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REFACE 

Discretizations of the steady ·Euler equations are studied and 
efficient solution methods are developed to solve the resulting hi_ 
algebraic systerns of equations. 

robust and 
• y no ar 

The d.iscretizations used are based on cell centered finite volume schemes, 
i.e. the physical domain, where the solution of the steady Euler equations is 
sought, is subdivided into a finite number of disjunct finite volumes (or cells) 
and the nurnerical approxirnations are stored inside the cells. The discretization 
is dete11nined completely by the way in which the flux computations are per­
f or1ned at the cell bo11nda1~ies. A flux at a cell boundary is the amount of mass, 
momentum and energy transported per unit of ti1ne across the cell boundary. 
The equations are obt.ained by demanding that the total flux is zero for each 
volu111e. 

At each cell boundary, a flux is computed by solving approximately a local 
one di1nensional Riemann problem. As a consequence, the schemes are conser­
vative and characteristic-based or upwind. The approxi 111ate Riemann solver is 
the one proposed by Osher but the constituent parts of the integration path in 
the state space used in the Riemann solver are taken in an order opposite to 
that as originally proposed by Osher. In this way the implementation of 
Osher's scheme becomes rather simple, provided that the proper dependent 
vaa·iables are used. 

In the first-order discretization, the numerical approxi1nations are assumed 
to be 11nifo y constant in each volume. Second-order accuracy is obtained 
by using piecewise linear interpolation in each volume.. In this approach the 
slopes are li1,1jted to prevent spurious oscillations in the neighbourhood of 
shocks or contact discontinuities. The Ji1niting procedure must be nonlinear 
even when applied to linear problems. A novel, very simple and clear descrip­
tion of the Ji rniting pr ure is given for a general no · ear scalar hyperbolic 
conservation law by considering the li1niting pr ........., ure as am · cation of the 
fully one-sided upwind scheme. It appears that 1i11liting and flux-splitting are 
closely related. It is also shown that monotonicity and second-order accuracy 
can be achieved si1nultaneously, even in more than one dirnension. 

The second-part of this book ( chapters III and IV) concerns the solutions of 
the first- and second-order discretizations. Due to the favorable properties of 
the first-order discretization (5-point stencil structure, upwind character, 
differentiability, consistency of flux computations at interior cell boundaries 
and at cell bo11nda1~ies which are part of the boundary of the physical domain) 
a straightforward nonlinear multigrid solution method can be developed. In 
the multigrid method used, the coarse grid discretizations are Galerkin approx­
imations of the fine grid discretization and a simple Collective Syrmnetric 
Gauss-Seidel (CSGS) relaxation method appears to be an excellent smoothing 
pr ure. The nurnerical examples, covering channel flows, resolution of con­
tact discontinuities and a blunt body in a supersonic flow, show that a degree 
of efficiency and robustness characteristic for successful multigrid methods is 



obtained. For practical purposes, where one only '7'an.ts to. get below tru~ca­
tion error., a few (two or three) no · ear multignd 1terat1ons are sufficient. 
lms means that first-ord r solutions are obtai11ed in an a1nount of work 
equivalent 'With about 3 X 3 X 2 CSGS-relaxations on the finest grid. 

A Defect Correction (DeC) iteration method is used to improve the accuracy 
of the first-order solutions. The DeC-iteration method makes e.ff ective use of 

. . 

the excellent multigrid solver for the first-order discretization. It is well known 
that for smooth problems only one DeC-iteration is sufficient to obtain a 
second-order accurate solution. For non-smooth problems, it appears that 
more (about 10) -iterations are necessary. Because 10 D C-iterations 
correspond with an amount of work equivalent with about 10 X 3 X 2 CSGS-

relaxat.ions on the finest grid, the method is still an efficient procedure to 
improve the accuracy. For the aforementioned numerical_testproblems, the 
results obtained with the DeC-iteration method show an in1pressive i1nprove­
ment in accuracy compared with the first-order solutions. It should be men­
tioned that it is sometimes necessary (for flows where strong shocks are 
present.) to use some damping in the DeC-iteration method. 
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for his rmplementat1on of user friendly plotting routines which was a pleasure 
to use· 

' 

senes CWI Tracts. 

S.P. Spekreijse 



0. Introduction I 
I. The Euler uations 5 

I.I. Derivation of the Euler equations 5 
1.2. Some general properties of solutions of the Euler equations 7 
1.3. Hyperbolic syste11:r•s 12 

1.3.1. General theory 12 
1.3.2. Application to the Euler equations 20 

1.4. Sirnplifications of the Euler equations: the TFP and TSP equations 25 
II. Finite-Volu1ne Upwind Discretiz,ation of the Steady Euler uations 31 

2.1. Introduction 31 
2.2. Approxi1c1ate solution of the Riemann problem 37 

2 .. 2.1. General observations 37 
2.2.2. Osher's approximate Riemann solver for the Euler equations 48 

2.3. Approximate solution of the Riemann boundary problem 54 
2.3.1. Osher's method 54 
2.3.2. Application to the Euler equations: bo1.mdary condition treat-

ment at inflow, outflow and solid wall 57 
2.4. Linea1·ization of Osher's scheme 60 

2.4.1. Introduction 60 
2.4.2. Linea1·ization of Osher's approxi1oate Riemann solver 62 
2.4.3. Linea• iz,ation of boundary conditions 68 

2.5. Second-order discretiz.ations 70 
2.5 .1.. Introduction 70 
2.5.2. Accuracy on a smooth mesh 72 
2.5.3. Monotonicity and second-order accuracy 78 

III. Multigrid Solution of the First-Order Discretization 97 
3.1. Introduction 97 
3.2. Nested iteration and nonli.11ear multigrid 97 
3·.3. Nu111erical results 104 

IV. Defect Correction for Second-Order Accuracy 123 
4.1. Introduction 123 
4.2. The defect correction method 125 
4.3.. Nuanerical results ,_ 130 
4.4. Solution of the steady Euler equations with a source teran 144 

Ap dix 153 



1 

'~liapter 0 

ction 

Since the invention of the computer, computational fluid dynamics has 
influen the scie11ce of aerodyna111ics considerably. In the sixties, panel 
methods were introduced to compute potential flows aro11nd airfoils. In the 
seventies, major advances were achieved in the si1nulation of transonic flows 
by the potential approxirnation with finite volume methods. Nowadays, 
we see rapid developments in methods for solving the Euler and compressible 
N avier-Stokes_equations. 
Euler flow si1nulation is es ·any valuable for flows where the potential 
hypothesis is no longer valid, e.g.. flows which contain strong shocks and / or 
vorticity. For exarnple, Euler flow si1r1ulation is irnpoitant for transonic flow, 
which is the p1 incipal operating regi111e of both civil and 1ni1i aircraft. The 
Euler equations describe inviscid compressible gas flows. In practice, the 
viscosity of ajr is so low that viscous effects are confined to thin boundary 
layers adjacea1t to the surface of bodies prese11t in the fl.ow. Such flows are usu­
ally well descri by the Euler eq11ations. But there are cases of steady tran­
so __ nic flow over a two-di1nensional airfoil where the shock wave location is very 
se11sitive to the boundary layer thickness distribution. A st1 iking ex,a1nple of 
this is given in [4] .. Because the lift to drag ratio of an altfoil in a transonic 
flow is very sensitive to the shock wave position, viscosity cannot be neglected 
in such ...-: .. Then the compressible Navier-Stokes equations should be used. 

At very high R olds nuwnbers, the flow in the bo11ndary layer becomes 
turbulent. Adequate modelling of turbulence at ac.ceptable cost poses a chal­
lenge that · have to be met in the future. We 1nay regard the solution of the 
Euler eq11ations as a preparatory stage for the development of solution 
methods for Navier-Stokes equations with or without turbulence modelling .. 

The objective of this work is to contribute to the development of efficient 
n111nerical methods for the computation of steady solutions of the Euler equa­
tions.. 1be a·,ajor considerations for the computation of Euler flows are the 
capability to treat flows in comple<' geometrical confi ations, with proper 
representation of shock waves and contact discontinuities, with high order of 
accuracy in the smooth parts of the flow, and with computational efficiency 
and robustness. 

In this work we do not use complex geometrical configurations, to avoid 
grid-generation problen1s.. F111·thern1ore, we restrict ourselves to the Euler 
eq1iations in two djinensions (2D). However, all techniques used can be 
extended in a straightfox·ward way to the 3D Euler equations. In this study, we 
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ties. Fu:rtbet'IOOn\ much attention 1S payed to computational efficiency and 
robustn~ 

A ative finite volume scheane is 11sed for the space .discretization. The 
scl:ie!:ne is a · · 'shock capturing' scberrte, i.e. the same nun1erical scheme 
is .· . eveiywhere in the flow; no . · tions are 111ade in the neighbourh 
of . · · ntinuities. 1'bis is "ble beca11se the scheane is a finite volu1:11e 
schane, Le. it is based on the inte . fo11n rather than the · erential fo11n of 
the &ile1· eq11arillDS. The integral f om, is applicable evet'ywhere, the 
dilrac11tial form is not · . . the solution is not differentiable. N owa­
days_ finite vol111:1Je scheJnes are ost univei'Sal]y for shock capturing 
codes.. 

In a finite volu1ne schei't\C, tlux-computation must be cartied out at the 
· of the· A flux at a cell is the arnount of n1ass, 

•~mtu1n .·· enc:aw transpo1ted per unit of tiane across the cell bo,indary. 
We use a cell-cei.itered finite volur'ne sche1oe, i.e. the numerical approxi1nations 
are st · · · •, , · e the volurnes .. _ The equations awe obtained by de1oanding that 

puted by ap ·,. - · ... · solving a 1. · . one--di1nectsional Riesnann problem. As 
th . ·1 ~-.. .dTh . a ,~,ience, e · · ts cc1aractenstic- or upwm . e approx1-roate 

Riet'.am.nn solver tJsed is as pt!. · by · .. · er [5]. The implementation of 
.·· .. ·. ·· .. · .. ··•·. s ache:ine is not so complex as is gen.ta. ally . ·eved, provided that the 

ptopem: · · · . · • t · ·.. · · hles are used and that the l Rie•oann problems are 
·.·• .. · · . apptoxi1na, · ... ·.• · by wising an · . of the constituent parts of the 

integr'al .· · .·. ·.· .. ·• .. in state space wlticb is the I'everse of that pr . · sed by Osher. 
Oae of the mai.ts of· ·· .· er's approach to solve the Rieaoann proble11·t is that 

bo1100.11y .·· .. ··. •.··.· .. :· .... · can be disaetizrd in a way which is completely consistent 
"1th the «Jiacretization of the steady f.uler equations in the inte1:ior of the 
domain. ·1bjs is a ·. ua1ce of the fact that ... · • • .. s sche1,11e is based on 
Ri- . . . ~- di. a•namt mvanants, jUSt as propet' con· · ti.on tr'eatme.1 its. er' s 
scba'ne is based on a sound 1nathematical theoiy. The scb.e111e fulfils an 
en · · ·•··· · y condition . . · ~Ol't unphysical solutions are excluded. In its origi-

tinuities a•~ ·. n,red very •· .. ·. · (in at most two inteJ•ior grid points) as long as 
are ali·· to the grid. But oblique (with respect to the grid) . . and 

contact diS0011tinuities a1'e sn~ced out disastrously. F1,rtb(:1:.more, in s1rtooth 
.. ··. · · . of ~ flow! first .· er accu,acy is too low for practical p ses. There 
f?''C .. ~ ·. · · ·. · to ·. · · · rove the order of acai1~acy and to steepeir, oblique. 
tinw.tles.. 

~Ibis is do11e by the . · .ed .· . •. · SCL (Monotone Upwind Sche111es for Con-

data is first prepared and tnodlfied ·. ·· ted) before a Rie1nann solver is 
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si111ultaneously with second-order accuracy .. 
In chapter II, these topics are studied thorou...... y. 1be study concerns 

Riemann solvers, Osher's scheme, bo11ndary condition treatments, lineariza­
tion, the SCL-approach, lirniters etc. Chapter I is an introductory chapter 
in order to prepare the material necessary for the su · g chapters. At the 
end of chapter II, a first- and second-order accurate discretization of the 
steady Euler eq11ations has been detern1ined completely. The two su .. g 
chapters III and IV describe respectively the solution methods for the first­
and second-order discretization.. 'Ihe first-order discretization is solved by a 
Nonlinear Multigrid Method (NMG), also ed. FAS (Full Approxirnation 
Scheme), see Brandt [I]. Nested iteration, also called FMG (Full Multigrid 
Method), is used to obtain a g initial approxj1nation on the finest grid .. The 
multigrid method is very straightforward. A Collective Symanetric Gauss-Seidel 
(CSGS) ralaxation pr ure is used as a smoothing method. The n111nerical 
examples given in section 3.3 show that the characteristic features of a success­
ful multigrid method are obtained: robustness, efficiency (about 3 NMG itera­
tions are sufficient to s ass trtincation error accuracy) and grid independency 
of the convergence :rate (at. least for transonic and supersonic fl.ow). The 
nurnerical e:xan1ples cover channel flows, resolution of contact discontinuities, 
and a bl1,1nt body (circle cylinder) in a supersonic flow. 

A defect correction method is used to i1nprove the accuracy of the first-order 
solutions. The defect correction method, which is the topic of chapter IV, 
makes use in a very effective way of the excellent multigrid solver for the solu­
tion of first-order discretizations.. In fact, the second-order discretization is 
used only to construct appropriate source terms, and the solution of the first­
order discretization of the steady Euler eq1~ations with these source terins are 
obtained by the multigrid solver. 'Ibis process is repeated iteratively. In section 
4.3, the n,1merical solutions of the second-order discretization obtained by the 
defect correction method are given and compari.son with the first-order solu­
tions given in section 3.3 show clear1y the i111provement in accuracy and reso­
lution of discontinuities. 

Finally, we ref er to the work of B. Koren [2,3] who used the discretizations 
and solution methods as described in this work for airfoil flow computations. 
His results clearly show the feasibility of the method for such applications. 

·s book is based on the following publications: 

[A] P.W. HEMKER, S.P. SPEKREIJSE (1985). Multigrid Solution of the Steady 
Euler E tions. In: Advances in Multi- .t. d Methods. (D. BRAEss, W. 
HACKBUSH, U. TRo·r1ENBERG, eds.). Notes on Nu111erical Fluid Mechan­
ics, Volu1r1e 11, 33-44. Vieweg, Braunschweig .. 

[B] P.W. llmaKER, S .. P. SPEKREUSE (1986). Multiple Grid and Osher's scheme 
for the Efficient Solution of the Ste Euler E · tions. Appl. Nun1 .. Math. 
2, 475-493. 

[C] S.P. SPEKREJJSE (1986). Second-Order Accurate Upwind Solutions of the 2D 
Ste Euler Equations by the Use of a Defect Correction j.vlethod. In: 
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Multigrid Meth II. . HACKBUSH, u. Tu.01-1EN1lERG, eds.). I.ecture 
Notes in_Mathe1natics 1228, 285-300, Springer Verlag, Berlin. 

[D] S.P. SPEKllEIJSE (1987). Multigrid Solution of Monotone Second-Order 
Discretizatiom of Hyperbolic Conservation .lLJws. Math. Comp .. 49, 135-
155. 

[E] B. KollEN, S.P. SPEKREUSB (1987). Multigrid Defect Co"ection for the 
Efficient Solution of the Ste Euler E tions. In: Research in N1)1neri-
cal Fluid a111jcs/Pr · gs of the 25th Meeting of the Dutch Associ-
ation for N1)r11e1ical Fluid amics. (P. WESSEIJNG, ed.). Notes on 
N11111erical Fluid Mechanics 17, 87-100, Vieweg, Braunschweig. 

1. A. T (1982).. Guide to Multigrid Development. In: Multigrid 
Methods. .. HACK.BUSH, U. TR0·1-rENBERG, eds.). J,ecture Notes in 
Mathe111atics 960, 220-321, Springer Verlag, Berlin. 

2. P.W. liEMKBB., B. KOREN (1986). A Non-linear Multigrid Method for the 
Ste Euler Equations. Report -R6821, · tre for Mathe111atics and 
Computer Science, terda111. To appear in Pr · gs Ga1n111-
Wor op on the N11111erical Si1nulation of Compressible Euler Flows, 
& uenco 1986. Notes on Numerical Fluid Mechanics, Vieweg Ver­
lag, Braunschweig. 

3. B. KOREN (1986).. Evaluation of Second-Order Schemes and Defect Correc­
tion for the Multi · Computation of Airfoil Rows with the Ste Euler 
Equations. ~ rt NM-R8616, tre for Mathematics an.d Computer 
Sci_e11ce, Arnsterda1r1. To appear in J. Comput. Phys. 

4. H. McDoN.AJ,1:>, SJ. om, W.R. BRII.RY (1981). Transonic Flows 
with Viscous Effects. In: Transonic, Shock, and Multiditnensional Flows: 
Advances in Scientific Computing (RE. ME · ed.), 219-240. Academic 
Press, New York. 

5. S. F. SoLOMON (1982). Upwind Difference Schemes for Hyperbolic 
Systems of Conservation 'S. Math. Comp. 38, 339-374. 

6. B. VAN 1.EER (1974). Towards the Ultimate Conservative Difference 
Scheme,, II. Monotonicity and Conservation Combined in a Second­
Order Scheme. J. Comput. Phys. 14, 361-376 . 

.. 

• 
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pter I 

nations 

1.1. DERIVATION OF ·nits Eu1.ER EQUATIONS. 

In this section the Euler equations are introduced. We consider the Euler equa­
tions in two di111ensions only. The restriction to two di1nensions is only for 
practical reasons and is not fundaanental (see the introductory chapter 0). 
Let there be given a Cartesian coordinate system (x,y). Let t denote the ti1ne. 
With p-p(x,y,t), u==u(x,y,t); v==v(x,y,t) andp==p(x,y,t) wel4enote density, 
velocity components in the x- and y-direction and pressure. These quantities 
are the so-called ptitnitive variables .. Consider an arbitrary simply-connected 
region 0CR2 and let n==(n 1,n2)T be the outward unit norr11al on the boun­
dary ao. The region O 1s a so-called control volume; we · apply the physical 
laws of conservation of mass, moment11111 and energy to the fluid flow in 0. 

I. Conservation of mass. 
The law of conservation of mass is given by 

dt P n ao 
(1.1.1) 

where v ==(u,v)T is the velocity, dv is a voltime element and da a surface ele­
ment. With n. v we denote the innerproduct: n. v=n 1u+n 2v. Using Gauss's 
theorem for a vector-field, we may write, assu 1n1ng that pv is di lferentiable, 

p(n. v)da= div (pv)dv 
ao o 

where div (pv) = --

a a a (1.1.2) 
.. 

· erential fo1·rr1 respectively. Both forms are very important. 

II. Conservation of momentum. 
Assu1ning frictionless flow and absence of body forces, the law of conservation 
of moment1J1n is given by 
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pv(n . v)do- pndo. 
an ao 

uation (l.1.3) is a vector equation. The x-component is 

pu(n . v)da­
an 

div (puv 

pnda 
an X 

\Jpdv 
0 X 

(1.1.3) 

(1.1.4) 

where we have used the theorem of Gauss for both a vector- and scalar-field, 
T 

9!_ 21!.. . . 

They-component of equation (l.1.3) is 

d 
g 

pv(n . v)da 
an 

• 

div (pvv 
D 

pnda 
ao y 

'\Jpdv . 
D y 

Because O is arbitrary, we obtain from equations (1.1.4) and (1.1.5) 

a a a =O 

a a a =O 
t X ~ 

which are the momentt)111 equations in differential form. 

(l.1.5) 

(l.l.6a) 

(l. l.6b) 

Ill. Conservation of energy. 
Let e denote the internal energy of the fluid. The ener of the flu.id consists of 
internal and kinetic energy and is equal to pe+ 2 p(u2 +v 2

) per unit of 

vol11me. We define the total energy as 
l 

E =pe + 2 p(u2 +v2). ( 1.1.7) 

Under the ass11·rnptions of a nonviscous, nonconducting fluid and absence of 
body forces, the law of conservation of energy is given by 

to an - - ao 
and, with si111ilar reasoning as before, the energy equation in differential for111 
is obtained as 

=O (1.1.9) 
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Combining the equations (1.1.2), (1.1.6) and (1.1.9) we find the Euler equa­
tions: 

p 

pu + a 
at pv ax 

E 

pu 
pu2+p 
puv 

(E+p)u 

+ a 
ay 

pv 

puv 

pv2+p 
(E+p)v 

=O. (1.1.10) 

These equations are valid for a nonviscous, non-heat-conducting fluid without 
body forces. Notice that there are 5 unknowns in the 4 equations. Another 
equation is provided by the the1mod)'Ila111ical equation of state, which can be 
written in general as 

p-p(p,e). 

For a perfect gas we have 

p-pRT, e-cvT 

(l.1.11) 

(1.1.12) 

where Tis the temperature, R ==cp -cv the gasconstant, and cv,Cp the specific 
heat at constant volume and constant pressure, respectively. Define the ratio 
of sp-ecific heats y==cplc11 • For a perfect gas the the11nodyna1nical equation of 
state gives 

p (1.1.13) 

For almost all aerodynarnical problems one can assu1ne that the non­
di rnensional quantity y is constant (y== 1.4 for air). 
Important physical quantities and relations are listed in the appendix. 

1.2. SoME GEN PROPERTIES OF SOLUTIONS OF 1'111!: E EQUATIONS. 

In this section we introduce two ir11portant quantities: the total enthalpy H 
and the entropy s. We show, under certain. rather general circurr1stances, that 
these quantities are constant along strearn]ines. F111 tbe1·111ore, we investigate 
what kind of discontinuities are possible in solutions of the steady Euler equa­
tions. It t111ns out that there are two types: shock waves and contact discon­
tinuities. 

I. The total enthalpy. 
The enthalpy h and the total enthalpy H are defined by 

h ==e + ./!_ 
p 

1 
H=h + 2 (u

2 +v 2). 

Using the definition (1.1.7) of the total energy E, we find 

H==·E+p. 
p 

(l.2.1) 

(1.2.2) 

(1.2.3) 
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Hence, the energy equation in integral for1n (1.1.8) can be written as 

1 o an - - a 1 
(1.2.4) 

and this eq1Jation becomes in differential forrn 

a a a =k (1.2.5) 

Combining this equation with the continuity equation (1.1.2) we find that 
( 1.2.5) can be written as 

an +uaH +vaH = I k 
at ax ay p at . (1.2.6) 

In this equation we recog11ize the material derivative 

Dt 
(1.2.7) 

The material derivative (or total derivative) expresses the rate of change of a 
property of a fluid pai·ticle. Combining (l.2.6) and (1.2.7) we find for steady 
flow ( all ti rne derivatives are 0) 

Dt 

Thus, in the case of steady flow, the total enthalpy His constant along strea1n­
lines.. We shall see that the total enthalpy remains also constant when a 
strea 1nJine passes a discontinuity ( shock wave). en H is 11nif or111ly constant 
the fluid is called isenthalpic or isoenergetic. 

II. The entropy. 
In the sa1ne way as we have combined the energy equation with the continuity 
equation, it is possible to combine the momentum equations (1.1.6) with the 
continuity equation. Then we find 

OU +uau +vau =- 11.e_ 
at ax ay p ax 
av + av + av = _ 1 k 

which can be written as 

D I 

One easily derives from (1.1.2), (1.1.7) and (1.1.9) that 

t - - p 

Combining the last two equations we find 

De=-]!_ di 
D 

vv. 
t p 

(1.2.9) 

(1.2.10) 

(1.2.11) 

(1.2.12) 



The continuity equation (1.1.2) can be written as 

Thus, we also have 

De==_]!_ Dp 
Dt p2 Dt . 

0. 

We assu rne that the fluid is a perfect gas, hence ( see 1.1.13) 

p==(y-l)pe 

which gives 

De = I I pp _ J!_ Dp 
Dt y - I p Dt p2 Dt . 

