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1. Introduction

Positive Modal Logic (PML) was introduced by Dunn in [7], and it is the restriction of the modal
local consequence relation defined by the class of all Kripke models to the propositional negation-
free modal language, whose connectives are ∧,∨, �, �,�,⊥. In [13], Jansana shows that the class of
positive modal algebras (see Definition 2.2.1 below) introduced in [7] is the one canonically associated
with PML according to the theory of the algebraization of logics developed in [10]. Intuitively, this
means that positive modal algebras are to PML what Boolean algebras with operators are to the
normal modal logic K (and its associated local consequence relation). In [4], a Priestley-style duality
is established between the category of positive modal algebras and the category of K+-spaces, which
are structures based on Priestley spaces (see Definition 2.6.1 below).
In this paper, we establish a categorical equivalence between the category K+ of K+-spaces intro-

duced in [4] and the category Coalg(V) of coalgebras of a suitable endofunctor V on the category Pri
of Priestley spaces. Such equivalence is built along the lines of the equivalence of categories presented
in [15], between descriptive general frames for the normal modal logic K and the coalgebras of the
Vietoris endofunctor on the category of Stone spaces.
The category Coalg(V) obtained in this way provides a new coalgebraic semantics for PML, the

standard one being the well-known representation of Kripke frames as coalgebras of the covariant
powerset endofunctor P on the category Set of sets and set maps. PML and K have the same
Kripke semantics (hence, they have the same standard coalgebraic semantics), but different algebraic
semantics (positive modal algebras and Boolean algebras with operators respectively). The new
semantics for PML presented here and the the one for K given in [15] are capable to reflect this
difference in a context of coalgebras. More in general, the categorical equivalences and dualities



2. Preliminaries 2

involved in the process of associating the new coalgebraic semantics with the two logics imply that the
total amount of information about PML (and K respectively) carried by the class of positive modal
algebras (Boolean algebras with operators) is translated to the new coalgebraic semantics.
This report is organized as follows: In Section 2 the basic notions are presented, together with facts

about them. Section 3 is about the definition of the Vietoris endofunctor V on Priestley spaces. The
equivalence between K+ and Coalg(V) is established in Section 4. In Section 5, a question which
involves connections between Heyting algebras and the framework introduced here is answered for the
negative. Finally, some open problems are listed in Section 6.

Acknowledgements. This work has been carried out during my stay as a visitor to CWI. I would
like to thank Jan Rutten and the SEN3 group for their warm hospitality, and for providing me with
a very friendly and stimulating environment. I would like to thank Clemens Kupke and Alexander
Kurz for explaining me their ongoing work, and for many unvaluable conversations. I would also like
to thank Marcello Bonsangue and Yde Venema for many useful suggestions and comments about this
work.

2. Preliminaries

2.1 Coalgebras
Definition 2.1.1. (T -coalgebra) For every category C and every endofunctor T on C, a T -coalgebra
is an arrow in C(X, T (X)), where X is an object in C.

Definition 2.1.2. (T -coalgebra morphism) Let T be an endofunctor on C, and ρ : X −→ T (X)
and σ : Y −→ T (Y ) be T -coalgebras. A T -coalgebra morphism is an arrow f ∈ C(X, Y ) such that the
following diagram commutes:

X
f−−−−→ Y

ρ


� σ



�

T (X)
T (f)−−−−→ T (Y ).

2.2 Positive modal algebras
Definition 2.2.1. (Positive modal algebra) A = 〈A,∧,∨, �, �, 0, 1〉 is a positive modal algebra
iff 〈A,∧,∨, 0, 1〉 is a bounded distributive lattice and � and � are unary operations such that

1. �(a ∧ b) = �a ∧ �b 2. �(a ∨ b) = �a ∨ �b
3. �a ∧ �b ≤ �(a ∧ b) 4. �(a ∨ b) ≤ �a ∨ �b
5. �1 = 1 6. �0 = 0.

For every partial order 〈X,≤〉, let P≤(X) be the collection of the ≤-increasing subsets of X, i.e.
those subsets Y ⊆ X such that if x ≤ y and x ∈ Y then y ∈ Y . It holds that 〈P≤(X),∩,∪, ∅, X〉 is a
bounded distributive lattice.
A frame [4] is a structure 〈X,≤, R〉 such that X �= ∅, ≤ is a preorder on X (i.e. it is reflexive and

transitive) and R ⊆ X × X such that (≤ ◦ R) ⊆ (R ◦ ≤) and (≤−1 ◦ R) ⊆ (R ◦ ≤−1). Let us define
R� = (R ◦ ≤) and R� = (R ◦ ≤−1). For every relation S ⊆ X × X and every Y ⊆ X, let

�S(Y ) = {x ∈ X | S[x] ⊆ Y }
�S(Y ) = {x ∈ X | S[x] ∩ Y �= ∅}.

Example 2.2.2. For every frame 〈X,≤, R〉, 〈P≤(X),∩,∪, �R�
, �R�

∅, X〉 is a positive modal algebra.

2.3 The category Pri of Priestley spaces
Definition 2.3.1. (Priestley space) (cf. [6]) A Priestley space is a structure X = 〈X,≤, τ 〉 such
that 〈X,≤〉 is a partial order, 〈X, τ 〉 is a compact topological space which is totally order-disconnected,
i.e. for every x, y ∈ X, if x �≤ y then x ∈ U and y /∈ U for some clopen increasing set U .
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Example 2.3.2. If A = 〈A,∧,∨〉 is a finite lattice, then 〈A,≤,P(A)〉 is a Priestley space.

Example 2.3.3. If X = 〈X, τ 〉 is a Stone space, then 〈X, =, τ 〉 is a Priestley space.

Lemma 2.3.4. Let X = 〈X,≤, τ 〉 be a compact ordered topological space, and let B be a collection of
clopen subsets such that for every x, y ∈ X, if x �≤ y then x ∈ B and y /∈ B for some B ∈ B. Then

1. X is Hausdorff.

2. C = B ∪ {(X \ B) | B ∈ B} is a subbase of τ .

3. X is 0-dimensional, hence 〈X, τ 〉 is a Stone space.

Proof. 1. Let x, y ∈ X. If x �= y, then, as ≤ is antisymmetric, we can assume that x �≤ y. Then x ∈ B
and y /∈ B for some B ⊆ B. As B is clopen, then B and (X \ B) are open subsets of X such that
x ∈ B, y ∈ (X \ B) and B ∩ (X \ B) = ∅.
2. Let A ∈ τ , and let x ∈ A. We have to show that there exist D1, . . . , Dn ∈ C such that x ∈⋂n
i=1 Di ⊆ A. As x ∈ A, then x �= y for every y ∈ (X \ A), and as ≤ is antisymmetric, then either

x �≤ y or y �≤ x, hence for every y ∈ (X \ A) there exists Cy ∈ C such that x /∈ Cy and y ∈ Cy,
and so {Cy | y ∈ (X \ A)} forms an open cover of (X \ A). As X is compact and (X \ A) is closed,
then (X \ A) is compact, hence there exist y1, . . . , yn ∈ (X \ A) such that (X \ A) ⊆ ⋃n

i=1 Ci. Hence
(X \ Ci) ∈ C, i = 1, . . . , n and x ∈ ⋂n

i=1(X \ Ci) ⊆ A.
3. Item 2 implies that X has a subbase of clopen subsets.

Corollary 2.3.5. For every Priestley space X = 〈X,≤, τ 〉, X is Hausdorff, 0-dimensional and

{U | U clopen and increasing} ∪ {(X \ U) | U clopen and increasing}
is a subbase of τ .

So Priestley spaces can be thought of as Stone spaces with a designated partial order.

Proposition 2.3.6. For every Priestley space X = 〈X,≤, τ 〉, ≤ is a closed subset of X ×X with the
product topology.

Proof. Assume that 〈x, y〉 /∈ ≤. We have to show that 〈x, y〉 ∈ A and A ∩ ≤ = ∅ for some open
A ⊆ X × X. By total order-disconnectedness, x ∈ U and y ∈ (X \ U) for some clopen increasing
U ⊆ X. Let A = U × (X \ U). As U is clopen in X, then A is open in the product topology, and
〈x, y〉 ∈ A. If 〈u, v〉 ∈ A, then u ∈ U and v /∈ U , hence u �≤ v, for if u ≤ v, then, as U is increasing,
v ∈ U , contradiction. Hence A ∩ ≤ = ∅.
For every partial order X = 〈X,≤〉 let us denote x↑ = {y ∈ X | x ≤ y} and x↓ = {y ∈ X | y ≤ x}

for every x ∈ X. For every topological space X, let K(X) be the set of the closed subsets of X.

