as 

Then hx(z) = !l: lnvl. Since (z) determines the class of z in RMk*, it suffices to estimat€ 
the size of the set 

This last set has exactly Lf=o (j) 2i(]H) elements, a quantity which is certainly lesi:: 
then 22H+2s. 

(c) Let vv .. .,vrES be the places of S for which z does not have a pole. (Note that 
r ~ s - 1, since z is not constant.) Then the fact that 1 - az ER~ implies that all of the 
zeros of 1 - ctz are in the set {v1, .. ., vr}. Since 1 - ctz has at least one zero, we see that 
1/z takes the value a for at least one of the places Vv •.. , vr. Hence the number of such 
a's is at most r. 

PROPOSITION 3. Let n ~ 4, and define 

V(K,n,S) = {zEK*: ztf.k, z = Omod(n,S), and 1-z = Omod(n,S)}. 

(a) Let zE V(K,n,S). Then 

hK(z) ~ (2g-2+s)(l-3/n)-1. 

(b) The set V(K, n, S) contains at most 2n'<2u+sl2 elements. 

Remark. For number fields, a bound for the height as in (a) immediately implies 
finiteness; but for function fields, this is certainly not the case. Here the finiteness 
statement in (b) lies deeper than the height bound in (a). 
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Proof of Proposition 3. (a) This can be proven either by using results of Mason[8] 

or by adapting the argument of Silverman [15]. We choose the latter course, since we 
will use similar methods to prove (b). 

Let K' / K be the extension given by 

K' = K(zlfn, (1-z)Ifn), 

and let g' be the genus of the function field K'. Since the ideals zR8 and (1-z)Rs are 
nth-powers, it follows that the only ramification in K' / K occurs over the places of S. 
Hence the Hurwitz genus formula gives the estimate 

2g'-2::;; [K':K](2g-2+s). (13) 

On the other hand, letting F = k(x, y) be the function field of the Fermat curve 
xn+yn = 1, we can embed F c K' by setting x = zl/n and y = (1-z)lfn. Let F' be the 
image of Fin K'. Then another application of the Hurwitz genus formula and the 
fact that F has genus !(n - 1) (n - 2) yields 

2g'-2;:::: [K':F'](2genus(F)-2) = [K':F'](n2 -3n). (14) 

Next, since K' = KF', we can compute the degree rK':k(z)] in two ways to obtain 

[K':K] [K:k(z)] = [K':F'] [F':k(z)]. 

Since 

this yields 

[K:k(z)] = hx(z) and [F':k(z)] = n2, 

[K':F']j[K':K] = hK(z)jn2. 

Now combining equations (13), (14), and (15) gives the desired result 

2g-2 +s;:::: ([K':F'J/[K':K])(n2 -3n) = hK(z)(1-3/n). 

(b) For each ZE V(K, n,S), let K,,/K be the field extension (as above) 

Kz = K(zl/n, (1-z)lfn). 

We ask first how many such fields Kz there are (up to k-isomorphism). Since 

z = Omod (n, S) and 1-z = Omod (n,S), 

the number of such fields is certainly at most the number of fields of the form 

K(flln, s~fn) with S1,s2E{SEK*: s = Omod(n,S)}/K*n. 

(15) 

Hence, from Lemma 5(a), there are at most (n2U+s)2 fieldsKzaszrangesover V(K, n, S). 
We now fix one such field K', and attempt to estimate the size of the set 

V(K,n,S,K') = {zE V(K,n,S): Kz-;:;; K'}. 

We recall from the proof of (a) (equation (13)) that the genus g' of IC is bounded by 

2g' -2::;; [K':K](2g-2+s) ~ n 2(2g-2+s). ( 16) 

As above, let F = k(x, y) be the function field of the Fermat curve xn + yn = 1. Then 
each element zE V(K, n, S, K') gives a distinct embedding F c K' by setting x = zI/n 
and y = (1-z)lln. (Actually, there are n2 embeddings corresponding to different 
choices of the nth roots; but we will just choose one such embedding.) We thus have 
an injection 

V(K, n, S, K')-+Map (F, K'). (17) 
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We now use Kani's quantitative version of the De Franchis theorem ([6], theorem 1), 
which in our case gives the bound 

=IF Map (F, K') ~ 2211'1-1(220·•-1_1) < 2w''-2. (18) 

Now (16), (17), (18), and a little bit of algebra gives the estimate 

=IF V(K, n, S, K') ~ 2n•c2u+s-1)•. 

Since V(K, n, S) is the union of V(K, n, S, K') as K' ranges over at most n4D+2s fields 
this completes the proof of (b ). 

We are now ready to state our main theorem, for which we need the following 
definition. 

Definition. Letj(X} EK[X] be a polynomial of degree d. We say thatf is degenerate 
if there are elements A,B,G,D,EeK with AD-BGeK* and EeK*, and a poly­
nomial </J(X) e k[ X], such that 

f(X) = E(GX +D)d<fJ((AX +B)/(GX +D)). 

(Thus f is degenerate if it arises by a fractional linear change of variables from a poly­
nomial with constant coefficients.) 

THEOREM 2. Let f(X) eR8 [X] be a non-degenerate monic polynomial of degreed;;.: 3 
with disc (j) ER~. Then the set 

{xeK:f(x)eK*n for some n;;::: 4} 

contains at most 22auc2t1+s>8 elements. 

