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On the Asymmetric Clocked Buffered Switch

J.W. Cohen
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

A 2 X 2 clocked buffered switch is a device used in data-processing networks for routing messages from one
node to another. The message handling process of this switch can be modelled as a two-server, time slotted,
queueing process with state space the number of messages (Xn,Yn) present at the servers at the end of a time
slot. The (Xn,yn)-process is a two-dimensional nearest-neighbour random walk.

In the present study the bivariate generating function ®(p, q) of the stationary distribution of this random
walk is determined, assuming that this distribution exists. ®(p,q) is known, whenever ®(p,0) and ®(0, q)
are known. The essential points of the present study are the construction of these two functions from the
knowledge of their poles and zeros and the simple determination of these poles and zeros.

AMS Subject Classification (1991): 60J15, 60K25.
Keywords € Phrases: nearest-neighbour random walk, two-dimensional meromorphic functions, analytic
continuation, two-server queueing model.

1. INTRODUCTION

The 2 X 2 clocked buffered switch is modelled by a two-server queueing system with two arrival
streams. The adjective “clocked” refers to a time-slotted operation, i.e. in a unit time interval each
arrival stream can generate only one arrival and each server can serve only one customer. Consider
the nth time slot. Denote by x, and y, the numbers of customers present at the first and at the
second service facility just before the start of the nth time slot. The structure of the stochastic process
(Xn,¥n),n =1,2,..., is described by

Xn+l = [Xn — 1]+ +&,

Yot1 =[yn—1t+mn, ,

(1.1)

with &, and m,, the number of arrivals at the first and second service facility during the (n — 1)th
time slot.

The arrival process (€,,,M,),n = 1,2,..., is characterized as follows. Each arrival stream generates
at the start of a slot at most one arrival and this with probability a; for a stream 1, and with
probabibility as for stream 2,0 < a; < 1,7 = 1,2. For each stream the arrivals in successive time
slots are independent events, also the 1-arrivals and the 2-arrivals are stochastically independent. Let
rij,t = 1,2;7 = 1,2, be the probability that an ¢-arrival joins the queue of the jth service facility, see
the figure 1; and these arrivals choose the service facility independently of each other.
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Figure 1
So we have for the asymmetrical model
r11+rie =1, 0<a1 <1, 0<r;1 <1,
To1 + rog = 1, 0<as <1, 0<ry<l, (1.2)

lay — ag| + |r11 — raz| # 0.
A simple calculation shows that the bivariate generating function ¢(p, q) of the distribution of (&,,,7,,)
is given by
6(p,q) =EB{pfnrgT} = (1.3)
=[1 — a1 + a1(riip + r129)][1 — a2 + aa(ra1p + r229)]-

The stochastic process (Xn,yn),n = 1,2,..., is well defined by (1.1) and (1.3). Obviously, it is a
two-dimensional Markov chain with state space

5:={0,1,2,...} x {0,1,2,.. .},

the set of integer valued lattice points with nonnegative coordinates.
This Markov chain is positive recurrent if and only if,

E{¢.} =airi +agra <1,
(1.4)
E{’)’]n} = a1712 + asrg < 1.
The condition (1.4) is intuitively clear because E{£,} denotes the traffic load of server 1, E{n,,} that
of server 2. For a proof, see [4], Theorem I11.2.6.1, p. 95.

In the present study it will always be assumed that (1.4) applies. Hence the (x,,yn)-process
possesses a stationary distribution. Let (x,y) be a pair of nonnegative stochastic variables with joint
distribution the stationary distribution of the (x,,yn)-process. Introduce the generating function: for
lpl <1,]gl <1,

®(p,q) := E{p"¢¥'}. (1.5)
From (1.2), (1.3) and (1.5) it is readily derived that ®(p, q) should satisfy: for |p| < 1,|q| <1,

®(p,0) n ®(0,q)
p—1 qg—1

(1.6)

i. [pg — é(p,9)]®(p,q) = (p — 1)(¢ — 1)é(p, q)[2(0,0) + ],



ii. ®(p, q) is a bivariate generating function of a true probability distribution on S.

