
Designing equivalent semantic models
for process creation

Pierre AmeriCa
Philips Research Laboratories

P.O. Box 80.000

5600 JA Eindhoven

The Netherlands

Jaco de Bakker
Centre for Mathematics and Computer Science

P.O. Box 4079

Abstract

I 009 AB Amsterdam

The Netherlands

Operational and denotational semantic models are designed for languages with process creation,
and the relationships between the two semantics are investigated. The presentation is organized
in four sections dealing with a uniform and static, a uniform and dynamic, a nonuniform and
static, and a nonuniform and dynamic language, respectively. Here uniform/nonuniform refers
to a language with uninterpreted/interpreted elementary actions, and static/dynamic to the
distinction between languages with a fixed/growing number of parallel processes. The contrast
between uniform and nonuniform is reflected in the use of linear time versus branching time
models., the latter employing a version of Plotkin's resumptions. The operational semantics
make use of Hennessy and Plotkin's transition systems. All models are built on metric struc
tures, and involve continuations in an essential way. The languages studied are abstractions of
the parallel object-oriented language POOL for which we have designed separate operational
and denotational semantics in earlier work. The paper provides a full analysis of the relation
ship between the two semantics for these abstractions. Technically, a key role is played by a
new operator which is able to decide dynamically whether it should act as sequential or parallel
composition.

1 Introduction

Process creation is an important programming concept which appears in a variety of forms in

many contemporary programming styles. In imperative programming one finds process creation
in languages such as Ada [Ad], NIL [SS] and many others. In the context of functional or datafl.ow

languages we refer to [BrB] for a semantic study. For logic programming many recent references
can be found in [Sa]. Object-oriented programming has the family of actor languages (see, e.g.,

[He,Cl,Ag]) as examples. The present study was inspired by the language POOL, an acronym for
Parallel Object-Oriented Language, described in [Aml,Am2].

In two previous investigations we have developed operational (0) and denotational (D) seman

tics for POOL [ABKR1,ABKR2]. These two semantic models were designed independently of each
other, and the investigation reported below constitutes the first step towards the goal of settling
the relationship between the two models. For this purpose we concentrate on the programming
notion of process creation together with a simple version of process communication, and leave a

number of further key notions in POOL for later study. More, specifically, we treat communica

tion in the sense - approximately - as exemplified by CSP [Hol,Ho2] and do not treat message

Most of this work has been carried out in the context of ESPRIT project 415: "Parallel Architectures and Languages
for Advanced Information Processing - A VLSI-directed Approach"

22

passing and method invocation - notions which should be situated at the same level as remote
procedure call or Ada's rendez-vous. A similar combination of process creation with CSP-like
communication was first described in [Bo], a paper which provides a proof-theoretic treatment of
these concepts taken together.

The emphasis in our semantics design is very much on a systematic development of the tools
for both the operational and denotational models. We have therefore structured the presentation
in four sections, dealing with four languages of increasing complexity. Using some terminology
which will be explained in a moment, we shall successively present operational and denotational
semantics for

1. a uniform and static language £,..,,;

2. a uniform and dynamic language Cudi

3. a nonuniform and static language .Cnusi

4. a nonuniform and dynamic language .Cnud·

These languages are conceptually ordered according to the following diagram .

.c.,.
In this classification, a uniform language is one which has uninterpreted elementary actions. In
other words, the indivisible or atomic unit of such a language is just a symbol from some alphabet,
and the meanings assigned to programs in a uniform language bear strong resemblance to formal
languages (here with finite and infinite words). A non uniform language has interpreted elementary
actions, in our case assignments and communications. Thus, (individual) variables appear on the
scene, and as a consequence we find in our semantics the notion of a state, i.e., of a mapping
from variables to values. Programs now transform states, and we shall develop a mathematical
structure with entities which combine the flavour of state transforming functions with that of a
record of the computational history. In section 5, we shall provide evidence that the latter notion
is necessary in view of the parallel execution operator.

The second distinction in the above diagram concerns that of static versus dynamic languages.
In the former, we have a fixed number of parallel processes, in the latter a dynamically growing
number of processes: each time a new process is created the total number of active processes
increases by one. (We shall not investigate in our paper any notion of process destruction, a
concept not present in the language POOL.)

The simplest element in the partial order is .C.,., to be treated in section 3. It is extended in
two directions: one adds the notion of process creation (.Cud), dealt with in section 4, and the other
adds the notion of interpreted elementary actions, described in section 5. Finally, in section 6,
both extensions are brought together, and the full complexity of a nonuniform dynamic language
is confronted.

In sections 3 and 4, the languages are uniform and the semantic models are of the so-called
"linear time" variety (see, e.g., [BBKM] or [Pn]), i.e., they consist of sets of (finite or infinite)
sequences over a certain alphabet. The operational semantics is a uniform version of the Structured
Operational Semantics (SOS) of Hennessy and Plotkin [HP,Pl2,Pl3]. The transition systems
employed have, we feel, a strong operational intuition. The denotational semantics is built on
metric foundations (apart from the above diagram, no partial order is employed in our paper);

23

this remains true for later (nonuniform) sections. A distance between two sequences or sets of
sequences is readily defined, and most of the tools of metric topology we use are quite standard. In
particular, we shall make heavy use of Banach's fixed point theorem for contracting functions on
a complete metric space. Accordingly, our (denotational) semantics will be defined, when dealing
with recursive constructs, only when the recursion is guarded. In formal languages, one would say
that the grammar concerned satisfies a Greibach condition. (In the nonuniform setting we shall
take an approach where guardedness is automatically satisfied.)

In each of the sections 3 to 6 we shall, after having presented the two semantic models, go on to
investigate their equivalence. In sections 3 and 4 we actually prove that the two semantics yield
the same result, i.e., that fort E .Cus or t E .Cud we have O[tll = D~t]. For .Cu., this is a result
which was already obtained earlier (and presented in [BMOZ2]). Below, we repeat certain parts
of the proof as a first step towards the equivalence theorem for .Cud, a result which we believe
to be new. In the analysis of .Cud we make essential use of the notion of continuation, both of a
syntactic and of a semantic kind. Since we develop the semantics of ius as preparatory for £ .. a,
we have adapted accordingly the treatment of [BMOZ2], which does not employ continuations.
The equivalence proofs for ius and .Cud have strong similarities. On the other hand, there is also
a fundamental difference having to do with the following consequence of process creation: in a
statement with syntactic sequential composition (';'),say s 1 ; s 2 , we do not know whether to model
the syntactic ';'by semantic concatenation('·') or by parallel execution ('II'). To see this, contrast
the statement a;b yielding the singleton set {ab} as its meaning, with the statement new(a);b.
The intended meaning of the latter equals that of a II b, which in turn equals the set { ab, ba }. To
overcome this problem we introduce an auxiliary semantic operator ':' which is able, somewhat
surprisingly, as it were dynamically to make the decision whether to opt for '-' or 'II'. We consider
the introduction of this operator, together with the derivation of its basic technical properties
(such as associativity) as a main contribution of our paper.

In sections 5 and 6 we investigate the nonuniform case . .Cnu• has simple communication com
mands which are syntactic variations on CSP's P;?x and P1!e constructs. We stress that our
mentioning CSP here is only to indicate the type of communication we have in our language.
Partial, let alone full modelling of CSP is not our aim here. The mathematical structures used to
model fnus and fnud are Plotkin's resumptions [Pll], presented in a fully metric framework as first
described in [BZ] and subsequently extended and put in a category-theoretic perspective in [AR].
We use the terminology of process domains P, satisfying certain (reflexive) domain equations of
the form

P ~ 1(P)

and we shall design the seman ties of programs in £ nus and £ nud such that the meaning of a program
is a process p E P. Processes are objects which have a branching structure, and the models for
.Cnus and £nud are called branching time [BBKM,Pn].

The operational models for .Cnus and I:.nud once more use SOS style transitions. An important
new feature is that, in defining the operational meaning of a program, we collect the information
from the induced transition steps into a process. In other words, we assemble the information
in successive transition steps into a branching time object. Denotationally, we also use processes
as meanings, obtained in the usual manner by a compositional system of defining equations. For
the nonuniform languages, we do not have that 0 and D yield the same function: In order to
allow a compositional definition of D for the communication constructs, we include in D~s] more
information than in 0 [[s] (here s is a non uniform, static or dynamic, statement). We therefore
introduce a natural extension 0* of 0, which preserves one-sided communication information, and
then on the one hand establish that 0 * = D, and on the other hand settle the relationship between
0 and 0 * in terms of an abstraction operator abs, resulting in the equivalence 0 = abs o 0 *.

24

In section 6, we combine the techniques designed for f..u.d and lnu• to deal with all of lnud. ·
In this way, the reader may obtain a better understanding of this somewhat complicated case:
The concepts of process creation and value communication have first been treated in isolation,
and now a synthesis of the methods from sections 4 and 5 is made. In lnud we have classes
(ultimately stemming from Simula [DMN]), and creation of a process amounts to the creation of a
new instance of a class (in the world of object-oriented programming, this instance would be called
a (new) object). Such an instance has a name which is (just) another value - in addition to values
such as integers or truth-values - and which may be assigned to a variable. In lnud we encounter
for the first time expressions with non-trivial semantics. Consequently, the syntactic and semantic
statement continuations used in previous sections are now extended with (syntactic and semantic)
expression continuations. Operational and denotational semantics for lnu.d are without major
surprises once one has digested sections 4 and 5. At various points, the definitions owe much to
similar definitions in [ABKR1,ABKR2), though a systematic redesign has been applied in order
to allow the final equivalence proof. Again, techniques of sections 4 and 5 are brought together, in
particular leading to a nonuniform generalization of the ':' operator. Also, an additional argument
is necessary to deal with the two forms of recursion now present, one in recursive procedures and
the other in recursively defined classes.

This concludes our overview of the contents of the paper. We also mention that in section 2 we
collect some mathematical preliminaries. We list elementary definitions and some useful theorems
in metric topology, and provide a brief sketch of the intuition and mathematical basis for (our
way of) solving process domain equations.

Detailed semantic models of process creation are scarce in the literature. In [Am3), a general
introduction is given to object-oriented programming from a theoretician's point of view. Semantic
studies are reported in a few of the already cited papers [Cl,Ag,Sa,SSJ, but these are all focused
on very different problems and techniques. Our work shares with [BrB) the central role played
by continuations. However, that paper investigates process creation in a (deterministic) datafl.ow
setting, and does not address semantic equivalence issues.

Our debt to Plotkin's seminal work in semantics should be clear from the above. To Nivat we
are indebted for stimulating our interest in metric techniques going back to his lectures in [Ni].
Without the detailed semantic analysis of POOL described in [ABKR1,ABKR2] the present paper
would have been impossible. Many of our semantic definitions can be traced back to concepts and
techniques first developed in these two papers.

Acknowledgements
Discussions with Jeffery Zucker led to a considerably improved way of incorporating syntactic
continuations for the uniform case. Moreover, definition 4.4 is due to him. We are also indebted
to dr. Zucker for pointing out several minor and some major flaws in a draft of this paper which
we (hope to) have corrected in the present version.

The contributions of Joost Kok and Jan Rutten to the design of the POOL semantics as
reported in [ABKR1,ABKR2] were absolutely essential for the present investigation. The idea of
assembling transition sequence information into a process is due to Joost Kok. We acknowledge
fruitful discussions on our work in the Amsterdam concurrency group, including Frank de Boer,
Joost Kok, John-Jules Meyer, Jan Rutten and Erik de Vink.

Finally, we express our thanks to Marisa Venturini Zilli for the opportunity extended to the
second author to lecture on the material of this paper in the Advanced School on Mathematical
Models for the Semantics of Parallelism, Rome, September 1986.

25

2 Mathematical preliminaries

2.1 Notation

If X is a set, we denote with P (X) the power set of X, i.e., the collection of all subsets of X.
P,..(X) denotes the collection of all subsets of X which have property 1r. A sequence x0 , xi, ... of
elements of X is usually denoted by (x;)~0 or, briefly, (x;);. The notation f: X-> Y expresses
that f is a function with domain X and range Y. We use the notation f {y / x}, with x E X and
y E Y, for a variant off, i.e., for the function which is defined by

f{y/x}(x') = y
= f(x')

If f : X-> X and f(x) == x, we call x a fixed point off.

2.2 Metric spaces

if x = x'
otherwise

Metric spaces are the mathematical structures in which we carry out our semantic work. We give
only the fact most needed in this paper. For more details, the reader is referred to [Du,En].

Definition 2.1
A metric space is a pair (M, d) where Mis a non-empty set and d is a mapping M x M-> [O, l]
having the following properties:

1. Vx,y E M[d(x,y) = 0 <==? x = y]

2. Vx,y E M[d(x,y) = d(y,x)]

3. Vx,y,z E M[d(x,y):::; d(x,z) + d(z,y)]

(dis called a metric or distance.)

Examples

1. Let A be an arbitrary set. The discrete metric on A is defined as follows: Let x, y E A.

d(x,y) 0
1

if x = y
if x I y

2. Let A be an alphabet, and let A 00 = A* U Aw denote the st of all finite and infinite words
over A. Let, for x E A 00 , x(n) denote the prefix of x of length n, in case length(x) ~ n, and
x, otherwise. We put

d(x,y) = z-sup{n[x(n)=y(n)}

with the convention that 2- 00 = 0. Then (A, d) is a metric space.

Definition 2.2
Let (M, d) be a metric space and let (xi); be a sequence in M.

1. We say that (x;); is a Cauchy sequence whenever we have

Vi> 03N E NVn,m > N[d(x,,,xm) < Ej

2. Let x EM. We say that (x;); converges to x, and call x the limit of (x;); whenever we have

VE> 03N E NVn > N[d(x,xn) < E]

We call the sequence (x;); convergent and write x = liIIl< x;.

26

3. (M, d) is called complete whenever each Cauchy sequence in M converges to an element
of M.

Definition 2.3
Let (M1 , di) and (M2, d2) be metric spaces.

1. We say that (M1 , d1) and (M2 , d2) are isometric if there is a mapping f : M1 -+ M2 such
that

(a) f is a bijection

(b) Vx,y E Mi[d2(f(x),f(y)) = d1(x,y)]

We then write M1 ~ M2• If we have a function f satisfying only condition (lb), we call it
an isometric embedding.

2. Let f: M 1 -t M2• We call f continuous whenever for each sequence (x;); with limit x in M1,
we have that lim; J(x;) = f(x). We shall denote the set of all continuous functions from M1
to M2 by M1 .-"..; M2.

3. We call a function f : M1 -+ M 2 contracting if there exists a real number c with 0 :::; c < 1
such that

4. A function f : M 1 -+ M 2 is called non-distance-increasing if

We shall denote the set of all non-distance-increasing functions from M 1 to M2 by Mi ~1 M2.

Theorem 2.4

1. Let (M1 , di) and (M2, d2) be metric spaces, and let f : M 1 -+ M2 be a contracting function.
Then f is continuous. The same holds for non-distance-increasing functions.

2. (Banach.)
Let (M, d) be a complete metric space. Each contracting function f : M -+ M has a
unique fixed point which equals lim; Ji(x0) for arbitrary x0 E M. (Here J0 (x0) = x0 and
p+i(xo) = J(Ji(xo)).)

It may be instructive to recall the proof of theorem 2.4-2. Since f is contracting, the sequence
([i(xo)); is a Cauchy sequence. By the completeness of (M,d), the limit x = lim; Ji(x0) exists.
By the continuity off (part 1), f(x) = /(lim; Ji(x0)) = lim; Ji+ 1 (x0) = x. If, for some y EM,
f(y) = y then, by the contractivity off, d(x, y) = d(f (x), f (y)) :<:; c.d(x, y). Hence, since c < 1 we
conclude that d(x,y) = 0, and x = y follows.

Definition 2.5
Let (M, d) be a metric space.

1. A subset X of M is called closed whenever each converging sequence with elements in X has
its limit in X.

2. A subset X of Mis called compact whenever each sequence in X has a subsequence which
converges to an element of X.

27

Remarks

1. The definition of compactness given here is in fact what is called sequential compactness in
general topology. In a metric space this is equivalent to compactness.

2. Taking, in definition 2.5-2, X equal to M defines when the space (M, d) is called compact.

3. In a metric space every compact set is closed.

Definition 2.6
Let (M,d), (Mi,d1), and (M2,d2) be metric spaces.

1. We define a metric dp on the set M1 -> M2 of all functions from M1 to M2 as follows: For
every fi,J2 E M1-> M2 we put

2. We define a metric dp on the Cartesian product M 1 x M 2 by

3. With M 1 LJ M 2 we denote the disjoint union of M 1 and M 2 , which may be defined as ({ 1} x
M 1) U {{2} x M 2). We define a metric du on M 1 LJ M 2 as follows:

du(x,y) d;(x, y)
1

if x, y E { i} x M; for i = 1 or i = 2
otherwise

In the sequel we shall often write M 1 U M 2 instead of M1 LJ M2 , implicitly assuming that M 1

and M2 are already disjoint.

4. Let P,,(M) = {X I X ~ M,X closed}. We define a metric dH on Pc1(M), called the
Hausdorff distance, as follows:

dH(X, Y) = max {sup d(x, Y), sup d(y, X)}
•EX yEY

where d(x, Z) = infzEZ d(x, z) (here we use the convention that sup 0 = 0 and inf 0 = 1).

Theorem 2.7
Let (M,d), (Mi,d 1), (M2 ,d2), dp, dp, du, and dH be as in definition 2.6, and suppose in addition
that (M,d), (M1 ,d1), and (M2 ,d2) are complete. We have that

1. (M1 -> M2 ,dp) (together with (M1 -". M 2,dp) and (M1 ~1 M 2,dp))

2. (M1xM2,dp)

3. (M1UM2,du)

4. (P,,(M),dH)

are complete metric spaces. (Strictly speaking, for the completeness of M 1 -+ M 2 , the completeness
of M 1 is not required.)

In the sequel we shall often write M 1 -+ M2, M1 x M2, M 1 LJ M2, P,,(M), etc., when we mean the
metric spaces with the metrics just defined.

28

The proofs of parts 1, 2, and 3 of theorem 2.7 are straightforward. Part 4 is more involved. It
can be proved with the help of the following characterization of completeness of (PcJ(M), dH}:

Theorem 2.8
Let (PcJ(M),dH) be as in definition 2.6. Let (X;); be a Cauchy sequence in PcJ(M). We have

limX; = { li'.!Ilx; Ix; EX;, (x;); a Cauchy sequence in M}
I '

Theorem 2.8 is due to Hahn [Ha]. Proofs of theorems 2.7 and 2.8 can be found, e.g., in [Du]
or [Enj. The proofs are also repeated in [BZ].

Theorem 2.9 (Metric completion)
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion
of M) together with an isometric embedding i : M --+ M such that

I. M is complete.

2. For every complete metric space M' and isometric embedding j : M --+ M' there exists a
unique isometric embedding']: M--+ M' such that'] o i = j.