Lemma 2.3.7. For every Priestley space X = 〈X,≤, τ 〉 and every F ∈ K(X),
⋃

y∈F y↑ and
⋃

y∈F y↓
are closed subsets of X.

Proof. In order to show that
⋃

y∈F y↑ ∈ K(X), assume that x /∈ ⋃
y∈F y↑, and show that x ∈ A and

A ∩ ⋃
y∈F y↑ = ∅ for some A ∈ τ .

If x /∈ ⋃
y∈F y↑, then for every y ∈ F , x /∈ y↑, i.e. y �≤ x. Then by total order-disconnectedness,

for every y ∈ F there exists a clopen increasing subset Uy such that y ∈ Uy and x /∈ Uy. Therefore
F ⊆ ⋃

y∈F Uy, and as F is compact, for F is a closed subset of the compact space X, then F ⊆ ⋃n
i=1 Uyi

for some y1, . . . , yn ∈ F . Let A = X \ ⋃n
i=1 Uyi

. It holds that A is an open and decreasing subset of
X, x ∈ A and A ∩ F = ∅. Let us show that A ∩ ⋃

y∈F y↑ = ∅. Suppose that z ∈ A ∩ ⋃
y∈F y↑ for

some z ∈ X. Then z ∈ A and y0 ≤ z for some y0 ∈ F , and as A is decreasing, then y0 ∈ A, hence
y0 ∈ A ∩ F = ∅, contradiction. The proof that

⋃
y∈F y↓ ∈ K(X) is similar.
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Corollary 2.3.8. For every Priestley space X = 〈X,≤, τ 〉 and for every x ∈ X, x↑ = {y ∈ X | x ≤ y}
and x↓ = {y ∈ X | y ≤ x} are closed subsets of X.

Proof. As X is Hausdorff, then {x} is closed for every x ∈ X.

Definition 2.3.9. (Arrows in Pri) An arrow in the category Pri is a continuous and monotone
map between Priestley spaces.

2.4 The closed and convex subsets
Lemma 2.4.1. Let 〈X,≤〉 be a partial order, then the following are equivalent for every F ⊆ X:

1. F = U ∩ V for some subsets U, V of X, U increasing and V decreasing.

2. F =
⋃

x,y∈F (x↑ ∩ y↓).
3. If x, y ∈ F and x ≤ y, then z ∈ F for every z such that x ≤ z ≤ y.

Definition 2.4.2. (Convex subset) A subset F of a partial order 〈X,≤〉 is convex iff F satisfies
any of the conditions of Lemma 2.4.1.

For every ordered topological space X = 〈X,≤, τ 〉 let us denote FX the collection of the closed and
convex subsets of X. The collection FX will play an important role in the definition of the equivalence.

2.5 The Vietoris endofunctor K on Stone spaces
Definition 2.5.1. (The Vietoris space) (cf. [14]) Let X = 〈X, τ 〉 be a topological space. The
Vietoris space associated with X is the topological space K(X) = 〈K(X), τV 〉, where K(X) is the
collection of the closed subsets of X, and the topology τV is the one generated by taking the following
collection as a subbase:

{t(A) | A ∈ τ} ∪ {m(A) | A ∈ τ},
and for every A ∈ τ , t(A) = {F ∈ K(X) | F ⊆ A} and m(A) = {F ∈ K(X) | F ∩ A �= ∅}.
Lemma 2.5.2. For every topological space X = 〈X, τ 〉, every collection {Ai | i ∈ I} ⊆ τ and every
clopen subset U of X,

1. m(
⋃

i∈I Ai) =
⋃

i∈I m(Ai).

2. t(
⋂

i∈I Ai) =
⋂

i∈I t(Ai).

3. m(X \ U) = K(X) \ t(U), hence t(U) is a clopen subset of K(X).

4. t(X \ U) = K(X) \ m(U) hence m(U) is a clopen subset of K(X).

Proof. 1. For every F ∈ K(X), F ∈ m(
⋃

i∈I Ai) iff F ∩ ⋃
i∈I Ai �= ∅, iff F ∩ Ai �= ∅ for some i ∈ I, iff

F ∈ m(Ai) for some i ∈ I, iff F ∈ ⋃
i∈I m(Ai).

2. For every F ∈ K(X), F ∈ t(
⋂

i∈I Ai) iff F ⊆ ⋂
i∈I Ai, iff F ⊆ Ai for every i ∈ I, iff F ∈ t(Ai) for

every i ∈ I, iff F ∈ ⋂
i∈I t(Ai).

3. For every F ∈ K(X), F ∈ m(X \ U) iff F ∩ (X \ U) �= ∅, iff F �⊆ U , iff F ∈ K(X) \ t(U).
4. For every F ∈ K(X), F ∈ t(X \ U) iff F ⊆ (X \ U), iff F ∩ U = ∅, iff F ∈ K(X) \ m(U).

Proposition 2.5.3. For every topological space X = 〈X, τ 〉,
1. if X is compact and Hausdorff, then so is K(X).

2. if X is 0-dimensional, then so is K(X).

3. if X is a Stone space, then so is K(X).
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Proof. See [15].

The assignment X �→ K(X) can be extended to an endofunctor on the category St of Stone spaces
and their continuous maps as follows ([14, 15]): For every f ∈ HomSt(X,Y) and every F ∈ K(X),
K(f)(F ) := f [F ]. K is the Vietoris endofunctor on Stone spaces.

2.6 The category K+ of K+-spaces
Definition 2.6.1. (K+-space) (cf. def. 3.5 of [4]) A K+-space is a structure G = 〈X,≤, R,A〉 such
that ≤ is a partial order on X, A is a sublattice of 〈P≤(X),∩,∪, ∅, X〉 and R is a binary relation on
X such that the following conditions are satisfied:

D1. The space XG = 〈X,≤, τA〉, where τA is the topology defined by taking {U | U ∈ A} ∪ {(X \
U) | U ∈ A} as a subbase, is a Priestley space such that A is the collection of the clopen
increasing subsets of τA.

D2. A is closed under the operations �R and �R.

D3. For every x ∈ X, R[x] is a closed subset of XG.

D4. For every x ∈ X, R[x] = (R◦ ≤)[x] ∩ (R◦ ≤−1)[x].

Let us recall that for every K+-space G, the collection of the closed and convex subsets of XG is

FXG = {F ∈ K(XG) | F = U ∩ V for some U ∈ P≤(X), V ∈ P≤−1(X)}
= {F ∈ K(XG) | F =

⋃
x,y∈F (x↑ ∩ y↓)}.

Lemma 2.6.2. Conditions D3 and D4 are equivalent to the statement that for every x ∈ X, R[x] ∈
FXG .

Proof. For every x ∈ X, (R◦ ≤)[x] ∩ (R◦ ≤−1)[x] =
⋃

u,v∈R[x](u↑ ∩ v↓). Indeed, for every z ∈ X,

z ∈ (R◦ ≤)[x] ∩ (R◦ ≤−1)[x] ⇔ xRu ≤ z and xRv ≤−1 z for some u, v ∈ X
⇔ u ≤ z ≤ v for some u, v ∈ R[x]
⇔ z ∈ ⋃

u,v∈R[x](u↑ ∩ v↓).

Lemma 2.6.3. (cf. Prop 3.6 of [4]) For every K+-space G = 〈X,≤, R,A〉,
(≤ ◦R) ⊆ (R◦ ≤) and (≤−1 ◦R) ⊆ (R◦ ≤−1).

Definition 2.6.4. (Morphism in K+) (cf. def. 3.8 of [4]) For all K+-spaces Gi = 〈Xi,≤i, Ri,Ai〉
i = 1, 2, a map f : X1 −→ X2 is a bounded morphism between G1 and G2 iff the following conditions
are satisfied:

B1. f is order-preserving.

B2. For every x, y ∈ X1, if 〈x, y〉 ∈ R1 then 〈f(x), f(y)〉 ∈ R2.

B3. If 〈f(x), y′〉 ∈ R2, then f(z1) ≤ y′ ≤ f(z2) for some z1, z2 ∈ R1[x].

B4. For every U ′ ∈ A2, f−1[U ′] ∈ A1.

Lemma 2.6.5. Let Gi = 〈Xi,≤i, Ri,Ai〉 i = 1, 2 be K+-spaces. If f : X1 −→ X2 is a bounded
morphism between G1 and G2, then f is a continuous and order-preserving map between XG1 and
XG2 .

