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Abstract-Due date determination problems comprise scheduling problems in which not only the 
scheduling of n jobs is involved, but the assignment of due dates to jobs as well. This paper considers 
the case where a schedule is given and there is a single decision variable involved: the due date multiplier. 
The multiplier is used to set the due dates in order to minimize a composite objective function. Recently, 
an O(n2) algorithm was presented, the validity of which was proved on basis of the dual of the linear 
programming formulation of this problem. We give a simpler and faster algorithm based upon strictly 
primal arguments, requiring only 0 (n log n) time. In addition, we point out that these arguments can be 
employed for alternative proofs in case of a common due date. 

1. PROBLEM FORMULATION 

Due date determination problems comprise scheduling problems in which not only the scheduling 
of jobs is involved, but the assignment of due dates to jobs as well. Usually, due dates need to be 
set by use of some due date assignment rule, and the objective function expresses the desire to let 
the completion times of the jobs coincide with their due dates. 

This paper addresses the problem of determining due dates by use of the so-called "total-work­
content-power" rule for a given schedule; such a problem typically occurs when the overall problem 
is difficult to solve and optimization takes place by implicit enumeration of all possible schedules. 
Recently, Cheng [l] presented an analytical method to solve this problem. Let us describe the 
features of the problem in detail. Throughout the paper, we adopt Cheng's notation, except that 
we assume that the jobs are numbered according to increasing completion times. 

There is one machine available, on which a set N of n independent jobs have to be scheduled. 
The machine can handle only one job at a time and machine idleness is not permitted. Job i 
(i = l, ... , n) requires a positive uninterrupted processing time l;. A schedule defines the order in 
which the jobs pass through this machine. Given a schedule, the completion time for job i 
(i =I, ... , n), denoted by C;, is simply determined by C, = :Ej.,; tj. Job i is called tardy if its 
completion time exceeds its due date d1• Similarly, a job is early if it is completed before its due 
date. The total-work-content-power rule assigns for each job i (i = l, ... , n) a due date d; 
according to 

d;=kt'(', 

where m is a given exponent and k is the due date multiplier (Cheng uses the term "due date multiple 
factor"). 

The optimality criterion is a linear combination of two components that are both defined in terms 
of the due date multiplier. This first part of the cost function is proportional with this multiplier, 
the second part reflects the linear penalties inflicted if jobs deviate from their due dates. The 
objective function can be written as 

f(k) = L (ock + jC; - d1j), (1) 
ieN 

where oc is the cost per unit value of k. The optimal due date determination problem for a given 
schedule can then be formulated as 

min {J(k)jk ~ O}. 

Note that the due date multiplier is the only decision variable involved. 
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Cheng reformulates problem (2) in terms of a linear programming problem. The dual of this 
linear programming problem and the strong duality theorem of linear programming are required 
to prove the following theorem. This theorem is needed to determine the optimal due date 
multiplier. 

Theorem 1 [1]. Define for each job i (i = 1, ... , n) the sets s(i) and S(i) as 

s(i) = {j: C;tj < Cjt'!' ,j i= i,j EN} 

and 

S(i) = {j: C;tj ~ Cjti ,j i= i,j EN}, 

respectively. The optimal due date multiplier is k* = Cr/t~, where r EN is such that 

t~ - nl'J. ~ L tj - L tj ~ - t~ - nl'J.. 
jeS(r) jes(r) 

Note that a procedure based upon this theorem requires O(n 2) time. 
In the next section, we present a simpler and faster algorithm for solving problem (2) to 

optimality, for which only primal arguments are needed. Its running time is shown to be O(n log n). 
Since the algorithm we propose is based upon generic arguments, some extensions will be given 
in Section 3. 

2. A SIMPLER AND FASTER ALGORITHM 

The crucial argument for the new algorithm is the fact that the cost functions 

(i=l, ... ,n) 

are convex functions in fR+u{O}. As the sum of a finite number of convex functions is again a 
convex function, we assert that f(k) is a convex piecewise linear function in k. Since f(k) is 
non-differentiable, the above notions are extremely important. They tell us that every locally 
optimal point is globally optimal, and that an optimal point is attained in a point of non­
differentiability, or breakpoint, of the cost function f(k ). Proofs of these assertions are straight­
forward [e.g. 2] and therefore omitted. 