Combining (1.2.14) and (1.2.16), we conclude that 

Dp __ Pe= 

The entropy s is defined as 

s =cv In_/!_ . 
pY 

Using (1.2.17) we find 

Ds = Cv Dp _:tl!_ Dp 
Dt p Dt p Dt 

==O. 
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(1.2.13) 

(1.2.14) 

(1.2.15) 

(1.2.16) 

(1.2.17) 

(1.2.18) 

(1.2.19) 

Hence, we have found the irnportant result that the entropy of a fluid particle 
remains constant in the fluid. 'l'his result is only true for an inviscid non­
conducting gas. If we take into account viscosity, a si111j)ar derivation [4] shows 
that 

Ds~0 Dt. (1.2.20) 

Hence, in the case of viscous flow, the entropy of a fluid particle cannot 
decrease. 
In the derivation of (1.2.19) we have assumed that the fl.ow is smooth. There­
fore, from (1.2 .. 19) one cannot conclude that the entropy of a fluid par·ticle 
remains constant when the pa1·ticle crosses a discontinuity (shock wave). 
Indeed, we shall show that there is an entropy jump at a shock wave. Because 
of the fact that in a viscous flow the entropy of a fluid pa1·ticle cannot decrease 
and because all real fluids are, in fact, viscous, we demand that the entropy of 
a fluid pa1·ticle, which passes a shock wave does not decrease. This is the so­
called entropy condition. Thus, the idea behind the entropy condition is that a 
solution of the inviscid Euler equations is the limit of a sequence of solutions 
of the viscous Navier-Stokes equations with vanishing viscosity. 
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en s is uniformly constant, the fluid is ed isentropic. 

III. Discontiniwus solutions of the ste Euler e tions. 
Now we investigate 11nder which conditions a flow field composed of two uni­
f or1n flows, separated by a straight line l, is a solution of the steady Euler 
equations. We choose the x-axis perpendicular to I and the y-axis along /. 
Hence, the question becomes when is: . 

qL x<O 
q(x,y)= x>O 

a solution of the steady Euler equations. Because q(x,y) is discontinuous we 
have to apply the Euler equations in integral form_ Take a control volu1ne 
with infinitesin1al width but finite length across the discontinuity (see fig. 1.2a). 

y 

X 
• 

FIGURE 1.2a. Discontinuous steady flow field with a control volu1ne. 

Application of the equations of continuity, momentum and energy gives: 

PLUL PRUR 

PLU1 +pL=pRui+pR 

PLULVL PRURVR 

PLULHL=PRURHR 

Consider two posibilities: 

A. Contact discontinuity. 

(1.2.2la) 

(l.2.2lb) 

(1 .. 2.2lc) 

(1.2.2ld) 

Suppose uL =O. Then (1.2.21) is f11Jfilled if uR =O and PL =pR. Hence, a flow 
field composed of two 1miformly constant flows with the satne flow direction 
and pressure but different densities and s s is a solution of the steady Euler 
equations. The discontinuity at the interface between the two flows is called a 
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contact discontinuity (or slip line). Notice that a fluid pan·ticle does not cross a 
contact discontinuity. 

B. Shock wave. 
Suppose uL=;t=O. lhen uR , vL=vR and HL=HR. Because uL=uR implies 
qL =qR i.e. a 11nifor1nly constant flow field, we may assume that uL =l=uR. From 
the continuity equation (l.2.2la) it follows that uL and uR have the sai11e sign. 
Therefore, without loosing generality, we suppose that uL>O, uR>O. ·s 
kind of discontinuity is called a shock wave. Notice that a fluid particle crosses 
a shock wave. From equation (1.2.21) we shall derive several jump relations. 
First, we introduce the speed of sound c: 

c= • (l.2.22) 
p 

One easily derives that the total enthalpy H can be expressed as 

H=--­ (1.2.23) 
• 

From (l.2.2la,b) we see that 

or 

• 
(1.2.24) 

Because HL =HR, vL =vR, we also have 
2 

C£ l 2 = 
2 

(1.2.25) 

with c* a constant. Combining these last two equations, one easily derives 

ULUR =c*2 (1.2.26) 

which is known as the Prandtl relation. 
Introducing M=ulc, M* =ulc*, the Prandtl relation becomes 

MRM1=1 

and the relation 

c2 I 2 = l 1+ 1 *2 

results in a relation between M and M*: 

+I M 2 
M*2 = - ~.:;;..,r,;;;....;.._-

( y-1 )M2 +2 . 

Now, the ju11:1p relations are easily derived. For instance 

(1.2.27) 

(1.2.28) 
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The j11111p relation for the pressure becomes: 

thus 

PR= 
PL 

The difference between the entropy in front of and behind the shock is 

(1.2.29) 

(1.2.30) 

(y-l)Mt +2 y 
sR-sL=cv In ---- L-1 · ----- (1.2.31) 

y+l 

'J'bis is an important relation, because according to the entropy condition 
sR ";:?-sL. Using sR >sL (sR =sL ~ML= 1, uR =uL), we can conclude that ML> 1, 
hence, .Mi>l, ~<I and MR<I. In the case of a normal shock (vL=vR ==O), 
M is the Mach n11rnber and the important conclusion can be drawn that in 
front of a no1mal shock the flow is supersonic (M> I) and behind the shock 
the flow is subsonic (M<l). Notice that this conclusion is a consequence of 
the entropy condition .. This is an exa(nple of the importance of the entropy 
condition. 
It is easily derived that, in the case of a weak shock i.e. ML= I +E:, O<t:<< 1, 
we have 

PL 
(1.2.32) 

with /.lp ==pR-pL; fi.p=pR-PL, llu=uR-uL. 
Thus, a small but finite change of pressure, for which there are corresponding 
first-order changes of density and velocity, causes only a third-order change in 
entropy. Therefore, a weak shock produces a nearly isentropic change of state. 
'l'bis is an i1nportant result because the assumption that the fluid is isentropic 
(and isenthalpic) leads to a drastic si1nplification of the Euler equations (see 
section 1.4). 

1.3. HYPERBOUC SYSfFJ\fS. 

llY. 

In this section we study a general first-order system of quasi-linear equations 
in two independent va1:·iables of the fo1·111 

a a 
(1.3.1. l) 

where q=(q1, ••• ,qn)TeRn and (x,t)eRXR+. We ass11me that the vector-
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DEFINITION 1.3.la. 
System (1.3.1.1) is called hyperbolic if there exists a real diagonal matrix D(q) 
and a non-sin ar real matrix R(q) such that 

A(q)R(q)=R(q)D(q) 'dq eRn . (1.3.1.2) 

The coJurnn vectors of R(q) are eigenvectors of A(q) and the diagonal entries 
of D(q) are the corresponding eigenvalues. We shall denote by Rk(q) the kth 
colu1nn vector of R(q) and with Ak(q) the corresponding eigenvalue: 
Ak(q)=Dkk(q) .. F1i1·ther111ore we shall assume that the eigenvalues Ak(q) have 
been labeled in increasing order i.e. A1 (q)~A2(q)~ · · · ~X,,(q). 

LE 1 .. 3. la (The linear case). 
Suppose j(q)·· .. ··Aq where A is a constant n Xn matrix. Hence, (1.3.1.1) 
sin1plifies to 

A solution q =q(x,t) of (1.3.1.3) can be expressed with respect to the basis 
{ R 1 , • • • , Rn } i.e. 

n 

q =q(x,t)= ai(x,t)R; 
i -1 

where a;:R XR+t-+R. Substitution of this expression in (1.3.1.3) leads to 

n aa:- aa-
= ~+Aa 

at ax i = l 

and because the eigenvectors R; are independent 

ca· oa· = 1, · · · ,n 

The general solution of this equation is 

a;(x,t)=af (x -A.;t) i = 1, · · · ,n 

-0 

with a9:R1-+R. Hence, we have found that the general solution of (l.3.1.3) is 

n 

i =l .. 

The solution of the pure initial value problem on R+ XR 

k+A O ==O 
at ax 

(1.3.1.4) 

q(x,O)=q0(x) xER 
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becomes 
n 

q(x,t)= a?(x -X1t)R1 (1.3.1.5) 
i =I 

with 
n 

a.?(x)R; =qo(x). (1.3.1.6) 
i = l 

Hence, the solution of (1 .. 3.1.4) is obtained after representing the function 
qo :Ri-+R" with respect to the basis { R 1, • • • ,Rn}. 

Now, we shall introduce the Riemann problem. The Riemann problem is very 
irn.portant because it forms the underlying physical model of many upwind 
schemes for the Euler equations. For instance, the f a1nous God1Jnov upwind 
scheme uses the exact solution of the Riemann problem for the numerical solu­
tion of the Euler equations [2]. Other well known upwind schemes use approxi­
mate solutions of the Riemann problem. 

DEFINITION 1.3.1 b. 
The Rieo1ann problem for a general hyperbolic system is the following initial 
value problem 

a a 
(1.3.1.7) 

with 

q(x,O)= 
qL x<O 

qR x>O 

where qL and qR are constant states. 

'fJ-IEOREM 1.3. la. 
Suppose there exists a unique solution q=q(x,t) of the Riemann problem 
(1.3.1. 7). Then the solution q =q(x,t) can be written in similarity form 
q(x,t)=q(xlt). 

PROOF. 

Define qa.(x,t)=q(ax,at) with aeR+. Then it is easily verified that qa(x,t) is 
also a solution of the Riemann problem. Hence, q(x,t)=q(ax,at) VaeR+, so 
q(x,t)=q(xlt). □ 

LE 1 .. 3 .1 b (The linear case). 
Consider the Riemann problem for a linear hyperbolic system (see exa1nple 
1.3. la). Following the solution method outlined in e:,ca 111ples 1.3.1.a, suppose 

n n 
qL = a;R1, qR = /JiR;. Hence, 

i=l i=l 
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n 
q(x, O)= {/J;H(x)+a.;(1-H(x))}R; 

i = 1 

with H:R1-+R the Heavyside function (H(x)=l if x>O, H(x)=O if x<O). The 
solution of the Riemann-problem becomes 

n 

q(x,t)= {/1;H(x-A;t)+a;(l-H(x-i\tt))}R; . 
i=l 

'l'his solution is illustrated in fig .. 1.3.la for n =3. We have assurned that 
A1 <O<i\2 <i\3 • The solution is represented by a triple (a,/3, y) i.e. (a,fi, y) 
corresponds with q ·'-aR.1 +fJR2 +yR3. 

dt t dx 

dx 

X 

FIGURE 1.3.la. Illustration of the solution of the Riemann problem for a linear 
hyperbolic system (n = 3). 

The solution of the Riemann-problem for a nonlinear hyperbolic system is 
hard to obtain in general. But for certain pairs (qL,qR) the solution of the 
Riemann problem may become sirnple. In the remainder of this section we 
show how to obtain these sicnple solutions. For this p ose we introduce the 
following con t: 

DEFINITION 1.3.lc. 
Consider the h rbolic system (1.3.1.1). Let Rk(q) be an eigenvector of 

A(q) 

value .. 
We Rk(q) genuinely nonlinear if 

('vAk(q), Rk(q))=/=O Vq EIRn • 

We call Rk(q) linearly degenerate if 

(Vi\k(q), Rk(q))=O VqeRn .. 

Here ( ' ) denotes the usual 

• 

(1.3.1.8) 

(1.3.1.9) 

• 1nner product and 
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a~ a¼ . 
'11\Jc(q)=(--, • • •, -)T. We shall show m section 1.3.2 that for the 

aq1 aqn 
Euler equations, each eigenvector Rk(q) is either genuinely nonlinear or 
linearly dege11erate. 
To construct ce1tain si111ple solutions of the Rieroann problem, we shall show 
that a gen11inely nonlinear eigenvector Rk( q) corresponds with a so-called siin­
ple wave solution while a linearly degenerate eigenvector Rk(q) corresponds 
with a contact . · · ntinuity. (To avoid confusion, it should be mentioned that 
in this context a contact discontinuity · ers from the concept of a contact 

· ntinuity as introduced in section 1.2; here we are concerned with tjme 
dependent proble1ns while in section 1.2 we were concerned with the tiine 
independent (steady) Euler equations). 

Simple wave solution of the Riemann problem 
Suppose Rk(q) is a genuinely nonlinear eigenvector. Then Rk(q) can be nor­
n:,alized such that 

(\JAk ( q ), Rk( q)) = 1 V q . _ ( 1.3 .1.10) 

For an arbitrary state qL we consider the following ordinary differential equa­
tion 

and suppose q · q(~, O~~~~R is the solution. Define qR =q(tR)­
Because 

we have 

and 

~(qR)-~R+~(qL) · 

Notice that AJc(qR) AJc(qL)==~R >0. 
Define .. 

q(x,t)= 

qL XI t <Ak(qL) 

q(x/t-"J\.k(qL)) Ak(qL)<xlt<Ak(qR) 

qR xlt>Ak(qR) 

(1.3.1.11) 

(1.3.1.12) 

We shall v, · that q(x,t) is the solution of the Riemann-problem. If 

• 
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~k(qL)<xlt<Ak(qR) then 

A.k(q(x,t)) = Ak(q(x/t-Ak(qL))) 

== xlt-Ak(qL)+Ak(qL)=xlt . ( 1.3.1.13) 

Hence, if "'Ak(qL)<x lt<Ak(qR) then 

k a =k k 

X I -

X 1 -

So q(x,t) is indeed the solution of the Riemann problem with initial states 
(qL,qR). This solution is called a kth sio1ple wave (or rarefaction wave). An 
illustation of this solution is given in fig. 1.3.1.6. 

t 

dt 

X 

FIGURE 1.3.lb. Illustration of a kth sitnple wave solution of a Riemann inital 
value problem. 

Contact discontinuity solution of the Riemann problem. 
Suppose Rk(q) is a linearly degenerate eigenvector. Hence 

('\/Ak(q), Rk(q))=O 'dq ERn . 

Let q(O be the solution of (1.3.1.11) and define qR ==q(~R)- Because 

d - = - , -

we have Ak(q(O)==Ak(qL)==Ak(qR) 'itE(O,~R)­
Define 

q(x,t)-
qL xlt<Ak(qL)=Ak(qR) 

qR xlt>Ak(qL)=AJc(qR) 

==O 

(1.3.1.14) 
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Hence, q(x,t) is · ntinuous. We shall show that q(x,t) is a solution of the 
Riemann problem. An illustration of this solution is given in fig. 1.3.lc. 

t 

X 

FIGURE 1.3.lc. Illustation of a kth contact discontinuity solution of a Riemann 
problem. 

Because q(x,t) is discontinuous, the integral fo1m of (1.3.1.1) has to be 
employed 

. qn1 + f(q)nx da=O (1.3.1.15) 
ao 

with O an arbitrary volu1ne in the (x,t) space and n ==(nx,n1) is the outward 
unit no1·1nal an au. It suffices to consider an infinitesirnal rectan ar vol1)1ne 
with sides /1:x. and D..t straddling the discontinuity, cf. fig. 1.3. lc. uation 
(1.3.1.15) results in 

f(qR)-j(qL)+Ak(qL) (qL-qR)=O (1.3.1.16) 

These are so -.. -........ or 

Rankine-Hugoniot relations [3). We will show that (1.3.1.16) is satisfied. 
Because 

d- - dN 
d~ d~ 

== A(q(f))Rk(q(~)-J\k(q(f))Rk(q(~)) 

= Ak(q(~)Rk(q(~)-Xk(q(~))Rk(q(~)=O 

we have 

f(qR)-Ak(qL)qR =f(qL)-Ak(qL)qL · 

Thus the j1)1np relations (1.3.1.16) are indeed satisfied. 
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In addition to sirnple waves and contact discontinuities there exists another 
elementary type of solutions of the Riemann problem, narnely shock waves. 
Shock wave solutions satisfy the Rankine-Hugoniot relations and the entropy 
condition. We refer to [3,7] for a detailed description of shock wave solutions. 
The general solution of a Riemann problem is, under rather general cir­
cu rnstances, composed by sin1ple waves, contact discontinuities and shock 
waves (see [7]). Here, we can omit a detailed description of shock wave solu­
tions because this would not contribute very much to the understanding of the 
nu1nerical solution methods that · be discussed. 
In this work we shall use an upwind scheme proposed by Osher [5] that is 
based on an approxir11ate solution of the Riemann problem, obt_ained by 
replacing shock waves by compression waves. A compression wave is the 
reverse of a rarefaction wave and leads to a multi-valued solution. For more 
details we ref er to the next section and chapter 2 .. 
Finally, we introduce the con t of Riemann-invariants. 

DEFINITION 1.3.ld. 
Consider-the hyperbolic system (1.3.1.1). Let Rk(q) be the kth eigenvector of 

that 

Notice that if Rk(q) is linearly degenerate, the corresponding eigenvalue Ak(q) 
is a Riemann invar·iant (see (l.3.1 .. 9)). In general there are n -1 k-Riemann 
inva I iants whose gradients are linearly independent in Rn. Riemann ... invar·iants 
are useful for the construction of sinnple wave and contact discontinuity solu­
tions of Riemann proble1ns .. For the construction of si1nple waves or contact 
discontinuities we have to solve (see (1.3.1.11)) 

(1.3.1.17) 

Suppose q=q(~, O~~~~R is the solution. Then 

hence a k-Riemann inva1·iant is const-ant along the curve described by 1 .. 3.1.17. 
· · · .. ,,1 .. ,,n - 1 th ·t . il If there are n -1 k-Riemann mvar1ants 't'k, .... , 'Yk , en 1 1s eas y seen 

that the curve described by (1.3.1.17) is part of the curve described by 
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functions and, as we shall see in the next section, forr·nulas descnbmg sJ1nple 
waves or contact discontinuities are easily obtain.eel. 

1.3.2. APPLICATION TO 1Rf: EULER EQUATIONS. 

The Euler equations ( 1.1.10) can be written as 

where 

a a a =O 

q = (p,pu,pv,E)T ==(q1 ,q2,q3,q4)T 

f(q) = (pu,pu 2 +p,puv,(E+p)u)T 

= (q2,q~ lq1 +p,q2q3lq1 ,(q4 +p)q2I q1)T 

g(q) = (pv,puv,pv 2+p,(E+p)v)T 

= (q3,q2q3lq1 ,q~ lq1 +p,(q4 +p)q3/ q1)T 

and ( see 1.1.13) 

p=(y-1) (£-

First, we notice the rotational invariance of the Euler equations. 

'l'H:EOREM (l.3 .. 2a). 
The Euler e tions are rotationally invariant i.e. 

coscp /( q) + sin(/) g( q) = T( <I> )- 1/( T( 4> )q) 

(1.3.2.1) 

(1.3.2.2) 

(1.3.2.4) 

for all q,ER and admissible states qeR4, where T(4>) is the following rotation 
matrix: 

PROOF. 

1 0 
0 COS</> 
0 -sinq, 
0 0 

0 0 
sincp 0 
COS</> 0 . 

0 1 

The calculations to ve · · (1.3.2.4) are straightforward. 
... 

(1.3.2.5) 

□ 

In section 1.3.1 we have introduced the concept of hyperbolicity for a first­
order system of quassi linear equations in only two independent variables. 
Si·milarly, we define: 

DEFINITION { l .3.2a). 
System (1.3.2.1) is called hyperbolic (with respect to t) if there exist, for all 
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</>ER and admissible states qeR4 , a real diagonal matrix D(q,cp) and a non­
sin ar matrix R(q,<f,) such that 

A ( q, cp )R ( q, cp )-R ( q, <P )D( q, cp) ( 1.3.2.6) 

where 

A(q,<J,)== =Coscf,A(q)+ sincpB(q). (1.3.2.7) 

LE (l.3.2a). 
If there exists a real diagonal matrix D(q) and a non-singular real matrix R(q) 
such that 

A(q)R(q)==R(q)D(q) (1.3.2.8) 

for all admissable states qER4, then the Euler equations (1.3.2.1) are hyperbolic. 

PROOF. 
By differentiating the rotational invar·iance relation (1.3.2.4) with respect to q, 
we have 

A(q,<f,) == coS<j>A(q)+sin<J>B(q)==T(cp)- 1A(T(cp)q)T(cp). 

Hence, 

A(q,<t>) == T(cp)- 1 R(T(cp)q)D(T(cp)q)R- 1(T(c/>)q)T(</>) 

== (T(<P)- 1 R(T(</>)q))D(T(cp)q) (T(cp)- 1 R(T(</>)q))- 1 • 

By taking 

R(q,cp) = T(cp)- 1 R(T(<P)q), D(q,<J>)=D(T(<t>)q) 

we see that (1.3.2.6) is valid. □ 

linearly independent eigenvectors. Using the relation 
T 

-u, -v, 1) (1.3.2.9) 

and the relations for total enthalpy H: 

H=·E+p =-­
P 

it is easily verified that 
0 

A(q)== 

1 

(3-y)u 

(1.3.2.10) 

0 0 
-(y-l)v y-1 

u 0 
(1.3.2.11) 

-(y-l)uv yu 



22 

• 

ing eigenvectors of A(q) are 

and 

R 1(q)=(l, u-c, v, H-cu)T 

R 2(q) (1, u, v, 2 (u +v 

R3(q) (0, 0, l, v)T 

(1.3.2.13) 

The eigenvectors are linearly independent and therefore we have found the fol­
lowing theorem: 

'!'HF.OREM (1 .. 3.2b). 
The Euler equations (I. 3.2.1) are hyperbolic with respect to t. 

Now, we shall consider the Riemann problem for the Euler equations in one 
space dimension: 

a a (l.3.2.14a) 

with 

q(x,O)= (l.3.2.14b) 

where qL and qR are constant states, and q, f(q) are defined in (1.3.2.2). 
We assurne that there is a unique sofution. As we have already seen 
q(x,t)=q(x!t). 
Although trivial, it is worth noticing that q(x,y,t)=q(xlt) also obeys the Euler 
equations in two di1oensions 

a a a (l.3.2.15a) 

with initial values given by 

q(x,y,O)== 
qL x<O,yER 

qR x>O,yeR · (l .3.2.15b) 

We shall seek certain pairs (qL,qR) for which the solution of the Riemann­
problem (1.3.2.14) becomes very simple, e.g. a simple wave or contact discon­
tinuity. Therefore, we shall first investigate whether the eigenvectors 
Rk(q), k== 1,2,3,4, given in (1.3.2.13) are genuinely nonlinear or linearly 
degenerate. 



23 

1

l'HBOREM (l.3.2c). 
The eigenvectors Rk(q) given in (1.3.2.13) are genuinely nonlinear fork= I and 4, 
and linearly degenerate for k = 2 and 3. 

PROOF. 
Because 

(1.3.2.16) 

it is i1n1nediately clear that R 2(q) and R 3(q) are linearly degenerate. Using 
definition (1.2.22) of the speed of sound c, we see that 

1 
pc 

where '9 p=(l,0,0,0)T and Vp is given by (1.3.2.9). 
Thus 

C 

and 

C 
• 

Hence, R 1(q) and R 4(q) are gentJinely nonlinear □ . 

(l.3.2.17) 

C 

Thus R 1(q) and R 4(q) correspond with sin1ple waves while R 2(q) and R3(q) 
correspond with contact discontinuities. 
Riemann invariants are very useful for the construction of a simple wave solu­
tion or a contact discontinuity solution of the Riemann problem (1.3.2.14). In 
the following theorem, the Riemann inva1iants corresponding with the eigen­
vectors Rk(q) are given. 

'I'HEOREM (l .3.2d). 
The functions 

2 

are Riemann-invariants corresponding with the eigenvector R 1 ( q ). 
The functions 

/31(q)=u, /32(q)==p 

(1.3.2.18) 

(1.3.2.19) 

are Riemann-invariants corresponding with the eigenvectors R2(q) and R3(q). 
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The functions 

Y1(q)=u 
2 

are Riemann-invariants corresponding with the eigenvector R4(q). 

PROOF. 
From (1.2.18) we deduce that 

• 

p 
Fucthe1·more 

1 
\/"V = (-v,0, 1,0). 

p 

(1.3.2.20) 

(l .3.2.21) 

(1.3.2.22) 

With these expressions and with the expressions for \/p, \Ju and "'\le (see 
1.3.2.9, 16 and 17) the calculations to ve · this theorem become straightfor­
w~. □ 

Thus, if the pairs (qL,qR) of the Riemann problem (1.3.2.14) are such that 

(1.3.2.23) 

and 

(l.3.2.24) 

then a simple wave solution, corresponding with R 1 (q), exists, given by 

q 
2 2 u+ C = y-1 

(1.3.2.25) 

S SL 

u-c = xlt 

q = qR if xlt>uR -cR 

Notice that u-c=xlt follows from (1.3.1.13). 'l'his solution is also called a I­
rarefaction wave. If (qL,qR) are such that (1.3.2.23) holds, while 
uL-cL>uR-cR, the solution given by (1.3 .. 2.25) corresponds with a multi­
valued solution. Then we speak of a compression wave. Allthough such a 
compression wave has no physical meaning, it will be shown in chapter II that 
allowing compression waves, an approxi1nate solution of the Riemannn prob­
le,n can be obtained which leads to an excellent upwind scheme for the Euler 
equations. 'l1his scheme was introduced by Osher in 1982 [5]. 
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Similarly, if qL and qR are such that 

2 == _ 2 
y 

(1.3.2.26) 

and 

UL +cL <uR +cR (1.3.2.27) 

then a si1nple wave solution, corresponding with R 4(q) exists, given by 

q 

2 2 u- C - UL C 
y-1 y-1 L 

V = VL 

(1.3.2.28) 

S SL 

u+c = xlt 

q 

'l'his solution is also ed a 4-rarefaction wave. If uL +cL>uR +cR, we have a 
multivalued 4-compression wave. 
Finally, if qL and qR are such that uL ==uR , PL =pR then a contact discon­
tinuity solution, corresponding with R 2(q), R 3(q) exists, given by 

q==qL if xlt<uL=uR 

q==qR if xlt>uL=uR. 
(1.3.2.29) 

1.4. SIMPIAIFICATIONS OF 1'HF, 

EQUATIONS. 

