
MATHEMATICAL CENTRE TRACTS 109

FOUNDATIONS OF
COMPUTER SCIENCE HI

PART 2 : LANGUAGES, LOGIC, SEMANTICS

J.W. DE BAKKER (ed.)

J. VAN LEEUWEN (ed.)

SECOND PRINTING

MATHEMATISCH CENTRUM AMSTERDAM 1981

1980 MATHEMATICS SUB.:TECT c~AsSIF!CATIQN: 03B4$, 68B1Q, 68cQ1, 68FQ5, 68F20

ACM-Computing Reviews-categories: 5.21, 5.23, 5.24
ISBN 90 6196 177 7
First printing 1979
Second printing 1981

CONTENTS

Contents • . . . • • • i

M. NIVAT: Infinite words, infinite trees, infinite computations 3

V.R. PRATT: Dynamic logic 53

J.W. THATCHER, E.G. WAGNER & J.B. WRIGHT: Notes on algebraic

fundamentals for theoretical computer science . . 84

INFINITE WORDS, INFINITE TREES, INFINITE COMPUTATIONS

by

M. NIVAT

I. INFINITE WORDS .•••

co

II. TOPOLOGICAL PROPERTIES OF X

III. MORE ON ALGEBRAIC w-LANGUAGES AND FIXED POINT THEOREMS

IV. FIXED POINTS •

V. INFINITE TREES

VI. METRIC INTERPRETATIONS AND RECURSIVE PROGRAMS

5

11

18

22

31

39

MATHEMATICAL CENTRE TRACTS 109(1979), 1-52

INFINITE WORDS, INFINITE TREES, INFINITE COMPUTATIONS

M.Nivat

University Paris VII and IRIA, France

In these notes we shall give an account of an attempt to define the
semantics of recursive programs using the notion of successful infinite
computation, which gave rise already to several papers [1,2,4,28].

3

The intuitive idea is very simple. In the now standard theory of com
putation in an ordered domain [10,11,17,18,29,34] there is the well-known
equivalence between the definition of the computed function as the smallest
fixed point of certain functional and the definition of the same function
by means of terminating computation sequences of the program at a given
point. This equivalence holds when the computation domain is a flat, i.e.
discrete, domain in which different defined values are incomparable: the
only converging sequences are the stationary sequences whose terms are all
equal, for sufficiently large n to the limit of the sequence. In such a
domain it is clear that any computed value is the result of some finite ter
minating computation sequence.

The situation is entirely different if, following D. Scott, one starts
computing in a partially ordered domain which contains infinite ascending
chains. A computed value may then be the lub of such a chain and as such it
can fail to be the result of a finite computation. A typical example is the
domain of real numbers: if basic functions are tjle four arithmetic opera
tions and the initial values are rational numbers then after any finite
amount of time one will have computed only a rational number, while the
"final" result may be irrational.

We propose in this situation to give a meaning to succesful infinite
computation sequences, which will be said to produce a result and to define
the computed function by stating that its value at a given point is the set
of results of both finite terminating and infinite succesful computation
sequences at that point. In doing so one obviously has to accept that a com
puted function is many-valued, since there is absolutely no reason why all
computation sequences would lead to the same result. But indeed many-valued

4

functions were already considered as the normal output of a non-determinis

tic program. Thus our point of view amounts to considering deterministic

programs as special cases of non-deterministic programs, with the advantage

that our results will hold in the general case of non-deterministic programs

(this was in fact the original motivation of this study) .

In order to define successful computation sequences we found it ex

tremely convenient to replace the order structure on the computation domain

by a complete metric topology. (This does not mean at all that one cannot

use the structure of a cpo to build a theory in many respects analogous to

ours, like has been done in e.g. [30,35]).

The results we get to are mainly conditions for the equivalence of

this definition of the computed function and a mathematical definition by

means of fixed points: it happens that in a very natural way one is lead to

consider greatest fixed points rather than smallest. Intuitively this cor

responds to the idea that, at the beginning of the computation, we only know

that the value of the computed function lies in a certain range, a priori

the whole computation domain, and that in the course of the computation this

range is narrowed (maybe to just one value but usually to a set of values) .

This is dual of the point of view expressed by Dana Scott that an a priori

undefined initial value gets more and more defined in the course of the

computation. we have borrowed this idea of decreasing range to a large ex-

tent from L. Nolin (in an uncountable number of discussions over twenty years ~l

In the course of this study we will consider infinite words and in-

finite trees for the following reasons:

1. algebraic (or context-free) grammars are the only examples of non-deter

ministic recursive programs we really know (sufficiently at least to sup

port intuition) . If we extend the domain of finite words by adding those

infinite words which are limits of sequences of finite words in the nat

ural topology which measures the distance of two words by the inverse of

the length of their common longest left factor, we have the typical case

were infinite words cannot be the result of finite computations (or de-·

rivations) . The idea of greatest fixed points and the major role played

by closed subsets stern from our rather detailed study of infinite de

rivations of algebraic grammars which is presented below.

2. algebraic infinite trees which can be generated by a recursive program

scheme are at the basis of the theory called "algebraic semantics" of

recursive programs (see [10,11,17,18,24]). The algebraic tree thus

5

associated with a program scheme incorporates the whole semantics of the

program in the sense that, when interpretation is defined as a morphism,

the function computed by the program resulting from the interpretation of

the scheme is the morphic image of this algebraic infinite tree. Whence

many results concerning classes of interpretations and families of com

putation domains. Here infinite trees also play a role, in fact a crucial

role, for the link between a semantics defined in an ordered structure

and the semantics defined in a topological structure lies in the fact

that the set of infinite trees ITm(F,V) has both an order structure and

a topological structure which are closely related (in fact an increasing

function is order-continuous iff it is continuous for the topology). The

free complete F-image ITm(F,V) thus appears as the mother structure in

which the phenomena of computation can be better described.

By no means we consider this theory as completed: many questions are

raised which have to be studied further. The author is working on some of

these in collaboration with Andre Arnold, without whom most of this work

would never have been done. I gratefully acknowledge his constant help in

producing these notes. Other people who were of great help at various

stages of this writing are Luc Boasson and Bruno Courcelle. The author also

thanks J.W. de Bakker and J. van Leeuwen for giving him the opportunity to

teach this course and the Mathematical Centre·for publishing these notes

' in such a pleasant typing and setting.

I. INFINITE WORDS

* Let X be a finite alphabet. Let X denote the free monoid generated

by X, i.e. the set of finite words written over X, including the empty word e:.

The length of a word f € x* is denoted If!.

Let n be a letter not in x. We define the mapping f from the set lP of

non-zero positive integers into X u {n} by

f(n) {~e n-th letter

" otherwise.

of f if n s;

* The relation s; on X is defined by

f s; g iff Vn E lP n s; If I ,. f (n) g(n).

6

We say that f is a left factor of g iff f $g. We say that f is a proper
left factor of g iff f $ g and f ~ g and we write f < g in this case.
An infinite word on X is a mapping u: JP + X. The letter u(n) is called the
n-th letter of u and we denote by u[n] the finite word u(l)u(2) ••• u(n).
The set of all infinite words is denoted Xw and the set of all finite and

* w OJ 00 infinite words X u X is denoted X . We extend the relation s to X by

co
Va,f3 E X a s f3 - Vn E JP (n S I a I • a (n) f3(n))

with the convention that a E Xw,. Ja! co and

Vn E JP n < oo.

We thus have Vu E xw, f3 E xco u $ f3 - f3 = u. We also have Vf Ex*, u E xw
f s u - f = u[JfJ] and clearly indeed f < u in that case.
An w-language is any subset of Xw, an co-language is any subset of X00 and a

* "language" will simply be any subset of X • A convenient notation.· is the
following

00

Va E X FG(a) {f E x* I f s a}

U {FG (a) I a E L}.
co

VL c x FG(L)

To deal with infinite words we mainly use three lemmas.

LEMMA 1. If u1 $ u2 S ••• $ un s ... is an increasing sequence of finite
words in x* ordered by s then

- either the sequence is stationary, which means that

3NEJP:Vn::!:N u
n

Clearly uN then is the least upper bound of the sequence un.
- or Ju J + oo when n + co. n

Then there exists a unique infinite word u E Xw such that

Vn E lP u E FG(u).
n

This word u is the least upper bound of the sequence un.
In both cases the least upper bound is denoted as sup un.

7

LEMMA 2. For all u E Xw and L c X00

card (FG(u) n FG(L)) => FG(u) c FG(L).

LEMMA 3 (Koenig's Lemma). Let, for all n e JP, En pe a finite nonempty suJJ

set of a set E and R c E x E JJe a relation on E such that

- card (u E j n e JP) =
n

- Vn e JP Vy E En+l 3x E En: (x,y) E R

Then there exists an infinite sequence of elements of E, x 1 ,x2 , •.. ,xn•···

such that

Vn e JP

An equivalent way of stating lemma 3 is the following.

LEMMA 3'. Every infinite tree of finite degree has an infinite JJranch.

We shall mainly use lemma 3, more or less each time we shall have to

prove the existence of an infinite object. Let us look at the monoid struc

ture of X00
• The standard multiplication in x* can be defined by the formula

fg(n) {
f(n) if n $ lfl

g(n-lfl) if lfl < n $

n if If! + lgl < n.

lfl + lg!

The same formula may be applied to the definition of a multiplication

in X00
, with the result that for all f ex* u e x00 , fu is the infinite word

fu(n) {

f (n) if

u(n-lfl) if If I < n

(intuitively one writes f "in front of" u).

For all a e X00
, u e x00 one has ua = u. (Obviously this is a convention and

one could make other conventions with as a result a completely different

theory, see COURCELLE [37]). We have the following lemma:

8

co co LEMMA 4. Vcx,13 E x ex s 13..,... 3y E X cxy = 13.

We thus retrieve the standard definition of "is a left factor of".
Extending the product to subsets of Xco by means of

LL I fol3 I Cl € L 13 E LI}

* We can give simple rules to compute it. For L c X00 define Lfin
Linf L n Xw

L n X and

co LEMMA 5. For all Ll, L2, L c x

fin fin fin (Ll UL2) Ll u L2

(Ll uL2)
inf inf

Ll
inf u L2

(L L) fin
1 2

Lfin
1

Lfin
2

(L L /nf inf L Linf
1 2 Ll u 1 2

(L*/in (Lfin)*

(L *> inf

We shall also use another ~peration which produces an w-language from
* a language. If L c X we define

{ u E Xw I Vn E lP 3p E lP : u[p] E L n n n and

Another way of defining Lw is to write

p -+ co when n -+ co} •
n

VnE lP f EL and
n

card {n E lP I f
n

E} < co}.

co
The infinite power L of L is defined as

9

In other words, Lw is the set of infinite products of words in L which are

equal to infinite words.
co

The set X with the order ~ is a good example of a complete partially order-

ed set. Completeness is defined by the fact that every directed subset has a

least upper bound, where a directed subset 6 is a set satisfying

Va,S E 6 3y E 6 a ~ y and f3 ~ y.

=
If 6 is directed in X then it has a least upper bound, because

either 6 n Xw ~ 0 and then clearly 6 n Xw contains only one word, which is

the least upper bound,

* - or 6 c X and is then countable: if we write

then we can build the increasing sequence g 1 ,g2 , ..• with g 1 = f 1 and for

all n E lP gn+l an element in 6 which is greater than gn and fn+l (such an

element exists since 6 is directed). Clearly the least upper bound of gn'

which exists by lemma 1, is the least upper bound of 6.

GENERATION OF INFINITE WORDS BY ALGEBRAIC GRAMMARS

Let== {~ 1 , ••• ,~N} be a set of symbols disjoint from X. The elements

of _ are called non-terminals and the elements of X are called terminals.

An algebraic (context-free) grammar G with terminal alphabet X and non

terminal alphabet E will be written as a system of equations

(i 1, ••• ,N)

* where for all i = 1, ... ,N P. is a finite subset of (xu=l . For any such
J_ *

grammar G we define a relation ~ on (xu=l by

g' gmh.

10

* and from G we define G as the reflexive and transitive closure of

* G. We say that f' derives from fin Giff f G f'. In a standard way for
all f and G we define the language generated by G from f (i.e. with f as an
axiom) as

L(G,f) {f' E x* I f * ----+
G

f'}.

A sequence of words f 1 , ••• ,fh+l such that for all j = 1, ••• ,h fj G fj+l
is called a derivation from f 1 to fh+l and, obviously, we can state that

* f' E X belongs to the language generated by G from f iff there exists a
finite derivation going from f to f' in G.

It is quite natural to define an infinite derivation from f in G as an in

finite sequence f 1 = f, f 2 , ••• ,fn•··· such that for all n E :IP fn G fn+l.
It is immediate from the definition of G that, when a(f) is the largest

* left factor of f which belongs to X (we often call it the largest terminal
left factor off), we have

f G f' => a(f) s a(f').

Hence, if f 1 ,f2 , ••• ,fn, ... is an infinite derivation in G then the sequence

* a(f1) S a(f2) S ••• S a(fn) s ... is an increasing sequence of words in X
We say that the derivation fn is successful iff the sequence a(fn) has a

least upper bound in Xw, i.e. if !a(fn) I ----+ oo when n + 00 • If fn is successful
w we say that fn produces the word u = sup a(fn) and we write f 1 Gu. Now

the set of infinite words produced by G from f, also called the w-lan

guage generated by G from f, is defined as

Lw(G,f) {u E Xw I f ~ u}.

It will be convenient to define

L 00 (G,f) L(G,f) U Lw(G,f).

We shall say that L is an algebraic w-language (resp. 00-language) iff there

exists a grammar G and a non-terminal ~i such that

L

The reader should notice that our definition of algebraic w-languages is

not the same as that of COHEN and GOLD [9] or LINNA [21], all authors who

have recently written on algebraic languages of infinite words.

00

II. TOPOLOGICAL PROPERTIES OF X

00

11

In this chapter we introduce the topology on X which will be used in

the sequel. We shall see that it is a complete metric topology but in fact

it did not present itself dinictly as a metric topology. Looking at the

definition of Lw(G,t;.) one is tempted to relate this set of words to the
l

language L(G,t;i) of finite words generated by the same grammar from the

same non-terminal. This can be achieved in an elegant manner under very

reasonable assumptions.

Say that a grammar G is in Greibach form iff

Vi E [N] * P. c X(XU:!)
l

(in other words, every member of the right-hand side of a rule begins by a

terminal) and that a grammar G is reduced iff

Vi E [N] L(G,t;.) 'f 0.
l

* For any language L c X define the adherence of L as

Adh(L) {u E Xw I FG(u) c FG(L)}.

Then we obtain ([27])

THEOREM 1. If G: t;i

for all i E [N]

p., i
l

1, ... ,N is in Greibach form and reduced, then

PROOF. Consider u E Lw(G,t;,). There exists an infinite successful deriva-
1.

tion f 1 = t; 1 , f 2 , ... ,fn, ... producing u = sup a(fnl. The grammar CG being

* reduced, for all g E (XU:!) there exists

for all n E JI? there exists l E x* such
n

* * h E X such that g c;r h. Thus

that f ~ l . Obviously by

transitivity t;l.. -!'..... f and f -!'..... l imply
G n n G n

n n
t;i --%+ ln or, equivalently,

12

ln E L(G,l;i). But now u = Sup a(fn) implies n E JP 3pn E JP such that

u[n] S a(fPn) and, since a{fpnl S ln' we have FG(u) c FG(L{G,l;i)).

To prove the converse, one has to use Koenig's lemma.

Take u E Adh(L{G,1;.)). Call l a word in L{G,1;,) such that u[n] s l, by i n i n
definition such a word l exists for all n. As usual we define a left most n
derivation as a derivation

such that for all j = 1, •.. ,h f. 1 = a(f.)mh for some m E P. if f.= a(f.)1;.h.]+ J 1 1 J 1
(Thus, at each step of the derivation the rewriting is applied to the left-

most non-terminal)

Now define the following concepts:

* - the derivation f 1 , •.• ,fh+l covers the word g EX iff g s a(fh+l)
- the derivation f 1 , •.• ,fh+l strictly covers g iff

All the following facts are well-known or easily proved.

- For every g E L{G,f) there exists a leftmost derivation going from f to

g in G.

If f 1 , •.. ,fh+l is a left most derivation which covers g, then there exists

an initial segment f 1 , .•. ,fl+l' ls h of f 1 , •.• ,fh+l that strictly covers
g.

If f 1 , ... ,fh+l is a leftmost derivation in a grammar Gin Greibach form_

then a(fh+l) 2 k.

Now we can consider the sequence of sets En where, for all n E JP, En is the
set of leftmost derivations from si in G which strictly cover u[n]. we

clearly have for all n E JP :

- E is non-empty, since the leftmost derivation of 1;. in l covers u[n] n i n
{hence there exists an initial segment of it which strictly covers u[n]).

En is finite, since if f 1 , •.• ,fh+l strictly covers u[n] one has

h < la{fh) I < n since a{fh) < u[n]. We know that the set of derivations
of length less than n is finite.

- for every derivation f 1 , .•. ,fh+l E En+l there exi.sts an initial segment

of it which belong to En by the above remark {f1 , •.. ,fh+l which covers
u[n+1] a fortiori covers u[n]).

Hence, by Koenig's lemma there exist an infinite sequence 01 , .•. ,on, ...

13

of derivations such that for all n o covers u[n] and a is an initial seg-
n n

ment of on+l· This sequence has a least upper bound which is an infinite

successful derivation producing u from ~i in G. D

PROPERTIES OF THE ADHERENCE

Obvious properties of adherences are

- card(L) < 00 '* Adh(L) is empty

'* Adh(Ll) c Adh(L2J

Adh(FG(L))

A subset A of Xw is an adherence, in other words there exists L c X such

that A= Adh(L), if and only if

A Adh (FG (A))

[Clearly A= Adh(L) '* FG(A) c FG(L) '* Adh(FG(A)) c A and for all u EA

FG(u) c FG(A) =1> u E Adh(FG(A))].

We note that not all subsets of Xw are adherences. For example

is not an adherence since

* => a , thus Adh(FG(A)) 3 aw

PROPERTY 1 • If A Adh(L) then

FG(A) {f E x* * card (fX nL) 00}

FG(Adh(L)) is called the centre of Land is denoted by Le.

The proof is a straightforward application of Koenig's lemma.

COROLLARY 1. Le and Adh(L) are empty if and only if L is finite (i.e.

card (L) < co) •

The following assertions are all easy to prove

14

Adh(L) = Adh(Lc)

* PROPERTY 2. If L1 and L2 are two languages in X then

(i)

(ii)

(iii)

Adh(L 1uL2) = Adh(Ll) U Adh(L2)

Adh(L 1L2) = Adh(Ll) U Ll Adh(L2)

The proof of (i) follows immediately from the observation that

card(FG(u) n FG(L)) oo => FG(u) c FG(L).

We prove (ii). Suppose FG(u) c FG(L 1L2) = FG(L 1) U Li FG(L2).
Then FG(u) c FG(L1) or FG(u) c L1 FG(L2J.
If FG(u) c FG(Ll) then u E Adh(L1J. Suppose FG(u) ~ FG(L1). Then there
exists a maximal n such that u[n] E FG(L 1). Thus for all p, u[p] E L1 FG(L 2 l
can be factorized in u[p] = f g with f E L 1 , g E FG(L2 J and if I S m. pp p p p
This implies that there exists f E L1 such that fp = f for an infinite
number of p's. Whence u = fu' with u' E Adh(L2 l and u E L1 Adh(L2J.
The proof of (iii) is similar to the proof of (ii).

* COROLLARY 2. For L1 , L2 c X

if card(L2) < 00

if L1 ~ 0 and Ll ~ {E}

Call a language central when it is equal to its centre L

language is either empty or infinite.

15

L c. A central

PROPERTY 3. The family of non empty central languages is closed under union,

product and star.
00

Finally call an 00-language L c X closed when L ~ Adh(FG(L)). We have

PROPERTY 4. The family of closed oo-language is closed under union, product

and infinite power.

We only prove the last assertion. Suppose L ~ Adh(FG(L)).

Consider L00 L* U Lw = (Lfin)w U (Lfin)* Linf. We have FG(L) = (Lfin)*FG(L)

f in * fi'n * fi'n * fin
whence Adh FG(L) Adh(L) U (L) Adh(FG(L)) = (L) Adh(L) U

fin w · fin * oo
u (L) u (L) Adh(FG(L)) and this is clearly contained in L . D

00

A NATURAL TOPOLOGY ON X

Consider the mapping cl: 2X00 x"'
+ 2 defined by

cl (L) L U Adh(FG(L)).

We have already proved that this mapping satisfies the axioms

cl(0l = 0

cl(cl(L)) - cl(L)

L c cl (L)

These four axioms are sufficient for the family of complements of closed
00

sets to be the open sets of a topology on X • It happens that this topology

is a metric topology. For all a,S E X00 define the distance d(a,S) E :IR+ by

{
2-min{nja(n)fS(n)} if there exists an n such that a(n) f S(n),

d (a, Sl = ·
O if there does not exist such an n (in which case a = Sl •

One easily verifies that d satisfies the axioms of an ultrametric

distance, namely.·

d Ca, Sl

d (a, S)

d(a,Sl $; max(d(a,y) ,d{S,y))

16

(this last axiom is stronger than the triangular inequality

d(a,S) s d(a,y) + d(S,y)

and characterizes the ultrametric distances of BOURBAKI [8]).
The topology associated with this ultrametric is given by the following

basis of neighbourhoods for each point a E X

{B(a,_!_) In E JP}
2n

00

1 where B(a,-) is the open ball with center a and radius - i.e., 2n zn'

1
{ S E

00 I d(a,S) _.!_} B(a,-) x <
zn zn

or also,
1

{S E B(a,-)
2n

00 I a[n] S[nJ}. x

00 From this it is quite clear that for any L c X , Adh(L) is the set of
cluster points of L. Indeed

or

a E Adh(L) - Vn £ JP 3£. £ L: a[n] n

a E Adh(L)

00

l [n]
n

The topological closure of any set L c X is the union of L and its set of
cluster points, which is precisely

cl(L) L U Adh(FG(L))

Usually adherence and closure are synonymous, but we have consciously chosen
* to call adherence the set of cluster points in case L c X to distinguish

that part from the closure which is formed of infinite words.
We can say more about this topology:

- a sequence a 1 ,a2 , ••• ,an'""" is d-Cauchy iff

Vn E JP 3Nn E JP Vp ,q £ JP

p,q ~ N * a [n]
n p

a [n]
q

- the sequence a 1 ,a2 , ... ,an•··· converges to a, written as an+ a, iff

Vn E lP 3N E lP Vp E lP a [n]
p

a[n].

Obviously, as in any metric space, each converging sequence is d-Cauchy.

Conversely, suppose an is d-Cauchy. Clearly if we take for all n E lP the

smallest N such that
n

a [n],
p

17

the sequence a [n] is increasing for s. As such it has a least upper bound
Nn

a = sup aNn[n] and an + a. The space X00 equipped with the metric d is thus

complete. The fact that X00 is compact for the a-topology derives from the

observation that from every open covering

{B(a,1-) I a E x00
}

2n

one can extract a finite covering:

{ B (f ,__l_ l I f E xsp
2n

is such a finite subcovering.
00

The metric d is called totally bounded and it is then known that X is

compact (DUGUNDJI [12]).

A last but interesting remark is that every increasing function is a-con

tinuous iff it is Sup-continuous.

The function f: X00 + X00 is a-continuous iff the inverse image f-l(L} of

any closed set is closed or, equivalent1y iff for all L the image f(L) of

its closure is contained in the closure f (L). The function is Sup-continuous

iff for every increasing sequence a 1 s a 2 s ... sans ...

The fact that d-continuity is equivalent to Sup-continuity derives from the

easily proven fact that if an + a there exists a sequence Sn such that

Vn E lP Sn s an, the sequence Sn is increasing and sup Sn = a.
00

This equivalence constitutes the main link between the two structures of X :

18

its structure as a cpo and its structure as a complete metric space.

III. MORE ON ALGEBRAIC w-LANGUAGES AND FIXED POINT THEOREMS

We first give a substitution theorem which has interesting corollaries

concerning the structure of algebraic w-languages and the algebraicity of
the center of an algebraic language.

00 We first have to extend the notion of substitution to X , which is

achieved by the following definition.

Let 5 = {s1 , ••• ,sN} be a non-terminal alphabet disjoint from the terminal
+ alphabet X. Let Q = <Q1 , ••• ,QN> be an N-vector of subsets of (XU5) 00

• The
++

o~to the subset u[a/sJ substitution [Q/tJ which maps the infinite word u

is given by: if u = aos. als . ••• a 1
i1 iz+ + n

and s. ,s. , ••• ,s. , ••• E 5 uLQ/S] is

* S. a ••• Where a 0,a1 , ••• ,a , ••• EX 1.n n n

i1 i2 1.n
the two forms

where

the set of infinite words of one of

Vn E JI? h E Qf ln
n i

n

fin
m = 1, ••• ,n-1 hm E Qi

m

and W E Q~nf.
1.

n

N.B. Note that in this definition we require that u[;/tJ c (XU5)w, that is
no infinite word can be mapped by substitution on a finite word. Without this

requirement the following theorem would be false.

THEOREM 2. Let G be the algebraic grammar G: s. = P., i E [N]. Let
1. 1.

5 = {~ 1 , ... , ~N} be an alphabet in one to one correspondence with - and dis-
joint from X u 5. Let

Vi E [N] P. = fo~ . I a
1. -l+

all i E [N] if L(G) is

G be the grammar ~- = P. i E [N] where
1. 1.

E (XU5)*, s. E 5 and as.(XU5)* n P. f 0}.
J J 1.

the vector <L(G,s 11 , ••• ,L(G,sNI>

Then for

SKETCH OF A PROOF. The complete proof is long since it involves a number

of definitions which the reader will find in [26].

19

The tool is an infinite derivation tree which contains an infinite success-

ful derivation from ~i in u (such a tree is drawn below, see the example).

If a is such an infinite derivation tree, it contains a left-most infinite

branch (by Koenig's lemma and obvious arguments). The infinite word u is

the yield of that part of the tree which is on the left of the left-most

infinite branch (the yield is the word formed by the leaves read from left

to right).

Call cr' the smallest initial subtree of a which contains the left-most in-

finite branch. If we bar the non-terminals which appear on this branch and

delete all what is on the right of this branch then what remains of cr' is

a derivation tree in G, call it cr. All what is on the left of the left-most

infinite branch in a is formed of cr and pending from each non-terminal which

is a leaf in a is a finite derivation tree in G. 0

COROLLARIES 1. For every algebraic grammar G and non-terminal ~, Lw(G,~)

can be written as a finite union

p
u

i=l

where L., L! are algebraic languages in x*
l l

2. An adherence A= Adh(L) is the adherence of an algebraic

language (we then call it an algebraic adherence) iff

FG(A) Le

is algebraic.

3. The «>-algebraic language L is closed iff there exists an al

gebraic grammar in Greibach form such that L = Lw(G,~).

PROOFS. The grammar G built in theorem 2 is right-linear, with the addi

tional property that it generates only infinite words (for there are no

terminal rules)

we can "solve" such a grammar: for example

G: ~ A~ gives

and

20

* w gives s 2 = A22A21 s 1 + A22 , which we can substitute for s 2 in the first equa-
tion to obtain

From this we derive

s1

By induction on the number of equations one can easily show that for any
right-linear grammar G with no terminal rules one has

w - -L (G,s)
p
u

i=1

* where Ri,Rf are rational subsets of X •
(This is indeed valid for all right-linear grammars and is a well-known
theorem in the theory of infinite words recognized by finite automata,
see EILENBERG [13]).

---+ + w .~ w Now it suffices to=substitute L(G) for s to get L (G,s) = Uf=l Li(Lil .
where L, R.[L(G)/!J and L! = R![i:CGJ/!J are algebraic subsets of x*. D i i i i

2. It suffices to prove that the center of an algebraic language is alge
braic. Take L algebraic and a reduced grammar G in Greibach form generating
L\{e:}. Then

Adh(L(G,s)) Adh(L\{E:}) Adh(L)

and Le= FG(Adh(L)) = FG(Lw(G,s)). We are thus lead to look at the set of
left factors of a finite union tf. 1 L,(L!)w. Obviously i= i i

and this is algebraic, since the set of left factors· of an algebraic lan
guage is algebraic. (One can really build a grammar for Le along these
lines, see [26]). D

3. Corollary 3 follows from 2 and theorem 1.

21

EXAMPLE. A very simple reduced grammar in Greibach form is

G: ~ a~~ + b.

One knows that G generates the Lukasiewicz language

L = {f E {a,b}* I fl a

From theorem 1 we derive that

Adh (L)

(Indeed every f such that Jfla z Jflb belongs to FG(L) and no word in L can

be a left factor of a word in the adherence since L is prefix.) The tree

we now exhibit should help in understanding theorem 2.

EXAMPLE.

22

The grammar G is s (a+as)w, whence

(a+aL) w.

A grammar for the center is obtained in the following way: a grammar for
FG(Lw(G,~)) is

s a~ + as~ + £ + a.

But we can obtain easily a grammar for FG(L (G,~)) where the s's appearing
at the end of a word are "primed":

s a~+ as~+£+ as'+ ass'.

Now a grammar for the center is obtained by adding to this equation
s = ass + b, which will permit the substitution L/s, and ~· = ass' + as' + £,
which will permit the substitution FG(L)/s. Eventually we get the grammar

{

s ass + b

s' =ass' +as' + £

~ = ass + a~ + ass' + as' + £.

IV. FIXED POINTS

Let G: si = Pi i E [N] be an algebr~ic grammar. If we consider it as a
system of equations, to be solved in (2X)N, we call a solution of G any

7 * N-tuple Q = <Q1 , .•• ,QN> of subsets of X which satisfies the equations in G
i.e. such that

Vi E [N] P. [Q/!J.
J_

We can also associate with G the mapping G: (2X*)N 7 (2X*)N defined by G(Q) -+-+ +-+ = <P 1[a/s], ••• ,P [Q/s]>. The set of solutions is then the set of fixed N *
points of G. Now (2X)N ordered by component-wise inclusion is a lattice,
and even a complete lattice. And the mapping G has the properties that

23

-+-+ + -+ --+ -+
- G is increasing: VQ,Q' Q c Q' ~ G(Q) c G(Q')

- G is weakly sup-continuous, this meaning that for all increasing sequences
+Q(l) +(2) +(n) - +(n) - +(n)

c Q c ••. c Q c ••. we have G(Un?:lQ) = Un?:i G(Q) .

- +(n)
[The inclusion is obvious in one direction. Reversely take t E G(UQ)l.

There exists a word t' E Pl, t' =a F,. a 1r, ah 1r,. ah and words h 1 , .•. ,hk
(O)i1 i2 - ih

such that for all j E [k] h. E (UQ n)i. and
J J

Now h. E (UQ (n)) . implies that there •2x.i. "' " n. such that h. E Q _Cnj) . If
J ij J (no) J ij

we take n0 = max{n1 , ... ,nk} then, for ~l' j,hj E Qi· since the sequence

Q(n) is increasing. This also proves that G is not ~sually sup-continuous.]

It is well-known that every increasing weakly sup-continuous mapping a of

a complete lattice into itself has a smallest fixed point,

Y(a) = sup{a(n) (O)}, where O is the smallest element in the lattice (Theorem

of Knaster-Tarski.) Applying this result to G we get:

PROPERTY. For every algebraic grammar G the vector of languages Y(G)

= U G(n) (~) · the smallest solution of G. n?:i >" is

An important, old result due to Schutzenberger is the following.

THEOREM 3. For every algebraic grammar G the smallest solution of G is equal

to the vector of languages

Note that this is valid without any restriction on G.

We can now do the same work if we wish to get the greatest solution of an

al_gebraic grammar G. Indeed the mapping G is also weakly inf-continuous i.e.
+(1) +(2) +(n)

satisfies that for all decreasing sequences Q J Q J,,,J Q J,,. of

* vectors of (2X)N one has

n?:l n?:l

PROOF. G(nQ(n)) c nG(Q(n)) is clear. Reversely let t E nG(Q(n))l. Then for

all n E JN there exists p E Pl such that t E p [Q(n) ;tJ and, since Pl is

finite, there exists p E ;l such that t E p[Q(nf;tJ for an infinity of n's.

24

Write p = a 0 s. a 1s ak 1s. ak. There exists for every n in this infinity ii i2 - ik
(call it N') words p 1 , •.• ,pk such that

t and for J. [h] +Q(n)
€ pj € i. .

J

But there exists only a finite number of factorizations of t into

a 0p 1a 1p 2 ... ak-lpkak. Thus there exists p 1 , .•. ,pk such that

E [k] p. E Q~n) for an infinity of n's. But t = a 0pt .•. ak-lpkak and for j

since Q n) is decreasing this
J i.

· l" ~on imp ies pj E -i.·
Now an increasing weakly inf-continuous mlpping T of a complete lattice

into itself has a greatest fixed point

Z(T) Inf T(n) (1)

where 1 is the greatest element of the lattice. This is perfectly dual to

the Knaster-Tarski theorem. The grammar G is said to be weakly-Greibach iff,
Vi E [N] P. c (XU3)* X(XU3)* One can prove

i

THEOREM 4. If the granunar G is weakly-Greibach then the greatest fixed point
of G exists and is equal to

Z(G) -+
L(G).

An immediate consequence is that if G is weakly Greibach, G has a unique
solution. Let us try now to extend these results to sets of infinite words

generated by algebraic grammars. We would like to get the vector of w

languages Lw(G) as a fixed point of some sort of G. We have already defined

the substitution in X00 and thus the mapping G in (2XOO)N still given by

The mapping G thus extended is obviously increasing and remains weak

ly sup-continuous [the above proof still works!].
X00 N X* N Thus G has in (2) the same smallest fixed point as in (2) , namely

- -(n) + --+
Y(G) Un~l G (0) = L(G).

The awkward phenomenon is that G is no longer weakly inf-continuous, as

shown by the following example. Let G be the grammar

We consider the following decreasing sequence

-+(1) -+(2) -+(n)
Q ~ Q ~ ... ~ Q ~ .•.

(ab)w. Then for all n E JI?

___,.
(ab) W E <" b<" [(n) /t]

a.,,1 "2 Q "

since

a(ba)n b(ab)w.

Whence

(ab)w E n G(Q(n))
n

but (ablw ~ G(nQ(nll since n Q~nl = 0.
Note that in this example the grammar is in Greib~ch form.

25

The fact that G is not weakly inf-continuous prevents us from using any form

of the Knaster-Tarski theorem: one has to use specific combinatorial argu

ments to prove

THEOREM 5. If the grammar G is in Greibach form then G has a greatest fixed
X00 N

point in (2) equal to

-+ ---+

n Gn(X00
) = L00 (G)

n?l

where L00 (G) is the vector <L00 (G,t;. 1J, ••• ,L00 (G,t;,N)>.

The proof can be found in.[26]. However, there is a topological inter

pretation of these fixed point results: in order to give it we need to de

fine the Hausdorff metric associated with d on the set of closed subsets

26

00
00 of X which_we denote Fer L c X we define the dis-

tance

d(a,L) min{d(a,(3) I S E L}.

rt is clear that for closed L: d(a,L) 0 <=>a E L. The distance of two
00

sets L,L' c X is then given by

d(L,L') max{max{d(a,L') I a EL}, max{d(a',L) I a' EL'}}.

This is a metric on Fer(X00
) since

d (L,L') 0 <=> L L'.

We have to remark that

where

and

1
d (L,L I) < 2n <=> 11ri-1 (L)

11 (L)
n

FG (L)
n

{f E L I if! :o: n}

FG(L) n xn.

FG (L')
n

This stems from the fact that If I < n and d(f ,a) < _l_ imply f = a. We 2n •
shall now prove that Fer(X00

) with this Hausdorff metric is a complete metric
space. The result is obtained from a few lemmas.

00 LEMMA 6. If an is a sequence of words in X then it contains an infinite
converging subsequence, i.e. there exists a sequence of integers

+ 00 when p +

PROOF. This is an easy application of Koenig's lemma. Two cases arise:
1- {a I nE lP} is finite. Certainly then there exists a E {a } such that n

n
an =a for an infinite number of n's and the corresponding stationary
sequence converges to a.

27

2- {a
n

I n E lP} is infinite. Then for all p E lP

E
p

{f E xP I card{n J a E fX00
} = oo} is finite and non-empty. More

n
over for every g E E 1 p+

there exists f E E such that g E fX. Whence
p

an infinite sequence f E E
p p

such that f E f X which has a limit u.
~+1 p

Now take n 1 minimal such that an1 E f 1X , then n 2 > n 1 minimal such

that an2 E f 2x00 and so on. D

We now consider d-Cauchy sequences of sets. The sequence

L1 ,L2 , ... ,Lp, ... is d-cauchy iff

Vn E lP 3N E lP
n

LEMMA 7. Suppose the sequence of sets L
p

d(L ,L) < -
p q 2n

is d-Cauchy. Suppose there exists

a sequence of integers pl, with pl + oo when l + 00 , and a sequence al where

al E LPl for all l E lP such that al + a. Then there exists a sequence Sp'
where for all p E JP Sp E Lp and such that Sp + a.

* PROOF. Suppose al +a, a E X Then there exists N such that for all S > N

al = a. If la.I = n-1 take Nn given by

p,q 2 N => d(L ,L) < 1/2n. One has a

the d-Cauchy condition such that

n p q
E L and thus for all q 2

PN
2 max (pN,Nn) Mn a E L . We can take S = any word in L for p < M and

q p p n
S a for p 2 M to get the desired sequence.
p n

Suppose al + a, a E Xw , then for all n E lP there exists l E lP such
n

that

q 2 l => a.[n] s a .
n q

Consider Nn given by the d-Cauchy condition and Mn = min{pl

P[2 Nn} then for all p 2 Mn one has a.[n] E FGn(Lp) since

a.[n] E FG (L) and FG (L)
n Pl n p

FG (L) .
n P[

The sequence S is built by taking for all p, Mn S p < Mn+l Sp

in L such that a[n] s S . D
p p

We now come to

pl and
n

any element

28

THEOREM 6. Let L be a d-Cauchy sequence of closed sets. Then L converges p p
to the closed set

L
00

{a E X 3a EL : a +a}. n n n

PROOF. We verify that L is closed, i.e. contains the adherence of FG(L).

We have u E Adh FG(L) iff FG(u) c FG(L). Or else Vn E lP 3a(n) EL:
u[n] ~ a(n). Since a(n) EL=> 3a(n) EL a(n) + a(n) we can write

() m m m (n) Vn E lP 3pn E lP : u[n] ~ ap~ which means that the sequence aPn + u. And
this implies u E L by lemma 6.