Proof. The map f is order-preserving by condition B1 of Definition 2.6.4. In order to show that f is
continuous, it is enough to show that for every clopen increasing subset U of XG2 , f−1[U ] is a clopen
subset of XG2 . If U is a clopen increasing subset of XG2 , then by condition D1 of 2.6.1 U ∈ A2, and
so by B4 f−1[U ] ∈ A1, hence f−1[U ] is a clopen subset of XG1 .
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3. The Vietoris endofunctor V on Pri
In this section, we are going to define an endofunctor V on the category of Priestley spaces, in such a
way that the categories K+ and Coalg(V) will turn out to be equivalent. The starting points are: a)
the intuition that every Priestley space is a Stone space with a designated partial order, and b) the fact
that the Vietoris construction is functorial on the category of Stone spaces. For every Priestley space
X = 〈X,≤, τ 〉, 〈X, τ 〉 is a Stone space, so we can consider the associated Vietoris space 〈K(X), τV 〉,
which is a Stone space. So the question is: Can we endow 〈K(X), τV 〉 with a partial order ≤∗, in such
a way that

1. 〈K(X),≤∗, τV 〉 is a Priestley space, and

2. such construction can be used to define an endofunctor on Priestley spaces that extends in a
natural way the Vietoris endofunctor K on Stone spaces?

Our candidate for ≤∗ is the Egli-Milner power order ≤P [3, 16]. We will see that such order does not
meet all the requirements, i.e. for every Priestley space 〈X,≤, τ 〉, the space 〈K(X),≤P , τV 〉 is not in
general a Priestley space, and the only condition that fails is the antisymmetry of ≤P (see Example
3.2.5 below), but this is the first step of the right construction.
The Vietoris space endowed with ≤P is an instance of a more general construction called the Vietoris

power space (cf. def 2.36 of [3]).

3.1 The Egli-Milner power order
Definition 3.1.1. (The Egli-Milner power order)(cf def 2.30 of [3]) For every set X and every
preorder ≤ on X, the Egli-Milner power order of ≤ is the relation ≤P⊆ P(X) × P(X) defined as
follows: For every Y, Z ⊆ X,

Y ≤P Z iff (∀y ∈ Y ∃z ∈ Z.y ≤ z) & (∀z ∈ Z∃y ∈ Y.y ≤ z).

Clearly, if ≤ is the identity, then ≤P is the identity too. The Egli-Milner power order behaves well
w.r.t. the order-preserving maps and the binary relations satifying certain conditions that we met
already in 2.6.3, as the next two lemmas show:

Lemma 3.1.2. For every order-preserving map f : 〈X1,≤1〉 −→ 〈X2,≤2〉 between partial orders and
every Z, W ⊆ X,

if Z ≤P
1 W then f [Z] ≤P

2 f [W ].

Proof. If z′ ∈ f [Z], then z′ = f(z) for some z ∈ Z, and as Z ≤P
1 W , then z ≤1 w for some w ∈ W ,

hence z′ = f(z) ≤2 f(w) ∈ f [W ].
If w′ ∈ f [W ], then w′ = f(w) for some w ∈ W , and as Z ≤P

1 W , then z ≤1 w for some z ∈ z, hence
f(z) ∈ f [Z] and f(z) ≤2 f(w) = w′.

Lemma 3.1.3. For every partial order 〈X,≤〉 and every binary relation R on X, the following are
equivalent:

1. For every x, y ∈ X, if x ≤ y then R[x] ≤P R[y].

2. (≤ ◦ R) ⊆ (R ◦ ≤) and (≤−1 ◦ R) ⊆ (R ◦ ≤−1).

Proof. (1. ⇒ 2.) If 〈x, y〉 ∈ (≤ ◦ R), then x ≤ z1 and z1Ry for some z1 ∈ X, then y ∈ R[z1] and by
assumption R[x] ≤P R[z1], so in particular z2 ∈ R[x] such that z ≤ y, i.e. 〈x, y〉 ∈ (R◦ ≤). The proof
of the second inclusion is similar.
(2. ⇒ 1.) Assume that x ≤ y, and prove that a) for every z ∈ R[x] there exists w ∈ R[y] such that

z ≤ w, and b) for every w ∈ R[y] there exists z ∈ R[x] such that z ≤ w.
a) If z ∈ R[x] then y ≤−1 x and xRz, so 〈y, z〉 ∈ (≤−1 ◦ R) ⊆ (R ◦ ≤−1), hence yRw and w ≤−1 z

for some w ∈ X, i.e. w ∈ R[y] and z ≤ w. The proof of b) is similar.
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3.2 The Vietoris power space
Definition 3.2.1. (Vietoris power space) Let X = 〈X,≤, τ 〉 be a Priestley space. The Vietoris
power space of X is the ordered topological space 〈K(X),≤P , τV 〉, where ≤P is the restriction of the
Egli-Milner power order to K(X) × K(X).

Lemma 3.2.2. For every ordered topological space X = 〈X,≤, τ 〉 and every A ∈ τ , if A is ≤-
increasing, then m(A) and t(A) are ≤P -increasing.

Proof. Assume that F ∈ m(A) and F ≤P G, and show that G ∈ m(A), i.e. that G ∩ A �= ∅. As
F ∈ m(A), then x ∈ F ∩ A for some x ∈ X, and F ≤P G implies that x ≤ y for some y ∈ G. As
x ∈ A and A is increasing, then y ∈ A, hence y ∈ G ∩ A.
Assume that F ∈ t(A) and F ≤P G, and show that G ∈ t(A), i.e. that G ⊆ A. Let y ∈ G. As

F ∈ t(A), then F ⊆ A, and F ≤P G implies that x ≤ y for some x ∈ F . As x ∈ A and A is increasing,
then y ∈ A.

The Egli-Milner power order enjoys a property that is going to be crucial for us, and it is stated in
item 2 of the next lemma:

Lemma 3.2.3. For every Priestley space X = 〈X,≤, τ 〉,
1. for every F, G ∈ K(X), if F �≤P G, then there exists a clopen increasing U ⊆ X such that either

F ∈ m(U) and G /∈ m(U), or F ∈ t(U) and G /∈ t(U).

2. ≤P is a closed subset of K(X) × K(X) with the product topology.

Proof. 1. If F �≤P G, then either a) there exists z ∈ F such that for every w ∈ G z �≤ w, or b) there
exists w ∈ G such that for every z ∈ F z �≤ w.
If a), then, as X is totally order-disconnected, for every w ∈ G there exists a clopen increasing

Uw ⊆ X such that z ∈ Uw and w /∈ Uw. Therefore G ⊆ ⋃
w∈G(X \Uw), i.e. the subsets (X \Uw) form

an open covering of G, and as G is compact, for it is a closed subset of the compact space X, then
G ⊆ ⋃n

i=1(X \ Uwi
) for some w1, . . . , wn ∈ G. Let U =

⋂n
i=1 Uwi

. U is clopen increasing, z ∈ F ∩ U
and G ∩ U = ∅, hence F ∈ m(U) and G /∈ m(U).
If b), then, as X is totally order-disconnected, for every z ∈ F there exists a clopen increasing Uz ⊆ X

such that z ∈ Uz and w /∈ Uz. Therefore F ⊆ ⋃
z∈F Uz, i.e. the subsets Uz form an open covering of

F , and as F is compact, then F ⊆ ⋃n
i=1 Uzi

for some z1, . . . , zn ∈ F . Let U =
⋃n

i=1 Uzi
. U is clopen

increasing, F ⊆ U and w ∈ (G \ U), hence F ∈ t(U) and G /∈ t(U).

2. Let 〈F, G〉 /∈ ≤P . We have to show that 〈F, G〉 ∈ U and U ∩ ≤P= ∅ for some open subset
U ∈ K(X) × K(X).
As F �≤P G, then by item 1. of this Lemma, there exists a clopen increasing U ⊆ X such that either

a) F ∈ m(U) and G /∈ m(U), or b) F ∈ t(U) and G /∈ t(U).
If a), then take U = t(U) × (K(X) \ t(U)). 〈F, G〉 ∈ U . Let us show that if 〈F ′, G′〉 ∈ U , then

F ′ �≤P G′. As 〈F ′, G′〉 ∈ U , then F ′ ∈ t(U), i.e. F ′ ⊆ U , and G′ /∈ t(U), i.e. G′ �⊆ U , hence there
exists w ∈ (G′ \U). Let us show that z �≤ w for every z ∈ F ′: if z ∈ F ′ ⊆ U and z ≤ w, then, as U is
increasing, w ∈ U , contradiction. Therefore F ′ �≤P G′.
If b), then take U = m(U) × (K(X) \ m(U)). 〈F, G〉 ∈ U . Let us show that if 〈F ′, G′〉 ∈ U , then

F ′ �≤P G′. As 〈F ′, G′〉 ∈ U , then F ′ ∈ m(U), i.e. F ′ ∩ U �= ∅, hence there exists z ∈ (F ′ \ U) and
G′ /∈ t(U), i.e. G′ ∩U = ∅. Let us show that z �≤ w for every w ∈ G′: if w ∈ G′ ⊆ U and z ≤ w, then,
as U is increasing, w ∈ U , contradiction. Therefore F ′ �≤P G′.