Proof
Standard topology. D

Finally we have the following result from Rounds [Ro]:

Theorem 2.10
Let f : M1 --+ M2 be an arbitrary function, where M1 and M 2 are compact metric spaces, and
define J: P"'(M1) --+ P(M2) by f(X) = {f(x) Ix EX}. Then the following statements are
equivalent:

I. f is continuous.

2. For every X E P,1(M1) we have /(X) E P,1(M2), and J is continuous with respect to the
Hausdorff metrics.

3. For every X E P"'(Mi) we have /(X) E Pcl(M2), and, for each decreasing chain (X;); (i.e.,
X; 2 X;+1 for all i) of elements in P"' (Mi) we have

f(nx;) = nf(x;J.
i i

2.3 Resumptions and domain equations

We begin with a brief intuitive introduction of the notion of resumption (due to Plotkin [PU]).
We use the terminology of processes p, q which are elements of a process domain P. We emphasize
that we are concerned here with semantics rather that with syntax: processes are elements of
mathematical structures rather that (pieces of) program texts. Process domains are obtained as
solutions of domain equations. In this informal introduction we let A and B stand for arbitrary
(fixed) sets (where necessary provided with the discrete metric) and we shall denote by Po an
arbitrary mathematical object which shall play the role of a nil process. A very simple equation is

P ~ {Po} u (A x P) (2.1)

We can read this equation as follows: a process p E P is either p0 , which cannot take any action,
or it is a pair (a, q), where a is the first action taken and q is the resumption, describing the rest

29

of p's actions. Clearly, (2.1) has as a solution the set of all finite sequences (ai,a2,. .. ,anop0),

with n ;:::: 0 and a; E A for all i. The set of all these finite sequences plus all infinite sequences
(a1> a2, ...) is another solution.

We next consider
P ~{Po} U (A-+ (Bx P)) (2.2)

This is already a much more interesting equation: each process is either p0 or a function which,
when supplied with an argument a, yields a pair p(a) = (b,p'). We see that p maps a to b, at the
same time turning itself into the resumption p'. We can say that p determines its first step band
the resumption p' on the basis of a.

The following equation we consider is

(2.3)

Now, if we feed a process p f. Po with some a E A, a whole set X of possible pairs (b, q) results,
among which the process can choose freely. For reasons of cardinality, (2.3) has no solution when
we take all subsets, rather than all closed subsets of B x P. Moreover, we should be more precise
about the metrics involved. We should have written (2.3) like this:

(2.3')

where, for any positive real number c, id, maps a metric space (M, d) into (M, d') with d'(x, y) =
c.d(x, y). We shall adopt the convention that in domain equations like (2.1), (2.2) and (2.3) every
occurrence of the defined space P on the right-hand side is implicitly surrounded by id!. (Note

• that (2.1) and (2.2) can be solved even without this convention, resulting in a set of sequences,
respectively trees, with the discrete metric.)

It will turn out that (2.3) is the right type of domain equation for our purposes. We shall,
in sections 5 and 6, specialize A and B to certain sets which have the appropriate semantic
connotations. As we shall see later, an important advantage of processes as in (2.3) is that they
allow a natural definition of their merge, which combines interleaving and communication steps in
a way which is quite familiar in concurrency semantics (for one example, see ACP [BK]).

We next discuss how one may solve equations as exemplified by (2.1) to (2.3). These equations are
special cases of domain equations as studied in depth in the domain theory initiated by Scott and
developed further by many researchers (including Plotkin's [Pll], see e.g. [Gi] for a comprehensive
reference). We shall here briefly sketch an approach to the solution of such domain equations
which is fully couched in the setting of (complete) metric spaces (first described in [BZ]) and, in
this way, avoids any mention of order-theoretic structures. We thus obtain a unified mathematical
foundation for our semantics, since we exclusively base ourselves on metric techniques. We present
a somewhat streamlined version of the results in [BZ]. There is an important class of domain
equations not covered in that paper, viz. equations of the form

p~ ... (P-+ ...) ... (2.4)

i.e., involving functional domains with the "unknown" domain on the left-hand side of'-+'. Re
cently, a fuller treatment of the metric approach has been described by America and Rutten [AR].
There, equations P ~ .1(P) are solved in a category of metric spaces, also catering for situations
as in (2.4). For the purpose of the present paper, the restricted case to be described below suffices,
and we thus avoid the introduction of various category-theoretic notions which are not essential
for the applications at hand.

We consider a domain equation
P ~ 1(P) (2.5)

30

where 1 is a function (technically, a functor on the category of complete metric spaces, but we. do not have to be aware of this) which is constructed according to the following syntax (where c lS a real number, Q < c < 1, and Man arbitrary complete metric space with metric dM)
1::=1M I idc I Ji X 12 111 LI 'J.i I Pc1(1) I 1M -> 1 (2.6)

The above definition of 1 should be understood as follows. For each complete metric space (Q, d) we define the complete metric space (1(Q), 1(d)) to which 1 maps (Q, d):
1. 1M(Q) = M, .TM(d) = dM

Thus, 1M is the constant function, yielding (M, dM) for every Q. In various applications, we just give some arbitrary set A and assume for A the discrete metric.
2. id.(Q) = Q, id0 (d)(x, y) = c.d(x, y)
3. If 1 =Ji x "2, assume that .1;(Q) = Q; and J;(d) =cl; for i = 1,2. Then we put 1'(Q) = Q1 x Q2 and 1(d) = dp (see definition 2.6).
4. H 1 =Ji U 'J.i, assume again that J;(Q) = Q; and J;(d) = d; for i = 1,2. Then we put 1(Q) = Q1 LI Q2 and 1(d) = du (see definition 2.6).
5. H 1 = Pc1(1'), assume that 1'(Q) = Q' and 1'(d) = d'. Now we put 1(Q) = P.,(Q') and 1(d) = (d'}H (see definition 2.6).

6. H 1=1M -+ 1', we already know that 1M(Q) = M and 1M(d) = dM. Now assume that 1'(Q) = Q' and J"'(d) = d'. We put 1(Q) = M-+ Q' and 1(d} = (d')F, where (d')F is the function metric on .M-+ Q' derived from d' (see definition 2.6).
According to [BZ], for 1" as just given we can solve (2.5) by the following scheme: Define inductively

Po = ({Po},do)
Pn+I = 1(Pn)

do the discrete metric

Observe that - ignoring the obvious identification of P with { i} x P for i = 1, 2 in case 1' involves a disjoint union - we have for all n
P,. i;: Pn+1 (2.7}

Now we put (Pw, dw) = (Un P .. , Un d..) (with the obvious interpretation of Un dn) and we define (P, d) as the completion (see theorem 2.9) of (Pw, dw). Then we have
Theorem 2.11
For 1 and P as above, we have P ~ 1 (P).
Proof
A nonessential variation of the results of [BZ]. 0
Remark
The scope of the techniques applied in the proof of theorem 2.11 was not fully understood in [BZJ, a.nd substantial clarification was provided by [AR]. In addition, [AR] brings an essential generalization: The clause 1M -+ 1' in (2.6) is replaced by 1i -+ "2, thus dropping the restriction that only constants appear on the left-hand side of'-+'. A precise analysis is provided of the ensuing situation, involving the notion of contraction coefficient c ~ 0 of a functor 1, and culminating in the result that, for c < 1, (2.5) has a unique solution (up to isometry). A key step in this analysis is a generalization of (2.7): in the presence of general functional domains we can no longer gloss over the need for a precise embedding of P,. into Pn+i, and a rigorous definition of an arrow L : P,.. -+ Pn+I is needed. For arbitrary complete metric spaces (Mi,d1) and (M2,d2), such an arrow L: M1-+ M2 is a pair (i,j) with i: M1 -+ M2 an isometric embedding and j: M2-+ M1 a non-distance-increasing function such that j o i is equal to the identity function on M1 •

31

3 A uniform and static language

We begin with a detailed study of .Cu., a uniform and static language. First we present its
syntax, and i'ts operational semantics in the style of Hennessy and Plotkin IHP,Pl2,Pl3]. Next, we
develop the metric framework to define the denotational semantics for fus· Finally, we discuss the
relationship between the two semantics and outline an equivalence proof. Most of this section can
already be found in section 2 of IBMOZ2]; we repeat this material here to make the present paper
self-contained and to prepare the way for the treatment of the dynamic case in the next section.
There are a few new points in the development presented below as well, partly due to the fact that
L.,, has only one level of parallelism, partly caused by our wish to achieve a smooth transition to
the definitions for .Cud, the language with dynamic parallelism (a notion not treated in IBMOZ2]).
The latter aim has in particular motivated our use below of the technique of continuations.

3.1 Syntax and preliminary definitions

Let A be a finite alphabet of elementary actions, with typical elements a, b, c, and let StmV be an
infinite set of statement variables, with typical elements x, y. Statement variables are used in the
syntactic construct for recursion, as we shall see in a moment.

Definition 3.1 (Syntax for statements and programs)

1. The set Su, of (uniform and static) statements, with typical elements, is defined by

The prefix µx in the construct µx!s] binds occurrences of x in s in the usual way. We call a
statement s closed if it contains no free occurrences of statement variables.

2. The set fus of (uniform and static) programs, with typical element t, is defined by

t ::= .S1 II · · · II Sn (n 2: 1)

Here we require that Si, •.. , Sn are all closed (so that programs are always closed).

Examples

1. Statements: a;b, µxl(a;x)ub], µxl(a;x)u(x;b)uc], µxl(a1;x;a 2)Uµy[(y;b)uc]], a;y;b (only
the last example is not closed).

2. Programs: Each of the closed statements listed under 1, and, in addition, (a; b) II µxl (a; x) U

b] II µx[(x;b) Uc], µx!a;x] 11 µy[b;y]

A statement s is of one of the following forms:

• an elementary action a

• the sequential composition s 1 ; s 2 of statements s 1 and s2

• the non-deterministic choice s1 Us2 (also known as local or internal non-determinism): s1 Us2

is executed by executing either s1 or s 2 , where the choice is made non-deterministically.

• a statement variable x, which is (primarily) used in:

• the recursive construct µxl s]: its execution amounts to execution of s, where occurrences of x
ins are executed by (recursively) executing µx[s]. For example, with the semantic definitions
to be proposed presently, the intended meaning of µx[(a; x) u b] is the set a* .b u {a"'}.

32

A program t = s1 II · · · II s,. consists of n 2: 1 statements which are to be executed in parallel.
Since n remains fixed throughout the execution oft, we call the language f.u, static to distinguish
it from the dynamic language lwJ studied in section 4.

f,,., has no synchronization or communication. The issues which arise when such notions are
added to it are studied in detail in (later sections of) [BMOZ2). We do not want to complicate
our treatment of£ ... , - which plays only a preliminary role in the present context - by including
such ramifications.

Substitution of a statement for a statement variable is defined in the familiar way: s[s'/x)
denotes the result of substituting s' for all free occurrences of x in s, with the usual precaution of
renaming bound variables when necessary to avoid clashes.

In both operational and denotational models we shall use the universe of streams, defined in
Definition 3.2 (Streams, cf. [Brl,Br2])
We assume that J. f/- A. The set A'1 of all streams over A is defined by

Aat =A* U Aw u (A* x {..L})

where A* (Aw) is the set of all finite (infinite) words over A.

We shall use u, v, w to range over An and use t for the empty stream. Streams of the form (u, 1.)
will be written as u · .l or simply uJ.. We shall abbreviate (E, ..L) to J.. The use of J. is motivated,
in an operational setting, by our wish to produce some visible result as the outcome of an infinite
computation that does not produce an infinite sequence of elementary actions. For example, we
shall organize the definitions such that both µx[x) and µx[(x;b) Uc) deliver ..Las an outcome (in
the latter case together with cb*).

We shall use aw for the infinite sequence of a's. length(u) yields the number of symbol occur
rences (from AU {.l}) in u. In particular, for u E Aw, length(u) = oo, and for u = u'..L, u1 EA*,
we have length(u) = length(u') + 1. We use ':S::' for the prefix ordering on A'1 , i.e., we put u :'.':'. v
whenever u = v or u E A* and, for some w E A't, u · w = v (the reader who wants to see a
precise definition of the concatenation '·' of streams is referred to definition 3.12). For example,
we have ab ::; abc, a" :S:: aw, ab ::; ab..L, but aJ. f; abJ.. We recall that each :S::-chain (u;);, with
u; :S:: t1;+1i i = 0, 1, ... ,has a least upper bound u = lub; u; in A'1 , where (u;); is either infinitely
often increasing (u; =I U;+ 1 for infinitely many i) and then u E Aw, or (u;); stabilizes in some u;0
(u; = u;0 for all i 2: io), and then u = u;0 • We conclude this list of definitions with the notation
u(n), which denotes the :S::-prefix of u of length n in case this exists, and which equals u otherwise.

In both this and all subsequent sections we shall make extensive use of so-called continuations,
both of syntactic and semantic variety. In defining the semantics of a statement, we shall use a
continuation to indicate the "actions" which remain to be done after this statement. Syntactically,
this is done by a piece of program text, a syntactic continuation, to be defined below. Semantic
continuations will be introduced in section 3.3. The use of continuations in the context of lus is
not necessary or especially helpful, but it introduces the techniques which will be applied fruitfully
in the following sections.

We shall denote the empty syntactic continuation by E (note that E is not itself a statement)
and then define

Definition 3.3 (Syntactic continuations)

1. The set SyCo of syntactic continuations, with typical element r, is defined by

r ::=EI s; r

Here we require that each statement s occurring in a syntactic continuation r is closed (so
that syntactic continuations are always closed).

33

2. We define the set PSyCo of parallel syntactic continuations, with typical element p, as follows:

p ::=Ti, ... ,rn (n ~ 1)

3.2 Operational semantics

We now proceed with the operational semantics for Sus and £.,,. We apply the technique of
transition systems, introduced by Hennessy and Plotkin [HP,Pl2,Pl3], and proven to be quite
fruitful in a variety of concurrency semantics. The particular version employed below is close
to the style of definition in [Apl,Ap2], though these papers deal in fact with interpreted rather
than with uninterpreted languages (cf., for example, the discussion in [BKMOZ] of the distinction
between uniform and nonuniform). In [BMOZ2] we also discuss the relationships between our
version of the transition formalism and other variants one may encounter in the literature.

A configuration is either a pair (p, w), with w EA* x {_i}, or simply a stream w, with w EA*. A
transition is a pair of configurations of the form

(p,w)--+ (p',w')

or
(p, w) __,. w"

(where w,w' EA* x {_i}, w" EA*). In order to understand such transitions, we first mention
- anticipating later precise definitions - that a program t = s1 II • · · II Bn will correspond to a
parallel continuation p = s 1 ; E, ... , sn; E. For each configuration (p, w), we view pas the program
currently to be executed, and w as an (unfinished) stream of elementary actions collected so far.
The '__,.' relation as given above either reflects a one-step transition to a new such pair (p', w'), or
a one-step transition to a (finished) stream w". The transition system to be defined in a moment
provides the information necessary to deduce transitions of the given form. More precisely, we
shall define the relation •_,.• between configurations as the smallest (with respect to set inclusion)
relation which satisfies the axioms given in the following definition.

Definition 3.4 (Transition system for £u.)
The system Tu, for E.u, consists of the following five axioms (in a self-explanatory notation):

(... ,a;r, ... ,w_i)-> (... ,r, ... ,wa_i)

(•.. ,(s1;s2);r, ... ,w)-> { ... ,s1;(s2;r), ... ,w)

(... ,(s1 Us2);r, ... ,w)-+ (... ,s1;r, ... ,w) I (... ,s2;r, ... ,w)

(Here X-+ Y I Z is short for X--+ Y and X-> Z.)

(... ,µx[s];r, . .. ,w)-> (.. . ,s[µx[s]/x];r, ... ,w)

(E, ... ,E,w.l) _,. w

Elem

SeqComp

Choice

Ree

Term

(Note that, by our conventions, in the first and fifth axiom w E A*, and in the remaining ones
w EA* x {_i}.)

Our next step is the definition of a semantic function 0 [·], yielding, when applied to some p, a
subset of A't.

Definition 3.5
We define the function

0 [[·] : PSyCo -+ P (A't)

as follows. Let p E PSyCo. We put a stream w into 0 [P] whenever one of the following conditions
is satisfied:

34

1. There is a finite sequence of configurations ((p;, w;)) ;=o' such that (p;, w;) -+ (P;+i, W;+i) for
i= o, ... ,n- l, Po =p, Wo = ...L, and (Pn,WnJ-+ w.

2. There is an infinite sequence of configurations ((p;, w;)) : 0 , such that (p;, w;) -+ (Pi+1, W;+1)
for i = 0,1, ... , p0 = p, wo = ...L, w; = wi...L, and w = (lub, wi)...L.

Remark
In clause 2 we use the obvious fact that if (p, w...L) -+ (p', w' ...L) then w :::; w'. Note that, for (wi};
infinitely often increasing, w' ~r lub; wi belongs to Aw, so from the definition w = w' ...L we infer
that w = w' (by definition 3.12, concatenating any stream to the right of some infinite stream has
no effect). For (wl); stabilizing in w; 0 , we obtain w = w:0 ...L.

Examples

1. O[µx[(a;x) U b];Eil = {aw} U a*b,
O[µx[(x;a) U b];Eil = {...L} U ba*

2. O[(cU (a;b));E, d;Ell = {cd,dc,dab,adb,abd}
We conclude the operational semantics definitions with the definition of O[t]] fort E £u,:
Definition 3.6
The mapping O[· Il: £u,--+ P(A81) is defined as follows. Lett= s1 II ... II Sn E £us· Then

O[tll = O[[s1; E, ... , Sni Ell.

Remark
There is a natural connection between the notions discussed above when restricted to programs
without parallelism (t = s 1) and the languages with finite or infinite words produced by context
free grammers in the sense of, e.g., Nivat [Ni]. For example, the grammar X -+ aXb I c produces { aw} u { ancb" I n 2'.: 1 }, and so does 0 [µx[(a; x; b) u cm. A difference a,rises in the presence of
unguarded recursion (cf. definition 3.14 below); for example, O[[µx[(x;b) u cm equals {...L} u cb*,
whereas X -+ Xb I c would, by Nivat's definitions, produce only cb*. Briefly, the role of ...L in
our style(s) of semantics has no counterpart in traditional formal language theory. Fixed point
considerations for infinitary languages generated by grammars which may be left recursive (in other
words, which do not satisfy the Greibach condition) are discussed for instance by Niwinski [Niw].

A number of elementary properties of 0 [· TI are collected in
Lemma 3.7

1. O[Eil = {<}

2. O[a;rll =a.OM

3. O[(s1;s2);rll = OITs1;(s2;rH

4. O[(s1 U s2);rll = O[s1;rll U O[s2;rll

5. O[µx[s];r] = O[s[µx[s]/x];rfl
Remark
This lemma presupposes the formal definition of operations on (sets of) streams to be given in definition 3.12.

Proof
Obvious from the definitions. D

35

3.3 Denotational semantics

By way of preparation for the denotational semantics for fu., we present some basic definitions
which introduce the metric setting we apply for this purpose.