REMARK 1.1. The relation (1.6)i is equivalent with the Kolmogorov equations for the stationary state
probabilities of the (x,,y,)-process. These equations have one and only one absolutely convergent
solution apart from a constant factor, and consequently there exists only one function ®(p,q) which
satisfies satisfies (1.6)i, ii, and ®(1,1) = 1. O

REMARK 1.2. In [1] and [2] the 2 x 2 clocked buffered switch is modelled by the Markov chain with
structure

)/\(TH'I = [)"(n -1+ én]+7
(1.7)

yn+1 = [yn -1+ 'fln]—{—:
Here X,y are the the number of customers present immediately after the start of the nth time slot
and &,,,7),, are the arrivals during this time slot. With ¥(p, q),|p| < 1,|q| < 1 the bivariate generating

function of the stationary distribution of the (X,, ¥.)-process the functional equation for ¥(p, q) reads:
for [p| < 1,]q| <1,

[pq — é(p, )] ¥ (p,q) =

(1.8)
(v 1)(a -~ DI6(0,00%(0,0) + 2T 05,0 + 22D (0, ).
Comparison of (1.6) and (1.8) shows that
2(p,q) = ¢(p,0)¥(p,9), Ipl<1,]gl<1. 0

The present model stems from performance analysis for a data processing model for routing of
messages is computer architectures. The symmetric model (i.e. a; = ag,r;; = %,i =1,2,7=1,2) has
been analysed by JAFFE [1], in a slightly different setting. In his analysis he applies the uniformisation
technique from the theory of complex functions to determine the bivariate generating function of
the stationary distribution. BoxMA and VAN HOUTEM [2] have analysed the asymmetric model by
using the compensation technique, which is an iterative procedure to solve (numerically) the relevant
Kolmogorov equations for the stationary distribution. In their study they briefly discuss the analysis
of the problem by formulating it as a Boundary Value Problem. The present author has investigated
the symmetrical model in [3]. Here as in [1] an explicit analytic representation is derived, by showing
that ®(p,0) and ®(0, q) are both meromorphic functions, i.e. they are analytic functions except for a
finite number of poles in every finite domain. In [1] these functions are characterised by their poles
and the residues at these poles apart from a finite polynome. In [3] these functions are determined
directly via their zeros and their poles. This approach avoids the uniformisation technique. In the
present study it is shown that the approach developed in [3] can be also applied succesfully in the
analysis of the asymmetrical model. For a similar approach see also [5].

In the sections 2, 3 and 4 the determination of the functions ®(p,0) and ®(0, q) is described, once
they are known then ®(p,q) follows from (1.6)i. In section 2 a functional equation for ®(p,0) and
®(0, q) is derived from (1.6)i by using the zero-tuples of the kernel K(p, q) := pq— ¢(p, q), see for some
properties of these zero-tuples the appendix A. Starting from this functional equation it is shown that
®(p,0) and ®(0, p) are meromorphic functions with all poles in |p| > 1. All these poles are simple and
their location is readily obtained by a simple recursive relation.

In section 3 the zeros of ®(p,0) and ®(0, q) are determined again from the functional relation derived
in section 2. All zeros are simple and again they are determined by a recursive algorithm.

In section 4 explicit expressions for the functions ®(p,0) and ®(0,q) are derived, and it is shown
that they determine the unique solution of (1.6).



2. ANALYSIS OF THE FUNCTIONAL EQUATION, I.
To construct the solution of the functional equation (1.6) we need properties of the zero-tuples of the
kernel K (p,q) which is defined by:

K(p,q) = pg — E{p~q"} = pg — ¢(p, q)- (2.1)

These properties are derived in appendix A.
The definition of ®(p, ¢) implies that

i. |®(B,§)| < oo for every zero-tuple (p, ) of K(p,q) with |p| <1,|¢| <1, (2.2)

ii. ®(p,0)/®(1,0) is regular for |p| < 1, continuous for |p| < 1, and it is a generating function of
a probability distribution;
analogously for ®(0,q)/®(0,1).

In the appendix it is shown, cf. (a.17), with P; 2(g) the two zeros of K(p, q) for given g that:
for [¢| > 1, ¢ #1,
|P1(g)] < lal < |P2(q)l- (2.3)
Hence from the functional equation (1.6)i we have:
for g/ =1, ¢#1,

®(P1(q),0) n ®(0,9)
Pi(q) -1 g—1

+ ®(0,0) = 0; (2.4)

analogously, cf. (a.18),
for [p| =1, p # 1, with |Q1(p)| < Ip| < [Q2(P)],

p—1 Qi(p) -1

We start the analysis of this equation by considering figure 3.

+ ®(0,0) = 0. (2.5)

Figure 3.



