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Abstract. 
Globally convergent nonlinear relaxation methods are considered for a class of non linear boundary 

value problems (BVPs), where the discretizations are continuous M-functions. 
It is shown that the equations with one variable occurring in the nonlinear relaxation methods 

can always be solved by Newton's method combined with the Bisection method. The nonlinear 
relaxation methods are used to get an initial approximation in the domain of attraction of 
Newton's method. Numerical examples are given. 

1980 Mathematics subject classification: 65 H 10, 65 N I 0. 
Keywords and Phrases: nonlinear relaxation methods, Newton-Bisection method, M-functions. 

1. Introduction. 
In section 2 we introduce nonlinear singularly perturbed elliptic BVP in 

2 dimensions, where the discretizations with the first order Osher-Engquist 
scheme (cf. [5]) are continuous M-functions. The solutions of the discrete equa
tions are unique, and with the theory of M-functions it follows that the non
linear Jacobi (NLJAC) and the nonlinear SOR (NLSOR) process are globally 
convergent (cf. [ 4]). 

In section 3 we show that the equations with one variable occurring in NLJAC 
and NLSOR can always be solved by Newton's method combined with the 
bisection method. We will give a 2-D example with an initial approximation 
for which NLJAC with Newton's method (NLJAC-N) does not converge, whereas 
NLJAC with Newton's method combined with bisection (NLJAC-NB) does. 

In section 4 we use NLSOR-NB to get an initial approximation in the 
domain of attraction of Newton's method for the whole system of equations 
(NEWT). 

2. A class of nonlinear BVPs. 

We consider the following class of nonlinear BVPs in two dimensions: 

(2.1) N,u = -e1o2u/ox2 -e2 o2u/8y2 +ai(u)ou/ox+a2 (u)ou/oy+g(u,x,y) 

= 0, on Q = { (x, y )10 < x < 1, 0 < y < 1}, and 
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(2.2) u(x, y) = b(x, y) 

ge C2 (1R x Q), (o/ou)g(u, x, y) ~ µ > 0 

ue C2 (Q) and be C(c5Q). 

for all (x, y)e Q, 

For the discretization of this problem we introduce Gh, a uniform rectangular 
grid with mesh-size h = (h1, h2 ), h1 = l/m, h2 = l/n and meshpointsx7i = (ih 1,jh2 ), 

0 ~ i ~ m, 0 ~ j ~ n, and use the one sided Osher-Engquist difference scheme (cf. 
[5]): 

Denoting the space of gridfunctions on Gh with GFh, and extending the 
results of Lorentz (cf. [3]) to 2 dimensions, we can easily prove that N •. h is a 
continuous M-function from GFh onto GFh. 

In the following section we use the property that M-functions are strictly 
diagonally isotone (cf. [4]). 

3. The nonlinear relaxation methods. 

In this section we consider NLJAC and NLSOR, and give a 2-D example for 
which NLJAC does not converge when the resulting scalar nonlinear equations 
are solved with Newton's method only, while NLJAC converges when we use 
Newton's method combined with bisection. 

Let F(x) = 0 with F = (f1(x), ... ,f,,(x)), x = (x 1, ... ,x.) be a system of n 

nonlinear equations. Let x<0 > be an initial approximation to the solution, then 
x<k+ 1> is obtained by solving for xi the ith equation: 
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(3.3) x\k+l> = x\k>+w(x;-x\k>), wE(O, l], i = 1,2, ... ,n. 

For our class of equations F is a continuous M-function, and both NLJAC 
and NLSOR converge globally to the unique solution of (2.3), (2.4), provided 
the (generally nonlinear) equations (3.1 ), (3.2) for which a unique solution exists 
can be solved (cf. [4], Theorem 13.5.9). 

For M-functions df;/dxi > 0. This implies that for a positive (negative) 
function value of an iterant xi(rJ the next Newton iterant x;,,+ JJ is always smaller 
(greater) than xi<r>• and we can start with only a single initial approximation. 
When the function values of the subsequent iterants never change sign only 
Newton iteration is applied, and we have monotone convergence. However if the 
function value of an iterant xilrl changes sign we have an interval round the 
solution: Ji(rJ = (min(xi(r- l» xi(r)), max(xi(r- IJ• xi(r)). This interval is adapted in 
each iteration step. If I;,,+ IJ c Jitrl• Newton's method is applied, if this is not the 
case one step of the bisection method is applied. 

As the bisection method always converges the above-mentioned combination 
always converges. 

This process is described in the following Algal-like procedure NEWTON 
BISECTION. The procedure takes the current value of x as an initial value 
and delivers in x an approximate solution to f(x) = 0, so that lf(x)I < tol. 

( 3 .4) comment f is the function whose zero should be determined, 
df the derivative (df > 0) and to! a given tolerance; 
procedure newton_bisection: 
begin integer sgn = sign(f(x)); real xold, xnew, xneg, xpos; 
xnew := x; 
while abs (f(xnew)) > to! and sign(/(xnew)) = sgn 
do xold : = xnew; xnew : = xold-j(xold)/d.f(xold) od; 
if sign(f(xnew)) > 0 then xpos: = xnew; xneg : = xold 

else xneg : = xnew; xpos : = xold fi; 
xold : = xnew; 
while abs(j(xnew)) > to! 
do while abs(xnew- xold) < xpos -xneg and abs(f(xnew)) > to! 

do if sign(/(xnew)) > 0 then xpos : = xnew; else xneg : = xnew fi; 
xold : = xnew; xnew : = xold-f(xold)/df(xold) od; 

if abs(j(xnew)) > to! then xnew : = (xneg + xpos)*0.5 fi od; 
x := xnew 
end 
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Both NLJAC-NB and NLSOR-NB converge to the solution and in the 

course of these processes in each point we will have a better initial approximation 

for the Newton-Bisection process. This means that for a given tolerance TOL 

in the course of the NLJAC-NB and NLSOR-NB process the required number 

of Newton-Bisection iteration steps decreases (cf. Table 1, 2, 3). This phenomenon 

is used in section 4, where NLJAC-NB and NLSOR-NB are used to get an 
initial approximation for Newton's method. 

