
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Specification of coordination behaviors in software
architecture using the Reo coordination language

Yongzhi Li

REPORT SEN-E0509 SEPTEMBER 2005

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301669359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Specification of coordination behaviors in software
architecture using the Reo coordination language

ABSTRACT
One of the key goals of a software architecture is to help application designers analyze a
software system at a higher level of abstraction than implementation. Software architects often
use architecture description languages (ADLs) and their supporting tools to specify software
architectures. Existing ADLs often lack formal foundations for design, analysis and
reconfiguration of software architectures. The Reo language has a strong formal basis and
promotes loose coupling, distribution, mobility, exogenous coordination, and dynamic
reconfigurability. This thesis focus on assessing the Reo coordination language as an ADL by
doing the following work: a) specify a distributed meeting scheduling system using the Reo
coordination language; b) assess the Reo coordination language as an ADL using an existing
method.

1998 ACM Computing Classification System: D.2.11, J.1, D.1.7, D.2.1
Keywords and Phrases: Reo, software architecture, architecture description languages, distributed meeting scheduling
Note: The author performed this work at CWI as a Master's degree project in the ICT in Business programme of Leiden
University.

 1

SPECIFICATION OF COORDINATION
BEHAVIORS IN SOFTWARE

ARCHITECTURE USING THE REO
COORDINATION LANGUAGE

by

Yongzhi Li

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science in ICT in Business

Leiden University

2005

Approved by ___
Chairperson of Supervisory Committee

__

__

__

Program Authorized
to Offer Degree__

Date ___

 2

Keywords: the Reo Coordination Language, Software Architecture, Architecture
Description Language (ADL), Distributed Meeting Scheduling

 3

Abstract

One of the key goals of a software architecture is to help application designers

analyze a software system at a higher level of abstraction than implementation.

Software architects often use architecture description languages (ADLs) and their

supporting tools to specify software architectures. Existing ADLs often lack formal

foundations for design, analysis and reconfiguration of software architectures.

The Reo language has a strong formal basis and promotes loose coupling,

distribution, mobility, exogenous coordination, and dynamic reconfigurability. This

thesis focus on assessing the Reo coordination language as an ADL by doing the

following work: a) specify a distributed meeting scheduling system using the Reo

coordination language; b) assess the Reo coordination language as an ADL using

an existing method.

 4

Acknowledgements

First of all, I would like to thank Prof. Farhad Arbab for giving me the opportunity to

work on this topic.

This thesis could not have been written without the support of my supervisor Dr. Nikolay

Diakov. He has given me very helpful comments along the way. I was also impressed a

lot by his scientific attitude, his willingness to accept only carefully and objectively

verified facts.

Thanks to my classmate Min Xie, who helped me to get further insights in the area of

Reo and to clarify my ideas.

Last but not least, I like to thank my parents. I would not have been able to do this work

without their help, and their support is greatly appreciated.

Thesis Supervisors:

Prof. Dr. Farhad Arbab

Senior Researcher, National Research Institute for Mathematics and Computer Science

(CWI)

Dr. Nikolay Diakov

Scientific Staff Member, National Research Institute for Mathematics and Computer

Science (CWI)

 5

Contents

Chapter 1 Introduction... 7

1.1 BACKGROUND ... 7
1.2 PROBLEM STATEMENT .. 8
1.3 APPROACH .. 9
1.4 GOAL... 9
1.5 STRUCTURE ... 9

Chapter 2 An Introduction to the Reo Coordination Language 10

2.1 INTRODUCTION...10
2.2 COMPONENT INSTANCES ..10
2.3 CONNECTOR ...11
2.4 REO NODES ..12
2.5 REO OPERATIONS ...13

2.5.1 Topological operations..13
2.5.2 Input/Output operations...13
2.5.3 Inquiry operations ...14

2.6 COMPONENT ENCAPSULATION ...14

Chapter 3 Case Study: A Distributed Meeting Scheduling System 16

3.1 INTRODUCTION...16
3.2 OVERVIEW ...16
3.3 FUNCTIONAL REQUIREMENTS ..17

3.3.1 Actors: ...18
3.3.2 Use cases ...20

3.4 HIGH LEVEL ARCHITECTURE...22
3.5 DMSS SOFTWARE ARCHITECTURE ...24

3.5.1 Basic components ..24
3.5.2 Basic connectors..26
3.5.3 Fixed DMSS specification..28
3.5.4 Flexible DMSS specification..37

Chapter 4 An Analysis of Reo as an ADL.. 45

4.1 INTRODUCTION...45
4.2 A OVERVIEW OF THE EVALUATION CRITERIA ..45

4.2.1 Component...46
4.2.2 Connectors...47
4.2.3 Architectural Configurations...48
4.2.4 Tool Support ..49

4.3 ANALYSIS OF REO AS AN ADL...51
4.3.1 Components ...51
4.3.2 Connectors...53
4.3.3 Architectural Configurations...54
4.3.4 Tool support...57

4.4 SUMMARY ..57

Chapter 5 Conclusions.. 58

5.1 SUMMARY..58
5.2 DISCUSSION ...59
5.3 FUTURE WORK..59

 6

List of Figures

FIGURE 2.1.SOME BASIC CHANNEL TYPES IN REO ..11
FIGURE 2.2.SEQUENCER CONNECTOR ..12
FIGURE 2.3 NODES IN THE REO COORDINATION LANGUAGE (NODES ARE DENOTED AS BLACK BULLETS)......12
FIGURE 2.4.BLACK-BOX REPRESENTATION OF SEQUENCER CONNECTOR..15
FIGURE 3.1.USE CASE DIAGRAMS OF THE DMSS ..18
FIGURE 3.2. RELATIONS OF USE CASES..22
FIGURE 3.3.THE HIGH LEVEL ARCHITECTURE OF DMSS...23
FIGURE 3.4.BASIC DATA PROCESSING COMPONENTS...25
FIGURE 3.5.VARABLE COMPONENT..26
FIGURE 3.6.EXCLUSIVE ROUTER 3 ...26
FIGURE 3.7.INCLUSIVE ROUTER 3 ..27
FIGURE 3.8.INITIALLY CLOSED VALVE(ICV)...27
FIGURE 3.9.THE HIGH LEVEL MODEL OF FIXED DMSS ...28
FIGURE 3.10.MEETING ID GENERATOR..29
FIGURE 3.11.FIXED INITIATOR COMPONENT ..30
FIGURE 3.12.FIXED PROPOSAL GENERATOR ..31
FIGURE 3.13.FIXED ANSWERS EVALUATOR ...32
FIGURE 3.14.RESPONSE SWITCH ..33
FIGURE 3.15.BLOCKING MEMBERSHIP TESTER 2 ...33
FIGURE 3.16.FIXED ATTENDEE COMPONENT ...34
FIGURE 3.17.FIXED RESPONSE GENERATOR...35
FIGURE 3.18.CONFIRMATION MANAGER..36
FIGURE 3.19.THE HIGH LEVEL STRUCTURE OF FLEXIBLE DMSS ..37
FIGURE 3.20.FLEXIBLE INITIATOR COMPONENT...38
FIGURE 3.21.FLEXIBLE PROPOSAL GENERATOR...39
FIGURE 3.22.FLEXIBLE RESPONSES EVALUATOR ...40
FIGURE 3.23.LIST MAKER 2 ...41
FIGURE 3.24.FLEXIBLE ATTENDEE COMPONENT..42
FIGURE 3.25.FLEXIBLE RESPONSE GENERATOR...43
FIGURE 4.1. ADL CLASSIFICATION AND COMPARISON FRAMEWORK. ESSENTIAL MODELING FEATURES ARE IN

BOLD FONT..45
FIGURE 4.2 ...52
FIGURE 4.3.EXPLICIT SPECIFICATION OF A CONNECTOR IN REO ...55
FIGURE 4.4.SCALABILITY OF REO CIRCUIT...56

List of Tables

TABLE 4.1. SUMMARY OF THE EVALUATION OF REO AS AN ADL ..57

 7

Chapter 1
Introduction

1.1 Background

A software architecture is commonly referred to as “the fundamental organization of a

system, embodied in its components, their relationships to each other and the

environment, and the principles governing its design and evolution [1]”. One of the key

goals of a software architecture is to help application designers analyze a software system

at a higher level of abstraction than implementation. Software architects often use

architecture description languages (ADLs) and their supporting tools to specify software

architectures. The basic elements of architecture description are [2]:

• Component: It is a unit of computation or a data store in architecture;

• Connectors: They are architectural building blocks used to model interactions

among components and rules to govern those interactions;

• Architectural configurations: They are the connected graphs of components and

connectors that describe architectural structure.

