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At Eurocrypt 87 the blockcipher F.E.A.L. was presented [2]. Earlier 
algorithms called F.E.A.L-1 and F.E.A.L-2 had been submitted to standarization 
organizations but this was presumably the final version. It is a Feistel cipher, but 
in contrast to D.E.S., a software implementation does not require a table look-up. 
The intention was a fast software implementation and also an avoidance of 
discussions about random tables. As Walter Fumy indicated at Crypto 87 [1] a 
certain transformation on 32 bits used by the cipher was not complete in contrast 
to a remark made during the presentation of F.E.A.L. at Eurocrypt 87. 
Furthermore, the transformation is too close to a quadratic function on the input. 

I am informed that after my informal expose at Crypto 87 about certain 
vulnerabilities of F.E.A.L, its designers have created F.E.A.L.-8 with twice as 
many rounds.Later on again versions were renamed. The (definite?) version in 
the abstracts [2] without a serial number got version number 1.00 and F.E.A.L.-8 
got version number 2.00 in the proceedings of Eurocrypt '87 [3]. In this paper we 
shall show that F.E.A.L. as presented at Eurocrypt 87 is vulnerable for a chosen 
plaintext attack which requires at most ten thousand plaintexts. 

Encryption Algorithm 

For convenience and definiteness we first reformulate the encipherment 
algorithm. The PEAL-algorithm is a blockcipher acting on 64 bits of plaintext to 
produce a 64 bit ciphertext controlled by a 64 bit key. 

One of the buildingblocks of the cipher is a transformation S from F28 * 
F28 * F2 to F28 defined by 

S(x,y,a)=Rot((x+y+a)mod 256) 
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i.e. the 8 bit numbers x and y are considered as residues mod 256, a is the residue 

class of 0 or 1 and Rot cyclicly rotates the bits of its input 2 places such that the 6 

least significant bits become the 6 most significant bits. Another building 

block is the exclusive-or on two bytes denoted by EB. The same notation will be 

used for the exclusive-or sums of four byte strings. We define a fk-box as 

follows: fk transforms 2 strings of 4 bytes L and R into a four byte string 0 as 

follows: (In shorthand fk(L,R)=O.) 

denote the input by L(O) up to L(3) and R(O) up to R(3) and the output by 0(0) up 

to 0(3) then: 

hulp=L(2) EB L(3) 

O(l)=S((L(O) EB L(l),(hulp EB R(O)),l) 

O(O)=S(L(0),(0(1) EB R(2)),0) 

0(2)=S(O(l) EB R(l),hulp,O) 

0(3)=S((0(2) EB R(3)),L(3),l) 

The function G transforms one string of four bytes into one string of four bytes as 

follows:(ln shorthand G(I)=O.) denote the input by I(O) up to 1(3) and the 

output by 0(1) up to 0(3), then: 

hulp=l(2) EB I(3) 

0(1 )=S(l(O) EB I(l ),hulp, 1) 

0(2)=S(0(1 ),hulp,O) 

0(3 )=S(0(2),I(3 ), I) 

O(O)=S(O(l),0(0),0). 

The blockcipher consists of a key schedule and a data randomizer. The 

keyschedule operates as follows: The eight byte input is considered as two strings 

Ao and Bo of four bytes each. Further a four byte string Co with all 32 bits zero 

is introduced. Iteratively Ai,Bj,Cj,i=l, ... ,6 are defined by 

Bi+l = fk(Aj,(Ci EB Bj)) 

Ci+1=Ai 

Ai+1=Bi. 

Further we need two simple functions PL and PR transforming four byte strings 

as follows: 



295 

PL(u,v, w,x)=(O,u,v ,0) 

PR(u,v, w,x)=(O,w ,x,0). 

The strings B1 , ... ,B6 of the keyschedule are transformed into 6 strings Mi, 

i=0, ... ,5 as follows: 

Mo=B3 E9 PR(B1) 

M1=B3 E9 B4 E9 PL(B1) 

M1=PL(B1) E9 PL(B2) 

M3=PR(B1) E9 PR(B2) 

~=B5 E9 B6 ED PR(B1) 

Ms=B5 E9 PL(B1). 

The datarandomizer operates as follows (see fig 2): The 64 bit input is viewed as 

two strings Po and P1 of four bytes. Now we define 

Do=Po E9 Mo 

EQ=Po E9 P1 ED Mi 

D1=Eo 

E1 =Do E9 G(Eo) 

D2=E1 

E2=D1 ED G(E1) 

D3=E2 

E3=D2 ED G(E2 E9 M1) 

D4=D3 E9 G(E3 ED M3) E9 Ms 

E4=E3 E9 M4 

Co=D4 

C1=D4 E9 E4 

Finally the two strings Co and C1 of four bytes each are concatenated to form the 

64-bit ciphertext. 

Cryptanalysis 

To determine the key we use a chosen plaintext attack. The choice of the 

plaintext depends on results derived from previous plaintext and ciphertext. We 

are going to determine the 160 unknown bits in the Mj's as though there is no 

relation between them. Once they are determined we can decipher any ciphertext 

but we also can use the keyschedule from the bottom to determine the 64-bit 
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key.This process will not require more than tenthousand plaintexts. 
Observe the value Co EB C 1.It is equal to 
Po EB M4 EB Mo EB G(B()) EB G(Eo EB M1 E9 G(G(Eo) E9 Mo ffi Po). 