We need to prove now that d(L ,L) + 0 when p + oo. It is clear that if p
a E L, a +a then d(a ,a) + O when n + oo and, since d(L ,a) ~ d(a ,a), the p p p p
distance d(L ,a) + 0 when u + oo. It p is also true that d(a ,L) can be taken p
arbitrarily small for all a E L , p sufficiently large. To be precise we p p
have Vn E lP 3N E lP such that

n

=> d(a ,L) < -
p 2n

Consider Nn as given by the

is in TI 1 (L) and then it n- p

d-Cauchy condition. Then either a
p

is in TI 1 CL) for all q ~ N which n- q n

E Lp' p ~ Nn,

implies

a E L whence d(a ,L) = 0, p p
or a [n] E FG (L) and also by the choice of p n p

N
n

a [n] E FG (L) for all q ~ Nn. But then there exists a sequence B such P n q
that B E L and a [n]

q q p
with limit a such that

d(a ,L) < _!.._ • D
p 2n

~ B
q

q
By lemma 6 there is a converging subsequence

a [n] ·~.a and by lemma 7 we get that a E L whence p

The following lemmas are now useful.

LEMMA 8. For every algebraic grammar G, G is continuous as a mapping of
(2X00)N with its metric topology into itself.

PROOF. First define the metric on (2X00)N in the ordinary way, that is

Then one has

max
i

d(Q.(1) ,Q~2)).
1. 1.

* Coming back to the definition it suffices to show for all f E (Xu~)

~ -T --t- ---r
d(f[QOl I tJ, f[Q(2 l ;tJl ::; d(QOl ,Q(2)l.

Write f a0~ ak 1 ~. ak and consider
l.1 - l.k

-+

h = a 0h 1 ... ak-lhkak E f[Q(l) /(J.

29

Call l the smallest integer such that h 0 4 Q~ 2): if such an l does not exist
.{., 1.f,

then obviously

-+
h E f[Q(2) ;"tJ and

-+

d(h,f[Q (2) ;tJi 0.

-+
If l exists then d(h,f[Q(Z) l!Jl is certainly less than

where h~ E Q~ 2). And this distance is less than
.{., 1.f,

+ LEMMA 9. For every algebraic grammar G, and every fixed point Q of G

the closure "ci:(Q) = <cl(Q1), ..• ,cl(QN)> is a fixed point of G.
co

PROOF. The mapping G is closed since X is compact (see above remark) and

(2X00)N is Hausdorff (DUGUNDJI [12]). Whence G(C'i1QJ) is closed. Since G is

continuous we have

- ----* - + G(cl(Q)) c cl(G(Q)).

->- ... -r --r ... ---+ ... + ~

From Q = G(Q) we thus obtain cl(Q) c G(cl(Q)) since G(Q) c G(cl(Q))
• + - + (by the fact that G is increasing), whence Q c G(cl(QJ) and

~ -+ -~
cl(Q) c G(cl(Q)) since G(cl(Q)) is closed. Finally we have

cl(Ql c G(ci(QJ l c Ci('Qi. D

30

LEMMA 10. If G is in Greibach form then G is contracting, in particular - - - --+ d(G(Q<lll, G(QC 2 lll,,;
2

d(Q(l) ,Q(2)).

PROOF. Like the proof of lemma 8.

Then we can state, using the Banach fixed point theorem,

THEOREM 7. For every grammar Gin Greibach form, the mapping G of Fer(X00)N
into itself has a unique fixed point

-+ (oo) N . d . -+ ~ whichever is the initial vector Q c Fer X . For every fixe point Q of G
in (2X00)N one has

---+
cl(Q) zcl (G).

REMARK. This last theorem provides a topological proof of several statements
made above. We have indeed

-cl(L(G))

for the limit of a decreasing sequence of closed sets is just their inter-
section. Take

Vn L E Fer(X00
).

n

If a E nnLn then the sequence an = a for all n converges to a, whence
a E lim Ln. If the sequence an' an E Ln' converges to a then for all n, a is
the limit of a sequence of elements i~L whence, since Ln is closed, a E Ln.
The same argument shows that nn~l Gn(X00) is always the greatest fixed point
of G, because it is a fixed point since

__..
G(lim Gn(X00

))

by the continuity of G and if Q is any other fixed point, then

__..
G (Q) c G (X00

)

31

- -and by induction Gn(Q) = Q c Gn(X00
) whence Q c nn Gn(X00

). This last re-

sult is not in contradiction with the remark that G is not weakly inf-con

tinuous: indeed we have

-+ -+
G(nQ<nll = n G(Q(n)l

if the sequence is a decreasing sequence of closed sets. Similar results

on closed subsets of cpo's are to be found in PLOTKIN [30].

V. INFINITE TREES

Most of the results we have mentioned up to now still hold for in

finite trees: the set M00 (F,V) of finite and infinite trees has a very simi

lar structure to X00
• In this chapter we give the necessary definitions,

stress the differences with X00 and state the results, leaving to the reader

the easy exercise of adapting the proofs.

Let F be a finite set of function symbols, each one given with an arity

a(f) E]!ii. F0 is the subset of symbols of arity 0. Let V be a set of vari

ables disjoint from F and ~be a symbol not in F u v. We denote by M the

maximum of the arities, M = max{a(f) I f E F}, and by [M] the set

[M] {1,2, ... ,M}. A partial F-tree on Vis a partial mapping a: [MJ* +

+ F u V satisfying the following conditions

Vu E dom(o) v < u => v E dom(o)

Vu E dom(o) o(u) E F0 u v => u[M] n dom(o) = 0

Vu E dom(o) o(u) u[M] n dom(o) {1, ... ,a(f)}

or 0.

Elements of the domain are called nodes. It is very convenient to con

sider a tree as a total mapping of [MJ* into F u V u {~} by letting o(u) = ~

for u ~ dom(o). The set of partial trees is then ordered in the same way
00

as X . By definition a ~ a' ~Vu E dom(o) a' (u) = o(u). Special attention

has to be given to the maximal elements, i.e. to all partial trees a satis

fying VT a ~ T =>a= T. It is easily seen that a is maximal iff it satis

fies

Vu E dom(o) o(u) f E F\F0 => u[M] n dom(o) {1, ... ,a(f)}

32

(In fact if cr $ T, T is obtained by adding nodes pending from the nodes in
cr such that cr(u) = f E F\F0 and u[M] n dom(cr) = 0.)
The set of partial F~trees on Vis denoted M;(F,V). The set of trees M00 (F,V)
is exactly the set of maximal partial F-trees on V (which is exactly the
free complete F~magrna generated by V which appears in [3,5,24]).
One can check that the set of partial trees ordered by $ is a complete
partially ordered set (cpo):

the empty tree A such that dom(A) = 0 is the smallest element
- suppose the set of partial trees ~ is directed i.e. satisfies

3cr3 E ~ and

Then if u E dom(cr1) n dom(cr2 J we have

In other words, all trees in ~ defined at a given node u have the same
value at that node. We can thus define the tree Sup ~ given by

dom(Sup M U {dom (cr) I cr E ~}

Vu€ dom(Sup(~))

Sup(~) (u) is the common value of all cr(u) such that u € dom(cr). One easily
checks that Sup(~) is the least upper bound of ~.

We shall be mainly interested in conditions for Sup(~) to be maximal,

LEMMA 11. Sup(~) is maximal (i.e. belongs to M00 (F,V)) iff the greatest
lower bound Inf{2-h(cr) I cr € ~} = 0 where

h(cr) min{lul I u E dom(cr), cr(u) E F\F0 and u[M] n dom(cr) 0}.

PROOF. Inf{2-h(cr) I cr € ~} > 0 implies that Vcr E ~ there exists u € dom(cr),
lul = n such that

33

o(u) E F\F0 and u[M] n dom(o) 0

where n is the smallest integer such that 2-n ~ £. There are only finitely

many nodes u E [M]n whence for infinitely many a E b the same u: this im

plies that in Sup(b) we have

U E Sup(b), Sup(b) (u) E F\F0 and u[M] n dom(Sup(b))

Clearly Sup(b) is not maximal since one can add nodes pending from that

node u. The if part is straightforward. 0

The set of partial F-trees on V, M~(F,V), is turned into a complete

metric space by defining an ultrametric distance d by

d(cr,cr') 1
2-min{!ul jcr(u)~o' (u)}, if there exists u E [MJ* such

that a (u) ~ a' (u)

0, if for all u E [MJ* cr(u) cr'(u).

One checks immediately that d is an ultrametric distance. In order to de-

scribe this topology further it is extremely convenient to use converging

filter bases rather than converging sequences.

Let us recall a few definitions (see DUGUNDJI [12]). A filter base B
on a set E is a collection of subsets of E satisfying

VB E B B ~ 0

If E is equipped with a metric d, the filter base B is said

- to accumulate at point e iff every open ball

B(e,£) {e' EE j d(e,e') < ed

intersects all the elements of the filter base. The point e is called a

cluster point of B
- to converge to e (we write B + e) iff every open ball B(e,c) contains

an element of the filter base

- to be d-Cauchy iff for every £ > 0 B contains an element of diameter less

34

than £. The diameter d(B) is given by

It is clear that a converging filter base is d-Cauchy.

THEOREM 8. Every a-Cauchy filter base in M"'(F,V) is convergent, that is
Mco(F,V) with the metric dis a complete metric space.

PROOF. We use a correspondence between filter bases and directed sets which
relies on the existence of greatest lower bounds in M~(F,V). Suppose Bis a
subset of M"'(F,V) and define

dom(Inf(B)) {u E [MJ* I Vcr,cr' E B cr(u) a' (u)}.

Inf (B) (u) is the set of comnon values of all cr-(u) , a E B. The tree Inf (B)
exists and is clearly the greatest lower bound of Bin M~(F,V). The cor
respondence goes both ways: ~ith the filter base Bone associates the di
rected set AB = {Inf(B) I B E B}; AB is directed, for B3 c B1 n B2 ,..
,. InfCB1) s Inf(B3) and Inf(B2) s Inf(B3); with the directed subset A one
associates the filter base BA= {uB(cr) la EA} where nB(cr) ={a' I as a'}.
We can now show that every a-Cauchy filter base
We shall rely on the lemnas:

converges to SUp(A8).

LEMMA 12. For all directed subset f; c M~(F,V}, and all n E lP there exists Sn _ Sn a E A such that dom(a) n [M] = dom(Sup(f;}} n [M] •

~· Dom(Sup(A)) n [M]Sn is certainly finite and we can order its elements
u 1 ,u2 , ••• ,up. For all i = 1, ••. ,p there exists ai EA such that ui E dom(ai}.
Then we can form a sequence of elements of f;

where for all i 1, ••• ,p-1 Ti+l is an element of A such that

It is clear that T E & has the desired property. D
p

35

LEMMA 13. The diameter d(nB(cr) is equal to 2-h(cr)-l (this follows directly

from a remark already made).

Suppose now B is d-Cauchy. First we note that Sup(&B) is maximal, for

d(B) < ~1-, B c U B(Inf(B)) • h(Inf(B)) ~ n - 2n+l

and the condition of lemma is satisfied. Secondly we verify that B converges

to Sup(&B), i.e. Vn E lP B(Sup(i'IB), 2~) contains an element in B.

We apply the preceding lemma: since Sup(/\;) is maximal, the element Inf {B)

which satisfies

dom(Inf(B)) n [M]~n [MJ~n dom(Sup(/11.)) n

is such that h(Inf(B)} ~ n. Thus d(UB(Inf(B)J ~~and a fortiori d(B}.
1 . ~+ . 1

But B (Sup rn8i, -) contains· Inf (B), whence it contains B (Inf (B) , -) and
2n 2n

this contains B. D

N.B. A strange phenomenon is that, whenever a filter base converges, it

converges to maximal element: this is why we can restrict ourselves to fil

ter bases in M00 (F,V) whose elements contain only maximal trees.

We shall now retrieve the notion of an adherence. First we define
w w

M(F,V) (resp. Mn(F,V}, M (F,V) and Mn(F,VJJ as the set of all finite (resp.

partial finite, infinite and partial infinite) trees.

Let L c M00 (F,V) and L be its topological closure. We know that a E Tiff

there exists a filter base B such that

VB E B and B-+ a.

Let FG(T) denote the set of finite left factors of the tree T, i.e.

FG(T) {ajcr~T}

and let FG (L) = U {FG (T} j T E L}.

Then B n L #- 111 implies Inf(Bl E FG(LJ. Whence a EL iff Sup(&) for some

36

directed subset~ c FG(L). We can now define the adherence of L c M(F,V)
to be

Adh(L) {a E Mw(F,V) I FG(cr) c FG(L)}

and state

THEOREM 9. The topological closure L of L c M00 (F,V) is equal to Lu Adh(L).
The set L c M00 (F,V) is closed iff L ~ Adh(FG(L)).

ALGEBRAIC TREE GRAMMARS

Before going further we change our notations. We define the set of ex
pressions written with F as function symbols and V as variables as the
smallest set of words, Term (F,V), on the alphabet composed of F,V, the
left and right parenthesis"(" and")" and the comma

F0 u v c Term(F,VJ'

Vf E F

II II , which satisfies

One can identify M(F,V) with Term(F,V) via the one to one mapping

Vf E FO

Vv E V

f is the tree such that dom(f)

v is the tree such that dom(v)

{d,
{e:}

f(E:)

v(E:l

f

v

- if £1 , •.• ,ta(f) are the trees corresponding to t 1 , ... ,ta(f)
then the tree corresponding to f(t 1 , .•• ,ta(f)l has the domain

1 dom(f1J u 2 dom(t2J u ... u a(f) dom(ta(f))

and for u = pu' in this domain, 1 $ p $ a(f), the value
f(t1 , ... ,ta(f)) (pu') = fp(u'). From now on we shall write finite trees as
expressions (or terms) and use the factorisation in the free monoid
Fu Vu {(,)} to write equalities of the form

t = at'B

to indicate that t' is a subtree of t (where a subtree of cr is any tree T
such that for some u E dom(cr), dom(T) = {v uv E dom(cr)} and T(v) = cr(uv)
for all v E dom(T)). We shall also use the notion of substitution: if

37

t E M(F,{v1 , •.• ,vk}), t[t1/v1 , •.. ,th/vk] is obtained by substituting for

every occurrence of v 1 in t the tree t 1 , .•• , for every occurrence of vk in

t the tree tk. We believe all this is well-known. Next we define an alge

braic tree grammar L as a system of equations of the form

where~= {~ 1 , ..• ,~N} is a finite set of unknown variables, ~i with arity

ni and, for all i, Pi is a finite subset of M(FU~,{v1 , ..• ,vni}). This is a

special case of non-deterministic recursive program scheme (ndrps, see below).

With each grammar L there corresponds a relation 7 on M(FU~ 1 V) defined by

t ~ t' - as[t1/v1, .•• ,t /v JS
n. n.

*

for some a,S, i E [N], s E P ..
l.

l. l.

The relation E is the reflexive and transitive closure of [· A deriva-

tion (or computation) of L from t is a sequence of trees t 1 ,t2 , •.. ,tn•···

which may be finite or infinite such that t 1 = t and for all n E ll?

tn E tn+l"
A finite sequence is said to terminate (or to be terminal) iff

t E M(F,V). The set of trees which are results of finite terminating deri-
n

vations have been considered by several authors (for example FISCHER [16],

ENGELFRIET-SCHMIDT [14], ROUNDS [31]).

We write T(L,t) = {t' E M(F,V) I t -i+ t'} and call it the tree language

generated by L from t. Our problem is now· to define successful infinite

derivations. This is where the notion of filter bas·e we have introduced is

becoming useful. For t E M(Fu~,V) define TIM(t) in the following way

t E FQ U V ,,. TIM(t) {t}

t f(\, ... ,ta(f)) .. TIM(t) = f(TIM(\), •.• ,TIM(ta(f)ll

{f(ti, .•• ,t~(f)l I t~ E TIM(tp)}

38

t <f>i(t1, ... ,tn.)
l

M(F,V).

Then clearly

tEt'

and if t 1 , ... ,tn'""" is an infinite derivation, the sequence
nM(t1), .•. ,nM(tn) , ... is a decreasing sequence of subsets of M(F,V) and
hence a filter base.

We say that the derivation is successful iff nM(tn) is a d-Cauchy
filter base which satisfies VE> 0 3n E lP such that d(nM(tn)) <E.
Clearly if nM(tn) is d-Cauchy it converges to a limit t' E M00 (F,V). This
limit is taken as the result of the successful derivation.

NB. One can see where the awkwardness of the use of left factors comes from
to define successful derivations. Indeed one can easily define the greatest
terminal left factor of tn: a(tn) is the terminal partial tree sn whose
domain is maximal (for the inclusion order) such that s ~ t . But even if n n
the trees sn grow to infinity, i.e. card(dom(crn)) + 00 when n + 00 , the least
upper bound Sup(s) has no reason to belong to M00 (F,V). It will usually be n
only a partial tree. In order that the limit belongs to M00 (F,V) one must
require that h(sn) + oo when n + 00 •

Let us now define Tw(L,t) = lim{n (t) I t is a successful derivation of M n n
L from t} and state results about fixed points which generalize our previous
results. To L we attach a mapping f of the set Q of N-vectors

Q <Q1, •.. ,QN>, Qi E Moo(F,{vl, ... ,vn.}
l

into itself. We define the substitution [Q/lJ, whose result when applied
++ to t in M(F,V) is t[Q/~], recursively as follows:

if t is terminal t E M(F,V) then t[Q/lJ = {t}

if t
++ ++ ++ f(t1 , ... ,ta(f)) then t[Q/~] = f(t1 [Q/~], ... ,ta(f)[Q/~])

+ + + I <P. (t1 , ••• ,t) then t[Q/W] =LI {s[Q/~] s E Qi}.
i ni

if t

+ The mapping L maps Q onto

f <QJ = P[Q/lJ.

39

We have the two major results.

---·+

THEOREM 10. The infinite ~n ""
intersection nn~l E (M (F,V)) is the greatest fixed

N E is Greibach, that is P.
1.

point of f in Q. In case
--+

then nn~l (M00 (F,V)) is the unique fixed point of f
it is equal to

where

--+
T(E)

E F((M(Full{vl, ... ,Vni})) ,

in Q which is closed and

PROOF. One can give two proofs. One is combinatorial by nature (see ARNOLD

NIVAT [2]). One follows the same lines as the proof we gave above of similar

results for algebraic grammars on X00
: the set Q is equipped with an ultra

metric distance and the same results of completeness of Q, continuity of f
in the general case, contractivity of f in the Greibach case and compactness

of Q are established, leading easily to the result. Unfortunately the con

tinuity of f is not very easily proved: one should refer to ARNOLD-NIVAT

[3 J. D

NB. A difficulty should be underlined here which is that it is not true

that every algebraic tree language can be generated by a Greibach grammar.

This is a well known fact (BOUDOL [7]) . We cannot characterize closed al

gebraic oo-tree languages by a condition analogous to Corollary 3 of theorem

2.

VI. METRIC INTERPRETATIONS AND RECURSIVE PROGRAMS

In this last chapter we come to the real motivations of the whole

study: we build a fixed point semantics of recursive programs whose computa

tion domains are complete metric spaces rather than cpo's.

We first need to consider the algebraic structure of M00 (F,V) which has

played no role until now but which is essential in what follows. If F is a

set of function symbols, we call an F-magma a structure

40

<EI,{fI I f E F}> formed of a non empty domain EI and a collection of
mappings fI, f E F where fI maps E~(f) into EI. A morphism between F-magma

is a mapping$ of EI into EJ such that for all f E F, e 1 , ... ,ea(f) E EI

The F-magma structure exists naturally on M00 (F,V): on M(F,V) it is given

by the very definition of Term(F,V), the mapping f : Term(F,V)a(f) +
M

+ Term(F,V) simply maps

The magma constituted by M(F,V) and {fM I f E F} has the important property

that every mapping $ of V into EI can be extended in a unique way to an

F-magma morphism of <M(F,V) I fM> into the F-magma <EI,fI>. In other words
<M (F, V) J f~l is the free F-magma generated by V (see NIVAT [24], COURCELLE
NIVAT [11]). The mappings fM.can be ~xtended by continuity to M00 (F,V):
suppose the elements T1 , ... ,Ta(f)inM (F,V) are defined as limits of filter

bases B1 , ... ,Ba(f). The family of subsets {fM(B1 , ... ,Ba(f)) I Bi E Bi} is a
filter base since

If for all i, B. is d-Cauchy then the filter base just defined is also d
i

Cauchy, for the diameter satisfies

i 1, ... ,a (f)}

whence it converges to a limit which will be taken as fM(t 1 , ... ,Ta(f)).
It is a straightforward matter to verify that this limit does not depend

on a particular choice of the B1 , •.• ,Ba(f)"

Let us now suppose that the F-magma <EI,fI> is also a complete metric

space for a metric dI defined on EI such that the fI are continuous mappings.
We call the structure <EI,dI,fI> with these properties a complete metric

F-magma: the continuity of the fI means that if B1 , ... ,Ba(f) are converging

filter bases on EI with Bi+ ei then fI(e 1 , ... ,ea(f)J = lim B, where Bis the

filter base {fI(B1 , ... ,Ba(f)) I Bi E Bi}.

41

Now let $ be a mapping of V into EI: we know how to define a unique F-magrna

morphism of M(F,V) into EI. And we can from there define for all t E M(F,V)

a mapping tI of card V into EI by letting
EI

where $: V +EI is given by $(vn) = en for all n.
+ We adopt vector notation. Denoting the vector <e1 ,e2 , ... > as e, we

+ + write tr(e) = $~(t) and also t.e for the element t[e1/v1 , .•. ,en/vn, •.•] of
+

M(F,EI) whose value (t.e)I is precisely $i(t). If we try to extend the

morphism $e to M00 (F,V), it is natural to do it by continuity: if

TE M00 (F,V) = lim B, for some filter base B, we would like

{$e<a> I a E B}

to be a convergent filter base and to write Tr(e) = $e(T) = lim $e(B).
Clearly there is no reason that $e(B) be d-Cauchy and this is generally not

the case. We are thus lead to define the following notion of convergence:

the mapping TI is convergent at point ~ iff the image $+(8) of a convergent
e+

filter base with limit T is d-Cauchy. We then define Tr(e) = lim $e(B). In
+ case TI is not convergent at e, it is said to be divergent. The extension

$~ is thus only a partial morphism.

EXAMPLES 1) F = {f},a(f) = 1, V {x}

M(F,V) = {fn(x) I n E JN}

f 00 = lim B, with B = {{fp(n) Ip> n} n E :N}.

Consider the F-magrna EI [0, 1], the unit interval of lR .

is given by dr(x,y) = lx-yl and

fr: EI +EI is the function AX. l+x·

We may consider f 00I as the continued fraction
1+!-

1+

42

One can see that the diameter of

<j> (B) <j> {fp (x) I p > n} e n e

tends to 0 when n ~ for all e. Indeed this diameter is bounded by

s
n

n times

l+x

1 l+y+
x,y ' [O,!]}

l+y

and we can easily establish that s
n n

Thus f; converges in our sense,
which is the same as the classical sense of convergence for continued frac
tions: the n-th approximant

1~

1~ ""' . . 1+.. ~times.
. . 1

l+x

tends to a limit independent of x for all x E [0,1].

2. Take F = {f},a(f) = 2,v = {x,y}.
We cannot describe M00 (F,V) as easily as in the first example but surely
the infinite tree

T belongs to M00 (F,V)

x

A filter base which converges towards T is B
n times

r--A-------.
B {f(x,f(x ... f(x,t) I t E M(F,V) }. n

{B I n E JN} n

Consider the same E1 = [0,1] with metric d1 (x,y) = lx-yl. Take f 1 = Axy.
1 ~ x x y which maps [0,1]2 into [0,1]. We can show that T1 converges for
every x E [0,1]: the diameter of <j>x(Bn) is indeed

43

2 n 2 n I max{(l-x+x ••• +(-1) xy(-(1-x+x + ..• +(-1) xz) z,y E [0,1]}

n
and this can be proved to be less than x x ly-zl. Clearly ~ 2 (Bn) + 0 when

u +=for all 0 s n < 1. The limit of ~x(Bn) thus exists and is equal to

Thus TI, which can be viewed as the power series 1-x+x2+ ••• +(-1)nxn+ •••
1

converges to l+x for all 0 s x < 1, which is what the theory of power

series tells us.

COMPUTATIONS OF RECURSIVE PROGRAMS

A recursive program is a pair formed by

- a non deterministic recursive program scheme E

- a metric interpretation.

The ndrps E is as above but for the ~ operator which we introduce to

describe a possibility of choice at each step of the computation

P. is a finite subset of M(Fu~u{or}, {v1 , ••• ,v }), the operator or is of
l. - ni -

arity 2. The meaning of~ is operational: it is a choice operator which

enters in the definition of computations below.

The metric interpretation I is just a complete metric F-magma

MI = <E ,d ,{f I f € F}>. I I I

A computation of E under I at t E M(Fu~u{~},EI) is a finite or infinite

sequence t = t 1 , t 2 , ••• ,tn•··· where for all n

We define

44

t -->- t - t a$i (s 1 , ... ,sn.lS and n i:: n+l n
1.

tn+l as[s1/v1 , ... ,sn./vn. lS for some SEP,
1.

]_ 1.

t -->- t or t Cl.(Sl or s 2 l S and tn+l Cl.Sl f3 or as2 S n or n+l n

t -->- t - t af(e1 , ... ,ea(f)IS and t = aeS n I n+l n n+l

for some el' · · · ,ea(f) E EI e = fr(el, ... ,ea(f))

When t ---+ t we say that t is rewritten to t
n+l'

when t -->- t we n i:: n+l n n I n+l
say that t is simplified to tn+l' when t ---+ t

n or n+l
we say that t is divided n n

(We can introduce many more simplicifation rules and retain the results we
state below for this larger set of rules. It may seem awkward indeed not to

have rules of the type 0 x $. (v1 , .•. ,v) = 0 or if 0 = 0 then 2 else
1. ni

$. Cv1 , ... ,v) = 2. The definition of a good set of rules, large enough to 1. ni
represent the simplifications actually performed in computers and small
enough to keep the Church-Rosser property and commutation with rewritings

however, is a completely different problem from the one we are treating here,

see HUET [20]).

A computation terminates iff it is finite and the last element obtained
is in E1 : obviously this last element is the result of the computation. An
infinite computation t 1 ,t2 , ... ,tn•··· is successful iff the filter base
rr 1 (tn) converges to a limit, which is then taken as the result. The mapping

rr1 : M(Fu~u{.m;:},E1) -+ 2Er is given by

{e} for all e E E1

{f1 } for all f E F0

rrr(f(sl, ..• ,sa(f») = fr(rrr(sl) , ... ,rrr(sa(f)))

rr (e,(s 1 , ... ,s)) =E
I 1. ni I

rr 1 (t ~ t'l = rr1 (t) u rr 1 (t'J.

One immediately checks that

t~t·

t-rt'

t-->- t'
or

45

and it follows that nI(tn) is a decreasing sequence of subsets of EI. Thus

the condition for t 1 , .•• ,tn•··· to be successful is that d(nI(tn)) tends

to zero: intuitively, Since TII(tn) certainly contains the possible values

of the term tn when the unknown function symbols are replaced by anything,

the condition means that in the course of the coreputation one restricts

the possible set of values of the computed term, with the effect that in

the limit just one value is retained.

EXAMPLES. 1. E is the recursive program scheme

cp (x) f (x,cj> (x))

and the interpretation I is the metric F-magma

EI [0,1]

with its ordinary metric dI(x,y) lx-yl and

l+xy

There is a unique infinite computation at point (1) which is

cp (1)
1 1 ----- -E 1+cj>(1) E 1

l+cj> (1)

We can compute TI (t)
I n

in this case.

{1!2 I z E [0,1]} [~,1].

If we define the Fibonaci sequence by

fib(n+l) fib(n) + fib(n-1), fib(1) 1, fib (0) 0

then we have

rfib(2n-1) fib(2nl]
TII(t2n) "fib(2n) 'fib(2n+1)

rfib(2n+1) fib(2n)]
7TI(t2n+1) Jib(2n+2) ' fib(2n+1) ·

46

The result of this infinite computation is the limit of rrI(t), which is al-
f'b(n) n -1+15 . so the limit of the sequence fi~(n+l) which is known to be ~-2~ . This

example is treated in VUILLEMIN [36].

2. The same E computing in the metric F-magma M(F,{x}) at point $(x)

computes the infinite tree

for there is only one infinite computation

$(x) ~ f(x,$(x)) ~ f(x,f(x,$(x))J--+

This computation is successful: the set rr(tn) is

{f(x,f(x, ..• f(x,s) ...) J I s E ~t (F,V)}

and its diameter is clearly equal to 1/2n. 0

We now state results. (ARNOLD-NIVAT [4,281). If c = t 1 , ... ,tn 1 ••• is

a finite terminating or infinite successful computation, let Res(c) denote

its result. If E is a ndrps, I a complete metric interpretation and

define the function

by

EI
2

{Res(c) I c is a finite terminating or an infinite

successful computation of E under I at

point t.;;-}.

(Usually one is interested in Val1E($ 1 Cv1 , •.. ,vn1>l, called the function

computed by E under I). Denote by M the free interpretation, which is

47

Every ndrps has such a free interpretation, usually called the Herbrand in

terpretation.

LEMMA 14. If c t , .•. ,t , •.. is an infinite successful computation of E
1+ n

under I at point t.e, then there exists an infinite successful computation

c' of E under Mat point t such that

Res(c'JI
+

converges at e and
+

Res(c') 1 (e) Res (c) .

A very similar result holds for finite terminating computations (see a

proof in NIVAT [24]). The two results make use of the property of pseudo

computation, the importance of which was stressed by ROSEN [32].

LEMMA 15. If t 1 ,t2 ,t3 € M(Fu<!i,E1J are such that t 1 7 t 2 and t 2 E t 3

* then there exists t 4 such that t 1 E t 4 and t 4 7 t 3 •

LEMMA 16. If c is a successful infinite computation of E under M at point
+

t and Res(c) 1 converges ate, then there exists a successful infinite corn-
+ +

putation c' of E under I at t.e such that Res(c') = Res(c) 1 (e).

From lemmas 14 and 16 one easily obtains

This theorem is an extension of theorem 6 of [24]: intuitively it

amounts to say that it is equivalent to interpret first and compute after

wards or to compute first and interpret afterwards.

FIXED POINTS OF RECURSIVE PROGRAMS

Consider the ndrps E and the complete metric interpretation I. Call
+ ni

G the set of N-tuples of mappings g = <g1 , ..• ,gN> where gi maps Ei into
E

2 I for all i = 1, ••• ,N. The set G is naturally ordered by inclusion in the

following sense

48

E
Vg1g' E [E~ + 2 1 J: g c g' <=>V+een + + ~ EI: g(e) c g' (e)

With this ordering G is a complete lattice. To L,I one associates the map

ping LI of G into itself defined by

(if t E M(Fu~,V) ,t[~/tJ is obtained by litteraly substituting the symbol

gi for the symbol ~. for all i E [N], and
l +

++
t[g/~] 1 is obtained as the inter-

+ pretation under I extended by the rule g 1 = g) . Now define a contracting

interpretation (it could be called Lipschitz) as an interpretation I satis

fying the following conditions

d 1 (fI(e1 , ... ,en),fI(ei,····e~)),,; a max dI(ej,e')
j

We have the analogue of theorem 7 of [24].

THEOREM 12. If L is a Greibach ndrps and I a contracting interpretation of
L then the N-tuple of functions

is the greatest fixed point of f in G, and the following equality holds

-+- . where EI E G is the N-tuple of functions whose N components map the set of
their arguments onto E1 •

49

EXA.MPLE. E1 is the recursive program

(x) 4> (x) + ..!:._ or 4> (x) + ..!:._
4 2 - 4 4

We compute in [0,1], equipped with its usual metric d defined by

d(x,y) lx-yl ·

It is clear that c1 and c2 are satisfied and thus we can compute the infinite
·n . +

intersection nn~l E1 (E1),Which has to be equal to Val1 l:(<i>)

we can see a "Cantor process" .appearing:"we first divide [0,1] into

4 equal subintervals and de~ete the left most and right most. Then on each

subinterval left we perform the same process: eventually we get to the

totally disconnected and measure-0 compact subset of reals whose diadic

expansion is of the form O,u, u E (01+10)w. Otherwise an infinite computa

tion of the program is of the form

which eventually leads to a result of the form

with e:
n

0 or 1. The set of such results is easily seen to be equal to the

preceding set. D

REFERENCES

[1] ARNOLD, A. & M. NIVAT, Non-deterministic recursive program schemes

in Fundamentals of Computation Theory, Lecture notes in Computer

Science no 56, Springer Verlag (1977) pp.

50

[2] ARNOLD, A. & M. NIVAT, Algebraic semantics of non-deterministic recur
sive program schemes, Rapport LITP 78-4, Universite Paris VII,
(1978), to appear in Math. Syst. Theory.

[3] ARNOLD, A. & M. NIVAT, The metric space of infinite trees, Rapport
IRIA Laboria no. 323, Rocquencourt (1978).

[4] ARNOLD, A. & M. NIVAT, Metric interpretations of infinite trees and
semantics of non deterministic recursive programs, Report no.

IT.3-78 Universite de Lille.

[5] BAKKER DE, J. W. , The .fixed point approach in semantics: theory and
application, in Foundations of Computer Science, Mathematical
Centre Tract no 63, Amsterdam (1975) pp. 3-53.

[6] BOASSON, L. & M. NIVAT, Adherences of languages, Report no. 79-13,
Laboratoire d'Informatique Theorique et Programmation, Paris.

[7] BOUDOL, G., Languages polyadiques algebriques, These 3eme cycle,

Universite Paris VII (1975).

[8] BOURBAKI, N., Topologic Generale, Hermann, Paris (1977).

[9] COHEN, R. & A. GOLD, Theory of w-languages, Journ. Comp. Syst. Sci.,
Vol. 15 (1977) pp. 169-208.

[10] COURCELLE, B. & M. NIVAT, Algebraic families of interpretations, in
17th Symposium on Foundations of Computer Science, Houston (1976)
pp. 137-146.

[11] COURCELLE, B. & M. NIVAT, The algebraic semantics of recursive program
schemes, in 7th Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science no 64, Springer Verlag
(1978) pp. 16-30.

[12] DUGUNDJI, T., Topology, Allyn and Bacon, Boston (1966).

[13] EILENBERG, S., Automata, languages and machines, Vol. A, Academic Press,
New York (1974).

[14] ENGELFRIET, J. & E. SCHMIDT, IO and OI, Journ. Comp. Syst. Sci. Vol.
15 (1977) pp. 328-353 and Vol. 16 (1978) pp. 67-99.

[15] ELGOT, c., S. BLOOM & R. TINDELL, On the algebraic structure of rooted
trees, Journ. Comp. Syst. Sci. Vol. 16 (1978) pp. 362-399.

[16] FISCHER, M., Grammars with macro-like productions, Doctoral disser

tation, Harvard University (1968).

[17] GOGUEN, J.A. & J. THATCHER, Initial algebra semantics, in 15th Sym

posium on Switching and Automata Theory, New Orleans (1974)

pp. 63-77.

51

[18] GOGUEN, J.A., J. THATCHER, E. WAGNER & J. WRIGHT, Initial algebra

semantics and continuous algebras, Journ. Assoc. Comp. Mach. Vol.

24 (1977) pp. 68-95.

[1~] GUESSARIAN, I., Schemas de programmes recursifs polyadiques, These

de doctorat d'etat, Universite Paris VII (1975).

r2o] HUET, G., Confluent reductions, in 18th Symposium on Foundations of

Computer Science, Providence (1977) pp. 30-4 7.

[21] LINNA, M., On w-words and w-computations, Annales Universitatis

Turkueusis (1975).

[22] MANNA, z. & J. VUILLEMIN, Fixpoint approach to the theory of computa

tion, Comm. Assoc. Comp. Mach. VoL 15 (1972) pp. 528-536.

[23] MYCIELSKI, J. & W. TAYLOR, A compactification of the algebra of terms,

Algebra Universalis Vol. 6 (1976) pp. 159-163.

[24] NIVAT, M., On the interpretation of recursive polyadic program schemes,

Symposia Mathematica Vol. 15 (1975) pp. 255-281.

[25] NIVAT, M., Interpretation universelle d'un schema de programme recur

sif, Rivista di Informatica, Vol. 7 (1977), pp. 9-16.

[26] NIVAT, M., Mots infinis engendres par une grammaire algebrique,

RAIRO Informatique Theorique Vol. 11 (1977) pp. 311-327.

[27] NIVAT, M., Surles ensembles de mots infinis engendres par une gram

maire algebrique, RAIRO Informatique Theorique Vol. 12 (1978)

pp. 259-278.

[28] NIVAT, M. & A. ARNOLD, Calculs infinis, interpretations metriques et

plus grands points :fixes, in Colloque de Math. Appli.,

Palaiseau (1978) pp. 191-208.

[29] PARK, D., Fixpoint induction and proof of program properties, in

Machine Intelligence no 5, Edinburgh University Press (1969)

pp. 59-78.

[30] PLOTKIN, G., A power domain construction, Soc. Ind. Appl., Math. Journ.

Comp. Vol. 5 (1976) pp. 452-487.

52

[31] ROUNDS, W., Mappings and grammars on trees, Math. Syst. Theory Vol. 4
(1970) pp. 257-287.

[32] ROSEN, B., Tree manipulating systems and Church-Rosser theorems,
Journ. Assoc. Comp. Mach. Vol. 20 (1973) pp. 160-188.

[33] SCOTT, J., The lattice of flow diagrams, in Symposium on Semantics of
Algorithmic Languages, Lecture notes in Mathematics no 188,
Springer-Verlag (1971) pp. 311-366.

[34] SCOTT, D., Outline of a theory of computation, Oxford Programming
Research Group Memo no PRG 2 (1972).

[35] SMYTH, M., Power domains, Journ. Comp. Syst. Sci. Vol. 16 (1978)
pp. 23-36.

[36] VUILLEMIN, J., Syntaxe, semantique et axiomatique d'un langage de
programmation simple, These de doctorat d'etat, Universite
de Paris VII (1974).

Additional bibliography (added in proof)
[37] COURCELLE, B., Frontiers of Infinite trees, RAIRO Informatique

Theorique, Vol. 12 (1978) pp. 319-337.

MATHEMATICAL CENTRE TRACTS 109(1979), 53-82 53

DYNAMIC LOGIC

V.R. Pratt

MIT, Cambridge, USA

The distinction made here between static and dynamic logic has a very

simple character, yet can play a central and unifying role in logic as a

vantage point from which one can compare propositional calculus, predicate

calculus, intensional logics such as modal logic and temporal logic, various

algorithmic logics (logics of programs), and Quine's notions of transparency

and opacity.

Background

Logic is metamathematics, that is, its objects of study are the un

remarked-on and unnamed expressions that are used to make remarks and name

objects in ordinary mathematics. Typical expressions are "0", "3x+2",
2 2 "x=y+2", "(x+y) (x-yl =x -y ", "Vx3y[p(x,y)Vq(y,x)]". The logician collects

a set L of such expressions, calls this set a language, and proceeds to

study its meaning (semantics) and its manipulation (axiomatics).