Definition 3.8
We define the distanced: A'1 x A'1 -+ [O, l] by

d(u, v) = 2-sup{nlu(n)=v(n) l,

where 2- 00 = 0.

Examples
d(a1a2a3,a1a2a4) = 2- 2 , d(an,aw) = 2-n, d(~,..L) = 1.

Lemma 3.9

1. (A'1, d) is a complete metric space.

2. For finite A, (A'1, d) is compact.

Proof
See, e.g., [Ni]. D

Let Pn,(A'1) denote the collection of all nonempty closed subsets of A'1• We usually abbreviate

P,,,(A•t) to Snc· Let X, Y range over Snc· We put X(n) = { u(n) I u E X }. Now we also define a
distanced on Sn,:

Definition 3.10
The distance d : Sn, X Snc ----> [O, l] is defined by

J(X,Y) = r•up{nlX(n)=Y(n)}_

where, again, 2- 00 = 0.
We have the following important

Theorem 3.11

1. (Snci d) is a complete metric space, and if A is finite this space is compact.

2. d coincides with the Hausdorff distance (cf. definition 2.6) induced on Sn, by the distanced

on streams.

Proof
Part 2 is easy from the definitions, and part 1 then follows from theorem 2. 7 (together with

a theorem that says that compactness also carries over from any M to P,1(M), see [Du,En]).

The omission of the empty subset, which has distance l to every other subset does not disturb

closedness or compactness. D

Remark
As a consequence of part l of this theorem, each Cauchy sequence (Xn)n in (S"" J) has a limit
lim,, X,, in (Snci d), a fact we shall employ several times below.

Next we introduce three semantic operators'·', 'U', and 'II', which are counterparts of the syntactic

operators of sequential composition, choice and parallel execution. The first two are well-known;

the II-operator (when applied to two sets) consists of the shuffie of all streams in the two operands.

36

As remarked before, no operations involving synchronization or communication are considered for
this language. The precise definition of the semantic operators proceeds in stages:

Definition 3.12 (Semantic operators)

1. We assume as known the operation '·' of prefixing an element a E A to a finite stream
u E A*, yielding as a result a· u (also written as au). Moreover, we put a· (u, l.) = (au, ..L),
foruEA*.

2. Assume X,Y <;;A* u (A* x {..L}). We define

(a) a · X = { au I u E X }
(b) For u EA* u (A* x {..L}), we define u · X by induction on the length of u, as follows:

€ • X = X, ..L · X = { ..L}, (au) · X = a · (u · X).

(c) X · Y = U { u · Y I u EX}
(d) XU Y is (indeed) the set-theoretic union of X and Y.
(e) u lLX (which will be used in 2f) is defined by induction on the length of u, as follows:

€ [LX = X, J_ [LX = {..L}, (au) lLX =a. ({u} II x).
(f) XII Y = (X 11_ Y) U (Y lL X), where X lL Y = U { u lL X I u E X }.

3. Assume that X and Y are arbitrary elements of Sn" and let op E {., U, IJ}. Then we put

X op Y = Ii~ (X (n) op Y (n)).

Lemma 3.13

1. The operators op from {-,U,11} are well-defined. In particular, for each X,Y ES,."
(X(n) op Y(n)L is a Cauchy sequence.

2. Each op is a continuous mapping: s., x Snc _, S.,.

Proof
Either by combining results from [BBKM] with Round's theorem (theorem 2.10), or by appropri
ately modifying the proof as given in \BZ, Appendix BJ. D

We need one last step before we can give the definition for the denotational semantic function D\[· ~
We shall restrict the definition of D[·]] to statements involving only guarded recursion, as defined
in

Definition 3.14

1. A statement variable x may occur exposed in a statement s. This notion is inductively
defined as follows:

(a) x occurs exposed in x.

(b) If x occurs exposed ins, then x occurs exposed ins; s', s Us', s' us, and µy[s] for y =f x.

2. A statement s is called guarded when for each of its recursive substatements of the form
µx[s'] we have that x does not occur exposed in s'. A program t = s1 II · · · II Sn is called
guarded if all its constituents s; are guarded.

37

Examples
The statements µx[a; x] and µx[µy[b; y]; x] are guarded, whereas µx[(x; b) u c] and µy[µx[y]; b] are

unguarded.

Let si, denote the sets of guarded statements and £~. the set of guarded programs. We shall now

define the mappings D:
D[·]: si, _, (r _, (SeCo _, S,..,J)

and
D[! ·] : £~, -t Snc

where r is the set of environments and Se Co the set of semantic continuations. The definition of

the latter is simple: We just take
SeCo = Sno

and use X, Y to range over Se Co as well. A semantic continuation denotes the semantics of the

statements to be executed after the one to which D [·II is applied. This technique is best illustrated

by definition 3.15 below.
For the set of environments, used in the traditional way to deal with recursion, we use

r = StmV-> (Se Co N~I Snc),

(where N_!;I stands for the set of all non-distance-increasing functions, cf. definition 2.3) and we

take/ to range over f and <p to range over SeCo ~1 Snc· (For the notation 1{<p/x} used below,

cf. section 2.1.)

We are now sufficiently prepared for

Definition 3.15 (Denotational semantics for St.l, and £ ... ,)

1. Assume that s E S.,, is guarded. We define D [s] by structural induction on s:

(a) D[a](l)(X) =a· X

(b) D[[s1;s2llh)(X) = D[s1]hJ(D[s2](1)(XJ)

(c) D[s1 u s2](1)(X) = D[s1](1)(X) u Dh](1)(X)

(d) DM(l)(X) = 1(x)(X)

(e) D[[µx[s]](1)(X) = lim; <p;(X), where 'Po can be chosen arbitrarily and the rest of the

sequence is given by 'Pi+! = D [.s] (1{ <p;j x}).
2. Fort = s1 11 · · · II Sn, t guarded, we put

D[[t] = D[s1](1)({<}) II ... II D[[sn]h)({E})

where I is arbitrary (and we assume the obvious associativity of 'II').

The definition in clause le is justified by

Lemma 3.16
If .s is guarded and x does not occur exposed in s, then we have that the operator <P defined by

<1> = A<p.D[[slJ(1{<p/x}) is contracting.

Proof
Induction on the complexity of s, using the condition on x. D

Now by Banach's theorem, the sequence ('P;); in definition 3.15-le converges to the unique fixed

point of <P, say <p. In particular, for the meaning of µx[sl we have the familiar fixed point relation

(for each 1):

<p = D[µx[s]](1) = D[[sJl(1{<p/x}).

38

3.4 Equivalence of operational and denotational semantics

After having defined both 0 and D for (guarded elements of) Su.s and .C,,,, we next discuss the

relationship between the two semantics. We shall in fact establish that, for t guarded,

O[t] = D[t] (3.1)

We need some technical properties of 0 which will play a role in the inductive argument to

prove (3.1). A very detailed treatment of variants of these results can be found in [BMOZ2]

(variants stemming from the fact that the latter deals with nested parallelism as well). Therefore,

we state the results here without proof:

Lemma 3.17

1. 0 [[s; r] = 0 [[s; E] · 0 [[r]

2. O[ri.r2i = O[[rii II O[h]]

For the statement of the next theorem we need some further notation: Consider a recursive

construct µx[s]. Let !l be a new elementary action, i.e., !l €/:- A. (This is the only place where we

find it convenient to distinguish a syntactic elementary action (0) from the corresponding semantic

one (..L).) 0 will play a role only in connection with theorem 3.18 below. We first introduce a

corresponding axiom (extending the list of transition axioms in definition 3.4):

(... ,O;r, ... ,w)->w Undef

(Recall that w EA* x {..L}. Thus, Undefis an axiom which terminates the computation with an

unfinished stream.) Moreover, for each n :'.'.: 0, s, and x, we introduce the notation s~n) given by

The following theorem is proved in [BMOZ2]:

Theorem 3.18
Assume that µx[s] is closed and guarded. Then we have

O[µx[s];rj == limO[s~nl;r]
n

Proof
See the argument in [BMOZ2], which involves an elaborate development of auxiliary tools. D

Theorem 3.18 is in fact crucial for the proof of (3.1). We shall prove (3.1) in a way that anticipates

the strategy followed in the next section where we deal with .Cu.d· Our reason for doing this is our

wish to pinpoint the places where the proof of the dynamic case is essentially more involved than

that of the static case.

In order to prove {3.1), we first prove a more general result, and then obtain (3.1) as a direct

corollary.

Theorem 3.19

Let s be guarded but not necessarily closed, and let the set of free statement variables of s be

contained in {xi, ... , Xm}, m :'.'.: 0. Let s1, ... , Sm be closed and guarded statements, let s =
s[s;/ x;]f; 1 , and let, for any r, OM be short for >.X. (0 M · X). Let furthermore

<p; = O[[s;; E]]

;
i

r

39

for i = 1, ... , m, and let 1=1{ip;/x;}f;1 . Then we have

O[[.S;E]] = DMViJ.

Proof
Induction on the complexity of s. We treat three representative cases:

Case 1: s = x;

Then O[[.S;ETI = O[[s;;E]] ='Pi= D[[x;TI(i).

Case 2: s = s'; s"
Now the free statement variables of s' and s" are also among {x1, ..• , xm}· We can write St =
s'[s;/ x;]f; 1 and similarly for s". Then we get

O[[s;ETI

Case 3: s = µy[s']

O[[(;.;"'.?'); ETI
O[s'; ($if; E)]]

>..x.o ITS'; (8"; EH· x
>..x.io[S1

; ETI · (O[[S"; ETI · x))
>..x. 6[S1;E](6ITS";E](xJ)

AX. D [f ,'1111 (D l•"J(i)(X)) l
D [[s'; s"TI(1).

(lemma 3.7)

(lemma 3.17 and associativity of'·')

(twice the induction hypothesis)

Let us first remark that from the conditions on s and s1 , •.• , Sm it follows that s is guarded. We
define St= s'[s;/x;]i'.; 1 (note that y may still be free ins'). Now we have on the one hand

O[[.S;E] >..x.(O[[.S;E]J · x)
(-(n)) >.X. limn 0 [s'v ; E] · X

• (- N 1(n)) limn O[sy ;E].

(theorem 3.18 and continuity of'·')

On the other hand, we have D[[s](1) = limn !/Jn, where !/Jo can be chosen freely and 1/Jn+l
D[s'JJ(1{1/>n/Y}). Our choice for !/Jo will be !/Jo= >..X.{l.}. We prove, by induction on n, that

- -(n)
O[s'v ;E] =!/Jn·

The case n = 0 is clear. Now assume (3.2) as induction hypothesis. Then

O[[s'[s;/ x;]~ 1 [8'~n) /y]; ETI
D[s1](1{ip;/x;}~ 1 {1/Jn/Y})

D[s'](1{1/>n/Y}) = 1/Jn+I

(3.2)

Here we have used the main induction hypothesis with s' replacing s, m + 1 replacing m, and
s 1 , ••• , Sm, St~n) replacing s 1, ... , Sm· In order for the main induction hypothesis to apply we have

to establish that O[s'~n); E] =!/Jn, which is nothing but our nested induction hypothesis (3.2).

Now that we have proved (3.2) for all n, it is immediate that O[s; E] = D[[s](i), which proves
the most difficult part of the theorem. D

40

Corollary 3.20
For guarded t we have

O[t] = D[t].

Proof
For any closed and guarded s, and any 1, we have, by the previous theorem, that O[s; Ell =
DM(1). Hence, O[[s;E] = O[s;E]({t}) = DMb)({t}). If t = s1 II··· II Sn, we therefore obtain

O[t] O[[s1;E, .. .,sn;E]]

O[s1;E] II .. · II O[sn;E]

D[s1](1)({t}) II· .. II D[sn]b)({t})

D[t]

0

We conclude this section with a remark on possible other models for£.,,. Besides the operational

and metric denotational (linear time) models for £.,.,we have also developed several other models

which have been described elsewhere:

1. A denotational semantics based on a cpo structure on (certain) sets of streams equipped

with the Smyth order [M,BMO,BKMOZ,MdV].

2. A denotational semantics based on a cpo structure on (certain) sets of so-called finite obser

vations equipped with the order of reverse set inclusion [BMO,BKMOZ].

3. A branching time denotational semantics based on a process domain of the kind described

in section 2.3 [BBKM].

The equivalence of the models in 1 and 2 has been established in [BMOJ, the equivalence of the

model in 1 and the denotational metric model is proved in [BM], and the relationship between the

branching time model and (any of) the linear time models is settled in [BBKM].

4 A uniform and dynamic language

We now turn our attention to a language with process creation. In this section we study the uniform

version of this phenomenon as couched in the language .Cud· In section 5 we shall investigate a

nonuniform generalization.
A substantial part of the semantic theory for £.,, can be carried over to the present case. Thus,

we can be much shorter in our definitions. The main equivalence result also closely follows the

approach from section 3, but for one important new problem which requires non trivial additional

analysis.

4.1 Syntax and intuitive explanation

We start with

Definition 4.1 (Syntax for statements and programs)

1. Lets range over the set Sud of (uniform and dynamic) statements:

s ::=a Ix I s1;s2 I s1 U s2 I µx[s] I new(s)

41

2. Let t range over the set .Cud of (uniform and dynamic) programs:

t ::= s

Here we require again that s is closed. Thus, a program in fud is simply a closed statement
from Sud·

The intuitive operational semantics for t or s may be described in terms of a dynamically growing
number of processes which execute statements in parallel in the following manner:

1. Set an auxiliary variable i to 1, and set s 1 to s, the program to be executed. A process,
numbered 1, is created to execute this s 1•

2. Processes 1 to i are executed in parallel. Process j executes Sj (l :S j :S i) in the usual way
(see section 3) if s3 begins with an elementary action, sequential composition, choice, or a
recursive construct. For example, if s3 begins with an elementary action a, then this a is
appended to the output word, and s2 is set to its (syntactic) continuation (the part after
this atomic action).

3. If some process j (1 :S j :S i) has to execute a statement of the form new(s'), then the
following happens: The variable i is set to i + 1, then s; is set to s', and a new process,
with number i, is created to execute s;. Process j will continue to execute the part after the
new-statement (s3 is set to its continuation). Go back to step 2.

4. Execution terminates when there is no process left with a non-empty continuation.

Examples

1. The statement a; new(b; c); d determines the execution as suggested by the following picture
(where the arrow denotes creation of a new process):

2. The statement a;new(b;new(c;d);e);f determines the execution as suggested by

a

I b

e c

d

42

4.2 Operational and denotational semantics

The above intuitive explanation would clearly benefit from a more formal description, and this
will be the main content of the present section.

We first develop the operational semantics for fud· We profit from the preparatory work in
section 3, and assume the general framework as described there. Also, configurations (p, w} or
simply w' (with w E A* x {..l}, w' E A*) are as before, except that the statements s in such a
parallel syntactic continuation p (see definition 3.3) should now belong to Sud instead of S,,,. The
transition relation'->' is now defined as the smallest relation satisfying the axioms in the following

definition.

Definition 4.2 (Transition system for ..Cud)
The transition system T ... d for lud consists of all the axioms of definitior. 3.4 (i.e., of all of T),
and in addition the axiom

(... ,new(s);r, ... ,w)-> (... ,r, ... ,s;E,w) New

Here on the left-hand side we have a parallel syntactic continuation p with, say, n 2 1 components
and new(s);r as the ith component (for some i, 1 '.Si:::; n). On the right-hand side we have the
parallel syntactic continuation p' with n + 1 components, r as the ith component and s; E as the
(n + 1)-st component (and no changes with respect top in the remaining components).

The definition of 0 [PD is as before, but now with respect to transition system Tud· Also, since
each t E fud equals some s E Sud, we simply put, for t = s, 0 M = 0 [s; E~.

Example
Take t = a;new(b;new(c);e);f. Then O[[t]]
abecf}.

{a/bee, abfce, abcf e, abcef, a/bee, abfec, abefc,

The elementary properties of 0 listed in lemma 3. 7 remain valid. In addition, we have:

Lemma 4.3
O[new(s);r~ = O[r, s;E~

Proof
Clear from the definitions. 0

We proceed with the definitions for the denotational semantics for Sud and ..Cud· A complication
which arises is that the notion of a statement being guarded has to be refined. A typical case
concerns a recursive construct such as µx[new(a); x], where the elementary action a does not fulfill
the duties of a guard: this construct may choose to start execution with the recursive call x. The
precise definition of guardedness requires an amended definition of "x is exposed in s", and this
involves, in turn, a notion of generalized new-statement.

Definition 4.4

1. A generalized new statement g is defined by

g ::= new(s) I 91i92 I g Us Is U g I µx[g]

2. When a statement variable x occurs exposed in a statement s E Sud is defined inductively as
follows:

(a) x occurs exposed in x.

43

(b) If x occurs exposed in s, then x occurs exposed in s; s', s Us', s' Us, µy[sJ (if y :f x),
new(s), and in g; s.

3. A statements E S ... d is called guarded if, for all its recursive substatements of the form µx[s'J,
s' contains no exposed occurrences of x.

We shall now give a denotational semantics for .Cud by defining

D[[· J]: sid-> (r ___, (SeCo __,Sn,))

and

where we use f, SeCo, and Sn, as in section 3.3. (Analogously to section 3.3, sid denotes the set
of guarded statements, and ,C~d the set of guarded programs.)

Definition 4.5

1. For guarded s E Sud, s not of the form new(s'), we take over the clauses from definition 3.15.

2. For guarded s of the form new(s') we put

D[[new(s'rnh)(X) = D[[s'J](1)({f}) II X

3. For guarded t E £ ... d, t = s, we put D[[tJ] = D[[s]](1)({f}), where 1 is arbitrary.

We see that the meaning of a new-construct new(s') in a situation that X remains to be done (i.e.,
with a semantic continuation X), is given by the result of putting X in parallel with the meaning
of s' where nothing remains to be done after it (continuation{€}).

4.3 Equivalence of operational and denotational semantics

We now address the question as to whether, for guarded t, 0 ~tTI = D [[t]. We follow the line of
reasoning as in section 3. First, we again have

Lemma 4.6

1. For all ri,r2 E SyCo we have O[h,r2]] = O[ri]J 11 O[frz]].

2. If µx[s] is closed and guarded then O[[µx[s];r]] = lim., O[[s~"l;r].

Proof
See the sources given with lemma 3.17 and theorem 3.18. D

The next step in the argument concerns the analogue of lemma 3.17-1 (and, somewhat more
hidden, the way in which O[I · J] is defined, cf. theorem 3.19). Let us see whether we may expect
that 0 [[s; r]] = 0 [[s; EJJ · 0 [[r]. It is easy to see that this is not the case by taking, for example,
s =new(a) and r = b; E. Then the left-hand side equals {ab,ba} and the right-hand side equals
{ ab}. On the other hand, taking s = a, r = b; E, we see that neither is it true in general that
0 lls; r]] = 0 [[s; E]] II 0 II rJ]. What we need here (and in the definition of 6~ · J]) is an operator which,
as it were, is able to decide dynamically whether the operation at hand is of a sequential or of a
parallel character.

