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0. Introduction

Let K be an algebraic number field and f(X)e K[X]. The Diophantine problem of
describing the solutions to equations of the form

yr =fx) (n>2) (+)

has attracted considerable interest over the past 60 years. Siegel[12],[13] was the
first to show that under suitable non-degeneracy conditions, the equation (+) has
only finitely many integral solutions in K. LeVeque[7] proved the following, more
explicit, result. Let

fx) = a@—a)r... (x—a,)*, n;,=mn/ged(n,r;) for i=1,..,k,

where a€ K* and «,...,«, are distinct and algebraic over K. Then (+) has only
finitely many integral solutions unless (n,,...,7n;) is a permutation of one of the
n-tuples

(2,2,1,1,...,1) or (t1,1,...,1) with > 1.

We mention that Leveque’s theorem was ineffective. When K = Q and f(x) has at
least two simple zeros with n > 3 or three simple zeros with n = 2, Baker[1] has given
an explicit upper bound for the solutions to (+ ) which depends on » and f. Under the
same conditions for K and f, Schinzel and Tijdeman [9] derived an effective constant C,
depending only on f, such that if » > C, then (+ ) has no solutions x,ye Z with y + + 1.
Effective upper bounds for solutions to (+ ) in S-integers of a number field have been
given by Trelina[17] and Bindza[2]. Finally, Faltings[5] has shown that if K is an
algebraic number field and (+) describes a curve of genus at least 2, then (+) has
only finitely many solutions z,y € K. Faltings’ theorem is not effective.

The equation (+) has also been extensively studied in the case that K is a (one-
dimensional) function field. In this case, if (+) gives a curve of genus at least 2,
effective upper bounds for the heights of solutions in K have been given by Schmidt[10]
and Mason [8]. However, in contrast to the number field case, a bound for the heights
of solutions does not imply that there are only finitely many solutions. Mason [8] has
given an effective procedure for finding all the solutions to (+).

It is our aim in this paper to give an explicit upper bound for the number of solutions
to (4 ) when f(x) has distinct roots (in an algebraic closure of K). We will do this for
S-integral solutions when K is a number field, and for rational solutions (i.e. in K)
when K is a function field. In both cases, we have attempted to give bounds which
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depend minimally on K, 8, and f. For example, our bounds depend only on the number
of primes dividing the discriminant of f, and not on which primes are in this set. We
were not able to derive such attractive bounds under LeVeque’s more general condi-
tion on f. Qur result for number fields is as follows.

THEOREM 1. Set the following notation:

K an algebraic number field of degree m.
N a finite set of places of K, containing the infinite places.
$ = #8.

Ryq the ring of S-integers of K.
f(X)  €Ry[X], a polynomial of degree d with discriminant disc (f) € E§.
L/K  an extension of degree M.
Ko(L) the n-rank of the ideal class group of L.
Forn > 2, let
V(Rs,f,n) = {x€Ry: f(x) e K*n}.

(@) Letn > 3, d > 2, and assume that L contains at least two zeros of f. Then
# V(Rg,f,n) < 17MEm+8) n2MstinL),
(b) Letd > 3, and assume that L contains at least three zeros of f. Then
# V(Rs,f,2) < 7M(Am+9s) 4k(L)

Remark 1. It is possible to choose L such that M < d?in (a), and M < d®in (b).

Remark 2. Sprindzuk [16] has given a proof of Theorem 1 (with constants left un-
computed) in the special case that Rg = Z, f(X) = X2— A4, and n = 3.

Remark 3. Let K, S, f be as in Theorem 1, and suppose that f has degree at least 2.
One possible generalization of Theorem 1 would be to give an upper bound for the
number of solutions (z,y,n)e Ry x Rgx Z to the equation y* = f(x) satisfying n > 3,
¥ + 0, and y not a root of unity. It is very likely that by applying Baker’s method
one can compute an explicit constant C such that there are no solutions with n > C.
Shorey, van der Poorten, Tijdeman and Schinzel[11] proved this for K = Q, although
they did not give an actual value for C. Combined with Theorem 1, such a constant
would immediately give an upper bound for the number of solutions. However, this
bound would depend not only on the number of places in S, but also on the specific
places in the set S.

