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A Geometric Approach to the Singular Filtering 
Problem 

JOHANNES M. SCHUMACHER, MEMBER, IEEE 

Abstract-We consider the least-squares filtering problem for a 
stationary Gaussian process when the observation is not fuJly corrupted 
by white noise, the so-called "singular" case. An optimal estimator is 
constructed consisting of an integrating part, which is, as in the regular 
case, computed from a spectral factorization or an equivalent matrix 
problem, and a differentiating part whose parameters are computed from 
a single matrix equation. This improves on older results which either work 
under restrictive assumptions, or describe the solution only as the result 
of some nested algorithm. 

I. INTRODUCTION 

THIS paper is concerned with stationary least-squares 
estimation for linear Gaussian systems in continuous time, 

with particular emphasis on the singular case (partially noise-free 
observations). In contrast to previous works in which either the 
solution is only sketched as the result of some nested algorithm or 
restrictive assumptions are made, we present an explicit state
space solution for the general situation. An optimal estimator will 
be constructed that consists of an integrating part, which is 
computed from a spectral factorization or an equivalent matrix 
problem (as in the regular case), and a differentiating part whose 
parameters are computed from a single matrix equation. The 
construction leads to a unique result if and only if the spectral 
density matrix of the observed signal is full rank. Moreover, in 
the nonfull rank case the freedom of design can be described 
precisely. 

The method that we use in the present paper is based on the 
observation that the problem of finding the optimal estimator is 
the same for state-space models that represent the same spectral 
density. We identify a number of invariants shared by all systems 
that are related in this way. Earlier results in this direction were 
obtained in the dual context of optimal control by Hautus and 
Silverman in [l], which has been a major source of inspiration for 
the present work. In contrast to [ 1], however, we do not use the 
"structure algorithm" but rather the "geometric approach" of [2] 
and [3], which, in this author's view, leads to a more transparent 
picture. 

The singular filtering problem occurs when all or part of the 
observations are modeled as being noise-free. As explained in [4], 
this will happen, for instance, when the actual observations are 
corrupted by colored noise. It is also made plausible in [4] that the 
solution should be to differentiate the observations (or linear 
combinations of these) until white noise appears, and to use a 
standard Kalman-Bucy filter for the estimation of those state 
variables that have not already been obtained in the differentiation 
process. What procedure one should follow exactly is suggested in 
[4] by the presentation of a few worked examples. Some explicit 
formulas are given in [5, pp. 352-356], but these soon become 
unwieldy as the differentiation proceeds step-by-step. A consider
able part of the literature treats the problem under the simplifying 
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but (except for the single-output case) restrictive assumption that 
the number of differentiation steps needed in order to reach white 
noise is the same for all outputs (see, for instance, [6]); or the 
even stronger assumption is made, such as in [7] and [8], that 
white noise is obtained in all channels after one differentiation 
step. The author is unaware of any previous publication to give a 
completely explicit state-space solution to the singular filtering 
problem without imposing such restrictive conditions. 

An outline of the paper is as follows. In Section II we define 
"signal model equivalence" (SME). This is followed by a quick 
review of some of the notions from the geometric theory that will 
be needed, along with some new material. Section IV is devoted to 
the uncovering of a number of invariants under SME; in the 
author's opinion, these are crucial for a complete understanding of 
the singular filtering problem. The application to filtering is made 
in Section V, and the conclusions are summarized in the final 
Section VI. 

II. SIGNAL MODEL EQUIVALENCE (SME) 

In this section, we mainly review some basic facts from linear 
mean-square estimation; see, for instance, [5] and [9]-[11]. Let 
y(t) be a stationary, zero-mean, Gaussian, IMP-valued process with 
a rational spectral density, defined on [O, oo ). Such a process can 
always be represented in the form 

x(t) =Ax(t) + Bu(t), x(O) =Xo 

y(t) = Cx(t) + Du(t). 

(2.1) 

(2.2) 

Here, the matrices A E oonxn, BE oonxm, C E 00Pxn, andD E 
oopxm can be chosen to satisfy the following requirements: 

i) all eigenvalues of A are in the open left half plane; 
ii) the pair (A, B) is controllable; 
iii) the pair ( C, A ) is observable; 
iv) the matrix [B' D']' is full column rank. 
To have a short phrase, systems~ (A, B, C, D) that satisfy i)

iv) will henceforth be called signal models. Further properties 
satisfied by (2.1)-(2.2) are that the process u(t) is Gaussian white 
noise of unit covariance, and the stochastic vector x0 is normally 
distributed with zero mean and covariance matrix Q satisfying the 
Lyapunov equation 

QA' +AQ+BB' =0. (2.3) 

Moreover, the initial condition x0 and the white noise input u(t) 
are uncorrelated. 

The representation of the given process y(t) by (2 .1 )-(2.2) is in 
the sense that the output process of (2.1)-(2.2) is equal a.s. for all 
t to the given process; this requires not only that the matrices A, 
B, C, and Dare chosen correctly, but also that the white noise 
process u(t) is appropriately selected (see [12]). 