Having pinpointed the problem which distinguishes the situation in the current section from
that in section 3, we develop some additional tools and associated lemmas in such a way that

44

eventually we shall be able to adopt the same style of argument for the main equivalence result

as used in section 3.
We shall introduce the semantic operator':', which should clearly be distinguished from both

'·'and 'II'· The definition of':' requires the introduction of an auxiliary elementary action, not
belonging to AU {j_}, and denoted by ..;. Its intuitive function is to mark the termination of a
local process and (thus) to indicate where a continuation should start. We shall put A' = AU { .,/},
and introduce the extended stream set A .. 1 as

We now define the operator ':' in

Definition 4. 7
We shall put S~. = Pnc(A .. 1) (recall that Snc = Pnc(A'1)).

1. The operator':': A"t x A"1 -t S~. is given by

w:w' = w1 ·(w2llw') ifw=w1../w2
= { w} otherwise

(Note that w' could again contain an occurrence of..;, which will behave as an ordinary
elementary action with respect to 'II'.)

2. For X, Y E s:,., X and Y with finite streams only, we put

x : y = u { u : v I u E x, v E y }

3. For arbitrary X, YES~ •• we put

X: Y = li;ri (x(n) : Y(n))

An important technical lemma concerning the operator ':' is

Lemma 4.8

1. ':' is continuous as a mapping A•at x A .. t -t S~, and as a mapping S~, x S~, -t S~ •.

2. (X : Y) : Z = X: (Y : Z), for X, Y, Z E s:,..
3. {w../}: X = wX, for w EA", X ES~ •.

4. (X u Y) : Z = (X : Z) u (Y : Z), for X, Y, Z E s~ ..

5. (X II Y) : z = x II (Y : Z), for x E Snc, Y, z E s~ •.

Proof
We only prove part 2. Below, we shall prove that (u : v) : w = u : (v : w), for u, v, w E Ae.i. Then
we obtain, for X, Y, Z with finite streams only,

(X:Y):Z = u LJ (u :w)
uEX:YwEZ

= u u LJ ((tt1 : u2) : w)
u, EX u2EY wEZ

u u LJ (u1: (u2: w))
u1EXu2EYwEZ

= X: (Y: Z)

45

For general X, Y, Z, we take the limit of X(n) : Y(n) : Z(n).

We now prove that (u : v) : w = u : (v: w). If u E A't (so that u has no occurrence of y') then
(u : v) : w = { u} = u : (v : w), and if v E Ast then (u : v) : w = u : v = u : (v : w). Now suppose
that u = u1 y'u2 and v = v1 y'vz.

1. (u:v):wc;;;u:(v:w)

u: v = u1 · (u2 II v), so (u: v) : w = Uw'E(u,llv)(u 1w 1) : w. Let w' E u2 II v. We distinguish
two subcases:

(a) w' E A't. This is only possible (since v = v1 y'v2) if u2 E A"' U (A* x {J_}). Then
w' E u2 11 v1, sow' E Uz II (v1 · (v2 II w)) = u2 11 (v : w), and therefore (u1w') : w =
{u1w'} c;;; u: (v: w).

(b) w' = w~y'w~. Now there are u 21 , U22 such that u2 = u21u22, w~ E U21 II vi, w~ E u22 II Vz.
We obtain

2. u: (v: w) c;;; (u: v): w

(u1w'): w u1w~(w~ II w)

c;;; u1(u21 II vi)(u22 II V2 II w)
c;;; u1(u2 II (v1(v2 II w)))

u:(v:w)

We have u: (v: w) = U1 • (u2 II (v: w)) = Uu'Eo:w U1 • (u2 II u') = Uo'E••llwU1 · (u2 II (v1v')).
Now let v' E v2 II wand w' E u2 II (v 1v'). There are u2i, u2 2 , w~, and w~ such that w' = w~w;,
w; E u21 11 V1i w; E u22 II v'. We have that

(4.1)

(The inclusion holds since u2 II v1y'v2 contains the set (u21 II v1)J(u22 II v2), which in turn
contains w\J(u22 11 v2).) We conclude that u 1w' = u1w~w; E u1w~(u22 II V2 II w) ~ (u: v):
w, where the last inclusion follows from (4.1) by postfixing both sides with': w'.

0

We next show how the new operator ':' solves the problems described after lemma 4.6. First we
extend - for the remainder of this section - the definition of SyCo (cf. definition 3.3, and now
put

r ::=EI JI s;r

We emphasize that the 'elementary action' J occurs only in syntactic continuations; the syntax for
statements s E Sud is not modified. Before we can state and prove the equivalent of lemma 3.17-1,
we discuss the induced amendment of the transition system Tud· Firstly, all axioms of T,,d now
refer to r (and p) which may involve J. Secondly, we extend T.,d with an axiom catering for J.
In the present context, we need this axiom only in a restricted version:

(... ,J, ... ,w..L)-+ (... ,E, ... ,wJ..L) Elem'

where w E A* and none of the continuations appearing at the dots (...) involves yl. In other words,
we restrict attention to parallel syntactic continuations p which involve at most one constituent
syntactic continuation r ending in yl. This is no real restriction, since that property applies to all
configurations in transition sequences which interest us: It holds trivially for p containing only one
component, and it is preserved by applications of the axiom New, which creates new components.

46

We can now state the following lemma, which applies the technique of induction loading to

prove corollary 4.10.

Lemma 4.9
Lets E Sua (not necessarily closed) and suppose that all the free variables ins are in {x1 , ... , xk}·
Now let s1, ... , sk be closed and guarded and define s = s[s;/ x;]~=I Suppose further that for
i = 1, ... ,k and for any r we have

O[s;;r] = O[s;;.J]: OM
and that s is guarded. Then we have for any r

O[s; r] = O[s; .J]: OM.

Proof
Induction on the complexity of s. We give full details of the proof, in order to exhibit its dependence

on lemma 4.8.

1. If s = a then s = a, so we get

O[s;r] O[a;r] =a· O[r]
= {aJ}: OM
= O[a;Jll: OM= O[s;J]: O[r]].

(lemma 3.7)
(lemma 4.8-3)

2. Ifs= x; then s = s; and the property follows from the assumption about s;.

3. Ifs = s'; s" then we get in an obvious way s = s'; ?', so

0 [s; r] 0[[(8'; 7'); r]
O[Si; (7'; rH
O[s';.JE: O[S";r]
O[[s';.JE: (o[?';.J]: OM)
(o [Si; v] = o[?i; -vn) = o M
Ofis'; (7'; J)]: O[r]
0[(8'; ?'); J]: O[r]
O[s;.J]: O[r]

4. If s = s' U s" then, again, s = Si U 7' and we get

0 [s; r] O[(Si u ?'); r]
O[s'; r] u 0 [7'; r]

(lemma 3.7)

(ind. hyp. for s')
(ind. hyp. for s")

(lemma 4.8-2)

(ind. hyp. for s')

(lemma 3.7)

(o[~;J]: O[r.!l u (o[:?;J]: OM)
(O[s';J]u O[s";J]): O[r]

(ind. hyp. for s', s")

(lemma 4.8-4)

o[(Si u ;.;); -vn = oM
O[s;.J]:OM

5. Ifs= new(s'), we gets= new(Si) and then

0 [s; r] 0 [new(Si); r]
O[s';E] II O[r]
(o[Si;E] II {J}): O[r]

(o [8'; E] 11 o [Jll) : o [r]
O[new(s');J]: O[[r]
O[s;Jll: O[r]]

(lemma 4.3 and 4.6-1)

(*)

47

Here, at the place marked (*), we have used (X II h/}) : Z = X II Z, if X E S,..,, Z E S:.C;
this is a special case of lemma 4.8-5 together with lemma 4.8-3.

6. Let s = µx[s']. Suppose (without loss of generality) that x (/. {xi. ... , xk}· Put ;. =
s'[s;/x;]f=t• so that s = µx[S']. Then we have by lemma 4.6-2

0 [s; r] = 0 Uµx[S']; r] = Jim 0 [8'~"); r].
n

Now we shall prove in a minute that

for all n and for all r'. Once we have proved this we can calculate

O[s;r] = limnO[Si~"l;r]

which is what we wanted.

limn (0[81~">;v']: OM)
(limn o Ui1~>; v'll) : o M
O[s;y']: Ollr]

(lemma 4.6-2)

(property (4.2))

(continuity of':')
(lemma 4.6-2)

(4.2)

We still have to do the proof of property (4.2), which runs by an induction on n (nested

within our original induction on the complexity of s). For the case n = 0 we have 8'~01 = 0,

so 0[8'~0l;r'JI = .L = ..l: O[r'] = Oll8'~0l;y']: Ollr'].

For the induction step we assume that property (4.2) holds for a certain value of n. Then
we can apply the main induction hypothesis for k + 1 to s' with x1 , .•• , Xk+l = Xi, . .. , x.1:, x

d - -,(n) • d t an si, ... ,sk+1-s1, ... ,sk,s% inor ertoge

Corollary 4.10
For closed and guarded s,

O[S'~n+l);r'] = Olli1 [;1~")/x];r1]
O[s'[s;/x;]f,t{; r']

O[s'[s;/x;]f,t11 ;v'11: O[r']

0 [S'~n+l); v'll : 0 [r']

O[s;r] = O[s;y']: OM.

We are, at last, sufficiently prepared for the main theorem of this section:

Theorem 4.11

0

Let s E Sud, not necessarily closed, and let the set of free statement variables of s be contained
in {xi. ... ,xm}, m ~ 0. Let Si, ••• ,Sm be closed and guarded statements, lets= s[s;/x.];';11 and
define O[rll by

O[E] = O[[v'!I = >.X.X
O[s;r] = >.x.(O[s;y']: O[rll(X))

Let furthermore

48

for i = 1, ... , m, and let :Y = 1{ cp;j x;}Z: 1 • Now ifs is also guarded we have

6[s; Ell = D[sWr).

Proof
Very similar to that of theorem 3.19. We shall prove two cases of old statements plus the case of

the new statement.

Case I: s = s'; s"

O[s;E]

Case 2: s = µy[s']

6[(8'; 7'); E]
Ax.(o[r;•;liJ;v]: 6[Ell(xJ)
.\X.(O[s';(li;J)] :X)

Ax.(o[;';vll= (o[7';V]:x))

.\X.6[8'; Ell (6IT7'; Ell(X))

.\X.D [(s'ml (D [s"H:Y)(X))
D [s'; s"ll(1) = D [sll (:Y)

(lemma 3.7)

(corollary 4.10 and lemma 4.8-2)

(ind. hyp. for s' and s")

As in theorem 3.19, let us define Si = s' [si/ x;]r;;,1 and calculate:

6[[s;E] = >.x.(o[s;.Jll:X)

= .\X. liR1 (0[;1~"\ j]: X)
. - 1(n)

hR10[sy ;Ell.

Here we have used lemma 4.6-2 and the associativity of':'. From this point on the argument
follows exactly the same lines as in theorem 3.19.

Case 3: s = new(s')

O[new(s'); Ell

Corollary 4.12

.\X.(O[y1, ;';Ell :X)

Ax.(({v} II o[S';EJI): x)
.\X.(o[;';E] II x)

>.x.((o[;';V]: o[Eil) II x)
>.x.(o[s';E]({€}) II x)
AX.(D[s'](;:y)({€}) II x)
D [[new(s')] (;:y)

For guarded t E C.ud we have
O[tll = D[t].

Proof
Clear from theorem 4.11.

(lemma 4.8, parts 5 and 3)

(corollary 4 .10)

(lemma 3.7 and def. of 6)
(induction hypothesis)

(def. 4.5)

0

0

We have thus completed the semantic analysis of C.ud, and are now ready for the generalization to
the nonuniform case.

49

5 A nonuniform and static language

This section is devoted to the semantic definitions for a nonuniform and static language. The
elementary actions are now interpreted, viz. as assignments and communication actions. However,
for the moment we return to a static framework, and leave the treatment of the dynamic case to
the next section.

5.1 Syntax

The nonuniform framework involves the introduction of three new syntactic classes:

e The set lndV of individual variables, with typical elements x, y. For IndV we take an infinite
alphabet of variable names.

• The set Exp of expressions, with typical element e.

• The set Test of conditions, with typical element b.

We shall return to the syntax for expressions and conditions in a moment. Note that we have
changed the notation with respect to sections 3 and 4 in that we now use x,y for individual rather
than statement variables. For the latter purpose we here use variables v ranging over StmV. (The
non uniform framework has no streams, so we can freely use the letters u, v, w .)

In the static case, a program will again be composed of n components s1 , .•. , Sn. Contrary to
the uniform case, we are interested in the identity of, in general, the ith statement (or process, in a
terminology used, e.g., in CSP [Hol,Ho2]), and we introduce for this purpose the set I= {l, 2, ... }
of indices, with i,j,k,l ranging over I. Typically, indices i,j will be used in communication
statements of the form i?x or y'!e, denoting communication of two sorts: The first occurs, in
general, in some process k and requires a value for the variable x from process i. The second
occurs, say, in a process l and sends the current value et of the expression e to process j. In the
case that k = j and l = i and, moreover, the communications synchronize in the usual sense, then
the 'handshake' communication can indeed take place, and the variable x takes the value a. Once
more, this informal description requires formal definition, to be elaborated in the sequel.

The last syntactic set we need to introduce is that of (individual) constants. We shall not
bother to make a distinction between syntactic constants and semantic (basic) values, and use the
set V, with typical elements a, (3, for both purposes.

We now define the syntax for Snu• and .Cnu• (and for Exp):

Definition 5.1

1. Let e range over the set Exp of expressions:

e ::= x I et I e1 opez I ope

(Here op stands for an arbitrary binary or unary operator. We prefer not to take the trouble
to introduce general n-ary function symbols into our language.)

2. We do not specify a syntax for the elements b of Test. We only require that their evaluation
terminates and takes place without complications such as side-effects.

3. Let s range over the set Snu• of nonuniform and static statements:

s ::= x := e [s1; sz Iv I µv[s] I if bthen s1 else Sz fi I i?x I i!e

50

4. Let t range over the set .Cnu• of nonuniform and static programs:

t ::= Si II · • • II Sn (n 2: 1)

We require that the statements si, . .. , s., are closed and furthermore that every index i
occurring in t actually corresponds to a component statement, i.e., i :S:: n.

We see that inu• is similar to (classical) CSP (as in [Hol]). There are also important differences:
the absence (in inus) of guarded commands with communication in guards or features such as the
distributed termination convention. On the other hand, Lnu• has full recursion rather than only
iteration. Compared with f.u., we have simplified .Cnu• by dropping the 'U' operator. Extension
of the treatment below to cover 'U' is not difficult and we leave it to the reader.

5.2 Operational semantics

We proceed with the development of the framework for the operational semantics for Lm,.. Syn

tactic continuations r are, as before, defined by

r ::=EI s;r

where s is closed. Instead of parallel syntactic continuations p in the form of n-tuples ri, ... , r n,
we now let p range over sets of the form

(n2:1)

where all the indices ii, ... ,in must be different. Thus, in the pair (i,r;), we make explicit the
identity of the component r;. We shall not require that every index i occurring in a communication
statement i!e or i?x within p also occurs as the first component of a pair (i, r) E p.

We shall often use the notation pU{ (i, r;)}, with the convention that p is supposed not to contain
an element of the form (i, r'). Such a condition also applies to the notation p u { (i, r;), (j, ri) }:
here we suppose that i ;;J J. and that p does not contain an element whose index is i or j.

The next step in the development of the semantic model is the introduction of states, and of
the meaning or evaluation function for expressions (and conditions).

Definition 5.2

1. The set of states ~. with typical element <J, is defined by

~=I-+ (IndV -+ V).

2. We define the meaning function for expressions,

as follows:
[x](i)(a)
[aW)(a)
[e1 op e2](i)(a)

[[op eW)(a)

a(i)(x)

(~ed(i) (a)) op,.m (i[e2W)(a))
op,.m ([[e] (i)(<J))

Here we use op,.,,. for the semantic operator corresponding to op.

3. We do not give a detailed definition of [bHi)(a), which yields an element of the set of truth
values {t,f}.

51

The operational semantics for Snus and lnus is again given through a transition system. This time,
configurations are of the form (p, a). Transitions are pairs of configurations written in the form

(p, a) -+ (p', a').

There is no special role here for (an equivalent of) the .l-action.
Nonuniform transitions involve states rather than streams as the intermediate and final re

sults. Since states are entities which are not naturally amenable to the operation of merging, we
shall encounter below the necessity to resort to additional means to formulate results which are
counterparts of uniform facts such as O[ri,r2Il = O[rill II O~r2Il-

We first give the transition system Tnus for l:.nus· Extending the formalism of the uniform case,
we also employ rules, written in the format

1 -+ 2
3-+ 4

The meaning of such a rule is the following: In case a transition 1 -+ 2 is an element of Tn"" then
the rule allows to infer that 3 -+ 4 is a valid transition of Tnu• as well.

Remark
We could, in fact, formulate the operational semantics for 1:.nu• in terms of axioms only, but we
prefer the version as adopted below. The reason for this is our wish to stay as close as possible to
the denotational semantics to be developed subsequently.

Definition 5.3
The transition system Tnus specifies the relation '-->' between configurations of the form (p, a) as
the smallest relation which satisfies the following axioms and rules:

(p U {(i, (x := e);r)},a)-+ (p U {(i,r)},a')

where a'= a{a(i){,B/x}/i} and ,B = [e](i)(a).

(pu{(i,s1;(s2;r))},a)-+ (p',a')
(p U {(i, (s1;s2);r)},a)-+ (p',a')

(p U { (i, µ v [s]; r) }, a) -+ (p U { (i, s [µ v [s] / v]; r) } , a)

(pU {(i,ifbthens1elses2fi;r)},a)-+ (pU {(i,s1;r)},a)

in case ~bll(i)(a) = t, and an analogous axiom for the case [[bHi)(a) =f.

(p U { (i, (j?x); r1), (j, (i!e); r2) }, a) -+ (p U { (i, r1), (j, r2) }, a')

where a'= a{a(i){,B/x}/i}, and ,B = MU)(a).

Remarks

Ass

SeqComp

Ree

Cond

Comm

1. Observe that no transition is defined for a configuration (p U { (i, (j?x); r) }, a) in the case
that p does not contain the matching pair (j, (i!e); r') (and a symmetric observation).

2. The difference in treatment between SeqComp and Ree - the first as a rule, the second
as an axiom - is motivated by the corresponding definition in the denotational semantics
(which will be given in definition 5.8). In operational terms, replacing (s1; s2); r by s1; (s2; r)
does not take a time step, whereas the replacement of µv[s] by s[µv[s]/v] does take a (silent)
time step, (i.e., a step that does not change the state). In a uniform setting, the same effect
would be obtained by transforming each recursive construct µx[s] into µx[skip; s] where
skip is a special elementary action denoting the silent step. Accordingly, the automatic
introduction of silent steps obviates the need for th.e guardedness restriction.