Corollary 3.2.4. For every Priestley space X = 〈X,≤, τ 〉, the Vietoris power space of X is totally
order-disconnected, and the collection

{m(U), t(U) | Uτ -clopen, U increasing or decreasing}
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is a subbase of τV .

Proof. The total order-disconnectedness immediately follows from item 1 of the lemma above, and
from the fact that if U ⊆ X is clopen increasing, then m(U) and t(U) are clopen increasing in the
Vietoris power space of X. The second part of the statement immediately follows from item 1 of the
lemma above and from Lemma 2.3.4.

It holds that if ≤ is a preorder on a set X, then ≤P is a preorder on P(X), but if ≤ is a partial
order, then ≤P might not be a partial order: The following one is an example of a Priestley space X
such that ≤P is not antisymmetric on K(X).

Example 3.2.5. Let us consider a four element chain 0 < a < b < 1, which is a finite (distributive)
lattice. By example 2.3.2 this chain is a Priestley space if it is endowed with the discrete topology.
The subsets F = {0, a, 1} and G = {0, b, 1} are distinct closed subsets which share the maximum and
the minimum, and so F ≤P G and G ≤P F .

Therefore the Vietoris power space of a Priestley space is not in general a Priestley space, and the
only condition that fails is the antisymmetry of ≤P .

3.3 The action of V on the objects of Pri
For every preorder 〈X,≤〉, we can consider the equivalence relation ≡ ⊆ P(X) × P(X) defined as
follows: For every Y, Z ⊆ X,

Y ≡ Z iff Y ≤P Z and Z ≤P Y .

The Vietoris endofunctor V on Pri will associate every Priestley space with the ≡-quotient of its
Vietoris power space.

Definition 3.3.1. (V(X)) For every Priestley space X = 〈X,≤, τ 〉, V(X) = 〈K(X)≡,≤P
≡, τV ≡〉,

and:

1. K(X)≡ = {[F ] | F ∈ K(X)}, and for every F ∈ K(X), [F ] = {G ∈ K(X) | F ≡ G}.
2. For every [F ], [G] ∈ K(X)≡,

[F ] ≤P
≡ [G] iff F ′ ≤P G′ for some F ′ ∈ [F ] and G′ ∈ [G].

3. τV ≡ = {X ⊆ K(X)≡ | π−1[X ] ∈ τV }, and π : K(X) −→ K(X)≡ is the canonical projection.

Lemma 3.3.2. For every Priestley space X = 〈X,≤, τ 〉,
1. for every F, G ∈ K(X), [F ] ≤P

≡ [G] iff F ≤P G, hence ≤P
≡ is a partial order.

2. The canonical projection π : K(X) −→ K(X)≡ is a continuous and order-preserving map.

3. for every F ∈ K(X), [F ] is a closed subset of the Vietoris power space of X.

4. For every U clopen increasing or clopen decreasing subset of X,

π−1[π[t(U)]] = t(U) and π−1[π[m(U)]] = m(U),

hence π[t(U)] and π[m(U)] are clopen increasing subsets of V(X).

5. If Ui, Vj ⊆ X are clopen increasing i = 1, . . . , n and j = 1, . . . , m and A = (
⋂n

i=1 m(Ui)) ∩
(
⋂m

j=1 t(Vj)), then π−1[π[A]] = A, hence π[A] is a clopen increasing subset of V(X).
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Proof. 1. If [F ] ≤P
≡ [G], then F ′ ≤P G′ for some F ′ ∈ [F ] and G′ ∈ [G], hence F ≤P F ′ ≤P G′ ≤P G,

and as ≤P is transitive, then F ≤P G. The converse implication holds by definition. Let us show that
≤P

≡ is antisymmetric: If [F ] ≤P
≡ [G] and [G] ≤P

≡ [F ], then by the first part of the statement F ≤P G
and G ≤P F , hence F ≡ G, and so [F ] = [G].
2. It immediately follows from the definitions of quotient topology and of ≤P

≡.
3. As K(X) is Hausdorff, then for every F ∈ K(X), {F} is a closed subset of K(X) = 〈K(X), τV 〉,

hence K(X)×{F} is a closed subset of of the product space K(X)×K(X). By item 2 of Lemma 3.2.3,
≤P is a closed subset of K(X) × K(X), hence ≤P−1 is a closed subset of K(X) × K(X), therefore
≡ = ≤P ∩≤P−1 is a closed subset of K(X)×K(X) too. Hence the subset X = {〈G, F 〉 | G ≡ F} is a
closed subset of K(X)×K(X), for X = ≡∩ (K(X)× {F}). Let p1 : K(X)×K(X) −→ K(X ) be the
first projection. As the restriction of p2 to K(X)× {F} is injective, then p2 : K(X)× {F} −→ K(X)
is a homeomorphism, and [F ] = {G ∈ K(X) | G ≡ F} = p2[X ], so [F ] is closed.
4. Assume that U is clopen increasing, and let us show that π−1[π[t(U)]] ⊆ t(U): If F ∈ π−1[π[t(U)]]

then π(F ) ∈ π[t(U)], i.e. there exists F ′ ∈ K(X) such that F ′ ≡ F and F ′ ∈ t(U), i.e. F ≤P F ′,
F ′ ≤P F and F ′ ⊆ U . Let us show that F ∈ t(U), i.e. that F ⊆ U : If x ∈ F , then, as F ′ ≤P F ,
there exists w ∈ F ′ ⊆ U such that w ≤ x, and as U is increasing, then x ∈ U . The converse inclusion
always holds.
Assume that U is clopen increasing, and let us show that π−1[π[m(U)]] ⊆ m(U): If F ∈ π−1[π[m(U)]]

then π(F ) ∈ π[m(U)], i.e. there exists F ′ ∈ K(X) such that F ′ ≡ F and F ′ ∈ m(U), i.e. F ≤P F ′,
F ′ ≤P F and w ∈ F ′ ∩ U for some w ∈ X. Let us show that F ∈ m(U), i.e. that F ∩ U �= ∅: As
w ∈ F ′ and F ′ ≤P F , then there exists x ∈ F such that w ≤ x, and as U is increasing, then x ∈ U .
The converse inclusion always holds. The cases in which U is clopen decreasing are similar.
5. If A = (

⋂n
i=1 m(Ui)) ∩ (

⋂m
j=1 t(Vj)), then

π[A] = π[(
⋂n

i=1 m(Ui)) ∩ (
⋂m

j=1 t(Vj))]
= π[(

⋂n
i=1 π−1[π[m(Ui)]]) ∩ (

⋂m
j=1 π−1[π[t(Vj)]])]

= π[π−1[(
⋂n

i=1 π[m(Ui)]) ∩ (
⋂m

j=1 π[t(Vj)])]]
= (

⋂n
i=1 π[m(Ui)]) ∩ (

⋂m
j=1 π[t(Vj)]),

(3.1)

hence

π−1[π[A]] = π−1[(
⋂n

i=1 π[m(Ui)]) ∩ (
⋂m

j=1 π[t(Vj)])]
= (

⋂n
i=1 π−1[π[m(Ui)]]) ∩ (

⋂m
j=1 π−1[π[t(Vj)]])

= (
⋂n

i=1 m(Ui)) ∩ (
⋂m

j=1 t(Vj))
= A.

For every Priestley space X = 〈X,≤, τ 〉, let us denote

BX = {π[(
⋂n

i=1 m(Ui)) ∩ (
⋂m

j=1 t(Vj))] | Ui, Vj ⊆ X clopen increasing}.
Lemma 3.3.3. For every Priestley space X = 〈X,≤, τ 〉,

1. for every [F ], [G] ∈ K(X)≡, if [F ] �≤P
≡ [G], then [F ] ∈ B and [G] /∈ B for some B ∈ BX.