Taking a closer look at the function f(k ), we detect that the points of non-differentiability are, 
besides the value k = 0, those values of k for which C; = kt'!' , for some i (i = 1, ... , n ). Let us 
assume, without loss of generality, that this gives us precisely n + 1 points of non-differentiability. 
The next step is to sort these n + 1 values in increasing order, and number them accordingly. Let 
k[ll denote the (i + l)th smallest breakpoint, while k; is the breakpoint that corresponds with job 
i. The last step is to evaluate sequentially the objective valuesf(k[11 ) for i = 0, ... , n, until we find 
a local optimum and, because of the convexity of f(k), thereby global optimum. We deduce from 
equation ( 1) that, for any k, the cost function is 

f(k)=(I C,.- I C;)+k(na- Lt'!'+ It'!'), 
ieTk ieEk ieTk ieEk 

(3) 

where, for that particular value of k, Ek denotes the set of early and just-in-time jobs, and Tk the 
set of late jobs, respectively. Note that N = Eku Tk for each k ~ 0, and that these sets remain intact 
between two subsequent points of non-differentiability. Hence, f(k) can be written as 

f(k)=(:L C;-2 I C;)+k(na - I t'!'+2 L t'!'). kE[ku1,ku+IJ], )=0, ... ,n. (4) 
ieN ieEklJJ ieN ieEklJI 

The evaluation of f(k) at all the n x 1 breakpoints takes no more than O(n) time altogether. 
As f(k) consists of n + 1 components, the calculation of f(kroi) takes linear time. However, the 
objective value at each of the subsequent breakpoints can be evaluated in constant time. At each 
breakpoint, exactly one specified job becomes just-in-time, namely the one associated with this 
breakpoint. As can be seen in equation (4), only a fixed number of operations is needed to define 
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~nd evaluate the linear function on the next interval. The overall running time of the algorithm 
is therefore 0 (n log n ), since it is dominated by the time complexity of the sorting routine. 

By now, we have proven the following theorem: 

Theorem 2. Let k* be the smallest breakpoint of f(k) for which 

na. - :L rr + 2 :L rr ;;i: o. 
ieN ieEk• 

Then k * is the optimal due date multiplier. It can be determined in O (n log n) time. 

To illustrate this result, we consider the example from Ref. [I]. The processing times and other 
relevant data for the jobs can be found in Table I. 

Table I 

2 4 

/. 2 4 8 10 
tf 4 16 64 100 
c, 3 7 15 25 
k, 3 ' ll 

• i6 64 

On [O, m and~. i], the objective functions are/(k) = 51 -184k andj(k) = 21 - 56k, respectively. 
For k e ~. f6], we have f(k) = 29 + 144k. Hence, by use of Theorem 2, the optimal due date 
multiplier is k* = i, and the corresponding objective value is JW = 7. 

3. EXTENSIONS 

The presented algorithm can be extended in two directions. As Jong as we are provided with a 
set of completion times, the above procedure remains valid. This means that machine idleness, job 
splitting, multiple machines, different machine speeds and capacities can be included as well, since 
they do not affect the solution procedure. 

Furthermore, the general idea of the algorithm is applicable to any piecewise linear convex (or 
concave) function in a single variable for which the points of non-differentiability can be readily 
inspected [cf. 3, 4]. Therefore, it extends to problems in which the jobs have a common due date, 
that is, d; = k for each i. For instance, Cheng [5] considered a common due date problem in which 
the objective function to be minimized is 

f (k) = L W1IC1 - kl, (5) 
ieN 

where w1 denotes the weighting factor of job i, and where again the job completion times are given. 
In contrast to Cheng, the reader might employ purely primal arguments to prove the following 
theorem: 

Theorem 3. The optimal common due date coincides with the completion time of the 
first job in the schedule p, say, job r, for which 

r n 

2 L W1 - L w, ;;i: 0. 
;~I i=I 
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