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1 Description of the problem 

Let an implicit system of differential equations be given in the form 

f(x(t),:i:(t)) = 0 (39.1) 

where x is an n-dimensional vector and f is a smooth mapping from JR2n 

to lR n. ~fore generally x may take values in a differentiable manifold and 
f may be defined on the tangent bundle. Let us first consider the case that 
f is linear, so that the equation (39.1) may be written as 

E:i:(t) = Fx(t) (39.2) 

where both E and F are matrices of size n x n. To the pair of matrices 
(E, F) one may associate two subspaces of JR", in the following way. Denote 
by V(E, F) the limit of the sequence defined by 

v0 = lRn, vJ+ 1 = p- 1EV1 (j = 0, 1, ... ). (39.3) 

Alternatively, V(E, F) may be defined as the largest element of the set of 
all subspaces V that satisfy FV c EV. Secondly, denote by T(E, F) the 
limit of the sequence defined by 

yo= {O}, yJ+l = E-1 FT1 (j = 0, 1, ... ). (39.4) 

It is equivalent to say that T(E, F) is the smallest element of the set of 
all subspaces T such that T :) E- 1 FT. We can now state the following 
well-known theorem. 

Theorem 1 For a pair of square real matrices (E, F), the following state­
ments are equivalent: 
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(i) the polynomial det(sE - F) is nonzero; 

(ii) the subspaces V(E, F) and T(E, F) form a direct sum decomposition 
ofIRn; 

(iii) the differential equation (39. 2} is well-posed in the sense that for each 
x0 E JRn there is at most one solution of {39.2} passing through xo. 

Actually more precise statements could be made; in particular the "consis­
tent subspace", that is, the space of all xo through which a smooth solution 
of (39.2) passes, is equal to V(E, F), and the subspace T(E, F) has an in­
terpretation in terms of impulsive solutions to (39.2) [14, 11]. 
The theorem connects statements of three different types: an algebraic one, 
a geometric one, and a dynamic one (relating to differential equations). The 
question that we are interested in is now the following: to what extent do 
there exist nonlinear generalizations of Thm. 1 '?So, for a nonlinear implicit 
system of the form (39.1), we would like to know whether well-posedness 
can be connected to an algebraic criterion as in (i) above, and in particular 
(as motivated below) under what conditions there is an associated state 
space decomposition similar to (ii). 
In the nonlinear case as given by (39.1) we can still define the consistent 
manifold as the set of all points x through which a smooth solution of 
(39.1) passes. Let us also define the constraint manifold as the set of all x 
for which there is a v such that f(x, v) = 0. Note that, in the linear case, 
the constraint manifold is exactly the subspace V1 in the sequence defined 
by (39.3). 

2 Motivation of the problem 

Consider a linear system with scalar inputs and outputs 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

together with inequality constraints of the following form: 

for all t: y(t) 2:: 0, u(t) 2:: 0, and y(t) = O or u(t) = 0. 

(39.5) 

(39.6) 

(39.7) 

These could for instance be the equations of a linear electrical network with 
an ideal diode; also, equations of the same form arise from an application 
of Pontryagin's maximum principle to a linear-quadratic prbblem with a 
single linear inequality constraint. In the situation in which the constraint 
is active (y == 0), the system dynamics is given by 

(39.8) 
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This is an equation of the form (39.2). If we assume that the system is 
well-posed, the conditions of the theorem mentioned above hold and so the 
consistent subspace is V(E, F) with 

(39.9) 

Note that while it is natural to let a change from unconstrained to con­
strained mode take place only at times tat which both y(t) and u(t) vanish, 
the ensuing conditions x E ker C and u = 0 may not be enough to guar­
antee that the vector [~] is in V(E, F). However we are always able to 
project a given vector[~] onto V(E, F) along the complementary subspace 
T(E, F), and doing so is in fact supported by the interpretation of the lat­
ter space as the space of jump directions. The same recipe can be given in 
the case of systems multiple inputs and outputs connected by "complemen­
tarity conditions" of the form (39.7) (taken componentwise). Of course in 
the multivariable case there are more possible combinations of active and 
inactive constraints; a system with k constraints has 2k modes. In this way 
it becomes possible to give an unequivocal specification of what is to be un­
derstood by a solution of a system of the form (39.5-39.7). The dynamical 
systems that are obtained in this way have been called linear complemen­
tarity systems [15]. Surely, to define the concept of a solution is one thing 
and to prove existence and uniqueness of solutions is another; sufficient 
conditions for well-posedness in terms of the classical linear input-output 
system (39.5) are given in [15]. 
Another example of a class of discontinuous dynamical systems for which a 
cam plete specification of the dynamics can be given is provided by mechani­
cal systems subject to inequality constraints on the configuration variables; 
here the projection rule as defined by Moreau [25] can be used for re­
initialization. In the class of general nonlinear systems, the re-initialization 
problem becomes vacuous if the consistent manifold coincides with the con­
straint manifold, so that the constraint only become active in situations in 
which the state is already in the consistent manifold corresponding to the 
relevant constraints, and state trajectories can be required to be contin­
uous. Otherwise however there is a nontrivial re-initialization problem to 
solve, which will require a decomposition of the constraint manifold into the 
consistent manifold and an associated foliation - that is, a decomposition 
similar to the one in the theorem above. 