Suppose now that we want to compute, for every t ;;;: 0, the 
conditional expectation of x(t) given the observations y(s), O ~ s 
~ t. The principle of orthogonality allows us to formulate this 
problem in terms of an integral equation 

J:xu; s)Ryy(S-T) ds=Rxy(t-T) VT E (0, t]. (2.4) 
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Here, K (t; s) is the unknown integral kernel, and Ryy and Rxy are 
covariance functions given, with Q as in (2.3), by 

Ryy(f)=H(t)CeA'(QC' +BD')+o(t)DD' 

+(1-H(t))(CQ+DB')eA'tC' (2.5) 

where H(t) and o(t) denote the functions of Heaviside and Dirac, 
respectively, and 

Rxy(t)=eA1(QC' +BD') (t~O). (2.6) 

The equation (2.4) is, of course, the starting J?Oint of Wiener:s 
filtering theory, which, by the way, was effectively used also m 
the "singular" case (see [13, p. 66]). We will not work directly 
on the integral equation (2.4), but we will use it to draw one 
important conclusion, which is that the crucial parameters that 
determine the solution of the optimal filtering problem are not the 
system parameters A, B, C, and D plus the specific white noise 
process u(t) in (2.1), (2.2), which are needed to represent the 
signal process y(t) up to equality a.s. for all t, but only the 
parameters C, A, QC' + BD', and DD'. To be certain, the 
conditional expectation process x(t) will depend on the choice of 
u(t), etc., however, we are interested in the estimator, i.e., the 
mapping which takes the observations {y(s), 0 ~ s ~ t} to the 
estimate x(t). For a discussion which puts great emphasis on the 
difference between estimates and estimators, see [14, pp. 28-29]. 
The fact that the optimal estimator can be found in terms of 
covariances is a basic property of Gaussian random variables and 
does not depend on the stationarity of the given processes; this is 
emphasized in [15] and [16]. 

So there is good reason to call two signal models k 1 (A, Bi. C, 
D 1) and :E2 (A, B2 , C, Di) "equivalent" if 

(2.7) 

where Q1 and Q2 are each determined by the appropriate 
Lyapunov equation (2.3), and 

(2.8) 

This type of equivalence will be called "signal model equiva
lence" (SME). It corresponds to the "W-transformations" 
introduced by Popov [17] for the dual problem of optimal control. 
The equivalence can be characterized as follows. 

Proposition 2.1: Two signal models k 1 (A, BI> C, D1) and :E2 
(A, 8 2, C, Di) are_related by SME if and only if there exists a 
symmetric matrix Q such that 

( QA I +AQ+B1B{ QC' +B1D{) = (B2)(B2) '. (2.9) 
CQ+D1B{ D 1D{ D2 D2 

Proof: Let Q;(i = 1, 2) denote the solution to the Lyapunov 
equation 

Q;A I +AQ;+B;B/ =0 (2.10) 

and write Q = Q1 - Q2• If :E1 and L2 are equivale11t under SME, 
then it is easy to verify that (2.9) holds with (2 = Q. On the other 
hand, if (2.9) holds, then we must have Q = Q, because both 
matrices satisfy (2.10), and this equation has a unique solution. 
The equivalence of ~1 and k2 is n?w immediate from.(2.9). 

The dualized version of the matrix on the left-hand side of (2. 9) 
has been termed the "dissipation matrix" in optimal control 
theory [1&]. It is well known that if we extend SME by also 
allowing change of . basis in state space, then the resulting 
equivalence is the one that relates two systems if their correspond
ing spectral densities are equal (see [19]). 

Our strategy for solving the singular filtering problem will be to 
transform the given system under SME into a system for which it 
is fairly obvious what the optimal filter will be. This is basically 
also the strategy which is used in the standard methods for solving 

the regular problem (transform~tion d~termined by the P?S~tive 
definite solution of the Riccati equation, or by the mmunal 
spectral factor), although this is not always made explicit. 

ill. PRELIMINARIES 

For a system :E (A, B, C, D) with state-space X = [Fln,,input 
space U = ~m, and output space Y = [FlP, consider the two 
sequences of subspaces that are defined as follows: 

Yo(:E)=X 

Vk+l(:E)={x EX! 3 u E U s.t. Ax+ 

(3.1) 

+Bu E Vk(:E) and Cx+Du=O} (k;;;i:O) (3.2) 

To(:E)= {O} (3.3) 

Tk+i(l:)={x E Xj 3 w E Tk(l:), u E U s.t. Aw+Bu 

=x and Cw+Du=O} (k~O) (3.4) 

(cf. [20], [2], [3], [21]). The sequence { Vk(k)} is decreasing and 
will, after a finite number of steps, reach a limit which is denoted 
by V*(:E). The sequence { Tk(k)} is increasing and converges to a 
subspace denoted by T*(:E). The two limit subspaces can be 
characterized as follows (see [l], [22]). 

