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Abstract-A multigrid algorithm is presented for cell-centered discretizations of interface prob­
lems. Instead of constructing the coarse grid operators by means of the Ga.lerkin approximation, the 
coarse grid operators are obtained by discretiza.tion on the coarse grids. The advantage of this ap­
proach is that we obtain M-matrices on all grids, and that the sparsity pattern of the fine grid matrix 
is retained on a.II grids. Moreover, the coarse grid operators are very easy to construct. Numerical 
results of several test problems are presented. 

Keywords-Multigrid, Finite differences, Discontinuous coefficients, Diffusion equation, Strong 
anisotropies. 

1. INTRODUCTION 

We consider the numerical solution of the following seeond-order elliptic boundary value problem: 

d a ( a ) - L -8 Da 0 u +Cu= f, 
cx=l Xa Xa 

in n c Rd, d = 2, 3, (1) 

8u 
a8n + bu = g, on an, (2) 

with n the bounded domain, D 0 the positive diffusion coefficient, C the nonnegative linear source 
term, n the outward normal vector, a 2 0, b ;::: 0 and a+ b > 0. Typically D0 and C are dis­
continuous across internal interfaces, and the diffusion coefficient D contains strong anisotropies. 
This equation appears in many fields of physics and engineering, for example in petrol reservoir 
simulation and neutron diffusion problems. 

In most of the multigrid methods that have been proposed for this problem (cf. [1-3]) the 
coarse grid operators are constructed as the Galer kin approximation of the fine grid operator, 
given the grid transfer operators (automatic prescription). The disadvantage of this approach is 
that the stencils of the coarse grid operators are often larger than the corresponding fine grid 
stencil. Especially in three-space dimensions this is problematic: 7-point stencils on the finest 
grid are turned into 27-point stencils on the coarser grids (see, e.g., [3]). Moreover, it is not 
guaranteed that the coarse grid matrices have the M-matrix property if the fine grid matrix is 
an M-matrix, which makes it difficult to select an appropriate smoothing operator for the coarse 
grid problems. 

These problems are avoided in the cell-centered multigrid method that is presented in this 
paper. We use coarse grid operators that are based on finite volume discretizations on the 
coarser grids (cf. [4]). In the constant coefficient case these finite volume discretizations can be 
formulated as Galerkin-like approximations of the fine grid operator. By using this Galerkin-like 
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construction also in the variable coefficient case we obtain finite volume discretizations on all 
grids. The coefficients in these coarse grid discretizations are simple arithmetic averages of the 
corresponding coefficients in the finest grid discretiza.tion, which is computationally very efficient. 
The coarse grid operators thus constructed are M-matrices and all have the same stencil. 

This approach turns out to be closely related to earlier work by Khalil and Wesseling [5-7]. 
With the modification for the case C > 0 proposed in [6], the same coarse grid operator is 
obtained in the interior of the domain. Therefore, this pa.per can be considered to be an extension 
of the cell-centered multigrid method presented in [6] to three space dimensions. However, the 
procedure for defining the coarse grid operator developed here is interesting on its own: it clarifies 
the modification proposed in [6] and it allows a straightforward extension to systems of equations 
(see [8]). 

2. FINITE VOLUME DISCRETIZATION 

For the discretization of (1) we use a standard finite volume discretization. For ease of notation 
we only state the discretiza.tion for n c R2 and assume that n can be divided by a regular 
partitioning in open square cells n~ (with side length h)' which resolves the discontinuities 
in Da and C. Integration of (1) over a. cell nfj yields 

(3) 

The flux F/'f.112,j at the cell edge Ef't.1; 2,; between n~ and !lf't.1,j is approximated by 

Ff1_1;2,j = 
2DM DM M M M M 

l;i,j l;i+l,j U,:+1,j - ui,j _ DM u•+1J - ui,j 

D M + DM h = - i+l/2,j h 
l;i,j l;i+ l ,j 

(4) 

with Df{.,; the average of D1 over n~ (Fl:J+i12 is treated similarly}. The coefficient Df'!.112,; at 

the cell edge Ef't.112,j is the harmonic average of the values D~,j and D~+i.; ( cf. [7]), which are 
assumed to be positive. 

The boundary conditions (2) a.re discretized by symmetric differencing; e.g., the flux at the 
boundary edge Er+1124 is approximated by 

g!-11/2 · - b?-1+1/2 .u~ F~ . = -2DM . •+ ,J ' ,3 •,,,. 
i+l/2,3 l;!,3 2aM + bM h 

1.+1/2,j i+l/2,j 

(5) 

After including the boundary conditions in the right-hand side (so in the sequel gft-1; 2.J = 
g~+l/2 = O), the discretized problem (3)-(5) can be written as 

(6) 

where tJM corresponds to the second-order term in (1) a.nd cM to the zeroth-order term. Clearly 
the linear operator CM has a. 5-point stencil. 