·~·----

52

3. In the axioms Ass, Cond, and Comm we see how the evaluation of an expression e or

condition b is parameterized by the index of the statement which contains the occurrence of

the expression or condition involved. Effectively, this means that different components are

treated as if they had disjoint sets of variables.

The transition system Tnus is a natural generalization of the corresponding systems Tu, and Tud·

What is more difficult is the definition of 0 [p] and 0 ITtil: a formulation which is a straightforward

extension of the uniform approach is not feasible, assuming that we want to express results which

are variations on relationships such as

(5.1)

Two problems arise when we consider (5.1). The first concerns the basic question as to well

formedness of (5.1): we have as yet no outcome for 0 [p] which allows the operation of merging

to be applied to two instances of it. The second may be considered as a more "practical" one:

In a situation where p1 involves a send and P2 a matching receive communication, p1 U p2 will

allow a matching transition by the Comm axiom, whereas the components p1 and p2 separately

do not allow the corresponding send and receive actions to proceed. Thus, we expect that neither

0 [p1] nor 0 [P2] will contain the necessary information enabling the communication to take place

through the semantic operator 'II' (in whatever way the latter will be defined).

In order to solve the principal problem, we apply a new method, which might be considered

somewhat drastic in an operational context: we choose to deliver a process, now taken in the

technical sense of section 2.3, as the outcome of 0 [p]. Thus, the outcome of 0 [[P] is an element of

a certain process domain P obtained as the solution of an appropriate recursive domain equation

P ~ l(P), where the form of 1 is to be determined in a moment. We intend to show that, by

adopting this approach, we achieve two goals: Firstly, we shall be in a position to define 'II' as an

operation on processes and to apply it to 0 [[P1] and 0 [P2] above. Secondly, since we shall employ

processes as well in our denotational model, we have a much smaller distance to bridge between

the operational and denotational definitions.

The domain equation we use to determine the appropriate process domain P exploited below

is described in

Definition 5.4

1. Let the set Comm of communications, with typical element r, be given by

Comm= Ix (I? IndV u I! V)

(The delimiters'?' and '!'are used here to underline the connection with statements of the

form i?x and i!e. Properly speaking, they are cosmetic variants of the Cartesian product

operator 'x'.)

2. Let the set Step of steps, with typical element TJ, be given by

Step = :E U Comm.

3. Let the function 1 be given by

l(P) ={po} u (:E-> P,1(Step x P)).

4. Let P be the process domain solving the equation P ~ l(P). We shall use p,q to range

over P.

53

5. Let Po = {p0 }, Pn+I = .1(Pn)· By the general theory (section 2.3) we know that each p E P
is either an element of some Pn, in which case we shall call p finite, or else p is called infinite
and there is a Cauchy sequence (Pn)n with Pn E Pn such that p = limn Pn. For finite p, we
call the smallest n such that p E Pn its degree.

6. We shall use X, Y to range over Pc1(Step x P) and 7r to range over Step x P.

Example
We have ((i,j?x),p) E Step x P. Below, we shall always adopt for this the simpler notation
(i,j?x,p).

We proceed with the semantic definitions for the familiar operators'·' and 'II', this time defined as
mappings P x P-+ P. We shall in fact propose two definitions. The first one is probably simpler,
and is based on an induction on the degree for finite processes. The second one involves Banach's
theorem and is given here to familiarize the reader with its subsequent use in definitions where
the simpler inductive definition is less convenient.

Definition 5.5
Let p, q E P. We define p · q and p 11 q as follows:

1. (Definition by induction on the degree of p and q.)
We first consider the case that both p and q are finite. We put Po · p = Po II p = p II Po = p.
If p is (respectively, p and q are) different from Po we put

p·q >.a.(p(a)·q)

p II q = >.a.((p(a) II q) u (q(cr) II P) u (p(cr) lo q(cr)))

where X · q = { 7r • q I 7r E X }, X II q = { 7r II q I 7r E X }, (ry,p') · q = (ry,p' · q), and
(ry,p') II q = (ry,p' II q) (note that, here, the degree of p' is less than the degree of p,
respectively the maximum of the degrees of p and q). Moreover,

X lo Y = LJ { 7!"1 lo 7!"2 I 7!"1 E X, 7r2 E Y } 1

where 71"1 10 71"2 is defined by

(i,j?x,p1) la (j,i!et,p2) = {(cr',p1 II P2)}

with a' = er{ a(i){ et/ x} / i}, together with a symmetric clause, and 7!"1 10 71"2 = 0 for 7ri, 7r2 not
of the above form.

Finally, for p or q infinite, so that we have p = limn Pn and q = limn qn with Pn, qn E Pn, we
put p · q = limn(Pn · qn) and P II q = limn(Pn II qn)·

2. (Definition with Banach's theorem.)
We define'.' and 'II' as the unique fixed points of the contracting (higher-order) functions
~, W : (P x P -> P) -> (P x P-+ P) given in the following manner: Let <p, 1/; E P x P -+ P
be arbitrary. We now define ~(ip) and w('I/;). Let us abbreviate ~(r,o)(p,q) to ptj)q and
w('l/;)(p,q) to p;j;q. Then we put

p tP q

p'lj;q q

p

>ia.((p(a)~q) U (q(cr)~P) U (p(cr) la,,P q(aJ))

ifp=po

if p ':f Po

if p =Po
ifq=po

otherwise

54

where X,Pq = {:irrpq I :ir EX}, X.,/iq = {:ir.,'i;q I :ir E X}, (11,p')rpq = (11,p'rpq),
(TJ, p') ;/; q = (ri,p' t/J q), and where

X 111,1/> Y = LJ { 7r1 I.,.,,µ :ir2 ! :ir1 E X, 7r2 E Y } .

Here :ir1 la,1/> :ir2 is given by

(i,j?x,p1) 111,1/> (j,i!a,p2) = {(u',p1 '1/ip2)}

with u' = u{u(i){a/x}/i}, together with a symmetric clause, and :ir1 lu,1/> :ir2 = 0 for :iri,:ir2
not of the above form.

Now we define'·' to be the unique fixed point of 4.> and 'II' as the unique fixed point of it.

It should be clear from these definitions that they are variations on one theme: in the second an
appeal to Banach's theorem replaces the inductive argument of the first. We omit the proof that
the above definitions are justified (~d that they define the same operators). Details of a v~
similar proof are given in [ABKR2].

We are now ready for definition of the operational semantics of lnu•·

Definition 5.6

1. We define O[·]: PSyCo-+ Pas follows: Let p E PSyCo. If p ~ { (1, E), ... , (n, E)}, we put
O[P] =Po· Otherwise,

O[P] = >.u.{ (u', O[p']) I (p,u)-+ (p',u')}

where, of course, the transition relation '-+' is the one given by Tnu•·

2. The function O[·]: lnu•-+ P is defined as follows. Let t = s1 II··· II Sn· Then

O[t] = O[{(l, s1; E), ... , (n, Sni E)}].

It is not difficult to verify that 0 as given in part l of this definition is well-defined. Once more,
we deduce this by the following reasoning: Let the (higher-order) mapping F : (PSyCo -+ P) -+
(PSyCo-+ P) be defined in the following manner:

F(.M)(p) = Po
= >.u.{ (u', .M(p')) I (p,u)-+ (p',u')}

if p ~ {(1,E), ... , (n,E)}
otherwise

Then F is a contracting mapping, and 0 as given in definition 5.6-1 is the unique fixed point of F.

Remarks

1. It is not difficult to establish that, for each (p,u), there are only finitely many (p',u') such
that (p,u) -+ (p',u'). Hence, the set occurring in the >.u.{ ... } clause in definition 5.6-1 is
finite and therefore closed.

2. Note that O[P] = >.u.0 may well occur. For example, O[{ (1, (2?x); E)}] = >.u.0, since there
are no transitions ({ (1, (2?x); E)}, u) -+ ... defined in Tnu•. In general, 0 does not preserve
information on one-sided attempts at communication.

3. Processes p which equal 0 [p] for some p are in fact elements of a process domain P' which
satisfies

P' ~{po} u (~-+ Pc1(~ x P'J).
This is the case since no steps in Comm x P are delivered by the transition relation '-+'.
The more involved process domain P is exploited in full only in the definitions of o• and of
the denotational semantics D, both of which we shall discuss presently.

55

Now that we have given a process interpretation for 0 [pfl, yielding results in a domain for which 'II'
is well-defined, we have a well-formed question to ask: Is is true that 0 [Pi U pfl = 0 [p1fl II 0 [P2fl?
The answer is negative - for the same reason as already explained earlier. However, a not too
far-fetched variation on this property, which does indeed hold, will be presented soon. Rather than
immediately getting to this, we first develop the denotational semantics for .Cnu•· In this way, the
reader may acquire some additional appreciation for the way we utilize the process notion in our
framework. In fact, a combination of ideas involving

• the tools of environments and semantic continuations as employed in section 3

• the operational semantics of .Cnu•

• the definition(s) of 'II'
will altogether provide most of the background to understand the denotational definition.

5.3 Denotational semantics

We introduce semantic continuations and environments in

Definition 5. 7

1. The set of semantic continuations is given by SeCo ~r P.

2. We define the set of environments by r ~f StmV --> (I--> (SeCo N~I P))
We shall use p, q to range over Se Co and 1 to range over r.

The definition of D will be given for all s E Snu• and all t E .Cnu•· Thus, the restriction to
statements with only guarded recursion is lifted. As remarked earlier, this is explained by our
definition of recursion which involves a treatment of recursive calls such that always at least one
initial "silent" step is made upon "procedure entrance". That is, (the equivalent of) a transition
is made which does not affect the state but which does take (what may be seen as) one unit of
time. For example, execution of µv[v] will result in an infinite sequence of such silent steps (rather
than in just J. as in the uniform case). All this is a matter of taste rather than of principle. One
may disagree with our feeling that silent steps are more natural in a non uniform than in a uniform
setting.

We now give the definitions of D [sfl and of D M- We shall often suppress parentheses around
arguments of functions for easier readability.

Definition 5.8

l. We define the function

as follows

(a) D[x := efl1ip = .Au.{(u',p)}, where u' = a{u(i){a/x}/i} and a= Miu.

(b) D[s1;s2]hip = D[s1bi(D[s2Jhip).

(c) D[[if bthen s1 else s2 fi]1ip = >.u. { (u, iqbfliu = t then D [s1TI'"fipelse D [s2fl1ipfi)}

(d) D[[v]]1ip = 1(v)ip

(e) D[[µv[s]]'"fip = limk\Ok(i)(p), where \Oo is arbitrary and

'Pk+I = .Ai.Ap . .Au.{ (u, D[s]'"i{'Pk/v}ip)}

56

(f) D[j?xhip = ,\q,{ (i,j?x,p)}
D[j!ell1ip = >.er.{(i,j!a,p}} where a= [ellier.

2. We define the function D[·] : inus -> P as follows: Let t = s1 II · · · II Sn and let 1 be

arbitrary. Then

Remark
The definition in clause le above is justified by the fact that the (higher-order) function

is contracting, with limk if>k as its unique fixed point.

Examples

1. D[µv[v)Il1ip = ,\q.{ (er, ,\q,{ (er, ...)})}

2. D[(2?x) I((1!3)] = D[2?x]1lpo II D[[1!3TI12Po = A<T.{ (1, 2?x, Po)} II >.er.{ (2, 1!3,po)} ~1 q1 II
q2 = ,\er.{(1,2?x,q2),(2,1!3,q1),(er{er(l){3/x}/1},po)}. The resulting process, say q, con

tains two steps resulting from one-sided (failing) communication: (1, ...) and (2, ...). More

over, there is one step resulting from successful communication: (<1{ ... },p0), where 3 is

assigned to x. We recall that the latter step ultimately results from the definition of 1!"1 I" 1!"2

(or 71'1 lc,"1 7rz) given in definition 5.5. The operation of abstraction, to be introduced in a

moment, will simplify the result q to just >.er.{ (CiT{ •.• }, Po)}, throwing away the unsuccessful

parts (1, ...) and (2, ...).

5.4 Equivalence of operational and denotational semantics

We return to the question concerning the (non-)compositionality of 0. We shall introduce an

extension of Tnus to Tn:,, which induces an associated operational semantics 0\ and we then

settle the relationship between 0, 0*-, and D.

Definition 5.9

1. We expand the notion of configuration such that it includes pairs of the form (p, TJ) (recall

that T) ranges over Step = ~ U Comm). Therefore, in addition to configurations of the form

(p,u), we also consider configurations of the form (p, r). (Actually, the latter ones will only

occur on the right-hand side of a transition.)

2. The transition system Tn:, extends the system Tnus of definition 5.3 by adding to it the

axioms
(p U { (i, (j? X); T)}, er) -> (p U { (i, T) } , (i, j? X))

(pU{(i,(J!e);r)},er)-> (pu{(i,r)},(i,j!o:))

where a= [e]ier. Moreover, the rule SeqComp of T,,.,,:

is replaced by

(p U { (i, s1; (s2; r)) }, er) -> (p', u')

(pu{(i,(s1;s2);r)},u)-> (p',u')

(p U { (i, s1; (s2; r)) }, er) -> (p', r!')

(p U { (i, (s1; s2); r) }, er) -> (p', 17') ·

Ind Comm I

IndComm2

57

3. The operational meaning 0* : PSyCo --+ P is defined by

Po if p ~ { (1, E), ... , (n, E)}
>.er.{ (77 1, O*[p'Il) [(p,cr)-+ (p', 11 1)} otherwise

(Here we take'-+' as determined by T,,':, •.)

4. The operational meaning 0* : .Cnu• -+ P is defined as follows: Let t = s1 II ... II Sn. Then

Following the detailed analysis as in [BMOZ2], it is not difficult to prove

Theorem 5.10

For example, 0* [{ (1, (2? x); E), (2, (1!3); E)} Il = >.a. { (1, 2?x, p1), (2, 1!3, P2), (a{ cr(l){3/ x} /1 }, Po)},
where P1 = >.cr.{(2,1!3,p0)} and p2 = >.a.{(1,2?x,p0)}. Thus, O*H{l,(2?x);E),(2,(1!3);E)}Il =
Aa.{(1,2?x,po)} II >.cr.{(2,1!3,po)} = O*H{I,(2?x);E)H 11 0*[[{(2,(1!3);E)}Il-

The relationship between 0 and 0* is settled by the introduction of an abstraction operator
abs : P -+ P' (with P' as given in remark 3 after definition 5.6). When applied to some p E P,
abs(p) deletes from pall pairs (r,p') which occur anywhere "inside" p: all unsuccessful attempts
at communication disappear, and only the results of successful communications remain, together
with the "normal" steps caused by, e.g., assignments. Again (as was the case with any p), abs(p)
may have (inner) branches of the form >.cr.0 - a phenomenon which is often called deadlock.

The abstraction operator is defined in

Definition 5.11
For finite p we put abs(p0) = p0 , abs(>.a.X) = >.a.abs(X), and

abs(X) = { (cr',abs(p')) I (cr',p') Ex}.

(Note that a pair (r,p') EX will not contribute to abs(X).) For infinite p, with p = lim,,pn and
Pn E Pn, we take abs(p) =Jim,, abs(pn)·

Again relying on the general results in [BMOZ2], we have

Theorem 5.12
0 =abs o 0*.

The final part of this section is devoted to the proof of the equality of 0 * and D.

Theorem 5.13
For all t E £.nu.,

O*[til = D[tll.

The proof closely follows the strategy applied for the uniform version of this result described in
section 3. We first state a simple lemma on O* which we need below.

58

Lemma 5.14

1. O*[{ (i, (x := e); r)}] = >.a.{ (u', O*[{(i, r)}]) }, with a' as usual.

2. O*[{(i,(s1;s2);r)}] = O*[{(i,s1;{s2;r))}D

3. O*[{(i,if bthens1 elses2 fi;r)}] = >.u.{ (a, if [bDiuthen O*[{(i, s1;r)}Ilelse O*[{(i, s2;r)}Dfi)}

4. O*[{(i, (j?x); r) }D = >.a.{ (i,j?x, O*[{(i, r)}])}

5. O*[{(i, (j!e); r)}] = >.u.{ (i,J·!o:, O*[{(i, r)}])} where o: = [eDia.

6. 0*[{ (i, (j?x); r1), (j, (i!e); r2)}] = >.u.{ (i,j?x, O*[{(i, r1), (j, (i!e); r2) }]),

(j, i!o:, O*[{ (i, (j?x); r1), (j, r2)}D), (u', O*[{ (i, r1), (j, r2) rn} with 0: = Mia and a' as usual.

Proof
Easy from the definitions of T:u. and O*. 0

Remark
Note that part 2 of this lemma would not hold in the form as given if Tnu• would contain an axiom
for SeqComp, rather than a rule. Conversely, part 3 would not hold if we had a rule for Cond,
instead of an axiom.

The next lemma applies some notation which is a slight variant of that introduced preceding
theorem 3.18. Let us, temporarily, add the statement skip to our language, with an associated
transition

(pu{(i,skip;r)},a)--> (pu{(i,r)},u) Skip

(note that we could take skip as another name for x := x). Let, for given s and v, s~n) be defined
by st0l = skip and st"+t) = skip; sist"l /v]. We can then prove the following lemma, once more
using the framework of [BMOZ2]:

Lemma 5.15
For closed s:

O*[{ (i, µv[s]; r)}] = Jim O*[{ (i, si"l; r)}].
n

We are now ready for the statement of the main step in the proof of theorem 5.13.

Lemma 5.16
Let s E s be arbitrary (not necessarily closed) and let the set of free statement variables in s
be contained in { v1, ... , vk}, k ~ 0. Let Si, .•. , Sk be closed statements, and let s = sish/vi.]~=i·
Let, for any p, O[PD be short for >.p.(O*[PD · p). Let, furthermore, for h = 1, ... ,k,

'Ph = >.i.O[{ (i, si.; E)}D

and let 1 = '"Y{'Pi./v,,H=t· We then have, for any i,

6[{(i, s;E)}] = DM(i)(i).

Proof
Induction on the complexity of s, following the argument as given in the proof of theorem 3.19,

59

but for the addition of an extra parameter i, and replacement of X by p (and using lemmas 5.14
and 5.15 to deal with the individual cases). D

Corollary 5.17
For closed s:

O[[{(i,s;E)}ll = DMh)(i).

Now it is easy to prove theorem 5.13:

Proof of theorem 5.13
Take any t = S1 II ... II Sn. Then O*[[tll = O*Il{ (1, s1; E), ... , (n, sn; E)H = O*[{(l, s1; E)H II ···II
O*Il{ (n, sn; E)}]. By corollary 5.17, we have for each ithat O*[{(i, s;; E)}] = 0*[{ (i, s;; E) }TI-p0 =
O[{(i, s;;E)H(Po) = D[s;ll(I)(i)(po). Thus, O*[tj = 0*[{(1, s1;E}H II··· II O*[{(n, sn;E)}ll =
D[sij{i)(l)(po) II··· II D[snll(i)(n)(po) = DUtll. D

Remark
Contrary to the situation for the uniform case, we have at present investigated only metric (oper
ational and denotational) models for Enus· Therefore we have no information on the feasibility of
order-theoretic models for this purpose.