In a distributed environment, component interaction often results in the complex

coordination of multiple concurrent activities. The coordination language community has

focused on the coordination aspect in a software system. In the area of coordination

languages, coordination is “the process of building programs by gluing together active

pieces [6]”. A coordination language allows two or more components to communicate

with each other for the purpose of coordinating their behaviors to accomplish a common

goal. The Reo coordination language [7] is one of such promising language that provide

the following features [7]:

• Loose coupling among components;

• Support for distribution and mobility of heterogeneous components;

 8

• Exogenous coordination;

• Dynamic reconfigurability;

• Formal semantics based on a conductive calculus of flow and (alternatively) on

constraint automata;

• Specification and verification methods using programming logic.

1.2 Problem Statement

There are several drawbacks of ADLs in general, as identified in [2][3][4][5],

• ADLs, such as Rapide [8][9], MetaH [10][11], and Darwin [12][13], do not allow

explicitly specifying connectors as first-class modeling entities;

• ADLs, such as MetaH and Unicon [14][15], limit their ability to let new

user-defined types of components and connectors;

• Most ADLs lack support for refinement of software architectures across levels of

detail. There is no guarantee that the specified high-level coarse system behavior

will be correctly implemented in fine details. Furthermore, they also lack support

for strict synthesis and composition of existing commercial-off-the-shelf

components into a new system design;

• Most ADLs lack facilities, such as tools and formal modeling notations to support

dynamic reconfiguration;

• ADLs vary in their ability to support both functional and non-functional analysis

of a modeled system at architectural level, the reason for this problem can be

traced to the lack of appropriate formal semantics of ADLs.

In this thesis we focus on the suitability of the Reo coordination language to address

these problems, thus we pose the following research question:

“What are the weaknesses and the strengths of the Reo coordination
language as an ADL?”

 9

1.3 Approach

In this thesis, we use the following research steps:

Step 1: To understand the essential requirements of ADLs, We first study “A

Classification and Comparison Framework for Software Architecture Description

Languages [2]”. Then we study the Reo coordination language.

Step 2: We perform a case study to gain hands-on experience in using the Reo

coordination language to specify and implement a complex distributed software system.

Step 3: Finally, based on the resulting system specification from step 2, we apply the

framework from step 1 to assess the Reo coordination language as an ADL.

1.4 Goal
.

• To assess Reo as an ADL using an existing method: “A Classification and

Comparison Framework for Software Architecture Description Languages”.

1.5 Structure

In chapter 2, we present an overview of the Reo coordination language.

In chapter 3, we present a case study in which we specify and implement a distributed

meeting scheduling system (DMSS) using Reo.

In chapter 4, we first give a short introduction to the selected existing evaluation

framework. Then we present our analysis of the Reo coordination language applied to the

case study.

In chapter 5, we give conclusions, discuss open issues and outline possible future work.

 10

Chapter 2
An Introduction to the Reo Coordination Language

2.1 Introduction

In this chapter, we summarize the basic terms and concepts of the Reo coordination

language. For a detailed specification of Reo, see Arbab’s articles [7][17].

The coordination models and languages [16] have been introduced to deal with the

increasing complexity of modern software systems, especially the concurrency in

massively parallel and distributed systems. The Reo coordination language was proposed

for composition of software components based on the notion of channels. Reo is a

channel-based exogenous coordination model wherein complex coordinators, called

connectors are compositionally built out of simpler ones. The simplest connectors in Reo

are a set of channels with well-defined behavior supplied by users [7].

The Reo coordination language separates the computation part and coordination part of a

software system by adopting the concept of “exogenous coordination”. The Reo

coordination language can be viewed as a triple <I, C, N >, where the I stands for

component instances, the C represents connectors, and N the nodes as the “glue points”

among the elements of I and C. In addition, Reo also provides a set of operations for

components to manipulate connector topology and input/output data.

In the following sections, we introduce component instances, Reo nodes, Reo connectors,

and Reo operations, respectively. Then we describe how in Reo one can encapsulate

components.

2.2 Component Instances

A component instance contains one ore more active entities (e.g. processes, agents,

threads, actors, objects, etc.) which communicate with its outside exclusively through

 11

connectors. The internal constituents of a component instance may also be other

component instances that are connected by Reo connectors.

2.3 Connector

A Reo connector is constructed out of one or more channels. A Reo channel is also

referred to atomic or primitive Reo connectors. Each channel has exactly two directed

ends, each of which is either source or sink. A source end accepts data into its channel. A

sink end dispenses data out of its channel. A channel can be attached at most one

component instance at any given time. The Reo coordination language supports a

collection of predefined channel types, each with its well-defined behavior. Figure 2.1

lists some examples of channel types.

Figure 2.1.Some basic channel types in Reo

The formal semantics of Reo channel types can be defined using Abstract Behavior

Types (ABT) [17], or Constraint Automata [19]. For example, a Sync channel type is

defined in ABT as:

Or in Constraint Automata as:

.

 12

A Reo connector with more than one channels are often referred to as a composite Reo

connector. A composite Reo connector normally delivers more complicated behavior

than an atomic one. For example, the sequencer connector (Figure 2.2) provides four

nodes a, b, c, and d for other entities (component instance/ connectors) to connect with.

The retrieving of the data item stored in the first FIFO1 can occur only in the strict left to

right order, i.e. from node a to node d. One can find more examples of Reo composite

connectors in [18].

Figure 2.2.Sequencer Connector

2.4 Reo Nodes

A Reo Node is a location where more than one Reo channel end coincides. There are

basically three types of nodes: source, sink, and mixed.

Source Node Sink Node Mixed Node
Figure 2.3 Nodes in the Reo Coordination Language (nodes are denoted as black bullets)

A source node consists of only source end of channels. It replicates a data item to its

connected channels only when all the channels are ready to accept it. A sink node

comprise only sink end of channels. It non-deterministically selects one of the data items

from its connected channels when all the channels are trying to dispense the data items.

The behavior of a mixed node is the combination of first two types of node, it selects a

 13

data item randomly from its input channels and replicates this data item to its output

channels when they are ready to accept it.

2.5 Reo operations

Any active entity inside a component instance can perform Reo operations. Reo defines

three types of operations: topological – ones that allow manipulation of connector

topology, Input/Output – ones that allow input/output of data, and inquiry – ones that

allow checking for conditions of interest.

2.5.1 Topological operations

Operation Informal Description
create

This operation creates a channel with specific type.

connect

If node N is not a mixed node, N is connected to the component
instance as a result of this operation.

disconnect

The component instance is disconnected from node N after
performing this operation.

forget The component performing this operation loses all its references
to the node N.

join

This operation joins two distinct nodes, N1 and N2.

split This operation splits node N by specifying the channel ends that
the performer requires to coincide on the new node.

hide

This operation hides the node N such that it cannot
be modified in any other operation.

2.5.2 Input/Output operations

Operation Informal Description
read

If N is a sink node connected to the
component instance performing this
operation, this operation succeeds when a
value compatible with pat is

 14

non-deterministically read from some
channel end into the variable v.

take

Similar to read, but the value is also
removed from the channel.

write

If N is a source node connected to the
component instance performing this
operation, this operation succeeds when a
copy of the value in v is written to every
channel end.

2.5.3 Inquiry operations

Operation Informal Description
wait

Suspends the active entity that performs it
(indefinitely or for the specified time-out, t)
waiting for the specified conditions to
become true.

2.6 Component Encapsulation

In analogy with electrical circuits, we call a design a circuit in Reo [29]. To facilitate

component abstraction and modular design, in Reo one can define components using a

box around a circuit and leaving some of the nodes as ports on the box. Note that a port is

either input or output point where messages pass through a node [29].

One can instantiate a component in a circuit by drawing a box and the ports on it, without

its internals. For example, a sequencer connector in Figure 2.2 can be instantiated as

follows in Figure 2.4.

 15

Sequencer Connector

"a" "b" "d""c"

Figure 2.4.Black-Box Representation of Sequencer Connector

 16

Chapter 3
Case Study: A Distributed Meeting Scheduling System

3.1 Introduction

In this chapter, we present our case study on using the Reo coordination language to

specify a Distributed Meeting Scheduling System (DMSS). We focus on how the Reo

coordination language can contribute to the software architecture description of the

DMSS. The system we are modeling is based on an agent-based solution, called “RCal”

[21], which is a particular implementation of Contract Net Protocol [20] for distributed

meeting scheduling.