REMARK 1. The matrix of the linear operator t:,.M is irreducible, a.nd it is an M-ma.trix if 

(7) 
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3. CELL-CENTERED MULTIGRlD 

To solve the linear system of equations (6) we consider a cell-centered multigrid method (for an 
introduction to multigrid methods, see, e.g., [9-11]). The coarse grids are constructed cell-wise: 
each coarse grid cell is the union of four fine grid cells, which is natural for a finite volume scheme. 
Thus, we obtain a hierarchy of grids G1 , ... , GM, with mesh size 2M -t. h on grid G'-. 

Usually the coarse grid operator in linear multigrid algorithms is constructed by first choosing 
suitable interpolation operators PJ_ 1, the prolongation, and ~- l, the restriction (which may 
both be problem dependent), and then defining the coarse grid operator ct.-I as the Galerkin 
approximation of the fine grid operator .C'-: 

.cl-1 - '4-1.cl.pl. - li,l 1.-1· (8) 

The alternative way to construct the coarse grid operators is to discretize the problem also 
on the coarser grids. This is often done for nonlinear problems where the construction (8) is 
not feasible; in [12) this approach is applied for interface problems. Disregarding the boundary 
conditions this implies in the constant coefficient case that the operator on the next to finest grid 
can be written in the following Galerkin-like way: 

(9) 

with Ptf _1 the interpolation by piecewise constants, with stencil representation 

[P) = [~ n' 
and R~-1 its ad.joint. Notice that the part corresponding to the second-order term 'Din (9) is 
multiplied by a factor 1/2. This is due the fact that the piecewise constant prolongation leads to 
fluxes on fine grid edges that are twice the fiuxes on the corresponding coarse grid edges. 

We now construct the coarse grid operator by (9) also in the variable coefficient case. Recursive 
use of ( 9) yields 

(10) 

with Pf1 the interpolation by piecewise constants between at and GM, and Ri.t its adjoint. 
The coarse grid operator et in (10) can be considered as a finite volume discretization of the 

form (cf. (3)) 

2M-t.h (Ft FI. Ft. Fl ) 4M-1.h2Ct I. 4M-lh2fl ·+1/2 . + . ·+1/2 - ·-1/2 · - . "-1/2 + . ·U· · = · ·· i ,3 i,3 i ,3 i,3 i,3 i,3 i,3 (11) 

If some coarse grid cell edge Ef+i/2 ,3 consists of 2M-l finest grid edges Ef't+i/2 ,3,. with coefficients 
Df':+i;2,3., k = 1, ... , 2M-1. (cf. (4)) then the fiux Fl+i;2,; on that coarse grid edge as defined by 
(10) is 

{12} 

So the coarse grid B.ux Fl+l/2,3 is calculated with a diffusion coefficient Df +i/2,; that is the 
arithmetic average of the corresponding finest grid coefficients Df'!+i/2 ,3,. (Fi~Hl/2 is treated 
similarly). 
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The treatment of the boundary conditions requires special ea.re. Suppose that a coarse grid 
boundary edge Ef+i;2 ,1 consists of 2M-t boundary edges on the finest grid; then straightforward 
application of (10) yields 

(13) 

In numerical experiments it appears that this treatment of the boundary conditions leads to 
poor multigrid convergence rates in the case of mixed (or Robin) boundary conditions (ab > O). 
Therefore, we consider a modification of (13). Suppose that a coarse grid boundary edge consists 
of 2M-t finest grid edges; then we define the flux on that coarse grid edge by 

(14) 

The fluxes F/+ 1; 2 ,1 defined by (13) and (14) are identical if af:+i/2,j,. = 0 or bf:+112,3,. = 0. 

Notice that in the calculation of the flux at a coarse grid edge we only use the values for D~ . . a,1,3 

in the cells O~ of the finest grid that are adjacent to that coarse grid edge, so this approach 
cannot be considered as a homogenization procedure (cf. [12)). 