Proposition 3.1: For a given system :E (A, B, C, D), consider 
the set of all subspaces T of X for which there exists a mapping 
G: Y-+ X such that , 

(A +GC)T C T, Im (B+ GD) c T. (3.5) 

This set has a minimal element, which is equal to T*(:E). Also, 
consider the set of all subspaces V for which there exists a 
mapping F: X -+ U such that 

(A+BF)VC V, Ve ker (C+DF). (3.6) 

This set has a maximal element, which is equal to V*(:E). 
To give another characterization of the sequences { Vk (:E)} and 

{ Tk(L)}, consider the following definitions from [23]. For a 
given system :E (A, B, C, D), write (fork ;;;i: 1) 

Bk=[Ak-IB · · · AB BJ (3.7) 

Ck = [ ~ J Dk = [ g,, -~ : : ! ] 
CA:k-t '. CA~-2B .:: ~B D . 

(3.8) 

The following proposition is due to Silverman [22, p. 356]. For a 
quick proof, see also [24]. Note that (3.10) is dual to (3.9). 

Proposition 3.2: Let a system :E (A, B, C, D) be given, and let 
k ;;i. 1. We then have 

Vk(:E) = c; 1[Im Dk] 

Tk(:E)=Bk[ker Dk]. 

(3.9) 

(3.10) 

This characterization can be used to derive results about member
ship of Vk(:E) + T1(:E) in terms of certain rational equations. The 
d-dimensional space of real rational vectors will be denoted by 
(F! d (s); its submodule of proper rational vectors is written (F! ~ (s). 

Proposition 3.3: Let a system :E (A, B, C, D) be given, and let 
G(s) = C(sl - A)- 1B + D be its transfer matrix. Then, for 
each k ;;;i: 0 and I ;;i. 0, an element x E X belongs to Vk(:E) + 
T'(:E) if and only if 

sk+ 1C(s/-A)- 1x E sk+ 1 G(s)rFl~(s)+OO~(s). (3.11) 

Proof: First assume that k ;;;i: 1, I ;;;i: 1. Expansion around 



SCHUMACHER: GEOMETRIC APPROACH TO THE SINGULAR FILTERING PROBLEM 1077 

infinity shows that (3 .11) is equivalent to 

[ ~J x E Im [ i~, ~J . (3.12) 

But this is true if and only if 

Ckx E CkB1[ker Di]+Im Dk (3.13) 

or in other words, 

x E B1[ker D1] + Ck" 1 [Im Dk] 

= T1(};)+ Vk(};). (3.14) 

For l = 0, (3 .12) is replaced by 

Ck E Im Dk (3.15) 

which is equivalent to x E Vk(l:) as it should be, since T°(l:) = 
{ 0} . Finally, if k = 0, then (3 .11) holds for all x and this is also 
exactly what we need, since V°(l:) = X. 

Corollary 3.4: For a system l: (A, B, C, D) with transfer 
matrix G(s), one has x E Vk(:L) + T*(~) if and only if 

For a rational matrix W(s), define 

W*(s)= W'(-s). (3.24) 

Note that this implies 

{Wf, g)=(J, W*g). (3.25) 

Two elements f (s) and g(s) of lfld(s) are said to be orthogonal if 
(J, g) = 0. If E is a subspace of OOd(s), we write 

E.L={cfl(s) E (Eld(s)j(J, g)=OVg EE}. (3.26) 

Using (3.25) and the fact that the Hermitian form (3.23) is definite 
(i.e., (J, /) = 0 implies f = 0), one easily proves that the 
following holds for any matrix W(s) over the field of rational 
functions: 

(Im W*) .L = ker W. (3.27) 

Finally, we also note that 

?r((j', /))=2?r(f) (3.28) 

(3.16) for all/(s) E lfld(s). 

Proof: This is an immediate consequence of Proposition 3.3. 
Corollary 3.5: For a system l: (A, B, C, D) with transfer 

matrix G(s), one has x E V*{:L) + T1(l:) if and only if 

C(sl-A)- 1x E s1- 1G(s)00~(s). (3.17) 

Proof: The sufficiency of (3 .17) is clear from Proposition 
3.3. Now, suppose first that x E V*(l:). Take F:X-+ U such 
that V*(:L) is (A + BF)-invariant, and V*(l:) C ker (C + DP). 
For such F, computation shows that 

C (s/ -A) - 1x= G(s)F(sl- (A+ BF)) - Ix 

E r 1 G(s)OO~ (s). (3.18) 

Next, let x be an element of T1(l:). By Proposition 3.2, there 
exists u1 = (u{ · · · u!)' E ker D1 such that B1u1 = x. Define 
u(s) = u1s1- 1 + · · · + u1• For every k E lro, the first l + k 
coefficients in the Laurent expansion around infinity of G(s)u(s), 
starting with the coefficient of s1 - 1, are given by the vector 

(3.19) 

This shows that 

C(sl-A) - 1x= G(s)u(s) E s 1 - 1 G(s)OO~ (s). (3.20) 

The proof is complete, since the set of all x E X satisfying (3 .17) 
is clearly a linear space. 