6 A nonuniform and dynamic language

We have, at last, arrived at the presentation of the semantic models of a non uniform and dynamic
language. Not surprisingly, it brings a synthesis of the ideas of sections 4 and 5; for the reader
who has understood these sections, the present section contains few surprises. Still, some technical
difficulties which are not straightforward from previous considerations remain to be overcome.

6.1 Informal introduction and syntax

As usual, we begin with the syntax. Statements are almost as before,' but for the fact that
communications i?x or i!e (with static i, 1 :::; i ::; n) are now replaced by communications e?x
or e!e', in which the value of the expression e is (the name of) a dynamically created process.
The expression itself can be, for example, a variable, in which this process name is stored. The
syntax of expressions also contains an essential new clause, viz. 'new(c)'. This expresses that a
new process (of class c) is to be created. Each program consists of a set of class declarations
(ck~ sk)~=l• and, assuming that c above equals ck for some k, the (side-)effect of new(c) is the
creation of a new process which will execute the statement s = sk. Here we have the counterpart
of the construct new (s) in section 4. In addition, this new process is referred to by a (new) name,
say a, and the value of the expression e will be this name a. Therefore, in the (common) case that
new(c) occurs in an assignment x := new(c), the name a of the newly created process is assigned
to x. In this way, upon subsequent occurrences of x in, e.g., x!e, it is known that the value of e
has to be sent to process a.

We now give the formal syntactic definitions. Let CNam be the collection of class names, with
typical element c. Let lndV and StmV be as before, and let a and (3 range over the set Obj of
objects to be defined presently.

Definition 6.1

1. The set Exp of expressions, with typical element e, is defined by

e ::= x I a I e1ope2 I ope I new(c)

60

(Here, again, op stands for an arbitrary binary or unary operator.)

2. We do not give a detailed syntactic definition for the set Test of conditions (with typical ele
ment b) but we assume, for simplicity, that conditions (unlike expressions) can be evaluated
without side-effects.

3. We define the set Snud of statements, with typical element s, by

s ::= x := e I s 1 ; s2 I v j µv[s] I if bthen s1 else s2 fi I e?x I e!e' I ?x I !e

4. The set £nud of programs, with typical element t is defined by

(n ~ 1)

Here we require that all the s; are closed, that all the c; are different, and that any class
name c occurring in any s; (in the context new(c)) is one of c1, ... , Cn.

Remarks

1. In Snud we allow communications of the form ? x or !e which do not name a corresponding
process (they are, in fact, willing to communicate with any other process). However, we shall
require, in order that a match be established between a pair of send and receive statements,
that at least one of the two identifies explicitly the process in which the other occurs. (Hence,
no communication takes place between ?x and !e.)

2. By convention, executing a program t = (ck -<:= sk)~=I is initiated by executing the statement
x := new(c1), for some fresh x (i.e., some individual variable not occurring in t). In other
words, a process of class c1 is created implicitly.

3. Note that we now have two forms of recursion, one in constructs of the form µv[s] and the
other in case of a declaration such as c -<:= ••• c

¥e set ObJ. of objects replaces the set of values v which we encountered in section 5. It consists
firstly of the so-called standard obfects SO bf. Here one may think of the union of the set of
values V and the truth-values {t,f} as employed in section 5. Moreover, we now also have the
.set of so-called active obfects AObJ", which consists of the names of processes as mentioned in the
introductory paragraph of this section. In fact, we may see AO bf as the generalization of the set I
of section 5. We define AObf as

AObf::: CNam x N

where N is the set of nonnegative integers. At each moment an active object (c, l) refers to the
lth process of class c, i.e., to the process created by the Ith execution of a new(c) construct.

From now on we shall use the term 'object' in the above sense, i.e., for an element of AObf,
not to confuse it with the technical term 'process' in the sense of section 2.3, the precise meaning
of which we shall give in definition 6.5.

6.2 Operational semantics

We proceed with the preparations for the operational semantics for 12nud· Firstly, we refine the
class of syntactic continuations, by distinguishing between statement continuations and expression
continuations.

61

Definition 6.2

1. The class of syntactic statement continuations SyStCo, with typical element r, is defined by

r ::= E I s; r I e : g

where s is closed. {The colon ':' used here should not be confused with the semantic
operator':' a.s introduced in definition 4.7. Here it is simply a syntactic symbol, comparable
with';'.)

2. The class of syntactic expression continuations SyExCo, with typical element g, is defined
by

g ::= >.z.r

where z E IndV. Here z may not occur a.s the left-hand side of an assignment in r.

3. The class of parallel syntactic (statement) continuations PSyCo, with typical element p, is
defined as the collection of sets of the form

(n 2': 0)

where the o:; a.re different elements of AObj.

The intuitive meaning of a syntactic expression continuation g = >.z.r is to describe a computation
which depends one some value. The variable z serves as a placeholder for this value in r. When g

is given a value, i.e., an object o: E Obj, then it delivers a syntactic statement continuation r[a/z]
(where the value o: is put in the place of z). Now a syntactic statement continuation r of the form
e : g is executed by first evaluating the expression e (which may or may not take some time steps
or have some side-effect) and then feeding its value into gin the way described above. This yields
a syntactic statement continuation which is executed subsequently.

We also extend the class of states by introducing a second component, as follows:

Definition 6.3
We define the set of states by E.= E1 x E2 , with typical element u = (u(l),U(z))· We put
E1 = AObj--> (IndV--+ Ob3") and E2 = CNam-+ N.

A state u has the following function:

• The first component u{I) is as u in section 5, but for the replacement of I by AObj and
of V by Obj. Thus, for any object o: and individual variable x, U(lj(o:)(x) is the value of a's
x-variable.

• The second component uc2l records for each class name c the current number I= uc 2J(c) of
objects of that class.

We shall usually suppress indices and simply write u, also in cases where u(i) or u(2) is meant.
In the transition system to be presented in a moment, we shall take into account the fact that

evaluation of expressions may now be more involved, since they may contain new-constructs. For
reasons of simplicity, we shall not include a similar extension in our treatment of conditions; We
shall, just as in section 5, assume that evaluation of a condition b - expressed by the notation
[b](o:)(u) - is simple and has no side-effects. (Of course, it is a minor exercise to adapt the
treatment below to cover the case of conditions which may include new-constructs.)

The operational semantics for f.nud is given in terms of a transition system Tnud of axioms and
rules for configurations (p, u). Throughout, Tnud assumes one fixed program t = (ck ~ sk)k=I •

' ' !
i

62

and we shall also assume that all class names occurring in any statement are declared in this
program t. (We might carry the information contained in t along as an extra component of the
configuration, but we find this too cumbersome.)

Definition 6.4
The transition system Tnud is given by the following axioms and rules:

(pU{(o:,(x:= ,B);r)},o-)-> (pu{(o:,r)},u')

where u' = o-{ u(o:){.8/ x} j a}.

(pu {(a,e: Az.((x := z);r))},u)-> (p',u')
(p U { (o:, (x := e); r)) }, o-) -> (p', o-')

Ass!

Ass2

where z is a fresh variable, i.e., an individual variable not occurring in p, e, or r (actually, it is
sufficient to require that z does not occur in r). Note that this rule is only useful if e is not itself
a constant ,B.

SeqComp, Ree, and Cond are as in definition 5.3 (with o: replacing i).

with z fresh.

(p U { (o:, e: >..z.((z?x); r)) }, o) -> (p', o')
(p U {(a, (e?x);r))},u)-> (p',u')

(p U {(o:,e: ,\z.(e': ,\z'.((z!z');r)))},u) -> (p',u')
(p U {(o:, (e!e');r))},u)-> (p',u')

with z and z' fresh.

with z fresh.

(p U {(a,e: >..z.((!z);r))},o-)-> (p',u')
(pU {(o:,(!e);r))},o-) _, (p',u')

(p U { (a, (,8? x); r1), (,8, (a!o:'); r2)}, o) -> (p U { (o:, r1), (,8, r 2)}, o')

where 0'1 = u{ O'(o:){ o:' / x} j a}

with u1 as above.

with u' as above.

(p U { (o:, (,B?x); r1), (,8, (!o:'); rz) },u) -> (p U { (o:, r1), (,8, r 2) }, u')

(p U { (o:, (?x); r1), (,8, (o:!o:'); r2) },u) ---> (p U { (o:, r1), (,8, rz) }, o-')

(pU{(o:,x:g)},u)->(pu{(o:,u(o:)(x) :g)},u)

(p U {(o:,r[,8/z])},O')-> (p',o-')
(p U {(o:,(J: >..z.r)},o-)-> (p',u')

(pu{(o:,(,81op,.mf32) :g)},u)-> (p',u')
(p U { (o:, (,81 op .82) : g)}, o-) -> (p', o-')

Receive!

Send!

Send2

Comm!

Comm2

Comm3

IndV

Obj

Binopl

Here, ,81 op,em f32 stands for the object ,8 that results if we apply the semantic operator op.em
corresponding to op to the objects /31 and ,82•

with z1 and z2 fresh.

63

(pu {(o:,e1: >..z1.(e2: >.z2-((z1 opz2): g)))},o)-+ (p',o')
(pu{(a,(e1ope2): g)},o)-> (p',o')

(p U {(a, (op,.,,, ,B) : g) }, a) _, (p', o')
(pu{(a,(op,B): g)},o)-+ (p',a')

Binop2

Unopl

Again, op,,m ,B stands for the object ,B' that results if we apply the semantic operator op,.,,,
corresponding to op to the object ,B.

with z fresh.

(p U {(o:,e: Az.((opz): g))},o)-+ (p',o')
(p u{(a,(ope): g)},o)-> (p',o')

(p U {(a,new(c): g)},o)-+ (p U {(o:,,B: g), (,B,s;E)},o')

where c "'*= s occurs in t, ,B = (c,o(c) + 1) and o' = o{o(c) + l/c}.

Remarks

Unop2

New

1. In the New axiom, dealing with the case e = new(c), a new object executing the statements
is created, and the name j3 = (c, o(c) + 1) is delivered as the resulting value for e. As we
already saw, (c, l) is the name of the Ith object of class c, and, for each c, o(c) stores the
currently highest object number. This also explains the update o' of o upon object creation.

2. The general scheme to deal with expression evaluation is the following. If the expression e
occurs in a certain context, for example x := e; r, then an application of a rule (in our
example, Ass2) transforms the context to one of the form e : g (in our case, e : >.z. (x := z; r)),
indicating that first e is to be evaluated, after which its value can be used. Because a rule
is applied and not an axiom, this does not take any time steps. Now the axioms IndV
or New (which do take a time step) or rules like Binopl and Unopl (which do not take
time) will take care of the evaluation of the expression. If necessary, the rules Binop2
or Unop2 will break the expression further apart (again without taking time). After the
expression has been evaluated, the rule Obj will put the resulting object ,B back into the
original context, and further axioms or rules (in our example, Assl) will deal with this
result ,B in an appropriate way.

The step from Tnud to the corresponding 0 is very similar to the one described in section 5. We
first introduce the relevant process domain.

Definition 6.5

1. The set Comm of communications (with typical element r) is defined by

Comm= AObJ. x (AObJ.?lndV u ?JndV u AObJ"!ObJ. u !Obj).

2. We define the set Step of steps (with typical element T)) by

Step = EU Comm.

3. The process domain P (typical elements p and q) is the solution of the following domain
equation:

P ~{Po} u (E _, Pc1(Step x P)).

64

Now we have

Definition 6.6

1. 0 [[· J] : PSyCo ·-> P is defined by

Po
.\a.{ (a',O[p']) I (p,a)-+ (p',u')}

if p = { (ai, E), ... , (an, E)}
otherwise

2. 0 [[·] : Lnud -+ P is defined as follows. Let t = (ck ~ sk)k=i · Then

Remark
Although not specified here, the process p = O[t] will of course be started in a state O"o, which
satisfies u0 (ci) == I and u0 (c) = 0 for c ;fa c1 • The choice of this oa and p above amounts to starting
the computation with the first object of class c1 , while objects of other classes do not yet exist.

Anticipating the definition of p II q, to be given in definition 6.7, we again remark that it is not
the case that 0 [[p1 u p2] = 0 [[pi]] II 0 [Pz]. As before, we shall remedy this by extending Tnud to
Tn':.d, and then introducing a corresponding extension of 0 to O*.

6.3 Denotational semantics

We proceed with the denotational semantic definitions. We first fill in the details of the definition
of the merge operator 'II' (in this section, we do not use the operator'·').

Definition 6. 7
Let '1>', 1/J, .J;, if;,,,/;, X, Y, and 7r be as in definition 5.5-2, but with Pas in definition 6.5. The
only new element in the definition of 'II' with respect to definition 5.5 con,cerns 7r1 lcr,.P 7r2 , which is
here given by

(a,(3?x,p1) lcr,,P ((3,a!a',p2)
(a, ?x, P1) lu,.P ((3, a!a', P2)

(a, (3? x, Pi) lu,,P ((3, !a', Pz)

{(o',p11/JP2)}
{ (o',p11/J pz)}
{(u',p11/JP2)}

with o' = u{a(a){a'/x}ja}, together with three symmetric clauses, and 7r1 I"·"' 7r2 = 0 for 7r1,7r2

not of the above form.

Corresponding to the distinction, for syntactic continuations, between statement continuations r
and expression continuations g, we have a similar distinction at the semantic level: We have,
besides the set of semantic statement continuations SeStCo ~r P (with typical element p), also a
set of semantic expression continuations SeExCo ~r Obj -+ P, with typical element f.

Furthermore, corresponding to the two types of recursion, we accordingly have two components
of an environment, as defined in:

Definition 6.8

The set of environments is defined by r = f 1 x f 2, with typical element/= (i(i),'/'(z)), where

f1 = StmV-+ (AObj-+ (SeStCo ~1 P))

and

f2 = CNam-+ (AObj-+ P).

65

In an environment "! = ("/(1), "1(2)), the first component "l(i) assigns an interpretation to each
statement variable, which gives a process after being told which object is to execute the statement
and which process is to be activated after this statement variable. This first component corresponds
to the environments as used in section 5.

The second component "1(2) is important for the creation of new objects. When given the class c
and the name Q of the object to be created, "1(2) (c)(o:) is the process to be activated for it.

Again, we shall often omit the indices in dealing with environments.

We shall define two semantic evaluation functions D and c, the first for statements and programs,
and the second for expressions. Since the latter are now more involved than in section 5, we
consequently need a more complicated definition of their meanings. The relevant types are

D[· Il: S,,.,d---+ (r---+ (AObj---+ (SeStCo _, P)))

c [·]] : Exp _, (f ---+ (AObj ---+ (SeExCo _, P)))

and, in addition, D [[·]] : .Cnu.d -> P. We draw attention to the fact that c [ell, when supplied with
some"/, Q, and f, delivers a process p E P instead of some value /3 E Oby'. Values (i.e., objects)
which result from evaluating an expression are always passed on to some expression continuation
rather than being delivered explicitly by the semantic function.

Definition 6.9

1. The function c is defined by

(a) c[xhQf = >.u.{ \u,f (u(a)(x)))}

(b) £[,B]hQf = f(/3)

(c) c [e1 op e2baf = C[e1ba (A/31.C[e2bQ(>.,82.f (,81 op,.m .82)))

(d) c[op ebnf = c[[ell'YQ(>./3.f(op,.m .B))

(e) c[[new(c)Il"l°'f = >.u.{ \u',"f(c)(,B) 11 J(.B))} where ,a= (c,u(c)+1) andu' = u{u(c) + 1/c}.

2. We define the function D for statements as follows:

(a) D[x := ell"fap = c[[ell"fn(>.,B.>.u.{(u',p)}) where u' = u{u(n){,B/x}/a}.

(b) D[s1; s2JhQp = D[[s1ll"fa(D[[s2hap).

(c) D [if b then s1 else s2 fibap = >.u. { (u, if[bllau = t then D[s1bapelse D[[s2hap fi)}
(d) D[vJhQP = "!(l)(v)np

(e) D[µv[s]Jhap = limkcpk(a)(p), where <po is arbitrary and

Cf'k+I = >.n.>.p.>.u.{ (u, D [sb{ 'Pk/v }ap)}

(f) D[e?x]"fnp = c[eba(>.,B.>.u.{(a,,B?x,p)})

(g) D[?xll"fap = >.u.{ (a, ?x, p)}

(h) D[[e!e'll"fap = c[[e]ba(>.,B.c[e'bn(>.,B'.>.u.{(a,,B!,B',p)}))

(i) D[[!e]bnp = c[[e]]"ia(>.f3.>.u.{(a,!,B,p)})

66

3. Let, for a program t, the mapping \Pi: f2 -> f2 be given as follows:

where c * s occurs in t, and 11 E r 1 is arbitrary (since t is closed, the choice of 11 is really
immaterial). If c is not declared in t we can put 4?t(/2)(c) = >.a.p0 , for example.

Let 1 2t be the unique fixed point of \Pt (see the remark below). We put It ~f (/i,121), for
arbitrary 11 E f1.

4. Now we can define the denotational semantics of program as follows. Let t = (c1 * si, ..• ,

Cn -{:: Sn). Then

Remarks

1. The clause for c[new(cH uses essentially the same idea as in section 4 of putting the newly
created process 1(c)(,B) in parallel with the (expression) continuation f (supplied with the
new name ,B which is the value of the expression new(c)). Here 1(c)(,B) - or /(2J(c)(,B),
to be precise - will, in the context of a program t = (ck -{:: sk)k=l > contain the relevant
information on the class c as a result of the definition of It (to be precise, 1 21) in clause 3.
We also observe that due to our requirement that all class names used in a program t must
also be declared in it, the result of It for undeclared classes does not matter (actually, new
objects of such classes would execute the process p0).

2. The mapping \Pt in clause 3 is contracting, since recursive occurrences of c in any s are
always constituents of statements which take time steps (specifically in evaluating new(c))
before we apply 1 to such a recursive occurrence of c.

6.4 Equivalence of operational and denotational semantics

We start this section with the promised extension of Tnus and 0.

Definition 6.10

1. The notion of configuration is expanded so as to include pairs of the form (p, TJ) (note that
TJ ranges over Step= 2:: U Comm).

2. We obtain the transition system T,:ud from 'Tnud by adding the axioms

(pu{(a,(,B?x);r)},a)-> (pU{(a,r)},(a,,B?x))

(pu{(a,(?x);r}},a)-> (pu{(a,r}},(a,?x))

(p U {(a,(,B!,B');r)},a)-> (p U {(a,r)}, (a,,B!,B'))

(pU{(a,(!,B);r)},a)-> (pu{(a,r)},(a,!,B))

and by replacing, in all rules,

by

(P1 , a) -> (p', a')
(p2,a)-> (p1,a1)

(PJ,Cf)-> (p',TJ')
(p2,cr)-> (p',TJ') ·

Receive2

Receive3

Send3

Send4

67

3. Now we define O*[· Il : PSyCo -> P by

O*M = Po

= ,\u.{ (T/', O*[p'D I (p,o)-> (p',!J')}
if p = { (o:i. E), ... , (an, E)}
otherwise

4. O*Il · Il: .Cnud-+ P is defined as follows. Lett= (ck<= sk)~=i· Then

As in section 5 we have

Lemma 6.11

The abstraction operator abs can be defined as in definition 5.11 (but now applied to P as in
definition 6.5). Again, we have

Lemma 6.12
0 =abs o 0*.