Meaning is specified with the help of a semantic domain D; D might

contain natural numbers, truth values, functions on the reals, predicates

on polynomials, and so on. The connection between L and D is made with a

meaning function or interpretation µ:L+D, assigning to each expression an

object in the semantic domain.

If every expression in L had an agreed-on meaning in the above sense,

a single (fixed) interpretation would suffice. Such a language would consist

only of constants (that is to say, constant-value expressions), and would

contain nothing worthy of the attention of a logician per se. If on the

other hand every expression in L could have an arbitrary meaning, any ele

ment of L + D could serve as an interpretation, whence L would in effect

consist only of variables and again would not be worth studying. ifuat makes

logic interesting is that the range of possible interpretations lies be

tween these two extremes.

54

For a function from L to D to pass muster as an interpretation it must
satisfy a collection of constraints. For example we might have the follow
ing constraints on µ.

µ (0)

µ(x+y)

µ(pAq)

the zero (unique additive identity) of D

µ(x) plus µ(y)

true if µ(p) = true and µ(q)

false otherwise.

true

These constraints have a special form. We shall assume throughout this
paper that every expression is of the form <s,t>, consisting of a symbol s
(the operator) together with an n-tuple t = (t , ... ,t) of expressions (the 1 n
arguments) . (Ordinary constants have a zero-tuple of arguments) . The most
general form of the above constraints is:

µ (<s,t>) F s (µ (tl) ' ... 'µ (tn)) .

That is, the meaning of the expression <s,t> is defined recursively as some
function Fs of the meanings of the arguments, the function depending ons
but not onµ. (If we want to have f(x) in L, meaning that f denotes some
function (which one depending on µ) to be applied to x, we will write the
application of f to x explicitly as y (f ,x) . The more usual convention of
always applyingµ to s as well as to the ti's is less appropriate for our
account of dynamic logic.) Constraints of this form we shall call semantic
constraints.

The domain (in the functional sense) of Fs in the above is significant
insofar as it acts as an additional constraint, namely on the possible
values of the ti 's. For example, if there is a constraint for the expres-
sion p /\ q with F/\ being conjunction, a function with domain {true, false},
then even if the expression p (or q) has no explicit constraint of its own,
its possible values in the expression p /\ q are confined to the domain of F /\,
true and false.

The expression x is said to be interpreted when some semantic con
straint µ(x) = ••• applies to it, and otherwise is uninterpreted. We write
L0 for the uninterpreted subset of L. It should be apparent that if all
expressions are finite (actually, well-founded is sufficient) then for
every element of L0 + D there is a unique extension of that element to an
interpretation (i.e. to an element of L + D satisfying the semantic

55

constraints) • Since every interpretation uniquely determines an element of

L0 -+ D, it follows that there is a one-to-one correspondence between the ele

ments of L0 -+D and the interpretations. For this reason it is common in

logic texts to call instead the elements of L0 -+ D the interpretations. Our

reluctance to follow this convention is due to the fickle nature of L0 , dis

cussed below.

Clearly, what conventionally pass for variables will have to be unin

terpreted expressions in this scheme of things. A little loosely perhaps, we

will henceforth refer to any uninterpreted expression as a variable. (A

little later we will discuss some consequences of this somewhat non-standard

view of variables.)

Notice that, as defined above, a semantic constraint mentions only one

interpretation, the one it is constraining. This is the defining characteri

stic of a static logic. If one uses the constraints to evaluate an expres

sion recursively, the interpretation remains unchanged (static) as the eval

uation proceeds; there are no side effects, so to speak. Quine refers to

operators defined in this way as being referentially transparent [44]; what

the operator's arguments refer to can be seen from "outside" the expression,

i.e. the operator does not "block the view".

The Limits of Static Logic

Consider the following expressions.

(1) Vx3y(x=y)

(2) Necessarily x+y = y+x

(3) After setting x to 1, x = 1.

Each of these, we argue, involves concepts beyond the scope of static

logic. The reason is that there is no function F such that the meaning of

Vxp can be specified with a constraint of the form µ(Vxp) = F(µ(p)), and

similarly for the other constructs.

States

To give an account of these expressions we introduce the notion of

state. One quite workable arrangement is to define a state to be an inter

pretation. However it will be slightly more convenient for us· (and con

sistent with ordinary practice in modal logic) to postulate a priori, as

56

part of D, a set of states W = {u,v,w, .•. }, along with a function 7f:W+ (L+D)
which assigns to each state an interpretation. We shall frequently abbre
viate 7f(u) (e) to u Fe (think of Fas 7f on its side). When e is a formula
u F e will be a truth value; this special case coincides with the conven
tional usage of F. We define if: L + (W+D) as if (e) (u) = 7f (u) (e) . Notice that
7f need not be an injection (1-1), that is, it is possible to have u Fe
v F e for all expressions e E L and still not have u = v; such pairs of
states are equivalent but not equal.

Now the meaning of expression (1) above is that no matter what x is
changed to y can then be changed so that x = y. Putting it more precisely,
we take u F Vx3y(x=y) to be true just when vl= 3y(x=y) is true for every
v such that u F z = v F z for all variables z other than x. In turn v F 3y
(x=y) is true just when w F x=y is true for some w such that v F z = w F z
for all variables z other than y.

We can put this a little more succinctly if we let Rx denote the binary
relation on states such that uR v whenever u F z = v F z for all variables x
z other than x. (Thus Rx is.an equivalence relation on W.) Then

u F Vxp A v F p
UR v

x

(the conjunction of v F p for all v
s.t. uR v)

x

Similarly we may take 3xp to be defined thus.

u F 3xp v v F p.
uR v x

The only difference is the use of v in place of A. Notice that u F 3xp and
u F IVxlp must be the same for all u in W, that is, these are equivalent
expressions. Just as v is the dual of A, so is 3x the dual of Vx.

The advantage of this way of looking at Vx and 3x is that it will also
be how we shall look at concepts like "necessarily" and "after setting x to
1". This treatment of "necessarily" was first defined carefully by KRIPKE
[25, 26]. While Kripke (deliberately) did not propose any particular binary
relation, let us consider the relation R such that uRv for all states u and
v, the so-called complete binary relation on states. Then define "necessar
ily" as follows, writing "[]" for "necessarily".

u F [Jp A V =j p.
uRv

57

This says that p is necessarily true just when it is true in all states v,

since R is complete. It follows that u I= []p is the same for all u's. This

particular interpretation of "necessarily" is not implausible.

As with Yx, "necessarily" has a dual, "possibly", written"<>". We

have as before

u I= <>p v v I= p
uRv

We also have the equivalence of <>p with l[]lp.

Now consider our third example, "after setting x to 1, x = 1". Even

this formula can be fitted into the above framework. Let uRv hold just when

uRxv (as defined for example (1)) holds and v I= x = u I= 1. That is, x is

set to 1, and there are no other effects (on L0). Then

u I= (after setting x to 1, x 1) 11 vl=x
uRv

Of course the value of this is true, as with the preceding two examples.

In this case it doesn't make any difference whether we write 11 or v, so

that "after setting x to 1" is its own dual.

For notational convenience we abbreviate "set x to 1" as "x := 1", and,

in imitation of the notation for "necessarily", we abbreviate "after x := 1"

as "[x:=l]", which as we remarked is the same as its dual "<x:=l>".

Form of constraint in DL

We would like to think of the above equations for quantifiers etc. as

semantic constraints. To do so, however, we must abandon the requirement

that a semantic constraint mention only a single state. In so doing we

make the transition from static to dynamic logic.

The general form of a semantic constraint in dynamic logic is

7T(<s,t>) F {.;;(t1), ••• ,.;;(t)).
s n

(Recall .;; (e) (u) 11 (u) (e) l .

This is actually the same as the general form for static logic, with

11 in place of µ. The difference is that 11 is a dynamic meaning function;

it yields the meaning of an expression as a function of state. In this

framework, our original concept of a semantic constraint in static logic

takes the form

58

u I: <s,t> F(ui:t1 , ... ,ul:tl s n for all u in W.

We shall henceforth refer to this special form as a static constraint,
and the more general one above as a dynamic constraint. From now on, as a
notational matter, we use u F in place of the (shortlived~) µ.

The general form permits u F <s,t> to depend on values of the ti's in
other states than u. It does not however permit it to depend arbitrarily on
the ti 's themselves, which are evaluated, even if not in u. In this way,
although we cannot substitute equals as we could in static logic (e.g.
u F (x=y ~ ~(xl=$(y)) is no longer always true where$ is an arbitrary for
mula - consider x=y ~ [](x=yl=[J(y=y)), we can still substitute equivalents.
That is, if TI(a) = n(b) then we do know that u F (~(a) =~(b)) is true for
all u in W.

(For LISP afficionados: note that the extent to which dynamic logic
is a step up from static logic is less than the extent to which FEXPR's in
LISP are a step up from EXPR's. The additional power of a FEXPR over an
EXPR is that the FEXPR can inspect the form of the arguments, for example
being able to distinguish p A q from q A p, which is beyond the power of dy
namic logic.)

Loose ends

We are now in a position to point out a peculiarity of our view of
variables. When extra constraints are taken notice of (as might happen in
the course of following an argument, when it becomes apparent that say pro
positional reasoning alone does not support the argument), certain expres
sions that hitherto were treated as variables now become constrained. A
simple example would be the expression 0. As long as 0 remains uninterpreted
it acts as a variable, and peculiar expressions such as 30(x=O) then have
the same meaning as 3y(x=y). As soon as 0 is assigned a fixed interpreta
tion, 30(x=O) means something else. According to the definition of 3y
above, 30(x=O) would be equivalent to x = 0 when 0 is interpreted.

It is a simple enough matter to include a syntactic condition on 3, :=,
and other variable-manipulating operators, so that only never-to-be-inter
preted variables can be so manipulated. However such a condition would play
no significant role in dynamic logic, and would require us to draw a dis
tinction between the unconstrained expressions and variables. Thus we omit
it from the theory in the interests of minimizing baggage.

59

For the remainder of this paper we adopt the convention of writing all

expressions we want to be considered uninterpreted using single letters.

Thus any occurrence of "x+y" is understood to be interpreted.

An operator definable in dynamic logic but not in static logic is said

to be referentially opaque, again following Quine. Actually this is a some

what more mathematically precise definition than Quine had to offer.

The examples of dynamic logic we have seen thus far, without getting

into any depth, have already given some idea of the range of domains that

can be served by dynamic logic: quantificational calculus, modal logic, and

algorithmic logic (i.e. logic of programs, x := 1 being a program).

In this connection it may be worth remarking that the semantics of

LUCID [1] are presented with emphasis on n; in fact there is no global set

of states in Lucid semantics, and instead each variable takes on values in

a series of states defined essentially by the lifetime, or extent, of that

variable.

The Kripke Operator

All the examples we have seen so far of dynamic logic constraints fit

a much narrower description than the above, namely Kripke's semantics for

modal logic. The reason for our rather general characterization of a dynamic

constraint is that later we will want to deal with certain adverbial con-

structs that transcend the Kripke formula. For the time being however,

we will stick with Kripke semantics.

It is natural to introduce the names of binary relations into the

language L. We reserve a,b,c, ..• as variables for this purpose. We call

such expressions actions.

It is also natural to take u F a to be { v I uRa v}, the set of states

accessible from u via R • Then u F [a]p can be defined as (u F a) F p, if
a

we adopt the usual convention in logic that for a set U s W, U F p means

that u F p for every u in u.
The notation [a]p, though almost universal in the dynamic logic litera

ture, starting with [39, 40], nevertheless obscures what we would like to

call the Kripke operator. And later we will want to combine a's and p's in

other ways, giving rise to other operators similar to the Kripke operator,

each needing their own syntax. For these reasons we introduce the Kripke

operator ~, and replace the notation [a]p with ~p. The semantics remains

unchanged:

60

u F (aJpl - (u F al F p

For the syntax of the language fl ~ ~} we adopt the convention that
parentheses may be omitted from any of the following without changing the
parsing. (We make use of this convention later, as new operators are intro
duced, to give a succinct account of the syntax of each new operator.)

p~(q~r)

npl~q

~(bJp)

(~p)~q

(p~q) ~ r

\

(so ~ is right associative)

(so I binds tighter than ~)

(so ~ is right associative)

(so ~ behaves like I)

(so spaces count)

That part of dynamic logic confined to Kripke semantics can draw on a
wealth of knowledge about modal logic. Of particular interest is the theory
of this logic, the set of valid formulae, that is, formulae p such that
u F p is true for all states u, where TI satisfies

u F Ip

u F (p~qJ
u F (~pl

u IF P

u F p implies u F q

(u F a) F p

Two questions we shall ask about the set of valid formulae are: how
hard is it to decide validity, and what useful axiomatizations do they have?

In the case when L contains only one action, that action being in L0 ,
the theory coincides with the theory of system K of modal logic (that is,
just the modal operator [], with no restrictions on the binary relation
corresponding to []). The complexity of the theory of K (along with several
related systems) was shown by R. LADNER [28] to be log-space complete in
polynomial space. That is, first there is a computer program that will det
ermine of a given formula of length n whether it is valid using O(nd) units
of storage for some d. (This is to say that the theory of K is in polynomial
space. Most reasonable notions of "units of storage" will suffice here.)
This by itself is not very exciting, and so second (which is what makes the
result much more interesting), one cannot do any better. That is, for any
set in polynomial space there is a computer program which could determine
whether an element of length n was in that set in only O(log n) units of
space if only it had access to an "oracle" for the theory of K, a program

61

that gives us at no charge answers to questions of membership in that theory.

This is a very strong sense in which validity in K is as hard as any problem

solvable in polynomial space.

Ladner's results extend without change to the case when L contains any

number of actions, so long as they all belong to L0 . Shortly we shall see

what happens when one introduces semantic constraints on actions.

K

s

N

~

MP

~ec

The following will serve as a complete axiomatization of {I~~}.

p~q~r ~ p~q ~ p J r

lpJtq J lpJq J p

~(pJq) J ~p J ~q

From p, pJq derive q (Modus Ponens)

From p derive a_Jp (Necessitation)

(The names Kand S come from combinatory logic. N is for Negation.

Note the similarity between Sand~; when a is p? (a test, see below), S

and~ coincide.)

Regular Dynamic Logic

It is not very interesting to consider just a set of unrelated actions

with no visible internal structure. Hence we are inspired to introduce

operations on actions. In so doing we shall be combining Tarski's calculus

of binary relations [48] with Kripke's semantics for modal logic. This com

bination is without doubt the most interesting facet of that part of dyna

mic logic constructed around Kripke semantics. Even more interestingly,

when we encounter analogues of the Kripke operator, the combination will

become even more fruitful.

Propositional Dynamic Logic, PDL

We begin with four operators, ? ; u *, that together with I J ~ give

rise to the language Propositional Dynamic Logic (PDL).

Tests. Conditionals in a programming language are usually introduced with

"if-then-else". However the rules of reasoning can be simplified by using

a "smaller" notion of conditional, the test, which can be used in conjunc

tion with the next two constructs to synthesize if-then-else. x>O? is an

62

instance of a test, as is j=OVp(j)=t(k)? .

A test p? is constructed from a formula p of the logical language. The

idea of a test is that a computation may proceed past a test just when that

test evaluates to true in the current environment, otherwise the computation

must block (which for our purposes is equivalent to going into an infinite

loop). Formally:

u I= p? {u} if u != p

fl) otherwise.

Most of what we say holds even for tests containing ~, permitting for

example the side-effect-free programming construct "if p would be the re

sult of running a then .•. "

The axiom for tests is

T p?~q = p=>q

Composition. A familiar concept to programmers is that of executing one

program after another; we may execute first a and then b. In terms of binary

relations this means applying the first relation to a state to nondetermini

stically yield another state, and then applying the second relation to the

resulting state. The composition of a and b, written a;b, is the relation

describing the net effect of executing first a and then b. Formally:

u I= (a;b) (u I= a) I= b

where U I= b, for U ~ W, is the union of the u I= b's for each u in U.

The following axiom completely captures composition in dynamic logic.

c (Syntax: (a;b)~p)

Union. Another concept, slightly less familiar to programmers, is that of

having a choice of which action to carry out. The action aub offers the

choice of actions a or b. Formally:

u I= (aub) u I= a u u I= b.

Though u may be less familiar than it has a static definition, un-

like;. It is a nondeterministic concept; the closest deterministic programming

63

concept is that of the conditional "if p then a else b" where a choice is

given between a and b but in the same breath the criterion for making the

choice, the formula p, is also given. In dynamic logic these two concepts

of choice and testing are factored out, to simplify the domain of discourse

and its attendant rules of reasoning. We can define "if p then a else b"

in regular dynamic logic as (p?;a)u(lp?;b).

The following axiom completely captures union in dynamic logic.

u aub.Jp _ a.JpAb.Jp. (Syntax: (aub)~p).

From these axioms we may infer that the validity problem for the lan

guage {I J ~ ; u} is decidable - in fact in exponential space - simply by

using the axioms for ; and u to eliminate all occurrences of ; and u from

the input to yield a formula at most exponentially larger.

Iteration. In order to get a program to run for a substantial time some way

of executing programs repeatedly is called for. The most elementary form of

repetition is iteration, which in dynamic logic means execution of an action

* an arbitrary number of times. We write a (a-star) for the iteration of a.

Formally

I

R

u F I

u Fa*

{u} (I is the identity action, needed for the next line)

u F (I u au a;a u a;a;a u •..)

The closest deterministic programming construct to this is "while p

do a", which executes the program a a number of times determined by the

test p. Again we have reduced things to more fundamental concepts just as

we did with if-then-else, this time separating while-do into iteration and

testing. We can define "while p do a" as (p?;a)*;lp?

Axioms for iteration are not as easy to come by as for union and com

position. In fact when we introduce assignment later we will not be able

to get a complete axiomatization of iteration. Without assignment however,

we can achieve an axiomatization of iteration as follows.

Refl: [a*Jp J P

Step: [a*Jp J [a][a*Jp

Ind: p A [a*J(pJ[a]p) J [a*Jp.

64

It is not at all apparent that these axioms generate all the valid

formulae of PDL. The fact that they do was first announced (minus tests) in

the Notices of the AMS by K. SEGERBERG [47]. Later (Jan. 1978) Segerberg

found a lacuna in his proof, which he repaired some months after. Meanwhile

R. PARIKH [36] and the present author [42], working semi-independently,

found completeness proofs. Also D. GABBAY [11] gave a sketch of a complete

ness proof, though much detail would appear to be necessary to convert this

sketch into a convincing proof.

It is also not at all apparent that the theory of PDL is decidable;

this was shown by M. FISCHER and R. LADNER [8]. The proof uses a modal logic

technique called filtration to show that a satisfiable formula of PDL has

a finite model, whence satisfiability and validity can be determined by a

finite search for a model. Normally filtration proofs are straightforward,

but in the case of PDL a minor difficulty arises with Fischer and

Ladner were able to show that the theory of PDL is in NTIME(2n) (nondeter

ministic Turing machine exponential time), but not in DTIME(cn) for some

c > 1. The upper bound has .recently been improved to DTIME(8n), as de

scribed in a revised version of [42].

First Order Regular Dynamic Logic.

The transition to any first order logic is made when terms are intro

duced into the language L. A term denotes an arbitrary domain element, not

merely a truth value as in the case of a formula, or a set of states as in

the case of an action.

Random Assignment. A random assignment is an action x:=? where x is any

expression and '' :=?" is the random assignment operator. It is defined by

u I= x:=? {vluR v}
x

{u I= z v I= z for all variables z

other than x}

Note that since random assignments involve the notion of variable,

changing the semantic constraints may affect the meaning of x:=?.

The main role for x:=? is for defining quantifiers. Vx is just x:=?~.

The following two axioms for random assignment are, in the absence of other

actions, just enough to completely axiomatize first order predicate calculus.

Al

A2

p ::i \lxp when x does not occur free in p

\lxp (x) ::i p (e) for any expression e

65

The definition of "occurs free in" is as follows. For e in L0 , x occurs

free in e just when e is x. x occurs free in a;b (a.Jp) just when x occurs

free in a or <x is not bound in a and x occurs free in b (p)>. x occurs

free in any other expression when x occurs free in one or more of its argu

ments. (Intuitively, x occurs free in u I= e when there is a chance that

the value of e might "depend on" the value of x in u.) x is bound in a when

a is x:=? or x:=e;, when a is b;c and x is bound in b or c; or when a is

buc and x is bound in b and c. (Intuitively, x is bound in a when it is

guaranteed that a assigns some value to x.)

In this paper we shall forbid random assignment to action expressions.

Assignment. An assignment is a pair of expressions x:=e. The idea is that

an assignment is the action of changing the· state so as to make the value

of x in the new state that of e in the old. Thus the corresponding binary

relation consists of those pairs u,v such that uR v and v I= x
x

u I= e.

(Recall that Rx was the binary relation corresponding to \Ix and consisting

of all pairs u,v such that u I= z v I= z for all variables z other than

x.) So we have

u I= x:=e {vjuR v and v I= x
x

u I= e}

There is no axiom for assignments as satisfactory as the axioms we

have been encountering for other constructs. If p(x} is a formula involv

ing some "x-e-visible" occurrences of x (an x-e-visible occurrence has only

operators "above" it in the expression that are referentially transparent

to x and e, i.e. clearly don't change x ore), then the following axiom is

adequate.

Ass: x:=eJp(x) - p(e) (HOARE [20])

As we have thus far. only constrained formulae and programs, the only

assignments whose effects can be. felt thus far are assignments to formulae

and programs. We shall forbid the latter kind entirely. GRABOWSKI [12] has

shown that algorithmic logic with this construct has a decidable validity

problem. Extending this result to dynamic logic poses no insurmountable

66

obstacles.

If we include = in L, with its standard interpretation on whatever

domain takes our fancy, matters become more complex. It is now possible for

information about the values of non-formulae to propagate up to the formula

level; for example, we may now deduce the validity of x:=y~x=y for variables

x and y.

Problem: Determine whether validity is decidable for {I ~ ~ u

{I ~ ~ u ; * = :=}.

* =}; for

Including application, y, (with the conditions that y's first argument

be a free variable, i.e. not one occurring inside an expression which con

tains assignments to that variable, and excluding variable actions) gives

us first order predicate calculus with uninterpreted function symbols. We

define yn (application for n-ary functions) thus.

u I= y (f,x1 , ... ,x)
n n

It was shown in [40] that the theory of what may take to be

{I~~* V := = y} was not recursively enumerable (r.e.), even if atten

tion was restricted to formulae of the form p~(x:=y(f,x))*~q where p and q

were ~-free. In [13] this result was strengthened to show that that frag-
0 ment of the theory was rr 2-complete (cf. [45]). A. MEYER has shown that the

1
whole theory is rr 1-complete (again cf. [45]). All these results indicate

very definitely that a complete axiomatization of dynamic logic at this

level of richness is out of the question.

Applications to Program Verification

Program verification is the art of showing that a program meets its

specifications using formal logic. There is no doubt that HOARE's p{a}q

construct [20] is of considerable interest to program verification. Since

we can embed p{a}q in dynamic logic, as p~~q, it follows that at least

that fragment of dynamic logic is relevant to program verification. However,

if total correctness is to be established, program verification also needs

to deal with the problem of termination, which is not expressible using

the p{a}q construct. Because of the ability to negate all formulae in dyna

mic logic, termination can be represented with no language extensions or

67

informal arguments.

To test the extent to which dynamic logic could help in program veri

fication, the author, with S. LITVINTCHOUK, implemented a proof checker for

dynamic logic proofs [31]. Thus far the largest program we have demonstrated

the total correctness of is the KNUTH-MORRIS-PRATT pattern-matching algo

rithm [22].

One interesting aspect of our perspective on DL is the decomposition

of quantifiers such as Vx into random assignment and the Kripke operator.

A result of this is that less code is needed to cope explicitly with quanti

fication, since half of what is known about quantification is actually gen

eral knowledge about arbitrary programs. This general knowledge is subsumed

under axiom~ and rule Nee. The axioms specific to quantification itself

are then Al and A2, which are so like the axioms for reasoning about assign

ment that only a small amount of additional code is needed to deal explicit

ly with quantifiers.

This situation should be contrasted with the usual approach to program

verification, which is a two-stage affair in which verification conditions

are generated and then sent to a theorem prover. Knowledge about programs

in general and assignments in particular is kept in the verification condi

tion generator, completely separate from knowledge about quantifiers, which

is kept in the theorem prover.

Another point is that one does not always want to generate all verifi

cation conditions before starting to work on the sort of logical manipula

tion done by the theorem prover. Consider for example the two programs

a:

aa:

while p do b

while p do (b;b)

where p might be "~eps+y" and b might be (x:=y-zxx; y:=x+zxy). Now it

turns out that regardless of what p and b are, the termination of aa implies

the termination of a, a fact expressible in DL as 11la~false => l~false".

Yet if this statement, with p and b spelled out in full, is given to a two

stage system (even assuming it could handle things like having two ~·s in

the problem), it will think hard about the assignments in b before getting

to the logic. In a system that works top down (i.e. starting at the "top"

of the formula to be proved, a characteristic of natural deduction systems

for one), the validity of the above claim can become apparent even before

any assignments are contemplated.

68

Applications to Natural Language

Consider the following sentences.

(1) Whether you strike a match or operate a cigarette lighter you get a

flame.

This may be formalized as MucJF, where M stands for the proposition

that you have struck a match, c that you have operated a cigarette lighter,

and F that you have a flame.

(2) If you strike a match you get a flame, and if you operate a cigarette

lighter you get a flame.

Similarly this amounts to 1'WFAcJF. The intuitive equivalence between

(1) and (2) is formalized (and therefore subject to automatic verification)

by the assertion MucJF = 1'WFAcJF.

(3) When you open the door and walk through i.t you enter the room.

(4) When you open the door then when you walk through it you enter the room.

The equivalence of (3) and (4) is summarized in O;W~E = oJ~E. Notice

that we do not get as equivalent

(5) When you walk through the door and open it you enter the room.

or

(6) When you walk through the door, then when you open it you enter the room.

even though (5) and (6) are equivalent to each other, W;oJE = ~oJE. If we

were to try to capture the meaning of (3) or (4) using the propositional

calculus alone, we might end up with OAW~E = o~E~W, which is certainly valid.
Unfortunately OAW~E is equivalent to WAO~E, which reveals the limitation

of propositional calculus for reasoning about action in this way.

(7) If your TV won't work and you kick it it still won't work.

(8) If your TV won't work then no matter how many times you kick it it

still won't work.

If (7) is true in all circumstances then (8) ought also to be true in

all circumstances. This amounts to the soundness of the rule, from w~K.Jw in

fer w~K*w. This rule can be derived by starting with w~K.Jw, applying Neces

sitation to get K*~<w~K.Jw), then applying Modus Ponens to it and the induc

tion axiom (reformulated slightly using propositional reasoning to read

69

* * * K ~(w~.K.Jwl ~ w~K ~) to get w~K ~W as desired.

Reasoning About Processes

So far the Kripke operator ~ has been our only operator relating actions

to formulae. We now introduce some other operators that, like~. find appli

cation to both algorithmic logic and to natural language reasoning. A price

we must pay for these operators is the redefinition of the meaning of ac

tions, which as defined so far do not contain enough information.

So far we have taken u F a to be the set of states that a might halt

in when started in state u. We now take it to be the set of sequences of

states that a goes through, starting from u. We let s,t, ... range over se

quences. Sequences can be viewed as functions from an initial segment of

ordinals to states. In the event that a runs forever, the sequence will be

infinite. If a is blocked by a test that evaluates to false, the limbo state

AEW is entered. Sequences always have a final state, called sf, whence in

finite sequences need a limit element, indexed by the ordinal w, which will

always by A. A may not appear as a non-final state of a sequence.

The distinguished state A has a special behaviour as regards formulae;

A F p is true for all formulae. For actions, A Fa is {(A)} for all actions.

Semantic constraints of the form uFe = ... do not include the case u =A.

We also insist that u F a never be the empty set, for any action a,

interpreted or not, even if this means taking UF a to be {(u,A)}.

With this notion of an action it becomes possible to define the new

operators. But first we should adjust the definition of ~ so that it retains

its meaning.

u I= a~ p A sf I= P
sEUF a

The next operator is*, as in a*p, pronounced "a maintains p". The

idea is that u I= a-H+p is true just when v I= p is true in every state v of

every sequence u I= a. Formally:

u I= a*p /\ /\ v I= p
SEU Fa VES

(We loosely write VEs to mean v=si for some element si of s.)

The following completely axiomatizes {"l ~ -H+}, if we take S, K, N and MP.

70

a* (p::iq) ::> a*p ::i a*q

a*p =>p

From p derive a*p

The proof of completeness may be found in either of [42] or [43].
The third operator is .L, as in a.Lp, pronounced "a promises p". Here

u F a.Lp is true just when v F p is true in some state v of every sequence
of u F a. Formally:

u f= a.Lp /\ v VFP
SEUpa VES

Notice that in any sequence ending in A, everything is "promised".
The idea here is that if a sequence ends in limbo you aren't supposed to
care, just as for~. This is important for programs where iteration is im
plemented using * and tests. Careful inspection of the possible sequences
reveals many ending in A that we would not want to compromise the intuitive
notion of "promises" in conjunction with while loops.

The following completely axiomatizes fl ::> .L}.

p ::i a.Lp

From p=>q infer a.Lp ::> a.Lq

The proof of completeness may be found in [43].

Finally we have J, as in aJp, pronounced "a preserves p". Here u F aJp
is true just when if v F p is true for any state v in SEU F a then w F p is
true for all states w in s after v. Formally:

11 11 v f= p::iwf= p
sEu Fa vs;wEs

where "vs;wEs" means that v = sJ.. , w - s with i s; J .• The axiomatization is - j I

somewhat more complex; again see [43]:

Jl p ::> aJ p ::> aJ (p=>q) ::> afq

I2 p='q ::i aJ (p='q) ::> aJp ::> aJq

I3 p ::> aJp "' aflp

I4 afp "' afq ::i aJ (pllq)

Is afp"' afq"' aJ (pVq)

J6 From p infer aJ p

71

So far we have considered just the languages {I J x} for various opera

tors x. When these are combined to form {I J ~ * L J} we need some addition

al axioms.

a*p - pAaJp

aJp J aLp J ~p

l(a*p A aflp)

(suggests taking * as abbreviation only)

(depends on fact that u Fa is never empty)

None of this deals with operations on actions. The definitions of u

and * need not change. We do however require definitions for ? ; and :: .

First let us define the operation ; on individual sequences, as

(s;t).
1.

(s ;t) S+i

s.
1.

t.
1.

where s. is defined
1.

where S is the length of s and ti is defined.

Then the definition of the action operators are:

UF I

upp?

up a;b

up x:=e

{ (u)}

{ (u)} if u\=p

{(u,A)} otherwise

{s;tlsEupa, tEu!=b and s;t is defined}

{ (u,v) luR v and vl= x = u\= e}
x

The following axiomatize f in conjunction with these. (With the axiom

a*p = p A aJp it becomes unnecessary to give further axioms for *).

p?f q

aubJp - aJp A bfp

a;bfp _ afp A ~Jp

a*Jp = a*~aJp

This leaves open the problem of axiomatizing L with the action opera-

* tars. A little reflection shows that while u and can be axiomatized

* (a Lp - p), ; cannot be axiomatized with a single equivalence in any obvious

way. To get around this we introduce a new operator, _JJ, as in a.JJp,q, which

takes two arguments p and q. It is defined thus.

u I= a.JJp,q

72

This says that for every sequence s in u F a, either p holds in some
state of s or q holds in the final state of s (including the case when
sf : A, which satisfies both p and q). This rather odd construct has the
properties that ; can be axiomatized with it, and both ~ and ~ can be treat
ed as abbreviations, thus:

~p - ~false,p

a~p - ~p,false.

The following axiomatize _[J in conjunction with J, treating ~, * as
mere abbreviations. This axiomatization is probably not complete.

Jp, (q:::ir) :::i (a _[J p,q :::i Jp,r)

Jp,lp

p :::i Jp,q

from p:::iq derive Jp,r :::i a_u q,r

aJp :::i (a~p :::i ~p)

I (a*p /\ a~lp)

(aub)_[Jp,q - a_up,q " b_up,q

(a;b)_[Jp,q - a_up, (b_[Jp,q)

a *_up,q :::i pVq

a*_up,q :::i Jp, (a* _[Jp,q)

a*_up, (q :::i a_up,q) :::i (q :::i a*_up,q) (Harel induction)

p?_[Jq,r = qV(p:::ir)

Applications of process logic to algorithmic logics

The * operator is perhaps the simplest operator one might wish to
apply to a program that was designed to run forever (e.g. an operating sys
tem, or an interactive editor), for which the~ operator is worthless.

The ~ operator is relevant to the issues of fairness and starvation,
concepts that arise occasionally in the literature on verification of
operating systems. If we view the scheduler as a nondeterministic program
(and even if we assume that the operating system is a deterministic mechan
ism we cannot really work that determinacy into our proofs in practice) ,
then we would like to be able to say of the system as a whole, nondetermin
ism and all, that there will come a time when a certain state of affairs
(e.g. such-and-such a process getting service) will hold.

The J operator arises naturally in talking about a system that only

manages to keep p true throughout its execution by assuming it is true to

begin with and depending throughout on its staying true. This idea is em

bodied in the axiom p A aJp ~ a*p. The J operator is used implicitly by

OWICKI in her thesis [34].

Applications of process logic to natural language

73

We give a further series of examples of natural language formulae em

bodying arguments formalizable within dynamic logic and using other opera

tors besides the Kripke operator.

(1) While stacking up blocks, if the box becomes empty it will remain empty

for the duration of the stacking process.

(2) Sometime during the stacking of blocks the box is guaranteed to be empty.

(3) When you stack up blocks you end up with.the box being empty.

It is apparent that if both (1) and (2) are the case then so is (3),

as can be seen from the valid formula SfE A S~E ~ s.JE.

(4) If a defect appears in the wall while laying bricks the defect will

stay there for the rest of the bricklaying.

(5) After laying any number of bricks, if a defect is found in the wall

while laying the next brick the defect will stay there for the rest of

the laying of that brick.

With a little thought it can be seen that (4) and (5) are equivalent,

* * as formalized by L Jn = L ~Lf P •

. Pointers to the dynamic logic literature

The earliest formal dynamic logic was FREGE's quantificational calculus

[10]. The idea of viewing quantifiers in terms of a relation R , thereby
x

making the connection between modal logic and the quantif icational calculus

and so permitting the latter to viewed as a dynamic logic, is relatively

recent. Modal logic as discussed here is due to LEWIS [29]. The semantics

we are using is due principally to KRIPKE [25], who also contributed to

issues of decidability in [26]. An excellent reference work on modal logic

is [21].

74

Following ENGELER [7] and the Polish school of algorithmic logic [4,

46], we shall call a dynamic logic whose actions are deterministic programs,

described either by flowcharts or if's and while's, an algorithmic logic.

The earliest work on proving programs correct [49, 50] amounted to informal

algorithmic logics for flowchart programs. In the early sixties J. McCARTHY

[32] proposed the use of a static approach to program correctness by pro

gramming with recursively defined functions, thereby avoiding the problem

of reasoning about states.

In 1967 FLOYD [9] described in detail for the first time an algorith

mic logic, built around flowcharts as with [49, 50]. In 1969 HOARE [20]

described a more conventional algorithmic logic oriented towards textual

programs using if's and while's. Hoare's logic introduced the notion of a

partial correctness assertion p{a}q as an expression having a status differ

ent from that of an ordinary formula, in particular not being subject to

Boolean operations. Though Hoare gave only an informal semantics for p{a}q,

it seems beyond debate that he meant it to have the semantics of l=p~aJq.

In 1970 Salwicki developed a similar algorithmic logic (and applied ENGELER's

term algorithmic logic [7] to it). The most striking difference from Hoare's

logic was that all of Salwicki's formulae were subject to Boolean opera

tions; as such, Salwicki's logic is the first true algorithmic logic. It

may be characterized as dynamic logic using~. if, while, and having func

tional rather than relational actions, as behoves a deterministic program

ming language. (Engeler's algorithmic logic [7] is rather weaker, permitting

in effect only false as the second argument to~.) Salwicki's work prompted

a veritable flood of papers from Warsaw on algorithmic logic, mostly by

members of H. Rasiowa's group; a comprehensive survey of work up to 1974,

including a bibliography of some 40 papers on algorithmic logic, may be

found in [4].

The idea of modelling programs with binary relations, taking advantage

of TARSKI's calculus of u,;,* [48], goes at least as far back as EILENBERG

and ELGOT [6]. DE BAKKER [2], and with DE ROEVER [3], developed the idea

considerably further, adding a fixed point operator to Tarski's calculus

to model recursion. Independently of de Bakker, but motivated by EILENBERG

and ELGOT, D. PARK [19], with P. Hitchcock, also used the fixed point opera

tor in a relational treatment of flowchart programs.

The combination of modal logic and Tarski's operators was first de

veloped by the author [39] in response to a suggestion of R. Moore, a stud

ent in the author's program semantics course. It was brought to the

75

attention of a wider audience in [40] some two and a half years later; in

a paper that prompted several people, including M. Fischer, D. Harel,

R. Ladner and A. Meyer, to work on dynamic logic. This gave rise to a paper

by HAREL, MEYER and the author [13] on the complexity of the theory of

first-order dynamic logic, along with a relative-completeness proof of the

axiomatization given in [40], and another paper by FISCHER and LADNER [8]

on the validity problem for PDL, including not only the result that it was

decidable but giving good bounds on the complexity of the problem. A little

later, Harel and the author reported on work on Dijkstra's notion of total

correctness ("weakest precondition"), proposing definitions for the concepts

Dijkstra was attempting to define via axioms, and giving a relatively com

plete axiom system for DIJKSTRA's language [14].

At about the same time several people began asking questions about

definability in dynamic logic. A. Meyer addressed the question of whether

DL+, the language defined in [14] in part to formalize Dijkstra's language,

was expressible in regular first-order dynamic logic. This problem turned

out to have a very elusive answer. Meyer was able to show that DL+ was

no more expressive than DL provided the programming language permitted

array assignments [33]. Later WINKLMANN [51] was able to obtain the same

result without requiring array assignments, but using~ within tests. Even

tually he was able to eliminate~ from tests [52]. Meanwhile the author

showed that PDL+ is strictly stronger than PDL, complementing [52].

F. BERMAN and M. PATERSON, in a remarkably delicate argument, showed

that PDL was strictly strengthened by the inclusion of tests [5]. MEYER

and PARIKH showed that regular first-order DL with ~-free tests was strict

ly weaker than constructive Lw1w [35].

D. HAREL developed the relative completeness ideas of [13] further,

drawing a distinction between relative completeness and arithmetic complete

ness. Using a result of LIPTON [30], Harel showed in essence that arithme

tic completeness is all that one wants.

The question of finding a complete axiomatization for PDL was raised

in [.8]. There is an account earlier in this paper of the origins of [47,

36, 42, 11] as answers to this question.