A different proof of this result is outlined in [44] (Theorem 
3.3). The l = 0 case is older (see [45], [46], [25]). 

Corollary 3.6: For a system ~(A, B, C, D) with transfer 
matrix G(s), one has x E V*(l:) + T*(:L) if and only if 

(3.21) 

Proof· This is immediate from Corollary 3.5. 
We close this section by introducing some notation that will be 

needed below. The degree r(f) of an elementf(s) of the rational 
vector space lfld(s) is defined by 

71"(/)=min {k E ~ls-kf(s) E IFl!(s)}. (3.22) 

On OOd(s), a Hermitian form (cf. [26, eh. XIV]) is defined by 
d 

(J, g) = ~ f;(s)g1(-s) (f(s), g(s) E [Fld(s)). (3.23) 
i-1 

IV. IDENTIFICATION OF INVARIANTS 

In this section, we will indicate some invariants under signal 
model equivalence. This will help to clarify the meaning of SME 
in a state-space framework, and it also provides information that 
is useful in the filtering context. It has already been noted in 
Section II that the spectral density if?(s) = G(s)G ' ( -s) of a 
system :L (A, B, C, D) with transfer matrix G(s) is an invariant 
under SME. An easy consequence of this is the following (see [27, 
Lemma 2]). 

Proposition 4.1: If two signal models :L1 and L2 are related by 
SME, then 

(4.1) 

where G;(s) denotes the transfer matrix of 2:1, and m; is the 
number of inputs of l:; (i = 1, 2). 

Corollary 4.2: If two signal models 2:1 and 2:2 are related by 
SME, then, for all k ~ 0, 

(4.2) 

Proof· It follows from Corollary 3 .4 that the subspaces 
T*(L) + Vk(:L) (k ~ 0) are determined completely by the 
matrices C and A and by the image of the transfer matrix of :L. 
Therefore, the statement is an immediate consequence of Proposi
tion 4.1. 

The following result is more powerful. We will use the 
Hermitian form that has been introduced at the end of the previous 
section. 

Theorem 4.3: If two signal models l:1 and 2:2 are related by 
SME, then 

(4.3) 

where G;(s) denotes the transfer matrix of ~;, and m1 is the 
number of inputs of l:; (i = 1, 2). 

Proof: We shall show that for every u1(s) E ~~1(s) there 
exists a u2(s) E fn'-:'.2(s) such that 

(4.4) 

The results will then follow by symmetry. So, take u1(s) E 
lfl~t(s). Let {Gfyi. · · ·, Gfyk} be an orthogonal basis for Im 
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Gf. (Such bases exist by [26, p. 358, p. 374].) Define 

k 

the first k terms in the corresponding series for y(s) = G(s)u(s). 
In conjunction with Theorem 4.3, this observation yields the 
following. 

y= ~ ((Gfy;, Gfy;))-l(ui. Gfy;}y;. (4.5) Corollary 4.6: If 2; 1 and 2;2 are related by SME, then one has 
i=I 

For allj = l, · · ·, k, one has 

(u 1 + Gfy, Gfy) = 

k 

= (u1, Gfy)-~ ((Gfy;, Gfy;))- 1(u1, Gfy;)(Gfy1, Gfy) 
i= I 

=(u1, Gfyj)-(ui. Gfyj)=O. (4.6) 

Using (3.27), we conclude that 

U1 -Gfy E ker G1. (4.7) 

In other words, we have 

Now, define u2 by 

k 

u2 = Gfy= ~ ((Gfy;, Gfy;))- 1(u1, Gfy;)Gfy;. (4.9) 
i=l 

G2u2=G2Giy=G1G(y=G1u1. (4.10) 

It remains to prove that u2 is proper. Note that 

(Gfy;, GfY;) = (GiY;, Gfy;) (4.11) 

for all i l, · · ·, k, so that [see (3.28)] 

(i= 1, · · ·, k). (4.12) 

Using this, we can derive an upper bound for the degree of each 
term in (4.9) 

7l"(((Gfy;, Gfy;))- 1(ui. G'{y1)GiY;) 

=7l"((u1, G(Y;))+71"(Gfy;)-271"(Gfy;) 

~7l"(U1)~Q. (4.13) 

We see that u2 is a sum of proper terms; consequently, u2 is 
proper itself. 

Corollary 4.4: If two signal models S 1 and 2;2 are related by 
SME, then 

(4.14) 

for all k ;;.: 0 and I ;;.: 0. 
Proof· This is immediate from Proposition 3.3. 

Taking I = 0 and k large in Corollary 4.4, we see in particular 
that V*(L) is an invariant under SME. This has been proved 
earlier by Hautus and Silverman in [1] (Lemma 6.21), who used 
techniques from functional analysis for the proof. Another 
immediate consequence of the theorem is the following. 