When K is a (one-dimensional) function field, we can say considerably more about
the number of solutions to (+). First, rather than restrict to integral solutions, we
deal with arbitrary rational solutions. Second, as in [14], we also allow » to vary. Thus

we count the number of x€ K for which f(x) is a perfect nth-power for any n > 4. The
precise result is as follows.

TraEOREM 2. Set the following notation.
k a field of characteristic 0.
K/k o (one-dimensional) function field of genus g over k.
S a finite set of valuations of K containing s > 1 elements.
Ry the ring of S-integers of K.
f(X) €Rg[X], a monic polynomial of degree d > 8 with disc (f) € R.
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We further assume that f(X) is non-degenerate. (See section 2 for the precise definition.

In essence, this means that f does not arise by change of variables from a polynomial in
k[X].) Then the set

{xeK: f(x)e K* for some n > 4}
contains at most
92418029 +)8

elements.

1. The equation y™ = f(x) over algebraic number fields

Let K be an algebraic number field of degree m, and let M denote the places of K.
Let 8 = My be a finite set of places, containing all infinite places and ¢ finite places,
corresponding to the prime ideals p, ..., p; respectively. Let Ry be the ring of S-
integers of K, I(K) the group of fractional ideals of K, s = # S, and «,,(X) the n-rank
of the ideal class group for K. For «,, ..., &€ K, welet {a,, ..., &, denote the fractional
ideal of K generated by ay, ...,«,. Finally, if a,beI(K) and » > 21is a rational integer,

then we write
a=bmodSs,

if ab=! = p,*r ... p,*e for some ky, ..., k. € Z; and
a = bmod (»,S),
if ab=t = p,*r ... pFecn for some ky, ..., ke Z and ce I[(K).
Lemma 1. Let acI(K) and n = 2. Then
# {ze K*/K*": {z) = amod (n,S)} < ns+B),

Proof. Suppose that there exists a zye K* with (z,) = amod (n,8). Then for each
ze K*, we have {z) = amod (n,8) if and only if (2/z,) = (1) mod (n,8). Hence it
suffices to prove Lemma 1 in the case that a = (1).

Let 7 denote the group {z€ K*: (z) = {1)mod (n,8)}, let ¥ denote the ideal class
group of K, let €(S) denote the subgroup of € generated by the ideal classes p,, ..., 9;,
and let (€/%(8))[n] be the subgroup of €¥/%(S) consisting of elements of order
dividing n. There is a natural inclusion i: R§/R§"— 2//2/"; and we define a map
J: )AL (€ /€(S)) [n] as follows: if (z) = ab™ with a,bel(K) and a = (1) mod S5,
then j(z mod 27") is the coset in € /%(S) of the ideal class ofb. One easily checks that this
gives an exact sequence . .

0> RE/RE > ot st™— (% [€(8)) [n].

Now R}%is the direct product of s cyclic groups, so # (B§/R§"™) < n; while by definition
of x,(K), we have
#(€/€(8)) [n] < * €[n] < na®,

Therefore # (/™) < n5+*&), This proves Lemma 1 for a = (1).
LemMmA 2. Let we K* and n > 3. Then the number of {€ K* with
{—wlr)y = 1, wiymod S (1)
18 at most 5(2.33+30mym 1. 2(n U (n))®,

16n —2
where Un) = —L(

167 — 2\ @n+15)(8n-17)
T 8n—17 ) .

8n+15
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Proof. Let K be an algebraic closure of K, and let H: E—[1,c0) be the absolute
height on K. In Evertse[3] (chap. 6, theorem 6.2) it was shown that (1) has at most
2(nU(n))® solutions { e K* with H(w{") > 375°. In Evertse[4] (lemma 1) it was shown
that for every §e K and for every C > 1, the number of ze K* with H(6z) < C is at
most 5(2C%)™. Combining these results (with § = w'» and C = 31+19/*) yields Lemma 2.