The elements of et, e < M are the arithmetic average of elements cM. If a coarse grid cell nt; 
on the grid Qt consists of 4M-l finest grid cells 0.t{,jk then it follows from (10) that 

4M-t 

e 1 L M c.·=-- c .. i,1 4M-l •i.,Jk. 
k=l 

(15) 

Here it is interesting to note that this coarse grid operator is nearly identical to the coarse grid 
operator defined by Khalil and Wesseling (see [5-7]). For the special case C = 0 the definition 
of the coarse grid operator £M-l given in (9) turns out to be equivalent in the interior of the 
domain to one they use. In [6] the definition of the coarse grid operator is modified in order to 
deal with the case C ;:::: 0. This modification boils down to a splitting of the opera.tor in second 
and lower order terms as in (6), and using a different coarse grid approximation for these two 
parts. We obtain the same coarse grid operator in the interior of the domain. However, the 
treatment of the boundary conditions is different. 

As the coarse grid operators defined by (11),(12),(14),(15) are equivalent to a. finite volume 
discretization the following result is immediate. 

THEOREM 1. All coarse grid operators £/· have 5-point stencils, and all coarse grid matrices are 
M-matrices, provided that the matrix of J:,M is an M-matrix. 

PROOF. Follows from Remark 1 and (11),(12),(14),(15). 

As Pf_ 1 and R~-1 only interpolate constant functions exactly, we have mp = mR = 1, with 
mp and mR the order of the prolongation a.nd the restriction (cf. [13]), respectively. For second­
order differential equations we need mp + mR > 2; therefore we use a more accurate prolongation 
operator P in the multigrid algorithm. In the 2D case we consider a prolongation that is based 
on bilinear interpolation; its stencil representation is 

[

1 3 

[P]=2- 3 9 
16 3 9 

1 3 
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In the 3D case we ta.lee a prolongation that is based on linear interpolation between a coarse grid 
cell and its three relevant nearest neighbors. The stencil representation for this prolongation is 

[if'''= [if'''=~[~ 
0 0 

~], 1 1 
1 1 
0 0 

[if'''= [if'''=~ [I 
1 1 

IJ. 
1 1 
1 1 
1 1 

with [.P].B the representation of the stencil in the z-plane k + {3. In both 2D a.nd 30 we have 
mp = 2, so mp + mR = 3, which suffices. 

Next we consider the choice of the smoothing operator. In 2D we use the Incomplete Line 
Lower Upper (ILLU) decomposition, which is known to be a robust and efficient smoother for 
problems with strongly anisotropic and discontinuous coefficients (cf. [14]). In the 3D case, 
alternating plane relaxation appears to be the only robust smoothers for problems with strong 
anisotropies (cf. [15]); therefore we use alternating plane Gauss-Seidel (APGS) relaxation for 
three-dimensional problems. The 2D probk..ns in a plane are then solved approximately by the 
2D multigrid method. 

To estimate the convergence rates of the 30 multigrid algorithm we perform a Fourier two-grid 
analysis ( cf. [13]) for the anisotropic diffusion equation, 

4 a ( au) -2:- Dcr- =J, 
cr=l OXa OXa 

(16) 

with Da(X1,x2 1 x3) = Da· In Table 1, we show the smoothing factor PAPGS for APGS and 
the two-grid convergence factor .>... for the 30 multigrid algorithm with a single APGS relaxation 
sweep. Here it is assumed that the 20 problems in the plane relaxation are solved exactly. From 
the results in Table 1 we conclude that the coarse grid operator efficiently eliminates the low 
frequency errors in the case of strong anisotropies. 

Table 1. Smoothing factor PAPGS 8Jld two-level convergence factor>.. for the anisotro­
pic diffusion model problem. 

Di D2 Da PAPGS ).. 

100 10° 1a3 0.041 0.041 

100 10° 102 0.123 0.123 

10° 10° 101 0.122 0.122 

100 10° 10° 0.049 0.058 

10° 10° 10-1 0.302 0.302 

10° 10° 10-2 0.356 0.356 

10° 10° 10-3 0.143 0.143 

10° 101 10-1 0.322 0.322 

100 102 10-2 0.030 0.030 

10° 1a3 10-a 0.000 0.000 

Finally, a. word about the storage requirements for the 30 multigrid algorithm. Suppose that 
a 3D grid contains N points. Storage of the solution, right-hand side and fine grid opera.tor 
then requires approximately 6N memory units. To perform a plane relaxation we store the ILLU 
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factorization for all planes ((4/3) * 3N = 4N), and the solution ((1/3)N), the right-ha.nd sides 
((1/3)N) and the operator ((4/3)N) on the 20 coarse grids. To apply an alternating plane 
relaxation sweep, we therefore need 3 * (4N + (4/3)N) + 6N + (2/3)N = 22jN memory units. 
Altogether the 30 multigrid algorithm requires approximately (8/7) * 22jN = 25~~ N memory 
units. 