3 History and related results 

Theorem 1 above goes back 'essentially' to the 19th century, at least as 
far as the equivalence between parts (i) and (ii) is concerned, since the 
implication from (i) to (ii) can be read off from the Weierstrass canonical 
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form for regular matrix pencils [32], and the implication from (ii) to (i) 
follows from the canonical form for singular matrix pencils given by Kro­
necker [20]. Weierstrass and Kronecker did not explicitly use the algorithms 
(39.3) and (39.4); these occur perhaps for the first time in a paper of 1946 
by Dieudonne [6]. Gantmacher [9] presented a derivation of the Kronecker 
canonical form that is much simplified with respect to the original version, 
and also pointed out the implications of the canonical form for systems of 
implicit linear differential equations with constant coefficients. For systems 
in the special form (39.9) the algorithms (39.3) and (39.4) take on a special 
form as well, under which they have become well-known in control theory 
through the work of in particular Wonham [33], Morse [26], and Basile and 
Marro [1]. 
Implicit systems of nonlinear equations occur naturally in the modeling of 
physical phenomena, and in recent years there has been great interest in 
the development of numerical methods for solving such systems, see for 
instance [2, 12]. Implicit systems are categorized in classes of increasing 
difficulty of numerical solution by a quantity known as the "index" . There 
are actually various definitions of this notion ( cf. [5] for a discussion of sev­
eral proposals), but roughly speaking the index is related to the number of 
"hidden equations" that are not explicitly formulated in the model equa­
tions but that follow from them by differentiation. The index can also be 
seen as a measure of the difference between the dimension of the consistent 
manifold and the dimension of the constraint manifold, so that problems 
that cause numerical difficulties are also problems that cause difficulties 
with re-initialization. One may surmise that this connection is not acci­
dental; indeed the index reduction scheme proposed by Gear [10] defines 
a re-initialization mapping at least in a neighborhood of the consistent 
manifold, cf. the remark at the end of the cited paper. 
It would appear therefore that the large literature on the index of implicit 
nonlinear systems will be of relevance to the re-initialization problem. Un­
fortunately this literature gives mixed clues; as already noted there are 
several definitions of the index which can give widely different results [5]. 
A case can be made for the claim that a study of the index should be 
based on methods from differential algebra. Steps in this direction have 
been taken by Fliess and co-authors [8, 7]. Prolongations (corresponding to 
'repeated differentiation') have been used by Fliess et al. as well, and they 
have obtained a nonlinear version of the equivalence between (i) and (iii) 
in terms of differential functional independence [7]. See also the work by 
Le Vey [22] who develops connections to the formal theory of partial differ­
ential equations. The prolongation method is related to the use of 'dummy 
derivatives' in numerical treatments of implicit systems [24]. As an alterna­
tive to prolongation one may attempt to use more geometrically oriented 
methods as would be suggested by the linear version (39.4). A nonlinear 
variant of (39.4) has been proposed by Isidori et al. [18] although not at the 
level of generality of (39.1); moreover in some examples the algorithm of 
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[18] does not quite give the desired results, see [30, Remark 5.8]. Nonlinear 
versions of the algorithm (39.3) are well-known [17, 27, 28]. 
The linear case also suggests a connection to what is known in linear system 
theory as the "structure at infinity" (see for instance [21]). Indeed, the index 
of the linear system (39.2) can be defined as one plus the order of the pole 
at infinity of the rational matrix function ( sE - F)- 1 . Actually there are in 
general several poles at infinity, as indicated by the Smith-MacMillan form 
at infinity [13, 19], and this suggests that the index should be defined as a 
vector rather than as a single number. It has been shown by Bujakiewicz [4] 
that this extension is actually important for numerical purposes. Above it 
has been noted already that the subspace T(E, F) has an interpretation in 
terms of impulsive solutions of the equation (39.2), which then needs to be 
interpreted in a generalized sense. This suggests that 'solving' (39.1) with 
an inconsistent initial condition (which is a possible interpretation of the 
re-initialization problem) will bring in the theory of impulsive solutions 
of nonlinear differential equations, which is a subject of its own. It may 
be expected that certain commutativity conditions on vector fields will 
be needed to ensure that solutions are well-defined; this is in line with 
the fact that involutivity conditions are often found to play an important 
role in applications of the nonlinear variant of (39.4) as given in [18], see 
for instance [31]. If such conditions are not satisfied it may happen that 
the re-initialization problem is not well-posed and one will either have to 
reformulate the model or accept a certain degree of indeterminism. 
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