Corollary 4.5: Let L1 and Lz be related by SME. Then the 
transfer matrices of L 1 and 2;2 have the same zero structure at 
infinity. 

Proof" It has been shown in [28) (see also [2], [29]) that the 
number of zeros at infinity and their orders can be determined 
completely from the numbers dim (V*(S) + T1(2;)), I ~ 0. 
Therefore, the statement is clear from Corollary 4.4. 

Recall the definition of the matrix Dk in (3.8). If uk = (u 0, 
· · ·, u f _ 1)' gives the first k terms in the Taylor series 
development around infinity of u(s) E !EI~ (s), then Dkuk gives 

(4.15) 

for all k ~ 1. 
Remark 1: One can consider a discrete-time version of SME, 

in which two signal models are called equivalent if they have the 
same spectral density 

<P(z) = G(z)G' ( ~). (4.16) 

It is known how to formulate this equivalence in state space [14, 
eh. 9]. It should be emphasized that Theorem 4.3 and its 
corollaries are not true for the equivalence induced by (4.16), as 
can be seen from simple examples. (Proposition 4.1 will still hold, 
however, with essentially the same proof.) The reason is basically 
that the point at infinity is fixed under the transformation s --+ - s 
but not under z --+ z- 1• In the author's opinion, this makes the 
continuous-time singular filtering problem fundamentally differ
ent from its discrete-time version; in fact, the vanishing of 
observation noise presents no essential difficulties in the discrete
time case. This point of view, although recently disputed [30], 
[31], is by no means new (see [32]). 

Remark 2: Also invariant under SME are the zeros of the 
transfer matrix on the imaginary axis. This is easily shown 
because G' ( - s) is the Hermitian adjoint of G(s) for s = iw, w E 
[& fixed. When they are present, purely imaginary zeros cause 
serious difficulties for filtering. 

V. CONSTRUCTION OF THE OPTIMAL FILTER 

In this section, we shall describe how to compute an optimal 
filter for a system of the form (2.1), (2.2) whether one has full 
observation noise or not. The idea is to transform the given signal 
model under SME into a form for which the optimal estimator 
becomes easy to write down. This form will be that of a model 
having a stable left inverse. First, we have to discuss the concept 
of left invertibility in state-space terms. A well-known result from 
[33] says that the transfer matrix of a system k (A, B, C, D) is left 
invertible (as a matrix over the field of rational functions) if and 
only if the matrix [ B' D' ] ' has full column rank and T* (2;) n 
V*(S) = { 0}. To formulate a criterion for the transfer matrix to 
have a stable left inverse, let Ti (S) denote the minimal element in 
the set of all subspaces T of X for which there exists a mapping 
G: Y --+ X such that the eigenvalues of A + GC are in the closed 
left half plane, and (3.5) holds. The existence of such a minimal 
element can be proved (constructively) by combining the argu
ments in [3, p. 114] and [21] . It is clear from Proposition 3 .1 that 
we always have Ti(S) :J T*(2;). The following proposition was 
proved (in dual form) in [34]; see also [35]. 

Proposition 5.1: The transfer matrix of a system S (A, B, C, 
D) has a left inverse having all its poles in the closed left half 
plane if and only if the matrix [ B' D'] ' has full column rank and 

r;cz:) n V*(l::) = { o}. (5 .1) 

We can now formulate the basic result that will be needed. 
Theorem 5.2: Let 2; (A, B, C, D) be a signal model. Then 

there exists a unique model f (A, ff, C, 15) which is equivalent to 
2; under SME, and which satisfies Ti(f) n V*(f) = {O}. 

Proof· This is the dual of [27, Theorem 4] (which is, in its 
turn, a version of Youla's classical theorem on spectral factoriza
tion [11), with a proof that uses ideas in [18] and is based 
essentially on calculations in [34]). · 

The condition Ti n V* = { 0} means that a vector x E X is 
determined completely if it is known modulo r; and modulo V*. 
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Therefore, this condition suggests that the optimal estimator 
should consist of an estimation modulo Ti and an estimation 
modulo V*. This is what we shall do, be it that a certain 
redundancy may be present which allows us to use subspaces that 
are even larger than Ti or V*, but still intersect only at zero. The 
precise results are given in the next two theorems. 

Theorem 5.3: Let :E (A, B, C, D) be a sigrial model with state 
space X = inn and output space Y = i;lP, and let HE iu 1xn be 
such that ker H :::> Vk(:E). Then there exist matrices R; E !Fl'xp 
(i = l, · · ·, k) such that 

(5.2) 

[note the order of the R; s; Ck and Dk are as in (3.8)]. Ifwe define 
a series of processes z1 ( t)(j = 1, · · · , k) by 

Z1 (t)~R1y(t) (5.3) 

def d ) ( 
ZJ+i(t)=·dtZj(t +R1+1Y t) (j=l, ···, k-1) (5.4) 

then none of the processes z1(t) has a white noise component, so 
that the differentiation is justified for each step, and moreover 

(5.5) 

a.s. for all t. 
Theorem 5.4: Let :E (A, B, C, D) be a signal model, with state 

space x = oon and output space y = [F!P, and let Tbe a subspace 
of X for which there exists a mapping G: Y -+ X such that the 
eigenvalues of A + GC are in the open left half plane, and (3.5) 
holds. I:>ecompose X = X 1 e X 2 with X 2 = T, and write the 
differential equations accordingly 

i1 (t) =A11X1 (t) + A12X2(t) +Bi u(t) 

i2(t) =A21X1 (!) +A22X2(t) + B2u(t) 

y (t) = C1x1 (t) + C2x2(!) +Du(t). 