EQUATIONS: 'IH IE Fl'F'I" AND TSP 

I. The Transonic Full Potential (TFP) equation. 
The 'IFP equation is derived from the Euler equations by assuming that the 
flow is steady, isenthalpic and i1rotational. Before deriving the TFP equation 
we shall show that a consequence of these ass11 rnptions is that the flow must 
also be isentropic .. 'l'his follows from the Crocco-theorem, which is derived in 
the following way. 
Choose the primitive vaa:jables u, v,p and p as dependent va1·iables in the Euler 
equations. Then the entropy s and the internal energy e are functions of p and 
p. Assurning an ideal gas, these functions are given by: 

s =s(p,p)=c 1n _p_ 
17 

PY 
1 ]!_ 

After some algebraic 1nanipulations, it is easily seen that 
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hence 

=L 1 
p -y 

Tds= l . -
y-1 p 

Tds =de- ..Ldp 
p2 

which i 1nplies 

T"\ls= v'e­
P 

-- --- -- -

p 

From the definition of total enthalpy H (see (1.2.1), (1.2.2)), it follows that 

VH == 

p 

Using equation (1.2.10), we find 

TVs= D 

thus 

Tas =--
ax ax ot 

Tas =--
ay ay at 

ax ay. 

(1.4.1) 

· s equation is known as the Crocco theorem and it tells us that, in case of a 
steady isenthalpic flow, the assurnption that the flow is isentropic is equivalent 
with the assumption that the flow is irrotational. uation (1.4.1) is only appli­
cable in smooth flow field regions. In shocks the Crocco theorem does not 
hold. But we know that in fluid pa1~ticles passing through a shock the entropy 
increases, depending on the strength of the shock. Hence, eq. (1.4.1) (which 
holds again behind the shock) tells us that unless the shock stren_ · is uni­
form, the vorticity behind the shock .. · not be. zero. Hence, the i ,·rotational 
flow assu1nption is not compatible with the appearance of shocks. However, if 
the component norrnal to the shock of the upstream Mach nu1nber Mn is 
sufficiently close to t1nitJ, the flow is al 1nost isentropic; the entropy va t"iation is· 
of the order of (M~ -1)3 (see (1 .. 2.31) and (1.2.32)). Thus in case of transonic 
flows with weak shocks, the irrotational flow assu,nption is a g approxi111a­
tion. 
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Derivation of the TFP e tion. 
We assume that the fl.ow is steady, isenthalpic, i1·rotational and thus isentropic. 
A potential <t>=cp(_x,y) can be introduced: 

u= a = a 

The continuity equation becomes 

a a a a 
=O. 

Because the flow is isenthalpic and isentropic, we have 

_p_=Poo 
pY p1 • 

c2 
00 

(1.4.2) 

(1.4.3) 

(1.4.4) 

(1.4.5) 

ith oo we denote a freestream value at infinity). Using c 2 =yp Ip, we can 
eli1ninate p and derive the following expression for p: 

2 2 l 

u2 
00 

(1.4.6) 

where M 00 =uOC)Jc 00 is the Mach n1J1nber at infinity. uation (1.4.3) with p 
given by (1.4.6) is the TFP equation in conservative forrn .. The TFP equation 
in non-conserative for1n is also well known and · be derived for complete­
ness. Define 

q2=u2+v2= _ 
ax ay 

then 

and 

c2 

c2 
00 

2 1 

Coo 

With these expressions, it is easily seen from ( 1.4.6) that 

dp= - .... e -dq2 . 
2c2 

Using (1.4.3) we have 

pa<t>+ \lp. v1cp-o 

thus 

P dq2 
=O 

(1.4.7) 

(1.4.8) 

(1.4.9) 

(1.4.10) 
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or 

=O 

• 
I.e. 

u2 v2 
(1 - 2 )q>xx + { 1- 2 

C C 

2uv 
- 2 f/>xy=O. 

C 
(1.4.11) 

'J'bis equation with c2 given by (1.4.8) is the TFP equation in nonconservative 
for1n_ The TFP equation is a second-order non-linear partial differential equa­
tion of 1nixed elliptic-hyperbolic type. 
Besides the wrong modelling of strong shocks, another disadvantage of the 
'IFP equation is that contact discontinuities or slip lines cannot be modelled. 
It can be · y seen that no contact discontinuity can appear in an isenthalpic 
and isentropic flow .. 
Examples of discrepancies between potential flow solutions and solutions of 
the Euler equations can be found in [1,6]. Even at quite moderate Mach 
nurnbers, such as the NACA0012 · oil at Mach 0.8 and an angle of attack of 
1 .. 25 ° large discrepancies were observed. 

II. The Transonic Small Perturbation (TSP) e tion. 
The TSP equation is a simplification of the TFP equation and is therefore even 
more restrictive for general applications. The TSP equation is derived in the 
following way. Write the TFP equation as follows 

(1.4.12) 

Define 

(1.4.13) 

- -
u,v are called '' urbation'' velocity components. We assume that 
I u I, Iv I <<1 .. Substituting (1.4.13) in (1.4.12) and neglecting terms cont_aining 
sq1.iares of the perturbation velocities, in compa1~ison to those containing first 
powers, we obtain the si,npler equation 

(1-M~ )ux +vy =(y+ l)M~uux+(y-l)M~uvy + M~ v(iiy +vx) (1.4.14) 
-

where M 00 = Uoo le oo, Ux =--

by neglecting the last two terms in the right-hand side. The first te1m of the 
right-hand side of (1 .. 4.14) cannot be neglected in general. For instance, in 
transonic flow, where M 00 t-+l, the coefficient of ux, on the left-hand side, 
becomes very sroa11. Then it is not possible to neglect the first term on the 
right-hand side of (1.4.14). Thus the TSP-equation becomes (u =«f>x,v ==<J>q): 

• 

! 
j 

I 
I 
I 
, 

I 
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(1.4.15) 

or 

[(I-M2oo 'M>x -- (1.4.16) 

Finally, if the term with </>~ is neglected in the TSP equation (l.4.16), we 
obtain the linear equation 

(1-M2oo 'X>xx +<!>yy =O. (1.4.17) 

This equation f11,·riishes a useful approx:i1nation only for flows in which M is 
not close to 1 (subsonic or supersonic flows). 
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apter II 

Finite-V 0l11111e ....J pv • 1d Discr ation 

nations 

2.1. IN'I1tODUCI'ION 

The subject of this work is the nurnerical solution of the steady Euler equa­
tions in 2D. The numerical solution of the steady Euler equations consists of 
two separate parts; the discretization and the solution of the system of discre­
tized equations. In this chapter we consider the discretization while a solution 
method for the system of discretized equations is developed in the next two 
chapters. 
We have seen in chapter I that in general solutions of the steady Euler equa­
tions contain discontinuities (shock waves, contact discontinuities). At discon­
tinuities the differential fo1'1n of the Euler equations is not valid. On the other 
hand, the integral f ors·n is valid both at discontinuities and in the smooth part 
of the flow field. ·s observation suggests that it ...... · be better to base the 
discretization on the integral form instead of the differential fo11n. Let O c R2 

be the physical domain in which we wish to solve the steady Euler equations 
numerically. The differential for1n gives relations at each point (x,y)EO, while 
the integral forrn gives relations for each control volume O* CO. The Euler 
equations in integral f orn1 are 

where 

tu· ao· 

q ==(p,pu,pv,E)T 

f(q)==(pu,pu 2 + p,puv,(E +p )u )T 

g(q)==(pv,puv,pv2 +p,(E +p )v)T 

==O VO* cO (2.1. la) 

(2.1. lb) 

and O* is an arbitrary si1nply connected region in 0, (coscp,sin<t>)=n is the out­
ward unit nor111al on the boundary ao• . uation (2.1.1) is a direct conse­
quence of equations (I.I.I), (1.1.3) and (1.1 .. 8) derived in chapter I. Using the 
rotational inva1~iance of the Euler equations (see (1.3.2.4)) equation (2.1.la) is 
found to be equivalent with 

to· ao· 
(2.1.2) 

where T(f/>) is the rotation matrix 
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1 0 0 0 
0 COS</> sin'[> 0 

(2.1.3) T(<J>) 0 sin'[> C08q> 0 • 

0 0 0 l 

To discretize the integral fo1·1n, we subdivide the domain O into a finite 
n11111ber of disjunct control volurnes (or finite volur11es). Just for practical rea­
sons (na1nely simple implementation) we · use only finite volumes that are 
quadrilateral, and use only structured grids. A structured grid is characterized 
by the fact that each interior finite volume has a coinmon boundary with pre­
cisely,_four neighbours. 

J:>itrerent possibilities exist for the shape of the finite volumes. Triangular 
vol1J,nes are a reasonable choice as well. The use of quadrilateral finite volu:rnes 
has the advantage that, on a smooth 2D grid, discretizations of the Euler equa­
tions in ID can he genera]izcd in a straightforward manner. As a consequence 
of the choice of a structured grid with finite volu,nes we can order the finite 
volumes such that the neighbouring volu rnes of O;,j are 01 + I,j, Di,j + 1, Di -1,j 

and O;,j-1 · An e:xatnple of a subdivision of a physical domain a in disjunct 
quadrilateral finite vol11rnes is given in fig. 2.la where O is a windt11nnel section 
[12]. 
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FIGURE 2. la.. Subdivision of a windt1innel section in disjunct quadrilateral 
finite vol11mes. 

Once the domain '2 has been subdivided, we approxj rnate the integral fo1 rn in 
each vol111:ne Oi,j· Assurne that at time t, the mean values of a solution 
q =q(x,y,t) are known in each control vo]111ne i.e. the set { q;,i(t)} is known 
where 

1 
. ,,,nv (2.1.4) 

here V;,1 is the area of Oi,j· From equation (2.1.2) we see that 

anv 
(2.1.5) 

Hence, the space discretization is dete1·1r1ined by the way the total flux 

T(q,)- 1/(T(q,)q(x,y,t))da 
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is approxi1nated. Due to the fact that the control volumes have a quadrilateral 
shape, the total flux consists of four parts: 

T(cp)- 1/(T(cp)q(x,y,t))do= 

• T( ct>; + ½,J )- 1 f( T ( </>; + ½,j )q ( x,y, t) )d a+ 
an,+½J 

+ T(ct>;,J+ ½)- 1f(T(tP;,j+ ½)q(x,y, t))do + 
aov+~ 

T(cl>;-½,J)- 1/(T(cp;-½,j )q(x,y,t))do + 
aoi-~J 

T( <Pi,J - ½ )-
1 f ( T ( </>;,J - ½ )q( x,y, t) )d a (2.1.6) 

aoiJ-~ 

w~ere aO; + ½,J = aoi,J n oO; + i,J and </>, + ½,J is the angle between the outward 
1.1n1t no11nal on the bo11ndary oO;+ ½,J and the x-axis (see fig. 2. lb), and simi­
larly for the other three bounda1"ies. 

y 

-/---­----
I \ 
I \ 
I 1l,,j+1 I 
I \ 
J \ 
I ------ ---\ 

--- I 
I 
J 
I 
f --:".": l cos 1-t-\/l,l 

1 ni-,.J· ni,J ~"- -- , 
I I 

I n,+1.1 \ 
I ------------~----~----\ \ 

' \ \ \ 
I \ \ fl i,j-1 \\ 
\ \ 
\ \ 
I \ 
I -----------

X 

FIGURE 2.lb. Geometry of a control volume O;,J-

A very si lnple way to approxi 111ate the flux through aO; + ½,J is 

T(</>;+½,J)- 1/(T(.Pt+½,J)q(x,y,t))da~ d 

ani+¥,.j 

I;+ ½,j T(</>i+½,j)- 1f(T(c/>;+½,j)·½(q;,j(t) + q; + l,j(t))) (2.1.7) 

where 11 + ½,J is the length of boundary aa; + ½,j. F 01·111ula (2.1. 7) leads to a cen­
tral dj ff erence scheme on a Cartesian grid and is second-order accurate if the 
mesh is sufficiently smooth. This scheme is not resistent to high frequency 
oscillations between odd and even mesh points and dissipative te1·ms must be 
added to suppress spurious oscillations (wi es) of this type. Moreover, dissi­
pative te1111s are also necessary to prevent wi es in the neighbourhood of 
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shock waves. The nu1nerical solution of the (steady) Euler equations by a cen­
tral difference scheme with additional dissipative te1·ms is advocated by Jame­
son [9, IO]. An i1nportant drawback of Ja·rneson's scheme is that the dissipative 
ter111s must be tuned, i.e. the amot1nt of dissipation (or artificial viscosity) 
depends on the problem considered. But certainly, at the moment, Jarneson's 
scheme is the most widely used scheme for solving practical aerodyna11rical 
proble1ns. Another approach, which becomes more and more popular, is given 
by upwind schemes. Upwind schemes are based on the Riemann-problem and 
can be interpreted in the following way. First, ass1J1ne that each state q;,1(t) is 
constant in O;,i. Then, at the boundary oOi+½,J, the states q;,j(t) and q;+ 1,1(t) 
meet in a discontinuity. Fix the states q;,1(t) and q, + 1,1(t) at time t: q;,J = q;,1(t) 
and q;+1,j=q;+i,j(t). Notice that 

p p 
- -pu 
-pv 

pu ~ =q; + l,j (2.1.8) -pv 
E E 

i,j i + l,j 
' 

where u denotes the velocity component normal to oO;+½,J and v denotes the 
velocity component tangential to aoi+½,J (see fig. ~.le). 

-y -V 
'Pt+ ½,j -u -

X 

!) +I . 
I •J 

.Y 

X 

FIGURE 2.lc .. The boundary 001+½,j with 1 Cartesian frame (x,y). 

With respect to a new Cartesian fratne (i,y) (sec fig 2. lc) we consider the fol­
lowing Riemann-problem: 

-
q;,J = T( 'Pi + ½,J )q;,j 

q(x,O)= 
. q; + I,j ... _ T( </>; + ½,j )q; + I,j 

,.. 
x<O 

x>O 

(2.1.9) 
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As we have seen in section 1.3.1, the exact solution of (2.1.9) is a simiJa 1·ity 
solution; q(x,t)==qR(x!t). Thus the state at i =O, given by qR(O), is constant 
for all t>O. Then the flux at i ==O becomes f(qR(O)). Notice that j(qR(O)) 
represents the ar1:1011nt of mass, i-momentu1n, _y-momentum and energy tran­
sported per unit of length and time across aO;+½,j from O;,j to O; +I,J· There­
fore, the amount of mass, x-momentum, y-momentum and energy transported 
per unit of length and time across ani+½,j from fl;,j to a; +l,J is 

I O O 0 
0 cos<P;+½,j -sin<Pt+½,j O _ 
0 

0 0 
COS<p; + ½,j 

0 I 

(2.1.10) 

·s motivates the following approxirnation, as an alternative for (2.1.7): 

T( q>; + ½,j )- 1 j(T( </>, + ½,J )q(x,y, t))dor- J 

ani+½.j 

I -I;+ ½,j T( q>; + ½,j )- /( qR (0)) (2.1.11) 

where qR(x!t) is the exact solution of (2.1.9). 
For1nula (2.1.11) leads to the upwind scheme of Godunov [3,28] and is first­
order accurate, provided that the mesh is smooth enough. Godunov's scheme 
achieves high resolution of stationary discontinuities if the discontinuity is 
aligned with the grid. Then, the resolution is perfect in the sense that a discon­
tinuity has only one interior grid point (i.e. a finite volume). But Godunov's 
scheme has some severe disadvantages. The flux calculation (2.1.11) requires 
too much computational effort. The computation of the state qR(O) req11ires the 
numerical solution of a nonlinear algebraic equation [19]. Furthermore, the 
flux across aQ; + ½,J is not continuously differentiable with respect to the states 
qi~j and q; + 1,1. I J:ifferentiability of the flux is very desirable for the relaxation 
method for solving the system of discretized equations, as we shall see in 
chapter III. Due to these drawbacks of Godunov's scheme, new upwind 
schemes have been developed which are all based on an approximate solution 
of the Riemann problem (2.1.9). To introduce these schemes, we again con­
sider the Riemann problem 

(2.1.12) 

q(x,O)= 

Let /R(qL,qR) approximate f(qR(O)) where qR(x/t) is the exact solution of 
(2.1.12). The function/R:IR4 XR4 1--►R4 is called an approximate Riema.nn solver 
or nu1nerical flux function. Several approxjmate Riemann. solvers have been 
proposed. 
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Well known are the approximate Riemann solvers proposed by Steger and 
Wa1·ming [22], Van Leer [27], Roe [18] and Osher [16,17]. With a given approx­
i1nate Riemann solver /R the flux across the cell boundary aflt+½,j is approxi­
mated by 

l;+ ½,j T(</>;+ ½,j )- 1/R(T( c/>i + ½,} )qi,j, T( <Pt+ ½,j)qi + l,j) . (2. l .13) 

Notice that if /R(qL,qR)==f(qR(O)) with qR(xlt) is the exact solution of (2.1.12). 
then (2.1.13) is equivalent with (2.1.11) i.e. Godunov's scheme. 
Using (2.1.5), (2.1.6) and (2.1.13), we a,rive at the following se-midiscretization: 

-l;- ½,j T( $;- ½,j )- 1 /R(T( </>z - ½,j )q; -1,1(t), T( <Pt-½,j )q;,j(t)) + 

-li,J-½ T(<Pt,j-½)- 1/R(T(<Pi,j-½)q;,j-l (t), T(cJ>1,j-½)q;,1(t))=O. (2.1.14) 

The te1111 -

time dependent Euler equations. But in this work we restrict ourselves to the 

and we obtain the f ollowi.ng nonlinear system of discretized equations 

where 

I;+ ½,j Ti+1½,jfR(T;+½,jqi,j, Ti+½.,jqi + l,j) 

+ l;,i + ½ Ttj ;_ ½fR ( T;,j + ½ q;,j, Tt,j + ½ q;,j + 1) 

-l;- ½,j T;--1½,j/R(T;-½,jqi -1,j, T;-½,jqi,j) 

li,j-½TiJ~½fR(T;,j-½qi,J-1, T;,j-½qi,j)=O 

T; +½,i = T(<f,;+½,J) 

T;,J+½-T(<Pt,J+½). 

(2.1.15) 

(2.1.16) 

1'hroughout the remainder of this chapter, we shall use this abbreviated nota­
tion for T( (/>; + ½,j) etc. The system of discretized equations in the interior of the 
grid is dete1 anined complete! after the construction of an approxj mate 
Riemann solver fR :R4 X R4 ..... R . 
The construction of an approxin1ate Riemannn solver is the main topic of the 
next section. It · appear that, for our purposes, Osher's approxir11ate 
Riemann solver is the best. 
In section 2.3 we consider the treatment of bo11ndary conditions. Just as the 
Riemann problem is the underlying physical model for the flux computation at 
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interior finite volti rne bounda1:ies, the Riemann boundary problem is the 
underlying physical model for the flux computation at finite volume boun­
daries which are pa, t of the boundary of the domain 0. 
In section 2.4 we consider the linea I iz,ation of the discretized equations. Local 
linearization is used in the nonlinear relaxation method for solving the system 
of discretized equations. 
In section 2.5 we consider the accuracy of the space discretization. It 
appear that the space discretization (2.1.15) is only first-order accurate. First­
order accuracy is too low in regions where the flow is smooth, and for the 
resolution of oblique (with respect to the grid) shocks or contact discontinui­
ties. Therefore, the scheme is extended to second-order accuracy. In general, 
solutions of second-order schemes suffer from sp111 ious oscillations in the 
neighbourh of discontinuities. To prevent these oscillations a monotonicity 
con t is introduced and it is shown that it is possible to construct monotone 
second-order accurate schemes. Solutions of monotone second-order accurate 
schemes are second-order accurate in smooth parts of the flow field and admit 
st.,..:;, oblique discontinuities without showing under- or overshoot. 

In the publications [7,8,20,21] a large part of the contents of this chapter can 
be found. 

2.2. APPR TE SOLUOON OF 'IHF: R1F: PROBLEM 

2.2.1. GENERAi, OBSERVATIONS 

In this section we concentrate on the approxirnate solution of the Riemann 
problem. First, we consider the Riemann problem for a scalar hyperbolic 
equation and then for a hyperbolic system. Furthe1 r·nore, we distinguish linear 
and non]inear equations. In the linear case, an approxi rnate solution of the 
Riema.nn problem is not necessary; an exact Riemann solver is easily obtained. 
In the nonlinear case, we generalize the exact Riemann solver of the linear 
case. The generalization can be perf 01 rned in several ways and leads to 
different approximate Riema.nn solvers. The most simple generalization is the 
flux-splitting method; examples for the Euler equations are the method of 
Steger.a-& Wa1·ming [22] and Van Leer [27]. A more refined approach is the 
flux-djfference-splitting method; examples for the Euler equations are_the 
method of Roe [18] and Osher [16]. We shall prefer Osher's approxiinate 
Riemann solver, which is described in detail in section 2.2.2. 

I. Approximate solution of the Riemann problem for a scalar hyperbolic equa,tion. 
Consider the Riemann problem 

a a 
(2.2.1. l) 

with 
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and q:R xR+ i-+R,/eC1 :R1-+R. First, we consider the linear case i.e. f (q)=aq 
where a eR is constant. Then q is constant in the characteristic direction 

a. 

qL if x=at<O 
(2.2.1.2) 

Thus 

(2.2.1.3) 

and f(q(O,t))=a+ qL +a- qR where a+ =max(a,O), a- =r11in(a,O). Hence, the 
exact Riemann solver is 

/R(qL,qR)=a + qL +a- qR. (2.2.1.4) 

In the non]inear case, the exact Riemann solver is also very si111ple when f ( q) 
d ~ d 

Hence, = -- ..- _ --...: exact Riemann solver is 

simply fR(qL,qR)=f(qR). ·s result motivates the flux splitting method where 
the function f ( q) is split in a forward and a backward flux: 

f(q)=f+ (q)+ 1-(q) (2.2.1.5) 

where 

d 
dq 

The approxi1nate Riem.ann solver fR(qL,qR) is taken to be 

fR(qL,qR)= (qL)+ f-(qR). 

(2.2.1.6) 

(2.2.1.7) 

In the following exa111ple, we show how to split the function f (q). Further­
more, we show the difference between the exact Riemann solver and the 
approximate Riemann solver (2.2.1. 7), see also [28]. 

LE (2.2.1 a). The inviscid Burgers' equation. 
We consider (2.2.1. l) with f ( q) = ½q2 • With this choice for /, eq. (2.2.1.1) is 
the inviscid Burgers' equation. The function f(q)=½q 2 can be split in a for­
ward and backward flux as follows 
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where 

/+(q)=½{q+}2; (q) ½{q-}2 

q + ==max(q,O) ; q- ==rrajn(q,O). 

Then the approxi1nate Riemann. solver becomes 

fR(qL,qR) == (qL)+ f-(qR)== ½{ qt }2 +½{qi }2 . 

It is easily seen that /R(qL,qR) is continuously differentiable. 
In this case the exact solution of (2.2.1.1) is not difficult to obtain. Notice that 

guish the cases qL ~qR and qL>qR- When qL ~qR the exact solution of the 
inviscid Burgers' equation is the sirnple wave (or rarefraction wave) solution 

qL if x/t~qL 

q(x,t)== xlt if qL <xlt<qR 

qR if x/t'?:qR . 

When qL>qR the exact solution is a shock wave. From the Rankine-Hugoniot 

flt 1S 

Hence, the exact solution is 

qL if xlt<½(qL +qR) 
q(x,t)-

From these exact solutions it can be derived that the exact Riemann solver 
.fl(qL,qR) becomes . 

.fl(qL,qR)==max{ ½(qt )2 , ½(qi )2 }. 

Of course, .fl(qL,qR) corresponds with the Godtin.ov scheme for the inviscid 
Burger's equation. The function .fl(qL,qR) is not continuously differentiable. 

Now, we show that a steady shock has only one interior grid point with 
Godunov's scheme and two interior grid points with the flux splitting scheme. 
Consider a sequence { q; }; ez.. This sequence is a steady solution of Godunov's 
scheme when 

.fi(q;,q; + l )=fl(q; -1 ,q;) ~i EZ. 