A very thorough and detailed treatment of Harel's many contributions

to DL may be found in his thesis [18]. In addition Harel has authored a

close-to-exhaustive survey of logics of deterministic programs, using the

[a]p/<a>p notation as a lingua franca in order to make it easier to see

the similarities and differences between the various logics.

76

Motivated by the concept of a.Boolean algebra underlying propositional

calculus, Harel asks the question what the appropriate algebra for PDL is.

A partial answer to this may be found in [17].

The author, with S. Litvintchouk, explored the question of how to im

plement a proof checker for DL. A proposal for such a system is described

in [31]. Some of the techniques used in the first implementation of the sys

tem are alluded to briefly in [41]. The system has been operational since

August 1977, when it was able to check a 20-theorem proof of the total cor

rectness of the Knuth-Morris-Pratt pattern-matching algorithm, taking 45

seconds to do so. In the process of making the system more automatic, some

theoretical questions about deciding validity in PDL arose, giving rise to

an algorithm described in [42] that is more "practical" than the algorithm

of [8]. A revision of [42] improved the upper bound on PDL validity from

two exponentials to one.

In [42] the issue of discussing programs intended not to halt is

raised. Several constructs are proposed, namely those discussed above in

the section on logics of processes. The author has recently been able to

show completeness of various axiom systems for some of those constructs

[43]. The semantics for processes is intimately related to PNUELI's seman

tics for temporal logic [38]. Parikh has shown, using Rabin's remarkable

decidability result for the weak second order theory of n successors, that

a very much stronger language has a decidable theory, although unlike the

theory of [42], it is not elementary recursive.

The Interest in Nondeterministic Programs

The following is taken from [14], and may be of interest to those won

_dering why someone interested in deterministic algorithmic logic would want

to get involved in the greater generality of dynamic logic and Tarski's

relational calculus.

First, nondeterministic programs have been proposed as a model of

parallel processes. Such parallelism arises in timeshared computers, where

nondeterminism expresses the apparent capriciousness of the scheduler. It

also arises in the management of external physical devices, where the non

determinism captures the unpredictable behaviour of physical devices.

Second, nondeterminism is gaining credence as a component of a program

ming style that imposes the fewest constraints on the processor executing

the program. For example a certain program may run correctly provided that

77

initially x is even. If the programmer requires the processor to set x to

an even number of the programmer's choosing, the processor may be unduly

constrained. On a byte-oriented machine where integers are represented as

four-byte quantities, setting x to a particular number requires four opera

tions, but if the programmer has merely requested setting it to an arbitrary

even number the processor can satisfy the request with one operation, by

setting the low-order byte to, say, zero.

Third, nondeterminism supplies one methodology for interfacing two

procedures that, though written independently, are intended to cooperate

on solving a single problem. The approach is to make one procedure an "intel

ligent" interpreter for the other. Wood's Augmented Transition Networks

supply an instance of the style. The user of this system writes a grammar

for a specific natural language which amounts to a nondeterministic program

to be run on Wood's interpreter, which though ignorant of the details of

specific languages nevertheless contributes much domain-independent parsing

knowledge to the problem of making choices left unspecified by the user's

program. This technique is in wide use in other areas of Artificial Intelli

gence, and supplies a way of viewing such AI programming languages as QA-3,

PLANNER, and a number of more recent languages.

Fourth, from a strictly mathematical viewpoint, there is something

dissatisfying about taking such constructs as if-then-else and while-do as

primitive constructs. If-then-else involves the two concepts of testing and

choosing, and while-do involves the two concepts testing and iterating. A

more basic approach is to develop these concepts separately. However, in

isolating the concept of testing from the concepts of choosing and iterating,

we have removed the parts of the if-then-else and while-do constructs respon

sible for their determinism.

Fifth, from a practical point of view, when reasoning about determinis

tic programs it can sometimes be convenient to make what amounts to claims

about nondeterministic programs. When we argue that "if x > O then x := x-1

else x :=x+l" cannot affect y, a part of our argument might te that, whether

we execute x := x-1 or x := x+l, y will not change. The fact that the whole

program is deterministic played no role in this argument, which amounts to

the observation that the nondeterministic program x := x-1 u x := x+l cannot

change y. By the same token the observation that "while x < 0 do x := x+2"

leaves the parity of x unchanged depends principally on the fact that exe

cuting x := x+2 arbitrarily often, i.e. executing (x:=x+2) *, leaves the

parity of x unchanged. This illustrates the appropriateness of applying

nondeterministic reasoning to deterministic programs.

78

REFERENCES

[1] ASHCROFT, E.A. & W.W. WADGE, Lucid, a Nonprocedural Language with Iter
ation, Comm. ACM, 20, 7, 519-526, July 1977.

[2] DE BAKKER, J.W. & D. SCOTT, An outline of a theory of programs, Un
published manuscript, 1969.

[3] DE BAKKER, J.W. & W.P. DE ROEVER, A calculus for recursive program
schemes, In M. Nivat (ed.), Automata, Languages and Programming,
North Holland, pp. 167-196, 1972.

[4] BANACHOWSKI, L., A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA, A. SALWICKI,
An Introduction to Algorithmic Logic; Metamathematical Investiga
tions in the Theory of Programs, In A. Mazurkiewicz & z. Pawlak
(eds.), Math. Found. of Computer Science, Banach Center Publica
tions, Warsaw, 1977.

[5] BERMAN, F. & M. PATERSON, Test-Free Propositional Dynamic Logic is
Strictly Weaker than PDL, T.R. 77-10-02, Dept. of Computer
Science, Univ. of Washington, Seattle, November 1977.

[6] EILENBERG, S. & C.C. ELGOT, Recursiveness, Academic Press, N.Y. 1970.

[7] ENGELER, E., Algorithmic properties of structures, Math. Syst. Th. 1,
183-195, 1967.

[8] FISCHER, M.J. & R.E. LADNER, Propositional Modal Logic of Programs,
Proc. 9th Ann. ACM Syrop. on Theory of Computing, 286-294,
Boulder, Col., May 1977.

[9] FLOYD, R.W., Assigning Meanings to Programs, In J.T. Schwartz (ed.),
Mathematical Aspects of Computer Science, AMS Proc. Syrop. Applied
Math. 19, pp. 19-32, 1967.

[10] FREGE, G., Begriffsschrift, Halle, 1879.

[11] GABBAY, D., Axiomatizations of Logics of Programs, Manuscript, under
cover dated November 1977.

[12] GRABOWSKI, M., The Set of Tautologies of Zero-order Algorithmic Logic
is Decidable, Bull. Acad. Pol. Sci., Ser. Math. Astr. Phys., 20,
575-582, 1972.

79

[13] HAREL, D., A.R. MEYER & V.R. PRATT, Computability and Completeness in

Logics of Programs, Proc. 9th Ann. ACM Symp. on Theory of Com

puting, 261-268, Boulder, Col., May 1977.

[14] HAREL, D. & V.R. PRATT, Nondeterminism in Logics of Programs, Proc.

Sth Ann. ACM Symp. on Principles of Programming Languages,

203-213, Tucson, Arizona, January 1978.

[15] HAREL, D., Arithmetical Completeness in Logics of Programs, In

G. Ausiello & c. Bohm (eds.), Proc. 5th Int. Colloq. on Automata,

Languages and Programming (Udine), Springer Lecture Notes in

Comp. Sci 62, pp. 268-288, 1978.

[16] HAREL, D., On the Correctness of Regular Deterministic Programs; A

Unified Survey, Submitted for publication.

[17] HAREL, D., Relational Logic, Internal report, MIT, 1977.

[18] HAREL, D., Logics of Programs: Axiomatics and Descriptive Power,

Ph.D. thesis, Dept. of EECS, MIT, June 1978.

[19] HITCHCOCK, P. & D. PARK, Induction Rules and Termination Proofs, In

M. Nivat (ed.), Automata, Languages and Programming, North

Holland, 1972.

[20] HOARE, C.A.R., An Axiomatic Basis for Computer Programming, CACM 12,

576-580, 1969.

[21] HUGHES, G.E. & M.J. CRESSWELL, An Introduction to Modal Logic, London:

Methuen and Co. Ltd., 1972.

[22] KNUTH, D.E., J.H. MORRIS & V.R. PRATT, Fast Pattern Matching in Strings,

SIAM J. on Computing, 6, 2, 323-250, June 1977.

[23] KRECZMAR, A., The set of all tautologies of algorithmic logic in hyper

arithmetical, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys.,

Vol. 19, 781-783, 1971.

[24] KRECZMAR, A., Degree of recursive unsolvability of algorithmic logic,

Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys., Vol. 20,

615-617, 1972.

[25] KRIPKE, S.A., Semantical considerations on Modal Logic, Acta Philoso

phica Fennica, 83-94, 1963.

80

[26] !<RIPKE, S.A., Semantical analysis of modal logic I: normal modal propo

sitional calculi, Zeitschr. f. Math. Logik und Grundlagen d. Math.,

Math., 9, 67-96, 1963.

[27] KROEGER, F., Logical Rules of Natural Reasoning about Programs, In

Automata, Languages and Programming, S. Michaelson & R. Milner

(eds.), Edinburgh University Press, pp. 87-98, 1976.

[28] LADNER, R.E., The Computational Complexity of Provability in Systems

of Modal Propositional Logic, SIAM J. on Computing, 6, 3, 467-

480, 1977.

[29] LEWIS, C.I., A Survey of Symbolic Logic, Berkeley, 1918.

[30] LIPTON, R.J., A Necessary and Sufficient Condition for the Existence

of Hoare Logics, Conf. Ree. 18th Ann. IEEE Symp. on Found. of

Computer Science, Providence, R.I., pp. 1-6, October 1977.

[31] LITVINTCHOUK, S.D. & V.R. PRATT, A Proof~checker for Dynamic Logic,

Proc. 5th Int. Joint Conf. on AI, Boston, 552-558, August 1977.

[32] McCARTHY, J., A Basis for a Mathematical Theory of Computation, In

P. Braffort & D. Hirschberg (eds.), Computer Programming and

Formal Systems, North-Holland Publ. Comp., pp. 33-70, 1963.

[33] MEYER, A.R., Equivalence of DL, DL+ and ADL for Regular Programs with

Array assignments, Unpublished report, MIT, August 1977.

[34] MEYER, A.R. & R. PARIKH, Definability in Dynamic Logic, Talk presented

at NSF-CBMS Research Conference on the Logic of Computer Pro

gramming, Troy, N.Y., May 1978.

[35] OWICKI, s., A consistent and complete deductive system for the verifi

cation of parallel programs, Proc. 8th Ann. ACM Symp. on Theory

of Computing, Hershey, pp. 73-86, May 1976.

[36] PARIKH, R., A Completeness Result for PDL, In M. Karpinski (ed.),

Mathematical Foundations of Computer Science, Zakopane, pp.

Septeml:er 1978.

[37] PARIKH, R., Second Order Process Logic, Conf. Ree. 19th Ann. IEEE

Symposium on Foundations of Computer Science, Ann Arbor, pp.

177-183, October 1978.

81

[38] PNUELI, A., The Temporal Logic of Programs, Conf. Ree. 18th Ann. IEEE

Symposium on Foundations of Computer Science, Providence, 46-57,

October 1977.

[39] PRATT, V.R., Semantics of Programming Languages, Lecture notes for CS

6.892, Fall 1974, M.I.T.

[40] PRATT, V.R., Semantical Considerations on Floyd-Hoare Logic, Conf.

Ree. 17th Ann. IEEE Symp. on Found. of Computer Science, Houston,

109-121, 1976.

[41] PRATT, V.R., Two Easy Theories Whose Combination is Hard, Internal

Report, Lab. for Computer Science, MIT, September 1977.

[42] PRATT, V.R., A Practical Decision Method for Propositional Dynamic

Logic, Proc. lOth Ann. ACM Symp. on Theory of Computing,

San Diego, pp. 326-337, May 1978. (Revised as A Near Optimal

Method for Reasoning About Action, LCS TM-113, MIT, Sept. 1978.}

[43] PRATT, V.R., Process Logic, Proc. 6th Ann. ACM Symp. on Principles of

Programming Languages, San Antonio, Texas, pp. , Jan. 1979.

[44] QUINE, W.V.O., Word and Object, MIT Press, MA., 1960.

[45] ROGERS, H., Theory of Recursive Functions and Effective Computability,

McGraw-Hill, 1967.

[46] SALWICKI, A., Formalized Algorithmic Languages, Bull. Acad. Pol. Sci.,

Ser. Sci. Math. Astr. Phys., Vol. 18, No. 5, pp. , 1970.

[47] SEGERBERG, K., A completeness Theorem in the Modal Logic of Programs,

Preliminary report, Notices of the AMS, 24, 6, A-552, October

1977.

[48] TARSKI, A., On the Calculus of Relations, J. Symbolic Logic, 6, 73-89,

1941.

[49] TURING, A., Checking a Large Routine, In Rep. Conf. High Speed Auto

matic Calculating Machines, Inst. of Comp. Sci. Univ. of Toronto,

Ontario, Can., January 1950.

[50] VON NEUMANN, J., Collected Works., Vol. 5, pp. 91-99, MacMillan,

New York, 1963.

[51] WINKLMANN, K., Equivalence of DL and DL+ for regular programs without

array assignments but with DL-formulas in tests, Manuscript,

Lab. for Comp. Sci., MIT, 1978.

82

[52] WINKIMANN, K., Equivalence of DL and DL+ for regular programs, Manu

script, Lab. for Comp. Sci., MIT, March 1978.

NOTES ON ALGEBRAIC FUNDAMENTALS

FOR

THEORETICAL COMPUTER SCIENCE

by

J.W. Thatcher, E.G. Wagner, J.B. Wright

1. INTRODUCTION .. 85

2. SETS, RELATIONS, AND FUNCTIONS 88

3. GRAPHS AND CATEGORIES 92

4. GRAPHS AND FLOWCHARTS 100

5. POSETS ... 106

6. ALGEBRAS ... 113

7. ALGEBRAIC SEMANTICS 116

8. EQUATIONAL CLASSES 121

9. ABSTRACT DATA TYPES 124

10. ORDERED ALGEBRAS 128

11. CONTINUOUS ALGEBRAS 132

12. ALGEBRAIC THEORIES 133

13. SOLVING EQUATIONS: ITERATIVE AND RATIONAL THEORIES .. 141

14. FLOWCHARTS AND BEHAVIORS 146

BIBLIOGRAPHY .. 149

83

MATHEMATICAL CENTRE TRACTS 109(1979), 83-163

NOTES ON ALGEBRAIC FUNDAMENTALS

FOR

THEORETICAL COMPUTER SCIENCE

James W. Thatcher, Eric G. Wagner and Jesse B. Wright

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

USA

1. INTRODUCTION

From categories to many-sorted algebras to rational and iterative algebraic theories, these

notes cover basic definitions and results that we feel provide the groundwork for comprehensive

and mathematically sound developments in theoretical computer science. The belief that the

ideas presented here are key, comes from our experience over the last eight years in developing

and applying these concepts. That experience, in which Joe Goguen's participation and insights

were essential, has shown us that basic (or "first order") ideas from category theory and

universal algebra (generalized to the many-sorted case following Birkhoff and Lipson (1970))

have wide applicability as indicated by many entries in the Bibliography.

These Notes were originally prepared for the Summer School on Foundations of Artificial

Intelligence and Computer Science, Pisa, Italy, 19-30 June 1978. (Sections 1, 2, 3, 6, 8, 10,

11, 12, and 13 covering the bare algebraic fundamentals.) For The 3rd Advanced Course on

Foundations of Computer Science, Amsterdam, The Netherlands, 21 August - 1 September,

1978, we still left that coverage quite sparse while beginning to add material on the way the

algebra may be applied. Section 4 begins an algebraic treatment of flowcharts (continued

briefly in Section 13); Section 7 describes the basic ideas of algebraic semantics; and, Section 9

presents a few of the fundamentals of the ADJ approach to abstract data types. There are

many ways in which we plan on expanding the coverage of these Notes. The algebraic

treatment of flowchart computation (as presented here) can be extended to flowcharts with

recursive procedures. The semantics of flowchart computation through rational and continuous

algebraic theories needs to be made clear and complete. We would like to extend the methods

of data type specification to ordered and continuous algebras, as well as to algebraic theories of

many flavors (ala Burstall and Goguen (1977)). We want to combine the methods of algebraic

semantics (Section 7) with those of flowchart computation (Sections 4 and 13) to provide an

86

algebraic methodology along the lines suggested by Morris (1973, l 973a) for proving correct

ness of compilers. (Our paper, ADJ (1979), makes a significant step in this direction and is a

direct outgrowth of the preparation of these Notes and the lectures for the Amsterdam Summer

School.)

Before moving to technical details, we want to discuss some general considerations about

applications of algebra and category theory in particular.

As Graetzer (1968) points out in his introduction, A.N. Whitehead (1898) foresaw the

future of and the value of universal algebra:

"Such algebras are worthy of comparative study, for the sake of the light thereby thrown

on the general theory of symbolic reasoning and algebraic symbolism in particular. The

comparative study necessarily presupposes some previous special study, comparison being

impossible without knowledge."

Such prophesy is quite remarkable, especially considering the fact that it was over a third of a

century later when the first results on universal algebra (Birkhoff (1933, 1935)) were pub

lished.

Much past work on semantics· of computation has the flavor of the specialized study for

algebras that Whitehead referred to. Universal algebraic methods, including category theory,

provide a framework for comparative study, thereby, we hope, throwing light on the general

theory of computation.

Although certainly not always, it is sometimes the case that, as algebraicists, we find

ourselves involved in reworking, in algebraic language, what others have studied or talked about

with less discipline and less structured tools. An example of this is the study of "monadic

computation" or "flowchart computation" by Elgot (1973) using iterative algebraic theories, or

by ADJ (197 6d) using rational algebraic theories. You might ask, what is the point in restating

the familiar in algebraic terms? Our answer is that the "restatement" is more than a matter of

changing words; it involves a very significant reexamination of the underlying concepts. The

result, when successful, is a formulation that is both broader and deeper than the original.

Thus, the study of "flowchart computation" in terms of algebraic theories provides a formula

tion which, as shown in ADJ (1978a), also applies to other forms of programming languages.

This case illustrates the rather amazing phenomenon that, repeatedly, algebraic concepts

developed for special purposes turn out to have broad (and deep) applications elsewhere. It is

difficult to imagine that the discoverer of algebraic theories (Lawvere (1963)) could have

foreseen the applications to the theory of computation; but even more, it is a pleasant surprise

indeed, that the applicability of algebraic theories in computer science also reaches far beyond

"flowchart computation."

87

There seems to be a tendency for some people to talk about "categorical computer

science" in much the same way that one talks of "automata theory" or "complexity theory," as

subfields of computer science. This is a mistake; "categorical computer science" is no more a

sub field of computer science than is "set theoretic computer science" or "graph theoretic

computer science." The practice probably comes from the fact that theoretical computer

scientists using categorical algebra form a small subgroup, and that their work seems relatively

inaccessible to someone with a typical computer science background in mathematics. We hope

that this will change through the improvement of mathematical education in computer science

curricula and through continued efforts to make the algebraic work more accessible to the

computer scientist.

We should confront another aspect of the isolation of the subgroup using algebraic

(categorical) methods; it is a kind of arrogance displayed by some, first, in not acknowledging

the fact when they are involved in redoing what others have done in one form or another, and

second, in giving the impression that category theory solves all the problems and that they have

solutions at hand. We have to dismiss this by saying that it ·too is an unfortunate mistake.

Even though there seems to he some argument on the matter (c.f. Wegner (1972) and

Goguen's answer, (1972)), we take as the starting point that mathematics underlies theoretical

computer science. Unfortunately much modern mathematics does not appear to be directly

relevant to theoretical computer science. (Exceptions certainly exist: topology in Scott (1972);

matrix theories in Elgot (1974); extension bases in Markowski and Rosen (1976), etc.) What

one consistently encounters is a certain well understood collection of concepts and methods

from elementary set theory (217-tuples and the like), combinatorics and graph theory. These

tools do quite well in certain problem areas but in many cases they serve only to build models

which, while precise, are not manipulatable; they are not internally "coherent;" they are heavily

notationally dependent; and, they fail to reflect the essential structure of the problem under

consideration. The question is not asked, "what's wrong with this formulation?" It is not asked

because these disciplines offer practically no guides to the answer. We feel that the algebraic

(or categorical) approach meets these objections in many cases, by providing guidance as well

an increased coherence and ease of manipulation. Some of the reasons why this is so for the

categorical approach are spelled out in the "doctrines" given in the introduction to ADJ (1973)

which express the naturalness and ubiquity of the categorical concepts. (E.g., "every construc

tion is representable (extendible to) a functor"; "every 'canonical' construction is (part of) an

ad junction. 11) The same phenomenon is true of the universal algebra approach although it may

not lend itself as readily to such 11 doctrines". Those familiar with our applications of universal

algebra to computer science have probably noticed the recurrent emphasis on free or initial

algebras. These basic algebraic concepts can be used to define, explain, and unify a great

88

number of computer science concepts. When one becomes familiar with such concepts (and the

results concerning them) they provide a guide as to what one should look for, and as to how to

formulate one's definitions and results. The reason why the approach is so successful is that, in

truth, these algebraic and categorical concepts are the precise formulations of the "recurrent

phenomena" of mathematics (and thus of theoretical computer science). Indeed, if, in your

research, you find yourself repeatedly having to work through cases of "almost the same thing"

then you may be practically assured that by going to an algebraic (and/or categorical) approach

you can capture the "thing" and replace the many cases by one.

Finally, do not succumb to a feeling that you must understand all of universal algebra and

category theory before you can put it to use. When one talks of a "set theoretic" model for

some computing phenomenon, s/he is not thinking of a formulation in terms of measurable

cardinals! Similarly, a category theoretic model does not necessarily involve the Kan extension

theorem or double categories. It is our hope that the material in these notes will provide

sufficient background to enable you to enjoy the benefits of the algebraic approach.

2. SETS, RELATIONS, AND FUNCTIONS.

We shall use standard notation for sets.

(2.1.1) 0 The empty set.

(2.1.2) aEA Membership.

(2.1.3) As:;B Set inclusion.

(2.1.4) joA Power set (set of subsets) of A.

(2.1.5) l«,,A Finite subsets of A.

(2.1.6) #A Cardinality of A.

(2.1.7) AuB Set union.

(2.1.8) AnB Set intersection.

(2.1.9) Us Set intersection for S s:; joA.

(2.1.10) ns Set intersection for S s:; joA.

The set of nonnegative integers (natural numbers) is denoted w and it is sometimes

convenient to use the ordinal notation where n = {0,1, .. .,n-1} so that n:<;;m iff nEm as sets. For

"one-origin" indexing, the set [n] = {1, ... ,n} is very handy. Note that [O] = 0 and also in

ordinal notation, 0 = 0. We will use [w], consistent with the other square bracket notation, to

denote the natural numbers starting with 1, [w] = {1,2, ... }.

89

For ordered pairs we write <a,b> with angle brackets; we could define them using sets,

<a,b> = {{a},{a,b}}, or take the notion as primitive, by saying that the pair <a,b> is uniquely

determined by its first and second components. A xB is the (Cartesian) product of A and B;

AxB = {<a,b> I aEA and bEB}. Similarly, <al' ... ,a0 > is an n-tuple uniquely determined by

its components.

A relation R from A to B is usually viewed as a subset of Ax B. However, this is really

inadequate because there is no way to retrieve A and B from R. So we define a relation to be

an ordered triple <A,R,B> where A and B are sets and R£AxB is called the graph of the

relation, A is its source and Bis its target. We write R:A-B to mean R is the graph a relation

from A to B and often speak of just R when A and B are understood from context. As is the

standard convention, we sometimes write aRb to mean <a,b> ER.

Given R:A-B and S:B-C, the graph of the composite relation, R·S:A-C is defined by:

(2.2) R·S = {<a,c> I there exists b with <a,b>ER and <b,c>ES}.

This is the Pierce product of (the graphs of) the relations. The operation of forming the

composite of relations is called composition. Note that we are writing composition of relations

in the natural diagrammatic order as indicated in the following diagram.

R/ 8 S

A/ ~C
R·S

When we want to talk about the image of a subset A' of A under a relation R:A-B, we

write

(A')R = {b I <a,b> ER and aE A'}.

(a)R is the special case, abbreviating (fa})R, giving the set of bEB such that <a,b>ER. R is

defined on a if (a)R is nonempty. The domain of definition of R is the set of aE A such that R is

defined on a. The range of R is (A)R = {b I <a,b> ER}.

The following is a selection of important properties of relations. Let R:A-B be a relation

from A to B.

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.S)

R is functional iff <a,b>ER and <a,b'>ER implies b = b1.

R is total iff for all aEA there exists bEB with <a,b>ER.

R is surjective iff for all bEB there exists aEA with <a,b>ER.

R is injective iff <a,b>ER and <a',b>ER implies a= a'.

R is bijective iff R is injective and surjective.

90

Given R:A-B, the opposite, converse, or inverse of R is R- 1

following equivalences hold for any R:A-..B.

(2.4.1)

(2.4.2)

(2.4.3)

R is functional iff R- 1 is injective.

R is total iff R- 1 is surjective.

R is a function iff R-1 is bijective.

{<b,a> I <a,b>e:R}. The

For any set A there exists a unique relation from 0 to A; it is <i!l,0,A> and is denoted A.A

or simply A.. A. is functional and total. There is also a unique relation from A to .0, <A,0,.0>,

which is bijective.

Assume R:A-A is a relation on A.

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

R is reflexive iff <a,a> e: R for all ae: A.

R is symmetric iff <a,a1>ER iff <a',a>e:R.

R is antisymmetric iff <a,a'>e:R and <a',a>ER implies a=a'.

R is transitive iff <a,a'>e:R and <a',a">ER implies <a,a">e:R.

A preorder is a transitive and reflexive relation. A partial order is a preorder which is also

antisymmetric. An equivalence relation is a transitive, reflexive and symmetric relation, i.e., a

preorder which is symmetric.

If = is an equivalence relation on a set A (::A-+A), then A/= is the set of equivalence

classes determined by =· Let (a]={b I a:b}, then A/= = {[a] I ae: A} which is a partition of A

because a=b implies [a]=[b] (by transitivity and symmetry), which means that the equivalence

classes are disjoint and each ae:A is in some class, namely [a] (by reflexivity).

An important fact in later sections is that any preorder, i;;, determines an equivalence

relation, ~, by:

a ~ a' iff a i;; a' and a' i;; a.

Then A/~ is partially ordered by

[a] t;; [a'] iff a i;; a'.

A partial function from A to B is a functional relation from A to B. Given f:A-B we

write (a)f to denote the unique be: B (if it exists) such that <a,b> e: R. (Uniqueness is guaran

teed by functionality.) A (total) function from A to B is a relation that is both functional and

total. We will sometimes want to use the notation [A-BJ for the set of total functions from A

to B (later continuous functions when that is clear from context) and (A-o...B] for the set of

partial functions from A to B.

91

Composition for partial functions and for (total) functions is given by relational compos

ition (2.2). For all we write the composite in diagrammatic order as discussed above. Thus

given f:A-B and g:B-C, the composite is fg:A-C. This is why we make the (at times

bothersome) decision to usually (!) write the argument of a function for function evaluation on

the left of the function. So (a)fg = ((a)f)g. Since this is generally unfamiliar, we will try

always to put parentheses around the argument of a function reminding the reader that this

(natural) left-to-right order is being assumed.

Let S be any set. Then Sn = {w:[n] S} is the set of strings over S of length n. (Note we

might well write S[n] instead of Sn, but the latter is more conventional and convenient.) We
0

write I w I for the length of the string w, in this case, n. S has one element, As, usually

denoted A, and called the empty string or the null string; I A I = 0. Strings WE S0 are often

denoted w1 .•• w0 or <wl' ... ,wn> where (i)w=wiES. Note that there is an isomorphism between

the set of n-tuples less formally defined above and the set Sn of strings over S of length n. We

at least needed to begin with pairs because our definition of strings depends on the definition of

function. The important thing is that Sn, equipped with its projections, .,,.i:Sn s ((W)'lTi = wi)

has the universal property that for any indexed family <fi:T-+S I iE [n]> there exists a unique

function [fl' ... ,fn]:T-Sn such that [fl' ... ,fn].,,.i = fi for all iE[n]. And indeed, defining

(t)[fl' ... ,fn] = <(t)fl' ... ,(t)fn> gives that required function.

* U n . . "" * [w). S = n~OS 1s the set of all strings over S. S = S u S 1s the set of S-sequences.

While on the subject of strings, we will have occasion in Section 4 to use strings in a quite

general way. Given f:[n]-S and g:[m]-.S, the function (string) (f,g):[n+m]-S is defined by

(i)(f,g)= (if iE [n] then (i)f else (i-n)g). It is the unique function with source [n+m] satisfying

the property that i 1(f,g)=f and i 2(f,g) = g where 11:[n]-[n+m] is the inclusion and

12:[m]-[n+m] sends j to n+j. (We usually think of this operation, (f,g), as the concatenation of

strings f and g.) Given fi:[nJ+[mi], then f 1+f2:[n1+n2] [m1+m2] is (f 1ipf2i2) where

'i:[miJ-[m1+m2] as above. Finally, for any set S, Os is the unique function from [O] to Sand

with notation already introduced, l[n] is the identity function on [n]. (Since [0]=0, Os was

denoted As several paragraphs above.)

We will have many occasions to deal with indexed families of sets, functions and relations.

This seems to be characteristic of applications to computer science. Thus it is important to

realize that the the notation for sets and functions carries over to indexed families.

Let S be a set (an indexing set), then an S-indexed family of sets A= <A8 I SES> can be

viewed as a function from S to sets, preferably to the set of subsets of some larger set U. We

use set-theoretic operations and function notation on indexed families with the same ease as in

92

the unindexed case. If A and Bare S-indexed families then A£B iff As£Bs for all SES. AuB

is the indexed family with (AuB)8 = AsuB8 . A function f:A-B on S-indexed families is itself

an S-indexed family of functions, <fs:As-Bs I sES>. For S-indexed families A and B we will

write A B to mean the set of all S-indexed families of functions f from A to B. With context

permitting, we can write .0 for the S-indexed family <(ls=.01 SES> of empty sets. For aEA5 ,

{a}, in this extended notation stands for the S-indexed family which has every component

empty except the one indexed by s and that has singleton a.

Cartesian products of members of an S-indexed family A are conveniently described with a

notation generalizing the power notation, An, for the unindexed case. Let w = s1 ..• s0 be a

string of elements of S. Then

Aw= A xA x ... A .
St S2 Sn

For the special case when w = A, Aw = A 0 = {A}. Corresponding to hn:A n -Bn we have

hw:A w -Bw where A and Bare S-indexed families and w = s1 ... sn, defined by

(a1, ... ,a)h w = <(a1)h , ... ,(a)h >. n s1 n s0

3. GRAPHS AND CATEGORIES.

Definition 3.1. A directed graph G = <E, V, s, t> consists of a set E of edges, a set V of

vertices and two functions s,t from the set of edges to the set of vertices. (e)s is the source

vertex of e and (e)t is the target vertex of e. 0

Notation. For and edge e, we write e:v-v' when (e)s = v and (v)t = v'. Further, G(v,v')

denotes the set of all edges of G with source v and target v'

Definition 3.2. A morphism of directed graphs h:G-+G' is a pair of functions, hE:E-E' and

hy:V V' which preserve the source and target functions, i.e., shy = hEs' and thy = hEt'. 0

The situation is summarized in Figure 3.1.

G E V

l: l:_E s'_l:v
t'

Figure 3.1

9~

Def°mition 3.3. Let G be a directed graph. Then a path in G is a triple <u,p,v> where u

and v are vertices and p € E* is a string of zero or more edges, p = e1 •.. e0 , such that there

exist (unique) vertices v0,. • .,v0 , such that u=v0, v=v0 and for each iE[n], (ei)s=vi-l and

(ei)t=vi. We say that <u,p,v> is a path from u to v. Note that if n=O then p=X and u=v.

Let Pa(G) be the set of paths of G. D

A category is very much like a directed graph with edges (they are called morphisms) and

vertices (they are called objects) except that in a category there is a composition operation

defined on the edges (morphisms) and there are distinguished morphisms which act as identities

for that composition operation. (Also V and E may be proper classes.)

Definition 3.4. A category G = <V, E, s, t, o,1> consists of a class V of objects, a class E

of morphisms, and two functions s,t from E to V called source and target respectively. o is an

operation on E called composition and it is defined on a pair of morphisms e,e' if and only if

(e)t = (e')s. When this condition is satisfied, then (eoe')s = (e)s and (eoe')t = (e')t. When

defined, composition is associative:

(3.4.1) (eoe1)oe" = eo(e'oe").

1 is a function from objects to morphisms; (v)l, written lv, is the identity morphism for v

satisfying:

(3.4.2) 1 (e)s o e = e = e o 1 (e)t'

G is said to be a small category if both E and V are sets. D

Notation. Just as with directed graphs, for a morphism e, we write e:v v' when (e)s = v

and (e)t = v'. Similarly G(v,v') = {e I e:v v'} Composition is defined for e:v+v'and e':v' v"

giving eoe':v-v".

Rather than a partial function, composition should be viewed as a family of functions,

(3.4.3) 0 v,v',v":G(v,v') xG(v' ,v")-G(v,v")

indexed by all triples <v,v',v"> of objects of G.

We will try to always use bold-face type for categories. For a category C, C will ambigu

ously stand for the class of morphisms of C and I C I denotes its class of objects. When

referring to different categories, say B and C, we will use the same symbols for source, target ,

composition and identities (s,t, 0 ,1). This is a familiar practice in elementary algebra; in

studying additive groups, for example, one uses the same symbols +,-,0, for addition, additive

inverse, and identity in different groups.

Def°mition 3.5. Let A and B be categories. A is a subcategory of B iff I A I s I B I , the

morphisms of A are contained in the morphims of B (AsB) and all the operations of A are the

94

appropriate restrictions of those for B. A is a strict subcategory of B iff it is a subcategory and

I A I = I BI . A is a full subcategory of B iff for all objects A,A' in I A I , A(A,A') = B(A,A').

When there is only one object, a category is nothing more than a monoid (semigroup with

identity). An arbitrary partially ordered set P (Section & posec.) can be viewed as a (small)

category P with objects, the set P, and morphisms all pairs <u,v> such that u!;;v. The source

of <u,v> is u and the target is v. Composition of <u,v> with <v,w> is <u,w> and ui;;;w by

transitivity. The identity for v is <v,v> (and indeed, v!;;v by reflexivity). In P there is a

unique morphism from u to v if there is any morphism from u to v. Associated with any

(small) category is a pre-order (reflexive, transitive relation) on the objects given by ui;; v iff

G(u,v) is not empty.

Our first example of a non-trivial (and large) category is the category Gph of directed

graphs. Its objects consist of all directed graphs and its morphisms are graph morphisms. It is

an easy exercise to check that the composite of graph morphisms is a graph morphism and that

la = <lE,lv>. the function which is the identity on edges and vertices, is the identity graph

morphism.

Lets mention some other useful (large) categories. Rei is the category whose objects are

sets and whose morphisms are relations. Recall from Section 2 that technically a relation is a

triple <A,R,B> where R is a subset of Ax B. The source of <A,R,B> is A and the target is

B. Composition of relations is the composition operation in Rei. The identity morphism for a

set A is actually the identity function, <A, 1 A,A>, where 1 A = { <a,a> I aE A}

The category Pfn is the strict subcategory of Rei in which the morphisms are partial

functions. The category Set is in turn the subcategory of Pfn in which the morphisms are total

functions. In the notation of Section 2, Pfn(A,B)=[A-<>+B] and Set(A,B)=[A-B].

As we've already mentioned in Section 2, we will make considerable use of S-indexed

families of sets and functions. When the set S is indexing the carriers of many-sorted algebras

(Section 6) it is called a set of sorts. The corresponding (large) category is denoted Sets. It has

S-indexed families of sets as objects and S-indexed families of functions as morphisms. So

f:A B in Set8 is actually a family <f8 :A8 -B8 I SES>. Composition in Set5 is composition by

components, (f o g)8 = f8g8 .

Definition 3.5. A category morphism F:G-G' is called a functor. It consists, as does a

graph morphism, of a pair of functions, FE:E E' and Fy:V-V' which preserve source and

target functions and also composition and identities.

(3.5.l)

(3.5.2)

(3.5.3)

(3.5.4)

FEt = tFy

(e o e1)FE = (e)FE o (e1)FE

(l)FE = l(v)Fv·

95

D

Notation. It is sometimes convenient to use a notation for functors that is consistent with

the object-morphism notation for categories, especially in cases where context does not easily

distinguish between the object and morphism parts of a functor. So in such cases we let F

ambiguously stand for the morphism part of F (i.e., FE) and I F I stands for the object part of

F (for Fy). Often we will use F for both parts.

Let :£ be a set; the category Gph:i; of :£-(vertex) labeled graphs is one of importance in

computer science. The objects of Gph:i; are pairs <G,f:V-..:£> consisting of a directed graph G

and a labeling function e from the vertices of G to the labeling set, :£. If G and G' are labeled

graphs, then a morphism F:G-+G' is a directed graph morphism that preserves labeling, i.e.,

(v)Fyt' = (v)f.

Such "labeling" constructions are special cases of an important construction in categorical

algebra, called a comma category (cJ. Mac Lane(1971) p.46). In this special case we have a

functor U:Gph-Set which picks out the set of vertices of the graph and a designated object:£

in Set. The comma category is denoted (U~:£) and called the category of U-objects over:£. In

pictures:

GU
(h)U

GU-- PG1U

objects ! I morphisms '\/·
Two small categories are N and Strs. They are the "base categories" for one-sorted and

S-sorted algebraic theories respectively (see Section 12). The category N has natural numbers

for objects and N(n,p) = Set([n],[p]), i.e., all functions from [n] to [p]; composition is

function composition (composition in Set). Let S be a set (called a set of sorts). Strs has

strings on S (S*) as objects and Str8(u,v) = {f:[I u I]-[Iv I l I fv=u}.

[n]
u

s

[m]
v

Composition in Str8 is function composition and it is easy to see that the commuting condition

is preserved. A function in Strs(u,v) is a morphism of strings in that it can be viewed as

96

sending the ith symbol of u to the (i)fth symbol of v; the commuting condition says ui=vow

Hopefully one sees that Strs is also a comma category, namely the comma category (In:N +Set,

S) of "In-objects over S." As with the Iabeled graphs above, Str5 is labeling of [n] for all

nE INI =w.

The "category of categories" may at first seem overly abstract, and perhaps even contra

dictory, but it embodies several basic facts about functors and is important in a wide range of

applications. We state the necessary properties in the following

Proposition 3.6. Given functors F:A-B and H:B c, define their composite, FH:A c to

have object part, (A) I FH I = (A) I F I I H I for objects A E I A I . and morphism part, (f)FH =
((f)F)H for all morphisms fE A Then:

(3.6.1) The composite FH is a functor.