4. NUMERICAL EXAMPLES 

In this section, we present results for some standard test problem from the literature. The 
convergence rate p of a multigrid iteration is estimated by 

with rCm) the residual after m multigrid cycles. 
The test problems Pl and P2 described below are defined on the d-dimensional unit cell, 

0 = (0, 1 )d, d = 2, 3. The first test problem Pl is the anisotropic diffusion problem (16) with 
f = 1 and mixed boundary conditions, 

au -o 8n - , 
au 1 -+--u=O, 
8n 2Da 

for min (xa) = 0, 

otherwise. 

The second test problem P2 is a generalization of Example 6 from [3] 

d ( 
8 8u _4 -L ~ Da~) +10 u=O, 

a=l uXa uXo: 

with homogeneous Neumann boundary conditions (b = g = 0) and a point source of unit strength 
at the origin. Different (constant) values are given for Da in different subdoma.ins O, c 0: 
D0 (x) = Da;i for x E !)s. 

4.1. Two-Dimensional Results 

AB our algorithm is closely related to the one proposed in [6], we repeated the numerical 
experiments presented in that pa.per. Using the same smoother, symmetric point Gauss-Seidel, 
we obtained comparable results. Therefore, it can be concluded that the different treatment 
of the boundary conditions has only a small influence. A harder test problem is posed by the 
so-called inhomogeneous staircase problem (see [1, Problem IV]). For this problem the algorithm 
fails to converge with the Gauss-Seidel smoother. Therefore, we switch to ILLU smoothing. In 
Table 2 the convergence rates are shown for both V-cycles and W-cycles, and different smoothing 
strategies: 1.11 and 112 denote the different number of pre- and post-smoothing sweeps, respectively. 
With this more powerful smoothing operator the multigrid algorithm is robust indeed. In the 
sequel we only use ILLU as the smoothing operator for 2D problems. 

Table 2. Multigrid convergence factor p for inhomogeneous sta.irca.se problem. 

V1,ll'J V-cycles W-cycles 

0,1 0.22 0.23 

1,0 0.34 0.30 

1,1 0.15 0.16 
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Table 3. Multigrid convergence factor p for the 2D anisotropic diffusion equation on 
different grids. 

V-cycles W-cycles 

D1 D2 
1 1 1 1 1 1 - - -

16 32 64 16 32 64 

100 1a3 0.11 0.13 0.17 0.11 0.13 0.14 

100 102 0.14 0.15 0.17 0.12 0.12 0.12 

100 101 0.12 0.12 0.13 0.09 0.09 0.09 

100 100 0.08 0.10 0.17 0.07 0.07 0.07 

31 

For the anisotropic diffusion problem Pl we use the multigrid algorithm with v1 = 1 and 
v2 = 0. The convergence rates for different mesh sizes and multigrid strategies are shown in 
Table 3. We find a good grid independent convergence rate for all test cases. 

The second test problem P2 is defined by 

and 

i11(w)={(x,y) IO<x<w, O<y<w}, 

i12(w) = {(x,y) I w < x < 1, 0 < y < w}, 

!13(w) = {(x,y) I 0 < x < w, w < y < l}, 

n4 ( w) = { ( x, y) I w < x < 1, w < y < 1}, 

D1;i = { 
1, 

0.01, 

D2·i = { lOO, 
' 0.01, 

for i = 1, 3, 

otherwise, 

for i = 1, 2, 

otherwise. 

We consider different positionings w for the interface. For this problem it appears necessary to 
add a single ILLU-sweep for postsmoothing (so v1 =I, v2 = 1); otherwise the multigrid iteration 
diverges in some cases. In Table 4 we show the worst convergence rates for different mesh sizes 
and the positioning of the interface w in that case. For the V-cycle the convergence seems to be 
h-dependent, although the convergence rate is still acceptable. With the W-cycle the algorithm 
converges fast and in a grid independent way, even though we are not approximating the solution 
of a single partial differential equation. 

Table 4. Multigrid convergence factor p for problem P2 in two dimensions. 

V-cycles W-cycles 

h w p w p 

1 5 
0.15 

4 
0.o7 - - -

16 16 16 

1 9 
0.26 

8 
0.08 - - -32 32 32 

1 18 
0.43 

12 
0.09 

64 64 64 

4.2. Three-Dimensional Results 

In the 3D multigrid algorithm we use the APGS smoother with a red-black ordering of the 
planes. The 2D problems that appear in the plane relaxation are solved approximately by means 
of a single V-cycle of the 2D multigrid algorithm. In this V-cycle we use in all cases one ILLU­
sweep for prerelaxation and no postrelaxation; reversing this order leads in some cases to poor 
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convergence. The application of more multigrid cycles or relaxation sweeps does not improve 
the convergence substantially in any of the test cases we have tried. This conforms with results 
known from Fourier analysis (see [16]}. 