Proof. Factorize f(X} (over a fixed algebraic clcsure K of K) as 

f(X) = (X-a1) ... (X-aa)· 

For each 1 ~ i,j ~ d, let Ki; = K(av ai, a1), let gii be the genus of Kii• let Si; be the 
set of places of Ki; lying above S, and let si; = =IF Si;· Since 

f(X) E R8 [ X] and disc(/) e R~, 

the extension Ki;/ K is ramified only over S; so by the Hurwitz genus formula we have 

2gi1-2+si1 = [Ki/K](2g-2+s) ~ d3(2g-2+s). 

(Note that [Ki1:K] < ds.) 
For each 1 ~ i,j ~ d, i =I= j, and each x in the set 

V(f) = {xeK*: x =I= a;1 and f(x)eK*n for some n;;::: 4}, 

define zii = z,1(x) EK by 

Note that we have Siegel's identity 

(19) 

(20) 

Let xe V(f). Sincef(X) eR8 i;[X], disc(/) eR~wf is monic, andf(x) e (Kt}n, we can 
make two deductions. First, v(a:,) ~ 0 for all 1 ~ i ~ d and all valuations vfftSi;· 
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Second, if v(x) < 0 and vf/=Sii' then dv(x) = 0 (modn). Now, applying Lemma 4(a) 
and 4(c)(i) and (ii), we see that 

zij = 0 mod (n, sij). 

Hence, using (19) and Proposition 3(a), we have 

hKi/zi1) ~ (2gi1 - 2 +si1) (1- 3/n)-1 

~ d3 (2g-2+s)(1-3/n)-1. 

We break V(f) into three pieces, and analyse each one separately: 

Vi_(/)= {xE V(f): z.,1 1/=R~iJ for some i #j} 

~(f)={xEV(f):ziiER~iJ forall i#j, and zi1fj=k forsome i=!=j} 

V3!f) = {xE V(j): ziiEk for all i =!=j}. 

(21) 

Let x E Vi (f), and choose i =!= j such that zid R~;.. Since zii = 0 mod ( n, Sii), this 

implies that hK· (zi3.) ~ n. Hence from (21), we obtai~ the bound ., 
n ~ d3(2g-2+s)+3 < d3(2g+s). 

Further, for any particular n;;;:: 4, Proposition 3(b) says that the set 

{zEKij:zi/=k,z=Omod(n,Sii), and 1-z=:Omod(n,Sif)} 

contains at most 

elements. Summing over n and noting that there are d(d-1) choices for (i,j) gives 
the estimate 

d 3(2g+s)-1 * v:;,(f) ~ d(d-1) }:: 2n•d6(2g+s)2 < 2d18(2g+s)6_ (22) 
n=4 

Now let xEVii(f), and let i,j be such that zi3€f.k. Since zii = Omod (n, Si3) for every n, 

we can let n-HIJ in (21) to obtain the bound 

hK;1(zi1) ~ d3(2g-2+s). 

Moreover, since [Ki1 : K] ~as, we have sii ~ d3s. Hence, applying Lemma 5(b,c) and 

noting that there are d(d-1) choices for (i,j), we see that 

* ¥; (f) ::::; d ( d - 1) (as 8 - 1) 22d3(2g-2+s)+2d3s < 25d3(2u+s). ( 2 3) 

Finally, suppose that * l~(f);;;:: 3. We will show that] is degenerate. Let x0E'J7a(f), 
and let l(X) be the linear polynomial defined by 

l(X) = }:: X-ai. 
t.:;i.:;d Xo-ai 

Then l(X) has coefficients in K, and since l(x0 ) = d =!= 0, l is not identically zero. (Note 

that sincef(x0)EK*n, we have x0 =!= ai for all 1 ~ i ~d.) By assumption, 91= V3(j);;;:: 3; 

so the fact that l(X) has only one root implies that there is an x1 E V3(f) such that 

x1 =!= x0 and l(x1 ) =!= 0. Now combining the facts that l(x1 ) EK* and 

we see that 

whence 

X1 - ai;x1 - a1 zii(x1) k ... 11 
-- --=--E .iora 
x 0 - ai x0 - a1 zii(x0 ) 

X1 -aiEK 
Xo-ai ' 

ai EK for all 1 ::::; i ::::; d. 

1 ~ i <j ~ d, 

(24) 
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Choose some j > 1, and define 

d 
B = (Xo-aj) n (aj-1Xi). 

i=l 
i-Fj 

Then using f(X) = II (X - ai), a little bit of algebra yields 

(AX+ 1)af (a1AX +Xo) = Att-1B Il (X-zi;). 
AX+1 i=1 

i-Fj 

Since by assumption each zi1Ek, and since by (24), a1,A,BEK, this proves that if * V3(f);;:,: 3, thenj'is degenerate. But by assumption! is non-degenerate, so 

:Jl: V3(f) ~ 2. 

Now combining (22), (23), and (25) gives the desired estimate, 

=If V(f) ~ * Vi_(f) +=If ~(j) +=If 'Va(f) 
~ 2dl8(2u+s)6 + 25cZ3(2g+s) + 2 

< 22a1s(2u+s)6. 
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