Here Th U{T} UT; is a simple, analytic contour which intersects the open interval (p;,p2) only once;
p1, p2 are the only branch points of Q1 2(p), cf. (a.20) and (a.21); the point ¢ is on the unit circle, it
is the begin- and endpoint of the contour, which lies inside the unit disk |p| < 1 except for the point
t. From (2.2)ii it is seen that ®(p,0)/(p — 1) is regular in |p| < 1, and so it is regular on the contour
(Th U{T}uUT)\{t} and continuous on 73 U{T'} UTs. Hence (2.5) implies that ®(0, Q1(p)/{Q1(p) —1}
has an analytic continuation along this contour. Next note that Q;(p) when continued out from ¢
along T} has on T» the analytic continuation Qa(p), because T' € (p1,p2) and Q1(p) = Q2(p) for
p € (p1,p2). Further (2.2)ii implies that Q(0,q) = Q(0,q). Hence the analytic continuation of (2.5)
along the contour yields:

for |p| = 1,p#1,

q)(p, 0) + (I)(OaQ2(p))
p—1 Q2(p) — 1

An analogous conclusion is obtained by starting from (2.4), but then the branch points 71,72 of
P 5(g) should be used, cf. (a.20), (a.21); it is then found that:

for g/ =1, ¢ # 1.

P(Py(q),0) | 2(0,9)
Py(g) -1  g¢g-—1

From (2.3) and (a.9) we have

|P2(q)] > 1on[gl =1, [Q2(p)|>1on [p| =1 (2.8)
Rewrite (2.6) as: for [p| = 1,p # 1,

(p—1)2(0, Q2(p)) = —[2(0,0)(p — 1) + 2(p,0)](Q2(p) — 1). (2.9)

The righthand side of (2.9) is obviously finite for p = 1, ¢f. (2.1)ii and note that (a.9) implies
00 > @3(1) > 1. Consequently, by letting p — 1 along |p| = 1, it follows that

+ ®(0,0) = 0. (2.6)

+ ®(0,0) = 0. (2.7)

®(0,¢9) has a single pole at ¢ = Q2(1);
(2.10)
®(p,0) has asingle pole at p = Py(1);

the second statement of (2.10) is analogously shown. Because the arguments above apply for every
contour T3 U {T'} U T3 it is seen from (2.2)ii that

®(p,0) is regular for |p| < Pa(1),
(2.11)
®(0,q) is regular for |q| < Q2(1).

Consider again the relation (2.5) multiplied by p — 1, cf. also (2.9). Because ®(p,0) is regular for
|p| < Py(1),cf. (2.11), it follows that ®(0,Q1(p)) can be continued analytically out from |p| < 1 into
{p:1 < |p| < P,(1)}, note that the following limit exists and

. Qi(p) -1 d
0< |},1_>m1 pTl = |d—pQ1(P)|p:1 < 0. (2.12)
With
0<e< Py(l)—1, (2.13)

define



p=P(1) —e, (2.14)

and consider again an analytic, simple contour T U {T'} U T with begin— and endpoint ¢, which
intersects the interval (p1, p2) cf. (a.19), only once, with p =1 ¢ T5, and which lies in |p| < p except
for p = t, see figure 4.

Figure 4.

The relation

®(p,0) | 2(0,Q1(p))
p—1 Qi(p) —1

which holds for |p| = p, may be continued analytically along T3 U {T'} U T5 in the direction as shown
in figure 4, and as above, cf. the derivation of (2.6), we obtain for every p with |p| = |p],

@(pa 0) + (I)(Oa Q2(p))

+®(0,0) =0,

Tt Ou) -1 T P00 =0 (2.15)
Note that, cf. (a.18),
p€Trand 1 €T = Q2(p) # Q2(1), p € Tn. (2.16)
Consequently
®(0,Q2(p)) is regular for every p = p. (2.17)

Consider figure 5 where a part of the right branch of the hyperbola K(p,q) = 0, p and ¢ real, has
been traced.
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The above analytic continuation of ®(0,Q2(p)) holds for every contour as defined above with |t| = |p|
and 1 € T,. Because

P1(Q2(1)) =1 and ¢ = Q2(1) < Q2(p) < Q2(F2(1)), (2.18)
and Q2(1) is a pole of ®(0, q), cf. (2.10), it follows that
$(0,Q2(p)) is meromorphic for |p| < |p|. (2.19)

Next we let € — 0 so that p — P»(1), it then follows from (2.15) because p = P»(1) is a single pole of
®(p,0), cf. (2.10), that

®(0,q) has a single pole at ¢ = Qa2(Pa(1)),
(2.20)
®(p,0) has a single pole at p= P2(Q2(1)),

note that the proof of the second statement in (2.20) is analogous to that of the first statement.