Assume that Po EB Pi is a constant, then Eo and G(Eo) are constants too. Define 

Ko=G(Eo) EB Mo 

then: 

(1) 

Ki=Eo EB M1 

K1=M4 EB Mo EB G(Eo). 

CP=Co EB C1 EB Po 

CP=Kz EB G(K 1 EB G(Ko EB Po). 
Formule (I) is the crucial formule.B y keeping the exclusive-or sum of Po and P 1 
constant it is possible to determine the constants Ko up to Kz with at most say 300 
choices of Po. 

Define 

Ko=(x0,xl,x2,x3) 

K 1 =(yO,yl ,x2,x3) 

Kz=(z0,zl,z2,z3) 

Po=(a0,al,a2,a3) 

CP=(f0,fl,f2,f3). 

See figure 1 where internal bytes bk,ck,dk,ek are defined within the picture. 
The idea is to solve Ko first. The first bits to solve are the 6 least 

significant bits ofxO. This starts by keeping a3,a2,al ffi aO constant and also the 
two most significant bits aO and study the behaviour of one particular bit fl 5 for 
the remaining 64 cases. Observe that bl ,b2,b3,cl,c2,c3,d2,d3 are constant in those 
cases. Let bOl=bOmod 64 and cl l=clmod 64 and carry=(bOl+cl 1 )div 64. Then it 
holds for the bits c07,d07,dl7,el5,fl5 that their value is of the form "constant 7 
carry". The value cl 1 is a constant and as the 6 least significant bits of aO assume 
all 64 possibilities and so bOl assumes all 64 possible values. Counting the number 
of times f 15 is equal to one, leaves us with at most two possibilities for c 11. 

In order to determine which possibility holds for c 11 observe that 
changing a 11 or a 1 o the six most significant bits of c 1 and therefore the four most 
significant bits of c 11 remain constant. Combining the results of two or three 
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require 42 plaintexts in the worst case. Still only the value of fl 5 is aH what we 

need of the ciphertext. 

Along similar lines we can detennine ffi x I , @ , the seven least 

significant bits of xO and the seven least significant bits of . For tlte moment we 
are allowed to assume that xOo and ,;30 are zero. In other words Ko is determined 

and at the cost of at most 250 plaintexts. 

Once Ko is determined the detennination of K i and Kz is easy and will 
cost at most 30 well chosen plaintexts with the corresponding 

ciphertexts. There is a freedom in Kl of two bits but we can just do a choice. 

Now observe what happens if we change Po ffiP1. Then the new value of 

K 1 is known . With the above described technique we establish the new value of 

Ko. Then K2 follows directly because of a linear relation. 

This results in knowledge of Mo @G(M 1 ffi (Po ffiP1)) for values 

PoffiP1 of our own choosing. With say at most 30 values we can establish Mo and 

Ml except for a freedom of two bits. 

Finally we study the values Co we have encountered up to this 

moment.Those give equations of the form 

Q1=M5 @G(M3 ffiQ2) 
where Qi and Q2 are known. Considering the fact that up to now we have bet\veen 
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100 and 10000 ciphertexts it is safe to assume that we have enough data to 

determine M3 and Ms. 
Combining this knowledge we can decipher any ciphertext. If we want to 

recover the original key we use the restricted possibilities for M1 and M3 to 

reduce the uncertainty in Mo up to Ms . Given those Mi's we can use these data 

and the last fk-box to solve B6 and B4 and a few more bytes. After that we can 

simply try the 256 possibilties for B3(2) and resolve the keyschedule. 

Conclusions 

In the presented version the G-box is too regular. If one wants this small 

number of rounds( 4) a better design should be possible. In [3] the algorithm with 

twice as many rounds is considered by the authors to be secure because four 

statistical values are close or equal to theoretical values but the same argument was 

used for the algorithm presented at Eurocrypt '87. As this turned out not to be 

sufficient one should use other arguments for the security of an encipherment 

algorithm. 

Acknowledgement 

The author wishes to thank D. Chaum and W. Fumy for a 

challenging remark which made me start the investigations. Further the author 

wishes to thank D. Chaum for stimulation during the investigations.The author 

also wishes to thank T.Siegenthaler for remarks on a draft version of this article. 

References 

1 W. Fumy, On the F-function of FEAL, lecture at Crypto 87. 

2 A. Shimizu & S. Miyaguchi, Fast data encipherment algorithm PEAL, 

Abstracts of Eurocrypt 87. 

3 A. Shimizu & S. Miyaguchi, Fast Data Encipherment Algorithm FEAL, 

Advances in Cryptology - Eurocrypt '87, Lecture Notes in Computer Science 

304. 



a 
XO___.,... 

bo 

co 

y 

0 e 
4 

to 

1 a a 
1 2 x 

z1 

x 

b1 b2 

1 c 

e 

+ 1 

1 

2 c 

e 
4 

f 1 f 2 

fig 1 

2 

z3 

3 
a 

b3 

+ 1 

3 c 

+1 

3 e 

299 

M 
0 

M 
5 

D 
1 

D 
2 

D 

p 

3 

D 
4 

0 

c 
0 

fig 2 

p1 

c 
1 

E 
0 

E 
1 

M 
1 

M 
4 