A sequence { q;} of the form 

qL i~-1 

qM i ==O 

qR i'?-} 

(2.2.1.8) 
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is a solution of Godunov's scheme when 

• 1.e. 

½qt =111ax(½{ql }2 ,½{qit }2)= 

==max(½{qtt }2,½{qi }2)=½q7<. 

From this equation we see that 

qL <0 ~ qM=qL, qR qL 

qR>O ~ qM=qR, qL=qR 

(2.2.1.9) 

Thus, a shock structure is only possible when qL>O,qR<O,qR== -qL. ua­
tion (2.2 .. 1.9) is n1Jfilled for all qR<qM<qL. Hence, we have a shock with one 

• 

interior grid point. 
A shock structure with two interior grid points is not possible. The deriva­

tion is analogous with the derivation that a three point shock structure is not 
possible for the flux-splitting scheme, as is shown er on. 

A sequence of the fo11n (2.2.1.8) is a solution of the flux splitting scheme 
when 

½ L=½{qt }2 +½qM }2 =½{qt }2 +½{qi }2 ==½qk 

From · equation we see again that 

qL <0 ~ qM=qL, qR ==qL 

qR>O > qM=qR, qL=qR 

(2.2.1.10) 

Thus, a shock structure is only possible when qL >0, qR <0,qR == -qL: na­
tion (2.2.2.10) is fulfilled only if qM - 0. · s is a special case of the general 
shock structure with two interior grid points. A sequence of the f ortn 

qL i~-2 

qA i= -1 

qB i=O 

qR i;>. I 

is a solution of the flux-splitting scheme when 

½qi= 1/2(,qt )2 + ½(qi )2 = ½(ql )2 + ¥.z(qi )2 = 
= 1/i(q; )2 + ½(qi )2 == ½qi 

Frem this eqt1ation we see that 

qL <0 ~ qA ==qL, qB =qL qR =qL 

qR>O ~ qB=qR, qA =qR, qL=qR 

thus~ a shock structure is only possible when qL > 0, qR < 0, qR = - q L. 

(2.2.1.11) 

uation 
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(2.2.1.11) is fu1fi11ed when qA >0,qB <0, ½q1 + ½q~ = ½qi. Then, we have a 
shock with two interior grid points. We shall show that a shock structure with 
three interior grid points is not possible. For such a structure we must have 

½ L = ½(qt )2 + ½(qj )2 = ½(qJ )2 + '/i(qi )2 = 

(2.2.1.12) 

When qL<O, or qR>O then qA=qB=qc=qL=qR. Thus, suppose 
qL>O,qR == -qL <0. Then (2.2.1.12) is f1ilfi)]ed when qA >0,qc<O and 

½qi== ½q~ + 1/i(qi )2 = ½(qi )2 + ½q~ == ½qi 

Thus qB>O~qA ==qL and qB<O >qc==qR. Hence, no shock structure with 
three interior grid points is possible .. 

II. Approximate solution of the Riemann problem for a hyperbolic system. 
Consider the Riemann problem (1.3.1.7) for a general hyperbolic system. 
First, suppose f (q) is a linear function f (q)==Aq where A is a constant n Xn 
matrix. Then the exact solution is (see example 1.3.la,b): 

n 
q(x,t)= ... {/31H(x-Att)+a1(1-H(x-A1t))}Rt 

i =1 

n n 
where qL = a.1R1,qR = /31R1• Suppose A1 ~ · · · ~Ak ~O<Ak + 1 ~ .. · • ~An. 

i=l i=1 
Then 

k n 

q(O,t)= /3;Ri + a.iR;. (2.2.1.13) 
i = I i =k + l 

and 

/( q(O, t)) =Aq(O, t) 
k n 

/J;A;R; + a.;A;R;. (2.2.1.14) 
i =1 i =k + 1 

Define the nonsin ar matrix R =(R 1 • • • Rn) and the diagonal matrix D by 
D;; =A;,i = 1, ... , n. Thus A =RDR - I. Define the diagonal matrices 
D+ ,D- and IDI by 

D;t =A;+ ;D;-; =X,, Dltt = IA1I i = 1, ... , n 

A+=RD+R 1,A-=R.D_R_ 1 and jA ==RIDIR- 1• 

n n n 

A+ qL =A+ ( a;R;)= a;"A;+ R; = ai'A.;R; (2.2. l .15a) 
i = 1 i = I i =k + 1 

and 
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i=l i = l 
Combining (2.2.1.14) and (2.2.1.15) we find that 

j(q(O,t))=A + qL +A - qR 

Thus, the exact Riemann solver is 

(2.2. 1·.15b) 
i =l 

(2.2.1.16) 

.. 
. 

/R(qL,qR)=A + qL +A - qR =½{AqL +AqR-IA l(qR -qL)} (2.2.1.17) 

This expression is a genera11zation of (2.2.1 .. 4). Thus, even for systen1s, the 
exact Riemann solver is easily obtained when the equation is linear. 

Finally, we have to consider the Riemann problem for a general nonlinear 
hyperbolic system. The most si111ple approach is the flux splitting method 
where f :Rn ..... Rn is split in a forward flux · :Rn.-+Rn and a backward flux 

: Rn 1-+R11 such that 

j(q)= (q)+ (q) VqERn (2.2. l. l 8a) 

and 

d - has all eigenvalues ~O 
dq 

4r-
• 

dq 

(2.2.18b) 
has all eigenvalues ~O 

Then, the approxianate Riemann solver fR(qL,qR) becomes 

(2.2.1.19) 

This expression can be considered as a generalization of the scalar case 
(2.2.1. 7) and the linear case (2.2.1.17). 

The splitting of f(q) in a fo1ward- and backward flux is not 11nique. Flux­
splitting methods for the Euler equations have been proposed by Steger & 
Wat"ming [22] and Van I.eer [27]. In contrast with the Steger &a-_Wat·ming 
flux-splitting, Van r's flux-splitting leads to a continuously differentiable 
fo1ward and backward flux. As noted before, differentiability of the approxi­
mate Riemann solver /R(qL,qR) is desirable in the relaxation method for solv­
ing the system of discre · equations. (Newton's method is applied in the 
relaxation method). Therefore, Van J..ecr's flux splitting method is preferable 
to Steger & Wa•·ming's method. The requirement that /R(qL,qR) is continu­
ously dlfferentiable is very restrictive. y Van Leer's method and Osher's 
method result in a continuous differentiable approxi·anate Riemann solver, the 
other well known approxi1nate Riemann solvers of Steger & Wa1·1ning and Roe 
do not. 

Osher's method can be seen as a refinement of the flux splitting method and 
can be underst in the following way. Because (1.3.1.7) is a hyperbolic sys-
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R1(q), ..... ,Rn(q) with corresponding eigenvalues i\1(q), ... ,An(q) labeled in 
increasing order A1 (q)~ · · · ~A,,(q). Define the nonsin ar matrix 
R(q) . (R 1(q), ... ,R,,(q)) and the diagonal matrix D(q) by (D(q));,t=A;(q). 
Just as in the linear case, introduce the diagonal matrices D + (q),D-(q) and 
ID (q): 

(D + (q)),,; ==A,+ (q) ; (D- (q))i,i ==A;-(q) 

( ID I ( q) ); , ; = IA; ( q) I ; i = I, . . . , n 

where A;+ (q)==max(A;(q),O);i\;-(q)= min(A;(q),O). 
Introduce 

A +(q)=R(q)D+(q)R- 1(q) 

A-(q)=R(q)D-(q)R-1(q) 

~ l(q)=R(q)IDl(q)R- 1(q)==A + (q)-A -(q) 

Suppose there exist functions f+ (q) and f-(q) such that 

j(q)==f+ (q)+ 1-(q) 

and 

=A-(q). 

Then, a natural approxin1ate Riemann solver is 

fR(qL,qR)==j+ (qL)+ (qR) 

which can also be written as 

(2.2.1.20) 

(2.2.1.21) 

(2.2. l .22a) 

(2.2. l .22b) 

(2.2.1.23) 

(2.2. l .24a) 
qR 

(qL)+J-(qR)=f(qL)+ A-(q)dq (2.2.l.24b) 

qR 

=f(qR)-f+(qR)+ (qL)==f(qR)- - A +(q)dq (2.2.1.24c) 

qR 

=½{f(qL)+f(qR)- IA(q)ldq} (2.2. l .24d) 

and the integrals in (2.2. l.24b,c,d) are indepet1dent of the integration path. 
Notice that the integrals are evaluated in the state space i.e. in Rn. Unfor­
t11nately, in ge11eral no functions (q) and (q) exist such that (2.2.1.22) is 
valid. 'I'his is equivalent with the observations that the integrals 

q.R qR 

A-(q}dqand A+(q)dq (2.2.1.25) 

depend on their integration path. Now, Osher's scheme is defined as 
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qR. 

/R(qL,qR)=f(qL)+ A - (q)dq (2.2. l.26a) 

qk 

=f(qR)- A+ (q)dq (2.2. l .26b) 

qR 

=½{f(qL)+ f(qR)- IAl(q)dq} (2.2. l.26c) 

where the integration path is chosen in such a way that the evaluation of 
(2.2.1.25) is easy. 

Suppose that the states qL and qR can be connected with each other by an 
integration path rk which is tangential to the eigenvector Rk i.e. 

• 

(2.2.1.27) 

Then, we see that 

0 

A - (q(f))Rk(q(E))dt 
0 

tit 
Ak (q(t))Rk(q(E))d~ (2.2.1.28) 

0 

Let us distinguish the following possibilities: 
A ~(q(E)) does not change sign along the integration path. 

H Ak(q(~);>-0 \f~e(O,~R) then 

(2.2.1.29) 

tr 
Ak (q(~)Rk(q(E))d~ 

~ 

Ak(q(f))Rk(q(f))d~ 
0 

~ 

A (q(E))Rk(q(~)d~ 
0 
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(2.2.1.30) 

B Ak(q(E)) changes sign along the integration path. 
Suppose "-k(q(E)) changes sign only once at ~=~s O<~s<~R- Define 
qs ==q(~s). 
If Ak(q(~))~O VcEe(O,~s) and i\.k(q(~))~O V~E(~s,~R) then 

qR ~R 

A - (q)dq = i\.k (q(O)Rk(q(~))d~ 

~ 

Xk(q(f))Rk( q(f.))d~=f(qR)-f(qs) 
~ 

If Ak(q(~)~O v'~E(O,~s) and i\.k(q(~)~O V~E(~s,~R) then 

qR ER 
A - (q)dq = Ak (q(E))Rk(q(~))dt 

0 

~ 

"A.k(q(f))Rk(q(t))d~==f(qs )-/(qL) 
0 

(2.2.1.31) 

• 

(2.2.1.32) 

Thus, when the states qL and qR can be connected with each other by an 
integration path which is tangential to the kth eigenvector Rk(q) then Osher's 
approxi 111ate Riemann solver is 

if "-k ~ 0 along I' k 

if i\.k ~ 0 along f k 

if "-k(qL)<O, Ak(qR)>O, "A.k(qs)=O, 

where we have assurned that Ak changes sign along r k at most once. The 
point q8 is,.. ed a sonic point. If the eigenvector Rk(q) is genuinely nonlinear 
(see definition 1.3.1.c) then 

d == d 

(2.2.1.34) 

and this i1nplies that i\.k is monotone along rk. Thus if Rk(q) is genuinely 
nonlinear then indeed Ak changes sign along r k at most once. If the eigenvec­
tor Rk(q) is linearly degenerate then A.k is constant. along rk. Then, we find 

qR = 0 _ if i\.k >0 
(2.2.1.35) 



46 

and 

= 
r f(qi) if A1c >0 

(2.2.1.36) 

A general pair (qL,qR) can be connected by a continuous integral path r 
which is decomposed into n subcurves r k: 

n 
r -~~ u r k (2.2. I .37) 

k =1 

where each su e rk is tangential to the eigenvector Rk(q). The subcurve 
f 1 starts in q1.. q0 and the subcu.rve r,, ends in qR=q1. Define the n -1 
points of intersection q1c 1,,, k .. -1, ... , n - l by 

qkln ""•f1c nfk+I· (2 .. 2.1.38) 

The intersection points are easily found with the use of Riemann invariants 
(see definition 1.3.ld); along the subcurve rk the Riemann invariants 
Vil, ... , 1./ii- • (\f;t :R" ..... R) are constant, then 

4'k(qk-l!n)=l/Jk(qk1n);¥1l(qk-l!11)=l/Jt(qk1n); • · · · · · 

(2.2.1.39) 

Int.his way, we obtain n(n-1) equations for the n(n-1) u owns 
q 1,,,, • .. • , qn. - 1,... Once the points of intersection are known, the integrals in 
(2.2.1.26) along each su e rk are evaluated in the manner described by 
(2.2.1.27--32). 

This approximate Riemann solver fR(qL,qR) differs somewhat from the 
approxi111ate Rie ... · solver proposed by Osher. Osher proposed a reverse 
ordering of the subcurves rk, i.e. the subct}1·ve fn starts in q0 and the sub­
curve f 1 ends in q 1• Then n -1 points of intersection qkin,k = 1, .... , n -1 
are defined by 

qk In .. ,, f n -Jc + 1 n f,, -k k = 1, ... , n - I 

and are found by 

(2.2.1.40) 

t./J! ·-k + I (qk -1/n) =f!-k + l (qk1n);t/l;, -k + l (qk -1/n) =l/J~ -k + 1 (qk1n) ... 

v,,: :l: + l (q1c -l/n)=t/1: :} + l (qk1n); k = 1, ... , n (2.2.1.41) 

The computation of the integrals in (2.2.1.26) along each subcurve rk remains 
the same. The only difference is the reverse ordening of the su bcurves. 

We call the ordening corresponding with (2.2.1.38,39) the P-(Physical) vari­
ant and the ordening corresponding with (2.2.1.40,41) the 0-(0sher) va1iant. 
The P-variant is more natural in the sense that when the states (qL,qR) are 
such that the exact solution of the Riemann initial value problem contains no 
shock waves then the flux [R(qL,qR) corresponding with the P-va,iant is exact. 
On the other hand, Osher clai .. ms that (in the case of the Euler equations) his 
ordening rules out overshoot in the two point transition region between the 
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constant states of a steady discrete shock [16]. However, it is our experience 
that both for the 0- and P-variant a steady shock is monotone (no overshoot) 
and has two interior grid points. The construction of the integral path r 
corresponding with the 0- and P-variant are depicted in fig. 2.2.la for n ==3 . 

• 

P-variant 0-variant 

FIGURE 2.2.la. The integral path r corresponding with the P- and 0-var··iant 
for n =3. The Riemann inva1:·iants ¥'k,1Pi :R3 .... R are constant 
along the subc1:.,ve rk,k= 1,2,3. 

Finally, we have to explain· why Osher's approxi1nate Riemann solver (with 
the 0- or P-var·jant) is the most attractive for our purposes. In the following 
table some i1nportant properties are listed for several well known approximate 
Riemann solvers for the Euler equations. 

1 
2 

3 

4 

5 

fR(qL,qR) is C 1 
• 

Number of interior 
grid points in a 
steady shock. 
Good resolution of 
a steady contact 
discontinuity. 
Physical inad111issi­
ble expansion 
shock is excluded. 
Computational cost 
of /R(qL,qR). 

God11nov Osher 
no 
one 

yes 

yes 

high 

yes 
two 

yes 

yes 

low 

Van Leer 
yes 
two 

no 

yes 

low 

Roe 
no 
one 

yes 

(no, but can 
be repaired) 

low 

As noted before, we need differentiability of /R(qL,qR)- Further1nore, we need 
the property that a shock has at least two interior grid points. If a shock has 
only one interior grid point the discretized equation becomes sin'"" ar at a 
shock (see equation (2.2.1.9); if qL >0,qR == -qL the equation is satisfied for all 
qM with qR <qM <qL). 'I'bis is disastrous for a (local) relaxation method for 
solving the system of discretized equations. Therefore, Roe's and Godunov's 
method do not suit our p oses .. A choice must by made between Van Leer's 
and Osher's approximate Riemann solver. We prefer Osher's method because 
it has the ability to resolve steady contact discontinuities. Furthe1more, as we 
shall see in section 2.3, with Osher's scheme, the flux computation at the 
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bo11ndary of the domain can be perfor111ed in a way fully consistent with the 
flux calculation at interior control vol111ne boundalies. The only disadvantage 
of the Osher scheme is its complexity (from a computational point of view). 
In the next section we shall show that the computational complexity can be 
reduced si · cantly by choosing suitable independent va ,·iables. Both the 0-
and P-variant are considered. 

2.2.2. 0SIJER'S APPRO N SOLVER FOR. 'l'BE EULER EQUATIONS. 

Consider the Riemann problem (1.3.2.14) for the Euler equations. In the 
prec · g subsection we have seen that Osher's approxi11·1ate Riemann solver is 
given by 

qlt 

fR(qL,qR)==f(qL)+ A-(q)dq 
qL 

qR 

==f(qR)- A+ (q)dq 

• 

IA(q)ldq} (2.2.2.1) 

The integrals are evaluated in the state space R4 • Let the state q be 
represented as q ==(c,u, v,z) where z is the unscaled entropy: 

z =In ( .L) (2.2.2.2) 
p'Y 

First, consider the P-variant of the Osher scheme. 

P-Variant. 
Define qo=•qL,q 1=qR and the intersection points 

q114 =r 1 n f2; q214 ==f 2 n f 3; q3,4 =f 3 n f 4 . 

Due to the fact that R2(q) and R 3(q) are linearly degenerate (theorem 1.3.2.c) 
and X2(q)=A3(q)=u, we can omit the intersection point q214 because 

f(q214)-/(q114) if u<O 
A-(q)dq- Oifu>O 

f2 

Thus 

A-(q)dq= A -(q)dq+ A-(q)dq 
~u~ ~ ~ 



f(q314)-J(q114) if U <0 
0 if u>O 
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Hence, /R(qL,qR) does not depend on q114 . Therefore, we redefine the inter­
section points 

q 1/3 -q l/4, q2;3 q3!4· 

Thus q 113 and q0 are connected by f 1,q213 and q1 are connected by f4 and 
q 113 and q213 are connected by an integral path that is composed of r 2 Ur 3 . 

Using the Riemann invariants mentioned in theorem (1.3.2.d), we find that 

2 == 2 

Vo -V 1/3 
• 

Zo -z 1/3 

P 113 P213 

2 2 
y-} C213 

Z 2/3 =z I (2.2.2.3) 

We have 8 equations for the 8 u owns q 113 and q213 • We obtain directly 
z 113 ==zo, z213 -z 1, v 113 ==vo, V213 =v 1- Because 

z l 

Cy 

p 113 -p213 leads to 

C213 == Z 2/3 Z 1/3 (2.2.2.4) 
Ct/3 

We a,·rive at the linear system 

2 

(2.2.2.5) 

·s system is easily solved: 

Cl/3 
-y-1 'Yo -'1'1 

C213 == ac 113 
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(2.2.2.6) 

A meaningful solution does not exist in the unlikely case that 'Ir O -'I' 1 <0 .. 
Thus the evaluation of just one exponential and some a ri etic operations 

are sufficient for the computation of q1;3 and q213. This is made possible by 
the representation of the state q as q ==(c,u, v,z). 

For the evaluation of the integrals in (2.2.2.1) we may need the sonic points 
on f 1 and f4. 

A sonic point qi exists along r 1 when 

A1 (qo) At (q1,3)==(uo -co) (un-c1;3)<0 (2.2.2.7) 

and is found by 

2 == 0 2 0 

vo=vi 

zo=zi 

ui-ci==o 

Thus vi=v0 ,z~=z0 and 

ui= 

A sonic point q} exists along f 4 when 

A1(q2,3) A1(q1)=(un+c2,3)(u1 +c1)<0 

and is f 011nd by 

l 2 1 == Us - C U y-l S I 

v! =v 1 

z}=z 1 

u}+c}=O 

Thus v}. v1,z}=z 1 and 

u}=-

2 
'Y-1 Ct 

2 

(2.2.2.8) 

(2.2.2.9) 

(2.2.2.10) 

(2.2.2.11) 

(2.2.2.12) 

With these results the evaluation of the integrals in (2.2 .. 2.1) becomes straight­
f 01 ward. The result is sum.mar ized in table 2.2.2a. The verification is left to 
the reader. 

• 



51 

Uo<Co,U1 >-cl Uo>co,U1>-c1 Uo<Co,Ui <-cl Uo>Co,U1 <-cl 
•• 

/(ifs) f(qo) /(</!) - /( q O )--f(q¼}+ f(.q ~ )" . C113 <un f(q!--) +· '( l) 
.. 

O<uH<c,,3 /(q1,3) fiqo)-/(IA)+ /(q1,3) f(qr,3)--:J(q1·)+ /(q1) /(qo)-:::-f('[J) .. ±/(q1✓3) 
/( q!)" + /(q ;J ... ~···· •• .. 

-c213 <ua<O /(q213) f<qo)-/(t/J)+ /(q213) /(q213)-/(q1)+ j(q1) /(qo)-/(</i)+ /(q·Z✓3) 
- /(qi)+ /(q,) 

Un<-cz,3 /(q1) f(qo).~flf/!;1·+ /(ql) /(q1) /( qo)-J(q'j )+/(qi ) 

Table 2.2.2a. Osher's approximate Riemann solver JR(q0,q1) for the Euler 
equations: P-var·iant. 

Table 2.2.2a is to be read in the following way: if, for instance, 
(u 1 > -ci ,uo >co and O<un<c1;3) then JR(qo,q 1)==/(qo)-/(qi)+ j(q 113). 

The case uo>c0,u1<-c1 is very unlikely while the case u0<c0,u1>-c1 
is the com1non subsonic situation. Then /R(q0,q1) requires only one flux cal­
culation. The case (u 0 >c0,u 1 >-c1 and u8 <0) is unlikely too, just as the 
situation that (u 0 <c0 ,u 1 < -c 1 and uH >0). The situations (uo >co,u 1 > -c 1 

and un >c1,3) and (uo <co,u 1 < -c1 and uH< -c213 ) correspond with super­
sonic flow. The situations (u0 >c0 ,u 1>-c 1 and O<uH<c 113 ) and 
(u0 <co,u 1 < -c1 and -c2;3 <u8 <0) correspond with a shock wave. 

From table 2.2.2a it is easily seen that /R(q0,q 1) is continuous. 
The flux 

f(q)=(pu,pu 2 +p,puv,(E +p)u) 

is computed from the state q = ( c, u, v, z) as follows: 

a ;p 
y 

p =ap;E==½p(u2 +v2)+p/(y-l). (2.2.2.13) 

Thus, in the conrmon situation where the computation of /R(q0,q1) requires 
only one flux computation, the computation takes two exponentials, one loga­
rithm and some elementary operations and Boolean evaluations. This is not 
true for the O-va1~iant, as we shall see. 

0-Variant 
Define q0 ==qL,q 1 =qR. Introduce the intersection points q113 and q2;3;qo and 
q 113 are connected by f4,q2,3 and q 1 are connected by r1, and q1;3 a11d q2;3 

are connected by an integration path that is composed by r 2 U r 3. Using the 
Riemann invari.ants we find 

Uo 
2 

y-1 Co 

Z O Z 113 

2 
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. 
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P113 P213 

2 = 2 

(2.2.2.14) 

Hence, z113==z0,z213 =z 1,v 113 ==v0 , c 213 ==ac 113 where a is given by (2.2.2.4). 
We ar·rive at the linear system 

2 
UH y . 

2 

and this system is · y solved by 

Ct/3 2 l+a 

C213 =a.c113 

'¥1 +a'Yo 
un= 1 +a 

'(2.2.2.15) 

(2.2.2.16) 

A meanin solution does not exist in the unlikely case that v 1 -v0 <0. 
A sonic point q~ exists along r 4 when 

~(qo)·~(q1,3)=(uo +co) (uH +c1;3)<0 (2.2.2.17) 

and is found by 

2 
u~ Uo I co y 

Vo v~ 

z0 =z~ 

u~+ci=o 
Thus v~ =v0 ,z~ =z O and 

2 ci 
1 y 

y+l 

A sonic point q} exists along f 1 when 

2 

A1 (q213)A1 (q1)=(uH-c213Xu1 -ci)<O 

and is found by 

l 2 I= 2 

(2.2.2.18) 

(2.2.2.19) 

(2.2.2.20) 



v}=v 1 

z}=z 1 

u}-c}=O. 