(3.6.2) Composition of functors is associative.

(3.6.3) Given a category B, then defining 18:B-B by (B) I 18 I = B for Ban object of

B, and (f)1 8 = f for morphisms f of B, gives a functor which is the identity for composition of

functors in the sense that the equations

F1 8 = F and 18G = G

hold. 18 is called the identity functor on B. 0

Let Cat denote the category with categories as objects and functors as morphisms. Then

Proposition 3.6 gives the properties required by Definition 3.4 that indeed make Cat into a

category. Its "size" is clearly stupendous in some sense, and one might wonder if it is an

object in itself. The reader worried about this and related foundational matters is referred to

Mac Lane (1971) or Feferman (1971). One easy way out of this puzzle is to consider only the

category Cats of small categories. It is a subcategory of Cat but is not· itself small.

Associated with any (small) category G is a graph (G)U which is obtained by just

''forgetting" the composition operation and the identities. In more detail, given a small

category G = <E,V,s,t, 0 ,1>. we get a graph (G)U = <E,V,s,t>. It should be obvious that

this object mapping (from small categories to directed graphs) immediately extends to a functor

from Cat8 to Gph because a functor F:G-+G' (in Cats) gives a unique graph morphism

(F)U:(G)U (G')U; it is the same pair of functions, <FE,Fv>. which preserve the source and

target functions; we are just forgetting that they also preserve composition and identities.

Although "forgetful" functors like this U:Cat8-Gph may not be very interesting in themselves

(they are kind of "unconstructing" constructions), the exciting thing is that there is usually a

"free" construction paired with such a forgetful functor. In this case it is a familiar and useful

construction that yields the category of paths of a directed graph.

97

Before getting into that construction, let's rehearse the process with a special case that

may be even more familiar. A monoid is an algebra <M,•,e> where M is a set and • is a

binary associative operation with identity element e. If we forget the operation and the identity

we just get a set. So in this case, there is a forgetful functor from the category Mon of

monoids with monoid homomorphisms, to the category Set of sets and functions.

Now the free construction F:Set-Mon takes an arbitrary set X and gives the monoid

freely generated by X, <X*,•,i\>. where x* is the set of strings over X, • is concatenation,

and i\ is the empty string. An important and often overlooked ingredient of this construction is

* the injection (a set map) Ix:X-X which tells us how to find each generator x as a string

(x)Ix of length 1, consisting exactly of x. In Section 2 we saw that a string was a function

w:[n]->-X so (x)Ix:[l]-X has the value x on the one element in its source: (l)((x)Ix) = x.

The universal property associated with the free monoid construction says that for any

function f:X-M (where <M,•,e> is a monoid), there exists a unique monoid homomorphism

r# from <X* ,• ,i\> to <M,• ,e> which extends fin the sense that Ixf# = f as set maps. r# just

takes a string x1 ... xn and multiplies out the images in M: (x 1 ... x0)f# = (x1)f• ... •(x0)f and, of

course, (i\)f# = e.

The above is an example of an adjunction, one of the most important concepts of categori

cal algebra. We give it a precise formulation in the following

Definition 3. 7. Let A and X be categories, U a functor from A to X, and I F I an object

map, IF I: IX I I A I, and I = <Ix:x (X) IF I U> a family of morphisms indexed by objects

in I X I . Then we say U is a right adjoint functor with respect to < I F I .I> when the following

universal condition is satisfied.

(*) For every object A of I A I and morphism h:X (A)U of X there exists a unique

morphism h#:(X) IF I -+A such that

Ix
x (X) IF I U (X) IF I

~l<•')u l ..
(A)U A

commutes in X.

When context clearly determines what (forgetful) functor U:A-X is involved in the adjunction,

we will refer to the pair, <X IF I ,Ix> as the free A-object generated by X, and usually

"A-object" is linguistically given as in "the free monoid generated by X." D

98

It is common practice in algebra to give the object part of a "free construction" as we

have seen for the free monoid. There is good reason for this; the morphism part of that

construction is uniquely determined as given in the following proposition.

Proposition 3.8. Given that U is a right adjoint functor with respect to < I FI ,I>, there is a

uniquely determined functor F:X-+A (which is /eft-adjoint to U) and has object part IF I.

That functor is defined on morphisms as follows: let g:x x' be a morphism in X. Then

glx1:X-(X1) IF I U and (g)F is defined to be (gix,)#:(X) IF 1-+(X') IF I. The family of

morphisms I is called the unit of the adjunction. 0

In the monoid example, the forgetful functor is U:Mon-Set, a right adjoint functor with

respect to <-*,I>, i.e., with respect to the object map taking X to <X*,•,.\> and injections

lx:x x*. For a set map g:X Y, Proposition 3.8 says g* is (giyl:x* _,.y*, i.e., the monoid

extension of the mapping of x to the string of length one consisting of (x)g in y* That

extension takes x1 ... xn to (x1)g•(xn)g (making the usual identification of y with (y)Iy). a

familiar and important process.

We have gone from an easy rehearsal to an abstract statement of what an adjunction is;

now let us return to the directed graphs. From Definition 3.3, (G)PA is the set of paths of G;

the source and target of a path are obvious: (<u,p,v>)s = u and (<u,p,v>)t = v. The

composite <u,p,v> o <v,p',w> is <u,pp',w> which can be easily checked to be a path from u

to w. The identity for each vertex is the empty path, <v,.\,v>, which is indeed the identity for

composition. So (G)PA = <(G)PA,V,s,t,o,1>, defined in this way, is a category. It is called

the path category of G. In just the same way as we injected the generators of the free monoid

* into X , so we need a graph morphism IG:G-(G)PAU and it is the .obvious one that takes an

edge e to the path <(e)s,e,(e)t> of length one. (Note that we might have pedantically written

* <(e)s,(e)IE'(e)t>, where IE is the injection of E into E .)

(G)PA is the category freely generated by G and that is what the following proposition

says, but in the language of Definition 3.7.

Proposition 3.9. U:Cat8 -Gph is a right adjoint functor with respect to <PA,I> given

above. D

We indicate the proof. Given any graph morphism h:G-(C)U one extends h to

h#:(G)PA C in the same way that the extension to a monoid homomorphism was obtained. A

path <u,e 1 ... en,v> goes to (e1)ho(e2)h 0 ••• 0 (en)h, where that composition is composition in C.

One just composes in C the morphisms which are the images of edges of G.

99

We can say things about a graph in terms of its path category. For example, G is acyclic

iff for all vertices v, if p:v-v in (G)PA then p = lv. vis a root of Giff p:v'-v implies v'=v

and p = Iv. G is a forest iff there is at most one path p from any v to any v'. G is a tree with

root v iff v is initial in (G)PA This is an important concept of which we make considerable use,

so we give

Definition 3.HI. An object I is initial in a category C iff for every object C there exists a

unique morphism h:I-C. Dually, T is a terminal object in C iff for every object C there is a

unique morphism h:C-..T. A zero object in C is an object which is both initial and terminal. D

The root of a tree is an example of an initial object (in a small category), namely, in the

path category of the tree. Looking on a larger scale, whenever we have a free construction of

the kind described here, if there is an initial object in the source of that free construction, then

there is initial object in the target. Look at the universal property of Definition 3. 7. Let J be

initial in X; for every object A of A, there exists a unique morphism h:J (A)U (because J is

initial) and thus there is a unique h#:(J)F-A that extends h ((I1 oh#U) = h). If there were

another g:(J)F-A, then I1(gU):J (A)U, and by J's initiality that composite has to be h so g

= h#.

The initial object in Set is !O; the unique morphism l-.A:£)-A was mentioned in Section 2.

The monoid freely generated by 0 just has the identity element which is not very interesting,

but it is initial in the category of monoids, nonetheless. The free category gives us an even less

interesting example because the initial graph is the empty graph (V = E = 0), and the path

category (the initial category) is also empty. All this is far from typical. The initial algebras of

Sections 6, 10, and 11 play an important role in algebraic semantics and the specification of

data types. Looking to those applications, the following proposition is important.

Proposition 3.11. If I and J are initial objects in a category C then I and J are (uniquely)

isomorphic. Also if I is initial and I is isomorphic to J then J is initial. The same holds for

terminal and zero objects. D

There are common and important "conventions" in mathematics, and in algebra in

particular, that can be understood and justified with the material of this section. We have

already seen one: the morphism part of a free construction is uniquely determined by its

definition on objects so it is unnecessary to say how that construction works on

(homo)morphisms (this is Proposition 3.8). Another convention is that we speak of "the initial

object" or, in particular "the initial algebra." That language is justified by Proposition 3.11: and

two initial objects are isomorphic and anything isomorphic to an initial object is initial.

100

lnitiality determines the objects up to isomorphism which is usually all we care about, especially

viewing isomorphism as inessential notational variation.

The reader should be wondering about "the free object," "the free algebra" or very

particularly, "the free monoid." Indeed Proposition 3.11 is a special case of a much more

general result which we now state.

Proposition 3.12. If U:A-X is a right adjoint functor with relative to <IF I, I> and also

relative to <I G I, 1>, then IF I and I G I are "naturally isomorphic." 0

4. GRAPHS AND FLOWCHARTS

There are many ways that graphs enter into the formulation of models for computation.

We wish to explore a selection of those here. All grow from the fundamental definition of

directed graph (Definition 3.1) and. morphisms of directed graphs (Definition 3.2). At least

three distinct attitudes are discernible. In the first, the edges of the graph are Iabeled with

partial functions (employing the "Karp device" (Karp (1959)): here the emphasis is on

simulation, homomorphisms, and proofs of correctness of programs. (Milner (1971), Burstall

(1972a), Goguen (1974), and ADJ (1976c).) In the second, the edges are still Iabeled, but

emphasis is on the definition of and properties of recursive flowchart schemes (Burstall and

Thatcher (1974), Goguen and Meseguer (1977) and Gallier (1977,1978)). Finally there is the

detailed study of directed graphs qua flowcharts where the nodes are labeled as in the flow

charts with which we are all familiar. The emphasis here is on the operations such as parallel

and serial composition used to build up the flowcharts. (See especially Elgot

(1971,1973,1976,1977) and Elgot and Shepherdson (1977).) We begin with the last direction

of study because it contains ideas that are important for the other areas. In particular it points

to the fact that there are many ways to treat flow diagrams and that one has to be particularly

careful with the mathematical definitions.

Definition 4.1. Let G = <V,E,s,t> be a directed graph. G is finite if both E and V are

finite. G is locally finite iff for each VEV, {e I (e)s = v} is finite, i.e., the set of edges leaving a

vertex must be finite. When G is locally finite there is a natural ranking function on the set of

vertices:

(v)r0 = #{e I (e)s = v},

and we say that v has rank (v)r0 . 0

101

For node-labeled flowcharts, the edges leaving a node must be ordered to distinguish, say,

between the true and false branches of a test. One especially simple way to achieve this is

given in Elgot (1977):

Definition 4.2. An outedge directed graph G = <V,E,s,t> has for its edges,

(4.2.1) E = { <v,i> I VE V and id(v)r0]}

and the source function is given by,

(4.2.2) <v,i>s = v. 0

Thus in an outedge directed graph, the edges leaving a vertex are naturally ordered by

<v, 1 >,<v,2>,. .. ,<v,(v)r0 >.

Note that because of (4.2.2) all the information of the outedge directed graph is given by the

triple <V,E,t> and actually the relevant data consists of the set V of vertices, the rank

function r G: V w and the target function,

t:{ <v,i> I VE V and iE[(v)r0]} V.

The same effect is obtained with the notion of ordered directed graph given by Arbib and

Giveon (1968):

Definition 4.3 .. A (locally finite) ordered directed grapht G consists of a set V of vertices

and a function T:v-v*. The rank of a vertex vis the length of (v)'r. D

The sense in which the two definitions have the same effect is that for any ordered

directed graph <V,T> there is an outedge directed graph <V,E,t> where

E = {<v,i> I iE[(v)T]}

and,

<v,i>t = (i)(v)T.

Similarly one can construct an ordered directed graph from an outedge directed graph and that

construction is inverse to what we just described. Take <V,E,t> and define -r:v-v* by:

(i)(v)r = <v,i>t, for iE [(v)r0].

We will return to a very natural use of ordered directed graphs in a while.

Let L = <L0,Ll' .. .,Ln,. .. > be a ranked alphabet of disjoint sets. We sometimes use the

notation l: for UL1 which has an associated ranking function, r~:~'"""'•

(a)r~ = i iff aE~i.

Ranked alphabets are objects in Setw and ranked alphabet maps are morphisms there, i.e.,

families of functions f=<fi:Li L;>. The alternative is to view ranked alphabets as objects in

the comma category of Set-objects over w (see Section 3).

t Of course Ar bib and Giveon called them directed ordered graphs with the acronym DOG.

102

For any p, let XP denote a set (of variables) {xl' ... ,xp} disjoint from L. Then we write

L(XP) for the ranked alphabet with XP adjoined as symbols of rank zero, L(Xp)o=~ 0 uXP and

~(Xp)i=Li for i~O. We also view the set of edges of an outedge directed graph as a ranked

alphabet with ranking function r0 . The following is a variation of the corresponding definition

in Elgot (1977).

Definition 4.4. Let L be a ranked alphabet. For natural numbers n and p, a "'t.-chart F

from n to p consists of the following data.

(4.4.1)

(4.4.2)

An outedge directed graph G=<V,E,t>.

A pointing (or begin) function b: [n] _,. V.

(4.4.4) A ranked-alphabet map f:V-L(XP) called the labeling function.

If (v)P Exp then v is called a terminus and the set of termini is denoted vterm_ If /l is bijective

restricted to Vterm, then the termini are called exits. S=V-Vterm is called the set of internal

vertices of F and F is said to be of weight S. The pair <G.t> is called the underlying labeled

graph of the F. The class of L-charts from n to p is denoted Ch:l:(n,p). D

When Li=i;l for all i except i = 1,2, then we have the usual class of flowcharts where ~ 1 is

the set of operation symbols and L2 is the set of predicate symbols (c.f., Elgot (1976)). A

crucially important difference from many treatments, however, is the fact that the charts have n

"begins" and p "exits" for arbitrary n and p in w. It is this additional structure (giving the

structure of a category eventually) that makes things work as well as they do.

There are a couple of things that are troublesome about Definition 4.4. First, we know of

no computational significance for what could be vast parts of a chart that are "inaccessible"

from the begin vertices. And second, Ch:l:(n,p) is large since any outedge directed graph could

provide the underlying graph structure for a L-chart. We take care of the first problem with

the definition of "accessibility" to follow. But when we consider operations of flowcharts, we

are interested in finite flowcharts and we can take a subclass of Ch:l: (n,p) which is a set by

choosing "canonical" sets of vertices.

Definition 4.5. Let F be a L-chart from n to p. F is accessible iff every vertex v lies on a

path from some begin vertex, i.e., (G)PA((i)b,v)~0 for some iE[n]. D

Note that by this definition, every vertex in an accessible ~-chart either lies on a path

from an begin vertex to a terminus, is on a loop out of which one can not reach a terminus, or

is in a path terminating in a vertex labeled by some element of L0 . The significance of the last

case is a curious matter!

Definition 4.6. A morphism H:F->-F1 of L-charts from n to p is a morphism of their

underlying !abeled graphs which preserves the begin function,

(4.6.1)

and the ordering:

(4.6.2)

103

(i)bHy = (i)b',

We denote the category of 4-charts from n to p with bold letters, Ch~(n,p). ACh~(n,p) denotes

the full subcategory of Ch~(n,p) whose objects are the accessible ~-charts from n to p. 0

Note that a ~-chart morphism is completely determined by its vertex part, Hy, and so

much structure has been put on the charts that we have the following rather surprising fact

(Elgot (I 977),(3.2)).

Fact 4.7. There exists at most one morphism H:F-F' in ACh:s(n,p). 0

Let us write FJ;;F1 iff there is a morphism from F to F' in ACh:s(n,p). The relation J;; is a

preorder (see Section 2 or the definition of preorder in Mac Lane (1971), p.11). The induced

equivalence relation ~ from Section 2 is, by Fact 4. 7, the isomorphism relation. Furthermore,

ACh~(n,p)/~ is partially ordered by [F]i;;;[F'] iff F~F'. In fact this is a partially ordered set of

isomorphism classes of 4-charts from n to p. It seems to be quite different from other posets

of flowcharts in the literature (e.g. Scott's lattice of flow diagrams (Scott (1971) or alternatives

in ADJ (1975), Nivat (1973), or Wand (1972)).

Elgot (1977) views ACh~(n,p) in a different way:

Proposition 4.8. Let ~ be the transitive closure of the union of !;;; and its converse (see

Section 2.) This relation is an equivalence relation on the accessible 4-charts from n to p. Let

[F],,, be the full subcategory of ACh~(n,p) determined by F's ~-equivalence class. Then [F],,

has an initial object I and a terminal object M. The initial object is an n-tuple of (labeled) trees

which is the "complete unfolding" of F and the terminal object M is the minimal chart with the

same "strong behavior" as F. 0

We are really getting ahead of ourselves in that we didn't plan to discuss behaviors of

flowcharts until we have introduced algebraic theories. In the terminology of Burstall and

Thatcher (197 4) we have been looking at the "vertical structure" of the category of 4-charts

(there n=p= 1 and edges were labeled instead of vertices but the deterministic case corresponds

to AChk(l,1) for an appropriate 4). Now we are interested in the horizontal structure

(composition of 4-charts) and without actually saying so we are coming close to a double

category; something we said in the Introduction would not be necessary.

As promised above we are now going to pick out a subclass of the ~-charts which is a set

and which includes representatives of all the finite charts. On this set we will define the basic

104

operations that are used to build flowcharts: composition, pairing and iteration. That these are

the essential operations on charts is a key contribution of Elgot (1973).

The way we pick the subclass is to use the set [s+p] for the set of vertices of a I-chart

with s internal nodes and p exits. Since the p exits must have outdegree zero and since the i1h

exit is always labeled with xi we make this information implicit by defining the underlying

ordered directed graph to be a function from [s] to [s+p]* and the labeling is only defined on

[s]. There is an additional wrinkle. We want to allow, in any flowchart, a box labeled

"undefined." To be consistent with Definition 4.4, we define the ranked alphabet I .L to be

exactly like I except that (I .L) 1=): 1 u { J.}.

Recall from Section 2: OA:[O] A is the unique function from [0]=0 to A; and, IA:A A
..

is the set injection of A into the underlying set of the free monoid A*.

Definition 4.9. A (1Wrmalized) I .L -flowchart from n .'° p of weight s consists of a triple

r,l> where:

begin function

underlying graph

Tabeling function

b:[n]+[s+p]

T:[s] [s+p]*

l:[s] I .t'

such that I (i)T I =((i)l)r}:.t" (i)b is called a begin vertex, i€[s] is an internal vertex, i€s+[p] is

an exit and in particular, s+j is the /h exit vertex. (i)l is the operation symbol labeling the i1h

internal vertex; it must have rank I (i)T I. Let Fl}:.L (n,p) be the set of I .L -flowcharts from n to

p. 0

Definition 4.10. The identity I .L -flowchart from n ton, denoted 10 , has weight 0 and:

begin function lc0 i=[n] [n]

underlying graph O[nl*:[O]-[n] *

labeling function 0

Definition 4.11. The composite of I .L -flowcharts, F=<b,T,f> from n to p of weight s and

F'=<b',.,.',l'> from p to q of weights' is FoF' from n to q of weight s+s' with:

begin function

underlying graph

labeling function

bf:[n] [s+s' +q]

(.,.f* ,.,.' g '\cs+s'l [s+s' +q]*

(l,i''):[s+s'J-I .L

where f and g are the following functions,

f=1 181 +b':[s+p]-[s+s' +q]

g=O[s]+ l[s'+q]:[s' +q]+[s+s' +q]. 0

105

Informally F o F' is obtained by identifying the p exits of F with the q begin vertices of F'.

At the same time the vertices of F' are "translated" by s, i.e., a vertex j of F' becomes s+j in

FoF'.

Theorem 4.12. For each n,pE w, let FI~ .l (n,p) be the set of :2: .l -flowcharts from n to p (i.e.,

Fl~.L (n,p)). Then Fl~.l is a category with the nonnegative integers as objects, with composition

given by Definition 4.11, and with identities given by Definition 4.10. That is, composition is

associative and the identity charts satisfy 3.4.2. D

Definition 4.13. The pairing or coalesced sum of two :2: .l -flowcharts F=<b,1·,f> from n to

p of weights and F'=<b',r'f> from n' top of weights' is (F,F') from n+n' top of weight

s+s' where

where

begin function

underlying graph

labeling function

(bf,b' g):[n+n'] [s+s' +p]

(Tf• ,.,.' g *):[s+s'J [s+s' +p]*

(f,f'):[s+s'J-:2: .l

f = l[s]+O[s']+ l [pf [s+p] [s+s' +p]

g=O[srt· 1 [s'+pl:[s' +p]-[s+s' +p]. D

Informally, the effect of pairing is to put the two charts F and F' next to each other

identifying the p exits of F with those of F'.

Proposition 4.14. Pairing of :2: .l -flowcharts is associative, i.e.,

(F i'(F2,F3))=((F 1'F2),F3)

for FI' F 2, F 3 where the pairing is defined. D

The last is perhaps the most important operation; it is the only one that employs '.1 '. Thus

all the definitions above apply to !J-flowcharts with arbitrary !J replacing our special ::1: .L. The

idea is that for an I .L -flow chart from n to n+p of weight s, the "iterate" of F, denoted Ft,

identifies the ith exit with the ith begin node, thus introducing 'loops,' the result has p exits and

weight s. The construction is more complicated than that, however, because the ith exit might

be the ith begin (for example) and this iteration has to yield an non terminating loop (.1).

Definition 'US. Let F=<b;r,f> be a I .L -flow chart from n to n+p of weight s. Further,
s+n+p s+n+p n let f=(x(I) ,b,x(3)):[s+n+p]-[s+n+p] and factor f to

where h:[s+n+p] [s+u+p] and g:[uJ-[n] and u is the smallest natural number yielding such a

factorization. The iterate of Fis the flow chart Ft from n top of weight s+u with:

106

begin functionb o h:[n] _,. [s+u+p] underlying graph

(,-oh•,.\ u)):[s+u] [s+u+p]* labeling function(f ,.L u):[s+uJ-~ .L,

where .\ u:[u]-[s+u+p]* sends each iE[u] to .\E[s+u+p]* and .Lu sends each iE[u] to .LE~ .L.

A Definition 4.16. For any function f:[n]-[p] we define an associated ~ .L -flowchart f from

n to p of weight O; fA = <f,O[pJ*•O:i: .L >. D

Using the charts corresponding to maps (Definition 4.16) and coalesced pairing (Definition

4.13) we define the separated sum of Fi from ni to mi (iE[2]) to be the chart

F18Fz =(FI of! A,Fzof/>

where fi:[si+mi]-[s 1+s2+m1+m2] are the obvious injections for i = 1,2.

Flowcharts will be interpreted much later. The idea (of Elgot (1973) and Wagner (1974))

is to construct an equivalent category of "~-normal descriptions," which consists of pairs of

morphisms from the algebraic theory freely generated by ~. Once the operations and tests (~)

have been interpreted in a rational theory, the interpretation of the normal descriptions, and

thus flowcharts, is uniquely determined by the requirement that the maps, composition, pairing,

and iteration be preserved.

5. POSETS

As we saw in Section 2, a poset is a set P equipped with a partial order i;; on P. Let S £

P; then u E P is an upper bound for S is p i;; u for every p E S; u is a least upper bound for S if

u is an upper bound for S and u i;; v for every upper bound v of S. We write Us for the least

upper bound of S if it exists.

Let P and P' be posets: then a mapping f:P-P' is said to be monotonic if it preserves the

ordering, i.e., for all p, p' E P, p i;; p' implies (p)f i;; (p')f. The collection of all posets together

with the monotonic mappings forms a category Po, called the category of posets.

We say that an element .L of a poset P is the bottom element of P if it is minimum in P,

i.e., if .L i;; p for all p £ P. We say a poset is strict if it has a bottom element; a monotonic

mapping f:p...,.p' between strict posets is strict if .Lf = .L. The strict posets together with the

strict monotonic mappings between them form a category Po .L called the category of strict

posets, which is a subcategory of Po (though not a strict one!).

A very simple and familiar construction takes a set X (from Set) to the flat poset X .L,

where X .L is X with a new element .L adjoined, ordered by xi;;y in X .L iff x=y or X= .L. This

gives us another example of an adjunction. In particular if Ix:x x .L is the inclusion (in Set)

107

then <Ix, X .L > is the "free strict poset generated by X." This means that for any strict poset P

and any set map f:X-P there exists a unique strict monotonic map r#:X .L ...,.p extending f

(f#just sends .L to the minimum element of P).

Definition 5.1. Let Po be the category of posets with monotonic functions as morphisms.

A subset system on Po is a function Z which assigns to each poset P, a set Z[P] of subsets of P

such that:

(5.1.1) For each poset P and pEP, {p}EZ[P].

(5.1.2) If f:P+ P' in Po and S E Z[P], then Sf = { sf I s E S } E Z[P1].

We call the elements of Z[P], the Z-sets of P, and say 11 S is a Z-set in P 11 , when S E Z[P]. D

Definition 5.2. Given a subset system Z on Po, a poset P is Z-complete iff every Z-set of P

has a least upper bound in P. A morphism f:p...,.p' is Z-continuous iff for every Z-set S in P

such that Us exists,

(US)f = Li{ sf I s E S } = Li(S)f.

So Z-continuous functions preserve least upper bounds of Z-sets that exist in their source. D

We first used the term 11 Z-set 11 in ADJ (197 Sa) as a notational device, without the

definition (5.1) of a "subset system." We were interested in a few instantiations of Z which we

enumerated and which are included in the list below. In effect, we left it to the reader to check

that the results worked for the various Z's and didn't realize that that checking essentially

depended on the main part of the definition, i.e., closure of Z-sets under monotonic maps.

The following are examples of subset systems; most have appeared in one form or another

in the literature. t The examples are presented by saying, in each case, what it means for a

subset S of a poset P to be a Z-set in P.

S is a LI-set

S is an n-set

Sis a PC-set

S is a C-set

iff

iff

iff

iff

S is nonempty.

S is nonempty and =:S :5 n.

S is nonempty and every pair from S has an upper

bound in P (a pairwise compatible subset of P).

S is nonempty and every finite subset of S has an

upper bound in P (a compatible subset of P.

The term "pairwise compatible" is from Markowski and Rosen (1976) although the concept is
to be found in Egli and Constable (1976). wo-completeness is used by Tiuryn (1976).

108

S is a LI-set

S is a !.-set

S is an f-set

Sis a wo-set

Sis an a-set

S is a LI-set

S is a pc-set

S is a LI-set

iff

iff

iff

iff

iff

iff

iff

iff

S is nonempty and has an upper bound in P (a

bounded subset of P).

S is nonempty and every pair from S has an upper

bound in S (iff every finite subset of S has an upper

bound in S) (a directed subset of P).

S is nonempty and linearly ordered (a chain).

S is a nonempty well-ordered chain.

S is a chain of order type a.

S is a finite nonempty set (a finite LI-set).

S is a finite PC-set.

S is a finite bounded set (a finite LI set).

The many notions of completeness and continuity are instances of Definition 5.2 for Z's

taken from the list above. Thus "chain-complete" is !-complete, "continuous with respect to

directed sets" is !.-continuous. In general, we can pick out the subcategory of Po whose

objects are the Z-complete posets and whose morphisms are the z' -continuous functions; the

result will be denoted Po[Z,Z'J. We already have one trivial example. Taking Z to be sets of

cardinality less than or equal to one (this is not Z= 1 from the above list) Z-completeness

requires LI.0 exist (since U{p}=p) and this is .L; Z-continuity of f means that f is strict

(preserves .L). Thus, in this case, Po[Z,Z] is Po .L.

For any Z, if there is a P with fih: Z[P], then preservation of Z-sets under monotonic maps

ensures lh:Z[P] for all P, so we will say Z is strict if !ilEZ[P] for any (all) P; in this case Po[Z,Z]

is always a subcategory of Po .i · All of the Z's listed above are non-strict and it is sometimes

convenient to have a notation for their strict counterparts. So let Z .L [P] = Z[P] u {.0}. General

ly we can just use the qualifier "strict" and also, by example, write Po .l[t.] for Po[t. .L't. .L]. (In

this notation Po .L = Po[1 .L, 1 .L], as seen from the previous paragraph.)

Definition 5.3. A subset X of a poset P is an ideal iff it is downward closed: p E X and p'

!;;; p implies p' E X. Let S be an arbitrary subset of P; then the ideal generated by S is
A

S = {p I p i;;;p' for some p' E S }.

X is a Z-ideal if X is generated by a Z-set.O

Definition 5.4. Let Z be a subset system on Po and P a poset. An element p E P is

Z-isolated in P if for each Z-set D in P such that LID exists, if p !;;; LID then p !;;; d for some d

E D. We call the set of Z-isolated elements of P the Z-core of P and denote it Core[P]. 0

In ADJ (1977) we used the term "compact," following Birkhoff (1967) and Markowski

and Rosen (1976), instead of "isolated." We now believe that "isolated" (following Scott

109

(1972a)) is better. However, for the next concept, we seem to be fighting the tide. The term

"algebraic" (as in Graetzer (1968), Scott (1972a) and Courcelle and Nivat (1976)) is gaining

wide acceptance. We find such constructions as "algebraic algebras" and, worse, "algebraic

algebraic theories" to be so unpleasant that we stick to the terminology of ADJ (1977) and use

"inductive."

Definition 5.5. A poset P is Z-inductive iff every p E P is the least upper bound ·of some

Z-set in Core[PJ. D

The poset of partial functions on a set is one of the handiest examples to illustrate these

concepts. Looking at a fixed source and target, say a set A, we consider the graphs of the

partial functions ordered by set inclusion. Call this poset Pfn(A,A) (consistent with the

notation in Section 3). The ti-isolated elements of Pfn(A,A) are the finite functions while the

C-isolated (also LI- and PC-) elements are the singleton or one-point functions. The poset

Pfn(A,A) is tl-inductive and C-inductive because every partial function f:A-+A is the least

upper bound of (a) the directed set of finite functions contained in f and (b) the C-set of

one-point functions making up f. Pfn(A,A) is also ti-complete and C-complete; it is not

LI-complete (compare with Rel(A,A)).

The crucial property of Z-inductive posets is that monotonic maps defined on their core

extend uniquely to continuous maps on all of the poset.

Theorem 5.6. (The Extension Theorem for Z-inductive posets.) Let P and Q be posets with

P, Z-inductive and Q, Z-complete. Let f:Core[PJ-Q be monotonic. Then there exists a

unique monotonic Z-continuous f#:P-Q which extends f. In particular, if p E P, and S E Z[PJ

such that p = Us, then (p)f# = U(Sf). D

Our statement of the Extension Theorem includes the method of proof; the extension of

f:Core[PJ-Q is defined for pEP by (p)f# =Li(S)f where S is a Z-set in Core[P] with US=p;

such an S exists because P is Z-inductive; the least upper bound exists in Q because Q is

Z-complete.

Inductive posets are intimately related to the "extension basis" for posets discussed in

Markowsky and Rosen (1976). We give their definition relativized to Z.

Definition 5.7. A subset B of a Z-complete P is a Z-extension basis iff, for every Z

complete poset Q and monotonic map f:B-Q, there exists a unique monotonic Z-continuous

f#:P Q that extends f. D

Corollary 5.8. If a Z-complete poset P is Z-inductive then Core[P] is a Z-extension basis

for P. D

110

Definition 5.9.t Let I[P] denote the poset of Z-ideals ordered by set inclusion. An ideal is

principal if it is generated by a singleton; let C[P] be the poset of principal ideals. Since every

singleton set is a Z-set we know C[P] !;;; I[P]. Let •p:P-I[P] be the monotonic map sending

each p E P to the principal ideal generated by {p}. D

Fact S.10. •r=P-I[P] is an injection and its target restriction to C[P], •p:P---C[P], is an

isomorphism. D

The partially ordered set I[P] (ordered by set inclusion) is the "Z-inductive completion" of

P. We need, however, an additional property of Z for the construction to work properly.

Definition 5.11. Z is union-complete iff I[P] is Z-complete and for any Z-set S E Z[I[P]],

Us = Us. Equivalently, Z is union-complete iff the set union of Z-ideals is a Z-ideal. D

.
.L

Figure 5.1.

Most of the Z's listed above are union-complete; exceptions include the finite cardinals

and chains.* A simple example illustrates this for finite cardinals. Let P be the poset in Figure

5.1 and take Z=2. The doubleton set of Z-ideals, {{a,b,.L},{c,.L}} (a 2-set in I[P]), has a least

upper bound in I[P], namely P, which is not the union of {a,b,.L} and {c,.L}.

For contrast, consider any directed set D of ideals generated by directed sets, and let S be

the union of the generators. Then S is directed: for any xl' x2 E S, xi comes from a directed

set si in D. But D is directed so s1 and s2 are contained in a directed set s; thus x1 and x2 are
A

members of s and have an upper bound x in s and thus in S. And it is easy to see that S=UD.

We have actually shown that I:!. possesses a stronger property than union-completeness; we call

it "strong-union complete."

Definition 5.12. A subset system Z is strong union-complete iff Z[P] is Z-complete and for

every Z-set D in Z[P], LlD=UD.D

We really should write Iz[P] since the construction depends on Z; hopefully the Z will always
be clear from context.

* In ADJ (1977) we stated that only the finite cardinals were not union complete. Banaschewski
and Nelson (1979) point out that Z = chains is also not union complete. Meseguer (1979)
has shown that every Z naturally determines one that is union complete and for which
continuity and completeness are the same.

111

Under the condition that Z is union-complete (or strong union-complete), the completion,

I[P], has the desired properties.

Theorem 5.13. If Z is union-complete then for each poset P, I[P] is Z-inductive and

Z-complete. 0

Corollary 5.14. If Z is union-complete and P is Z-inductive and Z-core complete then P ;;;;

I[Core[P]]. 0

Also under the condition of union-completeness, we can tie up the connection with

extension bases of Markowski and Rosen (1976).

Proposition 5.15. Assume Z is union-complete. If B is an Z-extension basis for a Z

complete poset P then P is Z-inductive and B = Core[P]. 0

We will write Po[Z] instead of Po[Z,Z] for the category of Z-complete posets with

Z-continuous monotonic morphisms. Let I: I Po I ...,. I Po[Z] I be the mapping which takes each

each poset P to I[P], the poset of Z-ideals of P. The completion of Theorem 5.13 gives an

adjunction which we state in the language of Definition 3.7 from Section 3.

Theorem 5.16. When Z is union-complete, the inclusion functor from Po[Z] to Po is a

right adjoint functor with respect to the object map I: I Po I I Po[Z] I , and the family of

morphisms ip:P->-I[P]. Equivalently, given P E I Po I, a Z-complete poset Q, and a monotonic

map f:P-Q, then there exists a unique mapping f#:I[P] Q extending fin the sense that •p•f#

= f. In particular, if~ E I[P] then Xf# = Li{ xf I x E X }.

p~T~·
Q D

It is consistent with the language of Section 3 to say that <I[P],ip> is the "free Z

complete, poset generated by P," which is just saying that I[P] enjoys the same universal

property in relation to posets and monotonic maps as the free monoid with respect to sets and

functions; it is all just saying that I is the object part of a functor which is left adjoint to a

forgetful functor, in this case an inclusion (forgetting that a poset is Z-complete).

In Section 11 we want to talk about completing algebras rather than just posets. The idea

is that we complete the poset P to I[P] to get a Z-complete and Z-inductive carrier for the

algebra. The functions or operations of the algebra are not just defined on P but on powers,

Pn, of P. Thus we need to consider what happens to completions of powers (or products) of P

112

in relation to completion of P. In particular, it is necessary to extend monotonic functions

defined on Pn to Z-continuous functions defined on I[Pt. For all of this we need some

additional definitions and facts.

Definition 5.17. Given posets Pi' ... ,Pn where P; has partial order [;i' we define the

product of the Pi (in the usual way) to be the poset with underlying set P 1 x ... x P n and ordering

!; where for <Pl'····Pn» <p;, ... ,p;,> € P 1 x ... xPn, <Pl'···•Pn> !; <p'1, .•• ,p:? iff P; !;; P;' for

each i E [n]. Let '1T7 denote the ith projection function, i.e., 'lT7:P 1 x ... xPn...,.pi' taking

<Pl'···•Pn> to P;· D

Fact 5.18. Let Z be a subset system, let Pl' ... ,Pn be posets and let S E Z[P 1x ... xPn].

Then, for each i E [n], S'1T~ = { S'IT~ I s E S } € Z[P;J. D

Fact 5.19. Least upper bounds of Z-sets work by components on cartesian products, i.e.,

for any Z-set D >; P 1 x . . . x P n

LID = <Li(D)'1T~ , ... ,U(D)'l7>. D

Corollary 5.20. If S is a Z-set 1n P 1 x ... x P n then Us exists iff U(S'1T~) exists for each i E

[n]. D

The well-known weaker concept of continuity by components has the following Z-

statement.

Definition 5.21. A monotonic mapping f:P 1x ... xPn_,.p is Z-continuous by components iff

for each i E [k], a 1 E PI' ... , ai-I E P;_1, ai+I E Pi+I' ... ,ak E Pk, and Z-set S,; Pi'

f(a 1, ... , ai-1' Us, aa+I' ... , ak) = Li{f(a 1, ... , a;_ 1, s, aa+I' ... , ak) I SE S}. D

Fact 5.22. For each n, if f:Pn -P is Z-continuous then f is Z-continuous by components. D

Proposition 5.23. Let P and P l' .. .,P n be posets and let f:P 1 x ... x P n P be monotonic.

Then f is Z-continuous by components iff for all i E [n], and every Z-set Si E Z[P;l such that

Us; exists,

D

Definition 5.24. Let S and T be subsets of a poset P. Then we say S is cofinal in T, and

write Ti;; S, iff for every t E T there exists s E S such that t !; s. If S is co final in T, and T is

cofinal in S then we say S and T are mutually cofinal, and write S ~ T. D

Definition 5.25. Let Z be a subset system. We say Z is crossed-down if for all posets P 1

and P 2 and each Z-set S ,; P 1 x P 2, S and S'lT 1xS'1T2 are mutually cofinal. D

113

Theorem 5.26. Let Z be a crossed-down subset system. Then f:P 1 xP2-P is Z-continuous

by components implies f is Z-continuous. 0

Theorem 5.27. Let Z be subset system which is crossed down and union complete. Then

for all posets P 1 and P2, I[P 1 xP2] ~ I[P1]xI[P2]. 0

6. ALGEBRAS.

The basic concepts of universal algebra are to be found in Birkhoff (1935, 1967), Cohn

(1965), Graetzer (1968) and, perhaps more leisurely in ADJ (1973, 1975). An algebra in the

sense of Birkhoff is simply a set, called the carrier of the algebra, together with an indexed

family of operations on Cartesian powers of that carrier. The indexing system for the opera

tions is what is called an operator domain or ranked alphabet (as in Section 4). A ranked

alphabet is itself an indexed family of sets, ~ = <~i I iE w>, where ~n is the set of names of

operations of rank or arity n.