ProposiTiON 1. Let neZ with n > 3, aeI(K), and put

Vi ={zeK*: (z) = amod (n,8) and {(1-2z)=(1,2z)modS}.

Then RIS Vl < {176m+s n23+'<n(K)_

Proof. For we K*, let Vj(w) = {z€V,: z/we K**}. By Lemma 1, ¥, is contained in at
most n8+=E) sets of the form V;(w). Moreover, since U(n) < 17 forn > 3, and s > {m,
we see that Lemma 2 implies that each set V;(w) has cardinality at most

5(2.33t30m)ym 4 (U (n))s < 176m+s g3,

This proves Proposition 1.

Lemma 3. Let a,5eI(K), and put
W ={zeK*:{z) =amodS and {1-2z)=DbmodS}.
Then # W < 3,772,

Proof. Suppose that W isnon-empty, and let A be a fixed elementof W. Put x4 = 1 - A.
Then ze W if and only if z = Af and 1—2z = w7 for some £,7€ R. Now Lemma 3
follows immediately from Evertse[4] (theorem 1), which states that for fixed A, u € K*,
the equation A +un = 1 has at most 3. 7™+ solutions with &, € R.

ProrositioN 2. Let a,bel(K), let ye K*,y % 1, and let V, be the set of pairs

(1, 29) € K* x K*
with the following properties:

{(zip =amod (2,8) and <(z,) =bmod(2,8): (2)
(1—2y)/(1 =25) = y; 3)

(I=-z)) ={1,2zymod 8, (1-25) = (1,2ymodS and <{(z;—2,) = (2;,2,) mod 8.

(4)
Then 4% 'V2 g 7amtos groK)

Proof. For w,, w,e K*, let
Va(wy, w) = {(21, 25) €Vt 2 /w € K*2 and  z,/w, e K*2}
and Wa(wy, wq) = {(&1, &) € K* x K*: (wy {3 w, §F) €Th(wy, wy)}.
Then 3 Vy(wy, wy) < 1 4 Walwy, wy).

Furthermore, by Lemma 1, ¥ is contained in at most 4+ sets of the type V(uw,, ws,).
Hence it suffices to prove that

3 Wy(wy, wy) < 4178, 74m19s  for  (wy,w,)e K* x K*, (5)
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Let wy, w,€ K*, let L = K(\/wy, \/ws), and let T’ be the set of places of L lying above
the places in S. We will use the symbol {...) to denote a fractional ideal in L. For
(&1, &) e K* x K*, we put

1=4Jw &

Cwala—Nwi G

Then A(§;, &) € L*. Further, if (§;, §,) € Wy(w;, w,), then (3), (4), and the inclusions

Ltyw§) < (LJw; &> (i =1,2) and (Vwy Gt w &) = (W &G Vg, §o),
imply that

A(gb €2

— (1, Jw, §* - _Lwid
AlG & = Wwy 8w §3F (w88, wy 3

_ <1 W, §1>
=G T

By a similar argument, we have

A=AG, &))E = V—@;;ET\/:L—%>2 ={1-y)'mod7T.

Together with Lemma 3 and the fact that [L: K] < 4, this implies that
#{AeL*: A=A, &) forsome (&, &) € Wy(wy, wp)} < 8. 74m+%s), (6)

Let AeL* and suppose that A = A(§;, &) for some (&, §,) € Wy(w;, w,). Then (3) and
a straightforward computation yields

14+ 2(A—1) Jw, G+ (A= 1)2w, §3 = A%w, §F = (A2/y) (w, §3+y—1).

Hence for each A € L*, there are at most two pairs ({;, &) € Wa(w;, wp) with A({;, &) = A
By combining this with (6), we obtain

# Wy(wy, wy) < 6.74m429) < 41-s 7am+os,

vy 1modT.

This completes the proof of (5) and of Proposition 2.

LEMMA 4. Let A be a field endowed with a valuation v satisfying (A *) = Z; and let
fX)=0agX0+...+a,e X [X] be a polynomial such that v(a,) > 0 for all 0 <14 < d,
v(disc (f)) = 0, and f has d distinct roots a,, ...,cz in A .