Thus v1=v1,z}=z1 and 
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(2.2.2.21) 

(2.2.2.22) 

With these results, the evaluation of the integrals in (2.2.2.1) becomes straight­
fo1ward. The result in su111rna,·ized in table 2.2.2b and the verification is left 
to the reader. 

u0 >-co,u 1 <c1 ua>-co,Ui >ct u0 <-c0 ,u 1 <c1 u0 <-c0 ,u1 >c1 

C;u3<Ue /(qo)-/(q1)+ /(qi) /(qo) /(<A)-/{qi)+ '"(Qi) /(¢1) 

O<un<c213 /(qo)-/(q213)+ /(qi) /(qi)-/(q213)+ /(q1) /(<A)-f(q213)+ /(q1) f(tfl;)-/(q-;.,3)+ f(qk) 

-c1,3<uH<O /(qo)-/(q1,3)+ /(q1) /(qo)-f(q,,3)+ /(q1) /(<A)-f(q1,3)+ /(qi) f(q'J;)- /(q1,3)+ /(q1) 

UH<-C113 /(qo)-/(t/1)+ /(qi) /(qo)-/(</!;)+ f(q}) /(qi) f(qk) 

Table 2.2 .. 2b. Osher's approximate Riemann solver j(q0 ,q 1) for the Euler 
equations: 0-var·iant. 

Thus, for the O-va1:iant, the computation of fR(q 0,q 1) is found to be a sum 
of three tern1s /(q) in general. Therefore, the computation of fR(qo,q1) takes 7 
exponentials, 6 loga1i and some elementary operations and Boolean 
evaluations. From the point of view of efficiency the P-va1·iant is preferable to 
the 0-vaa·iant. From table 2.2.2b it is easily seen that /R(q0,q 1) is continuous. 
Finally, we mention the following theorem: 

'l'H EOREM (2.2.2a ). 
Osher's approximate Riemann solver /R(q0,q1) (P-variant or 0-variant) has the 
following properties: 

(i) [R(q,q)=f(q) 

for all issible state q, 

(ii) /R(qo,q1)+EJR(Eq1,Eqo)=O 

for all admissible states q0 ,q 1, where Eis the reflection matrix 

E-

PROOF. 

I 
0 
0 
0 

0 
-1 

0 
0 

0 0 
0 0 

-1 0 
0 l 

(2.2.2.23) 

(2.2.2.24) 

(2.2.2.25) 

These relations are evident from a physical point of view. The mathematical 
verification of these relations requires straightf 01 ward but tedious calculation. 
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D 

• 

Toe relations (2.2.2.23,24) are not typical for Osher's approximate Riemann 
solver. Other approxirnate Riemann solvers should obey these relations too, in 
order to be consistent with the differential equations. 

2.3. SOLUTION OF 1Hf: BOUNDARY PROBLEM. 

2.3.1. 0sHFJl'S l\lEtHOD. 

In sections 2 .. 1 and 2.2 we have discussed the space discretization of the steady 
Euler equations in the interior of the physical domain O according to Osher's 
method. 

In this subsection we consider the computation of the flux at finite-volu111e 
bo11ndaries which are part of the botindary of 0. One of the merits of Osher's 
method is that this can be perfo1·1ned in a fully consistent way with the interior 
flux computation. 

Suppose O;,j is a control vo1111ne and aO;+½,j is partofaO (see fig .. 2.3.la). 

fl,,J + I 

o, - 1,j 

• 

}' 

n,.1 - i 

X 

FIGURE 2.3.la. The boundary oO;+½,jcaO with 1 Cartesian fratne (x,y). 
In the sa111e manner as for interior control vol11rne bo11nda1·ies (see fig. 2.lc and 
(2.1.9) ) we choose a I ~# Cartesian frame (i,j,) and consider the Riemann 
botindary problem 

~ 

q(x,o)=q;,j-T; +½,jqij x<o (2.3.1.1) 

and boundary conditions B(q-)fx---0 =0 WI.th B·R4~R1 where lE[O 4] 
, • l"""7 ' ' ••• , 

• 
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denotes the nu:rober of bo11ndary conditions. Note the use of the abbreviated 
notation It+ ½,j = T( 'Pt+ ½,j ). Suppose that the bg11ndary conditions are such 
that there is a unique solution q==q(x,t), x<O,t>O. Then the solution is a 
sirniJa1ity solution q(x,t)==qR(x/t). 

Godunov's scheme uses the exact solution and the flux fi+½,j at aO;+½,i 
becomes 

I'_+ ½ . = /. + ½ . Ji ,] l ,] (2.3.1.2) 

(Compare this foranula with (2.1.11)). In Osher's scheme, an approximation 
</i+½,j of </R(O) is constructed and the flux/;+½,J at oQi+½,J is taken as 

I -
/;+½,i =11+½,J Tt+½,Jf(qz+½,J) (2.3.1 .. 3) 

The construction of q; + ½,J is the main topic of this subsection. In this subsec­
tion we consider the approximate solution of the Riemann boundary problem 
for a general hyperbolic system. In the next subsection (2.3.2) the results are 
applied to the Euler equations. Consider the Riem.ann boundary problem for a 
general hyperbolic system: 

k+ a =O 

q(x, O)=qL 

B (q)lx =O ==O ; B :1Rn1 ►R1 

x<O, t>O 

x<O 

where q=(q1, ... ,qn)TERn,/:Rn1 >Rn,/EC1. 

(2.3.1.4) 

As an example we first consider the linear case j(q)=Aq, where A is a con­
stant n Xn matrix (see examples (1.3.la,b)). Assume that the eigenvalues 
{ A; } ; = 1, _ . _ , n are such that A 1 ~ • • • ~ Ak < 0 < A.k + 1 ~ • • • ~ An . The exact 
solution of (2.3.1.4) is a si,nila1·ity solution q(x,t)==q(x/t). Represent qL and 
qB == q(O) with respect to the base of eigenvectors { R 1, •.. , Rn}; 

n n 

qL = a;R; , qB == /J;R; . (2.3.1.5) 
i -1 i =1 

From the exact solution of the pure initial value problem ( 1.3.1.4,5) it is clear 
that 

/3; ==a; i ==k + 1, ... , n. (2.3.1.6) 

Hence, we need k boundary conditions to specify the state qB, thus B:Rnt-+Rk. 
The state qB is the intersection point of the n -k dirnensional manifold 
B ( q) == 0 and the k di 111ensional plane through qL spanned by { R 1 , . . . , Rk). · 
In other words, the state qB lies in the n -k dimensional manifold B(q)==O 
and the state qL and qB can be connected by a continuous (integration) path f 
which is decomposed into k subcurves r,: 

k 

r= U r1 
i=l 

(2.3.1.7) 
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where each subcu1ve ri is tangential to the eigenvector Ri. The subcu1ve f 1 
starts in qL and the subcur·ve rk ends in q8 (P-variant) or the subcurve rk 
starts in qL and the subc11rve r 1 ends in qB (0-vau·iant). In the linear case, qB 
is the sarne for the P- and 0-variant. 

These considerations lead to a straightforward generalization of the compu­
tation of q8 for a general h erbolic system. Suppose f (q) is nonlinear and 

the eigenvalues of A (q)=-... (q) are such that i\1 (q)~ · · · ~An(q). Ass11me 
dq 

that 

(2.3.1.8) 

Then we need k boundary conditions: B:Rn....,.Rk. The bo11ndary state qB lies 
in then -k dianensional manifold B(q)=O and can be connected with qL by a 
continuous (integration) path r which is decomposed in k subcurves 

k . 
f;: f- Uri where each subc1J1ve f; is tangential to the eigenvector R;(q). 

i =I 

In the P-variant, the subcurve f 1 starts in qL and the subcutve rk ends in qB. 
In the 0-variant the subcurve rk starts in qL and the subcu1ve f 1 ends in qB. 
For both va1·iants, there are k -1 intersection points between qL and qB, thus 
there are k unknown states and nk unknowns. Using the Riemann inva,·iants 
and the k boundary conditions we find (n - l)k +k equations. 

(2.3. Ia). 
We call (2.3.1.4) a left Riemann bo11ndary problem (x <0). A right Riemann. 
bo11ndary problem is defined as 

x>O,t>O 

q(x,O)=qR x>O 

B(q)lx=o=O; B:Rn1--+R1 . 

• - 1 

' ' ' ' . ', '!, 
' 

(2.3.1.9) 

It is sufficient to consider only left Riemann boundary proble1ns by stipulating 
that at control voJ111ne botindaries which are part of an, the boundary state is 
computed by using a I Cartesian frarne (x,y) such that the positive x-axis 
is directed outward. 

2.3.lb). k 

Due to e fact that the integral path f= U f; corresponds with negative 
i=l 

eigenvalues (see 2.3.1.8) we will usually have that 

A-(q 
r ' 

(2.3.1.10) 
• 

Hence, ( see 2.2.1 .. 26) 

fR(qL,qB)=f(qB). (2.3.1.11) 
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From this observation we see that an alternative for (2.3.1.3) is 
-1 - -Ji+ ½,j = I;+ ½,j T; + ½,Jf R ( qi,j' q; + ½,j) 

= l; + ½,j T;-+1½,J!R(T; + ½,jqi,j, T; + ½,jqi + ½,j) (2.3.1.12) 

where 

l -q; + ½,J == Ti-+ ½.,Jq; + ½,J ,...,.,,. (2.3.1.13) 

is the bo,1ndary state with respect to the (x,y) frame. fl'his expression of the 
flux agrees \V:ith the expression of the flux at interior control volume boun­
da•·ies (see 2.1.13). For implementation p oses, we prefer (2.3.1.12) to 
(2.3.1.3). 

2.3.2. APPLI,,...,..~..,,,,,.,,TION TO 'l'JIE E EQUATIONS; BOUNDARY CONDO'ION 
• 

1'REA'l'MENT AT W, 0 W AND SOLID WALL. 

Consider the Riemann boundary problem (2.3.1.4) for the Euler equations. 
We consider 5 different cases (k is the number of boundary conditions: see the 
pr · g subsection). 
1. Supersonic Outflow: (k =O) 

A1(qL)>O, A2(qL)=A3(qL)>O, A4(qL)>O 

2. Supersonic Inflow: (k =4) 

A1(qL)<O, h2(qL)=A3(qL)<O, A4(qL)<O 

3. Subsonic Out w: (k == 1) 

A1(qL)<O' A2(qL)=A3(qL)>O' 14(qL)>O 

4. Subsonic Inflow: (k == 3) 

At (qL)<O , A2(qL)==A3(qL)<O , A4(qL)>O 

5. Solid Wall: (k == 1 or k ==3) 

A1 (qL)<O , ~(qL)>O. 

y in case of subsonic inflow the boundary state qB is different for the P­
and O-va1~iant. Each case is treated as follows. 
1. Supersonic Outflow: uL>cL. No boundary condition is to be sp · ed: 

qB qL. 
2. Supersonic Inflow: uL <-cL. A full set of four boundary conditions is 

necessary; B:R4 ...... R4 and B(qB)=O has to specify qB completely. 
3. Subsonic Outflow: O<uL <cL. One boundary condition is necessary; 

B:R41-+R. The states qL and qB are connected by an integral path r 1 

which is tangential to R 1(q). Using the Riemann invariant we find 

2 == 2 
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(2.3.2.1) 

The single boundary condition B(qB) 0 and the 3 relations (2.3.2.1) 
dete1·1nine qB. 

LE (2.3.2a). 
Assume that the pressure p8 is given. From (2.3.2.l) we see that z8 =zL, 

v8 =vL. Thus 
1 

PB =(pBe - zL) 1 

YPBIPB 

2 
(2.3.2.2) 

4. Subsonic Inflow: -cL <uL <0. 'l'hree boiindary conditions are necessary; 
B:R41-+R3• There is one intersection point q1• 

In the P-variant the states qL and q1 are connected by f 1 and the states 
q1 and q8 are connected by an integration path that is composed of 
f 2 Uf3• Using the Riemann invaaiants we find: 

2 = 2 

(2.3.2.3) 

Together with the three boundary conditions we have 8 relations and 8 
t1nknowns (the components of q1 and qB)-

• 

In the 0-variant the states qL and q1 are connected by an integration path 
that is composed of r 2 u r 3 and the states q1 and qB are connected by r 1• 

Using the Riemann invariants we find 

PL PI 

2 = 2 

(2.3.2.4) 



LE (2.3.2b ). 
AssUine that uB, VB and zB are prescribed. 
P-Variant. 
Using the relations (2.3.2.3) we find 

P1-

PB Pl 

PB== 

0-Variant 

y-1 

y 

l 
y-1 

Using the relations (2.3.2.4) we find 

U] -UL ' ZJ ZB ' VJ VB ' PI PL 
l 

P1= 

y-1 

LE (2.3.2c). 
Assume that u 8 , VB and cB are prescribed. 
P-Variant 
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(2.3.2.5) 

(2.3.2.6) 

Using the relations (2.3.2.3) we find that v1, z1, u1 , c1 , P1, PB =p1 are the 
sarne as in (2.3.2.5) and 

PB == YPB 

(2.3.2.7) 

0-Variant 
Using the relations (2.3.2.4) we find 

U] UL , VJ VB , PI PL 
y-1 
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= YPL 
PI CJ 

(2.3.2.8) 

5. Solid Wall: At a solid wall, one boundary condition is prescribed, namely 
uB =O. The state qB is computed as in the case of subsonic outflow. We 
find (see 2.3.2.1): 

2 = 2 

• 

(2.3.2.9) 

Hence, 

PB 
y 

(2.3.2.10) 

Notice that the flux f (qB)=(O,pB,0,0). Hence, the pressure PB dete111·,jnes 
the flux completely. 
It is also possible to compute the flux f(qB) as in the case of subsonic 
inflow. Then qB is not uniquely determined, but, in case of the P-va1·iant, 
the pressure PB is uniquely deterrnined and given by (2.3.2.10). 'I'his is not 
true for the O-va1iant. 

2.4. IJNEA.RIZATION OF 0sHEll'S SCIIEME 

2.4.1. IN'l'llODUmON 

The space discretization of the steady Euler equations in the interior and at the 
bo11ndary of a physical dom_ain O is described in the pr · g sections of this 
chapter. For an interior control volu111e Oi,j, we have (see (2.1.15)): 

F;~j=/;+½,j + fi,i+½ -f;-½,j-J;,i-½ =O (2.4.1.1) 

with 

(2.4.l.2a) 

I 
i 



61 

fi,j + ½ == l;,J + ½ Tij;. ½/R (T;,J + ½ q;,J , T;,J + ½ q;,J + 1) (2.4. l .2b) 

where I;+ ½,J is the length of ao, + ½,J, T; + ½,J == T( c/Jt + ½,J) and 
( COsq>; + ½,j' sinq>; + ½,j) is the unit normal on ao; + ½,j directed from oi,j to o, + l ,J 
(see fig. 2.lb). Similarly, l;,J+½ is the length of aoi.,J+½, T1,J+½ == T(</>;,J+½) and 
( COS</>i,j + ½, sincJ>i,j + ½) is the unit Il01 Illal on d0;,J + ½ directed from Oi,j to 
Ot,J + 1 • Notice that 

Fj,j =F;,j(qi,j,qi + I,j,qi,j + 1,q; -1,j,qi,j- l) (2.4.1.3) 

A nonlinear relaxation method is used in the solution method for solving the 
system of discretized equations (see chapter 3). For our nonlinear relaxation 

aF.- . 

q;,j 

aF.. a1~R _....;,,.,J_ -- - 1 'J j_ 
• 

aq- . l,j 

-l d/R . 
(2.4.1.4) 

. a R a R . 

qR qL 
given in subsection 2.4.2. 

For a control volu1ne 01,1 which has a boundary (say aoi+½,J which is part 
of ao we also have (2.4.1.1) but (see (2.3.1.12, 13)): 

Ji+ ½,j == l; + ½,j Ti+1
½,J!R (T; + ½,jqi,j , T; + ½,jqi + ½,j) ,........,,., (2.4.1.5) 

where q;+½,J is the bo11ndary state at 001+½,J: q;+½,J is dete1mined by qi,J and 
the boundary conditions. Suppose that qB =qB(qL) is the solution of the 
Riemann bo1Jndary problem corresponding with the boundary conditions at 
o'1;+½,j· Then we have (see (2.3.1.1) and (2.3.1.13), 

(2.4.1.6) 

and 

dq;+½,j == -1 dqB 
dq· . l,j 

(2.4.1.7) 

The linearization of fj + ½,j with respect to q1,1 now becomes 

'dfi+½,j == -1 aJR 
aq . . l,j 

T,-+½ ·q·+½ -)T,·+½ . l ,} l ,] l ,] 

. . :- 1 . a /R . . . . . . . . . . dq; + ½,j (2.4.1.8) 
R IJ 
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qi,j 

Notice that if aoi+½,j can then (COsc/>;+½,j, sin4>t+½,j) is directed outward 
from D, but if aO;-½,j cao then (co8'/>;-½,J, sin.P;-11:z,j) is directed inward to 0. 
(Similar observations hold for the case aot,J+½ caO or o0;

7
J-½ caO). Then, 

due to the conventions introduced in remark 2.3. la we have 

q;- ½.j = T( .P,- ½,J + w)- 1 qB(T( .Pt - ½,j + w)qJ,j) 

where qB =qB(qL) is the solution of the Riemannn boundary problem 
corresponding with the boundary conditions at aoi-½,J· Fu1·the1111ore, 

Ji-½,j == T;--1½,j/R(T;-1/2,jqi-½,j , Tt-½,jqi,j) 

with ~-½,j == T(<Pz-½,j)- The linearization of q;-½,J,Ji-½,i with respect to q;,i is 
si•nilar to (2.4.1 .. 7, 8). 

. 

2.4.2. LINF.UIZATION OF 0SHER'S APPRO SOLVER-

The topic of this subsection is the computation of 

a a 
(2.4.2.1) 

where /R :R4~ 4 is Osher's approxi111ate Riemann solver. For the computation 
of (2.4.2.1) we need-the Jacobian of the flux 

dq o(c,u, v,z). 
(2.4.2.2) 

The flux-vector f~--(pu,pu 2 +p,pu:v,(E+p)u)T is found as a function of q by 
noting that (see 2.2.2.13): 

p= 

E ½p(u2 +vi)+ ... l? (2.4.2.3) 
y I 

From these relations is easily seen that 

k ,1 
2p .. k p 

ac (y l)c ' oz y I 
.El!_ 2pc . EE_ P. 
ac y I 'oz y I 
oE ,2{E+p) oE E 

(2.4.2.4) • 

ac (y l)c ' oz 1 y 



63 

Hence, 

2pu .. p 0 pu 
(y l)c 1 y 

2p(u2 ~c2
) 

2pu 0 
eu2+p 

l (y l)c y 
f(q) . (2.4.2.5) 2puv elll: pv pu 

(y l)c 1 y 

2u(E +(y+ l)p) E+p+pu 2 puv (E+e)u 
(y l)c I y 

For the computation of (2.4.2.1) we consider both the P- and 0-Variant. 

P-Variant. 
From table 2.2.2a we deduce the following tables (qo=qL ; q1=qR): 

uo<co uo>co 
C1;3 <un . qj f(qo) 

' 

O<un<c113 q113 
f(qo) 0 aqj c q1,3 

:0 C2;3<uH<O q213 
f(qo) 

qo iJqo 
Un< C213 0 

f(qo) 
aqo 

TABLE 2.4.2a: dfR ....... · 
qo 

u1> Ct u1< C1 

C1;3<Un 0 1 oqs 

., 
aq113 l iJqs O<un<c113 C ql/3 

.. 
aq2,3 1 aqs C2;3 <uH<O q213 

... 
un< C213 f(q1) 

qs a q1 

and 
qo 

.. 
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obtained from the relations (2.2.2.3) to (2.2.2.12) which yield 

and 

Hence, 

aq1,3 
aqo 

ac1;3 

a -

=O 

a 
l+a 

2 

= ,1 1 au 
2 H 

:::::: 1.,- ~ 

1 
y(y-

2 

oq~ =(dc~,aci,avo,azo)T 

oq113 =(oc113,0UH,OV0,azo)T 

oq2;3 =(oc213,0UH,O,O)T 

2 y 1 
0 0 

-y+ I y+l 
aq~ 2 y 1 0 0 
aqo y+l y+l 

0 0 1 0 
0 0 0 I 

1 y I 
0 I Flt 

l+a 2(1 +a) 

2 a a 
0 • 

I l+a l+a y 

0 0 1 
0 0 0 

1 C213 
• 

2y l+a 

1 C213 
• 

y(y 1) l+a 
0 
I 

• 

(2.4.2.6) 

(2.4.2.7) 

(2.4.2.8) 

(2.4.2.9) 



a y I a 1 C2;3 
0 • 

l+a 2 l+a 2y l+a 
aq2,3 2 a a 

0 
I C213 

• • 

oqo 1 l+a l+o: y(y 1) I+a y 

0 0 0 0 
0 0 0 0 

The term -
q1 1 

a 1, 3 a 213 a s . . . 

q1 q1 q1 
the relations (2.2.2.3) to (2.2.2.12) which yield 

and 

Hence, 

OCt/3 

l 
I+a 

== - y-1 

== y-1 
y+l 

0'1'1) 

2 

oq113 ==(oc1,3,aua,O,O)T 

oq2l3 . (oc213,0UH,dV1,0Z1)T 

oq]==(ac;,-dc;,ov1,0Z1)T 

2 y 1 0 0 
y+l y+l 

aq} 2 Y,, ... , 1 
0 0 

aq1 -y+ 1 y+l 
0 0 I 0 
0 0 0 I 
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(2.4.2.10) 

• 

(2.4.2.1 I) 

(2.4.2.12) 

(2.4.2.13) 
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a Y. I a I C213 
0 • • 

l+a 2 l+a 2-y l+a 

aq2,3 2 1 I 
0 

1 C213 
(2.4.2.14) • • 

aq1 1 l+a l+a y(y 1) l+a y 

0 0 I 0 

0 0 0 1 

1 y I I 1 C2;3 
0 •• • • 

l+a 2 l+a 2y l+a 

aq1,3 2 1 I 
0 

I C2;3 
(2.4.2.15) • • 

aq1 I l+a l+a y(y I) I+a 
0 0 0 0 

0 0 0 0 

qo qi 
tinuous functions of q0 and q 1 as long as ua=/=O. 

0-Variant. 

The computation of a - a 
qo q1 

0-va 1·ian t is 

completely analogous to the computation of these tertns for the P-va1·iant. We 
only give the results .. 

uo> Co uo< Co 

c213 <un f(qo) ;Q 

O<un<c213 f(qo) 
aqj aq2,3 

... 
. o oqs aq113 C113<ua<O < q1;3 

f(qo) 

Un< C l/3 f(qo) 
0 

TABLE 2.2.2c: 'd JR '-&.JI.. 

qo 
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U1 <c1 u1>c1 
C213<UH 0 

O<uH<c2;3 oq2,3 , l 
< q2;3 l dqs 

q1 

c113<uH<O c q1;3 cq113 1 qs 

UH< C1;3 f(q1) 

TABLE 2.2.2d: --
q1 

Further1nore, 

2 y I 
0 0 

y+l y+l 
aq~ 2 ): " 

1 0 0 
y+l y+l oqo 
0 0 I 0 
0 0 0 1 

1 .Y I 1 I C2;3 
0 Ill a • 

2 l+a 2-y l+a l+a 
aq1,3 2 a a 

0 
1 C2;3 

• • 

y(y I) l+a aqo I l+a l+a y 

0 0 1 0 
0 0 0 1 

): I a 1 C213 a 0 • • 

2 l+a 2y I+a l+a 

aq213 2 a 
0 

1 C213 
• • 

y(y I) l+a aqo 1 l+a l+a y 

0 0 0 0 
0 0 0 0 
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2 1 1 
I 71 

y+l -y+l 
aq} 2 y 1 

aq1 y+l y+l 
0 0 
0 0 

a 
l+a 

aq213 2 1 
aq1 I l+a 

0 

0 

1 
l+a 

aq113 2 1 
• 

aq1 y 1 l+a 
0 
0 

Just as for the P-Variant, -­
qo 

0 0 

0 0 

I 0 
0 I 

1 l a 
0 

2 l+a 

1 0 
l+a 

0 1 
0 0 

y 1 1 
• 

2 l+a 

1 
l+a 

0 
0 

functions of q0 ,q1 as long as un=/=O. 

TION OF BOUNDARY CONDl'flONS 

0 

0 

0 
0 

1 C213 

2-y l+a 

I C2/3 • 

y(y 1) l+a 

0 
1 

1 C213 
• 

2y l+a 

I C213 
• 

-y(y 1) l+a 
0 
0 

where qB ==qB(qL) is an 
qL 

approximate solution of a Riemann bo1indary problem. The computation is 
done for the bo11ndary conditions described in subsection 2.3.2. The relations 

qL 
1. Supersonic Outflow. 

dqB 
qB== -....;__=I. 

qL 
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2. Supersonic Inflow. 
q8 is completely deter1nined by the boundary conditions and independent 

dqB 
== 

qL 
3. Subsonic Outflow. 