But computer science applications seem to need "heterogeneous" or as we shall call them,

"many-sorted" algebras. A many-sorted algebra is just like an algebra in the sense of Birkhoff

described above except that you have several carriers instead of one and they are indexed by a

set S, called the set of "sorts." Then the operations of a many-sorted algebra go from Carte

sian products of those carriers into one of them. The indexing on the operation symbols must

reflect this additional complexity. (See the definition of "signature" below.) For example, the

sort set might be {real,int,bool}. An algebra of this kind would have three carriers, Areal' Aint

and Abool together with some operations such as EXP:ArealxAint_,.A,eal and

COND:AboolxA,ealxA,eal Areal corresponding to exponentiation and conditional respectively.

A finite automaton, in the sense of Rabin and Scott (1959), is an algebra with two sorts,

states named S and inputs named ~. i.e., an {S,~}-sorted algebra. The transition function is an

operation M of "type" <S,S~> which yields a state for each state and input pair. The initial

state is a constant of sort S.

The definition of many-sorted algebra that we give below is equivalent to that of

"heterogeneous" algebra given by Birkhoff and Lipson (1970) (except carriers must be allowed

to be empty) and also equivalent to Higgin's (1963) "algebra with a scheme of operators".

The main point is that the theory of universal algebra carries over with "undiminished force" to

the many-sorted case. Birkhoff and Lipson (1970) give computer science examples but the first

explicit uses for new results in computer science seem to be in Maibaum (1972,1973) and in

F.L. Morris (1972,1973a).

114

Definition 6.1. An S-sorted signature ~ consists of a set S, called the set of sorts and an
indexed family<~ lsES and WES*> of disjoint sets, called the operator symbols. Call s,w

aE ~s,w an operator symbol of type <s,w>. arity w, sorts, and rank I w I. A constant symbol of
sorts is an element a in ~s,>. D

When S is a singleton, say {a}, the indexing of the signature consists of pairs <a,an> and

this is the "one-sorted" or "homogeneous" case mentioned at the beginning of this section.
Since the sort is always the same it can be ignored in the indexing, and all that remains is the
length of the arity, i.e., the rank, in this case, n. Thus the {a}-sorted signature reduces to the
ranked alphabet, ~ = <~i I iEw> with ~n naming operations of rank n.

Definition 6.2. Let ~ be an S-sorted signature. An algebra A with signature ~ or briefly, a
~-algebra consists of an indexed family of sets, <A8 I SES> and an indexed family of opera

tions,

<aA:Aw_,_A I a E ~ >. s s,w

The set A5 is called the carrier of A of sort s. The operation a A is the operation of A named by
a. For aE ~s,;\' a A E A8 is a constant of A. D

Definition 6.3. Let A and B be ~-algebras. Then A is a subalgebra of B, written A£B, iff
w for each s.oS, A8 £B8 and for each operator symbol aE~s,w and <al' ... ,an>EA ,

(al' ... ,a0)a A = (al' ... ,a0)aB" D

Definition 6.7. If A and B are both ~-algebras, A ~-homomorphism. h:A-B is a function
h:A B, i.e., a family of functions <h8 :A8 -B8 I SES>, that preserve the operations:

(6.7.1)

(6.7.2)

if aE ~S,A then (a A)h = "B;

if aE~s,si···sn and <ai' ... ,a0 >EA81 x ... xA80 then

D

The composite of homomorphisms is again a homomorphism and composition is an
associative operation. The identity function, 1 A' on the carrier of A (so actually the S-indexed
family of identity functions) is a ~-homomorphism which is the identity for composition. Thus
we have a category Alg:i; whose objects are ~-algebras and whose morphisms are ~

homomorphisms.

We are now going to define the S-indexed family of ~-expressions with generators or
variables from an indexed family of sets, X = <Xs I SES>. This will give us the carrier of the
~-algebra freely generated by X.

115

Let k (ambiguously) denote the set of all operator symbols in the S-sorted signature k,

i.e., U{k I SES and w.:: s*}. Also let X be an S-indexed family of disjoint sets which is
s,w

also disjoint from the set of operator symbols (i.e., from k). (We will also write X for UX5.)

Then define T~(X) = <T~(X), I SES> to be the smallest S-indexed family of sets of strings

over the set k u Xu { (,)} satisfying the following two conditions. (Here { (,)} is a two element

set disjoint from both k and X, but later we will be writing expressions over k u X without

using the special brackets, (and) .)

(6.8.1)

(6.8.2)

ks,>. ~ T~(X)s;

if a€ks,s1 ... sn and tiET~(X)5i then, a(t 1 tn) E T~(X)5 •

Example 6.1. Take S = {d,s}, kd,;1. = {*}, ks,>. = {*,A}, ks,s = {POP}, ks,ds = {PUSH},

:2::d,s = {TOP}, X5 = 0 and finally Xd = {xl'x2, ... }. Then T~(X)5 contains the likes of*• A,

PUSH(x;A), PUSH(x;*), PUSH(xlUSH(xiA)), TOP(PUSH(x;A)), etc. Whereas T~(X)d has*·

TOP(*), TOP(A), TOP(PUSH(x;*)), TOP(PUSH(xiA)), etc. 0

Then we make T~(X) into a k-algebra by defining the operations aT for each uEk (Note

we are using uT instead of the typographically bothersome aT~(X)' for the operation named by

u in T ~(X).)

(6.9.1)

(6.9.2)

For uE:2::s,A' uT = u E T~(X),.

For <TEks,si···sn and t;ET~(X)5i,

(tl' ... ,tn)uT = u(t1 ... tn) E T ~(X)s.

Theorem 6.10. Let Ix:X-T~(X) be the (S-indexed family of set) injection(s) of the

generators X into the carrier of T~(X) Then <lx,T~(X)> is the algebra freely generated by

X in Alg~. That is, for any :2::-algebra A and any map h:X-+A (again, S-indexed family) there

exists a unique k-homomorphism h#:T~(X)-A such that Ixh=h# as set maps.

A D

Corollary 6.H. T~(t))= T~ is the initial algebra in the category of :2::-algebras, i.e., for any

:2::-algebra A, there is a unique homomorphism hA:T~-A. D

116

7. ALGEBRAIC SEMANTICS.

A fundamental tenet of algebraic semantics is that syntactic constructs reside in free (or

initial) objects and that semantics is completely determined by specifying an algebra with the

same signature as the syntactic algebra and by specifying the values of the generators (if any);

then the semantic function is the unique homomorphism from the syntactic algebra to the

semantic one guaranteed by Theorem 6.10 or Corollary 6.11.

In the discussion here we focus on the free and initial ~-algebras, but the fundamental

process that is going on applies equally well to the other free and initial algebras and algebraic

theories to be introudced in the sequel. Algebraic semantics is applicable in all those cases as

well as it is here.

Example 7.1. Consider the following {int,Bool}-sorted signature for integer and Boolean

expressions (borrowed from Kamin (1979)).

~int,"A ={0,1,2, ... }

~ Bool "A= { tt,ff}

~Boo/, inr {even}

~ int. in1= {- ,Pr,Su}

~Boo/,Boo/={~}

~ Bool,int int={ <,>,=}

~ int,int int={ +,-, *}

~BoolBool Boo/={ AV}

~int,Bool int inr{cond}.

All other ~s,w are empty. Tk,int is the set (or algebra) of integer valued expressions and

T k, Boo/ is the set of Boolean valued expressions. The expected semantic algebra is the algebra

S with Sint=~ (the integers) and SB001=[2] (the Boolean values, which we take to be { 1,2} for

technical convenience). We know how to define all the operations, like +s and A 8, on these

carriers and so we don't need to spell them out. It would be consistent with the notation of

Scott and Strachey (1971) to write Il e Il for the value of the expression e under the unique

homomorphism from T k to S. If we introduce variables, X Bao/= {xBool, 1, x Boo/ ,Z' ... } and

Xint={xint,l'xint,z•···}, then for any assignment p:X S of values (of appropriate sort) to the
variables (or identifiers) there is a unique homomorphism l:Tk(X)-S and we might well write

[e]p instead of (e)l.o

"Structural induction" is a consequence of initial algebra semantics. Let ~ be an S-sorted

signature and let <P5 I SES> be a family of predicates indexed by the sorts. Then "structural

induction" says the following.

IF (O) P5 (a) for all a€~s,1';

AND (1) For all a€~s.s 1 ..• sn' and t;E:Tk,s;

P8/t1)A ... AP50 (t0) '*" P8(a(t1 ... t 0))

THEN For all SES and tE:Tk,s' P8(t).

117

Let P5 be the set of tET~ such that P (t) is true. Make Pinto a ~-algebra by;
~,s s

ap =a

(t 1 ,. .. ,t0)ap = a(t1 •.. t0)

Then P is a subalgebra of T :!: by cases (0) and (1) of the hypotheses of structural induction.

We have a unique homomorphsim hp:T:!:-+P. And the inclusion from P to T:!: is also a homo

morphism. The composite, by uniqueness, must be the identity on T:!:; i.e., P is all of T~. This

is the desired conclusion of "structural induction."

A very general instance of algebraic semantics is found in the semantics of context-free

languages as described in ADJ (1975a).t Let G=<N,T,P> be a context-free grammar. N is

the set of non-terminals, T is the set of terminals, and P£Nx(NuT)* is a set of productions.t

Let V = NuT, and for WEV*, define (w)var to be the string of nonterminals occurring in w.

(More precisely, var:v• -N* is the unique extension to a monoid homomorphism of the map

V...,. N* which is the identity on N and sends each t ET to ;\EN*.)

Now make G into an N-sorted signature where for each <A,w>eNxN•,

G A,w = {pe:P I p=<A,w'> and (w')var=w }.

* Thus a production A-u0A 1u 1A 2 ... u0 _ 1A 0 u0 (A;EN, U;ET) is, in this setting, an operator

symbol of type <A,A 1 ... A0 >. The initial G-algebra T G has carriers T G,A which are parse trees

for derivations in G from the non-terminal A.

The impact of algebraic semantics here is that any G-algebra whatsoever (a set SA for

each non-terminal A and a function

Ps:SA1 x ... xSAn -sA

for each production p of type <A,A 1 ... A0 >) provides a semantics for the context-free language

generated by G. T G' being initial, gives a unique homomorphism h8 :T a-s which assigns

"meanings" in S to all syntactically well-formed phrases of the language (not just to the

"sentences" generated from some specified start symbol in N).

For a simple example, make T* into a G-algebra (call it T*, with every carrier T*) by

letting

t The importance of the algebraic structure associated with a context free grammar seems to
have been independently discovered (and precisely formulated) by Morris (1973a) and Rus
(1974).

We do not want to exclude the possibility of any of these sets being infinite. Effective
presentation of such systems must be given careful consideration. (See van Wijngaarden
(1969).)

118

for every production p = <A, u0A 1u 1 ... u0 _1A 0 u0 > in G. Then the unique homomorphism

h8:T G _,. T• assigns to each derivation in t ET G,A the string in T* that is derived. Thus, even

"string generated " is a semantics for G.

Example 7.2. We illustrate the general process described above with a specific example of a

programming language intimately related to the one employed by Morris (l 973a) in his "Advice

on structuring compilers and proving them correct." It is a slight enrichment of the language

used as an example by Milner (1976) and it is the one we use in ADJ (1979a). Our grammar

will have non-terminals { <st>,<ae>,<be>} for "statements", "arithmetic expressions" and

"Boolean expressions." The terminals include the symbols in the signature ::1: of Example 7 .1

plus those other letters in boldface occurring in the productions below. Further, we assume

given a set X of variables or identifiers.

We list the productions of G giving each a name which we can use in defining the semantic

algebra. Thus, for example, when G is viewed as an operator domain, ifthenelse is an operator

symbol to denote a function that takes three arguments of sorts <be>,<st>.<st>, respectively,

and yields a result of sort <st>. Similarly result takes two arguments of sort <st> and <ae>

and yields a result of sort <ae>.

(Ll) continue

(L2) x:=

(L3) ifthenelse

(L4)

(LS) whildo

(L6) c

(L7) x

(L8) aopl

(L9) aop2

(LlO) cond

(Lll) result

(L12) letx

(Ll3) be

(L14) prop

(L15) re!

(L16) bopl

(Ll 7) bop2

<st> ::= continue

<st> ::= x:=<ae>

<st> ::= if<be>then<st>else<st>

<st> ::= <st>;<st>

<st> ::= while<be>do<st>

<ae> ::= c

<ae> ::= x

<ae> ::= aopl<ae>

<ae> ::= <ae>aop2<ae>

<ae> ::= if<be>then<ae>else<ae>

<ae> ::= <st>result<ae>

<ae> ::= letxbe<ae>in<ae>

<be>::= be

<be> ::= prop<ae>

<be> ::= <ae>rel<ae>

<be> ::= bopl<be>

<be> ::= <be>bop2<be>

For xEX

For CEkinl,A

For XEX

For aoplE:Eint,int

For aop2 E:i:int,int int

For xEX

For bcE:EBoo/,A

For prop E ::i: Boo/, int

For relE:EBoo/,int int

For bopl E :EBool,Boo/

For bop2 E ::1: Boo!, Boo/ boo/

119

Now we define the semantic algebra M. For this we need the set Env of "environments,"

Env = [X Z]. Then the three carriers are:

M<st> = [Env_.,_Env] M<ae> = [Env-<>+EnvxZ] M<be> = [Env-o-<>Envx[2]].

Here [A-B] is the set of (total) functions from A to B and [A-o-B] is the (po)set of partial

functions from A to B (see Section 2).

The definitions of the seventeen operations on M (corresponding to the grammar's

seventeen productions) involve certain primitive operations on M's carriers along with standard

(and some not so standard) combining forms.

We first list the primitive operations:

assignx:Envxz..,.Env (z)<e,v>assignx = {
V if Z=X

(z)e if z;l<x

(e)fetchx = <e,(x)e>

We also have available all the operations "s• for <JE };, from Section 2; e.g., +s is addition on

the integers.

Given two (partial) functions, fi:A-B, define the source tuple, (fl'f2):Ax[2]-..B, by

Define the sum, f1+f2:Ax[2]-Bx[2], of functions f;:A-B for iE[2] by:

If t;:B-Bx[2] is the injection sending bEB to <b,i>, for iE[2], then f 1+f2=(f1°il'f2 °i2).

Bx [2] is the disjoint union, sum or coproduct of B with itself, and more generally Bx [n] is the

coproduct of B with itself n times (n disjoint "copies" of B); i;:B Bx[n] sends b to <b,i>, for

iE [n]. Context will usually distinguish the source of an injection and for this paper, the target

will always be clear. When necessary to distinguish sources, we will write irB-Bx[n].

Given a partial function f:A-Ax[2], define the iterate, ft:A-A, to be the least upper

bound (i.e. union) of the sequence r<k) defined by:

f(O) = (0

f(k+ I) = f o (f(kl,t A),

where Rl is the empty partial function from A to A.

Given (partial) functions f;:A-Bi' define the target tup/e, [fl'f2]:A B1 xB2, by:

120

Note that if either f 1 or f2 is undefined at a, then [f l'f2] is undefined at a. The projection

function 'lTi:A1x ... xAn-Ai takes <a1,. . .,an> to ai. Given functions fi:Ai Bi, define their

product, f 1 xf2:A1 xA2-B1 xB2, by:

Paralleling the sum case above, the product of functions is defined in terms of target tupling

and projections: f 1xf2=['lT 1°f1,'lT2 °f2].

Now for the definitions of M's operations; r,ri'r2 , range over M<st>; "'•"'l'°'Z range over

M<ae>; and, /3,/31'/32 range over M<be>"

(Ml)

(M2)

(M3)

(M4)

(MS)

(M6)

(M7)

(M8)

(M9)

(MIO)

(Mll)

(M12)

(M13)

(M14)

(MIS)

(M16)

(Ml?a)

(Ml?b)

continueM = lEnv

(a)x:~ = aoassignx

(/3;ri'r2)ifthenelseM = ff 0 (rl'r2)

(Tl'T2);M = 'l'I 0 7'2

{{1,r)whiledoM = ((1o(r+1Env))t

CM = lEnv><Cs

XM = fetchx

(a)aop1 M = a o (lEnvx aop1 8)

(al'a2)aop2M = "'10(0:2xl7L'.)o['lTl''lT3,'lT2]o(1Envxaop2s)

(ff,ai'a2)condM = ff 0 (a 1,a2)

(T,a)resultM =Toa

(al'a2)1etxM = fetchx o [(a 1 o assignx o a 2) x l?L'.] o ['lT i''lT3,'lT2] o (assignx x 1 ?L'.)

bcM = 1Envxbc8

(a)propM = ao(lEnvxprops)

(ai'a2)relM = a 1 o (a2 x l?L'.) 0 (lEnvxrels)

(ff)~M = ffo(i2'il)

(ff1,ffz)AM = ff1 o(tpff2)

(ffi'ff2) v M = ff1 ° <ff2• 12>
/

/

The Boolean expressions are treated differently from the arithmetic expressions. In the

definition of AM' for example, ff, can give the value false (1) and ff2 will not be evaluated, i.e.,

could be non-terminating: if (e)ff,=<e',1> (false with new environment e'), then

(e)ff1 °(ti'ff2)=<e',l> independent of ff2.

Calling our grammar above, G, we have made M = <M<st>' M<ae>' M<be>> into a
G-algebra with the seventeen definitions, (Ml-Ml?). The algebraic semantics for G is the

unique homomorphism 8:T0 -M. D

121

8. EQUATIONAL CLASSES.

T ~(X) is sometimes called the "anarchic" (no laws) or "totally free" k-algebra. We use

T::;: (X) for syntax for presenting classes of algebras satisfying certain properties, first

"equational properties." A k-equation of sorts is just a pair of expressions e = <e1,e2> from

T::;:(X)8 • And an equational system (over T::;:(X)) is a set (pedantically, family) E of k

equations. We will write e 1 =e2 for <el'e2> EE, but what makes these pairs "equations" is how

we interpret them or use them; as they are, they are just pairs of expressions with variables X.

When treating the generators X as variables, we speak of ll:X A as an assignment of values in

the algebra A to the variables X, or an interpretation. Any assignment 0, extends by Theorem

6.10 to a unique homomorphism 9#:T~(X)-..A; II gives the values in A for the variables and A,

being a ~-algebra, gives values for the operation symbols o -- o# is evaluation and nothing

more.

For an equation e=<ei'e2>, let var(e) be the variables t occurring in e; this is a (finite)

subfamily of X. A ~-algebra A satisfies e iff for every assignment* ll:var(e)-A,

(e 1)1i# = (e2)o#.

We can also say e is valid in A or· E holds in A; our use of "satisfies" is consistent with past

writing but may be confusing since satisfaction suggests existential quantifiers whereas from a

logical point of view, when an an algebra A satisfies e it means that the universally quantified

equation is valid in A. Another alternative would be to say A is a model for e instead of A

"satisfies" e

For an equational system E, a ~-algebra A satisfies E iff it satisfies every eE E. We then

say that A is a (k,E)-algebra. Alg::;:,E is the category of all ~-algebras satisfying E with the

~-homomorphisms. It is a full subcategory of Alg~, i.e., Alg~.E(A,B) = Alg::;:(A,B) because if

h:A-B is a ~-homomorphism then it is still one if A and B both satisfy E

One usually doesn't bother with things like this, but technically var(e) = var(e 1) uvar(e2).

But what about var(ei)? Define a ~-algebra VAR with VAR8 = P,.,(X), i.e., all carriers of
V AR consist of finite subfamilies of X. All the operations are union;
(Yl' ... ,Y0)ovAR=Y1u ... uY0 • Now define v:X-VAR for XEX5 by (x)v5 ={x} and (x)v5,=.0
f~r s\•"s, i.e., (x)v is the singleton f,jlmily for x. Finally apply Theorem 6.10 to get
v :T::;:(X)-VAR. Then var(ei) "'Je)vil'(

* As pointed out in ADJ (1976) one has to take care here. Birkhoff and Lipson (1970) made
the error of defining many-sorted (there heterogeneous) algebras to have nonempty carriers,
thus rendering false results such as the existence of free algebras and the lattice of subalge
bras; you must permit empty carriers. But with empty carriers care must be taken with the
definition of satisfaction. If a variable of sort s does not occur in an equation and the carrier
A5 is empty then there are no assignments for the variable x, so that if we universally
quantify over assignments including x, then the equation is vacuously valid. Thus we must
restrict assignments to the variables occurring in the equation.

122

Alg:l:,E also has free algebras and the way one is constructed is to take the "quotient" of
T :l:(X) modulo the "congruence relation" determined by the equational system E. This results
in identifying all expressions in T :l:(X) forced to be so identified by the equations in E. For this
purpose we need the following definitions.

Definition 8.l. A "'2.-Congruence, = on a "'2.-algebra A is a family <=s I s.;S> of equiva

lence relations, =s on As, with the substitution property: for all GE "'2.s,si ... sn' if ai,bi E As; and if
ai=s;bi for i=l,. . .,n then

0

If A is a "'2.-algebra and = is a "'2.-congruence on A, let A/= be the S-indexed family of
sets of equivalence classes, A/= = <A/=s I sES>. As in Section 2, let [a]s (or just [a]) be
the equivalence class of SE As. We now make A/= into a "'2.-algebra by defining the operations

GA/:'

(8.1.1)

(8.1.2)

If GE "'2. 8 ,,\, then GA/= = [GA].

If GE°'2. 8,s1 ... sn and [ai]E(AI=\ then

([a 1],. .. .,[an])G A/= = [(a1,. .. ,a0)G A].

Proposition 8.2. If A is a "'2.-algebra and = is a "'2.-congruence on A, then A/=, as defined
above, is a "'2.-algebra, called the quotient of A by =· 0

Proposition 8.3. The canonical map h:A-A/= which sends each a to [a] (for aEA8 ,

(a)h5 =[a] 5) is a "'2.-homomorphism. Furthermore, if h:A-B is a "'2.-homomorphism and =h is
defined by:

a =h a' iff (a)h = (a')h,

then =his a "'2.-congruence and if his surjective then A/=h i= B. D

In order to define the free ("'2.,E)-algebra we want the smallest congruence relation on
T:l:(X) containing all substitution instances of E; for this the following result is key.

Proposition 8.4. Let A be any "'2.-algebra. Then the congruence relations on A form a
complete lattice. D

let El(A) be the lattice of congruence relations on A. The minimum element of El(A) is
the identity relation (family of identity relations) on A and the maximum element is the

universal relation, <A,AxA,A>. Because the properties that make a relation a congruence
relation are of a closure type (see 8.1), it follows that an arbitrary intersection of congruence
relations is again a congruence relation. This makes El(A) a lattice. If R is any family of
relations on A, then the congruence generated by R is the intersection of all congruences

123

containing R. For example, the join of two congruences, = 1, and = 2 is the congruence

generated by = 1 u ::2 because in general, the union of congruence relations will not be a

congruence relation.

If e = <el'e2> is a ~-equation, then a substitution instance of e (in T:i:(X)) is the result of

substituting expressions in T :i:CX) for the variables in e. This substitution is given by Theorem

6.10. For any assignment ll:var(e)-T:i:(X), <(e1)11#,(e2)11#> is a substitution instance of e.

We get all substitution instances of e as we let II vary over all possible assignments to T I(X).

Let E(TI(X)) be the family of relations obtained in this way, i.e., E(TI(X))8 ={(e)ll# I eEE5

and ll:var(e)-TI(X)}. Define =E to be the smallest congruence containing E(TI(X)) which

exists by Proposition 8.4. We define TI,E(X) to be TI(X)/=E' the quotient of the free

~-algebra by the congruence relation generated by substitution instances of E. Finally, let

lx:X-TI,E(X) be the canonical map, Ix:x-[x], taking each x to the congruence class of x

relative to = E"

Theorem 8.5. <Ix,T:i:,E(X)> is the algebra freely generated by X in the category AigI,E of

all ~-algebras satisfying E: for any.~-algebra A which satisfies E and for any set map h:X A,

there exists a unique homomorphism h#:T I,E(X)-A such that

x~F
A

commutes in Set. 0

Corollary 8.6. T I,E = T I,E(0) is the initial algebra in Alg:!:,E" 0

There are two ways to treat equational systems from a deductive point of view. The first

is "reduction," which is the basis of most automatic algebraic simplifiers or theorem provers;

the second is more like a "logistic system" where a "proof" consists of a sequence of pairs

(equations) satisfying certain proof rules.

Let us assume that we have a fixed equational system E, so that we don't have to subscript

everything we write with E. For reduction, we define a relation ~ on TI(X), called "directly

reduces to. 11 Then ~ * is the reflexive transitive closure of ~ and is called 11 reduces to." This

is most simply described by going back to the fact that the carriers of the free algebra, TI(X),

in Theorem 6.10 are actually sets of strings on ~ u Xu{(,)}.

124

Definition 8.7. Let Ebe an equational system over T~(X). Let t,t'e:T~(X) 5 ; then t 9 5 t'

iff there exists ue:T~(X)s and xe:Xs, with u = u 1xu2 and there also exists a pair <v,v'> which

is a substitution instance of (EuE-1) 5,, and finally, t=u1vu2 and u 1v'u2 = t'. If t9/, we say t

directly reduces to t' and where 9* is the reflexive transitive closure of =i>, we say t reduces to t'

when t9*t'. 0

The important thing about this deductive system is that t reduces to t' (by E) iff t = E t'.

Proposition 8.8. Let Ebe an equational system over T~(X), and let '-l:>* be as in Definition

8.7. Then for all t,t' e:T ~(X), t reduces to t' by E iff t is congruent tot' modulo E, i.e., '5>*

::E. 0

Definition 8.9. Let E be an equational system over T~(X). An equational proof is a

sequence of equations (pairs) from T ~(X) with the property that if e=<e 1 ,e2 > is the ith

member in the sequence then one of the following holds.

(8.9.1)

(8.9.2)

(8.9.3)

(8.9.4)

(8.9.5)

e is a substitution instance of E.

e 1 = t = e2 for some te:T~(X).

<e2,e 1 > appears earlier in the sequence.

Both <el'e 1'> and <e 1',e2> appear earlier in the sequence for some

e1' e:T~(X).

There are pairs <e/,e;">, i = 1, ... ,n earlier in the sequence with e/, e;" of

sort si, and there is some ae: :2:s,s, ... s. with

e 1 =a(e1' ... en') and a(e1 " •.. en")=e2.

e is equationally deducible from E iff there exists an equational proof with e as it last line. D

Proposition 8.10. An equation e == <el'e2> is equationally deducible from E iff e 1 =E e2.

0

9. ABSTRACT DATA TYPES.

There has been a continuing active interest in both the practice and the theory of the

specification of abstract data types. In fact, a number of recent papers in the bibliography

begin with a variant of that same statement. The divergence of attitudes, approaches, and

perceptions of the problem can well be illustrated by a perusal of the Proceedings of the

SIGPLAN/SIGMOD Conference on Data: Abstraction, Definition and Structure, Salt Lake

City, Utah, March, 1976.

125.

The fundamental idea in abstract data type specification is to precisely present (describe,

specify) a data type independent of any representation of the data objects and independent of

any implementation of the operations of the type. The idea has, at least in part, grown from

the suggestion of Hoare (1972):

In the development of programs by stepwise refinement, the programmer is encouraged
to postpone the decision on representation of his data until after he has designed his
algorithm and has expressed it as an 'abstract' program operating on 'abstract' data.

The literature is replete with what can be viewed as responses to this suggestion.

Our work has followed the same lines as Guttag, Horowitz, Liskov, Musser and Zilles in

that we view data types as many-sorted algebras. At least since F. L. Morris (1973), it seems

to be generally accepted that types are not just sets, but sets equipped with operations, and that

is exactly what many-sorted algebras are. Many other authors have the same view but are not

exploiting the mathematics of universal algebra.

As we approach it, what is "abstract" about an abstract data type is that it consists of an

isomorphism class of algebras rather than any concrete representative of the class. When it

comes to specifying an abstract data type· one can display a particular algebra and define the

abstract data type as the isomorphism class of that algebra. The proposed alternative is to

characterize the isomorphism class using axioms written in terms of the operations of the types.

Spitzen and Wegbreit (197 5) list three properties inherent in describing the type by

axioms.

First, they are declarative and hence avoid programming details and language dependen
cies. Second, they are intuitively reasonable descriptions of the behavior of various
structures. Finally, they are sufficiently rigorous to permit a proof that a particular
realization of the data structures is faithful to the specifications.

And Guttag (1977) adds:

They are easy to read and comprehend, thus facilitating informal verification of the fact
that they do indeed conform to the intent of their creator.

There is also the advantage of potential automatic (though perhaps inefficient) implementation

of the type directly from the specification as in Goguen and Tardo (1977). Perhaps summariz

ing all these points, the language for writing algebraic specifications is simple, fixed, and

126

algebraic as opposed to the open-ended ways one can go about describing a particular algebra.

(Brand (1978) raises serious objections to some of these points.)

Our approach is distinguished from others' by the fact that we actually want to live in both

worlds; we believe there has to be a standard of correctness of a specification, i.e., a criterion

for formally verifying that we have specified what we want. When we begin to write down a

specification we have in mind some particular algebra and that specification is correct iff the

specified algebra is isomorphic to the intended algebra.

We use the concept of initial algebras as the key to providing both the syntax and

semantics for specifications. We were originally attracted to this approach because it offered a

comparatively simple way to provide absolutely rigorous semantics for data type specifications,

and it worked very nicely for simple examples; we were able to specify such data types as int,

boot, string, etc. in a very natural way (see ADJ (1976a)).

As we continued working in this area it became evident that things were not as simple as

they had looked at first.

The need to handle "exceptional states" and/or "errors" (e.g., the result of "reading" an

empty stack) led to very complex specifications (see ADJ (1976a) for examples.) An approach

using "error algebras" is proposed in ADJ (1977a). In studying the form of the equational

specifications we realized that one viable course would be to allow conditional axioms in our

specifications. The resulting approach was sketched in ADJ (1976). However, unanswered in

that paper was the question of whether these new conditional specifications were in any sense

more powerful than our earlier equational specifications. In ADJ (1978) we answer that

question in the affirmative. However the answer opens the question of whether or not

conditional specifications are too powerful in either the sense that they permit us to specify

undesirable objects, or that, with such power, they are necessarily intractable from an applica

tions point of view (for automatic implementations, for example).

In many cases it appeared to be necessary to include "hidden" or auxiliary operations in a

specification in order to keep the specification finite. While we were working on this problem,

Majster (1977, l 977a) announced a number of examples which she claimed could not be

specified with a finite number of equations. Her examples have the merit that they are

plausible (reasonable) data types, but, despite the fact that our intuition also tells us that these

data types are not finitely specifiable, we do not find her proofs to be totally convincing. The

problem is that there are just too many cases that have to be ruled out. In ADJ (1978) we and

127

described the (unrealistic) data type toy-stack, which is not finitely presentable but when

equipped with an additional operation, is finitely (equationally) axiomatizable. This proves that

"hidden functions" are necessary in some situations and provides a mathematical basis for the

"hidden function question." (C.f. Liskov and Berzins (1977), p. 19, and the discussion of the

operation "derive" in Burstall and Goguen (1977)).

A principal shortcoming of our earlier development was an inadequate treatment of

"parameterized types". That is, it is clear intuitively that the two data types

finite-sets-of-integers and finite-.sets-of-chamcters are intimately related and are, indeed just

different instances of the "parameterized type", finite-sets-of-(). The problem was to give a

mathematically precise characterization of the kind of object finite-sets-of-() is, and to show

how to specify such objects. An answer is given in ADJ (1978).

We begin a summary of the techniques and ideas of ADJ (1975,1976,1976a,1978) with

another definition.

Definition 9.1. Let L be a signature. A ~-algebra is minimal iff it has no proper subalge

bras. D

Definition 9.2. An abstract data type is the isomorphism class of a minimal ~-algebra. D

In ADJ (1976,1976a), an abstract data type was defined to be the isomorphism class of an

initial algebra in a category of ~-algebras where the latter was interpreted to be a full subcate

gory of Alg:l:. The definition here is equivalent, because if A is a minimal L-algebra and E is

the set of all pairs <el'e2> from T:l: such that (e 1)hA = (e2)hA,where hA is the unique

homomorphism from T :l: to A, then A is initial in Alg:l:,E'

Definition 9.3. A specification of a data type is a pair <L,E> consisting of a signature L

and a set E of L-equations. The specification <L,E> is correct with respect to a L-algebra A if

and only if T :l:,E is isomorphic to A, or equivalently (Proposition 3.11.) A is initial in Alg:l:,E D

Example 9.1. Let !J be the {int,Boo/}-sorted subsignature of L of Example 7.1 consisting of

O,Pr,Su,tt,ff,~ ,and A of the appropriate types. Let E be the following set of equations.

(Al) Pr(Su(x))=x

(A2) Su(Pr(x))=x

(A3) ~ (tt)=ff

(A4) ~(ff)=tt

(AS) ltAX=X

(A6) ff AX=ff

128

Let A be the two-sorted algebra consisting of the integers and Boolean values with zero,

successor, predecessor, truth value constants, 'not' and 'and'. Then the specification <0,E> is

correct with respect to this algebra A. 0

10. ORDERED ALGEBRAS.

Definition 10.1. Let I be an S-sorted signature. A (strict) ordered I-algebra A is a

I-algebra in which each carrier A5 is equipped with a partial order !;5 with minimum element

.J. 5 • The operations o A of A are monotonic:

0

Definition 10.2. A homomorphism of ordered I-algebras is a I-homomorphism which is

monotonic and strict (preserving .J.). 0

Let PalgI be the category of ordered I-algebras with their homomorphisms.

Let X be a family of sets (generators) and write Xu .J. for the S-indexed family <X5 u {.J. 5 }

SES>. Define PTI(X) to be the ordered I-algebra with carrier TI(Xu .J.) ordered by the

smallest partial order relation on TI (Xu .J.) satisfying the following conditions.

(10.3.1) .J. 5 !; 5 t for all t € PT I(X)5

(10.3.2) Whenever o€I8, 51 ••• sn and uii;;sivi for i € [n] and ui,Vi€ PTI(X)5i,

o(u1 ... u0) !; 5 o(v1 .•. v0).

Nivat (1973) shows (for the one-sorted case) that this ordering can be characterized in

terms of the strings that make up PTI(X):

Proposition 10.4. For any t, t' in PTI(X), t i;; t' iff t' can be obtained from t by replacing

zero or more occurrences of .J. 5 in t by strings of sorts, i.e., by elements of PTI(X)5• 0

If B is an ordered I-algebra and h:X+B, is a family of maps to the carrier of B, then

h.L:(Xu.J.) B is also a family of (strict) maps taking .J. 5 to .J. 5 in B. Proposition 6.10 guaran

tees a unique I-algebra homomorphism h#:TI(Xu.J.) B and it is easy to check that this

I-homomorphism is a homomorphism of ordered algebras, i.e., that the order relation on

PTI(X) is preserved. This outlines the proof of

Proposition 10.5. Let Ix:X PTI(X) be the family of maps taking the generators to the

carrier of PTI(X). Then <PTI(X),lx> is the free ordered I-algebra, i.e. it is free in the

category Palg or ordered I-algebras: for any ordered I-algebra A and for any family of maps

129

h:X-B, there exists a unique ordered ~-algebra homomorphism h#:PT ~(X)->-B such that Ixh

= h#.

0

Corollary 10.6. PT ~(.0) = PT~ is the initial algebra in the category of ordered ~-algebras;

for any ordered ~-algebra A, there is a unique homomorphism of ordered ~-algebras,

hA:PT~-A. D

Again we describe subcategories of Palgp but this time we use 11 inequations." These are

just pairs e = <el'e2> in PT ~(X) and for such pairs we write e 1 i;; e2 because of the way we

shall interpret these pairs. An ordered ~-algebra, A, satisfies e iff for every assignment

ll:var(e)-A,

(e1)11# i;; (e2)11#.

Again, when A satisfies e, we can also say e 1 i;;e2 is valid in A or that A is a model for e. An

inequational system E is a set of pairs from PT~(X), and A satisfies E just in case A satisfies

every e EE. Palg~,E is the category of ordered ~-algebras satisfying E with their homomor

phisms.

The free algebra in Palg~,E is obtained in a manner analogous to that of Section 6, but

there are slight complications.

Definition 10.7. A preorder !;;; on a ~-algebra A is said to be admissible iff for every

""~s,s1 ... sn and ai,biEAs;' if ai!;;;bi for iE[n] then,

(ai' .. .,an)a A !;;; (bl' ... ,bn)a A' D

This generalizes Definition 8.1 of Section 6; we might have defined a congruence relation

to be an 11 admissible equivalence relation," or an equivalence relation with the "substitution

property. 11 Likewise, Definition 10. 7 gives us a preorder with the substitution property.

Recall from Section 2 that any preorder, !;;;, determines an equivalence relation~ given by:

a ~ b iff a i;;; b and b !;;; a.

Admissibility of !;;; makes ~ a congruence:

Proposition 10.8. If i;;; is an admissible preorder on a ~-algebra A, then the equivalence

relation ~ determined by !;;; is a congruence relation. D

130

The steps for getting the free ~-algebra· satisfying an inequational system E now proceed

just as they did in Section 6

Let A be a I-algebra and £ an admissible preorder on A. Further, let A/- be the

quotient of A by the congruence (Proposition 10.8) - determined by £. By Proposition 8.2

A/- is a ~-algebra; we need the order relation on A/-. Define that partial order (see Section

2) i;; on A/- by

[a] i;; [b] iff a £ b.

Proposition 10.9. If A is an ordered ~-algebra and £ is an admissible preorder then A/£,

which is the I-algebra A/- with the ordering as defined above, is an ordered ~-algebra, called

the quotient of A by £. D

Proposition 10.10. If A is a ~-algebra and £ is an admissible preorder on A, then the

canonical map h:A A/£ which sends each a to [a], its ---equivalence class, is a homomor

phism of ordered I-algebras. Further, if h:A B is an ordered ~-algebra homomorphism and

£h is defined by

a £ a'iff (a)h i;; A (a')h,

is an admissible preorder and if his surjective, then A/£h ~ B.D

Just as the congruences on a I-algebra form a complete lattice, (Proposition 8.4) so also

the admissible preorders an an ordered ~-algebra form a complete lattice.

Proposition 10.H. Let A be any ordered ~-algebra. The admissible preorders of A form a

complete lattice which we denote 0(A), ju~t as in the unordered case. D

Let Ebe an inequational system, i.e., a family of pairs from PTl:(X), and let E(PTl:(X))

be the family of "substitution instances" of E;

E(PTl:(X))8 = {<(e1)11#,(e2)8#> I <e1,e2> i; E8 }.