(@) Forall1 <t <j<d,
v(o; — ;) = min {0, v(e;)} + min {0, v(ct;)}.
() Forall1 < i <j<dandall xeX withv(z) > 0
min {v(x —a;), v(r —a,)} = v(e; — ).

(c) Let n > 2, and suppose that xe%’ satisfies f(x) e A *.
(i) Ifv(x) = 0, then forall 1 <t < d,

v(x—a,) = min{0,v(x,)} +min {0, v(x)} (modn).
(i) Ifv(zx) <O, then there exists anl, 1 < 1< d, such that
v(x—ay) = min {0, v(og)} + min {0, v(z)} —dv(z) (modn);
v(@—o;) = min {0, v(a;)} +min{0,v(x)} (modn) forall i1



242 J.-H. EVERTSE AND J. H. SILVERMAN

Proof. For each ¢, choose f;,y,€ X satisfying o; = v,/8; and min {v(8,), v(y;)} = 0
Then v(8;) = —min{0,v(a;)}. Let a = ay/(B; ... By)- Then

f(X)=a I] (BX-v) and disc(f)= a2 . I;.[.<d(ﬂi7j_ﬂj'yi)2'

1<i<d

LI<j<

By Gauss’ lemma, v(a) > 0. Moreover, since v(dise (f)) = 0, we see that
v(B;v;—Piys) =0 forall 1<i<j<d; (8)
and v(a) = 0. (9)

Lemma 4a follows immediately from (8). Further, in view of (9), we may henceforth
assume that

fX) =TI (f:;X~v;) with min{v(8,), v(y,)}=0 forall 1<i<d  (10)

Let xe 2, and choose £, 7€ such that « = £/y and min{v(£), v(y)} = 0. Then
v(y) = —min {0, v(z)}. Using (8), a little bit of algebra yields

mm{v(ﬂzg 77.77)’ v(ﬁyg 'Vﬂ?)} = 'U ﬂz‘}/y ﬂgi},t mm{v 'D(?] }
whence min {v(8,E—v:m), v(B;E~v;n} =0 forall 1<i<j<d. (11)

Now Lemma 45 follows from (8), (11), and the fact that »(z) > 0 implies v(y) = 0.
It remains to prove Lemma 4c. Let z, £, 9 be as above, and suppose that f(z) =
for some y € #™* and some n > 2. Then, by (10),

y** = TL(B:E—v:m)
Combining this with (11) shows that there is an I such that

v(BiE—vm) = dv(y) (modn);

and v(f;E—v;7) =0 (modn) forall ¢&1.
Since
v(f:E—v:m) = v(@—a;) —min{0,v(x)} —min{0,v(a;)} forall 1<i<d,

and since v(7) = —min {0, v(x)}, we obtain Lemma 4c(i) and (ii) by taking v(z) > 0
and v(x) < 0 respectively.

Proof of Theorem 1. We use the notation as in the statement of Theorem 1. Factorize
f(X ) as f(X) = a(X —a;)...(X —a,) over an algebraic closure K of K. Relabelling the
a;’s if necessary, we may assume that a;,¢,e Lif n > 3, and «, &y, ag€ Lif n = 2. Le.
T be the set of places of L lying above the placesin S. We will denote fractional ideals
in L by <...).

Fori,je{l,2}ifn > 3, and ¢,5€{1, 2,3} if n = 2, for each ze K we let

r—a
Zij(x) = p

]
_..aj




Uniform bounds for the number of solutions to Y = f(X) 243
Then for z € V(Ryg, f, n), the following relations hold:
_ Loy
(Zy(x)) =as 5 mod (n, T')
(1 =Z(x)y = (1, Zy(x)y mod T
These relations follow from Lemma 4c¢ (i) and 4b respectively, in view of the facts that
f(X)eRp[X] and disc (f) e RY.
Letn > 3. From (12), Proposition 1, and the fact that [L: K] = M, we see that the set
{Zs3(): e V(B f,n)}

has at most 17M6m+s)_p2Ms+(L) elements. Since x is completely determined by Z,,(x),
this proves (a).
Now let » = 2. For z€ V(Rg, f, 2), we have

1-Z(x) o ~—a,
= #1;
1= Zgg(x) ap—ay

(12)

and by (12),
Zy3(%) ~ Zog (%)) = (Zy3(%), Zgg(®)) mod T'.