Ass1.Jane that the pressure PB is prescribed. From (2.3.2.1,2) it follows that 

0 0 0 
CB 

2-y 
dqB 2 

I 0 
CB 

(2.4.3.1) dqL I y(y 1) 'Y 
0 0 l 0 

• 

0 0 0 1 

4. Subsonic Inflow. 
We consider two cases: 

4a. u8 ,v8 and zB are prescribed. 
P-Variant. 
From (2.3 .. 2.3) and (2 .. 3.2.5) it follows that 

C1P1 y 1 C1P1 CB 
0 • 

2 2y CBPB CBPB 
dqB 

0 0 0 0 (2.4.3.2) 
dqL 

0 0 0 0 
0 0 0 0 

0-Variant. 
From (2.3.2.4) and (2.3.2.6) it follows that 

CLPL y I CJ 
0 

2 2y CJPI 
dqB 

0 0 0 0 (2.4.3.3) 
dqL 

0 0 0 0 
0 0 0 0 
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4b.. uB, vB and cB are prescribed. 
P-Variant. 
From (2.3.2.3) and (2.3.2. 7) it follows that 

0 

dqB 0 

dqL 0 

k 
CJ 

0-Variant. 

0 
0 

0 
_y(:y 

CJ 

1) 

0 0 
0 0 
0 0 

0 1 

From (2.3.2.4) and (2.3.2.8) it follows that 

0 0 0 0 
dqB 0 0 0 0 
dqL 0 • 

0 0 0 

k y(y .~,} 0 1 
CL CJ 

5. Solid Wall. 
uB =0. From (2.3.2.9) it follows that 

(y' 1) I 0 0 
2 dqB 

0 0 0 0 
dqL 

0 0 1 0 
0 0 0 I 

2.5. SECOND-ORDER DISCRF~OZATIONS 

2.5.1. ffi1RODUC110N 

(2.4.3.4) 

(2.4.3.5) 

(2.4.3.6) 

The space discretization of the steady Euler equations described in sections 2.1 
and 2.3 is only first-order accurate~ as we shall see in the next subsection. It is 
hi y desirable to in1prove the order of accuracy. In the smooth part of the 
flow field, first-order accuracy is too low for practical p . oses. Furthe11nore, 
oblique (with respect to the mesh) shocks and contact discontinuities are 
smeared out disastrously because of the viscosity hidden in the first-order 
scheme. Therefore, we wish to itnprove the order of accuracy and to st en 
oblique discontinuities without introducing over- or under-shoots .. 
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The order of accuracy can be improved in a very simple way. The space 
discretization in the interior of the domain is completely dete1·n1ined by the 
flux computation at the control volume bo1.1nda1·ies. For the first-order scheme, 
the flux fi+½,j at the interior control volu111e bo11ndary ao,+½,j is (see 
2.4.1 .. 1,2): 

fi + ½,j = l; + ½,j T;-+1½,1fR(T; + ½,jqi,j, T; + ½,jqi + ½,j) 

The order of accuracy is i 111proved by taking 

(2.5.1.1) 

f; +½,j =l;+½,jTt-?½,j[R(1'+½.j i+½,j, T;+½.jqf+½,j (2.5.1.2) 

where qf+½,j and qf+½,J are obtained by a more accurate interpolation. The 
states qf+½,j and qf+½,j are located at the left and right side of the vol1Jme 
boundary aO;+½,J (fi e 2.5.la). 

fl•->, l 

y 

' 

I 
I 
\ 

' ' --- --- -------

a. Geometrv . 
• 

FIGURE 2.5.la: Finite volutne ni,j· 

b. State vectors. 

Second-order accuracy can be obtained by for exa1r1ple the ac-schemes intro­
duced by Van r [29]: 

L q;+½,j 
l+K _ 1-,c 

R 1+,c }~ K 
q;+½,j= -- - -- -q;+~j) (2.5.1.3) 

with ,ce[-1, I]. For ,c= -1, ac==O, ,c== ½ and ,c= 1 we find respectively: the 
fully one-sided upwind scheme, the Fro1n,11 scheme, the upwind biased scheme 
( · d-order accurate for 1D proble:1ns as we shall see in the next subsection) 
and the central scheme .. A disadvantage of these ,c-schemes is that near discon­
tinuities spuwious non-monotonicity (wi es or over- and undershoots) 
apppears [13]. 
The space discretization corresponding with (2.5.1.2) is sometimes called the. 
projection-evolution ap roach [29]. The projection stage is the computation of 
the states qf+½,J and q;+½,j, while the evolution stage is the computation of the 
flux by an approxi 1nate Rier11ann solver /R : R4 X R 4 ~R4. 
In subsection 2.5.2 the accuracy of the space discretiz.ation corresponding with 
(2.5 .. 1.2) is considered under the assu1nption that the mesh is sufficiently 
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smooth. 
In subsection 2 .. 5.3 a monotonicity concept is introduced and it is shown that 
it is possible to construct a monotone second-order accurate scheme. A solu­
tion of a monotone second-order scheme has the desired properties: second­
order accuracy in the smooth part of the fl.ow field and steepening of oblique 
discontinuities without introducing spu1ious non-monotonicity. 
The analysis concerns a general nonlinear scalar hyperbolic conservation law. 
Without the complexity of hyperbolic syster11s, the analysis is more complete 
and more transparant. It appears that it is essential to compute the states 
qf+½,j, i+½,.j by nonlinear interpolation. The nonlinear part of the interpola­
tion is called a lirniter. The results of the scalar analysis is generalized in a 
straightfo1ward manner to the Euler equations. 

2.5.2. CY ON AS MESH 
• 

Consider the Euler equations 

on an open domain 0CR2 , q, f(q) and g(q) are given in (2.1.lb). The physical 
domain O is subdivided into disjunct quadrilateral volumes 
O;,j, (i,j)e { 1, .... , M, 1, ... , N} in the way described in section 2.1 such that 
i) O= LJ ~-. l,} 

• • 
l, 

ii) ai,j, i+l.,j, oitj+l are neighbOl)i ing volun1es, _ 
iii) (xi+½,j+½,Yi+½,j+½)= ni,jn0;+1.jnfl;,j+l nO;+l,j+l is the con1mon ver­

tex of the vol11 wnes n,,j, O; + I,j, O;,j + 1 and '2; + 1,i + 1 . 

It is clear that the vertices {(x;+½,J+½, Yi+½,J+½)} define the subdivision of U 
completely. 

Let (E, 11) and (x,y) denote Cartesian coordinates in respectively the compu­
tational and physical space.. In the computational space we consider a rec­
tan . ar domain O* subdivided in square control volumes 
Oi,j, (i,j)e{l · · · M, 1 · · · N} of unifor10 size such that (i·h, j·h) is the mid­
point of o;,j; h denotes the length of the edges of the control volumes. Assume 
the existence of a sufficiently smooth 1-1 mapping between (~,TJ) and (x,y): 

!==«x,y) x=x(E,11) 
11=11(x,y) ~ y =y(~,11) (2.5.2.2) 

such that the vertices of the control volumes in the physical and computational 
space are related by this mapping: for all i,J e { 0 · · · M, O · · · N} 

(x;+½,j+½, Yi+½,j+½)=(x(Et+½, 1Jj+ ½),y(~i+½, 'IJj+½)) 

where ~i+½ =(i +½)h and 1Jj+½ =(j + ½)h. 
In the computational space (€, 71) the Euler equations become 

a a _ a 
-yif(q))=O 

(2.5.2.3) 

(2.5.2.4) 
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where J is the Jacobian of the mapping: 

J-xv,'11 -y~x 11 • (2.5.2.5) 

The discretization of (2.5.2.1) on O is equivalent with the discretization of 
(2.5.2.4) on O* .. Therefore, we can study the order of accuracy of a discretiza­
tion of (2.5.2.4) on O* as well as of (2.5 .2.1) on 0. 

Write (2.5.2.4) as 

(Jq)1 + F(q)-0 (2.5.2.6) 

and the steady Euler equations as 

F(q)=O. (2.5.2.7) 

Here F:X.-.Y is a nonlinear operator, XC[L2(0*) is the space of possible 
fluid states and Y=[L2(0*) is the space of rates of change (of states). 

Define the finite dimensional vector spaces Xh and Yh by · 

xh = Yh = { q;,j E R4 I i -··~· 1 • - • M, j = 1 • • • N} . 

The relation between the spaces X and Xh, Y and Yh is obtained by introduc­
ing Rh :Xa-+Xh and Rh: Y 1-+ Yh: 

I 
(2.5.2.8) 

iJ 

·· for any qe[L2(0) . Thus (Rhq);,j is the mean value of q in Ot1. We define the 
accuracy of a discretization of (2.5.2.7) as follows: 

DEFINI'fION (2.5 .2a ). 
A p-order accurate discretization of (2.5.2.7) is an associated problem: 

Fl/,(qh)=O 

where ~:Xha--.Yh has the property that for all sufficiently smooth qeX 

(2.5.2.9) 

The relation between the va.rious spaces and mappings in the discretization is 
summ · in the following diagrarn: 

F X ----> y 

Notice that 

(y.,,f-x.,,g) (q((i + ½)h, 1J))d1J 
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(yJ-x 11g) (q((i -½)h, 71))d11 

+ 

(2.5.2.10) 

where aotj+½ etc, denote the boundaties of the control volume Oi,j, defined 
by aorj+½ =07,1 no;+ l,j etc. _ 
For analytical purposes, we introduce the operator Fh:X.-+Yh defined by 

+(xtJ+*g-ytt.j+*f) @;,j+½) -(xtJ-½g-y~,J-f;f) (q;,J-½) (2.5.2.11) 
'' 

where 

(2.5.2.12) 

and 

l{i+ ½,j (2.5.2.13) 

Thus q;+½,J is the mean_value_of q(~,TJ) at the control volume boundary 
ofl7+½,j· In a sitnilar way q,-½,j,qi,J+½ and q;,J-½ are defined. 
Ass11n1ing a sufficiently smooth mapping it can be shown by elementary inter­
polation theory that 

"" 
(Fhq);,j-(R1,Fq);,J == 0(~ 2 ) (2.5.2.14) 

for all sufficiently smooth q eX. 
Even when x(~,11)=~, y(~,11)=11 the righthandside of (2.5.2.14).w.is not zero. 
This is due to the fact that at a cell bour1.dary the mean flux differs from the 
~ux computed in the mean state. But for one-di1nensional problems we have 
Fh ==R,,F. 
We only consider discretizations in which states are interpolated (see 2.5.1.2,3). 
From (2.5.2.14) we conclude that the order of accuracy of such discretizations 
is at most two. (For ID problems the order of accuracy can be higher than 
two.) 
From {2 .. 5.2.14) we see that if Fl/i:Xhf-¾,Yh, p == I, 2 is such that 



-
(Ff,Rhq);,j-(Fhq)1,j =O(hP) 

then also 

-
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(2.5.2.15) 

(2.5.2.16) 

This means that we lll.ay approximate Fh instead of RhF- Therefore, let us 
look more carefully at Fh. Define I;+ ½,j, 11,j + ½ by 

l·+½ -=hl,,2 +x2 )½ /. •+½=h(x +yi )½ 
l ,) V '11+HJ 'fli+½J ' l,j 'J+ H 4aiJ+ff 

(2.5.2.17) 

and </>; + ½,j, </>;,i + ½ by 

l-+ ½ -co~rh.+ ½ · -l ,} ..:T'f'l ,] 

(2.5.2.18) 

then using the rotational inva1·iance (1.3.2.4,5) we see from (2.5.2.11) that 

' 

+ li,j + ½ Tij ~ ½f( T;,i + ½ q;,J + ½ )-lt,j-½ Tij ~ ½/( T;,J - ½ q;,J- ½) 2.5 .2 .. 19) 

where Tt + ½,j - T( 'l>t + ½,J) etc. 
Notice that l;+½,J is the len of the bo11ndary a01+½,i and 
(coSf/.>;+1/2,j, sinq>;+½,j) is the outward lJDit no1n1al on aoi+½,j directed from oi,j 

to 01 + 1,1 (under the assurnption that the Jacobian of the mapping J>O). 
We define 11:=~~ll as follows 

I; - ½,j T1-1 
½,j/R ( T; - ½,j i - ½,j, It- ½,j qf-½,j) 

(2.5.2.20) 

where qf+½,J, qf+½,J etc. are obtained by interpolation of the states { q;,1} ==qh 
and/R is an approximate Riemann solver. 
Now we can establish the following theorem: 

1

!HBOREM (2.5.2a). 
Let qeX be sufficiently smooth. Define qh eXh by qh -Rhq and 

(2.5.2.21) 
o· IJ 
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Define the mean values of q at the control volume boundaries by 

1 
qi+½,j= 

ao,+J5J 
(2.5.2.22) 

and a similar fo,mu/a for i,j + ½· 

Define the states i+½,J, q;+½,J etc. by interpolation of the states { q;,J} such that 

qf+½,j- i-½,j =q;+½,j-qi-½,j + O(hP +I) 

i+½,j-_i-½,j =q;+½,J' -qi-½,j + O(hP +I) 

qf+ ½,j-qi+½,j =O(hP) 

qf + ½,j -q, + ½,j == O(hP) 

with p == 1 or p =2, and let similar formula hold for the j-direction. 
defined by (2.5.2.20) is a pth--order accurate discretization. 

PROOF. 

From (2.5.2.14,15,16,19,20) is easily seen that it suffices to show that 

(2.5.2.23) 

Then Fl/, 
• 

(2.5.2.24) l; + ½,j Ti+1
½,j fJR (T; + ½,j i + ½,j, T; + ½,j i + ½,j )-J(T, + ½,jqi + ½,j)} 

li-½,jTi-1½,j{JR(T;-½,jqf-½,j, T;-½,jqT-½,j)-f(T;-½,jqi-½,j)} =O(hP +2) • 

With the notation 

dfR 

and assuming that the approxir11ate Riemann solver JR is sufficiently smooth, it 
follows by Taylor expansion that 

ah _ aJR 
Ii+ ½,j T; + ½,1(qf+ ½,j -q,. + ½,j) + 

o/R L _- aJR 

(2.5.2.25) 
w~ere we have_used the consistency of /R:fR(q,q)=f(q) (see (2.2.2.23)). 
With the notation 

X-+½ ·= l ,] 

-I 'iJ/R 

-1 'iJfR 
·+½ . T.·+½ . l ~J I ,] 



we find 

l;+½,jTi+1½,j{fR(Ti + ½,jqf+ ½,j, Ti+ ½,jqf + ½,j)-J(T; + ½,jqi + ½,j)} 

= lt+½,JXt+½,J(qf+½,J-qi+½,j)+l;+½,J Y;+½,J(qf+½,J-qt+½,J)+ O(h2p +i) 

=(lt-½,J +O(h2)) (X;-½,J + O(h)) (qf-½,J-qi-½,J + O(hP + 1 ))+ 

(l;-½,J+ O(h2)) (Y;-½,J + O(h)) (qf-½,J-qi-½~J + O(hP +I))+ O(h2p + 1)) 
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= l;-½,JXt-½,j( 1-½,j-qt-½,J)+l;-½,J Y1-½,J(qf-½,J-q1-½,J)+ O(hP + 2)+ O(h2p +l) 

= l;-½,jTi-_I½,jifR(Ti-½,jqT-½,j, ~-½,jqf-½,j)-J(T;-½,jqi-½,j)} + O(hP +2) 

(2.5.2.26) 
where we used l;-½,j = O(h ), see (2.5.2.17). From (2.5.2.26), eq. (2.5.2.24) fol­
lows directly. □ 

• 

We consider two interpolations 

(J l): qf+½,j ==q;,J ; qf+½ ==q; + l,j ; 

L q;+½,j 

R q;+½,j 

We shall show that interpolation (/ 1) is first-order accurate (p == I) and inter­
polation (12) is second-order accurate (p ==2). For these interpolations we 
only show that 

qf+½,j-qf-½,j =qi+½,j-qi-½,j + O(hP +l) 

qf+½,j-qi+½,j==O(hP), (2.5.2.27) 

the other relations in (2.5 .. 2.23) are derived in a sjmilar way. To verify 
(2.5.2.27), assucne that the midpoint of o;,1 is (0,0) and 

q(t, 11)=qo +q1~+q211+q3~2 +q4~ 

+qs112 
+q6~3 +q1~211+qs~2 +q91J3 + O(h 4 ) . (2.5.2.28) 

Then it is easily seen that 

q; + 1,j 

q;-1,j 

1 
h1 

h 
2 

h 
2 

h h ---
2 2 

3h h 

1 
h2 

1 
h2 

-

2 2 

h 
2 

h 
2 

3h 
2 

- h 
2 

h 
2 

h --
2 

h 13 h2 h 2 5 3 h3 4 
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1 

_3h 
2 

h 
2 

- 5 h h 
2 -

2 

l 

h 
2 h h2 h 2 h 3 h 3 4 

== 
h 
- h 

2 

h 
2 

q( 

For interpolation 11 we find that 

L _ L 
q; + ½,j qi-½,j 

i+½,j q;+½,j 

Thus the interpolation JI leads to a first-order accurate scheme .. 
For interpolation 12 we find that 

L qi + ½,j i - ½,j 

h3 h3 4 q1h+q6 4 (61e-l)+qs 12 +O(h ) 

h3 4 
q;+½,j-qi-½,J +q6 2 (31e-l)+ O(h ) 

i+½,j 
l+,c( _ ) (l-,c)( _ ) :. 

qi,j + 4 q; + l,j qi,j + 4 q; -1,j q; -1,j 1 

h h 2 h2 3 · .. 
qo +qi 

2 
+q3 12 (1 +61e)+qs 12 +O(h ) 

h2 3 
qi+½,j +q3 6 (3,c-1)+ O(h ) 

Hence, we have found the following result. 

'IIJEOREM (2.5.2b ) .. 

(2.5.2.29) 

(2.5.2.30) 

(2.5.2.31) 

(2.5.2.32) 

Scheme (2.5.2.20) is first-order accurate for interpolation I 1 and second-order 
accurate for interpolation I 2 Furthe1·,nore, interpolation I 2 with ,c = 
third-order accurate scheme in 1 D. 

Schemes using interpolation I 2 · be called ,c-schemes. 

2.5.3. MONOTONI{:11Y AND SECO 

Solutions of the aforementioned second-Qrder acccurate ,c-schemes suffer from 

' 

' 
' 
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spunious oscillations (wi _,,JI.es) in the neighbourhood of discontinuities (shock 
waves, contact discontinuities). The p ose of this section is to study 
second-order schemes which do not exhibit spurious oscillations. Such a 
scheme is called monotone. 
Several monotonicity concepts occur in the literature. They are all based on 
the following scalar conservation law: 

at ax 
u(x, O)=uo(x) 

(2.5.3.1) 

which is assumed to be discretized. in conservation for1n as follows: 

T m
1
. + 1 = T m

1
. _ '(h,· + ½ _ h ) 1 T( T m T m T m ) u; u; I\. i - ½1. u i -I, u i -I+ 1 , · · · , u i + m (2.5.3.2) 

h; + ½ -h { lJ1/ - J + 1 , • • • , lJ'/ + m) (2.5.3.3) 

is the so-called nu111erical flux ·function, satisfying the consistency condition 

h ( U, U, . . . , U) ==f( U) . (2.5.3.4) 
• 

_ The main reason for conside1iag the scalar conservation law (2.5.3.1) is the fol­
lowing monotonicity property: 
For any weak solution of (2.5.3.1) (see Lax [14], Harten [6]), we have 
(Ml) No new 1 maxi1num or minimum can appear for t>O. 
(M2) The value of a local maxi 111u 111 is nonincreasing, that of a local 

mini rn1,1n1 is nondecreasing. 
and therefore 
(M3) The total va1·iation 

TV{u(t)]: =sup I u(xi + 1,t)-u(x;,t) I 
• 
l 

is a nonincreasing function of ti ra1e t. 
The conunon, well known definition of a monotone scheme is due to Harten, 
Hyman and Lax [5]. They call the finite difference scheme (2.5 .. 3.2) monotone 
if the function H is a monotone nondecreasing function of its (/ + m + 1) argu­
ments. 
They were able to prove the fallowing theorem: 

'l'HEOREM (2.5.3a) (cf. [5]). 
Assume that the finite difference scheme (2.5.3.2) is monotone in the sense of 

• 

Harten, Hyman and Ltlx. Assume that, as lit and tu tend to zero, · 
A= ~t I~ - const., U'/ converges boundedly almost everywhere to some function 
u(x,t). Then according to the theorem of Tax and Wendroff [15] u(x,t) is a 
weak solution of (2.5.3.1), moreover an entropy condition is satisfied for all 
discontinuites of u, i.e. u(x,t) is the unique physicaly significant solution. 
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For a review of several, more or less equivalent entropy conditions for (2.5.3.1) 
we refer to (14]. 
Unfortunately, a scheme which is monotone in the sense of Harten, Hyman 
and Lax is only first-order accurate [5). To allow higher order of accuracy, 
Harten (6] introduced a weaker concept of monotonicity: scheme (2.5.3.2) is 
called ··1vl.) (Total Variation Diminishing) when 

TV(U" + 1 )~TV( U") (2.5.3.5) 

where 
00 

TV( U") = TV( { lY/ } ) .... ,_ I ur-U'/-1 l. (2.5.3.6) 

A grid function U is called monotone if for all i 

· .. · ui - 1, vi + 1 ) ~ U; ~ max( ui - 1 , ui + 1 ) . (2.5 .3. 7) 

Following H · [6}, scheme (2.5.3.2) is called monotonicity preserving if 
monotonicity of U" + 1 follows from monotonicity of un. 

The relation between the above three properties is given by the following 
theorem. 

'I'HEOREN (2.5 .. 3b) (cf. Harten [6]). 
(i) A scheme which is monotone in the sense of Harten, Hyman and lax is 

TVD. 
(ii) A TVD scheme is monotonicity preserving. 

It is well known (see [3,6)) that a linear scheme 
m 

is monotonicity preserving if and only if 

(PROOF. 
(a) If ck ;_:Q for every k and lf'/- U'/- i ~O for all i, then 

m 
Tm

1
.+l_rm+l= rm 

v, vi - 1 Ck u i + k 

m 

k=-m 

m 

Ck(U/ +k-Uf +k-1 )~0. 
k=-m 

The case of nonincreasing un is handled si111i]arly .. 
(b) Conversely, supposing that ck

0 
<0, then for the particular function 

. 1 i~ko 
= 
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we obtain 
m 

k=-m 

and monotonicity is not preserved). 

Hence, any linear monotonicity-preserving scheme is monotone in the sense of 
Harten, Hyman and Lax and consequently first-order accurate. By theorem 
(2.5.3b), any linear 'I'VI> scheme · also be first-order accurate. 
Hence, only nonlinear schemes can be second-order and 'l'VI}. For the con­
struction of such schemes, Harten's lemma [6] plays a fundamental role. 

LEMMA (2.5 .. 3c) (cf. Harten [6]). 
Consider a discretization of (2.5.3.1) given by 

U'/ + 1 == CJ'/ +M7+½ ( U7 + l -U/)+ AB?-½ ( U'/-1 -Uf) 

where A=llt!f:.x and 

A 7 + ½ -A ( ... , U'/ - 1 , lJ'/, U;' + 1 , ..• ) 

B7-½ ==B( ... , U/-1, U'l, U7 + 1 , ... ) . 

If the coefficients A f + ½, B'/ + ½ satisfy 

A7+½ ~O, Bf+½ ~o, 1-M7+½ -A.87+½ ~o 
then scheme (2.5.3.8) is TVD. 

PROOF. 

• 

(2.5.3.8) 

(2.5.3.9) 

(2.5.3.10) 

By rewriting (2.5.3.8) with i replaced by i -1 and subtracting from (2.5.3.8) 
one easily obt.ains 

IU7+ 1 -l.J'/211 1~ (1-ABf-½-M7-½)IU/·-U'/-1 I 
+ M 7 + ½ I U'/ + 1 - U7 I + A/3f _ 3/2 I U/ - I - U'/ - 2 I 

so that 

TV(un+l)= 

+ 

00 

• 1=-00 

00 

i=-oo 

00 

• 1=-00 

00 

(l-AB7-½ -M7-½) . I U'/- U'/-1 I 

00 

M7-½ I U'/-U'/-1 I+ AJJf _ ½ I U7 - V1l - 1 I 
• z= -ao 

□ 

The usefulness of this le1n1na for the construction of higher order 'l'V[l 
schemes is shown in [23]. 