We can now discuss the relationship between O* and D. The treatment combines ideas of sections
4 and 5. We first present a lemma listing various properties of 0* which are either direct from its
definition, or follow as in section 5 (in turn relying on [BMOZ2]):

Lemma 6.13

1. O*Il{ (a, (x := ,8); r)}] = ,\u.{ (o', O*[{(o:, r)}Il)} with o' as usual.

2. O*Il{ (a, (x := e); r) }fl = O*U{(o:, e: h.((x := z); r)) }Il where z is fresh.

3. O*Il{ (a, (s1; s2); r) }Il = O*H(a, s1; (s2; r))}Il

4. O*Il{ (a, if bthen s 1 else s2 fi; r)}Il = ,\u.{ (u, if [bilo:othen O*Il{(o:, s1; r)}D else 0*[{ (o:, s2; r)}] fi)}
5. O*Il{(a,µv[s];r)}Il = limnO*IT{(o:,sinl;r)}Il where si0l =skip and sin+!)= skip;s[si"l/v].

Note that here we cannot use x := x for skip any more, because x := x now costs two steps.

6. O* Il{ (a, (e?x); r)}Il = 0*[{ (o:, e : ,\z.((z?x); r))}] with z fresh, and similar equations for e!e'
and !e.

7. O* Il{ {a, (,B?x); r) }Il = ,\u.{ (o:, ,B?x, O*[{ (o:, r)}Il)} and similar equations for ?x, ,8!,8', and !,8.

8. O*ll{ (a, (,B?x); r1), (,8, (o:!o:'); r2)}] = ,\u.{ (o:,,B?x, 0*[{ (o:, r1), (,8, (o:!o:'); r2) }Il),

(/3, o:!a', O*[{(a, (,B?x); r1), (.8, r2) rn, (u', O*[{(o:, r1), (,8, r2) rn} with o' as usual, and similar
equations for ?x with o:!o:' and for ,B?x with !o:'.

9. O*ff{(a,x :g)}Il = ,\u.{(u,O*U{(o:,u(a)(x): g)}])}

10. O*ff{(a,,8: ,\z.r)}] = O*[{(er:,r[,8/z])}Il

11. O*ff{(a,(.81op,82) : g)}Il = O*[{(er:,(,81op,.m/32): g}}ll and a similar equation for unary
operators.

68

12. O*H\a, (e 1 ope2): g)}]] = O*[[{(a,e1: >.z1.(e2: >.z2.((z1 opz2): g)))}Il and a similar equation
for unary operators.

13. O*H{a,new(c): g/H = >.u.{(u',O*H{a,,B: g),(,B,s;E)}Il)} where c <i= s occurs in t and
with <J1 = a{a(c) + l/c} and ,B = (c,<J(c) + 1).

We continue with the analysis which links O* with D and c. Our aim is the proof of the following

Theorem 6.14
For a given program t = (ck ~ Sklk=I • for closed s, arbitrary r, e, and g, and for 1t as in
definition 6.9-3, we have

1. O*[{(a,e: g)}] = E[e~(1t)(a)(>.,B.O*H(a,,B: g)}Il)

2. O*ij{\a,s;r/H = DM(1t)(a)(O*H(a,r)H)

In order to prove this theorem, we apply a nonuniform version of the strategy used at the end of
section 4. Since we are concerned with both statements and expressions, we need the nonuniform
argument in two forms. Firstly, we introduce the branching time analogues of the constructs u.Jv
from section 4. One form also mentions the .J, the other one is parameterized by objects ,B from
Ob1·, each of which plays a role similar to the one played by .J. For the remainder of this section
we introduce three domains P, Q, and R with typical elements p, q, and r respectively (the last
not to be confused with r E SyStCo).

Definition 6.15

1. Recall from definition 6.5 that P is the solution of

P ::={Po} u (~ __, Pc1(Step x P)).

As before, we shall use X to range over Pc1(Step x P) and 7r to range over Step x P.

2. The domain Q is the solution of the following domain equation

Q ::={Po} u ({.J} x P) u (I:--> Pc1(Step x Q)).

We shall use Y to range over Pc1(Step x Q) and E to range over Step x Q.

3. The domain R is defined as the solution of

R == (Obj x P) u (~ _, P,1(Step x R)).

We shall use Z to range over Pc1(Step x R) and c; to range over Step x R.

The intuitive interpretation of Q and R is as follows. An element of Q is a process executing a
specific statement (the "local" one), possibly in parallel with some other processes. Termination
of the local statement is explicitly indicated by .J. The idea is that a continuation can start at
that point (see the definition of the operator ':' below). More specifically, if q E Q is of the form
(.J, p) this means that the local process terminates i=ediately, and that the parallel processes
continue with p. If in q the local process does not terminate immediately, an ordinary step is
possible, after which we come in the same situation again. Because we have also included p0 in Q,
P can be embedded in Q in a canonical way. We shall therefore assume that actually P ~ Q.

An element of R is evaluating an expression, again possibly in parallel with other processes. It
will be composed with elements of Obj --> Q or Obj --> R by the operator ':'. If the evaluation of

69

the expression terminates, it delivers a value f3 being the result of this expression, together with

an ordinary process p representing the ongoing computation of the other processes (which is to be
executed in parallel with the semantic expression continuation).

We shall define four forms of the operator':' which will take care of the composition of elements
of Q and R with appropriate continuations (notice the analogy with definition 4.7):

Definition 6.16

1. We define ':' : Q x Q ---> Q by the following clauses (which can be completed to a full
definition along the lines of definition 5.5):

(a) Po: q =Po

(b) (y',p): q = p II q (see definition 6.17 below)

(c) ().u.Y): q = >.cr.(Y: q), where Y: q = { c: q I c E Y} and (1J,q'): q = (11,q': q).

2. We define':' : Q x R---> R as follows:

(a) Po : r =Po

(b) (y',p) : r = p II r (see definition 6.17)

(c) (>.u.Y): r = >.u.(Y: r), where Y: r = { c: r I c E Y} and (1J,q'): r = (1J,q': r).

3. The operator ':' : R x (Obj -+ Q) -+ Q is given by the following clauses:

(a) (f3,p): t = P II t(f3)
(b) (,\u.Z): f = >.cr.(Z: /),where Z: f ={I: f I 1 E Z} and (1J,r): f = (1J,r: /).

4. Finally, we define the operator ':' : R x (Obj -+ R) -+ R by the following clauses (we shall

use h to range over Obj ---> R):

(a) (/3,p): h = P 11 h(/3)

(b) (>.u.Z): h = >.cr.(Z: h), where Z: h = { \: h I 1 E Z} and (~,r): h = (1J,T: h).

Note that if q E P, then p : q E P, so that we also have ':' : Q x P ---> P. Analogously, if
f E Obj-+ P, then we get r: f E P, so that we can state':': Rx (Obj-+ P)-+ P.

We also need the definitions of p II q and p II r:

Definition 6.17

1. We define the operator 'II': P x Q-+ Q by the following clauses:

(a) Po II q = q, P II Po= p, P II (y',p') = (y',p II p').

(b) For p f po and q ~{Po} U ({y'} x P) we define

P II q = >.cr.((p(cr) II q) U (p II q(u)) U (p(cr) le q(cr)))

(c) For X E Pc1(Step x P) we put XII q = {7r II q 171" EX}, where (1J,p') II q = (TJ,p' II q).

(d) For YE P,1(Step x Q) we put p II Y = {p II c I c E Y}, where P JI (1J,q') = (TJ,p II q').

(e) For X and Y as above, we define

where (T/1,p') le (T/2,q') = {(u',p' II q')} with er' as usual, if T/1 and T/2 are matching
communications, and 7r la c = 0 otherwise.

70

Note that restricted to P x P this coincides with the old operator 'II' (see definition 6.7).

2. We define the operator 'II': P x R-> R by the following clauses:

(a) Po II r = r, P II {(3,p') = ((3,p II p').

(b) For p f. Po and r ~ ObJ. x P we define

p II r = >.u.((p(a) II r) U (p II r(u)) U (p(a) lu r(a)))

(c) For X E Pci(Step X P) we put XII r = { 7r II r I 7r EX}, where (T/, p') II r = {TJ,p II r}.

(d) For Z E P,1(Step x R) we put p II Z = { p 111I1 E Z }, where p II (TJ, r') = (TJ,p 11 r').

(e) For X and Z as above, we define

where (ri1,p') la (T/2,r') = {(u',p' II r')} with u' as usual, ifTJ1 and T/2 are matching
communications, and 7r le I = 0 otherwise.

Analogous to lemma 4.8 we have the important

Lemma 6.18

1. All forms of the mappings':' and 'II' are continuous.

2. The operators 'II' are associative:

(a) (P1 II P2) II q = P1 II (P2 II q)

(b) (P1 II P2) II r = P1 II (P2 II r)

3. The operators ':' with the first argument from Q are associative:

(a) (q1 : qz) : qg = q1 : (q2 : qg)

(b) (qi : qz) : r = q1 : (q2 : r)

4. The operators':' with the first argument from R have an analogous property (Jet us call it
>.-associativity):

(a) (r : f) : q = r: >./3.(f(f3) : q)

(b) (r: f): r1 = r: A/3.(!((3) : r')

(c) (r : h) : f = r: >./3.(h(f3) : f)

(d) (r: h): h' = r:)..j3.(h(f3): h')

5. Finally, we have a kind of distributivity:

(a) (P II q) : q' = P II (q: q')

(b) (p II q) : r = p II (q : r)

(c) (p II r) : f = p II (r : !)

(d) (Pllr):h=pll(r:h)

71

Proof
Part 1 can be proved by observing that each version of':' or 'II' is the unique fixed point of
an appropriate higher order function mapping continuous operators into continuous operators.
Therefore, ':' is itself continuous.

For the other parts, one first proves that p : q = p and p : r = p for all p E P, q E Q, and
r E R. The rest of the properties are then proved (most conveniently in the order in which they
are listed) by a straightforward (but tedious) induction on the degree (see definition 5.4) of the
processes involved, for finite processes. For infinite processes, take the limit of finite processes.

D

Next, we state the analogues of lemma 4.9 and corollary 4.10. By way of preparation we need
some extensions to the definitions of PSyCo and O*:

Definition 6.19

1. We define the set PSyCo', with typical element p, to be the same as PSyCo except that at
most one of the components has an r E SyStCo', defined (together with g E SyExCo') by

r .. - -J I s; r I e : g
iJ .. - >..z.r

with s closed.

2. The set PSyCo", with typical element p, is the same as PSyCo except that exactly one
component has an r E SyStCo", which is defined together with g E SyExCo" by

r .. - s;r I e : g
g .. - >..z.r I vl

with s closed.

3. We define the function 6 [[·] : PSyCo' -+ Q as follows

6[[fJ] Po
(-J, O"[p'])
>..a. {(a', 6 [[p']) I (a, p) -+ (a', p')}

if ii= { (a1, E), ... , (a:k, E)}
if p = {(a,J)} Up'

otherwise

Here we interpret the transition relation'-+' with respect to T:.,d (only extended in so far
that we declare the existing axioms and rules also applicable to our new parallel syntactic
continuations).

4. We define the function O li · Il : PSyCo" -+ Ras follows

(/3, 0* liP'])
>..a.{ (01,0].ii'Il) I (a,,ii)-+ (a',,ii')}

if p = { (a:, /3 : v')} u p1

otherwise

Note that PSyCo ~ PSyCo', and that 6 restricted to PSyCo is equal to 0". Furthermore,
lemma 6.13 also holds for 6 and 6, and we can restate lemma 6.11 as follows:

Lemma 6.20

i. O[[P u ii]= O*[lp] II O[[ii]

2. O[p u ii]= O*[lp]J 11 O[[ii]

-
72

Now we can state:

Lemma 6.21

l. For any e E Exp, a E AObj, and g E SyExCo we have

O*[{(a,e: g)}] = O[[{(a,e: .J)}Il: (>.,B.O*[{(a,,B: g)H)

and the same for any g with 0* replaced by 6 and for any g with 0* replaced by 0.

2. Let s E Snud (not necessarily closed) and let all free statement variables of s be contained in

{vi, .. . ,vk}· Now let si, ... ,sk be closed statements such that, for any a and r,

O*[{(a,.s;;r)}] = O[{(a,s;;.J)}]: O*[{(a,r)}Il

and for any r the same with O* replaced by 6 and for any r the same with O* replaced

by 0. If we define .S = .s [s;j v;]f = 1 then we have for any a and r,

O*H(a, .S; r)}] = 6 [{(a, .S; yl)}] : O*[{ (a, r)}]

and analogously for any r and for any i'.

Proof
Part 1 is proved by induction on the complexity of e. We give some typical cases:

Case 1: e = ,B
0 [{(a, ,B : v/H : (>.,B'.O*[[{(a, ,B' : g)}])

(fj, Po) : (>.fj' .O*[{(a, ,B' : g)}])
= Po II O*[{ (a, fj : g)}]
= 0*[{ (a, fj: g)}]

(definition 6.19)

(definition 6.16)
(definition 6. 7)

Exactly the same proof works for g with 6 and for g with 0.

Case 2: e = ope'

O*[{ (a, (op e') : g)}]
0*[{ (o:, e': Az.(op z: g))}]
OH(a,e': J)}]: [>.,B'.O*[{(a,,B': >.z.(opz :g))}])
O[{(a,e': J)}]: >.fj'.O*[[{(a,op,B': g)/H)

O[[{(a,e': J)}]: >.,B'.O*[[{(a,op,.m,B': g))}])

O[{(o:,e': J)}]: (>-,8'. O[{(o:,op,.m,B': VJ)}]
: (>.!3.0*[{(a,,B: g))}])l

(OH(a,e': VJ}]: (>.,B'.O[{(o:,op,.m,8': VJ)}])
: (>.,B.O*[[{(a,)3: g))}])

(o[{(o:,e': J)}]: (>.J3'.0[{(o:,,B': >.z.(opz: yl))}]))

: (>.J3.0*[{(a,)3: g))}])

= O[[{(a,e': >.z.(opz: VJ)}]: (>.,B.O*[{(a,)3: g))}Il)

= O[{(a,ope': J)}]: (>.P.O*[{(a,,B: g))}])

Again, the proof is also valid for g and g.

(lemma 6.13-12)

(ind. hyp.)

(lemma 6.13-10)

(lemma 6.13-11)

(case 1)

(lemma 6.18-4)

(lemma 6.13-11,10)

(ind. hyp.)

(lemma 6.13-12)

73

Case 3: e = new(c)

O*[{(o:,new(c): g)}Il

>.o. er', O*[{(o:, ,8 : g), (,8, s;E)} Il)} (lemma 6.13-13, with s, o', and ,8 as usual)

>.o. er', 0*[{(,8, s;E)}Il II 0*[{ (a, ,8 : g)}Il)} (lemma 6.11)

>.o. a', 0*[{(,8, s;E)}Il II (0 [{(a, ,8 : y1) }Il : (>.,8 1 .O*[{(o:, ,8' : g) }Il)))} (case 1)

>.o. a', (0*[{ (,8, s;E)} Il II 0 [{(a, ,8 : y1)} Il) : (>.,81.0*[{ (a, ,8' : g)} Il))} (lemma 6.18-5)

>.o. a', O*[{ (,8, s;E)} Il II 6 [{(a, ,8 : y1) }]) } : (>.,81 .O* [{(a, ,8' : g)} Il) (definition 6.16)

>.o. er',OH(,8,s;E), (o:,,8: v')}Il)}: (>./3'.0*[{(o:,,8': g)}Il) (lemma 6.20)

Oll{ (a, new(c) : y1) }Il : (>.,B'.O*[{(a, ,8': g) }Il) (lemma 6.13-13)

Once again, the proof is also valid for iJ and g.

Now we can prove part 2 by induction on the complexity of s. Again some typical cases:

Case 4: s = x := e (so s = s)

O*ll{(o:,x := e;r)}Il
O*[[{(o:,e: >.z.(x := z;r))}Il (lemma 6.13-2)
O[{ (a, e: J)}Il: >.,8.0*[{ (a,,8: >.z.(x := z; r))}Il) (part 1)

O[l{{o:,e: J)}Il: >.,8.0*[{(a,x := ,B;r)}Il) (lemma 6.13-10)

O!!{(o:,e: J)}Il: >.,B.>.a.{(er',O*[{(o:,r)}Il)}) (lemma 6.13-1, a' as usual)

O[{(o:,e: J)}Il: >.,8.>.cr.{(er',O[{(a,v')}]: O*[!{(o:,r)}ll)})
(because O[{(o:,v')}Il = (J,Po) and (J,po): q =Po II q = q)

O[{(a,e: v')}Il: l>.,B.>.cr.{ (a', O[{(a,v')}])}: O*ll{(a,r)}Il) (definition 6.16)
Oll{(o:,e: v')}Il: >.,8.0[{(o:,x := ,8;v')}Il: O"[{(o:,r)}D) (lemma 6.13-1)

O[{(o:,e: v')}Il: >.,B.Oll{(a,,8: >.z.(x := z;v'))}ll: O*[{(o:,r)}Il) (lemma 6.13-10)

(O ll{ (a, e : y1) }Il : (>.,B.6 [{(a, ,8 : >.z.(x := z; Jl)}Il)) : O*[{ (a, r) }Il (lemma 6.18-4)

Oll{{a,e: >.z.(x := z;J))}Il: O*[{(a,r)}Il (part 1)
6[{\a,x := e;v')}Il: o•[{(a,r)}Il (lemma6.13-2)

For r or f instead of r the proof runs exactly the same.