By the same procedure as just discussed it is shown that ®(0,q), and analogously, ®(p,0) can be
continued meromorphically in |g| > 1 and |p| > 1, respectively. To describe this continuation we first
introduce some notation.



We define the sequence
(n (I (1) (I)

90 P71

recursively by

PP

"

yq1 "sDPg s

)y (1) (I

yPrn "5 qn 7pn+1’

i > q”,

¢ > pi",

" > ql”,

p(ﬂI) > qflI—)l 9

¢ >,

Figure 6

sy

(2.21)

The geometrical structure of this sequence is shown in figure 6; note that the inequalities in (2.21)
stem from (2.3), see also (a.17) and (a.18).

Analogously, we construct the sequence

(I1) (II) (II) (II)

Py 41

recurrently by

»P1 545

i1

’pn

(n gUIn -



p((]H) =1

¢ = Q") o™ > ",
' =R, D> gl

"= Q™) &M > P,
(2.22)

¢ =), & >,

ng) — Pz(qu)), Pgl) > qgl),

From (2.10) and (2.20) and by repeatedly performing the meromorphic continuation as used in the
derivation of (2.20) it is seen that

®(0,¢9) has simple poles at q(nl),n =12,...,

(2.23)
®(p,0) has a simple poles at pg),n =1,2,....
By using the symmetry, it is seen that
®(p,0) has simple poles at pslH),n =1,2,...,
(2.24)

®(0,q) has a simple poles at q(nH),n =1,2,....

By noting that both asymptotes of the hyperbola have positive slope less than 90°, cf. (a.12), it is
seen that: for n — oo,

¢ — o0, pD — o0, i =1I,1I. (2.25)
Put
7(11) gLII)
6 := nlgr;o z@ > 1,62 := nh_{go @ >1, (2.26)

then it is readily seen from (a.1) that &, is the larger zero of
aragr12r222% + [—1 + ajas(ri179e + ro1712)]2 + arasriire; = 0, (2.27)

and that 6y is the larger root of the quadratic equation in £, obtained from (2.27) by substituting
z =¢71, so that ;' is the smaller root of (2.27).

The meromorphic continuation described above shows that for every zero-tuple (p,4) of K(p,q)
holds

®(p,0) , 2(0,9)
= + =
p—1 qg—1

+ (0,0) =0,

if p is not a pole of ®(p,0) and § not a pole of ®(0, q).
Put forte=1,I1I; n=1,2,...,
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P—*PS)
| | (2.28)
q_)Qni)

it then follows from the analysis above by noting that all poles in (2.23) and (2.24) are simple poles
that: fori=1,1I; n=1,2,...,

im (p—p{¥ =
S P T g -1 P PO0I=0 20)
i (p— ) 22D 4 92D g0,0)) <o,

popl® p—1  Q2p)-1

From the definition of Q1,2(p), cf. the appendix, we have for a zero-tuple (p, ¢) with ¢ = Q1 2(p),

g—q" = Qi(p) - (D),
(2.30)
q— " =Qa(p) — Q2(p).

From (2.28), (2.29) and (2.30) we obtain

(I) (I)

Wn d — wn—l
=) —— =
p(nl)_l dp ! p:pi)Ql(pg))_l

W'D d D

5 Tl —F——=0, n=12,..., (2.31)
PO -1 AT = 0y (pl)) — 1

d _
®(1,0) + [d—pQ2(P)]p:1p(lz) m =0

Analogously, we have

(nn) d (II%
an d . WD

- + [d_qPZ(q)]qzqa”) P 1 =0, n=1,2,..., (2-32)
(0,1) + [LB(@)]" o o

— =0
dq 7=q Pz(qy)) 1

By means of the set of recurrent relations (2.31) all wg),n =1,2,...,and all 1b511), n=2,3,..., may

be expressed in djy), analogously for ¢$LII), n=1,2...,and w&”’,n =2,3,.... The residues djy) and
ny) then have still to be determined. However, a meromorphic function is generally not completely
determined by its poles and residues only; it is determined by these data apart from an additive
polynomial. In the present study we shall refrain from the derivation of expressions for ®(p,0) and

®(0, q) in terms of their poles and residues. For such an analysis the reader is referred to [7], see also