Then there exists a mapping G1: Y -+ X 1 such that 

A12+ G1C2=0, B1 +G1D=O 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

and the eigenvalues of A II + G1 C1 are in the open left half plane. 
Moreover, the equation 

w(t) = (A11 + G1C1)w(t)-G1y(t), w(O) =X1(0) (5.10) 

defines a stationary process w(t) having the property 

X1(/)= W(t) (5.11) 

a.s. for all t. 
Before going into the proofs of the theorems, let us note how 

these results can be used to set up an optimal estimator. First of 
all, we have to remark that what is needed in Theorems 5 .3 and 
5.4 is a little more than what is provided by Theorem 5.2. While 
we had stability with respect to the closed left half plane in 
Theorem 5.2, we require stability with respect to the open left half 
plane in Theorem 5.4. It follows from the dual version of the 
result of [36] that Ti(:E) does not qualify as a subspace T in 
Theorem 5.4 if and only if the transfer matrix of :E has one or 
more zeros on the imaginary axis. Transformation under SME 
will not help in such a situation, since these zeros are invariant 
(see the remark at the end of the previous section). The problem 
that is encountered here is not specific for singular filtering or for 
continuous-time systems, and a suboptimal solution i!i suggested 
in [14, p. 253]. We will bypass the issue and proceed under the 
assumption that the given niodel (3.1), (3.2) does not have zeros 
on the imaginary axis. 

Under this assumption, we can apply Theorems 5.3 and 5.4 to 

solve the filtering problem. First, one transforms the given model 
into one for which Ti(:E) n V*(Z:) = {O}. This can be done 
either by a spectral factorization or by solving a certain matrix 
equation (cf. [27]). Now, take k ~ 0 and a subspace T C X 
satisfying the conditions of Theorem 5.4 such that T n Vk(:E) = 
{ 0} . It may be necessary to take T = Ti (L) and k such that 
Vk(L) = V*(:E), or it may be possible to let T and/or Vk(};) be 
larger than this. Decompose X = X 1 e X 2 , with X 2 = T and X 1 
~ Vk (L). Let H be the projection along X 1 onto X 2; then x2{t) = 
Hx(t), and ker H ~ Vk(:E). From Theorem 5.3, we get that x2(t) 
can be recovered by applying the differentiation scheme (5.3) and 
(5.4), the parameters for which are found by solving the matrix 
equation (5.2). From Theorem 5.4 it is seen that x1(t) is obtained 
by integration; the pa.rameter G1 can be found by the procedure 
described in (3, p. 88], which comes down to solving a linear 
matrix equation. So we have constructed an estimator which in 
fact reproduces the state of the (transformed) model exactly, up to 
sets of zero measure, so that it certainly qualifies as a least
squares estimator for this model. The first property is of course 
not preserved under SME but the second property is, so that we 
have indeed constructed a least-squares estimator for the original 
model. The procedure we have sketched is just intended to give 
the basic idea of the method; it is not optimized with respect to the 
amount of computation. Now, we proceed to prove the two 
theorems. 

Proof of Theorem 5.3: The matrix equation (5.2) is 
solvable if and only if 

ker [Ck Dk] C ker [H O]. (5.12) 

This is equivalent to 

(5.13) 

which is true by assumption (cf. Proposition 3.2). Next, we use 
the definition (3.8) to write out (5.2) explicitly 

k 

~ R;CAk-i=H (5 .14) 
i=I 

j-1 

~ R;CAj-i- 1B+R1D=O U= 1 · · · k). (5.15) 
i=I 

For the processes z1(t) defined by (5.3), (5.4) we shall show that 

j 

z1(t)= 2; R;CAj-ix(t) (5.16) 
i=I 

a.s. for all t. The proof of (5.16) is by induction. For j = 1, we 
have from (5.3) 

z1(t) = R 1y(t) =R 1 (Cx(t) + Du(t)) = R1 Cx(t) (5.17) 

where the last equality holds because R1D = 0 [see (5.15)]. Now 
assume that (5.16) holds for somej ~ k - 1. Then z1 (t) does not 
contain a white noise component, and we can write 

j 

Zj+ 1(t)= 2; R;CAJ-i(Ax(t)+Bu(t))+Rj+ 1(Cx(t) +Du(t)) 
i=I 

j+I 
= ~ R;CAi+I-ix(t) (5.18) 

i=l 

according to (5.15). This proves our claim. We see that, indeed, 
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all processes Zj(t)(j = I, · · ·, k) do not contain white noise 
components, and furthermore the equality (5.5) is immediate from 
(5.14) and (5.16). 