2. BX ∪ {(K(X)≡ \ U) | U ∈ BV } is a subbase of the topology of V(X).

3. V(X) is totally order-disconnected.

Proof. 1. Let [F ], [G] ∈ K(X)≡, assume that [F ] �≤P
≡ [G]. We have to show that [F ] ∈ B and [G] /∈ B

for some B ∈ BX.
If [F ] �≤P

≡ [G], then F �≤P G′ for every G′ ∈ [G], and so, by item 1 of Lemma 3.2.3, F ′ ∈ UG′ and
G′ /∈ UG′ for some clopen increasing subset UG′ of the Vietoris power space of X which is either of
the form m(U) or of the form t(U) for some clopen increasing U ⊆ X.
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Therefore [G] ⊆ ⋃
G′∈[G](K(X) \ UG′), and as, by item 3 of Lemma 3.3.2, [G] is a closed subset

of the Vietoris power space of X, then [G] is compact, and so [G] ⊆ ⋃n
i=1(K(X) \ UG′

i) for some
G′

1, . . . , G
′
n ∈ [G]. Let U =

⋂n
i=1 UG′

i
and B = π[U ]. As F ∈ U , then π(F ) ∈ B. It holds that

[G] ∩ U = ∅, and so π(G) /∈ B.
2. It immediately follows from item 1 of this Lemma and item 2 of Lemma 2.3.4.
3. By item 5 of Lemma 3.3.2, every element in BX is a clopen increasing subset of V(X). Then the

statement immediately follows from item 1 of this lemma.

Proposition 3.3.4. For every Priestley space X = 〈X,≤, τ 〉, V(X) is a Priestley space.

Proof. The relation ≤P
≡ is a partial order (see item 1 of Lemma 3.3.2). As X is compact, then

K(X) = 〈K(X), τV 〉 is compact, so V(X) is compact, for it is the quotient space of a compact space,
moreover V(X) is totally order-disconnected (see item 3 of Lemma 3.3.3).

3.4 The action of V on the morphisms of Pri
Definition 3.4.1. (V(f)) Let Xi = 〈Xi,≤i, τi〉 be Priestley spaces, i = 1, 2. For every continuous
and order-preserving map f : X1 −→ X2, the map V(f) : K(X1)≡1 −→ K(X2)≡2 is given by the
assignment [F ] �→ [f [F ]] for every F ∈ K(X1).

Lemma 3.4.2. For every continuous and order-preserving map f : X1 −→ X2 of Priestley spaces,
and for every U clopen increasing subset of X2, if π : K(X1) −→ K(X1)≡1 is the canonical projection,
then

1. V(f)−1[π[m(U)]] = π[K(f)−1[m(U)]].

2. π−1[π[K(f)−1[m(U)]]] = K(f)−1[m(U)], hence π[K(f)−1[[m(U)]] is a clopen subset of V(X2).

3. V(f)−1[π[t(U)]] = π[K(f)−1[t(U)]].

4. π−1[π[K(f)−1[t(U)]]] = K(f)−1[t(U)], hence π[K(f)−1[t(U)]] is a clopen subset of V(X2).

Proof. 1. For every F ∈ K(X1),

[F ] ∈ V(f)−1[π[m(U)]] ⇔ [f [F ]] ∈ π[m(U)]
⇔ π(f [F ]) ∈ π[m(U)]
⇔ f [F ] ∈ π−1[π[m(U)]]
⇔ f [F ] ∈ m(U)
⇔ K(f)(F ) ∈ m(U)
⇔ F ∈ K(f)−1[m(U)]
⇔ [F ] ∈ π[K(f)−1[m(U)]].

2. For every F ∈ K(X1),

F ∈ π−1[π[K(f)−1[t(U)]]] ⇔ [F ] ∈ π[K(f)−1[t(U)]]
⇔ F ′ ∈ K(f)−1[t(U)] for some F ′ ∈ [F ]
⇔ K(f)(F ′) ∈ t(U) for some F ′ ∈ [F ]
⇔ f [F ′] ∈ t(U) for some F ′ ∈ [F ]
⇒ f [F ] ∈ t(U) (∗)
⇔ K(f)(F ) ∈ t(U)
⇔ F ∈ K(f)−1[t(U)].

Let us show the implication marked with (∗): As F ′ ∈ [F ] then F ′ ≡1 F , hence in particular
F ′ ≤P

1 F , and so f [F ′] ≤P f [F ] by Lemma 3.1.2. As U is ≤2-increasing, then by Lemma 3.2.2 t(U)
is ≤P

2 -increasing, so f [F ′] ∈ t[U ] implies that f [F ] ∈ t[U ]. The converse inclusion always holds.
As U is a clopen subset of X2, then t(U) is a clopen subset of K(X2), and as the map K(f) :

K(X1) −→ K(X2) is continuous, then K(f)−1[t(U)] = π−1[π[K(f)−1[t(U)]]] is a clopen subset of X1,
hence π[K(f)−1[t(U)]] is a clopen subset of V(X1). The proof involving m(U) is similar.
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Proposition 3.4.3. Let Xi = 〈Xi,≤i, τi〉 be Priestley spaces, i = 1, 2. For every continuous and
order-preserving map f : X1 −→ X2, the map V(f) : K(X1)≡1 −→ K(X2)≡2 , given by the assignment
[F ] �→ [f [F ]] for every F ∈ K(X1), is continuous and order-preserving.

Proof. As f is order-preserving, then Lemma 3.1.2 implies that for every F, G ∈ K(X), if F ≡1 G
then f [F ] ≡2 f [G], hence V(f) is well defined.
Lemma 3.1.2 also implies that V(f) is order-preserving, for if [F ]≤P

1 ≡2
[G], then by item 1 of Lemma

3.3.2, F ≤P
1 G, hence f [F ] ≤P

2 f [G], and so by item 2 of Lemma 3.3.2, [f [F ]]≤P
2 ≡2

[f [G]].
In order to show that V(f) is continuous, by item 2 of Lemma 3.3.3, it is enough to show that for

every U ∈ BX2 , V(f)−1[U ] is a clopen subset of V(X1). As U ∈ BX2 , then U = π[(
⋂n

i=1 m(Ui)) ∩
(
⋂m

j=1 t(Vj))] for some clopen increasing subsets Ui, Vj of X2, hence

V(f)−1[U ] = V(f)−1[π[(
⋂n

i=1 m(Ui)) ∩ (
⋂m

j=1 t(Vj))]]
= V(f)−1[(

⋂n
i=1 π[m(Ui)]) ∩ (

⋂m
j=1 π[t(Vj)])] ((1))

= (
⋂n

i=1 V(f)−1[π[m(Ui)]]) ∩ (
⋂m

j=1 V(f)−1[π[t(Vj)]])
= (

⋂n
i=1 π[K(f)−1[m(Ui)]]) ∩ (

⋂m
j=1 π[K(f)−1[t(Vj)]]), (3.4.2)

and as π[K(f)−1[m(Ui)]] and π[K(f)−1[t(Vj)]] are clopen by item 2 of Lemma 3.4.2, then V(f)−1[U ]
is clopen.

4. The equivalence between K+
and Coalg(V)

4.1 From K+ to Coalg(V)
Let G = 〈X,≤, R,A〉 be a K+-space, then the space XG associated with G is a Priestley space. Then
we can consider the following map:

ρG : XG −→ K(XG)≡
x �−→ π(R[x]).

As G is a K+-space, then R[x] ∈ K(X) for every x ∈ X, so ρG is of the right type.

Lemma 4.1.1. For every K+-space G = 〈X,≤, R,A〉 and every clopen increasing subset U ∈ τA
ρ−1
G [π[t(U)]] = �R(U) and ρ−1

G [π[m(U)]] = �R(U).

Proof. We just show the first equality, the proof of the other one being similar:

ρ−1
G [π[t(U)]] = {x ∈ X | ρG(x) ∈ π[t(U)]}

= {x ∈ X | π[R[x]] ∈ π[t(U)]}
= {x ∈ X | R[x] ∈ π−1[π[t(U)]]}
= {x ∈ X | R[x] ∈ t(U)}
= {x ∈ X | R[x] ⊆ U}
= �R(U).

Proposition 4.1.2. For every K+-space G = 〈X,≤, R,A〉 the map ρG is a continuous and order-
preserving map between Priestley spaces.

Proof. Let us show that ρG is order preserving, so assume that x ≤ y. As G is a K+-space, then by
Lemma 2.6.3 (≤ ◦R) ⊆ (R◦ ≤) and (≤−1 ◦R) ⊆ (R◦ ≤−1), hence by Lemma 3.1.3, R[x] ≤P R[y],
and as π is order-preserving (see item 2 of Lemma 3.3.2), then ρG(x) = π(R[x]) ≤P

≡ π(R[y]) = ρG(y).
In order to show that ρG is continuous, by item 2 of Lemma 3.3.3 it is sufficient to show that for

every B ∈ BV , ρ−1
G [B] is a clopen subset of XG . If B ∈ BV , then B = π[(

⋂n
i=1 m(Ui)) ∩ (

⋂m
j=1 t(Vj))]

for some Ui, Vj ⊆ X clopen increasing. Then
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ρ−1
G [B] = ρ−1

G [π[(
⋂n

i=1 m(Ui)) ∩ (
⋂m

j=1 t(Vj))]]
= ρ−1

G [(
⋂n

i=1 π[m(Ui)]) ∩ (
⋂m

j=1 π[t(Vj)])] (3.3.2 (1))
= (

⋂n
i=1 ρ−1

G [π[m(Ui)]]) ∩ (
⋂m

j=1 ρ−1
G [π[t(Vj)]])

= (
⋂n

i=1 �R(Ui)) ∩ (
⋂m

j=1 �R(Vj)). (4.1.1)

As Ui, Vj ⊆ X clopen increasing and G is a K+-space, then the collection of clopen increasing subsets
of XG coincides with A, and A is closed under �R and �R, hence �R(Ui) and �R(Vj) are clopen
increasing, and so ρ−1

G [B] is clopen.