(8]-

3. ON THE ANALYSIS OF THE FUNCTIONAL EQUATION, II

From the results obtained in the preceding section it is seen that ®(p,0), and similarly ®(0,p), has a
meromorphic continuation in |p| > 1 whenever ®(p, ¢) satisfies (2.2). For this meromorphic continua-
tion holds:
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8(p,0) , 2(0,9)
$(0,0)=0 3.1

for every zero-tuple (p,q) of K(p,q) for which p is not a pole of ®(p,0) and/or § is not a pole of
®(0, q); for p or ¢ a pole see (2.29).
In this section we study the zeros of ®(p,0) and ®(0,q). Consider the zero-tuple, cf. (a.8)),

D, q) = a(I),O with all) .= e < 0. 3.2
(8, 4) = (ag 0
airi
It then follows from (3.1) that
3P, 0) = 0. 3.3
0

Note that (a((]l), 0) is a point on the left branch of the hyperbola, see figure 2 of the appendix A. So
again with

|P1(a)| < lal < |P2(q)], lal 21, (3.4)
for the two zeros p = P; 2(g) of K(p,q), we may put (without loss of generality, cf. (3.7) below),

all) := Py(0). (3.5)
The relation (3.1) may be rewritten as

ST o1 T =0, (3.6)
PRSI
with

1Q1(p] < [P < |Q2(D)]-

Next consider figure 7. In this figure the left branch of the hyperbola K(p,q) = 0 is sketched. This

(1) (17) (1)
0 0

hyperbola intersects the horizontal axis at the points oy ’ and oy 7, and the vertical axis at v, ’ and

'yén), see (a.8) for these points.

Figure 7

Their definition is chosen in such a way that



12

(U)l

la$?| > |af §HO).

and 76"] > |
For the case that (but cf. (1.2))

) = aff)  andfor 5{D) = 4{1D)

see remarks 3.1 and 4.1.
We introduce the sequence

o, 660, oD, 0, . o), D, o)

) —15Mn—1>

which is recursively defined by

0 ._ __l-a
Qg = PQ(O) = a17r11 < 07
B0 = Qa(alDy, 18§71 > |,
oD = Py, jo{?] > 18",
A = Qa(alDy 18] > |of")],
B, = Qa(alD), 16211 > 12,
ol == BB, o] > 181241,

From (3.3) and (3.6) it is seen by using (3.9) that

(1)
20.57) , $(0,0) = 0.
(I _q

0
From (3.6) and (3.9) we have

a(al”,0)  8(0,8")
agn_l 80—

+ ®(0,0) =0,

and hence from (3.10) and (3.11),
3(aiP,0) = 0.
Repeating this derivation it is readily seen that

®(p,0) has a simple zeros atp—a( ) n=0,1,2,...,

note that a( )is a simple zero of K(p,0), cf (3.7). With initial point agu) the sequence
alD gD QD gD D) gD )

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

is defined completely similarly as the sequence in (3.8), the super index “I” in (3.9) is replaced by

“IT”. As before it follows that:
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®(p,0) has simple zeros at p = a(H) n=0,1,2,... (3.15)

REMARK 3.1. If a( ) — agH) so that aéI)

n (3.8) and (3.14) are identical and the olf) are zeros with multiplicity two of ®(p,0). |

With initial point 'y((, ), the sequence

is a zero of multiplicity two of K(p,0) then the sequences

’Y(()I)a 6(1)7 7§I)a 6§I)a R ;6(nI)1a ’YiI)la 6511)15 sty (316)
is recursively defined by

6101 = Palyi), A = Qa6 ), m =12, (317)
and analogously to the derivation of (3.8) it is shown that

®(0, ¢) has simple zeros at ¢ = 'yy), n=20,1,2,... . (3.18)
With initial point ’y(()H) the sequence

is defined by the same recurrent relations as in (3.17); and similarly it is shown that

®(0, q) has simple zeros at ¢ = 'yLH), n=20,1,2,... . (3.20)
REMARK 3.2. If 'y( ) = (H) then as in remark 3.1, the 'yg) are zeros of multiplicity two of ®(0,q).
O
As in section 2, cf. (2.25) and (2.26), it is shown that for ¢ = I, II,
o) —» —c0, AY - —oo;
_ (3.21)
SL) — —00, 6&1) — —00,
and
i 68!
aTni)—’61>]. ?—>62>1.