In example (3.5) NLJAC-N does not converge, whereas NLJAC-NB does. 

(3.5) EXAMPLE. 

We consider (2.1)--(2.4) with e1 = e2 = 10- 6 , h1 = h2 = 1/32, a 1 (u) = a2 (u) = 
= arctan(4u), g(u,x,y) = u and b defined by 

b(O,y) = 0 
b(l,y)=-1 

b(l, y) = l03y-103 

b(x, 0) = -1 
b(x, 0) = - l03x 
b(x, 1) = 0 

0;:,:; y;:,:; 1 
o;:;;y;:,:;1-10- 3, 

1-10- 3 ;:,:;y;:,:;1 
10- 3 ;:,:;x~l 

O~x~10- 3 

O~x~l 

For the gridfunction uh in (2.3 ), (2.4) we take the lexicograph_ical ordering 

(i.e. uh = ( ... , ut, ut+ 1, .. ., u~+ Jj, u~+ ij+ i)). As initial approximation for NLJAC-N 
(w = 1) and NLJAC-NB (w = 1) we take the gridfunction u<0 > defined by 

u~Jl = -1 on Gh 11 Q and u~J> = b on Gh 11 c5Q. 
NLJAC-N does not converge, while we need k = 4 NLJAC-NB steps to obtain 

llN, hu<k>ll ~ 10- 12 with II· II the maximum norm. 
For NLJAC-NB in Table 1 we give the maximum number of Newton

Bisection iterations for TOL = 10-s (cf. (3.4)). 

Table 1. The maximum number of Newton-Bisection iterations per NLJAC-NB 

iteration step i. (TOL= 10- 8 ). 

i 
N 

l 
42 

2 
2 

3 

4. NLJAC-NB and NLSOR-NB combined with NEWT. 

4 

In this section we use NLJAC-NB and NLSOR-NB to get an initial approxi

mation within the domain of attraction of NEWT. 
There are other methods which use time-steps combined with NEWT (cf. [1]). 

We consider here NLJAC-NB and NLSOR-NB because these can be used as 
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relaxation processes in Multigrid methods (cf. [6]). Moreover the number 
of Newton-Bisection steps can be used as a criterion to switch from NLJAC-NB 
or NLSOR-NB to NEWT, as the number of Newton-Bisection iterations 
decreases in the course of these processes. 

So instead of trying NEWT after each NLJAC-NB or NLSOR-NB iteration 
step we try it when the maximum number of Newton-Bisection iterations is 
sufficiently small. 

In the following 1-D example we have an initial approximation for which 
NEWT does not converge while NLJAC-NB and NLSOR-NB do. 

We also show that the combination NLSOR-NB with NEWT is cheaper than 
NLSOR-NB alone. 

(4.1) EXAMPLE. 

Consider the 1-D problem 

(4.2) N,u = -eu" + (u2 - l/4)u' +u = 0 on [O, 1] with e = 10- 6, 

u(O) = 1, u(l) = -1, discretized by the Osher-Engquist scheme (cf. (2.3), (2.4)) 
on a uniform grid with mesh size 1/20 (cf. [1 ], [2]). 

NEWT with initial approximation u<0> defined by u)°> = 1-2xi, j = 0, ... , 20, 
does not converge while NLJAC-NB and NLSOR-NB (w = 1) do. We need 
k = 58 NLJAC-NB or k = 39 NLSOR-NB steps for llN,,hu<k>ll ~ 10- 6 , with 11-11 

the maximum norm. 
For NLJAC-NB and NLSOR-NB respectively in Table 2 and Table 3 we give 

the maximum number of Newton-Bisection iterations with TOL = 10-s (cf. (3.4)). 

Table 2. The maximum number of Newton-Bisection iterations N per NLJAC-NB 
iteration step i. (TOL= 10- 8 ). 

i 
N 

1 
7 

2 
6 

3-5 
4 

6 
5 

7-8 
4 

9-17 
3 

18-38 
2 

39-58 
1 

Table 3. The maximum number of Newton-Bisection iterations N per NLSOR-NB 
iteration step i. (TOL= 10- 8 ). 

i 
N 

1 
7 

2-3 
5 

4-5 
4 

6 
5 

7 
4 

8 
3 

9-12 
4 

13-20 
3 

21-29 
2 

30--39 
1 

When we try NEWT after the maximum number of Newton-Bisection iterations 
in NLSOR-NB becomes 2, we need 21 NLSOR-NB steps and 2 NEWT steps 
for llN,,hull ~ 10- 6, with 11-11 the maximum norm. 

An operations and function evaluations count shows that for 1 NEWT step 
the number of operations and function evaluations per gridpoint is less than 
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for 2 NLSOR-NB steps, with one or more Newton-Bisection iterations per grid
point. Hence for this example the combination NLSOR-NB and NEWT is more 
than 35 % cheaper than NLSOR-NB solely. 

5. Conclusions. 

For continuous M-functions the equations with one variable occurring in the 
globally convergent nonlinear relaxation methods NLJAC and NLSOR can 
always be solved by Newton's method combined with the Bisection method, 
and we need only a single initial approximation. Newton's method alone is not 
always sufficient. 

The nonlinear relaxation methods can be used to get an initial approximation 
for Newton's method for the whole system of equations, where the decreasing 
number of Newton-Bisection iterations can be used as switching criterion. 
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