Proposition 4.1.3. For every bounded morphism of K+-spaces f : G1 −→ G2, f is a V-coalgebra
morphism between ρG1 and ρG2 .

Proof. By Lemma 2.6.5, f is a continuous and order-preserving map between XG1 and XG2 . Let us
show that the following diagram commutes:

XG1

f−−−−→ XG2

ρG1



� ρG2



�

V(XG1)
V(f)−−−−→ V(XG2).

For every x ∈ X1, V(f)(ρG1(x)) = V(f)([R1[x]]) = [f [R1[x]]], and ρG2(f(x)) = [R2[f(x)]]. So in order
to show that the diagram above commutes, it is enough to show that f [R1[x]] ≡ R2[f(x)], i.e. that
a) for every y′ ∈ f [R1[x]], z′1 ≤ y′ ≤ z′2 for some z′1, z′2 ∈ R2[f(x)], and b) for every z′ ∈ R2[f(x)],
y′

1 ≤ z′ ≤ y′
2 for some y′

1, y
′
2 ∈ f [R1[x]].

a) If y′ ∈ f [R1[x]], then f(y) = y′ for some y ∈ R1[x]. By B2, xR1y implies that f(x)R2y
′, hence

by B3, there exist z1, z2 ∈ R1[x] such that f(z1) ≤ y′ ≤ f(z2), then take z′i = f(zi), i = 1, 2: as
zi ∈ R1[x], then by B2, f(zi) ∈ R2[f(x)].
b) If z′ ∈ R2[f(x)], then f(x)R2z

′, hence by B3, there exist y1, y2 ∈ R1[x] such that f(y1) ≤ z′ ≤
f(y2), then take y′

i = f(yi), i = 1, 2: as yi ∈ R1[x], then f(yi) ∈ f [R1[x]].

4.2 The Egli-Milner order on convex subsets
Lemma 4.2.1. For every Priestley space X = 〈X,≤, τ 〉,

1. the restriction of ≤P to (FX × FX) is antisymmetric, hence if F, F ′ ∈ FX and F ≡ F ′, then
F = F ′.

2. For every F ∈ K(X), there exists F+ ∈ FX such that F ≡ F+.

3. For every F ∈ K(X), there exists a unique F+ ∈ FX such that F ≡ F+.

4. For every F ∈ FX, G ⊆ F for every G ∈ [F ].

Proof. 1. Let F, G ∈ FX, assume that F ≤P G and G ≤P F , and let us show that F = G. Suppose
F �= G, then we can assume that x ∈ (F \ G) for some x ∈ X. As x ∈ F and F ≤P G and G ≤P F ,
then y0 ≤ x ≤ z0 for some y0, z0 ∈ G, i.e. x ∈ (y0↑ ∩ z0↓) ⊆

⋃
y,z∈G(y↑ ∩ z↓) = G, contradiction.

2. For every F ∈ K(X), let F+ =
⋃

x,y∈F (x↑∩ y↓). F+ ∈ FX because F+ = (
⋃

x∈F x↑)∩ (
⋃

y∈F x↓),
(
⋃

x∈F x↑) ∈ P≤(X), (
⋃

y∈F x↓) ∈ P≤−1(X) and (
⋃

x∈F x↑), (⋃y∈F x↓) ∈ K(X) by Lemma 2.3.7. Let
us show that F ≡ F+. As F ⊆ F+, then for every x ∈ F there exist y, z ∈ F ⊆ F+ such that
y ≤ x ≤ z: take y = x = z. If z ∈ F+ =

⋃
x,y∈F (x↑ ∩ y↓), then x0 ≤ z ≤ y0 for some x0, y0 ∈ F .

3. If F1, F2 ∈ FX and Fi ≡ F for i = 1, 2, then F1 ≡ F2, so by item 1 of this lemma F1 = F2.
4. Assume that F ∈ FX and G ∈ [F ]. If x ∈ G, then as G ≡ F , y1 ≤ x ≤ y2 for some y1, y2 ∈ F ,

and as F is convex, then x ∈ F .
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4.3 From Coalg(V) to K+

Let ρ : X −→ V(X) be a V-coalgebra, so X = 〈X,≤, τ 〉 is a Priestley space, and the collection
Aτ of the clopen increasing subsets of τ is a sublattice of 〈P≤(X),∩,∪, ∅, X〉. For every x ∈ X,
ρ(x) ∈ K(X)≡, hence ρ(x) = π(F ) = [F ] for some F ∈ K(X). By item 3 of Lemma 4.2.1, there exists
a unique F+ ∈ [F ] ∩FXG = ρ(x) ∩ FXG . Let us define Rρ ⊆ X ×X by putting Rρ[x] = F+ for every
x ∈ X.
Then we can associate ρ with Gρ = 〈X,≤, Rρ,Aτ 〉.

Lemma 4.3.1. For every V-coalgebra ρ : X −→ V(X),

1. for every x ∈ X, ρ(x) = [Rρ[x]].

2. For every open increasing U ⊆ X, �Rρ
(U) = ρ−1[π[t(U)]].

3. For every open U ⊆ X, �Rρ
(U) = ρ−1[π[m(U)]].

Proof. 1. By definition, Rρ[x] ∈ π−1[ρ(x)] for every X ∈ X, hence [Rρ[x]] = π(Rρ(x)) = ρ(x).

2. For every x ∈ X,

x ∈ �Rρ
(U) ⇔ Rρ[x] ⊆ U

⇔ Rρ[x] ∈ t(U)
⇒ π(Rρ[x]) ∈ π[t(U)]
⇔ ρ(x) ∈ π[t(U)]
⇔ x ∈ ρ−1[π[t(U)]].

Let us show that if ρ(x) ∈ π[t(U)], then Rρ[x] ∈ t(U). If ρ(x) ∈ π[t(U)], then ρ(x) = [F ] for
some F ∈ t(U). By definition, Rρ[x] = F+ =

⋃
u,v∈F (u↑ ∩ v↓) = (

⋃
u∈F u↑) ∩ (

⋃
v∈F v↓). As

F ∈ t(U), then F ⊆ U , and as U is increasing, then (
⋃

u∈F u↑) ⊆ U . Therefore Rρ[x] = F+ =
(
⋃

u∈F u↑) ∩ (
⋃

v∈F v↓) ⊆ (
⋃

u∈F u↑) ⊆ U , i.e Rρ[x] ∈ t(U).

3. For every x ∈ X,

x ∈ �Rρ
(U) ⇔ Rρ[x] ∩ U �= ∅

⇔ Rρ[x] ∈ m(U)
⇒ π(Rρ[x]) ∈ π[m(U)]
⇔ ρ(x) ∈ π[m(U)]
⇔ x ∈ ρ−1[π[m(U)]].

Let us show that if ρ(x) ∈ π[m(U)], then Rρ[x] ∈ m(U). If ρ(x) ∈ π[m(U)], then ρ(x) = [F ] for some
F ∈ m(U). By definition, Rρ[x] = F+ ∈ FX, hence by item 4 of Lemma 4.2.1 and so F ⊆ Rρ[x],
hence Rρ[x] ∩ U ⊇ F ∩ U �= ∅, i.e. Rρ[x] ∈ m(U).

Proposition 4.3.2. For every V-coalgebra ρ : X −→ V(X), Gρ = 〈X,≤, Rρ,Aτ 〉 is a K+-space.

Proof. By construction, Aτ is a sublattice of 〈P≤(X),∩,∪, ∅, X〉, and for every x ∈ X, Rρ[x] ∈ FXg
,

which implies, by Lemma 2.6.2, that Rρ verifies conditions D3 and D4 of the definition of K+-space.
So the only thing we have to show is that Aτ is closed under �Rρ

and �Rρ
, i.e. that for every

clopen increasing U ⊆ X, �Rρ
(U) and �Rρ

(U) are clopen increasing. By items 2 and 3 of Lemma
4.3.1, �Rρ

(U) = ρ−1[π[t(U)]], and �Rρ
(U) = ρ−1[π[m(U)]]. As ρ is a V-coalgebra, then ρ is a

continuous and order-preserving map, and as, by item 4 of Lemma 3.3.2, π[t(U)] and π[m(U)] are
clopen increasing subsets of V(X), then ρ−1[π[t(U)]] and ρ−1[π[m(U)]] are clopen increasing subsets
of X.