' 
' ' j 

,•,' .'-.-.. <\-.'.¼J 
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Recently, however, G man and Le Veque have obtained the following nega­
ti.ve result: every conservative TVD scheme for scalar hyperbolic conservation 
laws in two space dimensions, is at most first-order accurate [4]. 
This result forces us to use a monotonicity concept weaker than TVD. 
Consider the following nonlinear scalar conservation law in two space dimen-

• s1ons: 

au a l'J a .) O · + . 1(u)+ -g(u •··· at a .. tw ay (2.5.3.11) 

Assume that (2.5.3. l l) is discretized on an equidistant mesh with mesh size h. 
Con.sider a discretization of (2.5.3. 11) given by 

UZ1)+ABZJ+½(lfl.1 + 1 - U'/.1) 

117,1) + AD?,1 _ ½ < ui,J - 1 (2.5.3.12) 

A7 + ½,J =A ( .... , V1l-1.1, lJ'/,1, U; + 1.J,···) 

B7., -+· ,~ = B ( ..... lf!.1 - 1, lf/.1, ui.J + 1, •.. ) 

Cf - ½,j C ( ... , U'/-1.1, U'/,J, U; + l,J,···) 

DZJ - JI) = D ( ... , U'/,J - 1 , U/.1, ¼,J + 1, •.. ) . (2.5.3.13) 

We introduce the following monotonicity concept: 

DEFINITION (2.5.3a). 
Scheme (2.5.3.12) is called monotone if 

A7+½,j~o; B7,j+½ ~o ; Cf-½,j;>.;0 ; DZj-½ ~o (2.5.3.14a) 

and if A 7 + ½, ·, B7,1 + ½, c7 _ ½,j, D7,1 _ 112 are 11ni f ormly bounded, i.e. there exists a 
B >0 such t · at for all (i,j) 

A '!+l.l. ·~B • Bl!·+· IL =S:::B • r"1J. JJ. -:S::B • D'!' 11.L.. ::c:;;;::B l 'fr;i,] "' ' l,j 7.l .. ' \.., i - n,J -... , l,) - 7.l .. (2.5.3.14b) 

This monotonicity concept is not to be confused with what we called mono­
tonicity in the sense of Harten, Hyman and Lax. Monotonicity is weaker than 
''I'VI:J in more than one space diinension. In two dimensions we define the total 
variation of U as 

u,,1-1 I } (2.5.3.15) 
• • l,) 

and U is called monotone if for all ( i,J) 

min(U1-I1·, Ui+11·, Ui1·-1, uiJ·+1)~U,,.J·~max(llz·-1 · U·+1 · U· ·-1 U- ·+1) , , , , , ,/ , I ,] , l,j , l,j 

(2.5.3.16) 
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• 

11H EOREM (2.5.3d). 
(i) A monotone scheme is TVD in one space dimension. 
(ii) A monotone scheme is not necessarily TVD in two space dimensions. 

PROOF. 

(i) For scheme (2.5.3.8) we have 

(ii) 

0 -~ATJ+½ -~B · O~BTJ+½ -~B 
' l ,] ._ , " ◄◄.;;: l ,] - • 

Hence, (2.5.3.8) is 'I'VI }. 
Consider the following grid function 

U'! ·= l,] 

I for (i,j)==(l,O) 
0 for (i,j):,6(1,0) 

and let in (2.5.3.12) 

Then 

A? +½,j =BZJ+½ =C7-½,j ==DZJ-½ ==O V(i,j)=/=(0,0) 

A½,o-1; Ao,½==O; C-½,o==O; Do,-½-0. 

lf'l1+ 1 == U'f,1 V(i,j)=fa(O, 0) 

U3,t 1 ==A. 

83 

Hence, TV(Un)==4, TV(Un +1)=4+2.A. Because ;\>0 we find 
TV( un + 1 )> TV( un). Thus we have found a monotone scheme which is 
not 'l'VI >. □ 

Nevertheless, the monotonicity concept of definition (2.5.3a) has some use, as 
shown by the following theorem. 

'lHEOREM (2.5.3e). · 
If scheme (2.5.3.12) is monotone then a steady state solution of (2.5.3.12) is 
monotone. 

PROOF. 

From (2.5.3.12) we see that for a steady state solution { U;,j} we have 
,, 

',J Ai+½,J + B;'tJ+½ +Ct-½.,J + Dt,J-½ 

which, due to the positivity of the coefficients, proves this theorem jm,nedi­
ately. D 

Thus a monotone scheme guarantees that in a steady solution spurious oscilla­
tions do not occur. There is no contradiction between monotonicity and 
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second-order accuracy (neither in one nor in more dimensions). ·s · be 
shown by constructing a second-order monotone scheme. Consider (2.5.3.11) 
and suppose that the flux functions f(u) and g(u) can be split in a forward and 
a backward flux (see (2.2.1.5)): 

where 

f(u)== (u)+ f- (u) ; 

g(u)=g+(u)+g-(u); 

A finite volurne discretization is given by 

• 

where 

(2.5.3. l 7a) 

(2.5.3. l 7b) 

• 

-{j"+ (Uf+½,Jn)+ (Ur+½,Jn)}] 

- {g+ ( utj+½ n)+g-(Ul+½ n )}] 

(2.5.3.18) 

UR. n I 
i - ½,j lJ'/ + l ,j) 

l,) 

UR n 
i,j-½ = I 

l,J 

and 

U'/,j-1) 

U'/,j + 1) 

• 

(2.5.3.19) 

numencal approximation of the mean value of u in cell (i,J) at tirne t ==nbat, 

(i + ½,j . See figure 2 .. 5.3a. 
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U, . . + l l,) 

U~-+½ l,] 

U~-+½ l,] 

• 

U;-1,j Uf -½,j Uf-½,j U, . .. ui+½. • Ull-+½ . U,. + 1 . l,j l ,) l ,] l ,] 

ufj-½ 

utJ-½ 
• 

U;,J-1 

FIGURE 2.5.3a. Location of the va1ious va,·iables in the space discretization. 

The li111jter 1/;==\/l(R) is introduced in the discretization in order to construct a 
monotone, spatially second-order scheme. The li1n.iter is a function of the con­
secutive gradients, a cornrnon practice in this field [23,25]. Notice that l/J=O 
corresponds to the first-order upwind scheme, while t/;=l yields the fully one­
sided second-order upwind scheme (,c- -1 : see (2.5.1.3)). We already know 
that i/l(_R) has to be a nonlinear function. 

We wish to show under what conditions scheme (2 .. 5 .. 3.18) is monotone. It can 
be easily seen that scheme (2.5.3.18) can be written as (2.5.3.12) by taking 

UR n UR n 

= --=-------~-~---.,;,c._-. i+½,j - i-½,j A1J+½. -
l ,] UR n - uR n U'! U'! . 

l,j 

UL n 
; -½,L 

U"+-+1L. _n - U"+- ½ .n U'! · - 1 T1J 1 · l 7'2,j I - .,j l,] U i - ,] 
Cf-½,j-+ 

g 
B1J . + ½ == - ---------------------

1,1 UR n _ UR n l.J? U1! . 
l,j 

UL n -UL n Tm _ rm 
i,j + ½ i,J - ½ u i,j u i,j - I 

(2.5.3.21) 

To obtain positivity of the coefficients A7+½,j, B7,j+½ etc, it is sufficient (by the 
Mean Value theorem) that 

UR nuR n UL n L n 
. z + ½,j. - i - ½,j ~o . _,_· _+ __ ~ ...... ,i_· - -__ ____._ 

~ ' ~-- ' l.f'!+ l · lJ1! · lJ'! . - lJ1!_ 1 . l J lJ lJ l J 
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UR n ulf-. n U,L n ui. n 
-½ i,j+½ -½ i,j+½ I,] ~o l,] ;>.:0 (2.5.3.22) ' • 

' • 

lli·+1 U'!. U?. U'/,J-1 l,j I,) I,] 

• • 
UDl-The coefficients A?+½tj, BZj+½ etc, are 11niformly bounded by 

form boundedness of the derivatives of (u), f- (u), g+ (u), and g-(u), and 
taking care that the left handsides of inequalities (2.5.3.22) · are also uniformly 
bounded. 

assu1n1ng 

By substitution of (2.5.3.19) 
fulfilled if 

• m (2.5.3.22) it • 
1S easily seen that (2.5.3.22) • 

lS 

l+ • 1 :>.:Q s ~ 'tR,SeR • (2.5.3.23) 

Furtherxnore, tini.fo1m boundedness of the left-handside of the inequalities 
(2.5 .. 3 .. 22). is obtained by req1Jiring 

• 
1Il 

• \fR,SeR, Me(O,oo) • (2.5.3.24) 

So, (2.5.3.18) is a monotone scheme if the li111jter 1/J \jl(_R) satisfies 

• \fR,S ER • 
• 

This inequality is satisfied if 

\fReR 

and 

\fReR • 

The monotonicity region given by (2.5.3.26) 
assume ae[-2,0]. 

FIGURE (2.5.3b ). Monotonicity region .. 

• 
1S depicted 

MR 

(2.5.3.25) 

(2.5.3.26a) 

(2.5.3.26b) 

m figure (2.5.3b). We 

{2+a)R 

M 

R 

\ 



So, we have fo11nd the following theorem. 

'l'H.EOREM (2.5.3t). 
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If the limiter iJ,=#_R) has the properties that there exist constants 

(2.5.3.18) is a monotone scheme . 
• 

The requirements for this theorem j111ply that i/1(0)=0. Notice that 1/J·=O, which 
corresponds with the first-order upwind scheme, result in a monotone scheme, 
as is to be expected. 
Now, we investigate under which conditions scheme (2.5.3.18) is second-order 
accurate with respect to the space discretization. Define 

-
i + ½,j = ui,j + ½( U;,1 - U; -1,j) 

Ui+ ½ . = U,. · + ½ R · ·) ( U- · - T '· 1 ·) J ,] l,j I,} l,) U I - ,] 

-
i-½,j = U;,j + ½(U;,J- U; + l,j) 

. 1 
(2.5.3.27) 

l,j 

d ·-·1 f ~ 1 f, ~ tR d uL R an s1m1 ar orrnu ae or ;1·+½ an iJ'·+½• - ' , 
Notice that U corresponds with ¥''=1, the fully one-sided second-order up'Wind 
scheme (1e= -1). 

'IHEOREM (2.5.3g). 
If the limiter \/J=\J;(_R) is constructed such that 

- -
Uf+½,1 -Uf-½,J= i+½,J- i-½,j+O(hP+ 1) (2.5.3.28a) 

- -
Uf+½,J- Uf-½,J. i+½,J- i-½,J +O(hP+ 1) (2.5.3.28b) 

-
Uf+½,J- ;+½,J == O(hP) (2.5.3.28c) 

-
Uf+½,J- ;+½,J = O(hP) (2.5.3.28d) 

- ~ 
with p == 1 or p == 2, and where Uf + ½,J, Uf + ½,J, ; + ½,J, ; + ½.,j etc, are given by 
(2.5.3.27), then scheme (2.5.3.18) is p-order accurate with respect to the space 
discretization. 

PROOF. 
'l'his theorem is a direct consequence of theorems (2.5 .2a, b ). □ 

From (2.5.3.27) we see that 

ui+½ ·= l ,] (2.5.3.29) 

Because 
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with i/J'=di/JldR,ip''=d2 ,JJ!dR2 and Pi,j between 1 and R;,i and 

(R;,i-1) (U;,i- Ui-t,j)== ~ +I,j-2Ut,j + U;-1,J 

we find that the assumption 

\f.{1)=1 (2.5.3.30) 

leads to 

ut+JL •= l -n,] 

~ 
i + ½,j + 1/ll/;'( 1 )(Vt+ 1,j - 2 u,,j + ui -1,1) 

+ 1/.n/;''(P,,j)(R;,j -1) (U; + 1,j -2Ui,j + l.ft-1,1X2.5.3.3 l) 

Ass11 me that I if!' I is uniformly bounded, then 
""'.,.,_. 2 

Uf+½,i- ;+½,j=O(h ) 
,.., ,.. 

Ui+rL .-ui_½ ·== .,,;,..,·+½ .- +O(h 2 ) l n,] l ,] l ,] i - ½,j • 
• 

,.., -
(Simi Jar relations can be derived for Uf + ½,J - 1 + ½,J, Uf+ ½,J - t- ½,J ). 

Hence, scheme (2.5.3.18) is first-order accurate with respect to the 
discretization. 

Furtbe1·more, by assu11ung that 

Rt,J - 1 == O(h) . 

Then, ass1Jr11ing I if!'' I is uniformly bounded, (2.5.3.31) leads to 
..., 

Uf+½,J- ;+½,J = O(h 2
) 

,., -
Uf+½,J- i-½,i= t+½,J- i-½,i +O(h 3

) 

and we see that the scheme is even second-order accurate in space. 
Because in general the set 

au = 

has measure 0, we have the following theorem. 
, 

'IHEOREM (2.5 .3h). 

space 

(a) If t/1(1)= I and I \JI' I is uniformly bounded, then scheme (2.5.3.18) is first­
order accurate in space. 

(b) Assume furthermore that I t/1'' l is uniformly bounded. A way from points 
au == au == . . . . . 

the sense of definition 2.5.2a). Moreover, 

h2 I FhRhu -RhFu I i,j == O(h 2 ) (2.5.3.32) 
• • l,j 

where Fh is the space discretization according to (2.5.3.18). 

Notice that scheme (2.5.3.18) is linear when /(u) and g(u) are linear and 
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lji{R)=a +bR, a, b ER. Note that V'(R)=a +bR does not satisfy the require­
ments of theorems (2.5.3f,h), as we should expect. 

Exa111ples of lin1iters combining the property of second-order accuracy and 
monotonicity are: 

LE I: The VAN LEER limiter [23,25,26]. 

IRl+l . (2.5.3.33) 

By taking M=2 and a.=O it is easily seen that this ]irtriter satisfies the mono­
tonicity restriction (2.5.3.26). Because 'PvL(l) = 1 second-order accuracy is 
obtained. 

LE 2: The VAN ALBADA Ji ,niter [24]. • 

R 2 +R == (2.5.3.34) 

By taking M = 2 an<l a.= - ½ it is easily seen that this li111jter combines mono­
tonicity with second-order accuracy. Notice that 'o/vA EC 00 (R). Another advan­
tage of this li1njter is that lim VIVA (R)= 1. ·s implies that at discontinuities 

R...,.+oo 
the scheme renders the fully one-sided upwind scheme ( ,c = - 1 ), which is a 
natural scheme at discontinuites. 
For a review of other linniters see [23]. But notice that a limiter <P(_r) of [23] is 
related to \[l(R) by R - Ilr, \[l(_R)==R</>(_r). A limiter <J,(r) of [23] is only algebrai­
cally identical with \Jl(R) if v,{R)/ R =\Jl(_II R). 

(2.5.3a). 
It has been observed [26] that second-order accuracy can be achieved by 
assu:cning a linear distribution, rather than the unifo1·111 distribution, associated 
with first-order schemes. In a cell, a linear distribution in the x direction is 
achieved if 

U:!--+½ --U,. ·=U· --U~ * · l ,] l,) l,j l - ,} , 

an.d sjn1ilarly in they-direction. Using (2.5.3.27), this means 

1 
l.J,. ·) l,j 

l,) 

or, equivalently 

.. ,✓ R- ·) -- = 't'\ l,) 

R- · R- · l,] l,j 
• 

So, if a Ji1niter satisfies 

- = :#_R) 
R R 

VReR (2.5.3.35) 
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we can speak of linear distributions in each cell. It can be verified that both 
'¥VL and \YVA possess this property. ·sis no coincidence: they were designed 
that way. 
If a )irniter satisfies (2.5.3.35) we have the following theorem: 

'!'Hf.OREM (2 .. 5.3i) .. 

V'max =max(t/,(R)), V'rnin = min(~R)), 
ReR ReR 

then scheme (2.5.3.18) is monotone. 

PROOF. 

Because the limiter satisfies (2.5.3.35), the monotonicity conditions (2.5.3.26) 
are equivalent with 

a~~R)~M; -M~#.,R)~2+a ; 'r/R . (2.5.3.36) 

Put 
• 

a=v,min,_M=2. 

Formula (2.5.3.35) irnplies 1/,(0)=0, hence a:~O and VJroax ?-!:O. 
Hence 

and 

RE. (2.5.3b). 
The ,c-schemes (2.5.1.3) can be written as (2.5.3.19) by taking 

□ 

(2.5.3.37) 

As expected, the IC-schemes correspond with a linear li1niter and are therefore 
not monotone. A class of ]i111i.ters which combines monotonicity and second­
order accuracy is derived from the IC-schemes by 

(2.5.3.38) 

where 

(2.5.3 .. 39) 

Notice that </>(I)= I, <J,'(l)=O and therefore the t/J1e limiters resemble the ,c­

schemes in the smooth part of the flow field where R;::....;1. Concer11ing accuracy, 
the \/J113 1ieniter is the best .. Notice that 1/;0(R) is the Van Albada liroiter. 
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The l[,," limiters are depicted in figure (2.5.3c) for ac= -1, -¾, -½,O,½,½, 1. 
Not all l/lac(R) limiters lie in the monotonicity region depicted in fig (2.5.3b). 
Notice that 1/1' ,c(O)= 1-,c. Thus "1- 1 (R) does not satisfy the monotonicity con­
ditions (2.5.3.26) because '1,,'- 1(0)=2 and t- 1(-1)== -1. From figure (2.5.3c) 
it is easily seen that \/;"(R), KE[-½, l] satisfies the monotonicity conditions for 
a=-½, M=2. 

.... 
tn 
CL. 

N 

Lt) 
• -

Lt) 
• 

Cl 

0 

- ------------1 

Lt) 

• -I 

o - K--1 
o - K--2/3 
A ... K--1/3 
+ - K-0 
x - K-1/3 
o - K-2/3 
V - K-1 

';-+---~--,----.-----,---,-----,--.-----, 
-1.s -0.5 0 

R 
o.s 1 1.5 2 

FIGURE (2.5.3c). The VJ,c(R) Ji miters for ,c= -1, -¾, -½,O, ½, ¾, 1. 

R .... +oo 
of the ~½(R) Ji 1niter is 

with 

2(R4 + I) . 

(2.5.3.40a) 

(2.5.3.40b) 

-
~-- for R.-++oo. Thus V'½(R) resem-

bles the ,c= ½ scheme and fun V/½(R)= 1. 
_ R .... +oo _ 

The \V½(R) lirniter is depicted in figure (2.5.3d). It is easily seen that 'o/½(R) 
satisfies the monotonicity conditions for a== - ½, M = 2. 
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N 

._ 
(I') 
0.. 

"' • -

Ill 
• 

Q 

0 

"' • 
'r 

Ill 
• -' 

';" -----.--r------r-----r-----.-----.----.----, 
0.5 l l.S 2 -1 .s -o.s 0 

R 

-
FIGURE (2.5 .. 3d). The special )imiter 'P½(R) . 

.., 

• 

:1 The use of the 1P¼(R) or ~½(R) lirniter instead of the i/;o(R) li1·niter is especially 
I' 
1! important for the computation of boundary layer flow modelled by the 
I Navier-Stokes equations, see [2]. 

(2.5.3c). 
The use of a li1niter in the interpolation is in fact equivalent with a nonlinear 
monotone interpolation. This becomes clear in the following example where a 
Ji 1·njter is constructed by the interpolation of three states by an exponential. 

pose 

u(x)=A + Beax . (2.5.3.41) 

The unknowns A,B and a are derived from 

1 (k+ ½)h 

Uk=- A+Beax dx= -- e½ah_e-½o:h k=-10 1 h , ' . 
(k-½)h 

Define 

We req11ire 

Uo+ 1 )(Uo-U- 1)=u(½h)=A+Be½ah (2.5.3.42) 

It can be easily seen that (2.5.3.42) implies 
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(2.5.3.43) 

By defining o/( 1) == 

li1niter corresponds with the ,c= ½ scheme. Because lim f'(R) == 2 we have to 
R!O 

take a=O and M=+oo. By defining 1/l(R)=O, R<O it is easily seen that this 
Ji miter lies in the monotonicity region depicted in figure (2.5.3b) for a -0 and 
M== + oo. This means that steady state solutions obtained with this linuter are 
monotone. 

The use of limiters in the second-order space discretiz.ation of the steady Euler 

ponent (k == 1,2,3,4) of q; +½,J and q; +½,J (see (2.5.1.2)). Then we take 

qf +½,j (k) ==q}1:) + 1/2\[l,c(RiY) (q}':)-q~k). l,j) 

qf +½,j (k) = 
l l,j 

where 

(k) _ (k) . q,,j q, -1,J 

(2.5.3.44) 

(2.5.3.45) 

Thus the limiter t/J1e(R) is applied on each component c,u, v or z of the states 
{ q;,J} separately. 
In case fl;,J is a boundary vol111ne, so that, for exa1nple clO; + ½,J is part of the 
domain bot1ndary, no li1niter can be used to compute qf+½,j and qf-½,J· In this 
case we use a si 1nple linear interpolation, i.e. 

qf + ½,j == qi,j + 1/2( q;,j -q; -1,j) 

qf-½,j ==qi,j-½(qi,j-qi -1,j). (2.5.3.46) 

The boundary conditions, together with the state qf+½,J, are used to compute 
the bo11ndary state qf+½,j, by considering the Riemann boundary problem. The 
flux f; +½,i at aO; +½,j is computed by (2.5.1.2). 
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pter 

ti ·d Solution of First- rder Discre · ation 

3.1. IN'l'RODUCI'ION 

The multigrid method has become a well-established technique for the 
acceleration of relaxation-iterations to solve the sparse systems that arise from 
discretization of elliptic pa 1·tial differential equations. The advantage of mul­
tigrid over other acceleration techniques is the fact that - under suitable, but 
quite general circumstances - the rate of convergence is independent of the size 
of the system to be solved. For other methods the rate slows down rapidly for 
finer discretizations when the systems get larger. 'J'his makes the multiple grid 
method superior to other methods - at least for very large elliptic systems. For 
readers a111i]iar with multigrid techniques we refer to [1,2] .. 
The multigrid technique has also been applied with success to other types of 
equations, such as parabolic pa 1·tial differential equations and integral equa­
tions. Based on the pioneering work of Brandt [I] it is expected that with the 
multigrid method, for many equations, a sufficiently accurate approximate 
solution can be computed in an aanount of work that is equivalent to a small 
number of evaluations of the (nonlinear) operator. 

Also for the steady solution of hyperbolic equations, such as the Euler equa­
tions, the multi grid technique has been used for the acceleration of the solution 
process .. For a survey of multigrid approaches to the Euler equations, see [3]. 

In this chapter, we study a multigrid method for the solution of first-order 
disc1etizations only. As noted before, first-order accuracy is too low for practi­
cal problerns. Therefore, the ulti1nate goal is an efficient and robust solution 
method for systenns obtained by second-order discretization. Such a method, 
based on the defect correction principle, is developed in chapter IV. The basic 
tool of this method is the multigrid solver for first-order discretization which is 
the topic of this chapter. 

3.2. NFS't'ED fl'IF:RATION AND NONLINEAR MULTIGRID 

Let 

(3.2.1) 

be the first-order accurate discretization of the 2D steady Euler equations with 
source terrn r. Hence, (see (2.1.15)) 
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with 

(F}(qh));,j =f;+½,J + J;,j+½ -Ji-½,j-f;,J-½ 

fj +½,j =I;+ ½,j T;-+1½,j/R(T;+½,jqh,i,j, T;+ ½,jqh,i + l,j) 

h,J+ ½ = lt,j+½ TiJ~½/R(Tt,1+ ½qh,i,j, T;,j+ ½qh,i,j + 1) 
(3.2.3) 

where I;+ ½,J is the length of af2; + ½,J, Ti + ½,J = T( c/>; + ½.J) and 
( COS</>1 + ½,j, sinq>; + ½,j) is the unit normal on aoi + ½,j directed from oi.j to O; + 1,j 

(see fig. 2.1 .. b). Similarly, li,J+½ is the length of aoi,J+½, T;,J+½ == T(<Pt,J+½) and 
( COsc/>i,j + ½, sin4>t,j + ½) is the unit no1·1nal on aoi,j + ½ directed from ~i,j to 
fl;,J + 1• The subscript h denotes the mesh width and /R is Osher' s approximate 
Riemann-solver. Although in general r==O, we prefer to describe the solution 
method for first-order systems with an arbitrary (but small) right-hand side. 
We · develop an efficient multigrid solution method for (3.2.1). A nested 
sequence of finite volume grids is constructed, such that each finite volume in a 
given grid is the union of four finite volumes in the next finer grid, as indi­
cated in fig. 3.2a. The grids are denoted by Ok, k = I, ... , /; their mesh-size is 
h 1 > h 2 > · · · > h1 = h. Hence, U 1 is the coarsest grid, 0 1 the finest grid. 