In this chapter, we first give an overview of the meeting scheduling problem and its

current solutions. Then we present the use cases and the high level architecture of the

DMSS. After that, we compose our specification of DMSS using the Reo coordination

language.

3.2 Overview

The goal of meeting scheduling is to get a group of people to meet together [22]. Meeting

scheduling involves three major concepts: participants (who), time (when), and location

(where). Generally speaking, the more independent the participants are, the more difficult

the meeting is to be scheduled. For example, a meeting with all participants at the same

place is much easier to organize than one involving geographically distributed

participants. A typical meeting scheduling process may involve changes of participants,

time and location. For instance, participants may change their own decisions after a

meeting being initially scheduled, and a meeting time or location may need to be

rearranged after having been confirmed by all participants.

We look at two groups of solutions for automating meeting scheduling processes, a

centralized and a distributed approach, depending on where the participants’ calendar

 17

information is located. Centralized solutions, such as done by MS outlook [23] and IBM

Lotus Notes [24], provide basic facilities for calendar sharing based on maintaining

calendar information on a central server. These solutions leave many manual tasks for the

organizers, such as negotiating of a common meeting time and an appropriate location.

Centralized solutions have additional drawbacks such as privacy exposure.

Recent academic researches [25][26][27][28] favor distributed solutions based on

intelligent agent technology, where a group of agents performs negotiation on behalf of

the meeting participants. The benefits of this approach are that meeting participants no

longer need to share their private information with others, and they also do not need to

take part in a potentially intensive scheduling process.

3.3 Functional Requirements

We capture the functional requirements of Distributed Meeting Scheduling System using

use case diagrams. In figure 3.1, we describe the use cases in two groups, i.e. the human

use cases and the agents use cases. The “include” associations indicate the ordering of

use cases. In the remainder of this section, we first describe the actors involved in the use

cases, followed by the description of the relevant use cases.

 18

Figure 3.1.Use Case Diagrams of the DMSS

3.3.1 Actors:

The main actors involved in the meeting scheduling process are:

 Initiator

 19

An initiator can initiate a meeting scheduling process by providing a meeting proposal to

negotiate with all attendees, which may include start time, duration, end time, and

attendee list. To simplify the matter, we consider location preferences of attendees

non-negotiable.

 Attendee

 Required attendee

All required attendees must attend the meeting so that a meeting can be

successfully scheduled.

 Optional attendee

An optional attendee is a person interested in attending the meeting, but the

absence of him/her does not result in the a meeting scheduling process to fail.

Note that we further simplify the case by not taking into account the optional

attendees, since they do not affect the success of the scheduling process.

 Meeting Agent

A meeting agent is an actor that acts on behalf of an initiator or an attendee during a
meeting scheduling process. We distinguish two kinds of meeting agents:

 Initiator agent

An initiator agent works on behalf of an initiator in a meeting scheduling

process.

 Attendee agent

An attendee’s agent works on behalf of an attendee in a meeting scheduling

process.

Note that in our case study, an initiator agent is only engaged in one meeting scheduling

process at a time, while an attendee agent can be involved in many ongoing meeting

scheduling processes at a time.

 20

3.3.2 Use cases

Submit fixed proposal - An initiator submits a fixed proposal for scheduling a meeting.

A fixed proposal does not allow any negotiation of meeting parameters - attendees can

only accept or reject it.

Send fixed proposal – An initiator agent takes a submitted fixed proposal and sent it to

its designated attendee agents for approval.

Instruct agent – An initiator instructs its agent to manage its calendar. This happens

once, after which the attendee agent fully automates the scheduling activities on behalf of

the attendee.

Accept fixed proposal - An attendee agent accepts a fixed proposal when the attendee is

free during the time slot indicated in the fixed proposal.

Reject fixed proposal - An attendee agent rejects a fixed proposal when the attendee is

busy during the time slot indicated in the fixed proposal.

Evaluate the answers of fixed proposal - If all necessary attendee agents accept a fixed

proposal, the meeting negotiation succeeds, otherwise if any of them rejects the fixed

proposal, the meeting negotiation fails.

Submit flexible proposal - An initiator can also submit a flexible proposal for

scheduling a meeting. In contrast to a fixed proposal, a flexible proposal (a) may offer an

interval within which the meeting can be scheduled and (b) allows attendees to respond

the current proposal by negotiating counter proposals for alternative time slots of

scheduling.

 21

Send flexible proposal - An initiator agent takes a submitted flexible proposal and sent it

to its designated attendee agents for approval.

Accept flexible proposal – An attendee agent accepts a flexible proposal if it finds out

that the attendee is free during the interval specified in the flexible proposal.

Reject with counter proposal – An attendee agent rejects the flexible proposal if there is

no time slot available for the attendee during the interval indicated in the flexible

proposal. If there are some available time slots in the interval, an attendee agent responds

with a counter proposal.

Evaluate flexible counter proposals – If any of the attendee agents rejects the flexible

proposal, the meeting negotiation fails. Otherwise, the initiator agent evaluates all the

alternative time slots and looks for the earliest common time slot of all the attendees. If it

finds one, then the meeting negotiation succeeds. Otherwise it fails.

Make new flexible proposal – If the previous use case (evaluate flexible counter

proposals) does not succeed, the initiator agent can start a new round of negotiation by

making an updated flexible proposal.

 22

Use case relations for meeting agents

Submit fixed proposal

Send fixed proposal

Accept fixed proposal Reject fixed proposal

Evaluate answers of fixed
proposal

Submit flexible proposal

Send flexible proposal

Accept flexible proposal Reject flexible proposal

Evaluate flexible counter
proposals

Make new flexible proposals

Fixed Senario Flexible Senario

Figure 3.2. Relations of Use Cases

Figure 3.2 shows the relations between the use cases of the meeting agents. In the fixed

scenario, an initiator first submits a flexible proposal, then its agent sends the fixed

proposal to the attendee agents; upon receiving the fixed proposal, an attendee agent

either accepts or rejects the fixed proposal; then the initiator agent evaluates answers of a

fixed proposal. In the flexible scenario, an initiator submits a flexible proposal and its

agent sends the flexible proposal to the attendee agents; upon receiving the flexible

proposal, an attendee agent either accepts the flexible proposal or rejects it with a counter

proposal; then the initiator agent evaluates the flexible counter proposals, if it fails to find

an earliest common time slot, the initiator agent makes a new flexible proposal and start

the negotiation all over.

3.4 High level architecture

At a high level of abstraction, the distributed meeting scheduling system (DMSS)

consists of the following types of components (Figure 3.3):

1) Calendar Database

 23

2) Meeting Agent

3) Agent Coordination Hub

Figure 3.3.The High Level Architecture of DMSS

Each meeting agent interacts with one calendar database that provides calendar

information. The Agent Coordination Hub coordinates collaborations among these

meeting agents by ensuring the proper routing of all messages to and from meeting

agents.

Depending on the role of the participant, a meeting agent can behave in three modes:

“initiator mode”, “attendee mode”, or “dual mode”. In “initiator mode”, the meeting

agent is responsible for initiating the meeting scheduling process, sending out proposals,

evaluating responses, generating results, etc. While in “attendee mode”, the meeting

agent responds to proposals for meeting in which its attendee may participate. Moreover,

it’s also possible for a meeting agent to act in both “initiator mode” and “attendee mode”

at the same time, which is called “dual mode”. In “dual mode” the agent represents an

initiator who also participates in the meeting. We focus on initiator and attendee mode

and leave the decision of attending and initiating the same meeting to users.

 24

An attendee agent can respond to multiple meeting proposals from different initiators

concurrently. To avoid the situation in which the same time slot is allocated in more than

one proposal, we use the time slot(s) reserving mechanism [21] where the accepted time

slot or the alternative time slots are marked as “reserved” in the calendar database and are

either to be confirmed or aborted later in the meeting scheduling process.

In the following sections of this chapter, we present our DMSS software architecture

specified using the Reo coordination language.

3.5 DMSS software architecture

In this section, we refine the high level architecture of DMSS into formal software

architecture using the Reo coordination language. We specify the DMSS in two parts:

fixed DMSS specification and flexible DMSS specification. The fixed DMSS

specification handles fixed proposals, while the flexible one handles flexible proposals.