Then we can define £e to be the least admissible preorder on PTl:(X) containing E(PTl:(X)),

i.e., the intersection in S(PTl:(X)) of all admissible preorders containing E(PTl:(X)). Just as in

the unordered case, define PTl:,E(X) to be PTl:(X)/£E with its canonical map lx:X ... PTl:,E

sending each generator x to its equivalence class [x] determined by - E'

Theorem 10.12. <lx,PTl:,E(X)> is the algebra freely generated by X in the category

Palgl:,E of all ordered ~-algebras satisfying E: for any ordered I-algebra A which satisfies E

and for any family of maps h:X A, there exists a unique homomorphism of ordered ~

algebras, h#:PTl: E A such that

commutes in Set5. 0

Corollary 10.13. PTL,E = PTL,E(0) is initial in PalgL,E" 0

At this point we introduce "partial trees"; they provide a particularly useful representation

of the free continuous algebra to be described in Section 11. But they also are useful in

visualizing both the free ~-algebra and the free ordered ~-algebra.

Definition 10.14. Let ~ be an S-sorted signature and X a family of generators or variables.

Then an X-ary (normalized, singly rooted, ordered, partial) ~-tree of sort s is a partial function

t:[w]* -~ uX whose graph satisfies the following conditions,

(10.14.1) If <A..~>Et then ~ € (~uX)8•

(10.14.2) For all UE[w]* and kE[wJ, if <uk,~>Et for ~€(~uX), then <u,71>Et for s

some <w,s'> with wk'=s and 71E~w.s•· 0

The first condition says that a non-empty tree of sort s must have its root labeled with a

symbol of sort s. The second (and quite powerful) condition implies that the domain of

definition of t be prefix closed, that is, if t is defined at uv, then t is defined at u. In addition,

(10.14.2) forces the the successor labels of a node to be consistent with the arity of the

operation symbol at that node. For example, if u is of type <a,abc> and <u,u> Et then

<ui,~> Et implies i = 1,2, or 3 (nothing greater) and ~ must be of sort a, b, or c respectively.

Let TrL(X) be the S-indexed family of X-ary ~-trees. We give TrL(X) an algebraic

structure by defining the operations, uTr:

(10.14.3)

The order relation on TrL(X) is just set inclusion of the graphs of the partial functions that

make up TrL(X). It is an easy matter to check that the operations defined by (10.14.3) are

monotonic. This gives

Proposition 10.15. For any signature ~ and indexed family of generators, X, TrL(X) is an

ordered ~-algebra. 0

More importantly, we shall see in Section 11 that TrL(X), equipped with the injection

Jx:X-TrL(X) which sends x to the tree {<A.,x>}, is the free continuous algebra generated by

132

X. Subalgebras of Trk(X) will be of interest to us now. We define only the carriers of those

algebras; one must verify that those carriers are closed under the operations given by (10.14.3).

(10.16.l) TTrk(X) is the set of all ~-trees which are total, i.e., for all <u,g>Et, if

~E~s,si···sn' then there are lJ;d~uX\ for i=l, ... ,n, with <ui,lJ;>Et.

(10.16.2) FTrk(X) is the set of finite ~-trees, those with their domain of definition, {w

<w,~>Et for some ~E~UX}, being finite.

For the next subalgebra of Trk(X) we need the auxiliary notion of "subtree." For every
* vE[w] and ~-tree, t, define tv to be the ~-tree consisting of all pairs <u,~> such that

<vu,~> Et. Then t is a subtree oft' iff t=t'v for some VE[w]*. Sub(t) is the set of all subtrees

oft,

Sub(t) = {tv I vE[w]*}.

For finite trees and for trees with a "regular" pattern, Sub(t) is a finite set. This is how the

next subalgebra is defined.

(10.16.3) RTrk(X) is the subset of ~-trees t for which Sub(t) is finite. These are called

the rational trees.

(10.16.4) FTTrk(X) is the set of finite total ~-trees.

FTTrk(X) = FTrk(X)nTTrk(X).

(10.16.5) RTTrk(X) is the set of rational total ~-trees.

RTTrk(X) = RTrk(X)nTTrk(X).

Proposition 10.17. <FTTrk(X),Jx> is the ~-algebra freely generated by X; thus

<FTTrk(X),Jx> and <Tk(X),lx> are (uniquely) isomorphic. 0

Proposition 10.17 is a precise statement of the interchangeability of finite total trees and

finite expressions. We get the corresponding result for ordered algebras.

Proposition H>.18. <FTrk(X),Jx> is the ordered ~ algebra freely generated X so that

<FTrk(X),Jx> and <PTk(X)Jx> are uniquely isomorphic. 0

11. CONTINUOUS ALGEBRAS.

Definition U.1. Let ~ be an S-sorted signature. A Z-continuous ~-algebra is a strict

ordered ~-algebra A, each carrier A8 of which is Z-complete and each operation of which is

Z-continuous. A homomorphism of Z-continuous algebras is a homomorphism of ordered

133

~-algebras which is Z-continuous. Thus h:A-B must be a ~-homomorphism which is strict,

monotonic and Z-continuous. 0

Let ZAlgL be the category of Z-continuous ~-algebras, with their homomorphisms. We are,

for the most part, interested in llAlgL and PCAlgL although other classes of algebras may turn

out to be interesting.

In Section 10, we defined the algebra TrL(X) of finite and infinite partial X-ary trees. This

algebra plays the role of the algebra of expressions for the continuous case.

Theorem 11.2. The carriers of the algebra TrL(X) are PC-complete and the operations are

LI-continuous. Thus TrL(X) is a PC-continuous algebra. In fact, <Tr:l:(X),Jx> is the

PC-continuous algebra freely generated by X. (Recall, J x sends x to the finite (total) tree

{<>-,x>}.) 0

The Proof of Theorem 11.2 uses the fact that every tree in TrL(X) is the least upper

bound of an w-chain of finite trees (approximations; say those of depth n = 0,1,2, ...) and it

therefore follows that Tr:l:(X) is the ~-algebra freely generated by X in the category ZA!g:l: of

Z-continuous algebras for any subset system Z with w£Z and Z£PC.

Again we will describe subcategories of ZAlgL using inequalities as in Section 10, but

things don't work quite as smoothly as they did for algebras or even ordered algebras. This can

be indicated by a simple example. Consider a one-sorted signature~ with ~0={a} and ~ 1 ={f}.

Tr:l:(X) has but one infinite tree which is, in effect, an w-sequence of f's; the rest of Tr:l:(X) is

FTrL(X) or its isomorphic copy PTL(X) if one wants to think of it that way. That one infinite

tree is the least upper bound of the w-chain of fn(.l). Now if we impose the single inequation,

xi;;f(x), we obtain new w-chains, fn(a) and for each generator, fn(x). No simple quotient

(equivalence classes, etc.) of Tr:l:(X) can give us a complete (say w-complete) algebra because

we need to have limits of all these new chains which do not exist in Tr:l:(X). In order to get

analogs to Theorems 8.5 and 10.12 we must use the completion process described in Section 5

as was first realized by Courcelle and Nivat (1976) and independently by Bloom (1976).

12. ALGEBRAIC THEORIES.

Algebraic theories (Lawvere (1963)) are treated in ADJ (1976a, 1976b, 1977b, 1978a).

There are many ways to formulate the concept of algebraic theory; a functorial approach

similar to Lawvere's is found in ADJ (1975b). Like Ginali (1975), Bigot (1973) and Bloom

and Elgot (1974), we employ an "equational" description because we believe that formulation

to be more perspicuous and workable. Many of our earlier papers employed one-sorted (or

134

conventional) algebraic theories. The definition of many-sorted (or S-sorted) algebraic theory

to follow also appears in ADJ (1978a, 1978b).

Definition 12.1. Let S be a nonempty set (of sorts). An S-sorted algebraic theory consists

of the following data.

(12.1. l) A family of sets, T(u,v), indexed by pairs of strings u,vE s*; the elements of

T(u,v) are called morphisms from u to v. We write a:u-v to mean aET(u,v).

(12.1.2) An associative composition operation o :T(u,v) xT(v,w) defined for all u,v,w in

s*. That composition has two-sided identities, lv:v-v, for all vES*, such that

for all a:u-v,

1 °a=a=a 0 1 u v

(12.1.3) For each nEw, UES0 and iE[n], a distinguished morphism or injection, x~:u;..,.u.

(12.1.4) For each nEw, uES0 and vES*, an operation,

(, ... ,)u,v:Ilidn]T(u;,V)-T(u,v)

which is called source tupling.

The case n=O in (12.1.4) gives a unique morphism from i\ to v for all VES*, denoted Ov:i\-v.

We immediately drop the subscripts from the tupling operation as they can always be retrieved

from context. The injections and source tupling operations are required to satisfy the following

"coproduct conditions."

(12.1.Sa) For all nEw, UES0 , VES* and all families, </3;:u;-v I iE[n]>

x> (/31' ... ,/3n) = 13;·
(12.1.Sb) For all nEw, UES0 , VES* and J3:u-v.

(x~ o /3, ... ,x> /3) = /3.

For aET(u,v), we say that a has type <u,v>, source u, arity or target v, and rank Iv I; if u has

length 1, then we say that a has sort UE S. D

Comparing with the definition of category in Section 3, we see from (12.1.1,2), that an

S-sorted algebraic theory is a category with objects s*, but, as will be amplified below,

Definition 12.1 is presenting an algebraic theory as a many (s* xs*) sorted algebra.

In the special case where S is a singleton, we refer to theories as one-sorted, rather than

S-sorted, do not distinguish between different singleton sets, and thus identify s* with the set w

= {0,1, ... } of natural numbers. Morphisms then go a:n-p. We now give some examples of

algebraic theories.

Example 12.L (The theory Sum A' for a set A.) Let A be a set and for each n,pE w define

Sum A (n,p) to be the set of all panial functions from Ax [n] to Ax [p]. Composition is function

composition. Thus SumA is, in effect, the full subcategory of Pfn determined by the objects

135

Ax[n] for nEw. It is "in effect", because the objects of the full subcategory are actually the

sets Ax [n] whereas the objects of Sum A are the corresponding natural numbers. This is a

typical situation with algebraic theories. For each nEw and iE[n], the distinguished morphism

x~:l n is the (total) function from Ax[l] to Ax[n] sending <a,1> to <a,i>. Tupling of n

functions, fi:l p, gives (fi' ... ,fn):n-p defined by

<a,i>(fi' ... ,fn) = <a,l>fi.

In SumA the object n corresponds to an n-fold disjoint union (or coproduct) of A with itself;

the ithcopy is the set of <i,a> for aEA. Identifying A with Ax[l], the jlh distinguished

morphism sends A to the ith copy of A in Ax [n] and tupling of n functions defined on A

(actually on Ax[l]) results in the ith function working on its (the ilh) copy of A. The theory

SumA is an extremely important algebraic theory for algebraic semantics; its formulation and

importance being recognized in Elgot (1973); Elgot used the notation [A] for SumA. D

Example 12.2. (The theory SumA' for an S-indexed family, A.) The many-sorted version of

Sum A follows the comments in Section 2 on the way we can treat S-indexed families in very

much the same way as we treat sets. Let S be the set of sorts and let A = <As I SES> be an

S-indexed family of sets. Then for WES*, define Ax[w] to be {<a,i> I aEAwJ. Ax[w] is the
I

disjoint union (or coproduct), Aw1 + ... +Awn' where n= I w I. Now we exactly repeat the

definition of Example 12.1. SumA(v,w) consists of all partial functions f:Ax[v]-Ax[w]. The

distinguished morphism x;:ur ... u is the injection of Ai in Ax[w], sending <a,1> to <a,i>.

Tupling works just as above: <a,i>(fl' ... ,fn) = <a,l>fi, where iE[n] and fi:Ax[w)-Ax[v].

An equivalent formulation for the theory Sym A is obtained using matrices. (See Elgot

(1973, 1974) for, again, the one-sorted case.) Take for SymA (u,v) all "determinate" I u I x Iv I

matrices of partial functions where the (i,j)-th element is from Aui to Avi· Such a matrix is

determinate if the domains of definition are disjoint along each row. Composition is the

expected matrix multiplication (taking the join of the composites which exists because of

determinateness) and tupling makes a matrix out of rows. D

Example 12.3. (The theory Pow A' for a set A.) Returning back to the one-sorted case for a

preliminary version of this example, let A be a set and define Pow A (n,p) to be the set of all

total functions, f:AP -An (note the reversal of the order of n and p). Composition in Pow A is

reversed function composition, i.e., given f:n_,.p and g:p-q, then fog;n q in PowA is

gf:Aq-An. For each idn], the distinguished morphism x7:1-n is the projection'"; from An to

A sending <al' ... ,an> to ai. Tupling takes n morphisms, fi:l-p (f;:AP-..A), and produces

(what is actually called the target tuple when working in Set) (fl' ... ,fn):AP -An defined by

(<al' ... ,an>)(f1, ... ,fn) = <(a1)fl' ... ,(a0 }f0 > E An. 0

136

Example 12.4. (The theory Pow A for an S-indexed family of sets, A.) Let S be a set (of

sorts) and A = <As Is€ S> and S-indexed family of sets. Recall from Section 2, for w € s*, Aw

=A x ... xA . Then PowA(v,w) is the set of all functions from Aw to Av. xu:u.-u is the Wt W 0 1 I

projection again, i.e., the function Au -A11 • sending <al' ... ,a11 > to ai Tupling is just as in the
'

previous example. D

Proposition 12.2. For all nEw, UES0 , vES*, <fli:ui-v>, and y:u-v,

if x~oy = fli for iE[nJ, theny =(fll' ... ,fl11)

Proposition 12.3. For each nEw and UES11,

(x~, ... ,x~) = 111

D

D

Proposition 12.2 says that a morphism in an algebraic theory is uniquely determined by its

components, x~oy. Proposition 12.3 expresses (uniquely) the identity for u as a tuple of

distinguished morphisms. We will call any tuple of distinguished morphisms a map. The reason

for this is that any such tuple, say,

(xv , ... ,xv):u-v
It ln

corresponds to a function f:(I u I J-[Iv I l given by (j)f = ii and note that (j)fu = (j)v.

Conversely, given any pair of strings, UES11 and VE Sm and any function, f:[n]->-[m] such that fv

= u,

A A /\
there is a corresponding tuple of distinguished morphisms f:u-v where f=(x~f,. . .,x~f):u-+v. f

can be thought as reflecting the corresponding substitution of variables; composition on the
A

right with f results in simultaneously substituting xif for xi and by the restraints we have, both
A

of these variables are of sort ui=vow is a mapping from Strs (see Section 2) to T which is a

functor (preserving identities by Proposition 12.3; preserving composition is easily checked).

When is an injection, T is said to be nnn-degenerate; Strs is called the base category for

S-sorted algebraic theories. There are two degenerate theories that satisfy the conditions of

Definition 12.1, one has a single morphism from n to p for every n and p and the other has a

single morphism from n to p for every n ;::: 0 and every p > 0. This corresponds to the

situation for many-sorted algebras, that any system of equations has a model, or is satisfied by

an algebra, which has at most one element in each carrier.

This is an appropriate place to observe that an S-sorted algebraic theory is, in fact, an

(s* x s*)-sorted algebra with (infinite) signature given by the following.

~<u,w>,<u,v><v,w> { 0 u,v,w}

lu ~<u,u>,A

~<u,ui>,A {x;1} , for id I u 11

~<u,v>,<u 1 ,u><u2,u> .. .<u0 ,u> = {(,. . ., >u,)
* * * * * ~X.Y = 0 for all other XES xS and YE(S xS) .

137

The following is the infinite set of axioms which give us the equational class of S-sorted

algebraic theories (as (S* x s*)-sorted algebras). For completeness, we give those equations in

their full regalia of subscripted operations; we hope you never have to see them that way again!

In effect, they already appear in unsubscripted form in Definition 12.1.

(12.4.1) For all a:u-v, {3:v-w, and y:w...,,.z,

(12.4.2) For all a:u-v,

(I o a) = a = (a~ 1) u u,u,v u,v,v v

(12.4.3)

(12.4.4) For all U,VE: s· and {3:u-v,

This is certainly a long-winded and notationally cumbersome (if not embarrassing) way to

write out the equations of Definition 12.1, but it is an important exercise for it means that

results on many-sorted algebras carry over to many-sorted algebraic theories.

In particular we know what homomorphisms (morphisms) of S-sorted theories are and we

use the notation Th8 for the category of S-sorted theories. This is in fact the category AlgL,E

for the (S* x s*)-sorted signature listed above with E, the axioms listed in 12.4. l through

12.4.4. We also want to make it clear that the material on S-sorted algebras also tells us what

subtheories are and how to define equational classes of theories.. We can almost infer what

ordered (Section 10) and continuous (Section 11) S-sorted theories are, but there is a slight

twist in those definitions which we postpone for a while.

From Theorem 8.5 we know of the existence (and construction) of free S-sorted algebraic

theories generated by (S• x s*)-indexed families of sets. This is at times useful (see ADJ

(l 977a)) but it is really more than necessary. Note than any generator y in the carrier (horn

138

set) T(u,v) determines I u I elements x~ 0 y in the carriers T(ui,v) and y in turn is uniquely

determined (Proposition 12.2) by those elements. Thus it is sufficient to consider generators

indexed by S x s*, but such indexed families are exactly S-sorted signatures (see Definition

6.1).t Thus we know from Theorem 8.5 that for any S-sorted signature ~. there is an S-sorted

algebraic theory, Tp freely generated by~.

We actually go much further in using the results of Section 6 and construct T:i: using

Theorem 6.10, rather than the quotient construction of Theorem 8.5.

First we pick out a canonical family of variables, Xv for each vES*, assumed to be disjoint

from any signature~. As a set, Xv={xv1, 1,. .• ,xv
0
,n} which, as a S-indexed family, is

Next, define an S-sorted algebraic theory T :l: by

T~(u,v) = T~(X)u = T~(X) x ... xT~(X)
... ,,(.., V "" V llt "°' V U 0

where n is the length of u. Thus the morphisms in T:l:(u,v) are "u-tuples of expressions in the

variables Xv." Informally composition is substitution, i.e., if <tl' ... ,tn> .:T:i:(u,v) and

<t'1, .•. ,t;.,>e:T:l:(v,w) then the ith component of the composite (iE[n]) is the result of simultane

ously substituting t'. for x . in t..
J Vj,J l

We need to give a mathematical (i.e. algebraic) definition of this composition operation to

replace the informal one. For this, let us identify the set T 2: (X) u with the set of S-indexed

families of functions from Xu to T :l:(X). Notice that this is exactly like the identification of

An with the set of functions from [n] to A discussed in Section 2. Given t:Xu -T :i:<Xv), for

each iE[I u I J, (xui)tET :i:<Xv)ui' that is, the ith component oft is of sort ui as required.

Now given t:u-v and t'v-w in T:i:, Theorem 6.10 gives us a unique homomorphism

(t'l:T:i:(X)-T:1:(Xw). t 0 t' is the composite t(t')# (in Sets), or keeping the tuple view oft,

<tl' ... ,t0 > 0 t' = <(t1)(t')#, ... ,(t0)(t'l>. (This is all worked out in detail for the one-sorted

case in ADJ (1977b).)

In.au our earlier work (see especially ADJ (1975a, 1976d)) signatures were defined to be
(S x S)-indexed families of sets. There is good pedagogical reason for this. An operation
symbol a from ~s takes arguments of sorts s1, ... ,s , and gives a value of sort s. One ,s1··· 5 n 11 11 n tends to read it that way and the indexing, s,sl" .. s0 seems backwards. But as we are just
seeing, that "backwards" indexing is the natural one for S-sorted theories; every theory T
gives rise to an (SxS*)-indexed family, <T(s,w) I sES and WES*>. called the underlying
signature of T.

139

The distinguished morphism from s to v in TI is simply the variable x5, 1 (well, actually it is

the corresponding one-tuple) and tupling in TI is exactly that, tupling.

We equip TI with the obvious injection of the generators, II:~-TI, sending oE~s.si···•n to

the expression o(x51 , 1 ... x5n,n)ETI(X51 ... 50). Then we have

Theorem 12.5. <TI,II> is the S-sorted algebraic theory freely generated by the. S-sorted

signature ~- Thus, let T be any S-sorted algebraic theory and let H:~ + T be any

(Sxs*)-indexed family of maps (this is just the many-sorted algebra situation except that we

are only looking at the (SxS*)-indexed part of T, <T(s,u) I sES and uES*>). Then there

exists a unique morphism of algebraic theories, H#:TI T that extends H in the sense that

IIH#=H. 0

We are going to jump ahead and define another algebraic theory, one whose morphisms

are tuples of partial finite and infinite trees as described in Section 10. It is jumping ahead

because this theory, CTI, is the free continuous S-sorted algebraic theory and it has, as

subtheories, the free ordered, rational and iterative algebraic theories as well a theory iso

morphic to TI described above. . The reason for giving the construction now (before the

definitions of the other classes of theories) is because that construction is exactly like the one

we just went through for TI. We will change notation slightly so as to incorporate the

identification of tuples and functions alluded to there.

Recall from Section 2 that if A and B are S-indexed families, then A 8 is the set of f:A B,

i.e., the set of S-indexed families of functions, <f5:A5 a5 I SES>.

Define the S-sorted algebraic theory CTI by

CTI(u,v) = TrI(Xv)xu.

Given a:u-v and {Jv-w, a o fJ is a{J# where p# is the unique (continuous) ~-homomorphism

from TrI(Xv) to TrI(Xw) guaranteed by Theorem 11.2.

The distinguished morphism x~:ui-u is the map from Xu; to TrI(X0) sending xu;,I to xu;,i"

Tupling of n morphisms {Ji:ui v gives fJ:X0 -TrI(Xv) given by (x0 ;)fJ=(x0 ;,l){Ji. We check

the tupling equations:

140

so that 12.1.5a is satisfied. Next,

and this shows that 12.1.5b is satisfied. To be completely precise, the injection of the genera

tors is lx:~-+CTl: given by

Proposition 12.6. CTl:, as defined above is an S-sorted algebraic theory. D

CTl: is truly a remarkable algebraic theory as is its algebraic cousin Trl:(X). It has

subtheories corresponding to the various subalgebras of Trl:(X) given in 10.16.1 through

10.16.5. All but the first of these are of particular interest to us and we give them names as

follows.

(12.7.2) PTl: is the subtheory of CTl: determined by tuples of trees from FTrl:(Xv), i.e.,

tuples of finite partial Xv-ary ~-trees (10.16.2).

(12.7.3) RTl: is the subtheory of CTl: determined by tuples of trees from RTrl:(X), i.e.,

tuples of rational trees (10.16.3).

(12.7.4) F'fl: is the subtheory of CTl: (and of PTl: and RTl:) determined by tuples of

finite total trees (10.16.4).

(12.7.5) ITl: is the subtheory of CTl: (and of RTl:) determined by tuples of total rational

trees (10.16.5).

For each u, uJl: is in each of the subtheories defined above because it is total and finite.

We will use the same notation, Jl: for the target restriction of Jl::~-CTl: to each of the

subtheories PTl:, RTl:,F'fl:, and ITl:.

Theorem 12.8. For any S-sorted signature ~. <F'fl:,Jl:> is the S-sorted algebraic theory

freely generated by~. Thus <F'fl:,Jl:> and <Tl:,Il:> are (uniquely) isomorphic.

Deimition 12.9. An ordered S-sorted algebraic theory T is an S-sorted algebraic theory

which, as an cs* xs*)-sorted algebra is ordered, and in which the composition operation is left

strict, that is, for all u,v,w E: s• and a:v-w,

l.u,v 0 a = .Lu,w· D

We said earlier in this section that viewing algebraic theories as many-sorted algebras led

us to "almost" infer what ordered theories were. The almost comes in the "twist" that we

141

want the composition operation of the ordered theory to be left strict. There are algebraic

reasons for this, but the computational explanation is convincing. When the morphisms of the

theory are viewed as some kind of computations and .L stands for the totally undefined never

halting computation, then any computation following .L must be .L (totally undefined and never

halting). The opposite direction does not work the same way for a computation followed by the

totally undefined computation may have "some definition", for instance the first computation

might have had output which would be there whether or not the subsequent computation

terminated.

We can still infer from Theorem 10.12, the·existence of a free S-sorted ordered algebraic

theory because the left strict condition is equational (and thus inequational), but as in the

unordered case, we do better by using the free ordered algebra to obtain the free ordered

theory.

Theorem 12.10. Let ~ be any S-sorted signature. Then PT~ is an S-sorted ordered

algebraic theory and in particular, <PT~,Jx> is the S-sorted ordered algebraic theory freely

generated by ~. 0

The "twist" for continuous theories is that we do not require that the composition

operation be continuous, only continuous by components (see Section 5).

Definition 12.11. Let Z be a subset system. A Z-continuous algebraic theory is an ordered

algebraic theory in which the carriers, T(u,v), are all Z-complete posets and in which compos

ition is Z-continuous by components, i.e., for all Z-sets X£T(u,v) and Y£T(v,w),

(UX)o(LJY) = Li{xoy I XEX and yEY}. 0

Theorem 12.12. For any S-sorted signature ~. CT~ is a PC-continuous algebraic theory.

Further, if Z is any subset system with w£Z and Z£PC, then <CT~,J~.> is the Z-continuous

algebraic theory freely generated by ~. 0

13. SOLVING EQUATIONS: ITERATIVE AND RATIONAL THEORlES.

A principal interest in algebraic theories comes from the process of "solving equations"

within theories. This process is well illustrated in the one-sorted case by a theory for context

free sets and grammars first described in ADJ (1976d).

Let T be a set of terminal symbols and let X

non-terminal symbols with Xn = {Ap ... ,An}.

{Al'A2,. .. } be a countable set of

142

For each n,po;w, let CFT(n,p) be the complete lattice (LI-complete poset) of all n-tuples of

subsets of (Tu XP) * under component-wise set-theoretic inclusion. The minimum element is

.!.n,p = <~ •... ,R)>. For U=<Ul' ... ,Un>"CFT(n,p) and V=<Vl' ... ,Vp>°'CFT(p,q), define the

composite U 0 V to be W = <Wl' ... ,Wn>o;CFT(n,q), where W; consists of all words

w€(TuXq)* for which there exists u,;Ui such that w results from simultaneously replacing each

occurrence of Ai (jo; [p]) by some element of Vi (where distinct occurrences of Aj may be

replaced by distinct elements of Vi). This composition is associative, left strict and /l

continuous. (Note, composition is not LI-continuous by components as analysis of the compos

ite, {A1A1} 0 V shows with a non-trivial V = U{{v}lvo;V}.) The identity for 0 in CFT(n,n) is

<{A1}, •.. ,{An}>. The distinguished morphism x~ in CFT(l,n) is just <{A;}> and

<{Ai}>o(Ul' ... ,Un)=Ui and <<{A1}> 0 U, ... ,<{An}> 0 U>=U, so that the tupling equations

(12.1.Sa, 12.1.Sb) are satisfied.

Proposition 13.1. For any set T (of terminalsymbols), CFT is an /l-continuous algebraic

theory. 0

For example we can take T {a,b}, U=<{aA1a,A2},{b}>:2 2, and

V=<{aa,ab,ba},{i\}>:2-0. Then UoV=<{aaaa,aaba,abaa,i\},{b}>. More interesting is the

sequence of composites Uk 0 .l.z,o for k;::O. These are:

.l.~.o = <0.~>
Uo.!.20 = <R!,{b}>
2 '

u o .!.2 0 = <{b},{b}>
3 '

U o .l.z,o = <{aba,b},{b}>
4

U 0 .l.z,o = <{aabaa,aba,b},{b}>

This sequence of morphisms from 2 to 0 forms a chain, the kth element of which is

and the union of which is

Now Ut has the property that Ut = U o Ut, i.e., Ut is a solution (for 0 in the equation ~ =

Uo~. In fact it is the least solution in the sense that if V = UoV then utsv.

The morphism U in this discussion is a representation of the context-free grammar with

non-terminals {Al'A2}, terminals {a,b} and productions, {A1 +aA1a, A 1 ..,.A2' A2+b}. The

"solution" process we've gone through is that of finding the terminal sets (languages) for both

the non-terminals A1 and A2 simultaneously, a familiar process in not such a familiar notation.

143

Any morphism U=<Ul' ... ,Un>:n-n (with Ui finite) can be viewed in this way as a

context-free grammar in non-terminals {Al' ... ,An}. The solution Ut:n-o consists of an n-tuple

of subsets of T* =(TuX0)*, the ith component (x~ 0 Ut) of which is the context"free set

generated from the non-terminal Ai. It is the minimum solution to the equation, ~= U 0 ~-

Now we make the step of introducing equations with "parameters," an essential ingredient

in the study of iteration and recursion first recognized by Wagner (1971a). It is essential in

that it permits the study of the interaction of composition with the iteration operation. For the

context-free case, a morphism U:n-n+p is an n-tuple of sets of strings involving the non

terminals Al' ... ,An, and An+l'···•An+p' the latter being called "parameters." The solution

Ut:n-p will be the n-tuple of context-free sets obtained by viewing the parameters as if they

were terminals and then replacing them with the "first" p non-terminals, Al' ... ,AP. This shift

of "variables" may be confusing at first, but it makes things work beautifully. Ut is the

solution to the (rational) equation,

where ~i=x~o~.1" That solution is obtained as the least upper bound of the sequence U(k)

where:

To formulate the general process illustrated by the context-free sets example, we need

some additional concepts and notation for algebraic theories in general. Source tupling (12.1.4)

puts morphisms {3i:si->-W together to get /3=(/31' ... ,/3n):s 1 ••. sn w. This process is generalized to

source pairing where we put a:u-w and {3:v-+w together to get (a,/3):u+v-w. Here we have

written u+v for the concatenation uv of the strings u and v. The justification, incidentally, for

using this notation is that uv is the coproduct (or sum) object for u and v in the category Str8

or in any S-sorted algebraic theory T. In the one-sorted case that sum is in fact the sum of

natural numbers. Pairing is defined in terms of tupling and the distinguished morphisms:

(13.2)

where n= I u I and m= I v I . Thus pairing is just tupling the components of a and /3. Corre

sponding to the role of the distinguished morphisms x~ which pick out the components of a

tuple, there are "coproduct injections,"

t This particular equational view of fixed-point solutions derives directly form Elgot (1973).

144

(13.3.1) u+v u+v u+v
x0) = (x 1 ,. . .,xn):u-u+v

(13.3.2)

which pick out the components of a pair:

(13.3.3) u+v u+v x(I) o (a,{3) = a x(Z) o (a,{3) = (3.

The following is a collection of important properties of source pairing relative to compos

ition and the special morphisms Ov:A-v. (Compare with Elgot (1973), equations 5.1 through

5.4.)

Proposition 13.4. Let T be any S-sorted algebraic theory with a:u..,.w and {3:v-w.

(13.4.1) ((a,{3);y) = (a,({3,y)) for y:v-w

(13.4.2) (Ou,a) = a = (a,Ow)

(13.4.3) (a,{3) o y = (aoy,(3oy) for y:w-r

(13.4.4) 0 oa = ow D u

Whereas pairing of morphisms is tupling of their respective components, summing can be

viewed as pairing with a change of "variables" to avoid conflict. The idea is best illustrated

(informally and formally) with flowcharts. Pairing lays two flowcharts side-by-side identifying

their corresponding outputs, whereas summing Jays them side-by-side keeping their outputs

disjoint. The sum of a:u w and {3:v-r is a+{3:u+v-w+r defined by

(13.5) w+r w+r
a+{3 = (aox(I) ,{3ox(Z)).

Now we can give the general formulation of the solution process informally discussed above.

The basic form of a rational equation in an S-sorted algebraic theory T is

(13.6)

where a:u-u+v is a morphism of T, and we are solving for !;:u v. A fixed-point view of

(13.6) is that each a:u-u+v defines a function ~:T(u,v) T(u,v) defined by (71)~ = a 0 (71,lp).

!; is a solution to (13.6) if !; is a fixed-point of ~. When the theory is ordered, then !; is the

minimum solution if it is a solution and whenever (71)~i;;71, then ~i;; 71.

The concept of an algebraic theory having unique solutions for rational equations is

abstracted in the definition of "iterative theory" given by Elgot (1973). (Our definition differs

from his only in that we are considering S-sorted theories.)

145

Definition 13.7. Let T be an S-sorted algebraic theory. A morphism a:u-v is ideal iff for

each it[I u I], x>a is not a distinguished morphism. T is an ideal theory iff a:u-v ideal

implies a 0 f3 ideal for all {3:v-w. The theory T is iterative if it is ideal and for every ideal

morphism a:u-u+v there is a unique solution ~=a 0 (~,lv):u v. ~is called the iterate of a and

denoted at. D

Theorem 13.8. Let ~ be any S-sorted signature. The theories CT};, RT};, and rt}; are all

iterative theories. <IT PJ};> is the iterative theory freely generated by ~- D

Note that the existence of a free iterative theory (see Bloom and Elgot (197 4)) does not

follow from Theorem 8.5 because of the fact that the iteration operation is partial, being

defined only on ideal morphisms. With an ordered theory approach we get away from this

restriction and have a totally defined iteration operation. The concept of ordered algebraic

theories having solutions to rational equations is abstracted in our definitions of rationally

closed and rational theories.

Definition 13.9. A rationally closed S-sorted algebraic theory T is an ordered theory

equipped with a function t:T(u,u+v)-T(u,v) for all u,vES*. at is called the iterate of or

minimum solution for a and must satisfy the following for all 17:u-+v and T:v w.

(13.9.l)

(13.9.2)

(13.9.3)

t t ao(a ,1) =a

If a 0 (17,l)!;;;11 then at!;;l/

(ao(l +'T))t =at o'T
u

T is a rational theory if T is rationally closed and

(13.9.4)

where,

(13.9.5)

(13.9.6)

(0)
a = J. u,v

D

The first two conditions on the dagger operation in a rationally closed theory require that

at be a a minimum solution to the rational equation (13.6). The third condition (and the most

interesting one) says that the parameters have to indeed behave like parameters; one can read

(13.9.3) as saying that if .,. is substituted for the parameters and the result is solved or iterated,

then that is the same as solving first and then substituting T for the parameters.

Theorem 13.10. For any subset system Z, if ws;Z and T is a Z-continuous theory, then T

is rational. D

146

Theorem 13.11. For any S-sorted signature ~. RT~ is a rational theory; in particular,

<RT~,J~> is the rational theory freely generated by~. 0

14. FLOWCHARTS AND BEHAVIORS.

We revert to considering one-sorted theories. The following definition was obtained

independently by Bigot (1973) and Wagner (1974). Bigot's definition exactly parallels ours

though he then goes on to consider only ideal (the "body" is ideal in the sense of Definition

13.7) "normal descriptions." Wagner defines "abstract recursive definitions" where the "begin"

is not restricted to being a map.

Definition 14.l. By a normal description D over a theory T from n to p of weights we mean

a pair <a,a> where the begin, a:n-s+p is a map and the body a:s-s+p is arbitrary in T.

(14.1.1) The identity normal description from n to n is also denoted 10 ; it has

weight 0 (c.f. Definition 4.10):

where the begin (1 0) is the identity for n in T.

(14.l.2) The composite of two normal descriptions, <a,a> from n top of weight

s and <b,,B> from p to q of weight s' is the normal description <a,a> o <b,,B> from n to q of

weight s+s' given by (c.f. Definition 4.11):

<a,a>o<b,,B> = <aof, (aof,,Bog)>

(14.1.3) The pairing or coalesced sum of two normal descriptions <a,a> from n

top of weights and <b,,B> from n' top of weights' is the normal description (<a,a>,<b,,B>}

from n+n' top of weight s+s' given by (c.f. Definition 4.13):

(<a,a>,<b,,B>) = <(aof,bog), (aof,,Bog)>

(14.1.4) The iterate of a normal description <a,a> from n to n+p of weights is

<a,a> t from n top of weight n+s given by (c.f. Definition 4.15):

<a,a> t = <a,(a,a)>.

147

(14.1.5) For any map f:n-p in T is the corresponding normal description

<f,Op> from n top of weight 0 (c.f. Definition 4.16). 0

Theorem 14.2. NDT is a category whose objects are the natural numbers and whose

morphisms from n top are all normal descriptions from n top; composition is given by 14.1.2

and identities are given by 14.1.1. 0

The relationship between the the category of flowcharts given in Section 4 and the

category of normal descriptions is given by the following

Theorem 14.3. Let I be any interpretation of l: into a rational theory T, i.e., I is an

indexed family of maps, <I0 :l:0 +T(l,n)>. Extend I to l:.1. with (.1.)l=.1.:l-1. Then define

'f:Fll:J. +NDT by

r.f>l = <b,/3> where Pi=((ii')I) 0 (i)T.

Then I is a functor that also preserves maps, pairing and iteration. 0

The final connection in interpreting flowcharts is given in the following

Theorem 14.4. Let T be any rational theory and define I I :NDT T by

Then I I is a functor which preserves maps, pairing and iteration. 0

Example 14.1. We present a signature (ranked alphabet) n which we use to construct

n .1. -flowcharts. In that alphabet we include some of the symbols from the {int,Bool}-sorted

signature l: of Example 7 .1.

nl = {loadx, storexluX} u {switch} u UW£(1ntl* l:int,w

{)2 = Uwdintl* l:Bool,w

D0 = 0, n = 0,3,4,

This signature determines the category Fl11 J. of n .1. -flowcharts via Definition 4.9 and Theorem

4.12. We provide an interpretation of Din SumA where A= StkxEnv (stacks cross environ

ments):

Stk = [c.i-7l].

Env = [X 7l].

Note that we have taken stacks to be infinite to make the definitions simpler. For example we

will write v1·v2• ... •V0 •p where Vi£7l and p£Stk to denote the stack whose first n elements are

vl' ... ,v0 , and whose "rest" is p.

148

With the identification of A with Ax[l], the interpretation, I:~-SumA, is given as

follows.

(Il) <p, e>(loadxl) = <(x)e•p, e>

(12) <v op, e>(storexl) = <P, e[x/v]>

(13)

(I4)

(IS)

(16)

(17)

(18)

(19)

<v1•vz•P, e>(switchl) = <v2 ·v1•p, e>

<p, e>(cl) = <cs•p, e>

<v•p, e>(aopll) = <(v)aopl5•p, e>

<v 1 ·v2•p, e>(aop2I) = <(v l'v2)aop25 •p, e>

<p, e>(bcl) = <<p, e>, bc5>

<v•p, e>(propl) = <<p, e>, (v)prop5>

<v1•vz•P, e>(re!I) = <<p, e>, (vl'v2)rel5>

For xEX

For CE ~inl,A

For aop 1 € ~int,int

For aop2E~;nr,int int

For bcE~Boo~A

For propE~Boolint

For re!E:2:Boolint int

Now taking T<ae>=T<st>=Fl(l,1) and T<be>=Fl(l,2), we will make Tinto a G-algebra

where G is the context-free grammar of Example 7.2 and we do that by defining operations on

~ J. -flowcharts corresponding to each of the seventeen productions of G.