For the anisotropic diffusion model problem Pl we use a single APGS sweep for postrelaxation 
and no prerelaxation. The convergence rates for this problem are shown in Table 5. We find 
good, grid independent convergence rates for all test cases, which are in qualitative agreement 
with the results from the Fourier two-grid analysis (see Table 1). 

Table 5. Multigrid convergence factor p for the 30 anisotropic diffusion equation. 

V-cycles W-cycles 

D1 D2 Da 
1 1 1 1 1 1 - - - -

16 32 64 16 32 64 

100 10° 1oa 0.13 0.14 0.14 0.10 0.09 0.09 

10° 100 102 0.13 0.14 0.14 0.09 0.09 0.08 

100 100 101 0.10 0.12 0.12 0.08 0.08 0.07 

100 10° 100 0.09 0.10 0.10 0.07 0.08 0.07 

100 10° 10-1 0.16 0.18 0.20 0.15 0.14 0.14 

100 10° io-2 0.17 0.22 0.21 0.15 0.18 0.19 

100 10° 10-3 0.11 0.14 0.23 O.ll 0.17 0.19 

100 101 10-1 0.19 0.21 0.22 0.16 0.15 0.15 

100 102 10-2 0.18 0.23 0.22 0.16 0.18 0.19 

10° 10S 10-s 0.09 0.13 0.21 0.09 0.15 0.17 

The last test problem is problem P2 in three dimensions (cf. (3]): 

and 

S11{w) = {(x,y,z) l 0 < x < w, 0 < y < w, 0 < z < w}, 

S12(w) = {(x,y,z) I w < x < 1, 0 < y < w, 0 < z < w}, 

na(w) = {(x, y, z) I o < x < w, w < y < 1, o < z < w }, 

S14(w) = {(x, y, z) I w < x < 1, w < y < 1, 0 < z < w }, 

ns(w) = {(x,y,z) I o < x < w, o < y < w, w < z < 1}, 

S15(w) = {(x,y,z) I w < x < 1, 0 < y < w, w < z < 1}, 

S11(w) = {(x,y, z) I 0 < x < w, w < y < 1, w < z < 1}, 

n8 (w) = {(x,y,z) I w < x < 1, w < y < 1, w < z < 1}, 

{ 
1., 

D ·-
l;i - 0.01, 

{ 1., 
D2;1. = 100., 

{ 
0.01, 

D ·-
a;i - 100., 

for i = 1,3,5, 7, 

for i = 2,4,6,8, 
for i = 3,4, 7,8, 

for i = 1,2,5,6, 
for i = 1, 2, 3,4, 

for i = 5,6, 7,8. 

As in the 2D case we ha.veto a.dd a single APGS sweep for presmoothing (v1 = 1, lJ2 = 1) in 
order to obtain a convergent algorithm for all possible positions w of the interface. In Table 6 we 
show the worst convergence rates on different grids, depending on the value of w. As in the 2D 
case, the algorithm is not robust for V-cycles, but is is for W-cycles: the convergence is fast 
and appears to be grid independent. It should be noted that the use of W-cycles is not really a. 
drawbaclc in 30 as it is in 2D, because the coarse grids contain relatively fewer points. 
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Table 6. Multigrid convergence factor p for problem P2 in three dimensions. 

V-cycles W-cycles 

h w p w p 

1 11 
0.44 

12 
0.18 

16 16 16 

1 15 
0.60 

6 
0.17 - - -

32 32 32 

1 31 
0.81 

56 
0.17 -

64 64 64 

5. CONCLUSIONS 

We have developed a multigrid algorithm for cell-centered discretizations of 30 interface prob­
lems. By using a simple construction for the coarse grid operator in the algorithm, we obtain 
coarse grid matrices that are M-ma.trices and that have 5- and 7-point stencils in two and three 
space dimensions, respectively. Away from the boundaries this coarse grid operator is identical 
to the one defined for the 20 case in [6]. Therefore, our algorithm can be considered to extend 
this approach in three space dimensions. An alternating plane Gauss-Seidel smoother is used for 
the 30 algorithm. The problems in the plane are solved approximately by means of one V-cycle 
with a single ILLU smoothing step. The numerical results for some hard test problems show that 
the 30 algorithm is robust for W-cycles. 
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