Proposition 4.3.3. For every V-coalgebra morphism f : ρ1 −→ ρ2, f is a bounded morphism between
Gρ1 and Gρ2 .
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Proof. Let ρi : Xi −→ V(Xi), i = 1, 2. By assumption, f : X1 −→ X2 is a continuous and order-
preserving map, such that the following diagram commutes:

X1
f−−−−→ X2

ρ1



� ρ2



�

V(X1)
V(f)−−−−→ V(X2).

Let Gρi
= 〈Xi,≤i, Rρi

,Ai〉, i = 1, 2. As f is order preserving, then f meets condition B1 of Definition
2.6.4. Let us show that B4 holds: If U ∈ A2, then U is a clopen increasing subset of X2, and as f
is continuous, then f−1[U ] is a clopen subset of X1. If x ∈ f−1[U ] and x ≤1 y, then f(x) ∈ U and
f(x) ≤2 f(y), and as U is increasing, then f(y) ∈ U , i.e. y ∈ f−1[U ], so f−1[U ] is also increasing,
hence f−1[U ] ∈ A1.
It holds that for every x ∈ Xi, ρi(x) = [Rρi

[x]], i = 1, 2, so the commutativity of the diagram
implies that [Rρ2 [f(x)]] = ρ2(f(x)) = V(f)(ρ1(x)) = [f [Rρ1 [x]]], hence Rρ2 [f(x)] ≡2 f [Rρ1 [x]]. Let
us show B3: If y′ ∈ Rρ2 [f(x)], then, as Rρ2 [f(x)] ≤P

2 f [Rρ1 [x]], there exist z1, z2 ∈ Rρ1 [x] such that
f(z1) ≤2 y′ ≤2 f(z2). Finally, let us show B2: As Rρ2 [f(x)] ∈ FX2 and f [Rρ1 [x]] ≡2 Rρ2 [f(x)], then by
item 4 of Lemma 4.2.1, f [Rρ1 [x]] ⊆ Rρ2 [f(x)]. Hence, if y ∈ Rρ1 [x], then f(y) ∈ f [Rρ1 [x]] ⊆ Rρ2 [f(x)],
and so f(x)Rρ2f(y).

4.4 Equivalence
Proposition 4.4.1. For every K+-space G and every V-coalgebra ρ, GρG = G and ρGρ

= ρ.

Proof. If G = 〈X,≤, R,A〉, then by spelling out the definitions involved, we have that GρG = 〈X,≤
, RρG ,A〉, and for every x ∈ X RρG [x] ∈ ρG(x) = [R[x]], hence RρG [x] ≡ R[x], and since both sets are
closed and convex, then by item 1 of lemma 4.2.1 RρG [x] = R[x].
If ρ : X −→ V(X), then by spelling out the definitions involved we have that XGρ

= X, hence
ρGρ

: X −→ V(X), and for every x ∈ X ρGρ
(x) = [Rρ[x]] = ρ(x).

5. A negative result about Heyting algebras

It is well-known that the class of Heyting algebras (see Definition 5.1.1 below) is the one canonically
associated with the intuitionistic propositional logic. Such class of algebras and the homomorphism
between its members form a category, that is dually equivalent to the category E (see Definition 5.2.1
below) of ordered Stone spaces 〈X,≤, τ 〉 such that the assignment x �→ x↑ defines a coalgebra of the
Vietoris endofunctor K on Stone spaces. The spaces of the category E can be characterized as special
Priestley spaces (see Proposition 5.2.5 below). So a natural questions that can be asked is whether
for every space in E the assignment x �→ π(x↑) defines a coalgebra of the endofunctor V on Priestley
spaces, so that E can be characterized as a subcategory of Coalg(V). We will give a negative answer
to such question.

5.1 Heyting algebras
Definition 5.1.1. (Heyting algebra) An algebra A = 〈A,∧,∨,→, 0, 1〉 is a Heyting algebra iff
〈A,∧,∨, 0, 1〉 is a bounded distributive lattice and → is the residuum of ∧, i.e. it is a binary operation
such that for every a, b, c ∈ A,

(a ∧ c) ≤ b iff c ≤ (a → b).

An intuitionistic frame [5] is a poset, i.e. a structure 〈X,≤〉, such that X �= ∅ and ≤ is a reflexive,
antisymmetric and transitive binary relation on X. Let P≤(X) be the collection of the ≤-increasing
subsets of X. For every relation S ⊆ X × X and every Y, Z ⊆ X, let
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�S(Y ) = {x ∈ X | S[x] ⊆ Y }

Z ⇒S Y = �S((X \ Z) ∪ Y )
= {x ∈ X | ∀y ∈ X(x ≤ y&y ∈ Z ⇒ y ∈ Y }.

Lemma 5.1.2. For every poset 〈X,≤〉 and every A, B ∈ P≤(X), A ⇒≤ B ∈ P≤(X).

Proof. Assume that x ∈ (A ⇒≤ B) and x ≤ y. Then for every z ∈ A, if y ≤ z, then x ≤ z, and so
z ∈ B. This shows that y ∈ (A ⇒≤ B).

Example 5.1.3. For every intuitionistic frame 〈X,≤〉, 〈P≤(X),∩,∪,⇒≤, ∅, X〉 is a Heyting algebra.

Proof. For every partial order 〈X,≤〉, it holds that 〈P≤(X),∩,∪, ∅, X〉 is a bounded distributive
lattice. Let us show that for every A, B, C ∈ P≤(X),

(A ∩ C) ⊂ B iff C ⊆ (A ⇒≤ B).

(⇒) Let c ∈ C,and let us show that c ∈ A ⇒≤ B, i.e. that if c ≤ y and y ∈ A, then y ∈ B. As c ≤ y,
c ∈ C and C is ≤-increasing, then y ∈ C, so y ∈ A ∩ C ⊆ B.
(⇐) If x ∈ A∩C ⊆ C ⊆ A ⇒≤ B, then for every y ∈ A such that x ≤ y, y ∈ B. Then take y = x.

5.2 The category E of Èsakia spaces
Definition 5.2.1. (Èsakia space) (cf. def. 1 of [9]) An Èsakia space X = 〈X,≤, τ 〉 is an ordered
Stone space such that the assignment x �→ x↑ defines a continuous map ρ : 〈X, τ 〉 → 〈K(X), τV 〉.
Definition 5.2.2. (Strongly isotone map) (cf. def. 2 of [9]) Let 〈X,≤〉 and 〈Y,≤′〉 be pre-ordered
sets. A map f : X → Y is strongly isotone iff

∀x ∈ X ∀y ∈ Y (f(x) ≤′ y ⇔ ∃x′(x ≤ x′ & f(x′) = y)).

Clearly, if f is strongly isotone then it is monotone, moreover the composition of strongly isotone
maps is strongly isotone.

Theorem 5.2.3. (cf. theor 3 of [9]) The category of Èsakia spaces and strongly isotone and continuous
maps is dually equivalent to the category of Heyting algebras and their homomorphisms.

Lemma 5.2.4. For every ordered space X = 〈X,≤, τ 〉 such that x↑ ∈ K(X) for every x ∈ X and
every open subset A,

�≤(A) = A↓ = ρ−1[m(A)],

where ρ(x) = x↑ for every x ∈ X.

Proof. For every open subset A,

A↓ =
⋃

y∈A y↓
= {x ∈ X | ∃y(y ∈ A & x ≤ y)}
= {x ∈ X | x↑ ∩ A �= ∅}
= �≤(A).

ρ−1[m(A)] = {x ∈ X | ρ(x) ∩ A �= ∅}
= {x ∈ X | x↑ ∩ A �= ∅}
= �≤(A).

The next proposition is considered folklore:
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Proposition 5.2.5. The following are equivalent for every ordered Stone space X = 〈X,≤, τ 〉:
1. X is an Èsakia space.