Proof of Theorem 5.4: Let G: Y -+ X be a mapping as 
described in the theorem statement. When X is decomposed as X 
= X 1 ffi X 2, G is decomposed as G = [ G ( Gi.] '. It then 
follows from (3.5) that G1 has the required properties. Now, we 
rewrite (5.6) using (5.9) and (5.8) 

.X1(t) =A1 1x1 (t)- G1Cz,X2(t)- G1Du(t) =(A 11 + G1C1)x(t) + G1y(t). 

(5.19) 

We see that the process x1(t) and w(t) satisfy the same differential 
equation (in particular, the driving process is the same); by 
definition [see (5.10)], they also have the same initial condition. 
Since the eigenvalues of A 11 + G1C1 are in the open left half 
plane, the solutions of (5.10) and (5.19) are well-defined 
stationary processes which must be equal a.s. for all t. 

Remark 1: The solvability of the matrix equation (5 .2) under 
the condition ker H :::> Vk(l:) was proved earlier in [37] for the 
case H = I (so Vk(l:) = { O} ). The idea ofobtaining information 
about the state modulo V*(2:), irrespective of the behavior or the 
disturbance u ( t), is in fact one of the earliest results in the 
geometric approach to linear systems: see [38], where, however, 
the problem is treated in a deterministic context and no connection 
is made with signal model equivalence or with left invertibility. Of 
course, our construction of an optimal estimator is intimately 
related to the construction of a left inverse. The version presented 
here seems to be new in that it uses a differentiating and an 
integrating part in parallel rather than in series as in [23] and [39] 
or in a hybrid form as in [37]. 

Remark 2: The equation (5.2) is equivalent to the two 
conditions below 

the row rank of G(iw) (over©), for all w E !&. Moreover, it is 
known that the transfer matrix of a system l: (A, B, C, D) is right 
invertible if and only if the matrix [ C D] is surjective and T*(~) 
+ V*(l:) = X. This is, in fact, just the dual of the result from 
[33] mentioned at the beginning of this section..: 

Now, let a signal model 2: be given and let l: be an equivalent 
model as described in the theorem statement. It follows from the 
arguments above (and also from Corollary 4.2) that T*(f) + 
V*(f) = T*(2:) + V*(2:) = X. So if T c X is a subspace 
satisfying the conditions of ,Theorem 5 .4 and k is a nonnegative 
integ_er such th~t T n ~k (2:) = { 0}, then we must have T :' 
T*(l:) and Vk(l:) = V*(l:) since it is always true that T :::> T*(l:) 
and Vk(~) :::> V*(~). This proves i). T~ prove ii2, note that it 
follows from ~he above 2-rgument that Ti(l:) = T*(l:). Therefore, 
we have Ti(l:) e V*(l:) = X and the c!_ecomposition of t!}e state 
space is indeed unique, with X 1 = V*(2:) and X 2 = Ti(l:). The 
claim iv) is basically a standard result in the geometric theory of 
linear systems: see [3, p. 109], use [2, Lemma I. I], use also (21], 
and dualize. The fact that the eigenvalues of A 11 + G1 Ci. where 
G1 is the unique solution of (5.9), are automatically in the closed 
(or open) left half plane also follows essentially from [3, p. 109]. 

It remains to prove iii). One easily sees that the equation (5.2) 
has a unique solution if and only if the matrix [Ck Dd is 
surjective. To show that this is the case, we use Theorem 2 in (23] 
which says that the transfer matrix G(s) of a system L (A, B, C, 
D) with p outputs is right invertible if and only if 

rank D;+ 1(S)-rank D;(S)=p (5.22) 

for all sufficiently large/. We apply this to the system l: (A k, Bk, 
Ck> Dk) which we shall denote by l:k. It is readily checked that for 
all I ~ 1 and k ~ I , one has 

(5 .23) 

(5.20) So if 2: has a right invertible transfer matrix, then, for all 
sufficiently large /, 

Im Dk C ker [Rk · · · Ri]. (5.21) 

Therefore, we see from Corollary 4.6 that the set of solutions of 
(5.2) is invariant under SME. This means that a given model 
(2 .1)-(2.2) does not have to be transformed under SME in order 
to compute the differentiating scheme (5.3)-(5.4). Note that this 
provides a justification for the method of "differentiating until 
you get white noise" proposed in [4]. 