4. THE EXPRESSION FOR ®(p,0) AND FOR ®(0,q).

In section 2 we have shown that ®(p,0) and ®(0,q) are meromorphic, a result which stems from the
conditions (1.6) to be satisfied by ®(p,q),|p| < 1,|g| < 1. In section 2 we have located the poles of
®(p,0) and ®(0,q), cf. (2.23) and(2.24), and in section 3 their zeros, cf. (3.13), (3.15), (3.18) and
(3.20). From the analysis in section 2 it is seen that the indicated poles are the only poles. However,
the analysis in section 3 does not show that the indicated zeros are the only zeros. Actually, they are
the only zeros. A direct proof of this statement is not so simple, but is also not needed, as it will be
shown below, see remark 4.2.

Define, cf. (2.23) and (2.24),

I . TTO0 i1 . TTo0 p
PO(p) =TI, (1 - ﬁ) PUD(p) =172, (1 — pslu))’

0 q oo q
Q(I)(q) = anl(l - ﬁ) ) Q(II)(q) = Hn:l(]‘ - (II) )7
qn qdn

and, cf. (3.13), (3.15), (3.18) and (3.20),
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P,

o0 p o0
AD(p) =T, (1 — —)) s AUD(p) :=TI22 (1 — N)

olf

I qn II q (4.2)
I (q) := T, (1 — ) TUD(g) == TI52(1 — m)-

Because of (2.26) the infinite products in (4.1) are for finite p and ¢ absolutely convergent and so are

well-defined; note that (2.26) implies that for N sufficiently large
p(i)
| N(+)"| ~ C(606)" , n=1,2,...;i = (I, II), (4.3)
by

with C independent of n; analogously for qg\z,)_}_n / qg\z}). Similarly, the infinite products in (4.2) are well

defined. We next show that for the function ®(p, q) satisfying the conditions (1.6) holds:
P(D(1)PUD(1) AD () 46D )

i = 4.4

QW(1)QUN(1) T ()L (g)
QU (q)QUD (g) T (1)rdN)(1)’

PROOF. Because of the absolute convergence of the infinite products in (4.1) and (4.2) the righthand
sides in (4.4) are well-defined meromorphic functions. They are regular for |p| < 1, continuous for
|p| <1 and similarly for |¢| < 1 and |g| < 1, since all their poles are outside the unit disk. The poles
in the righthand sides of (4.4) are all positive, where as their zeros are all negative. This observation
shows that the coefficients in the series expansion in powers of p of the righthand side of (4.4)i are
all positive and so ®(p,0)/®(1,0), |p| < 1, is the generating function of a probability distribution;
similarly for ®(0,q)/®(0,1). Note that the ergodicity conditions (1.4), which have been assumed to
apply, imply that ®(1,0) and ®(0,1) are both nonzero. ®(1,0) and ®(0, 1) satisfy, cf. (2.5) forp — 1,

ii. ®(0,q9) = (0,1) all g.

d _
®(1,0) + [d—pQ1(P)]p:11‘I’(0, 1)=0. (4.5)
The functions ®(p,0) and ®(0, q) satisfy the relation

®(5,0) (0,4
(2.0) , 209 | 59,0y =o, (4.6)
p—1 g—1

for every zero tuple (p,§) of K(p,q) with |p| < 1,|¢| < 1, because of the relation (4.5) between
®(1,0) and ¥(0,1), and because they are mermorphic with the same poles and zeros as constructed
in the sections 2 and 3 by starting with |p| = 1,4 = Q1(p) and |§| = 1,p = Pi(§), cf. also (2.29).
Whenever ®(p,0)/®(1,0) and ®(0,q)/®(0,1) are both generating functions of probability distributions
on {0,1,2,...} then ®(p,q), as determined by (1.6)i, ii, for |p| < 1,|q| < 1, is necessarily a bivariate
generating function of a probability distribution on S because the condition (1.6)i is equivalent with
the Kolmogorov equations for the (x,,,y,)-process.

Since this (x5, yn)-process is assumed to be ergodic its set of Kolmogorov equations possesses only
one absolutely convergent solution, apart from a constant factor. These conditions are equivalent with
the condition (1.6)i,ii and moreover they show that only one function ®(p,q),|p| < 1,|¢| < 1 exists,
apart from a constant factor, which satisfies (1.6)i, ii.