2. X is a Priestley space such that for every clopen subset U , U↓ is clopen.

Proof. (1. ⇒ 2.) If U is a clopen subset of X, then m(U) is a clopen subset of K(X), and as by
assumption ρ is continuous, then ρ−1[m(U)] is a clopen subset of X, i.e. by Lemma 5.2.4 U↓ is clopen.
Let us show that X is totally order-disconnected: It is enough to show that if x, y ∈ X and x �≤ y,

then y ∈ U and x /∈ U for some clopen decreasing subset U of X. If x, y ∈ X and x �≤ y, then y↑ �⊆ x↑,
i.e. y↑ ∩ (X \ x↑) �= ∅, i.e. y↑ ∈ m(X \ x↑), i.e y ∈ ρ−1[m(X \ x↑)] = (X \ x↑)↓. As ρ is continuous by
assumption and m(X \ x↑) is an open subset of 〈K(X), τV 〉, (X \ x↑)↓ is an open subset of X, and it
is decreasing. As X is a Stone space, y ∈ V ⊆ (X \ x↑)↓ for some clopen subset V of X. Then take
U = V ↓: As V is clopen, then U is clopen, moreover y ∈ U and U ⊆ (X \ x↑)↓, hence x /∈ U .
(2. ⇒ 1.) By Corollary 3.2.4, in order to show that ρ is continuous, it is enough to show that for

every U clopen subset of X, ρ−1[m(U)] and ρ−1[t(U)] are clopen. As U is clopen, then by assumption
ρ−1[m(U)] = U↓ is clopen, moreover (X \ U) is clopen, hence (X \ U)↓ is clopen, and the following
holds:

ρ−1[t(U)] = ρ−1[K(X) \ m(X \ U)]
= X \ ρ−1[m(X \ U)]
= X \ ((X \ U)↓).

Proposition 5.2.6. The following are equivalent for every ordered Stone space X = 〈X,≤, τ 〉:
1. X is a Priestley space such that for every clopen increasing subset U , U↓ is clopen increasing.

2. The general frame GX = 〈X,≤,≤,Aτ 〉, where Aτ is the algebra of the clopen increasing subsets
of X, is a K+-space.

3. X is a Priestley space such that the map ρ : X → V(X) given by ρ(x) = π[x↑] is a V-coalgebra.

4. X is a Priestley space such that the map ρ′ : X → 〈K(X),≤P , τV 〉 given by ρ′(x) = x↑ is
continuous and order-preserving.

Proof. (2. ⇒ 1.) If GX = 〈X,≤,≤,Aτ 〉 is a K+-space, and Aτ is the algebra of the clopen increasing
subsets of X, then X = XgX

is a Priestley space, and Aτ is closed under �≤, i.e. for every clopen
increasing subset U of X U↓ = �≤(U) is clopen increasing.
(1. ⇒ 2.) D1 holds because XGX

= X, and so D3 holds by Corollary 2.3.8. For every x ∈ X,
x↑ = (≤ ◦ ≤)[x], and x↑ ⊆ (≤ ◦ ≤−1)[x], hence x↑ = (≤ ◦ ≤)[x] ∩ (≤ ◦ ≤−1)[x], which is D4. For
every clopen increasing subset U of X, �≤(U) = U↓, which is clopen increasing by assumption, and
�≤(U) = X \ �≤(X \ U) = X \ ((X \ U)↓) = X \ (X \ U) = U .
(2. ⇒ 3.) It immediately follows from Proposition 4.1.2, since ρ is ρGX

.
(3. ⇒ 2.) It immediately follows from Proposition 4.3.2, since GX is Gρ.
(3. ⇒ 4.) In order to show that ρ′ is continuous, by Corollary 3.2.4 it is enough to show that

ρ′−1[t(U)] and ρ′−1[m(U)] are clopen for every U clopen increasing or clopen decreasing subset of X.
By item 4 of Lemma 3.3.2, ρ′−1[t(U)] = ρ′−1[π−1[π[t(U)]]] = ρ[π[t(U)]] which is clopen, for π[t(U)] is
a clopen subset of V(X) and ρ is continuous by assumption. The proof that ρ′−1[m(U)] is a clopen
subset is similar.
(4. ⇒ 3.) The canonical projection π : X → V(X) is continuous and order-preserving (see item 2

of Lemma 3.3.2), ρ′ is continuous and order-preserving by assumption, hence ρ = π ◦ ρ′ is continuous
and order-preserving.
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The equivalence between items 3 and 4 of the proposition above implies that not for every Èsakia
space X the map ρ : X → V(X) given by ρ(x) = π[x↑] is a V-coalgebra, because the map ρ′ : X →
〈K(X),≤P , τV 〉 given by ρ′(x) = x↑ might not be order-preserving:

Example 5.2.7. Let us consider the space X = 〈X,≤, τ 〉, where X = {a, b, c}, ≤ = {〈a, b〉, 〈a, c〉}∪∆
and τ is the discrete topology. It is easy to see that X is a Priestley space such that for every
clopen subset U , U↓ is clopen, and so X is an Èsakia space. By Lemma 3.1.3, the map ρ′ : X →
〈K(X),≤P , τV 〉 given by ρ′(x) = x↑ is order-preserving iff (≤ ◦ ≤−1) ⊆ (≤−1 ◦ ≤), i.e. for every
x, y ∈ X such that z ≤ x and z ≤ y for some z ∈ X, there exists z′ ∈ X such that x ≤ z′ and y ≤ z′.
Clearly, this condition does not hold for b, c ∈ X.

6. Open problems

Closed and convex subsets. In order to be able to define the correspondence from Coalg(V)
to K+, we relied on the fact that the ≡-equivalence classes of any Priestley space X = 〈X,≤, τ 〉 can
be identified with the closed and convex subsets of X (see Lemma 4.2.1). So a natural alternative way
of defining V(X) would be to consider the space 〈FX,≤P , τ ′

V 〉, where FX is the set of the closed and
convex subsets of X, ≤P is the Egli-Milner power order restricted to FX×FX, and τ ′

V is the topology
defined by taking all the subsets of the form m(A) = {F ∈ FX | F ∩A �= ∅}, t(A) = {F ∈ FX | F ⊆ A}
for every A ∈ τ , as a subbase. Such definition would be more desirable in many respects, for example
it would make the connection with analogous constructions on spectral spaces more transparent, but
at the moment we do not have proof that, for every Priestley space X, the space 〈FX,≤P , τ ′

V 〉 is
compact. A sufficient condition for the compactness of such space is that the FX is a closed subset
of 〈K(X), τV 〉. Notice that such condition is not implied by the facts stated in Lemma 4.2.1, however
such facts would imply that the ≡-quotient space V(X) is homeomorphic to the space 〈FX,≤P , τ ′

V 〉
under the hypothesis that FX is a closed subset of 〈K(X), τV 〉.

The old and the new semantics. Coalgebras of the Vietoris endofunctor on Pri are endowed
with a notion of bisimulation. The relation between such notion and the standard one is still to be
investigated. More in general, the specific features of Coalg(V) as a semantics for PML are to be
studied, and a general characterization of the logics which admit an analogous semantics should be
matter of further investigation.

Coalgebras for endofunctors on Priestley spaces. In [12], a special class of endofunctors on
Set is defined, namely the class of Kripke polinomial functors. Such class of functors is inductively
defined using a formal grammar which includes the covariant powerset functor P, and a soundness and
completeness theorem is given for the coalgebraic modal logics associated with coalgebras of Kripke
polinomial functors. In [15] an analogous class of endofunctors on the category of Stone spaces is
defined using a formal grammar which includes the Vietoris endofunctor K. A possible development
of this work would be defining an analogous class of endofunctors on Pri, in which the role of P or K
would be played by the endofunctor V, and studying the associated coalgebraic (positive) modal logics.
A further step in such research project would be studying the connections between such constructions
and the framework presented by Abramsky in [1].

Dual equivalence. Given an endofunctor H on a category C, the category Alg(H) of the H-
algebras is dually equivalent to the category Coalg(Hop) of the Hop-coalgebras. As Pri is equivalent
to BDLop, where BDL is the category of bounded distributive lattices and their homomorphisms,
and the category PMA of positive modal algebras and their homomorphisms is dually equivalent to
K+, then, as a consequence of the equivalence of categories established in Section 4, the following
chain of categorical equivalences holds for some endofunctor H on BDL:

PMAop � K+ � Coalg(V) � Coalg(Hop) � Alg(H)op,
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hence PMA � Alg(H) for some endofunctor H on BDL. This is analogous to the case treated in
[15] (i.e. the category BAO of Boolean algebras with operators is equivalent to the category Alg(G)
of the G-algebras, for some endofunctor G on Boolean algebras), and from the existence of the initial
object in Alg(H) we can deduce the existence of the final object in Coalg(V). The endofunctor H
and its connections with V are worth further investigation, starting with its actual definition.

Èsakia spaces. As we saw in section 5, Èsakia spaces and strongly isotone and continuous maps
form a subcategory E of the category Pri of Priestley spaces and monotone and continuous maps, so
a natural question that arises is whether for every Èsakia space X, V(X) is an Èsakia space. If this
is the case, then analogous constructions and facts could be extended to E.
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