Together with (12), Proposition 2, and the fact that [L: K] = M, this shows that the set
{(Z13(x), Zys()): € V(RBs, f,2)}

has cardinality at most 7M#m+9s) 4x(D) Since z is completely determined by the pair
(Z13(%), Zgg(x)), this completes the proof of (b).

2. The equation y™ = f(x) over function fields
The following notation will be used throughout this section.
k an algebraically closed field of characteristic 0
K/k a one-dimensional function field of genus g over k
My  acomplete set of valuations on K, normalized so that »(K*) =
S a finite subset of Mg containing s > 1 elements
Ry the ring of S-integers of K
hg  the (logarithmic) height on K relative to My: forze K, z + 0,

held) = % max{0,0)} =3 % |o()].

vEMpg v€EMg
Definition: An element z€ K* is an (idelic) nth-power modulo S, denoted
z=0 mod(n,S),

if the ideal zRy is the nth-power of a (fractional) ideal of Rg. (In terms of divisors, this
means that

(2) = Dy + D,
with Support(D,) < 8.)

Lemwma 5. (a) The group
{ze K*/K*": 2z = 0 mod (n, 8)}

contains at most n29ts elements.
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(b) The set
fee BE/I*: he(z) < H}

contains at most 22H*2s elements.
(c) Letze K, z¢k. Then the set
{eek: 1 —aze RE}
contains at most s — 1 elements.

Proof. (a) Let Pic®(K)[n] be the group of elements of order = in the divisor clas:
group of K. Then there is an exact sequence
0—>Pic%(K) [n]—i{st*/K*"': z = Omod (n, S)}L(Z/nl)s,
where ¢ and j are defined by
i(class {D}) = zmod K*" for (2) = nD;
and jzmod K*7) = (v(z) med n)y,g.
Now Pic%(K) is isomorphic to an abelian variety (over k) of dimension g, so
Pic"(K) [n] = (Z/nZ)%.

This and the exact sequence give the desired estimate.
(b) Let ze RE with hg(z) < H. Write the divisor of z as

() = X n,y(v).
veS

Then kg (z) = 42 |n,|. Since (z) determines the class of z in RE/k*, it suffices to estimn ate
the size of the set

S
(P, ...,n)EZE: Y |my| < 2H}.
i=1

This last set has exactly 37_4(}) 2/(3") elements, a quantity which is certainly less
then 22H+2s,

(c) Let v,,...,v,€8 be the places of S for which z does not have a pole. (Note that
r < §—1, since z is not constant.) Then the fact that 1 —aze R¥ implies that all of the
zeros of 1 —az are in the set {v,,...,,}. Since 1 —az has at least one zero, we see that

1/z takes the value a for at least one of the places v;, ..., v,. Hence the number of such
a’s is at most .

ProrosiTioN 3. Let n > 4, and define
V(K,n,8)={zeK*:2¢k, 2= 0mod (n,8), and 1-z=0mod (n,S)}.
(a) Let ze V(K,n,S). Then
he(z) < (2g—2-+8) (1= 3/n)
(b) The set V(K,n,S) contains at most 27*20+9% glements.

Remark. For number fields, a bound for the height as in (a) immediately implies
finiteness; but for function fields, this is certainly not the case. Here the finiteness
statement in (b) lies deeper than the height bound in (a).
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Proof of Proposition 3. (a) This can be proven either by using results of Mason [8]
or by adapting the argument of Silverman[15]. We choose the latter course, since we
will use similar methods to prove (b).