We model the software architecture into components, each of which offers one or more

input or output Reo ports (nodes on the border of components). The components with

solid gray color in both specifications are implemented externally and thus are not

specified using Reo. The Reo channels are depicted as lines with arrowhead(s), the Reo

nodes are depicted as black circles.

In the remainder of this section, we first describe the basic components and connectors

used in both specifications, and then we present in detail these two specifications.

3.5.1 Basic components

The basic components below (Figure 3.4) provide data processing facilities.

 25

a+b

"a"

"b"

1)

a-b

"a"

"b"

2)

a>b

"a"

"b"

3)

a<b

"a"

"b"

4)

a=b

"a"

"b"

5)

Packager 2

"a"

"b"

6)

A<a,b,c,d>

7)
Figure 3.4.Basic Data Processing Components

The first and second components output the result of a + b and a – b. The third, fourth

and fifth component output “true” only if a > b, a < b, or a =b, and “false” otherwise. The

sixth component wraps two inputs, from node “a” and “b”, into a pair <a, b>, it can be

parameterized into packager N. The last component, “tuple 4”, takes as input an tuple <a,

b, c, d> and output the first element of the input tuple, B<a, b, c, d> outputs the second

element of the tuple, and so on. The tuple component on the figure can be parameterized

to tuple N.

We do not specify these basic components further. An algebraic specification can be done

similar to the one provided for the sum (+) component in [17].In addition, we also

introduce two basic data storing components: Variable Component and Constant Writer

Component.

Variable Component

The Variable Component (Figure 3.5) serves as placeholder for data items similar to a

variable in imperative programming language [29].From the “write” port, a user can set

the value of the Variable Component, while the data item can be read from the “read”

port.

 26

FIFO2 Exclusive Router
2

"write"

"read"

Figure 3.5.Varable Component

Constant Writer Component

A constant writer component serves as a constant value provider, and its value can only

be set once during the component instantiation [29].

3.5.2 Basic connectors

Exclusive Router N

The Exclusive Router N (Figure 3.6) routes synchronously its input to precisely one of its

outputs [29]. We depict an instance of the Exclusive Router 3 as a circle with three

outgoing arrows.

Figure 3.6.Exclusive Router 3

Inclusive Router N

 27

The Inclusive Router N routes synchronously its input to K (K ≤N) of its outputs. We

depict an instance of the Inclusive Router 3 (Figure 3.7) as a square with three outgoing

arrows.

Figure 3.7.Inclusive Router 3

Initially Closed Valve (ICV)

An initially closed valve [18] (Figure 3.8) regulates the flow of data. The ICV initially

does not allow flow of data. It has one node through which one can toggle its state from

closed to opened and the other way around.

Figure 3.8.Initially Closed Valve(ICV)

 28

3.5.3 Fixed DMSS specification

Fixed Meeting Agent Agent Coordination Hub

Fixed
Initiator Component

Many to One

Fixed
Attendee Component

Fixed Proposal

One to One

Start time

Duration

AttendeeList

Fixed Proposal

Fixed Response

Fixed Response

Meeting ID Generator

Meeting ID

 Fixed Result

 Fixed Result
Fixed Result

Agent ID
Constant

Writer

Calendar Database

Check time slot availability

Confirm time slot

Abort time slot

Time slot availability

Reserve time slot

Figure 3.9.The High Level Model of fixed DMSS

The high-level model of the fixed DMSS (Figure 3.9) consists of three parts, i.e. Fixed

Meeting Agent, Calendar Database, and Agent Coordination Hub. They work together to

automate the meeting scheduling process for fixed proposals. The Fixed Meeting Agent,

as depicted in the middle of the diagram, is the core part of the system. It further consists

of the Fixed Initiator Component and the Fixed Attendee Component. The Fixed Initiator

Component is activated when the user inputs the proposed meeting information, i.e. start

time, duration, and attendee list. The Fixed initiator Component is responsible for

sending out the fixed proposals, evaluating the fixed responses from the attendees’

meeting agents, and generating fixed meeting scheduling results. The Fixed Attendee

Component receives the fixed proposals from the initiator’s meeting agents, generates

fixed responses by querying its external calendar database, and receives the fixed meeting

scheduling results. The responsibility of the Agent Coordination Hub is to properly route

messages (fixed proposals, fixed responses, and fixed results) to the involved meeting

agents. The Agent ID Constant Writer keeps each agent’s unique ID (e-mail) so that all

 29

the meeting agents can be easily identified. The Calendar Database holds the individual

calendar data of the meeting attendees and can be assessed through a set of dedicated

interfaces.

In the Agent Coordination Hub, the “Meeting ID generator” (Figure 3.10) generates

unique ID numbers for meeting scheduling processes. The Exclusive Router is to ensure

that a Meeting ID can only be assigned to one particular meeting agent. Three Inclusive

Routers are used to deliver messages (fixed proposals, fixed responses, and fixed results)

to proper meeting agents.

Meeting ID Generator

a+b

Constant
Writer

initial value =1

FIFO2

initial value = 0

"a"

"b"

Meeting ID

Figure 3.10.Meeting ID Generator

 30

Fixed Initiator Component

Fixed Initiator Component

Start time

Duration

AttendeeList

Meeting ID

AgentID

Fixed Proposal Generator

NumofAttendees

Fixed Proposal

Fixed Answers Evaluator

Fixed Response

Fixed Result

Fixed Result

Meeting ID
Variable

AttendeeList

F
I
F
O

1

F
IF

O
1

FIFO1

FIFO1

Attendee
counter

Figure 3.11.Fixed Initiator Component

The Fixed Initiator Component (Figure 3.11) consists of two main subcomponents. The

Fixed Proposal Generator (Figure 3.12) gathers all the proposal information, including

Meeting ID, start time, duration, and attendee list. An example of fixed proposals is listed

as follows:

Fixed Proposal

Meeting ID: 00002324

Start Time: 26/05/2005 10:00:00

 31

Duration: 45

Attendee list: user1@com.com, user2@com.com, user3@com.com.

The “Packager 4” makes a fixed proposal when and only when all the necessary

information is available. The Attendee Counter”, marked as solid gray in the Fixed

Initiator Component, counts the number of attendees in the attendee list and stores it in a

FIFO1 channel, which is used by the Fixed Answers Evaluator.

Fixed Proposal Generator

AgentID

Start time

Duration

AttendeeList

Meeting ID

Packager
 4

<a,b,c,d>

"a"

"b"

"c"

"d"

Fixed Proposal

Figure 3.12.Fixed Proposal Generator

The Fixed Answers Evaluator (Figure 3.13) generates a fixed result after evaluating all

the fixed responses from the attendees’ meeting agents. The Response Switch (Figure

3.14), blocks the fixed responses from uninvolved attendee’s agents by comparing the

Meeting ID with the Meeting ID of the fixed responses. It also examines whether a fixed

response has expired by comparing the expiry time of the response package with the

current time. In case the fixed response has expired, the Response Switch will block the

response and generates a “false” message, the Fixed Answers Evaluator puts a “fail” into

the fixed result message.

Upon receiving a fixed response, the Fixed Answers Evaluator checks whether it contains

a “reject” answer or not, if a “reject” answer is detected, the Fixed Answers Evaluator

generates a “fail” message. Otherwise if all the fixed responses contain “accept”

 32

messages, the Fixed Answers Evaluator generates a “success” message. An example of a

fixed result is shown as follows.

Fixed result

Meeting ID: 00002345

Status: success/fail

Attendee List: user1@com.com, user2@com.com, user3@com.com.