(Tl) continueT = 1 1

(T2) (F)x: =T = F o storex

(T3) (P ,F l'F 2)ifthenelseT = P 0 (F l'F 2)

(T4) (Fl'F2);T =FI oF2

(TS) (P,F)whiledoT = (P 0 (F01 1)) t

(T6) CT = C

(T7) xT = loadx

(T8) (F)aoplT = Foaopl

(T9) (Fl'F2)aop2T = F 1 o F2 o aop2

(TlO) (P,Fl'F2)condT = Po(Fl'F2)

(Tll) (F 1,F2)resultT = F 1 o F2

(Tl2) (F 1,F2)1etxT = loadx o F 1 o storex o F2 o switch o storex

(T13) bcT = be

(T14) (F)propT = F o prop

(TlS) (F l'F2)relT = F 1 o F2 ore!

(T16) 2 2
(P)~T = po (Xz,Xt)

(Tl 7a) (Pl'Pz)"T =pi o(Pz,~

(Tl 7b) 2
(Pl'P2)vT = P 1 o(xl'P2) 0

149

BIBLIOGRAPHY.

Andreka and Nemeti (1978,79) have an excellent survey and bibliography of applications

of universal algebra outside pure mathematics. We have, without reservation, used their

bibliography to enhance ours, but by no means have we included all their (up-to-date) refer

ences.

ADJ (Authors: J. A. Goguen, J. W. Thatcher, E. G. Wagner and J.B. Wright)

(1973) (JAG, JWT, EGW, JBW) "A Junction between computer science and category

theory: I, Basic definitions and examples," Part 1, IBM Research report

RC-4526, Sept 1973.

(1975) (JAG, JWT, EGW, JBW) "Abstract data types as initial algebras and correct

ness of data representations," Proceedings, Conference on Computer Graphics,

Pattern Recognition and Data Structure, May 1975, pp. 89-93.

(1975a) (JAG, JWT, EGW, JBW) "Initial algebra semantics and continuous algebras,"

IBM Research Report RC-5701. November 1975. JACM 24 (1977) pp. 68-95.

(1975b) "Introduction to categories, algebraic theories and algebras," IBM Research

Report RC 5369, April, 1975.

(1975c) "Parallel realization of systems using factorizations and quotients in categor

ies," IBM Research Report RC-5668, October, 1975. J. Franklin Inst. 301

(1976) 541-558.

(1976) (JWT, EGW, JBW) "Specification of abstract data types using conditional

axioms," IBM Research Report RC-6214, September 1976.

(1976a) (JAG, JWT, EGW) "An initial algebra approach to the specification, correct

ness, and implementation of abstract data types," IBM Research Report RC-

6487, October 1976. Current Trends in Programming Methodology. IV: Data

Structuring (R. Yeh, Ed.) Prentice Hall, New Jersey (1978) 80-149.

(1976b) (EGW, JBW, JAG, JWT) "Some fundamentals of order algebraic semantics,"

Lecture Notes in Computer Science 45 (Mathematical Foundations of Computer

Science 1976), Springer-Verlag, pp153-168; IBM Research Report RC 6020,

May 1976.

(1976c) (JAG, JWT, EGW, JBW) "A junction between computer science and category

theory:!, Basic definitions and examples," Part 2, IBM Research Report RC

5908, March 1976.

(1976d) (JBW, JWT, EGW, JAG) "Rational algebraic theories and fixed-point solu

tions," Proceedings I 7th IEEE Symposium on Foundations of Computing,

Houston, Texas, October, 1976, pp. 147-158.

150

(1977) (JBW, EGW, JWT) "A uniform approach to inductive posets and inductive

closure." Lecture Notes in Computer Science 53 (Mathematical Foundations of

Computer Science 1977), pp. 192-212. IBM Research Report RC-6817,

October 1977. Theoretical Computer Science 7 (1978) 57-77.

(1977a) (JAG) "Abstract errors for abstract data types,"UCLA Semantics Theory of

Computation Report 6, February 1977. Proceedings IFIP Working Conference

on Formal Description of Programming Concepts, St. Andrews, New Bruns

wick, pp. 21.1-21.32, August, 1977.

(1977b) (EGW, JWT, JBW) "Free continuous theories," IBM Research Report RC

6906, December, 1977. To appear, Fundamenta Informaticae.

(1978) (JWT, EGW, JBW) "Data type specification: parameterization and the power

of specification techniques," Proceedings, Tenth ACM SIGACT Symposium on

Theory of Computing, San Diego CA, May, 1978, pp. 119-132.

(1978a) (EGW, JWT, JBW) "Programming languages as mathematical objects,"

Proceedings, Symposium on Mathematical Foundations of Computer Computer

Science, Zacopane, Poland, September, 1978. Lecture Notes in Computer

Science 64 (J. Winkowski, Ed.)

(1979) (JWT, EGW, JBW) "Many-sorted and ordered algebraic theories," IBM

Research Report RC 7595, April 1979.

(1979a) "More on advice on structuring compilers and proving them correct," IBM

research Report RC 7588, April, 1979. To appear, Proceedings ICALP '79,

Graz, Austria.

Aiello, L., Attardi, G. and Prini, G

(1977) "Towards a more declarative programming style," Proceedings, IFIP Working

Conference on Formal Description of Programming Concepts, St. Andrews,

New Brunswick, Canada, August, 1977, pp.5.1-5.16.

Andreka, Hajnal and Nemeti, Istvan

(1978)

(1979)

"A survey and bibliography of some applications of universal algebra outside

pure mathematics," Preprint 12/1978, Mathematical Institute of the Hungarian

Academy of Sciences, January, 1978.

"Applications of universal algebra in computer science" (Review), Manuscript,

January 1979.

Arbib, M.A. and Giveon, Y.

(1968)

Arnold, A.

"Algebra automata I: Parallel programming as a prolegomena to the categorical

approach," Information and Control 12 (1968) 331-345.

151

(1977) "Systems d'equations dans le magmoid. Ensembles rationnels et algebriques

d'arbes," These d'Etat, Lille, 1977.

Arnold, A. and Nivat, M.

(1977) "Non deterministic recursive program schemes," Fundamentals of Computer

Science 1977, Lecture Notes in Computer Science 56 (1977) 12-22.

Banaschewski, Bernhard and Nelson, Evelyn

(1979)

Bekic, H

(l 969)

"Completions of partially ordered sets as reflections," McMaster University

Technical Report 79-CS-6, 1979.

"Definable operations in general algebra and the theory of automata and

flowcharts," IBM Vienna Report, 1969.

Berry, G. and Courcelle, B.

(1976)

Birkhoff, G.

(1933)

(1935)

(1967)

Program equivalence and canonical forms in stable discrete interpretations,"

Automata Languages and Programming, Third International Colloquium, (S.

Michaelson and R,. Milner, Eds.) (1976) 168-189.

"On the combination of subalgebras," Proceedings Cambridge Phil. Soc. 29

(1933) 441-464.

"On the structure of abstract algebras," Proceedings Cambridge Phil. Soc. 31

(1935) 433-454.

Lattice Theory Amer. Math. Soc. Coloq. Pub. 25, New York (1948). Revised

edition, 196 7.

Birkhoff, G. and Lipson, J.D.

(1970) "Heterogeneous algebras," J. Combinatorial Theory 8 (1970) 115-133.

Blikle, A.

(1972) "Equational languages," Information and Control (1972) 134-147.

(1973a) "An algebraic approach to programs and their computations," Proceedings,

Symposium and Summer School on the Mathematical Foundations of Computer

Science, High Tatras, Czechoslovakia, 1973.

(1973b) "An algebraic approach to mathematical theory of programs," PRACE CO

PAN. PAS REPORTS 119, 1973, Warsaw.

Blikle, A. and Mazurkiewicz, A.

(1972)

Bloom, S.L.

(1976)

"An algebraic approach to the theory of programs, algorithms languages and

recursiveness. A concise text," Computation Centre, Polish Academy of Sci

ences, Warsaw, PKiN P.O. Box 22, August 1972.

"Varieties of ordered algebras," JCSS 13 (1976) 200-212.

152

Bloom, S.L. and Elgot, C.C.

(197 4) "The existence and construction of free iterative theories," IBM Research

Report RC 4937 (1974). JCSS 12 (1976) 305-318.

Bloom, S.L., Elgot, C.C. and Wright, J.B.

(1978) Solutions of the iteration equation and extensions of the scalar iteration

operation," IBM Research Report RC 7029, March 1978.

Hlum, E.K.

(1969) "Towards a theory of semantics and compilers for programming languages,"

JCSS 3 (1969) 248-274.

Blum, E.K. and Estes, D.R.

(1977) "A generalization of the homomorphism concept," Algebra Universa/is 7 (1977)

143-161.

Brand, D.

(1978) "A note on data abstractions," SIGPLAN Notices 13 (1978) 21-24.

Burstall, R.M.

(1969) "Proving properties of programs by structural induction," Computer Journal

1969.

(1972) "Some techniques for proving correctness of programs which alter data struc

tures," Machine Intelligence 7 (Eds. B. Meltzer and D. Michie) Edinburgh

University Press (1972) 23-50.

(1972a) "An algebraic description of programs with assertions, verification and simula

tion," Proceedings, ACM Conference on Proving Assertions about Programs,

Las Curces, New Mexico (1972) 7-14.

Burstall, R.M. and Landon, P.J.

(1969) "Programs and their proofs: an algebraic approach," Machine Intelligence 4 (M.

Meltzer and D. Michie, eds.) Edinburgh University Press(l 969) 17-43.

Burstall, R. M. and Goguen, J. A.

(1977) "Putting Theories together to make Specifications," Proceedings, 1977 IJCAI,

MIT, Cambridge, MA., August, 1977.

Burstall, R.M., and Thatcher, J.W.

(1974) "The algebraic theory of recursive program schemes," Proceedings AAAS

Symposium on Category Theory Applied to Computation and Control, U. Mass.

Press, Amherst (1974). Lecture Notes in Computer Science 25 (1975) 126-131,

Cohn, P.M.

(1965)

Courcelle, B.

Springer-Verlag.

Universal Algebra, Harper and Row, New York (1965).

(I 978)

153

"Equational theories and equivalences of programs," IRIA Technical report,

1978.

Courcelle, B. and Guessarian, I.

(1977) "On some classes of interpretations," Rapport de Recherce No 253, IRIA,

September 1977.

Courcelle, B. and Nivat, M.

(1976)

(1978)

"Algebraic families of interpretations," Proceedings l 7th Annual IEEE Sympo

sium on Foundations of Computing, Houston, Texas, October, 1976, pp.

137-146.

"The algebraic semantics of recursive program schemes," Proceedings 7th

Symposium on Mathematical Foundations of Computer Science, Lecture Notes

in Computer Science 64 (1978) 16-30.

Courcelle, B. and Raoult, J-C.

(1978) "Completions of ordered magmas," Technical Report, IRIA, 1978.

Courcelle, B. and Vuillemin, J.

(1974)

Damm, W.

(1977)

"Semantics and axiomatics of a simple recursive language," Proceedings, 6th

ACM Symposium on Theory of Computing, Seattle, Wash. (1974) 13-26.

"Higher type program schemes and their tree languages," Proceedings, Third

G.I. Conference on Theoretical Computer Science, Lecture Notes in Computer

Science 48, (1977)51-72.

Damm, W. and Fehr, E.

(1978) "On the power of self-application and higher type recursion," Proceedings 5th

ICALP, Lecture Notes in Computer Science 62 (1978) 177-191.

Damm, W., Fehr, E. and lndermark, K.

(1978)

de Bakker, J.W.

(1976)

Doner, J. E.

(1970)

Dubinsky, A.

(1975)

"Higher type recursion and self application as control structures," Formal

Description of Programming Concepts, IFIP 1977.

"Semantics and termination of non-deterministic recursive programs," Automata

languages and programming, Third International Colloquium, University of

Edinburgh (S. Michaelson and R. Milner, Eds.), Edinburgh University Press

(1976) 435-478.

"Tree acceptors and some of their applications," JCSS 4 (1970) 406-451.

"Computation on arbitrary algebras," Queen Mary College, University of

London. Lecture Notes in Computer Science 37 (1975) 319-341.

154

Egli, H. and Constable, R.L.

(1976) "Computability concepts for programming language semantics," Theoretical

Computer Science 2 (1976) 133-145.

Ehrich, H.D.

(1977) 11 Algebraic semantics of type definitions and structured variables, 11 Fundamen

tals of Computer Science, Lecture Notes in Computer Science 5 6 (1977) 84-98.

(1978) "Extensions and implementations of abstract data type specifications," Abteil

ung Informatik, Universitat Dortmund.

Ehrich, H.D. and Lohberger V.G.

(1978) "Parametric specification of abstract data types, parameter substitution, and

graph replacement," Proceedings, Workshop Graphentheoretische Konzepte om

der Informatik, Hanser-Verlag, Miinchen, 1978.

Ehrig, H. and Kreowski, H.J.

(1977) "Some remarks concerning correct specification and implementation of abstract

data types," Technical University of Berlin; Report 77-13, August 1977.

Ehrig, H., Kreowski, H. J., and Padawitz, P.

(1977) "Spezifikation, Korrektheit, und Implementierung von abstrakten Datenstruktu-

ren," Einfurhungsskript zur L V Theorie von Datenstrukturen an der TU Berlin

(SS 1977).

(1977a) "Stepwise specification and implementation of abstract data types," Technical

University of Berlin, Report, November 1977.

Eilenberg, S. and Wright, J.B.

(1967)

Elgot, C.C.

(1969)

(1970)

(1971)

(1972)

(1973)

"Automata in general algebras," Information and Control 11 (1967) 52-70.

"The external behavior of machines," IBM Research Report RC 2740, Decem

ber, 1969. Presented, Third Hawaii International Conference on System Sci

ence, January 14016, 1970.

"The common algebraic structure of exit-automata and machines," Computing 6

(1970) 349-370.

"Algebraic theories and program schemes," Proceedings Symp. on semantics of

Algorithmic Languages, (Ed. E Engler) Springer-Verlag(1971) 71-88.

"Remarks on one-argument program schemes," Formal Semantics of Program

ming Languages, (Ed. R. Rustin) Prentice-Hall, New Jersey (1972) 59-64.

"Monadic computation and iterative algebraic theories," IBM Research Report

RC 4564, October 1973. Proceedings, Logic Colloquium 1973, North Holland

(1975)175-230.

(1974)

(1976)

(1977)

155

"Matricial theories," IBM Research Report RC 4833, May 1974. Journal of

Algebra 42 (1976) 391-421.

"Structured programming with or without GO TO statements," IEEE Transac

tions on Software Engineering SE-2 (1976) 41-53. Erratum and Corrigendum,

IEEE Transactions on Software Engineering, September, 1976.

"Some geometrical categories associated with flow chart schemes," IBM

Research Report RC 6534, May 1977. Proceedings, Conference on Fundamen

tals of Computation Theory, Poznan-Kornik, Poland, 1977.

(1978) "A representative strong equivalence class for accessible flowchart schemes,"

Proceedings, International Conference on Mathematical Studies of Information

Processing, Kyoto, Japan (1978)

Elgot, C.C., Bloom, S.L. and Tindell, R.

(1978) "On the algebraic structure of rooted trees," JCSS 16 (1978) 362-399.

Elgot, C.C. and Shepherdson, J.C.

(1977) "A semantically meaningful characterization of reducible flowchart schemes,"

IBM Research Report RC 6656, July, 1977.

Elgot, C.C. and Snyder, L.

(1977) "On the many facets of lists," Theoretical Computer Science 5 (1977) 275-305.

Engelfreit, J. and Schmidt, E.M.

(1978) "IO and 01," JCSS 16 (1978) 67-99.

Feferman, S.

(1969)

Gallier, J.H.

(1977)

(1978)

Gecseg, F

(1977)

"Set-theoretic foundations of category theory," Reports of the Midwest

Category Seminar III (Ed. S. Mac Lane) Lecture Notes in Mathematics 106

Springer-Verlag (1969) 201-247.

"Semantics and correctness of classes of deterministic recursive schemes,"

Ph.D. Dissertation, UCLA, 1977.

"Semantics and correctness of nondeterministic flowchart programs with

recursive procedures," Preliminary Report, Department of Mathematics and

Computer Science, USC, 1978.

"Universal algebras and tree automata," Fundamentals on Computer Science,

Lecture Notes on Computer Science 5 6 (1977) 98-113.

Gecseg, F and Horvath, G.

(1976) "On representation of trees and context-free languages by tree automata,"

Foundations of Control Engineering (1976) 161-168.

Gecseg, F. and T6th, E.P.

156

(1977) "Algebra and logic in theoretical computer science," Mathematical Foundations

of Computer Science, Lecture Notes in Computer Science 53 (1977) 78-93.

Giarratana, V., Gimona, F. and Monianari, U.

(1976)

Ginali, S.M.

(1975)

(1976)

Ginsburg, S.

(1976)

Goguen, J.A.

(1972)

(1974)

"Observability concepts in abstract data type specification," Lecture Notes in

Computer Science 45 (Mathematical Foundations of Computer Science 1976, A.

Mazurkiewicz, Ed.) (1976) 576-587

"A concrete introduction to algebraic automata theory," Quarterly Report #44,

Institute for Computer Research, University of Chicago, February 1975.

"Iterative algebraic theories, infinite trees and program schemata." Dissertation,

Department of Mathematics, University of Chicago, June 1976.

The Mathematical Theory of Context-Free Languages, McGraw Hill, New York,

1966.

"On mathematics in Computer Science education," IBM Research Report RC

3899, 1972.

"On homomorphisms, correctness, termination, unfoldments, and equivalence of

flow diagram programs," JCSS 8 (1974) 333-365.

(1974a) "Semantics of Computation," Lecture Notes in Computer Science 25 (1975)

(1977)

(1978)

(1979)

151-163, Springer-Verlag.

"Abstract errors for abstract data types," Proceedings, IFIP Working Confer

ence on Formal Description of Programming Concepts, MIT (1977) 21.1-

21.32.

"Some design principles and theory for OBJ-0, a language for expressing and

executing algebraic specifications of programs," Proceedings, International

Conference on Mathematical Studies of Information Processing, Kyoto, Japan

(1978) 429-475.

"Some ideas in algebraic semantics," Department of Computer Science, UCLA

Preprint, 1979.

Goguen, J. A. and Burstall, R.M.

(1978) "Some fundamental properties of algebraic theories: A tool for semantics of

computation," Preprint 1978. Submitted to Theoretical Computer Science.

Goguen, J.A. and Meseguer, J.

(1977) "Correctness of recursive flow diagram programs," Semantics and Theory of

Computation Report No. 8, Department of Computer Science, UCLA, July,

1977. Lecture Notes in Computer Science 53 Springer-Verlag pp.580-595.

157

Goguen, J. A., and Tardo, J.

(1977) "OBJ-0 preliminary users manual," UCLA, Los Angeles, CA. 1977.

Graetzer, G.

(1968) Universal Algebra, Van Nostrand, Princeton (1968). Gussarian, Irene

(1976) "Semantic equivalence of program schemes and its syntactic characterization,"

Automata, Languages and Programming, Proceedings Third ICALP, University

of Edinburgh, July 1976, ppl89-201.

(1978) "Some applications of algebraic semantics," Mathematical Foundations of

Computer Science 1978 (J. Winkowski, Ed.) Lecture Notes in Computer Science

64 (1978) 257-266.

Guttag, J. V.

(1975) "The specification and application to programming of abstract data types,"

Univ. of Toronto, Computer Systems Research Group, Technical Report

CSRG-59, September, 1975.

(1976)

(1977)

"Abstract data types and the development of data structures," supplement to

Proc. Conf. on Data Abstraction, Definition, and Structure, SIGPLAN Notices

8, March, 1976.

"The algebraic specification of abstract data types," USC Computer Science

Department, Draft Manuscript, April, 1977.

Guttag, J. V., Horowitz, E., and Musser, D. R.

(I 97 6) "Abstract data types and software validation," Information Sciences Institute,

Report RR-76-48 (Marina de! Rey, Calif.).

(1976a) "The design of data type specifications," Information Sciences Institute, Report

RR-76-48 (Marina del Rey, Calif.).

(l 977) "Some extensions to algebraic specifications," Proceedings of an ACM Confer

ence on language design for reliable software, SIGP LAN Notices 12, March

1977, pp 63-67.

Hatcher, W.S. and Rus, T.

(1976) "Context-free algebra," Submitted to J. Cybernetics.

Herrlich, H. and Strecker, G.E.

(1973) Category Theory, Allyn and Bacon (1973).

Higgins, P.J.

(1963) "Algebras with a scheme of operators," Math. Nachr. 27 (1963) 115-132.

Hilfinger, Paul N.

(1978) Correspondence from Members, SIGPLAN Notices 13, (1978) 11-12.

Hoare, C. A. R.

158

(1972) "Proof of Correctness of Data Representations," Acta Informatica 1 (1972) pp.

271-281.

Horowitz, Ellis and Sahni, Sartaj

(1976)

Irons, E.T.

(1961)

Kamin, S

(1979)

Fundamentals of Data Structures, Computer Science Press, Inc., 1976.

"A syntax directed compiler for ALGOL 60," CACM 4 (1961) 51-55.

"Rationalizing many-sorted algebraic theories," SUNY, Stony Brook, Draft

manuscript. IBM Research Report RC 7574, March 1979.

Kapengst, H. and Reichel, H.

(1977)

Karp, R.M.

(1959)

if

Knuth, D.E.

(1968)

Kotov, V.E.

(1978)

"Initial algebraic semantics for non-context-free languages," Fundamentals of

Computer Science, Lecture Notes in Computer Science 56 (1977) 120-127.

"Some applications of logical syntax to digital computer programming,"

Harvard University Thesis (1959).

"Semantics of context-free languages," Math. Sys. Th. 2 (1968) 127-145.

"An algebra for parallelism based on Petri nets," Mathematical Foundations of

Computer Science, 1978, Lecture Notes in Computer Science 64 (1978) 39-55.

Kuhnel, W., Meseguer, J., Pfender, M. and Sols, I.

(1977)

Landon, P.J.

(1970)

Lawvere, F.W.

(1963)

Lehmann, D. J.

(1976)

"Primitive recursive algebraic theories and program schemes," Bulletin Austral.

Math. Soc. 17 (1977) 207-233.

A program machine symmetric automata theory," Machine Intelligence 5 (Eds.

B. Meltzer and D. Michie) Edinburgh University Press (1970) 99-120.

"Functorial semantics of algebraic theories," Proceedings, Nat'l Acad. Sci. 50

(1963) 869-872.

"Categories for fixpoint semantics," Theory of Computation Report No. 15,

Department of Computer Science, University of Warwick. Also: Proceedings

17th Annual Symposium on Foundations of Computer Science (1976) 122-126.

Lehmann, D. J. and Smyth, M. B.

(1977) "Data types," University of Warwick, Department of Computer Science Report

19, May 1977.

(1977a)

Levy, M.R.

(1978)

159

"Data Types," Proceedings 18th IEEE Symposium on Foundations of Comput

ing, Providence, R.I., November 1977, pp. 7-12.

"Data types with sharing and circularity," Ph.D. Thesis, Faculty of Mathemat

ics, University of Waterloo; Report CS-78-26.

Lewis, C.H. and Rosen, B.K.

(1973) "Recursively defined data types, Pt. 1," Proceedings, ACM Symposium on

Principles of Programming languages (1973) 125-138; Part 2, IBM Research

Report, RC 4713 (1974).

Liskov, B. H. and Berzins, V.

(1977) "An appraisal of program specification," MIT, Laboratory for Computer

Science, Computation Structures Memo 141-1, April, 1977.

Liskov, B.H. and Zilles, S.N.

(1974) "Programming with abstract data types," Proceedings ACM Syrop. pn Very

High Level Languages, SIGPLAN Notices 9 (1974) 50-59.

Littrich, G. and Merzenich, W.

(1977)

Lloyd, C

(1972)

McCarthy, J.

(1962)

Mac Lane, S

(1971)

Markowski, G.

(1974)

"Nets over many-sotted operator domains and their semantics," Fundamentals

of Computer Science, Lecture Notes on Computer Science 5 6 (1977) 240-245.

"Some concepts of universal algebra and their application to computer science,"

Report CSWP-1, Computing Centre, University of Essex, 1972.

"Towards a mathematical science of computation," Proceedings, IFIP Congress,

Amsterdam (1962) 21-28.

Category Theory for the Working Mathematician, Springer-Verlag (1971)

"Categories of chain-complete posets," IBM Research Report RC 5100,

October, 1974.

Markowski, G. and Rosen, B.K.

(1976) "Bases for chain complete posets," IBM J. Res. Dev. 20 (1976) 138-147.

Maibaum, T. S. E.

(1972) "The characterization of derivation trees of context-free sets of terms as regular

sets," Proceedings, 13th IEEE Symposium on Switching and Automata (1972)

224-230.

(1973) "Generalized grammars and homomorphic images of regular sets," U. of

Waterloo Res. Report CS-73-30 (1973).

160

Majster, M. E.

(1977) "Data types, abstract data types and their specification problem,"

University of Munich, Report TUM-INF0-7740, August 1977.

Technical

(1977a) "Limits of the algebraic specification of data types," SIGPLAN Notices 12

(1977) 37-42.

(1978)

Manes, E.

(1976)

Meseguer, Jose

(1977)

(1978)

Correspondence from Members, SIGPLAN Notices 13 (1978) 8-10.

Algebraic Theories, Graduate Texts in Mathematics 26, Springer-Ver!ag, 1976

"On order-complete universal algebra and enriched functorial semantics,"

Fundamentals on Computer Science, Lecture Notes on Computer Science 56

(1977) 294-302.

"Completions, factorizations, and colimits for t.J-posets," Semantics and Theory

of Computation Report No. 13 (1979) UCLA.

(1979) "Ideal monads and Z-posets," Manuscript, University of California at Berkeley,

Department of Mathematics, 1979.

Mezei, J. and Wright, J.B.

(1967) "Algebraic Automata and context-free sets," Information and Control 11

(1967) 3-29.

Milner, R.

(1971) "An algebraic definition of simulation between programs," Stanford A.I. Memo

AIM-142 and Computer Science Department report CS 205, 1971.

(1976) "Program semantics and mechanized proof," Mathematical Centre Tracts 82

(K.R. Apt and J.W. de Bakker (Eds.), Mathematisch Centrum, Amsterdam,

1976, pp. 3-44.

(1977) "Concurrent processes and their syntax," University of Edinburgh, Department

of Computer Science, Internal Report CSR-2-77, May 1977. To appear JA CM.

(1977a) "Flowgraphs and flow algebras," University of Edinburgh, Department of

Computer Science, Internal Report, 1977. To appear JACM.

Milner, R. and Weyrauch, R

(1972) "Proving compiler correctness in a mechanized logic," Machine Intelligence 7

(B. Meltzer and D. Michie, Eds.), Edinburgh University Press (1972) 51-72.

Minsky, M.

(1967)

Mitchell, B.

(1965)

Morris, F. L.

Computation: Finite and Infinite Machines, Prentice-Hall, New Jersey (1967).

Theory of Categories, Academic Press, New York (1965).

161

(1972) "Correctness of translations of programming languages," Stanford Computer

Science Memo CS 72-303 (1972).

(1973) "Types are not sets," Proceedings, ACM Symposium on the Principles of

Programming Languages, October 1973, pp. 120-124.

(l 973a) "Advice on structuring compilers and proving them correct," Proceedings, ACM

Symposium on Principles of Programming Languages, Boston (1973) 144-152.

Mosses, P

(1977)

Nivat, M.

(1973)

(1975)

Obtulowicz, A.

(1977)

Pasztor, A.

"Making denotational semantics less concrete, "Department of Computer

Science, Aarhus University, 1977.

"Languages algebriques sur le magma libre et semantique des schemas de

programme," Automata, Languages and Programming (Ed. M. Nivat) North

Holland, 1973.

"On the interpretation of polyadic recursive program schemes," . Symposia

Mathematica, Vo! XV, Instituto Nationale di Alta Mathematica, Italy, 1975.

"Functorial semantics of the type calculus," Fundamentals on Computer

Science, Lecture Notes on Computer Science 5 6 (1977) 302-308.

(1979) "Surjections in the category of chain-complete posets, continuous universal

algebras and related structures used in algebraic semantics of programming,"

Submitted to FCT 79 Berlin.

Plotkin, G.D. and Smyth, M.

(1977) "The category theoretic solution of recursive domain equations," Foundations

of Computer Science, 1977. Extended version, University of Edinburgh

Department of Artificial Intelligence Report No. 60, 197 8.

Rabin, M.P., and Scott, D.

(1959) "Finite automata and their decision problems," IBM J. Res. Dev. 3 (1959)

114-125.

Rattray, C.M.I. and Rus, T.

(1977) "Has-hierarchy, a mathematical device for computer system modeling,"

Proceedings, lst International Symposium on Mathematical Modelling, Missouri

(1977) 1-15.

Reichel, H

(1978)

Reiterman, J.

"Fundamentals of an algebraic theory of computation (Summary)," Preprint,

Banach Center of Mathematics, Warsaw, May, 1978.

162

(1977) "A more categorical model of universal algebra," Fundamentals on Computer

Science, Lecture Notes on Computer Science 56 (1977) 308-314.

Reynolds, J.C.

(1977) "Semantics of the domain of flow diagrams," JACM 24 (1977) 484-503.

Rine, D.C.

(1974) "A category theory for programming languages," MST 7 (1974) 304-317.

Rosen, B.K.

(1974)

Rus, Teodor

(1974)

(1976)

(1979)

Scott, Dana

(1970)

(1971)

"Program equivalence and Context-free sets," Proceedings 13th IEEE Symp. on

Switching and Automata Theory (1972) 7-18. Revised as IBM Research

Report RC 4822 (1974).

Structuri de Date si Sisteme Operative, Editura Academiei, Bucharest, Hungary,

1974.

"Context-free algebra: A mathematical device for compiler specification,"

Lecture Notes in Computer Science 45 1976.

Data Structures and.Operating Systems, John Wiley and Sons, Chichester, 1979.

(Updated translation of Rus (1974).)

"Outline of a mathematical theory of computation," Proceedings, 41h Annual

Princeton Conference on Information Sciences and Systems (1970) 169-176.

"The lattice of flow diagrams," Lecture Notes in Mathematics 182, Semantics of

Algorithmic Languages (E.Engler, Ed.) Springer-Verlag (1971) 311-366.

(1972) "Continuous Lattices," Lecture Notes in Mathematics 274 (1972) 97-136.

(1972a) "Data types as lattices," unpublished notes, Amsterdam (1972); Oxford

(1974). SIAM J. Computing 5 (1976), 522-587.

Scott, D. and Strachey, C.

(1971) "Toward a mathematical semantics for computer languages," Technical Mono

graph PRG-6, Oxford University Computing Laboratory, Programming Reas

earch Group, 1971.

Spitzen, J. and Wegbreit, B.

(1975)

Tarski, A.

(1968)

Thatcher, J.W.

"The verification and synthesis of data structures," Acta Informatica 4 (1975)

127-144.

"Equational logic and equational theories of algebras," Contributions to Mathe

matica/ Logic (K. Schutte, Ed), North Holland, Amsterdam, 1968.

(1967)

(1973)

Tiuryn, Jerzy

(1976)

(1977)

(1979)

Wagner, E.G.

(1971)

(1971a)

(1973)

(1974)

Wand, M.

(1972)

(1974)

(1977)

Wegner, P.

(1972)

163

"Characterizing derivation trees of context-free grammars through a generaliza

tion of finite automata theory," JCSS 1 (1967) 317-322.

"Tree automata: an informal survey," Currents in Computing (A. Aho, Ed.)

Prentice-Hall (1973) 143-172.

"Regular algebras," (Extended Abstract) Warsaw University (1976).

"Fixed points and algebras with infinitely long expressions, Part I: Regular

algebras," Lecture Notes in Computer Science 5 3 (1977) 513-523. Part II,

Lecture Notes in Computer Science 5 6 (1977) 332-340.

"Connection between regular algebras and rational algebraic theories,"

Proceedings, 2nd Workshop on Categorical and Algebraic Methods in Computer

Science and Systems Theory, Dortmund, 1979.

"Languages for defining sets in arbitrary algebras," Proceedings 12th IEEE

Symp. on Switching and Automata Theory, East Lansing, Mich. (1971).

"An algebraic theory of recursive definitions and recursive languages,"

Proceedings, 3rd ACM Symp. of Theory of Computing, Shaker Heights, Ohio

(1971).

"From algebras to programming languages," Proceedings, 5th ACM Sym. on

Theory of Computing, Austin, Texas (1973).

"Notes on categories, algebras, and programming languages," Lecture Notes,

Queen Mary College, London, England, Spring, 1974.

"A concrete approach to abstract recursive definitions," Automata, Languages

and Programming (M. Nivat, Ed.) North Holland (1972) 331-341.

"An algebraic formulation of the Chomsky hierarchy," Lecture Notes in

Computer Science 25 (Category Theory Applied to Computation and Control)

Springer-Verlag (197 4) 209-213.

"Final algebra semantics and data type extensions," Technical Report 65,

Computer Science Department, Indiana University, 1977.

"A view of computer science education," Amer. Math. Monthly, February

(1972) 168-172.

Whitehead, A.N.

(1898) "A Treatise on Universal Algebra," Cambridge at the University Press (1898).

Wojdylo, B.

164

(1977) "Many-sorted algebras and their application in computer science," Institute of

Mathematics, Nicholas Copernicus University, Torun, Poland, 1977.

van Wijngaarden, E.

(1969) "Report on the algorithmic language ALGOL 68," Numer. Math. 14 (1969)

79-218.

Zilles, S. N.

(1974)

(1975)

"Algebraic specification of data types," Computation Structures Group Memo

119, MIT, Cambridge, Mass. (1974) 28-52.

"An introduction to data algebras," working draft paper, IBM Research, San

Jose, September, 1975.

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep
aration),

A leaflet containing an order form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A. R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generaliz~d Markovian decision processes, part II:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distrubutions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT II A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 011 8.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part l; · 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 O. .

MCT 23 T.J. DEKKER & w. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.
MCT 25 E.R. PAERL, Representations of the Lorentz group and projective

geometry, 1969. I?BN 90 6196 039 8.
MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, I 968 •

ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 I.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.
MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguist1'.cs, 1970.

ISBN 90 6196 052 5.

MCT 31 W. MOLENAAR, Approximations to the Poisson, binom·ial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con
vergence of sample extremes, 1970. ISBN 90 6196 054 !.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VEIIBEEK & N. S. KROONENBERG, Cardinal funcUons in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 O.
MCT 36 J. GRASMAN, On the birth of boundary layers, 197 I. ISBN 90 6196 064 9.
MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,

P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatie analysis of Duteh CJOITlpOUnd
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jaeobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topologieal spaees, 1972.
ISBN 90 6196 076 2.

HCT 42 w. VERVAAT, Sueeess epoehs in Bernoulli trials (with applieations in
number theory), 1972. ISBN 90 6196 077 0.

MCT 43 F.H. RUYMGAART, AsyT1Tptotie theory of rank tests for independenee,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphie operator valued funetions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws 1973.
ISBN 90 6196 083 S.

MCT 46 R. P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The eoT1Tpiler, 1973. ISBN 90 6196 085 1.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 eoT1Tpiler in ALGOL 60, Text of the MC-eoT1Tpiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Conneeted orderable spaees, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds), Revised report on the algorithmie language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamie programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topologieal struetures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizohility in generalized ordered spaees, 1974.
ISBN 90 6196 097 S.

MCT 54 H.A. LAUWERIER, AsyT1Tptotie analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatories, part 1: Theory of
designs, finite geometry and eoding theory, 1974.
ISBN 90 6196 099 l.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatories, part 2: Graph
theory, foundations, partitions and eombinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatories, part 3: Combina
torial group theory, 1974. ISBN 90 6196 IOI 7.

MCT 58 w. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 4.
*MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1,

ISBN 90 6196 109 2.
*MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2,

ISBN 90 6196 110 6.
MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.

ISBN 90 6196 111 4.
MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196 112 2.
MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach~

1975. ISBN 90 6196 113 0.
MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen

function expansions, 1976. ISBN 90 6196 114 9.
*MCT 67 H.A. LAUWERIER, Asymptptic analysis, part 2, ISBN 90 6196 119 x.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: Semantics and proof
theory, 1976. ISBN 90 6196 127 o.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 X.

~ICT 74 H.J.J. TE RIELE, A theoretical and computational study of generalized
aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associations and the closure statement, 1976.
ISBN 90 6196 135 1.

MCT 77 w.c.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rank statistics,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A numerical study of stiff two-point bounda.xy problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L. S. BENTREM JUTTING, Checking Landau's 11Grundlagen 11 in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann of Carinthia (?) books vii-xii,
1977. ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VAN DER MEDLEN & M. VELDHORST, Torrix I, A programming system
for operations on vectors and matrices over arbitrary fields
and of variable size. 1978. ISBN 90 6196 152 1.

*MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and analytic functionals
with unbounded carriers, 1978. ISBN 90 6196 155 6.

*MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dynamic
games, • ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979. ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite generalized Markov programming, 1979.
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS & J. WESSELS (eds). Markov decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations 1'.n transcendental number
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: Structure, languages, and
growth functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 J.

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
between computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT JOO P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 1, 1979.
ISBN 90 6196 168 8.

MCT IOI P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability, 1979. ·
ISBN 90 6196 173 4.

*MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7.

MCT 107 c. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 0.

MCT 108 J.W. DE BAKKER & J. VANLEEUWEN (Eds), Foundations of computer
science III, part I, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VANLEEUWEN (Eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 transput, part I: Historical review and
discussion of the implementation model, 1979. ISBN 90 6196 178 5.

MCT Ill J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

HCT 112 H.C.P. BERBEE, Random walks with stationary increments and renewal
theory, 1979. ISBN 90 6196 182 3.

HCT I 13 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems
with restricted alternatives, 1979. ISBN 90 6196 183 I.

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

MCT 115 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part I,
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 2,
1979. ISBN 90 6196 186 6.

~·1CT 117 P.J.M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENE~OOM, Large deviations and asyrrrptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel irrrple
mentation of finite element algorithms, 1980. ISBN 90 6196 192 O.

MCT 120 W.P.M. DE RUYTER, On the asyrrrptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.R. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical solution of systems of nonlinear equations,
1980. ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 !.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X.

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980.
ISBN 90 6196 199 8,

MCT 127 J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

MCT 128 A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

MCT 129 G. VAN DER LAAN, Sirrrplicial fixed point algorithms, 1980.
ISBN 90 6196 202 J.

MCT 130 P.J.W. TAN HAGEN et al., ILP Intermediate language for pictures,
1980. ISBN 90 6196 204 8.

MCT 131 R.J.R. BACK, Correctness preserving program refinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

MCT 132 H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 O.

MCT 133 C.A.J. KLASSEN, Statistical performance of location estimators, 1981.
ISBN 90 6196 209 9.