From the above it is seen that ®(p,0)/®(1,0) and ®(0,q)/®(0,1) indeed determine a ®(p, g) which
satisfy the conditions (1.6)i and ii, apart from a constant factor and consequently the statement (4.4)

has been proved. O
REMARK 4.1. If agl) = ong), cf. (3.7), then (4.4) also holds and AUD(p) = AUD(p) for all p:
analoglously if ’y(()l) = ’y(()H) and then I')(q) = TUD(q) for all q. O

It remains to determine ®(1,0) and ®(0,1). From (1.6) and (2.1) we have for ¢ = 1:
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{p—o(p,1)}2(p,1) = (p — 1)o(p,1)2(0,1), (4.7)
with

¢(p,1) = [1 —a1r11(1 — p)][1 — azra1(1 — p)]; (4.8)
so that

p—é(p,1) =p—1— (a1m11 + asra1)(p — 1) — arazriirar (p — 1)%. (4.9)

Hence from (4.7) and (4.9), after division by p — 1 and letting p — 1, we obtain, since the norming
condition requires that ®(1,1) =1,

@(0, 1) =1- ajri] — azT21 = 1-— E{E} > 0, (410)

and from (4.5) or directly by symmetry, cf. (1.4),

q)(].,O) =1- asTog — A1T12 = 1-— E{’l’]} > 0. (411)
The functions ®(p,0) and ®(0,q) are completely given by (4.4), (4.10) and (4.11). It follows that
PU(1)pUD(1)
©(0,0) = (1 — a1r11 — azra m w12)
QMQUI(W) |

= (1 — QagT22 — 41712 —I‘(I)(I)T(H)(l) .

Note that the second equality sign in (4.12) formulates an identity for the hyperbola K(p,q) = 0,p
and q real. It should be noted that (4.4) and (4.12) imply that

AD(p)AUD (p)
PO(p) P (p)’
I ()10 (q)
Q" (@)@ (@)

REMARK 4.2 In the first paragraph of this section it has been mentioned that it has not been shown
that the zeros of ®(p,0) and ®(0,q) constructed in section 3 are the only zeros. From the fact that
®(p,0) and ®(0,q) as given by (4.4) and (4.11) is the unique solution it follows that these zeros are
the only zeros indeed. O

o(p,0) = #(0,0)
(4.13)
®(0,9) = 2(0,0)

APPENDIX A
The kernel K(p, q) has been defined in (2.1); we have from (1.3) and (2.1),

K(p,q) :=pg—[1 — a1 + ar(r11p + 1129)][1 — a2 + az(r21p + r229)]. (a.1)

Obviously K(p,q) = 0 is for real p and ¢ a conic.
Firstly, we show that this conic is a hyperbola because of the ergodicity conditions (1.4).
For the discriminant D of this conic we have

D= a%a% [r11722 — T12T21]2 —2aiag(r11722 + T12721) + 1. (a.2)

Some simple algebra shows that: for r11799 — 112721 # 0;

D = (r11792 — T12791)*[a1a2 — (\/T1i722 + /T12721) 2)[aras — (v/F1iir2e — /T21ir12) 2); (a.3)
fOI‘ T117T22 = T19721:

D=1- 4a1a2r117'22. (34)
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From the ergodicity conditions (1.4) we have: (a1711 + azre1)(a1r12 + agras) < 1, or equivalently,

[a1y/T11712 £ ag\/Ta1722)? + aras|\/T11722 F /T12721)° < 1. (a.5)
Hence
0< alaz[\/rnrn + \/7‘127‘21_|2 <1. (36)

Consequently, it is seen from (a.3) and (a.6) that D > 0 for 711722 # T12721.
For 711799 = 712791 we have from (a.5) that 4ajasr11722 < 1 and so (a.4) shows that for this case
also holds thatD > 0. Consequently the ergodicity conditions (1.4) imply that

K(p,q) = 01is a hyperbola for real p and q. (a.7)
The intersections of this hyperbola with the axes are given by

1—a1 1—a2

) 0)7 ) 0)7
a1T11 aT21
(a.8)
1-— ay 1-— ag
(07 - ’ T -
a1712 asT22
Further special points of K(p,q) =0 are
() =(1,1)
1-— 1-— 1-— 1-—
_ (1’ ( Cb17‘12)( a2r22)) with ( a17‘12)( 6021"22) >1, (a.9)

4102712722 a102T127T22

_ ((1 — (127‘21)(1 — azT]_]_) 1) With (1 — (127‘21)(1 — alrll)

a1a27T21T11 102721711

> 1

the inequalities in (a.9) follow from (1.4).
The asymptotic directions of the hyperbola are given by the zeros z; and z5 of the quadratic equation

a1a2T12T2222 =+ [—1 =+ alag(’r‘ll’l‘gz —+ 7‘127‘21)]2 + ajagriirer = 0. (alO)