Start time: 26/05/2005 10:00:00

Duration: 45

Fixed Answers Evaluator

Response Switch

Meeting ID NumofAttendees

Fixed Response

Fixed Result

AttendeeList

Packager
<a,b,c,d>

"a"

"b"

Start Time

Duration

"c"

"d"

a-b

/\/\/\/\

/\/\/\/\

Constant
Writer

"1"

"a"

"b"

/\/\/\/\ "accept"

"reject"

NumofAttendees
Variable

"0"

Constant Writer
"success"

Constant Writer
"fail"

"success"/"fail"

false

B<a,b,c>
Fixed Response

AttendeeList

Figure 3.13.Fixed Answers Evaluator

 33

Response Switch

A<a,b,c>

a=b

"a"

"b"

/\/\/\/\

true

Fixed/Flexible Response

Meeting ID

Current
Time

C<a,b,c>

a>b

"a"

"b"

true
/\/\/\

/\/\/\

false

false

Fixed/Flexible Response

Figure 3.14.Response Switch

Fixed Attendee Component

Blocking Membership Tester
2

AttendeeList <a,b>

AttendeeID

a=b

a=b

"a"

"b"

"a"

"b"

Constant
Writer
"true"

/\/\/\

/\/\/\

true

true

/\/\/\/\

A<a,b>

B<a,b>
NOT NULL

/\/\/\/\
NOT NULL

Figure 3.15.Blocking Membership Tester 2

 34

Confirmation Manager

Fixed Attendee Component

Fixed Proposal

Blocking
Membership

tester
N

D<a,b,c,d>

AttendeeList

Fixed Answer Generator

Fixed Result
A<a,b,c,d>

"success"/"fail"

Blocking
Membership

tester
N

B<a,b,c,d>

AttendeeList

Fixed Response

AgentID

Check time slot availability

C<a,b,c,d>

Start Time

D<a,b,c,d>

Duration

Confirm time slot

Abort time slot

Time slot availability

Reserve time slot

Abort time slot

Figure 3.16.Fixed Attendee Component

By using Blocking Membership Testers (Figure 3.15), the Fixed Attendee Component

(Figure 3.16) blocks any fixed proposals or results that are not destined for it. This is one

way we implement “packet switching” as known from computer networks. The Blocking

Membership Tester outputs a “true” message only when this meeting agent is in the

attendee list of the fixed proposal or result, which enables the flow of a fixed response in

the Fixed Attendee Component. Note that the specification of the Blocking Membership

Tester shown in Figure 3.15 only deals with an attendee agent list of two, but it can be

further parameterized to Blocking Membership Tester N before the DMSS instantiation.

A Blocking Membership Tester N works with size K≤N of attendee list.

 35

Fixed Response Generator

/\/\/\

/\/\/\

Constant
Writer

"reject"

Constant
Writer

"accept"

false

true

B<a,b,c,d>

Start time

C<a,b,c,d>

Duration

Packager
<a,b,c>

"a"

"b"

Fixed Response

A<a,b,c,d>

Meeting ID

Fixed Proposal

Start time

Duration

Packager
<a,b>

Check time slot availability

Time slot availability

Reserve time slot

Current Time
Expiration

period
Variable

a+b

"a"

"b"
"c"

Expiry Time

Packager
<a,b>

"a"

"a"

"b"

"b"

Figure 3.17.Fixed Response Generator

The Fixed Response Generator” (Figure 3.17) checks the availability of the time slot

specified in the fixed proposal by querying its external calendar database. If it returns

“true”, which means that the time slot is free, it reserves the time slot in the calendar

database and passes an “accept” for the response message. Otherwise, it only generates a

“reject” message. In the response message, the fixed response generator issues an expiry

timestamp by using the Current Time and the Expiration Period Variable. An example of

fixed response is listed below.

Fixed response

 36

Meeting ID: 00002324

Answer: accept/reject

Expiry time: 23/05/2005 10:00:00

Fixed Confirmation Manager

/\/\/\/\

Packager
<a,b>

/\/\/\/\

"success"

Confirm time slot

Packager
<a,b>

"fail"

Abort time slot

"success"/"fail"

Start Time

Duration

"b"

"a"

"a"

"b"

Figure 3.18.Confirmation Manager

The Confirmation Manager (Figure 3.18) confirms the time slot when it receives a

“success” message; otherwise, it aborts the reserved time slot.

 37

3.5.4 Flexible DMSS specification

Since the flexible DMSS shares a lot of functions with the fixed one, we extend the fixed

DMSS by modifying some of its circuitry. In the high level structure of flexible DMSS

(Figure 3.19), we add two ports to the Flexible Initiator Component: start and end time.

“Start” input enables a new meeting scheduling process. The “end time” input indicates

that the meeting can be scheduled at any time slot between the start time and the end

time.

Agent Coordination HubFlexible Meeting Agent

Calendar Database

Flexible
Initiator Component

Many to One

Flexible
Attendee Component

Flexible Proposal

One to One

Start time

Duration

AttendeeList

Flexible Proposal

Flexible Response

Flexible Response

Meeting ID Generator
MeetingID

 Flexible Result

 Flexible Result

Flexible result

Agent ID
Constant

Writer

End time

Check available Time slots

Available Time slots

Confirm time slot

Abort time slots

Reserve time slots

Start

Figure 3.19.The High Level Structure of Flexible DMSS

 38

Flexible Initiator Component
Flexible Initiator Component

Start time

Duration

AttendeeList

Meeting ID

AgentID

Flexible Proposal
Generator Flexible Proposal

Flexible Answers Evaluator

Flexible Response

Flexible Result

Flexible Result

Meeting ID
Variable

AttendeeList

F
IF

O
1

 End time

New start time

ICV

Start

Figure 3.20.Flexible Initiator Component

To start a meeting scheduling process, the initiator first inputs a “start” signal to the

Flexible Initiator Component (Figure 3.20), which toggles the state of Initially Closed

Valve (ICV) from closed to opened and hence enables the flow of data. Then the initiator

inputs meeting information, such as start time, duration, and end time, to the Flexible

Proposal Generator. After this information is inputted, the state of ICV is changed to

“closed” again, and the Flexible Proposal Generator (Figure 3.21) makes a meeting

proposal. An example of a flexible proposal is listed as follows:

 39

Flexible Proposal

Meeting ID: 00002345

Start Time: 28/05/2005 14:00:00

Duration: 30

End Time: 10/06/2005 18:00:00

Attendee list: user1@com.com, user2@com.com, user3@com.com

In addition, the Flexible Proposal Generator also keeps copies of duration, end time, and

attendee list in FIFO channels, and when the Flexible Responses Evaluator generates a

new meeting start time, the Flexible Proposal Generator makes a new flexible proposal

automatically.

Flexible Proposal Generator

AgentID

Start time

End time

AttendeeList

Meeting ID

Packager
 5

<a,b,c,d,e>

"a"

"b"

"d"

"e"

Flexible Proposal
Duration "c"

FIFO1

FIFO1

FIFO1

Figure 3.21.Flexible Proposal Generator

 40

Flexible Answers Evaluator

Response Switch

Meeting ID

Flexible Response

AttendeeList

New start time

Flexible Result

/\
/\

/\
/\

Constant Writer
"fail"

"
re

je
ct"

B<a,b,c,d>

/\/\/\/\
"
a
lts"

C<a,b,c,d>

false

List Maker
N

Evaluation
Algorithm

Constant Writer
"success"

Packager
<a,b,c,d>

AttendeeList

"a"

time slot

"success"/"fail"

"b"

"c"

Constant Writer
"NULL"

"fail" time slot

Flexible Response

Meeting ID

"d"

Figure 3.22.Flexible Responses Evaluator

The Flexible Responses Evaluator (Figure 3.22) blocks all the expired and illegal

responses using a response switch. Illegal flexible responses are those responses not

designated for this meeting agent. If any flexible response expires, it returns a “fail”

message and a “NULL” time slot. Otherwise, the flexible responses evaluator uses the

evaluation algorithm to search all the alternative time slots of the attendees for an earliest

common time slot, if there is such a time slot, it puts the time slot into the result message

with a “success” message. If no such time slot exists, it generates a new start time earlier

than the end time; otherwise the meeting scheduling process fails. An example of a

flexible result is shown below.

Flexible result

Meeting ID: 00002345

Attendee List: user1@com.com, user2@com.com, user3@com.com.

 41

Status: success/fail

Time slot: {26/05/2005 10:00:00, 45}/NULL

 List maker 2

Item

Sequencer 2

FIFO1

FIFO1

Packager
<a,b>

"a"

"b"

List

Figure 3.23.List Maker 2

The “List Maker N” creates a list by consuming N items from it inputs port one after

another. When the first item comes in, the sequencer N allows it to be stored in the first

FIFO1 channel, and the second one can be accepted by the second FIFO1 channel, and so

on. Once all the FIFO1 channels are full, a list of these items is made. In Figure 3.23 we

show the list maker for two attendees only.