Let K'/K be the extension given by

K, = K(zlln’ (1 —z)lln)s

and let g’ be the genus of the function field X’. Since the ideals #Rg and (1 —2) Rg are
nth-powers, it follows that the only ramification in K’/K occurs over the places of S.
Hence the Hurwitz genus formula gives the estimate

2’ —2 < [K':K](29—2+3). (13)

On the other hand, letting F = k(x,y) be the function field of the Fermat curve
x®+y" = 1, we can embed F < K’ by setting z = z1/» and y = (1 ~2)Y», Let F' be the
image of F in K’. Then another application of the Hurwitz genus formula and the
fact that F has genus i(n— 1) (n — 2) yields

29'—2 > [K':F'](2genus (F)—2) = [K": F'] (n®—3n). (14)
Next, since K’ = KF’, we can compute the degree [K':%(z)] in two ways to obtain
[K":K1[K:k(z)] = [K":F'1[F:k(z)].
Since [K:k(z)] = hg(z) and [F':k(z)] = n?,
this yields [K':F']/[K'":K] = hg(z)/n (15)
Now combining equations (13), (14), and (15) gives the desired result
29—2+s > ([K':F']/[K'":K])(n?—3n) = hg(z) (1 -3/n).
(b) For eachze V(K,n,S), let K,/K be the field extension (as above)
K, = K(z1", (1 —-z)4n),
We ask first how many such fields K, there are (up to k-isomorphism). Since
z=0mod (n,S) and 1-z=0mod (n,S),
the number of such fields is certainly at most the number of fields of the form
K/, g™ with £, 8,e{{e K*: £ = Omod (n, S)}/K*".

Hence, from Lemma 5 (a), there are at most (n20+5)2 fields K, as zranges over V(K,n, S).
We now fix one such field K’, and attempt to estimate the size of the set

V(K,n,8,K') ={ze V(K,n,8): K, ~ K'}.
We recall from the proof of (a) (equation (13)) that the genus g’ of K’ is bounded by
29' -2 < [K':K](29—2+s) < n¥(29—2+3). (16)

As above, let F = k(x,y) be the function field of the Fermat curve ™ 4+ y" = 1. Then
each element ze V(K,n, S, K') gives a distinct embedding F = K' by setting x = 2U/"
and y = (1—2)U". (Actually, there are n? embeddings corresponding to different
choices of the nth roots; but we will just choose one such embedding.) We thus have
an injection

V(K,n,8,K’)>Map (F,K’). (17)
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We now use Kani’s quantitative version of the De Franchis theorem ([6], theorem 1),
which in our case gives the bound

4 Map (F, K') < 22071201 {) < 240”2, (18)
Now (18), (17), (18), and a little bit of algebra gives the estimate
# V(K,n,8,K') < 2n'eo+s—12,

Since V(K,n,8) is the union of V(K,n,8, K') as K’ ranges over at most n+2s fields
this completes the proof of (b).

We are now ready to state our main theorem, for which we need the following
definition.

Definition. Let f(X) e K[X] be a polynomial of degree d. We say that f is degenerate
if there are elements 4,B,C, D, Ec K with AD—-BCeK* and Ee K*, and a poly-
nomial ¢(X) e k[ X], such that

f(X) = B(CX + D)¢$((AX + B)/(CX +D)).

(Thus f is degenerate if it arises by a fractional linear change of variables from a poly-
nomial with constant coefficients.)

TrEOREM 2. Let f(X) e Rg[X] be a non-degenerate monic polynomial of degree d > 3
with disc (f) € R§. Then the set

{xe K: f(x)e K*» for some n > 4}
contains at most 224°@a+s’ elements.
Proof. Factorize f(X) (over a fixed algebraic clcsure K of K) as
fX)=(X—ay)... (X —ay).