Case 5: s = e?x (so s = s)

O*[{ (a, e?x; r)}D
O*[{(o:,e: >.z.(z?x;r))}ll
O[{(o:,e: v')}ll: >.,B.O*[{(a,,8: >.z.(z?x;r))}Il)

0 [{(a, e : J)}Il : >.,B.O*[{(a, ,B?x; r)}Il)

O[{(o:,e: J)}Il: >.,B.>.er.lla,,B?x, O*[{(o:,r)}ll)})
~[{(o:,e: v')}Il: >.,B.>.a. a,,B?x, ~[{(a,v')}Il: O*[{(o:,r)}Il) })

0 [{(a, e : y1)}] : >.,B.>.o. a, ,B?x, O[{(a, y1) H)} : O*[{(a, r) }])
O[{(a,e: v')}]: >.,B.O[{(a,,8: >.z.(z?x;J))}ll: O*[{(o:,r)}Il)

(6 [{(a, e: J) }Il : (>.,8.0[{ (o:,,8: >.z.(z?x; v'})}Il)) : O*H(o:, r) }Il

O!!{(a,e:).z.(z?x;J))}]]: O*[{(o:,r)}]
O[{(o:,e?x;J)}]]: O*ll{(a,r)}ll

(lemma 6.13-6)
(part 1)

(lemma 6.13-10)

(lemma 6.13-7)

(see above)

(definition 6.16)

(lemma 6.13-7,10)

(lemma 6.18-4)

(part 1)
(lemma 6.13-6)

-
74

Case 6: s = µv[s']
Without loss of generality we can assume that v r:f. { V1, ••• 'vk}. If we define s' = s'[s;/v;]f=i >then
we haves = µv[s']. Now we first prove, by induction on n, that for any a and r (and also for r),

-(O)
For n = 0, we gets'. =skip and

O*[{(a:,skip;r)}TI = >..o.llo,O*Wa:,r)H)}
= >..a. o,OH(a,v')H: O*[{(a:,r)}])}
= >..a. o,O[{(a:,y')}])}: O*H(a,r)H
= 6H(a,skip;v)}]: O*H(a,r)}Il

(definition of skip)

(see above)

(definition 6.16)

(definition of skip)

(6.1)

Now let us assume (6.1) for certain n, then we can apply the outer induction hypothesis for s',
• -(n) ~(n) - 1-(n)] [j Jk+I · · with vk+i = v and sk+i = s' v • If we define _s' v = s' s' v /v = s' si V; i=I this gives us

Now we can calculate

O*[{ (a, s'~n+I); r)}]
~(n)

O*[{(a:,(skip;s'.);r)}]
~(n)

O*[{ (a, skip; (s'. ; r))}]

,\a.{(a,O*H(a:,s'~"l;r)}])}
{(. ~(n))} >..a. a,O[{(a,s'. ;v)}]:O*[{(a:,r)}Il
{(. ~(n))} ,\a. a,O[{(a,s'. ;v)}] : O*H(a:,r)}]

O[{(a,skip; (s'~n); V))}]: O*[{(a,r)}]
. ~ • ~(n)

O[{(a,(sk1p;s'.);y")}]: O*[{(a:,r)}]
· -(n+l) 0 [{(a, s'v ; y')}] : O*H(a:, r)}Il

which gives us (6.1) for n + 1.

Finally we can compute as follows:

0*[{ (a, µv[s']; r)}] -(n)
lim,. 0*[{ (a:, s' v ; r)}]

(lemma 6.13-3)

(definition of skip)

(by (6.2))

(definition 6.16)

(definition of skip)

(lemma 6.13-3)

limn (6[{(a:,s•~"J;v)}Il: O*[{(a,r)}])

(lemma 6.13-5)

(by (6.1))

(lemma 6.18-1)

(lemma 6.13-5)

(. -(n)) lim,,O[{(a:,s'. ;v)}Il : O*[{(a:,r)}Il
OH{a, µv[S']; y')}] : O*[{ (a:, r)}Il

(6.2)

D

In order to prove theorem 6.14, in addition to the reasoning encountered earlier, there is one extra
step necessary to deal with the possible recursion in declarations such as c <:= ... new(c) This
step involves the second component /'(2) of an environment I'· For simplicity's sake we again drop
the indices.

Lemma. 6.22
Let t be a fixed program. If / E r satisfies

l'(c) = ,\a.O*H{a,s;E)}Il (6.3)

for c <:= s in t, then we have the following:

75

1. For any e E Exp, 1 Er, a E AObJ, and f E ObJ-> P we have

£[e]10J = OH{a,e: y')H: f

2. Let s E Snud (not necessarily closed) and assume that the free statement variables in s are
all in {v1,. •• ,vk} and let s1 ,. .• ,sk be closed. Puts= s[s;/v;J:=i and define

(i = l,. .. ,k)

and let 1 = 1{ <pi(vi}7=i · Then we have, for any a and p,

D[4'Yap = O[{(a,.S; y')}]: p

Proof
The proof follows the same line of argument as in sections 4 and 5. It runs by induction on
the complexity of e and s. We make use of lemmas 6.13, 6.18, 6.20, and 6.21 and we need the
assumption (6.3) to deal with the case e = new(c).

We shall deal with some typical cases here, starting with part 1.

Case 1: e = /3

Case 2: e = op e'

£[op e'Jhaf

£[[/3]]1af f (/3)
Po II f (/3)
(/3,pa): f
6 [{ (a, /3 : y')}] : f

£[[e']1a >..f3.0[{(a,op,.m/3: y')}]: !)

(definition 6.9)
(definition 6.17)
(definition 6.16)
(definition 6.19)

£ [[e']1ai>../3.f (op,.m /3))

£[[e']ha >..f3.0H(a,/3: >..z.(opz: y'))H: !)
O[{(a,e': y/)}]: (>../3.0H(a,/3: >..z.(opz: y'))H: !)
(OIT{(a,e': y')}]: (>../3.0[{(a,,6: >..z.(opz: y'))}n): f

O[{(a,e': >..z.(op z: y'))}TI: f
O[{(a,ope': y')}]: f

(definition 6.9)

(case 1 for op••m /3)
(lemma 6.13-11,10)

(ind. hyp.)

(lemma 6.18-4)

(lemma 6.21)
(lemma 6.13-12)

Case 3: e = new(c)

AO'. a',1(c)(,6) II f(/3)J} (definition 6.9, with a' and /3 as usual)

AO'. a',1(c)(,6) II (~H(a,/3: y')}]]: !))} (see case 1)

AO'. a',11(c)(,6) II O[[{(a,/3: .J)}]): !)} (lemma6.18-5)
AO'. a', 1(c)(/3) II O[[{(a,,B:y')}]))} :f (definition6.16)

AO'. a', O*H(/3,s;E)}Il 11 O[{(a,/3: v'nTI))}: f (by (6.3))

AO'. a',0[{(/3,s;E),(a,,B:yl)}TI)} :f (lemma6.21)

£[new(c)]1af

O[{(a,new(c): y')}j]: f (lemma6.13-13)

And now part 2. Again we deal with a few typical cases.

76

Case 4: s = x := e, so 8 = s

£M.:Ya(A,8.>.o.{(u',p)}) (definition 6.9, with o' as usual)
£M.:Ya(>.,B.O[{(a,,8: .\z.(x := z;J)m: P)

(see proof of lemma 6.21, case 4)
O[{(a,e: J)H: (>.,B.O[{(a,)3: .\z.(x := z; J))}]: p) (part 1)

(owa,e: J)}ll: (>.,a.6[{(a,,8: .\z.(x := z;Jlm)) :p

O[{(a:,e: .\z.(x := z; J))}TI: P
O[{(a,x := e;J)}ll: p

(lemma 6.18-4)

(lemma 6.21)
(lemma 6.13-2)

Case 5: s = /.w[s']
Let us assume again that v ~ {vi, ... , vk}, so that, if we define s' = s'[s;/v.]f=P then we have
8 = µv[s']. Now on the one hand we have, by lemma 6.13-5 and lemma 6.18-1, that

(6.4)

On the other hand, definition 6.9 says that

DM.:Yap = limtj>,.(a)(p)
n

(6.5)

where !}>0 can be chosen arbitrarily, and

Now we make a definite choice for t/>0 , namely

(. -(O)) tPo = .\a . .\p. 0 ma, s' v ; J)}TI : p

and we prove, by induction on n, that

(. -(n)) ij;n = .\a.>.p. OH{a,s10 ;J)}TI: p (6.6)

For n = 0 this is obvious, so assume (6.6) for some n, then we can apply the outer induction
hypothesis to s' with vk+1 = v and sk+l = ;i~n), so our inner induction hypothesis (6.6) says that

k+l - -(n) 'Pk+l = !}>,.. We then get (because s'[sif v;]i=l = s'[s1
0 /v])

- . - -(~ D[s'b{IP,./v}ap = O[{(a:,s'[s'. /v];J)H: p

and we calculate

.\u. { (u, D MVi{ if;,./ v }ap)}
{ (. - -(n))} >.u. a,OH(a,s'[s10 /v];J)}ll: p
{ (. - -(n)) } .\u. u,O[{(a:,s'[s'. /v];J)}ll :p

6 [[{(a, skip; (s'[;,~n) /v]; J))H : p

6 [{\a, (skip; :S•[s'~,.l /v]): J) H : P
· -(n+l) OH(a, s'0 ; J) }]] : p

(definition of tPn+ i)
(by (6.7))

(definition 6.16)

(definition of skip)
(lemma 6.13-3)
(d fi . . f -(n+l)) e n1t1on o s' v

(6. 7)

Finally, (6.6) tells us that in (6.4) and (6.5) we are taking the limit of the same sequence, so their
respective left-hand sides are equal. o
One more step is necessary before we reach the desired conclusion:

77

Lemma 6.23

Let It be as in definition 6.9-3. Then we have that It satisfies (6.3).

Proof

Choose any 1 satisfying (6.3). Then, by the definition of <l>i, we have, for c <:= s in t,

>.a.D [[s](l)(a)(po)
>.a.(O[{(a,s;V)}]: Po)
>.a. (6 [{ (a,s; vm: O[[{ (a, E)H)
>.a.O*[{(n,s;E)H

I

(lemma 6.22)

(definition 6.19)

(lemma 6.21)
(by (6.3))

If we have furthermore that 1(c) = >.a.po for c not declared in t, then we have that I is a fixed
point of 'I>t, so that I= It· D

Now we can prove theorem 6.14:

Proof of Theorem 6.14
For part 1, we calculate as follows:

O*[[{ (n, e : g)}] O[{(n,e: V)}]]: (>./3.0*[[{(a,/1: g)}JJ)

neha(>-/3.0*[{(n,/3: g)H)
{lemma 6.21)

(lemma 6.22)

where the application of lemma 6.22 is allowed by lemma 6.23.

Now for part 2, we have

O*[{ (a, s; r)H O[{(a,s;vf)H: O*[{(a,r)H

D [sha(O*[{ (a, r)H)
(lemma 6.21)

(lemma 6.22)

where s = s and 7: = "It because s is closed. Here, again, lemma 6.23 justifies the application of
lemma 6.22. D

Corollary 6.24
For any t E £nud,

Proof

O*M = D[[t].

Lett = (c; <:= s;)f= 1 , then we have

O*[[t] O*[[{ ((c1, 1), s1;E) }]
D[sd(lt)((c1, 1))(O*[{((ci, 1), E)}])
D [[s1](7t) ((c1, 1)) (po)
D[t]

(definition 6.10-4)

(theorem 6.14-2)

(definition 6.10-3)
(definition 6.9-4)

D

With corollary 6.24, we have obtained the ultimate goal of our paper: to establish the equivalence
of an operational and a denotational semantics for a nonuniform language with process creation.

78

References

[Ad] The Programming Language Ada Reference Manual. American National Standards Institute,
ANSI/MIL-STD-1815A-1983. {Also published as: Lecture Notes in Computer Science, Vol. 155,
Springer-Ver lag, 1983.)

[Ag] G. Agha: Semantic considerations in the Actor paradigm of concurrent computations. In: S.D.
Brookes, A. W. Roscoe, G. Winskel (eds.): Seminar on Concurrency, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, July 9-11, 1984, Springer-Verlag, Lecture Notes in Computer Science,
Vol. 197, pp. 151-179.

[Aml] P. America: Definition of the programming language POOL-T. ESPRIT project 415, Doc. No.
91, Philips Research Laboratories, Eindhoven, the Netherlands, September 1985.

[Am2] P. America: Rationale for the design of POOL. ESPRIT project 415, Doc. No. 53, Philips
Research Laboratories, Eindhoven, the Netherlands, January 1986.

[Am3] P. America: Object-oriented programming: a theoretician's introduction. Bulletin of the Euro
pean Association for Theoretical Computer Science, No. 29, June 1986, pp. 69-84.

[ABKRl] P. America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten: Operational semantics of a parallel
object-oriented language. Conference Record of the 13th Symposium on Principles of Program
ming Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 194-208.

[ABKR2] P. America, J. W. de Bakker, J.N. Kok, J.J.M.M. Rutten: A denotational semantics of a parallel
object-oriented language. Report CS-R8626, Centre for Mathematics and Computer Science,
Amsterdam, the Netherlands, August 1986.

[AR] P. America, J.J.M.M. Rutten: Solving reflexive domain equations in a category of complete met
ric spaces. Report CS-R8709, Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, February 1987. (To appear in Proceedings of the Third Workshop on Mathematical
Foundations of Programming Language Semantics.)

[Apl] K.R. Apt: Recursive assertions and parallel programs. Acta Informatica, Vol. 15, 1981, pp. 219-
232.

[Ap2) K.R. Apt: Formal justification of a proof system for Communicating Sequential Processes.
Journal of the ACM, Vol. 30, No. 1, January 1983, pp. 197-216.

[BBKM) J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer: Linear time and branching time
semantics for recursion with merge. Theoretical Computer Science, Vol. 34, 1984, pp. 135-156.

[BKMOZ) J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, J.l. Zucker: Contrasting themes in
the semantics of imperative concurrency. In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg
(eds.): Current Trends in Concurrency - Overviews and Tutorials. Springer-Verlag, Lecture
Notes in Computer Science, Vol. 224, 1986, pp. 51-121.

[BM) J. W. de Bakker, J.-J.Ch. Meyer: Order and metric in the stream semantics of elemental con
currency. Report CS-R8638, Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, December 1986. (To appear in Acta Jnformatica.)

[BMO) J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog: Infinite streams and finite observations in the
semantics of uniform concurrency. Report CS-R8512, Centre for Mathematics and Computer
Science, Amsterdam, the Netherlands, September 1985. (To appear in Theoretical Computer
Science.)

[BMOZl) J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker: Transition systems, infinitary
languages and the semantics of uniform concurrency. Proceedings of the 17th ACM Symposium
on the Theory of Computing, Providence, R.I., 1985, pp. 252-262.

[BMOZ2]

[BZ]

[BK]

[Bo]

(Brl]

[Br2]

(BrB]

[Cl]

[DMN]

[Du]

[En]

IGi]

[Ha]

[HP]

[He]

[Hol]

(Ho2]

[MJ

(MdVJ

79

J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker: Transition systems, metric spaces
and ready sets in the semantics of uniform concurrency. Report CS-R8601, Centre for Math
ematics and Computer Science, Amsterdam, the Netherlands, January 1986. (Full version
of [BMOZl], to appear in Journal of Computer and Systems Sciences.)

J.W. de Bakker, J.I. Zucker: Processes and the denotational semantics of concurrency. Infor
mation and Control, Vol. 54, 1982, pp. 70-120.

J .A. Bergstra, J. W. Klop: Process algebra for synchronous communication. Information and
Control, Vol. 60, 1984, pp. 109-137.

F.S. de Boer: A proof rule for process creation. Report CS-R8710, Centre for Mathematics and
Computer Science, Amsterdam, the Netherlands, February 1987. (Also to appear in: M. Wirsing
(ed.): Formal description of programming concepts III, Proceedings of the third IFIP WG 2.2
working conference, Gl. Avernces, Ebberup, Denmark, August 25-28, 1986, North-Holland.)

M. Broy: Fixed point theory for communication and concurrency. In: D. Bj~rner (ed.): Formal
description of programming concepts II, North-Holland, 1983, pp. 125-146.

M. Broy: Applicative real-time programming. In: R.E.A. Mason (ed.): Information Processing
'83 - Proceedings of the IFIP conference, North-Holland, 1983, pp. 259-264.

A. de Bruin, A.P.W. Bohm: The denotational semantics of dynamic networks of processes. ACM
Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985, pp. 656-679.

W.D. Clinger: Foundations of actor semantics. Technical report 633, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, May 1981.

0.-J. Dahl, B. Myhrhaug, K. Nygaard: SIMULA 67, Common Base Language. Norwegian
Computing Center, Forskningsvn. lb., Oslo, Norway, 1967.

J. Dugundji: Topology. Allen and Bacon, Rockleigh, N.J., 1966.

R. Engelking: General topology. Polish Scientific Publishers, 1977.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott: A Compendium of
Continuous Lattices. Springer-Verlag, 1980.

H. Hahn: Reelle Funktionen. Chelsea, New York, 1948.

M. Hennessy, G.D. Plotkin: Full abstraction for a simple parallel programming language. In:
J. Becvaf (ed.): Proceedings of the Bth Symposium on Mathematical Foundations of Computer
Science. Springer-Verlag, Lecture Notes in Computer Science Vol. 74, 1979, pp. 108-120.

C. Hewitt: Viewing control structures as patterns of passing messages. Artilicial Intelligence,
Vol. 8, 1977, pp. 323-364.

C.A.R. Hoare: Communicating Sequential Processes. Communications of the ACM, Vol. 21,
No. 8, August 1978, pp. 666-677.

C.A.R. Hoare: Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey, 1985.

J.-J.Ch. Meyer: Merging regular processes by means of fixed point theory. Theoretical Com
puter Science, Vol. 45, 1986, pp. 193-260.

J.-J.Ch. Meyer, E.P. de Vink: Applications of compactness in the Smyth powerdomain of
streams. Report IR-110, Free University of Amsterdam, Department of Mathematics and Com
puter Science, Amsterdam, the Netherlands, August 1986. (To appear in TAPSOFT 1987.)

80

[Ni] M. Nivat: Infinite words, infinite trees, infinite computations. In: Foundations of Computer
Science III.2, Mathematical Centre Tracts, Vol. 109, 1979, pp. 3-52.

[Niw] D. Niwinski: Fixed point semantics for algebraic (tree) grammars. In: M. Nielsen, E.M. Schmidt
(eds.): Proceedings of the 9th International Colloquium on Automata, Languages and Program
ming, 1982, Springer-Verlag, Lecture Notes in Computer Science Vol. 140, pp. 384-396.

[Pll] G.D. Plotkin: A powerdomain construction. SIAM Journal of Computing, Vol. 5, No. 3, Septem
ber 1976, pp. 452-487.

[P12] G.D. Plotkin: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus
University, Computer Science Department, September 1981.

[PI3] G.D. Plotkin: An operational semantics for CSP. In: D. Bj!<lrner (ed.): Formal description of
programming concepts II. North-Holland, 1983, pp. 199-223.

[Pn] A. Pnueli: Linear and branching structures in the semantics and logics of reactive systems. In:
W. Brauer {ed.): Proceedings of the 12th International Colloquium on Automata, Languages
and Programming (ICALP), Nafplion, Greece, July 15-19, 1985, Springer-Verlag, Lecture Notes
in Computer Science, Vol. 194, pp. 15-32.

[Ro] W.C. Rounds: On the relationship between Scott domains, synchronization trees and metric
spaces. Report CRL-TR-25-83, University of Michigan, 1983.

[Sa] V.A. Saraswat: The concurrent logic programming language CP: definition and operational
semantics. In: Conference Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Miinchen, West Germany, January 21-23, 1987, pp. 49-62.

[SS] S.A. Smolka, R.E. Strom: A CCS semantics for NIL. To appear in: M. Wirsing: Formal descrip
tion of programming concepts III. Proceedings of the third IFIP WG 2.2 working conference,
Gl. Avermes, Ebberup, Denmark, August 25-28, 1986, North-Holland.