 42

Flexible Attendee Component

Flexible Attendee Component

Flexible Proposal

Blocking
Membership

tester
N

E<a,b,c,d,e>

AttendeeList/\/\/\/\

True

Flexible Answer Generator

Flexible Result

"success"/"fail"

Blocking
Membership

tester
N

B<a,b,c,d>

AttendeeList/\/\/\/\
true

Flexible Response

AgentID

Available Time slots

Confirm time slot

/\
/\

/\
/\

"
su

c
ce

s
s"

Check available time slots

Reserve time slots

Abort Time slots A<a,b,c,d,e>

Meeting ID

C<a,b,c,d>

D<a,b,c,d>

time slot

A<a,b,c,d,e>

Meeting ID

Figure 3.24.Flexible Attendee Component

The Flexible Attendee Component (Figure 3.24) blocks all illegal flexible proposals and

results using Blocking Membership Testers. Upon receiving new proposals or any result

form the initiator’s agent, the “abort time slots” signals the calendar database to abort the

currently reserved time slots identified by the Meeting ID contained in the new proposal

or result. When a flexible result comes, the Flexible Attendee Component confirms the

time slot if the result message is “success”.

 43

Flexible Answer Generator

/\/\/\

/\/\/\

Constant
Writer

"reject"

Constant
Writer
"alts"

NULL

Not Null

B<a,b,c,d,e>

Start time

Duration

Packager
<a,b,c,d>

"a"

"b"

Flexible Response

A<a,b,c,d>
MeetingID

Flexible Proposal Packager
<a,b,c>

Check available time slots

Availabile time slots

Reserve time slots

Current Time
Expiration

period
Variable

a+b

"a"

"b"

"c"

Expiry Time

D<a,b,c,d,e>
End time

"d"

Availabile time slots

C<a,b,c,d,e>

Answer

Packager
<a,b>

Figure 3.25.Flexible Response Generator

The Flexible Response Generator (Figure 3.25) checks the available time slots upon

receiving a flexible proposal, and if no available time slot exists, it returns a “reject”

response; otherwise it returns an “alts” answer and reserve these time slots identified by

the Meeting ID. An example of a flexible response is shown as follows.

Flexible response

Meeting ID: 00002345

Answer: reject

Alternatives: NULL

Expiry time: 23/05/2005 10:00:00

 44

Or

Meeting ID: 00002345

Answer: alts

Alternatives:

 29/05/2005 14:00:00

 30/05/2005 10:00:00

 30/05/2005 14:00:00

 31/05/2005 09:30:00

 01/06/2005 10:30:00

Expiry time: 23/05/2005 10:00:00

 45

Chapter 4
An Analysis of Reo as an ADL

4.1 Introduction

In this chapter, we use an evaluation criteria to assess the Reo coordination language as

an ADL. The analysis is based on observations during the case study, as well as on

reports of previous work [29][18] [31] .

4.2 A Overview of the Evaluation Criteria

We base our criteria to a large extent on the “Classification and Comparison Framework

for Software Architecture Description Languages” [2], as shown in Figure 4.1.

Figure 4.1. ADL classification and comparison framework. Essential modeling features are in bold

font.

 46

This framework identifies the common features and requirements on what an ADL

should have and should be able to do. As stated in the framework, an ADL must

explicitly model components, connectors, and architectural configurations [2].

• Component: It is a unit of computation or a data store in architecture;

• Connectors: They are architectural building blocks used to model interactions

among components and rules to govern those interactions;

• Architectural configurations: They are the connected graphs of components and

connectors that describe architectural structure;

In addition to this, an ADL should provide an accompanying tool support, which renders

an ADL more usable and reusable. In the remainder of this section, we select and

describe the most important features that an ADL must support.

4.2.1 Component

Components are modeled using the feature interface, which is required by the ADL.

Additional features are those for modeling component type, semantics, and evolution.

Interface – “A component's interface is a set of interaction points between it and the

external world. The interface specifies the services (messages, operations, and variables)

a component provides and requires. [2]”

Type – Components behave in identifiable, distinct ways, and they also interact with

other components in similarly distinct and identifiable ways. These distinctions separate

components into categories, or types. A component type captures the semantics of a

component's behavior, the kind of functionality it implements, its performance

characteristics, and its expectations of the style of interaction with other components [32].

The explicit identification of component types not only enhances the understandability

and analyzability of software architecture, but also facilitates the reuse of software

components by instantiating a component type multiple times [2].

 47

Semantics – “Component semantics is defined as a high-level model of a component's

behavior. Such a model is needed to perform analysis, enforce architectural constraints,

and ensure consistent mappings of architectures from one level of abstraction to another

[2].”

Evolution – “As architectural building blocks, components will continuously evolve.

Component evolution can be informally defined as the modification of (a subset of) a

component's properties, e.g., interface, behavior, or implementation [2].”

4.2.2 Connectors

The features characterizing connectors are their interfaces, types, semantics, evolution.

Interface – “A connector's interface is a set of interaction points between the connector

and the components and other connectors attached to it. Connector interfaces enable

proper connectivity of components and their interaction in an architecture and, thereby,

reasoning about architectural configurations. [2]”

Type – “Connector types are abstractions that encapsulate component communication,

coordination, and mediation decisions. A connector type captures the semantics of a class

of interactions, assertions about that class, and the responsibilities and requirements that

components must satisfy in an interaction from the class [32]. An ADL typically has

either an extensible connector type system, defined in terms of interaction protocols, or a

built-in, enumerated connector type system, based on particular implementation

mechanisms [2].”

Semantics – “Similarly to components, connector semantics is defined as a high-level

model of a connector's behavior. Unlike components, whose semantics express

 48

application-level functionality, connector semantics entail specifications of

(computation-independent) interaction protocols.[2]”

Evolution – “Analogously to component evolution, the evolution of a connector is

defined as the modification of (a subset of) its properties, e.g., interface, semantics, or

constraints on the two. ADLs can accommodate this evolution by modifying or refining

existing connectors with techniques such as incremental information filtering, subtyping,

and refinement [2] .”

4.2.3 Architectural Configurations

We define requirements of architectural configurations as follows [2]:

Understandability – “One role of software architecture is to serve as an early

communication conduit for different stakeholders in a project and facilitate understanding

of (families of) systems at a high level of abstraction. ADLs must thus model structural

(topological) information with simple and understandable syntax [2].”

Compositionality – “Compositionality, or hierarchical composition, is a mechanism

that allows architectures to describe software systems at different levels of detail:

Complex structure and behavior may be explicitly represented or they may be abstracted

away into a single component or connector. Such abstraction mechanisms should be

provided as part of an ADLs modeling capabilities. [2]”

Refinement and traceability – “ADLs must also enable correct and consistent

refinement of architectures into executable systems and traceability of changes across

levels of architectural refinement. This view is supported by the prevailing argument for

developing and using ADLs: They are necessary to bridge the gap between informal,

“boxes and lines” diagrams and programming languages which are deemed too low-level

for application design activities. [2]”

 49

Heterogeneity – It is important that ADLs be open, i.e., that they provide facilities for

architectural specification and development with heterogeneous components and

connectors [2]. An ADL should separate lower-level concerns, such as programming

languages, middlewares, operating systems and computer networks, from high-level

design/concepts.

Scalability – “Architectures are intended to provide developers with abstractions

needed to cope with the issues of software complexity and size. ADLs must therefore

directly support specification and development of large scale systems that are likely to

grow further. [2]”

Evolvability – “Evolution, as we define it, refers to “offline” changes to an

architecture (and the resulting system).An ADL should support the evolution of

architectural configurations at the level of components and connectors with features for

their incremental addition, removal, replacement, and reconnection in a configuration

[2].”

Dynamism – “Known also dynamic reconfiguration, on the other hand, refers to

modifying the architecture and enacting those modifications in the system while the

system is executing. Support for dynamic reconfiguration is important in the case of

certain safety- and mission-critical systems, such as air traffic control, telephone

switching, and high availability public information systems. Shutting down and restarting

such systems for upgrades may incur unacceptable delays, increased cost, and risk [2].”

4.2.4 Tool Support

Tool support includes programs as well as theories for working with ADL specifications.

The kinds of tool support should be provided by an ADLs are: active specification,

multiple views, analysis, refinement, implementation generation and dynamism [2].

 50

Active specification – “ADL tools provide active specification support by reducing

the space of possible design options based on the current state of the architecture. They

can be either proactive, by suggesting courses of action or disallowing design options that

may result in undesirable design states, or reactive, by informing the architect of such

states once they are reached during design [2]. ”

Multiple views – Software architecture must be understandable to all involved

stakeholders, including the customers who make decisions, and the developers who build

the system. This is done by incorporating multi-views and provide the most appropriate

view to a given stakeholder, and meanwhile, ensuring inter-view consistency.