Foreach 1 <1,j <d, let K;; = K(a;,;,0;), let g;; be the genus of K,
set of places of K,; lying above S, and let s;; = # §;;. Since

let S;; be the
f(X)eR4[X] and disc(f)eRE,

the extension K,;;/K is ramified only over S; so by the Hurwitz genus formula we have

29;;— 2+ 8 = [K;;: K] (29— 2 +5) < d*(29—2+3). (19)

(Note that [K;;: K] < d3.)
Foreach 1 <1,j < d, 7 + j, and each 2 in the set

V(f) ={reK*: 2z +a; and f(xr)eK*" for some n > 4},
define z;; = 2;;(x)€ K by

2t 2y = 1. (20)

Let x e V(f). Since f(X) ERS,.d[X], disc (f) eR§ij,fis monic, and f(z) € (K%)", we can
make two deductions. First, v(a,) > 0 for all 1 <4< d and all valuations v¢S;.



Uniform bounds for the number of solutions to Y = f(X) 247
Second, if »(x) < 0 and v ¢S, then dv(x) = 0 (modn). Now, applying Lemma 4(a)
and 4(c) (i) and (ii), we see that
2y = 0Omod (n, S“).

Hence, using (19) and Proposition 3 (a), we have
hogy(ig) < 20y~ 2+5;5) (1=3/n)
< d3(29—2+38)(1—-3/n)2 (21)
We break V(f) into three pieces, and analyse each one separately:
Wf) ={xeV(f): 2;;¢ RS, forsome i+ j}
Vof) = {we V(f): 2;€RE, forall i#j, and z;¢k forsome i +j}
Volf) = {xe V(f): 2,;€k forall i+ j}.
Let zeV(f), and choose ¢ % j such that z,ij¢R§£j. Since z;; = 0mod (n, S;;), this
implies that kg, (2;;) > n. Hence from (21), we obtain the bound
n < d3(2g—2+s)+3 < d3(29+s).
Further, for any particular » > 4, Proposition 3(b) says that the set
{zeK}: 2¢k,z=0mod (n,S;), and 1-z=0mod(n,S;;)}
contains at most
ont(2gsitsy)? g Qntd(2g+s)?
elements. Summing over » and noting that there are d(d — 1) choices for (s,5) gives

the estimate
d3(2g+8)~1
# Vi (f) <d(d-1) T 2nidiCo+el < 2dMRo+s) (22)

n=4

Now let e V,(f), and let 7, j be such that z;; ¢ k. Since z;; = 0mod (n, §;;) for every =,
we can let n—oco in (21) to obtain the bound

hKi]. (25) < d3(29—2+5).
Moreover, since [K,;: K] < d3, we have s;; < d®. Hence, applying Lemma 5 (b, ¢) and
noting that there are d(d — 1) choices for (¢,5), we see that
# Vo(f) < d(d—1)(d3s—1) 22d%(2g—2+8)+2d%s - 95d3(2g-+s), (23)

Finally, suppose that # V3(f) > 3. We will show that f is degenerate. Let x,€¥5(f),
and let {(X) be the linear polynomial defined by

IX) = X — %

1<i<a Lo — &
Then I(X) has coefficients in K, and since I(z,) = d = 0, lis not identically zero. (Note
that since f(x,) € K**, we have z, + a, for all 1 < ¢ < d.) By assumption, # Vy(f) > 3;
so the fact that I(X) has only one root implies that there is an x, e ¥V5(f) such that
%, + 2, and [(z,) # 0. Now combining the facts that I(x,) € K* and

X4 —0C; X1 —C,; 2yl . .
1 */1 i 22 g gorall 1<i<j<d,
To—0f Zo—ot;  245(%o)

Xy — 0
Xy — 0L

whence a, €K forall 1<i<d. (24)

we see that ek,
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Choose some j > 1, and define

4-%"% p_ d )
= = (wo—at;) TI (0t;— ).
1% i=1
1]

Then using f(X) = [I(X —«,), a little bit of algebra yields

GAX+@\ o aip (v,
AX+1)_A B I (X-z).

5

mx+nw(

Since by assumption each z;; €k, and since by (24), a;, 4, Be K, this proves that if
# V3(f) > 3, then f is degenerate. But by assumption f is non-degenerate, so

# Vo(f) < 2. (25)
Now combining (22), (23), and (25) gives the desired estimate,

# V() < £ W)+ # Valf) + # V()
< 9d18(2g-+8)8 + 95d3(2g-+s) +2

< 228(20+5,
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