From (a.9) we have

2129 = furan > 0, (a.11)

T22T12

1> 21+ 20 =1— araz(r11722 + r12721) > 0;

note that the inequalities in(a.11) follow from, cf. (a.8),

aras]y/rir2z + /ri2ra1)’ < 1.
Hence by defining zs > z; we have
29 > 21 >0, (a.12)

i.e., the tangent of the slope of each asymptotic is positive.
In order to locate the position of the two branches of the hyperbola with respect to its asymptotes
consider the relations, cf. (a.1) and (a.9),

K(0,0) =—(1-a1)(1—a3) <0, K(1,1)=0,
K(l,q9) =q—[1—airi2(1 —q)][1 —azrea(l —q)] (2.13)

(]. — a17'12)(1 — a2r22)].

102712722

= —Qa1a27T12722 (q - 1)(q -
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Hence

1 1-— 1-—
K(d) >0 forp=1,q= s[4+ L-ur2d —are), (a.14)
2 a10a2T12722

so that the hyperbola intersects the line through (0,0) and (p,§) between these points. This result
together with (a.8) and (a.12) shows that one branch of the hyperbola lies completely in the first
quadrant and the hyperbola is situated as sketched in figure 2.

Figure 2.
So far we have considered K (p,q) for real p and q. Next we consider this function for complex p
and q.
With

p=sq
we have, cf. (2.1),

K(sq,q) =0 s = E{s£q£+n_2}. (a.15)
We have from (1.3),

Pr{¢€+n-2<0}=1. (a.16)

Hence for |s| =1 and |¢| > 1,9 # 1,

IE{s8¢8+M-2}| < 1.

Because Pr{€ > 0} = 1 it is seen that the last member in (a.15) is regular for |s| < 1, continuous
for |s] < 1if g > 1. Consequently, application of Rouché’s theorem shows that K(sq,q) with
lg| > 1,9 # 1, has exactly one zero in |s| < 1. The equation K(p,q) = 0 has for given ¢ two zeros,
P;(q) and P»(q), say. Denote by P;(q) the in absolute value smaller one, if their absolute values differ.
From the analysis discussed it then follows that for the two zeros hold: for |g| > 1,9 # 1,

|Pi(g)| < lal < |Px(q)l; (a.17)

for ¢ = 1, see (a.9).
With Q1 2(p) the two zeros of K (p,q) = 0 it follows as above that: for |p| > 1,p # 1,
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Q1 (p)| < [p| < |Q2(p)|- (a.18)

From (a.9) we have

Pi(1) =1 < Py(1),
(a.19)
Q1(1) =1 < Q2(1).

Because Pi(q) # P»(q) for |g| > 1, it is seen that if P; 2(¢) has branch pionts, then necessarily they
are inside the unit disk, similarly for the branch points of Q1 2(p). From the position of the hyperbola
it is seen that:

P 5(g) has two branch points, 7 and 72, say ,

(a.20)
Q1,2(p) has two branch points, p1 and po;
and
0<n<m<l, 0<p1 <pa <1, (a.21)
and they have no other branch points.
For the zeros P; 2(g) and the zeros Q1,2(p) it is seen from (a.1) that we have
1- 1- 1-— 1-—-
P1((])P2(C]) — [ al( Tl?q)][ G‘Z( 7'11(])]’
a1a27T11721
(L~ ar(1 = rup)llL — as(1 — rap)] 22
—ay(1—r —as(l—r
O1(p)Qa(p) = 1 1P 2 21D )
a1a27T22T12

These relations may be used to obtain a recursive algorithm for the determination of the various
zeros and poles of ®(p,0) and ®(0,q), cf. (4.1), (4.2) and (4.4). E.g. it is seen from the definitions in
(2.21) that (a.22) leads to

@ 1y _ [1—a1(0 = ri2g8)[1 — a5(1 — 7224%")]

Prni1Pn ) a.23
+ 102711721 ( )
1- 1- () 111 — 1_ (I)
(I (1 [ ai( 7"11Pn+1][ as( 7"21Pn+1)]
Anir1dn’ = ; (a.24)
102722712

(1) (1) (1) 75

so if pn ' and g’ are known then p,, |, follows from (a.23), and then g, , follows from (a.24) since

(1 (1)

gn’ is known and p, /, has just been calculated.

REMARK A.1 For the numerical evaluation of infinite products occurring in (4.1) and (4.2) and their
derivatives for p = 1 and g = 1 the reader is referred to the appendix of our study [5]. O
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