Analysis – A comprehensive analysis of the software architecture before system

implementation substantially reduces the errors. Furthermore, an ADL should allow

simulation for testing of the software architecture.

Refinement & Implementation generation – “Refining architectural

descriptions is a complex task whose correctness and consistency cannot always be

guaranteed by formal proof, but adequate tool support can give architects increased

confidence in this respect. It is therefore desirable, if not imperative, for an ADL toolkit

to provide tools to assist in, e.g., producing source code. [2]”

Dynamism – “An ADL's ability to model dynamic changes is insufficient to guarantee

that they will be applied to the executing system in a property-preserving manner.

Software tools are needed to analyze the modified architecture to ensure its desirable

properties, correctly map the changes expressed in terms of architectural constructs to the

implementation modules, ensure continuous execution of the application's vital

subsystems and preservation of valid state before and after the modification, and analyze

and test the modified application while it is executing. [2]”

 51

4.3 Analysis of Reo as an ADL

In this section, we present an analysis of Reo as an ADL based on the criteria we

introduced in previous section.

4.3.1 Components

In Reo, a component is a software implementation whose instances can be executed on

physical or logical devices [7]. As a connector-based language, Reo distinguish two kinds

of components: external components (black-boxes) and Reo-specific components

(encapsulated connectors). A component (external, black box) can be used (composed)

by means of its interface only. In this section, we always refer components as “external

components”, and we discuss Reo-specific components as connectors in next section.

Interface

Reo support specification of component interfaces. Such an interface describes the

input/output ports, and the observable behavior of the component on these ports [30], this

means that an interface defines what a component needs, but also what a component

offers. Reo constrains the usage of a component by specifying its interface as the only

legal means of interaction from within and without the component. An interface can have

multiple ports, each of which is involved in the exchange of untargeted, passive

messages [17]. An untargeted and passive message can be simply interpreted as nothing

but a data item sent or received by a component. In Reo, a component input port attaches

to a sink node of a connector, while an output port attaches to a source node. A

component can either send a message (data item) by a “write” operation on its output

ports, or receives it by a “take” operation on its input ports. The information flows

through a port in one direction only (unidirection): either from the environment into its

component instance (through take) or from its component instance to the environment

(through write) [17].

 52

In the case study we identified two actors: initiator and attendee –these we represent with

two user components. We defined their interfaces and composed a larger circuit called

the DMSS system to connect those component interfaces together. Furthermore, the

DMSS also contains some additional external components, such as attendee calendar

databases.

Types

Reo does not distinguish component types specifically, such as database, file, process,

algorithm, etc. We use a naming convention to distinguish between those.

Semantics

Reo offers both synchronous and asynchronous channels. Composing of synchronous

primitives together allows modeling of atomic behavior. Composing together third-party

components using synchronous circuits allows enforcing of complex transactions [31]. In

our case study, the interactions between an attendee agent and an attendee calendar

database are transactional, as enforced by synchronous connectors between them (Figure

4.2). Semantic of an external component can be specified algebraically in terms of

relations among its ports.

Calendar
Database

Attendee
Agent

Figure 4.2

 53

Evolution
External components in Reo serve as black boxes –hence internal evolution is possible as

long as their interfaces remain intact.

4.3.2 Connectors

Reo treats connectors as first-class entities that exogenously coordinate inter-component

activities in a component-based system.

Interface

When connecting a group of Reo channels and encapsulating them into a composite

connector, its interface is modeled in the same way as a component: a collection of ports.

Other connectors or (external) components with matching interface ports can connect to a

connector interface. For example, the interface of a meeting agent matches the one of the

agent coordination hub, hence they can be attached to each other point-to-point using

several auxiliary synchronous channels.

Types

Reo identifies two general types of connectors: synchronous and asynchronous. A

channel is called synchronous if it delays the success of operations among its ports such

that they can only succeed simultaneously, as in as single transaction [31]; otherwise, it is

called asynchronous. Channels in Reo are user-defined. In Chapter 2 we have introduced

one useful set of channels that we further used in Chapter 3. We use naming conventions

and connector encapsulation to specify different types of connectors.

Semantics

The semantics of a Reo connector is formally specified using either Abstract Behavior

Type in terms of a (maximal) relation among a set of timed-data-streams [17], or

Constraint Automata [19]. These formal semantics allow for the translation of a virtual

 54

model to a formal specification in order to perform verification and model checking. In

our case study, we have provided a virtual model of a DMSS.

Evolution

Reo’s topological operations allow for incremental composition of additional behavior in

a circuit. We develop our case study model incrementally, by gradually extending the

prototype to its full functionality. Reo also supports connector evolution via

parameterization, where, e.g., the connector can be upgraded with more capacity. For

example, an “Exclusive Router 3” can be parameterized to support exclusively routing of

arbitrary number of messages.

4.3.3 Architectural Configurations

A configuration of components and connectors in Reo is often referred to as a Reo circuit.

The overall DMSS model represents an assembly of (external) components and Reo

connectors to implement a meeting scheduling system.

Understandability

Reo circuit can be explained and understood intuitively because of their strong

correspondence to a metaphor of physical flow of data through channels [7] . In Reo, it is

clear to see the flow of data items from one component to another through Reo channels.

Reo combines flow of data with synchronization conditions on the entities that produce

or consume data flows. In our case study, the uniqueness of meeting ID for each meeting

is enforced by connecting meeting (initiator) agents to an exclusive router of the agent

coordination hub, which enforces a new meeting ID only flow to one of them at any

moment (Figure 4.3).

 55

Meeting
Agent

C

Meeting
Agent

B

Meeting
Agent

A

Meeting ID

Agent Coordination Hub

Figure 4.3.Explicit specification of a connector in Reo

Compositionality

As we observed in our case study, the Reo coordination language by design supports

compositionality of configurations, allowing hierarchical breakdown of a software system

into a group of components connected by connectors.

Refinement and traceability

Reo supports refinement through component/connector encapsulation; Reo does not

provide sophisticated facilities for traceability.

Heterogeneity

Reo does not specify particular technology for implementation. It only offers blocking

“write” and “take” operations to (external) components. Other non-Reo coordination

mechanisms and interaction patterns, such as RPC, shared spaces, can be easily expressed

by composing together Reo channels [7].

Scalability

Since a Reo node doesn’t constrain on the number of channels that can be attached to it,

new components and connectors can be added without requiring modifications of existing

 56

component instances and connectors (Figure 4. 4). In our case study, we can have a

flexible number of meeting agent connected to the agent coordination hub. Reo’s

composability allows for specifying large scalable systems.

Agent
Coordination

Hub

Meeting
Agent

C

Meeting
Agent

B

Meeting
Agent

A

New Meeting
Agent

D

Figure 4.4.Scalability of Reo circuit

Evolvability

In Reo, to improve the functionality of a software configuration, one can add, remove,

replace components and connectors, reconfigure the topology of an architectural

configuration.

Dynamism

Reo allows dynamic reconfiguration of Reo connectors and nodes providing a set of

topological operations that can be used during run-time. These operations are: create

channel, (dis) connect channel end, forget channel end, (dis) connect node, forget node,

join nodes, and split node [7].

Reo only provides primitive topological operations. To insert or remove a whole

component or connector during runtime, designers need to perform many primitive

operations in sequence. The designers need to take care that safety and consistency of the

 57

system stay intact during and after the performing of the necessary for reconfiguration

consisting of a set of topological operations.

4.3.4 Tool support

The Reo visual programming environment (under development) contains a simulator for

Reo circuits. The Reo simulator tool is a non-distributed version of the Reo operational

semantics, allowing running and testing Reo circuits. It only allows one to perform the

basic operations on Reo circuits at this stage. It’s not only able to verify the syntactic

correctness of system models. Since the development of Reo toolset is still under way, we

do not further assess the Reo tool support and leave this for future work.

4.4 Summary

Table 4.1 shows the summary of our evaluation of Reo as an ADL.

Table 4.1. Summary of the Evaluation of Reo as an ADL

 58

Chapter 5
Conclusions

5.1 Summary

In this thesis we assess Reo as an Architecture Description Language. We have presented

a case study on specifying a distributed meeting scheduling system (DMSS) using Reo.

We provide an integrated model of the system by using some outstanding features of Reo,

e.g., compositionality, refinability, dynamic reconfiguration. The implementation of the

DMSS can be directly derived from the specification given a Reo coordination

middleware (under development).