In general, there is no guarantee that the parameters which 
determine the optimal estimator as constructed above (the 
matrices Ri. · · ·, Rk of Theorem 5.3, and the matrix G 1 of 
Theorem 5.4) are determined uniquely. However, we do get a 
uniqueness result in an important special case. 

r:_heorem 5.5: Let a signal model l: be given by £2.1), (2.2) and 
let 2: be an equivalent signal model such that Ti(l:) n V*(l:) = 
{ 0}. If the spectral density matrix cf>(s) = G(s) G ' ( - s) has full 
rank, then: 

i) if T C X is a subspace for which the conditions of Theorem 
5.4 are satisfied and if k is_a nonn~ative int~er, then T.n Vk(~) 
= {O} implies T = Ti(1:-), Vk(2:) = V*(l:); 

ii) there is only one decomposition X = X 1 e X 2 with X 2 = 
Ti(~), X 1 :::> V*(~); 

iii) for any H such that ker H :::> Vk(Z:), the equation (5.2) has 
only one solution; and 

iv) there is only one matrix G1 that-satisfies (5.9), where the 
parameters are taken with respect to ~ and the decomposition is as 
in ii). 

Moreover, the matrix 0 1 in iv) will automatically be such that 
the eigenvalues of A 11 + G 1 C 1 are in the closed left half plane 
(open left half plane, if the transfer matrix of 2: has no zeros on the 
imaginary axis). 

Proof: First, we note that the spectral density matrix is full 
rank if and only if the transfer matrix is surjective. This follows 
from the fact that the rank of cf>(iw) (as a matrix over©) is equal to 

k 

= 2; rank (Dk1+ll:))-rank (Dk1+;-1(l:))=kp (5.24) 
i=l 

which shows that 2:k is right invertible, since this system has kp 
outputs. In particular, it follows that [Ck Dk] is surjective for all 
k ~ I. The proof is complete. . · 

Remark 3: Suppose now that the spectral density of the giveg 
model 2: does not have full rank. In the transformed model 2: 
one will have Ti CS) n V*(~) = { 0} but Ti(~) + V*(~) * X. 
Consequently, there will be many wai'.s to decompose _!he state 
spaceX = X 1 '1l X 2 whereX2 = Ti(l:) and XL:> V*(L). Also, 
there will be many subspaces T larger than TiCE) that satisf)' the 
conditions of Theorem 5 .4 and that are such that T n V*(l:) = 
{ 0}. It may also be possible to replace V*(S) by a larger member 
of the sequence { Vk(~) I k = 0, I, 2, · · ·}. In general, there is a 
tradeoff between differentiation and integration: taking T larger 
than Ti(~) means less differentiation steps, but one has to make 
sure that T n Vk(~) = { 0}. For a fixed decomposition, the 
nonuniqueness in solving (5.2) is described by the standard 
methods of linear algebra, whereas the nonuniqueness of th~ 
integration gain G 1 (pole placement) is described in [3, pp. 111-
112]. 

Of course, the fact that we get a uniqueness result for the case 
of a full rank spectral density matrix is not entirely surprising. 
After all, we have seen that the spectral density matrix is full rank 
if and only if the transfer matrix is right invertible, and this is the 
necessary and sufficient condition for the left inverse (if it exists) 
to be unique. 
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VI. CONCLUSIONS 

The purpose of this paper has been to utilize the geometric 
theory of linear systems for a better understanding of the singular 
filtering problem. It turns out that this framework enables us to 
treat the "singular" and the "regular" problem much at the same 
level. The conclusions can be summarized as follows. If the 
spectral density matrix for a given signal is full rank at infinity, 
then we have the "regular" case and the solution takes the form of 
the traditional Kalman-Bucy filter with an integration gain that 
can be determined after an algebraic Riccati equation has been 
solved (or, equivalently, a spectral factorization has been done). If 
the spectral density is full rank as a rational matrix but has a 
singularity at infinity, then we are in the full rank singular case 
and the optimal estimator takes the form of a differentiator and an 
integrator in parallel. The differentiation parameters are found by 
solving a single matrix equation, whereas the integration gain is 
found, as in the regular case, either by doing a spectral 
factorization or by solving a problem stated in terms of constant 
matrices (see (27)). If, finally, the spectral density is not even full 
rank as a rational matrix (this happens, for instance, always when 
the number of outputs in the model (2.1), (2.2) exceeds the 
number of white noise inputs), then the same structure of the 
optimal estimator is obtained but the uniqueness of the construc
tion breaks down. We are still, however, able to describe exactly 
what the alternative forms for the optimal estimator are, and what 
freedom one has in selecting the differentiation parameters and the 
integration gain. 

In this paper, we only discussed basic principles, and we have 
not addressed the issue of efficient and reliable numerical 
procedures to obtain the optimal estimator. Also, we did not 
discuss the relation with the "nearly singular" filtering problem 
(see, e.g., (40] and [41]), although it is expected that the approach 
of this paper will be helpful in this case too. The theory here can 
be extended to estimation of linear functions of the state; this 
would bring us even closer to Wiener filtering, and it would also 
enable us to recover the Bucy filter [42] for problems with full, 
but colored, observation noise. Finally, another connection that 
deserves further study is the one with Wiener-Hopf integral 
equations (cf. [43]). 
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