We used an existing evaluation framework to assess the capability of Reo as an ADL.

Below we conclude some pros and cons of Reo as an ADL:

- Both Reo components and connectors have well-defined interfaces, allowing them to

be accessed independently of their implementation details;

- Reo channels and nodes have formal semantics that ensures the precise specifications

of inter-component coordination;

- Reo allows hierarchical breakdown of a software system incrementally into a group

of components connected by connectors;

- A Reo circuit allows the (dynamic) (re)configuration of heterogeneous components

on different platforms;

- Based on exogenous coordination, Reo directly supports specification and

development of large-scale systems that are likely to grow further, in terms of both

complexity and size;

- At current stage, Reo lacks support for component types (i.e. a set of generic Reo

wrappers for external components, e.g., database, e-mail system, storage, etc.), so that

the common behavior of a group of similar components can be captured and reused;

- Reo lacks facilities to guarantee safety and consistency of system’s state for

reconfiguration programs consisting of many topological operations;

 59

- Reo still lacks tool support in some aspects: a) multiple views to satisfy the needs of

different stakeholders (e.g. customers, users, designers); b) model refinement and

implementation generation, which allows a software architecture to be converted into

a running application (under development).

5.2 Discussion

During the requirement analysis of the thesis project, I described use case diagrams

technically, which led to a lot of confusion and misunderstanding. A software designer

should not start the design of a software system without completely understanding and

fully documenting the system requirements from a user’s perspective. A designer uses

use case diagrams to capture “what” a system that supports some business process should

do, as opposed to "how" it does it.

Another difficulty I experienced is the selection of appropriate high-level structure of the

system, i.e. how to define and configure coarse-grained components and connectors.

Initially I provided a “client-server” solution: an initiator agent act as a server interacting

with attendee agents, which resulted in an inflexible design of the initiator agent

component. After considering the original design, we adopted a peer architecture for the

system, which renders a much more understandable and scalable design.

5.3 Future work

As future work, we expect some work to be done in following areas: a) Mechanisms for

manipulating of coarse connectors (insertion, replacement, and removal) at runtime need

to be added at language level. b) The Reo virtual programming environment should

support generic types (e.g. database, e-mail system, storage), so that designers can easily

and even automatically wrap external components. c) Implementation generation of Reo

circuits to make software development using Reo more efficient (e.g. code generation)

and effective (e.g. reducing human errors). d) Based on my personal experiences I feel

that a knowledge base (e.g. developing processes, best practices, and patterns) based on

 60

previous work [18] , should be captured and documented better to help designers operate

with the same vocabulary.

 61

Reference:

[1]. ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of

Software-Intensive Systems.p.3. 2000.

[2]. N Medvidovic, RN Taylor. A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transactions on Software

Engineering, Volume 26, Issue 1, 70 – 93.2002.

[3]. Paul C. Clements. A Survey of Architecture Description Languages. Proceedings of

the 8th International Workshop on Software Specification and Design (IWSSD ’96).

1996.

[4]. Ariel D. Fuxman. A Survey of Architecture Description languages.2000.

[5]. N. Medvidovic. ADLs and dynamic architecture changes. In Joint proceedings of the

second international software architecture workshop (ISAW-2) and international

workshop on multiple perspectives in software development (Viewpoints ’96) on

SIGSOFT ’96 workshops, pages 24–27, San Francisco, CA, 1996.

[6]. N. Carriero and D. Gelernter, Coordination Languages and their Significance,

Communications of the ACM 35 (2), pp. 97-107. 1992.

[7]. Arbab.F. Reo: A Channel-based Coordination Model for Component

Composition.Mathematical Structures in Computer Science, Cambridge University

Press, Vol. 14, No. 3, pp. 329-366, June 2004.

[8]. D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.

“Specification and Analysis of System Architecture Using Rapide.” IEEE

Transactions on Software Engineering, vol. 21, no. 4, pages 336-355, April 1995.

[9]. D. C. Luckham and J. Vera. “An Event-Based Architecture Definition Language.”

IEEE Transactions on Software Engineering, vol. 21, no. 9, pages 717-734,

September 1995.

[10]. P. Binns, M. Engelhart, M. Jackson, and S. Vestal. “Domain-Specific Software

Architectures for Guidance, Navigation, and Control.” International Journal of

Software Engineering and Knowledge Engineering, vol. 6, no. 2, 1996.

[11]. S. Vestal. “MetaH Programmer’s Manual, Version 1.09.” Technical Report,

Honeywell Technology Center, April 1996.

 62

[12]. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying Distributed

Software Architectures.” In Proceedings of the Fifth European Software Engineering

Conference (ESEC’95), Barcelona, September 1995.

[13]. J. Magee and J. Kramer. “Dynamic Structure in Software Architectures.” In

Proceedings of ACM SIGSOFT’96: Fourth Symposium on the Foundations of

Software Engineering (FSE4), pages 3-14, San Francisco, CA, October 1996.

[14]. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and Zelesnik.

“Abstractions for Software Architecture and Tools Support Them.” IEEE

Transactions on Software Engineering, vol. 21, no. 4, pages 314-335, April 1995.

[15]. M. Shaw, R. DeLine, and G. Zelesnik. “Abstractions and Implementations for

Architectural Connections.” In Proceedings the Third International Conference on

Configurable Distributed Systems, May 1996.

[16]. G. A. Papadopoulos, F. Arbab, Coordination models and languages, in: M.

Zelkowitz (Ed.), The engineering of Large Systems, Vol. 46 of Advances in

Computers, Academic Press, 1998, pp. 329{400.

[17]. F. Arbab, Abstract behavior types: a foundation model for components and their

composition, Science of Computer Programming 55 (2005) 3-52.

[18]. Dave Clarke and David Costa, A Compendium of Reo Circuits, working in

process, CWI , 2005

[19]. F. Arbab, C. Baier, J. Rutten, M. Sirjani, Modeling component connectors in Reo

by constraint automata, in: Proceedings of FOCLASA 2003, a satellite event of

CONCUR 2003, Vol. 97 of ENTCS, Elsevier Science, 2004

[20]. R. G. Smith. "The Contract Net Protocol: High-Level Communications and

Control in a Distributed Problem Solver", IEEE Transactions on Computers, C29(12),

1980.

[21]. Rahul Singh. RCal: An Autonomous Agent for Intelligent Distributed Meeting

Scheduling. Master Thesis, the Robotics Institute, Carnegie Mellon University.2003.

[22]. M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C.Scott, M.

Schumacher. Candidate Model Problems in Software Architecture. Unpublished

manuscript, November 1995. Available from:

http://www.cs.cmu.edu/afs/cs/project/compose/www/html/ModProb/.

 63

[23]. Microsoft Outlook, Web address: http://www.microsoft.com/office/outlook/

[24]. IBM Lotus Note, Web

address:http://www.lotus.com/products/product4.nsf/wdocs/noteshomepage

[25]. Sen S & Durfee E H. A Formal Study of Distributed Meeting Scheduling:

Preliminary Results. ACM Conference on Organizational Computing Systems.1991.

[26]. Sen S and Durfee E H.On the Design of an Adaptive Meeting Scheduler.

Proceedings of the Tenth IEEE Conference on Artificial Intelligence Applications, pp

40—46.1994.

[27]. Sen S. An automated distributed meeting scheduler. IEEE Expert, 12, No 4, pp

41-45.1997.

[28]. Leonado Garrido, Katia Sycar.Multi-agent meeting scheduling: Preliminary

experimental results. Proceedings of the First International Conference on

Multi-Agent Systems (ICMAS'95).1996.

[29]. Zlatev, Z., Diakov, N., Pokraev, S.: Construction of negotiation protocols for

ecommerce applications. ACM SIGecom Exchanges (2004) 11-22

[30]. F. Arbab, F.S. de Boer, M.M. Bonsangue, and J.V. Guillen Scholten. A

channel-based coordination model for components. Technical Report SEN-R0127,

CWI, Amsterdam, 2001.

[31]. Diakov, N.K., Arbab, F. "Adaptation of Software Entities for Synchronous

Exogenous Coordination: An Initial Approach", Proceedings of The Second

International Workshop on Coordination and Adaptation of Software Entities,

W-CAT'2005, Glasgow, July 25, 2005, United Kingdom

[32]. Gregory, Z, http://www-2.cs.cmu.edu/afs/cs/project/vit/www/unicon/

	Thesis1.pdf
	Thesis2.pdf
	Thesis3.pdf