The solution method consists of two successive stages: nested iteration (or full 
multigrid: FMG) and no · ear multigrid (NMG) (or full approxi:mation 
scheme: FAS). 

Stage I: Nested iteration 
Let 

(3.2.4) 

be the first-order discretization on Ok, k = 1, ... , /. Denote with qZ the solu­
tion (3.2.4), k = 1, ... , I. Nested iteration starts with some initial estimate of 
qi and pr """"s recursively. Given an approxi1nation of qZ., an approxi.mation 
of qZ + 1 is obtained as follows. The approxirnation of qic is improved by a sin­
gle NMG-iteration (see sta e II) and this i.1nproved approxirnation is interpo­
lated to the finer grid Ok+ . These steps are repeated until an approxiination 
of qi has been obtained. 

The interpolation used to obtain the approxiination on a finer grid is a 
piecewise constant interpolation ( assijii,,. the coarse volume value ( qk ),,j to the 
corresponding 4 finer vol11 rnes of Ok + ) . 

. 

Stage II: The nonlinear multigrid (NMG) method 
To converge rapidly to the solution of (3.2.1), NMG-iterations are applied on 
the finest grid 01• One NMG-iteration on a general grid Ok is defined recur­
sively by the following steps: 

(0) Start with an approximation qk of qic. 
(I) Improve qk by application of p (pre-)relaxation iterations to Fl(qk)=rk. 
(2) Compute the defect (or residual) dk: ==rk -Fl(qk). 

• 
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(3) Find an approximation qk - l of qic - l on the next coarser grid Ok - I . One 
possibility is to take the last obtained A approxi 1natio~ !_o qk - l · Another 

operator. 
(4) Compute rk-1:=Fl- 1 (qk-1)+1i- 1dk where Ji- 1 is another restriction 

operator. 
(5) Approximate the solution of Fl - I (qk - I) =rk - l by a NMG-iterations on 

Ok - 1 • The result is called qk _ 1 • (a== I results in a so-called V-cycle, a= 2 
in a W-cycle). 

(6) Correct the cu,,1ent approximation by q1c: =qk + It- 1 (qk - l -qk -1 ), where 
Ii - 1 is a prolongation operator. 

(7) Improve qk by application of q (post-)relaxation iterations to Fl(qk)=rk. 

The steps (2)-(6) are called the coarse-grid correction. These steps are skipped 
on the coarsest grid. 

In order to complete the description of NMG we have to discuss: (i) the choice 

the multigrid schedule i.e. the numbers p,q and o. 

(i) Choice of the transfer operators 

k k k , 
(0 )2;, 2j,(Sl )i; -1,2j,(O )u, 21 -1 ,(Sl h - l,2j -1 (see fig. 3.2a). 

fine grid cells 

(o!' h.; - 1,2) 

(W)i; -l.2j-1 

FIGURE 3.2a. The subdivision of a coarse grid ceJJ in four fine grid cells. 

A -1 
(qk -1 )i,j = ( k qk)i,j 

1 
: == 4 { ( qk h,;, 2j + ( qk )u -1,2j + ( qk hi, 2j - 1 + ( qk hi -1, lj - l } 

(3.2.5) 
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(dk - 1 )1,j = (Jf- 1 dk)i,j 

: =(dkhi, 2j +(dk)2; -1,2j +(dk)2i, 2j -1 + (dkhi - I,2j - I . (3.2.6) 

Notice that a state q is represented as q ==(c,u, v,z) (see section 2.2.2). 
The prolongation operator Ji_ 1 is piecewise constant interpolation defined by 

(/~ -1 qk - l bi, 2j =(Ji-1 qk - Ihi - l,2j =(Ii-1 qk -1 )2;, 2j -1 

=(Ji-1 qk -1 )2; -1,2J- l: == (qk - 1 );,j · (3.2.7) 

By de · g the transfer operators in this way, we have the following theorem. 

THEOREM (3.2a). 
The first-order coarse grid discretizations of the steady Euler equations are Galer­
kin approximations of the fine grid discretization i.e. 

Fl-1 =1t- 1F}Ii-1 k=l, ... ,2. '(3.2.8) 

PROOF. 

From the definitions of the transfer operators IZ - I, 1i _ 1 it follows that 

(It- 1 Flii-1 qk -1)t,J = (Fkqk)21, 2j +(Fkqk)2i -1,2} 

+ (Fkqkhi, 2j -1 + (Fkqk)2; -1,2} - I 

where qk =If-1qk-I· 
Because 

(qkbi,2j =(qkh.i -1,2} =(qk)2i, 2J- l ==(qk)2i -1,2)-1 = (qk - I )i,j 

(3.2.9) 

it is easily seen that the righthandside of (3.2.9) equals (Fl- 1 qk -I )i~j· 

□ 

From (3.2.8) it follows that we have a nested sequence of discretizations, i.e. 
the following scheme (fig. 3.2b) of operators and spaces commutes (Xk is the 
vector space of states { qk} at Ok, Yk is the vector space of total fluxes at Qk ). 
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• • • ♦ • • • 

I~ +I 

• 

• • • • • • • 

FIGURE 3.2b .. The nested sequence of discretizations. 

Another property which follows directly from the definitions (3.2.5)-(3.2.7) is 
A -I k 

k lk-1 =Ik-1 (3.2.10) 

where lk _ 1 is the ide11tity operator on Xk - 1. 

The effect of the Galerkin approxi ,nation (3.2.8) on the FAS-iteration pro-
cess is the following. Let qk be an approximation of qk and (Jk the i1nprove­
ment of qk after a coarse grid correction which is assumed to be solved exactly 
for the moment. Thus . 11 _ ,, .,, _. 

.. ✓ ' 
"ft J ,,,·\. {- -· ,A[ ,,' \ e-

_,, ); • ·f - -r_ /, . ( :_., ' ' -k - ,-. -';-a,i 

-· ,:: qk '11Jk -¥,Jk -1 (qk -1 - kt✓,'\\, qk) 
I . . ,, \ 

I ' . • ' . 

(3.2.11) 

where qk -1 is the exact solution of 

(3.2.12) 

From (3.2.10,11) it follows that 
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A -}_, =-
k qk qk-1 · 

Using the relations (3.2.8, 10, 11, 12, 13) we find that 
k l 1 k " - 1~ lk - (rk -Fklk -1 Jc qk) 

l A -1-k 
=I!- 1rk-Fk-1 k q 
=Jk-1 l -

. 

= k k qk k k - l k qk · 

For the restriction of the residual we obtain 

. 

(3.2.13) 

(3.2.14) 

(3.2.15) 

In two pa•·ticular cases the restriction of the residual vanishes for a Galer kin 
approxi1nation. First, suppose qk E Range (Jf _ 1 ). From (3.2.11) it follows that 
(Jk e Range (J! _ 1 ) and using (3.2.10) we see from (3.2.15) that 

k l 1-Jk - (rk-Fkqk)=O. 

That is, after coarse grid correction the residual belongs to Ker (Ji - 1 ). 

When Fl is linear, this remains true when qk f:£.Range (I~-I ). This is a well 
known result. It follows from (3.2.15) in the following way: 

k I 1-

In the neighbourh of a solution, the difference between qk -qk · be 
small and Fl will approxi 1nately behave as a linear operator: the restriction of 
its residual will be very small viz. 0( 11 qk -qk I 12 ). 

Since Ii - I corresponds to taking 1 averages with positive weights, grid 
functions in Ker(Ji - I) have many sign-changes and hence are non-smooth. 

relaxation methods exist that reduce non-smooth residuals efficiently. 

(ii) The relaxation method 
We use Collective Sy1nmetric Gauss-Seidel (CSGS-) relaxation. 'I'his means 
that, at a pa s·ticular level, all cells are scanned one by one in some prescribed 
order and at each vol11111e visited, the 4 11nknowns (c,u, v,z) are changed simul­
taneously ('Collectively') by solving the 4 nonlinear equations by Newton's 
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method (1 lineariz.ation). 
One Newton iteration applied to the equation 

(Fl(ql))i,j =(rk)t,j (3.2.16) 

is defined by 

(3.2. l 7a) 

(qk)Z1: =(qk)f,o/ ...... +(8qk)i,j . (3.2.17b) 

qk l,J 
solution of the linear 4 X 4 system (3.2.17a) is obtained by Gauss-elimination 
with column pivoting. One or more steps of Newton-iteration are used until 
the local residual is reduced below a sp · ed magnitude. It appeared most 
efficient to take this tolerance so crude that no more than one iteration step 
per cell is performed. 

Several relaxations, all being of the Collective Gauss-Seidel type, were con­
sidered in [4,5]. It appeared. that the following choice is very robust and 
efficient [4,5]: use CSGS from North-West to South-East and vice versa for the 
pre-relaxation, use CSGS from North-F.ast to South-West and vice versa for 
the post-relaxation. For all computations presented in this work we use this 
particular relaxation method. 

For an analysis of relaxations of Collective Gauss-Seidel type for the Euler 
equations and related model equations see [6]. 

(iii) The multigrid schedule 
A multigrid schedule is a rule for the order in which the grids are visited. We 
use a fixed schedule for all computations presented in the next section. We 
take a== 1 and p =q = 1, i.e. we use V-cycles with one pre- and one post relaxa­
tion, both in the nested iteration and the NMG-stage. Experiments show that 
clifferent (p,q, o)-strategies are not much different in efficiency (4,5]. Usually a 
smaller convergence factor is compensated by a corresponding arnount of addi­
tional work. 

Fi e 3.2c gives an illustration of the multigrid schedule. Suppose there are 5 
nested grids (1=5). Between two su · g points A,B we have one NMG-
iteration (V-cycle). Between two su · g points B,A we have a piece'\\ise 
constant interpolation in the nested iteration stage. 

A _,A ---- - ·- - -·- -·- -~ -·--·---•----·- ----. - --- ----- -- - ·- -· --- ·+-~-
' - . ·- ~ - -- - - '-·- -· -·- - -·-- -· . ·- . _ .. ___ ·-:~. -

• • - -- ' - - < ~,.,. ..... -~ 

A 
- • -- .. -· ♦- - • -

-- -- . -

----Nested iteration--- ..... --------NMG-stage--------
. a : relaxation 

FIGURE 3.2c. Schematic representation of the multigrid schedule (5 levels). 
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3.3. NUMERlCAL 

In this section ntimerical results are presented for four testproblems. The first 
two testproblems concern the computation of channel flows. Testproblem 
three concerns the resolution of a contact discontinuity and in testproblem 
four we consider a cylinder in a supersonic free strearn. For each testproblem 
we give the convergence history of the multigrid method described in the previ­
ous section. The first-order solutions obtained are presented graphically in 
order to compare their quality with the second-order accurate solutions 
presented in chapter IV. 

PROBLEM I. Flow in channel over a circular arc bump with thickness 4.2%. 
The geometry of the chaon.el is given by the following mapping from the (~, 11)­
computational space to the (x,y)-physical space. 

10 --2 ~t~-- => t=(77~-l-90)/32 
7 

- 10 ~~~ 15 => i==(l~-5)/40 
7 7 
15 -

~~~ 3 =;> € (133~ 255)/48 7 

- -
-/J,(~+2) 

2 ~~~ 0.625 2+ 1.375 · e =>x 
-{J · 1 375 e I • 

- -0.625 ~E~ 0.625 => X E -- elh.(l-3) I 0.625 ~~~ 3 => X 3 2.375 /Ji · -2.375 I e 
e~.,, I -.,, 2 2p e 3 I 

-
9-x2 -2.958) 

I x I > 0.5 tj y ==~ 

with P1 ==2.26, /32 = 1.39, /33 · 1.25. 

The nested sequence of gnds 1s gtven in fig. 3.3.1. 

• 

(3.3. la) 

I 

I 

(3.3.lb) 

(3.3. lc) 

(3.3.ld) 

the 
of 
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FIGURE 3.3.l. The nested sequence of grids for testproblem 1. 
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• 

We consider the convergence history of the NMG-iteration proces for three 
different parallel flows given by the following boundary conditions 

Problem la: Subsonic flow: M inlet =0.3, Pinlet =poutlet· 

Problem 1 b: Transonic flow: M inlet= 0.85, Pinlet =p outlet. 

Problem le: Supersonic flow: M inlet= 3.0. 
Mm1et is the entrance Mach nu1nber at x=-2. We takepinlet-Poutlet; this 
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makes the nun1erical solution essentially independent of the value of 

P inlet P outlet• 
The solid bounda1i.es are treated as described in section 2.3.2. For problem 
la,b at the outflow boundary (x =3), Poutlet is prescribed and the bo1ind 
condition is treated as described in exa1:nple (2.3.2a). At the inflow boudary 
(x= -2) we prescribe v=O, c= l, u=Minlet and, in case of problem la,b, z 
such that Pinlet =poutlet (overs · cation), in case of problem le, z = I. 
In fig. 3 .. 3.2 we present the convergence history of the NMG-iteration process 
at · erent grids for the subsonic testproblem la .. At the ordinate the loga­
rithrn (base 10) of a nortn of the residual is depicted. The no1·r11 used is the 
surn of the four L 1-nom1s of the components in the residual, i.e. 

4 

11 Fl(qh) 11 = _. I (Fl(qh))tj I (3.3.2) 
k = 1 (i,j) 

In fig. 3.3.3,4 we present the convergence history at different grids for the tran­
sonic testproblem 1 b. In fig. 3.3.3 we have used the P-variant of the Osher­
scheme, in fig. 3.3.4 the 0-variant has bee11 used .. No difl'erence is observed. 
The P-vaa·iant of the Osher sch~me is always used unless mentioned otherwise. 
In fig. 3.3.5 we present the convergence history at different levels for the super­
sonic testproblem I b. 
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FIGURE 3.3.5. As figure 3.3.2 but 
for testproblem I c. 

From the experirnents we conclude that for supersonic and transonic fl.ow the 
rate of convergence of the NMG-iteration process is (for practical p ..,..oses, 
where one only wants to get below tJ·uncation error) independent of the 
meshwidth. Nested iteration alone already brings us close to truncation error. 
Convergence is slower and dependent on the meshwidth for small Mach 
:0111nbers. 

The transonic testproblem 1 b is a standard problem, used to compare many 
different methods [9]. For this problem only we give results of the first-order 
solution obtained. The results are presented in fig. 3.3.6-12 and are obtained 
at the 40 X 16 grid. In fig. 3.3.6,7 we give the Mach number distribution. Fig. 
3.3.6 is obtained with the P-va1·iant, fig. 3.3.7 is obtained with the 0-variant. 
Again, no difference between the P- arid O-va1:·iant is observed. In fig. 3.3.8 we 
give the c, distribution .. The pressure coefficient is defined as 

= P Poo (3.3.3) 

where the values at infinity are obtained by averaging the outflow values. In 
fig. 3.3.9 we give the entropy distribution of the flow field. The entropy is 
presented as (s-s_ 00 )/s_ 00 with s==pp--r. 
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In fig. 3.3.10-12 we give the Mach number, -cP and entropy distribution along 
the lower surface of the chann.el. The shock is well captured but notice the 
sp11r·ious entropy generation at both comers of the circular bump. 
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FIGURE 3.3.10. Mach n1.11:r1ber distribution along the lower surface of the channel 
for testproblem lb (40 X 16 grid). 
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testproblem lb ( 40 X 16 grid). 

PROBLEM 2. Supersonic flow in a channel with a 4% thick circular arc bump. 
'Ibis is a standard test problem, considered in [7,10]. 
The geometry of the channel is given by the following mapping from the (iE, 11)­
computational space to the (x,y)-physical space with (iE,1J)E[-l,2]X[O,l]. The 
mapping is given by 

• 

1 ~ 
I ~E~ - 4 => E=(~+ 1)/3 

1 
~E~ 5 => i (~+ 1)/6 4 4 

5 -
~E~ 2 => E (~ 2)/3 

4 .. 
- -/Ji(~+ 1) 1 

I+ e . I ~E~ 0 => X 
e-Pi 1 

1¥ -
0 ~E~ l => X E 

-
~ e/Ji(f-2) I 

1 ~E~ 2 => X 2 
e-/Ji 1 

efti11 I 
e~ I 

O~x:,:;:; 1 => y =ij+(l-,j)( 9.89105-(x-

-x~O or x>l => y=11 

with /J1 = 1.26 and /Ji= 1.01. 

(3.3.4a) 

(3.3.4b) 

(3.3.4c) 

-3.105) 

(3.3.4d) 

At level /, I= 1,2,3,4,5 the vertices of the quadrilateral volumes r:l;,j in the 
(x,y)-space correspond to a re'"" ar square mesh over 6.21- 1 x2 .. 21- 1 vol1Jrnes 
on [-1,2]X[O, I] in the (E,11)-plane. 
The nested sequence of grids that was employed is given in fig. 3 .. 3 .. 13. 
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At the inflow boundary (x = - 1) we pre£cribe M inlet = 1.4. We take 
Uinlet = M inlet, V inlet = 0, C inlet = 1, Z inlet - -yln( Y ). 
In fig. 3.3.14,15, we present the convergence histories of the NMG-iteration 
process on grid 48 X 16 and grid 96X 32, respectively. As expected, the conver­
gence rate is excellent. For later comparison (see chapter IV), the first-order 
solutions on grids 48 X 16 and 96 X 32 are presented. 
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In fig. 3.3.16,17 the Mach nu1nber distributions obtained are shown. Two 
oblique shocks are for1ned at both comers of the bu1np. Due to discretization 
e11ors, the shocks loose sharpness as one moves out from the lower wall; the 
reflection of the leading-edge shock by the upper wall is hardly visible (cf. the 
second-order solutions presented in chapter . The leading-edge shock is 
spread nu111erically over 6 volumes halfway the channel (Y =0.5). 
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2.0 

In fig. 3.3.18-21 we give the Mach nu111ber and the entropy distributions along 
the lower surface of the channel. 
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FIGURE 3.3.18. Mach n11n1ber distribution along the lower surface of the channel 
for testproblem 2 ( 48 X 16 grid). 
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FIGURE 3 .. 3.21. As figure 3.3.20 but on grid 96 X 32. 

PROBLEM 3. Resolution of contact discontinuities. 

1.5 2.0 

Here the physical and computational dor11ain are the same, i.e. the mapping is 
the identity: x=~,y=11. We take O=[O,l]X[O,l], the coarsest grid is 2X2 
volumes, the finest grid is 32 X 32 volumes (level 5). 
Two problems are considered: 

PROBLEM 3a. Contact discontinuity aligned to the grid 
The boundary conditions are (s =pl pY, z =In(s)). 

x=O, 0~~0.5 : u=0.25, v . 0, s=0.5 

x =O, 0.5:S:;;y~l : u =0.75, v =O, s = 1 

other boundaries : p = I . 
(see fig. 3.3.22}. 
At the no east and south boundary of the domain 0, the boundary condi­
tion is treated as described in example 2.3.2a (subsonic outflow). At the west 
boundary, the boundary condition treatment is as described in exa1nple 2 .. 3.2b. · 
The exact solution of this problem has a contact discontinuity at y = 0.5. In 
both parts of the domain the solution has a uniform state: for y<0.5 we have 
u=0.25, v=O, s=0.5,p=l; fory>0.5 wehaveu=0.75, v=O, s=1,p=1. 
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X 

FIGURE 3.3.22. The domain D with bo11ndary conditions corresponding to test-
problem 3a. 

Because the contact discontintµty coincides with a grid line there is no discreti­
zation error, and the nu111erical solution should be exact. The convergence his­
tory of the NMG-iteration process is shown in fig. 3.3.23 and the entropy dis­
tribution along the line x =0.5 is shown in fig. 3.3.24. From this last figure we 
see that the solution obtained is indeed exact. 
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FIGURE 3.3.23. Convergence history of the NMG-iteration process of testproblem 
3a (32 X 32 grid). 
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FIGURE 3.3.24. The entropy distribution along the line x =0.5 for testproblem 3a 
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PROBLEM 3b. Oblique contact discontinuity. 
The boundary conditions are 

West bot1ndary x ==O : u == 2 /8, v == 2 /8, s == 112. 

North boundary y. 1 : u ==3 2 /8, v = - 3 2 /8, s 1 . 

East bo11ndary x = 1 : p = 1 . 

South boundary y O : p - I . 

• 

The exact solution of this problem has a contact discontinuity at x + y = 1. In 
both arts of the domain the solution is unifor·1n. For x + y < I we have 
u= 2/8 v=-_ 2/8, s=l/2,p==l; for x+y>l we have u==3 2/8, 
v= -3 2/8, s-1, p=l. 
The outflow bo11ndaries (p = 1) are treated as in example 2.3.2a, the inflow 
boundaries are treated as in example 2.3.2b. 
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FIGURE 3.3.25. The domain O with boundary conditions for testproblem 3b. 
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In fig. 3.3.26 we present the convergence history of the NMG-iteration process. 
In fig. 3.3.27 we present the entropy distribution along the line x =0.5 and 
entropy contours are shown in fig. 3.3.28. We observe considerable smea1·ing 
out of the discontinuity. 
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FIGURE 3.3.26. Convergence history of the NMG-iteration process for testprob­
lem 3b (32 X 32 grid). 
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FIGURE 3.3.28. Entropy contours for testproblem 3b (32 X 32 grid). 

PROBLEM 4. Cylinder in a supersonic flow 
The grids used for the multigrid computation are shown in fig. 3.3.29. The 
mapping from the (~, 11)-computational space to the (x,y )-physical space with 
(!,r,)E[l,6]X[w/2,'1T] is 

x= , y =~sin11. (3.3.5) 

At level/, /=l,2,3,4 the computational space is subdivided in 5.21- 1 X4.21- 1 

rectan ar volumes. 
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FIGURE 3.3.29. The nested sequence of grids for testproblem 4. 

The free-stream Mach number is Min = 2.0. At inflow the supersonic boundary 
condition is used (um, vin, cin , Zin are prescribed), at outflow the supersonic 
outflow boundary condition is used (no boundary values are prescribed) and 
the other two bounda1ies are treated as a solid wall (see section 2.3.2). 

The standard multigrid solution method starts, in the nested iteration stage 
with a uniform constant flow field given by Um, Vm, cin and Zin on the coarsest 
mesh. Unfort11nately, divergence was observed for the local Newton iteration 
process in the CSGS-relaxation method on the coarsest grid. A si1nple remedy 
for this problem is the following continuation method. At the coarsest grid, we 
start with Min =0.1 and with a corresponding uniform flow field. _Then 2 
CSGS-relaxations are perfoxmed to improve the solution. After the improve­
ment, the inflow boundary condition is changed such that ~w: ==Mg!d + 
and 2 CSGS-ralaxations are perf or1ned with this new inflow boundary condi­
tion. We take =0.1. This process is repeated until Min =2.0. 'I'his inexpen­
sive continuation process results in a good initial approximation on the coar­
sest mesh. The standard multigrid method sta:rts, in the nested iteration stage, 
with this initial approxirnation and no further problems were encountered. 

In figure 3.3.30, the convergence history of the NMG-iteration process is 
shown. 
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FIGURE 3.3.30. Convergence history of the NMG-iteration process for test prob-
lem 4 ( 40 X 32 grid). 

In fig.. 3.3.31,32 the Mach number and pressure destributions are shown. 
The bow shock is clearly visible. The bow shock starts at x == - 2.5 and this 
result agrees well with the first-order results published in [8]. In fig. 3.3.33 the 
surface pressure distribution along the cylinder is shown. 
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FIGURE 3.3.31. Iso-Mach lines for testproblem 4 ( 40 X 32 grid). 
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FIGURE 3.3.32. Contour plot of the pressure (pip-co) for testproblem 4 (40 X 32 
grid). 
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FIGURE 3.3.33. Pressure (p Ip_ co) distribution along the surface of the cylinder 
for testproblem 4 ( 40 X 32 grid). 

For these four testproble1a1s we can conclude that the multigrid method has the 
following features: 

- Robustness. All problems are solved with a fixed multigrid schedule. 
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- Efficiency. The convergence histories are excellent. For practical 
purposes, where one only wants to get below truncation 
error, after a sta1·t with nested iterations, a few (two or 
three) NMG-iterations are sufficient. 'Ibis means that 

- Grid independence of 
the convergence rate. 

first-order solutions are obtained in an a,nount of work 

on the finest grid. 
This is observed for the transonic and supersonic test­
problems la,b. However, for flows with smaller Mach 
n11:mbers the convergence rate slightly decreases ( see 
testproblem 1 c ). 

However, the quality of the solutions obtained is not satisfactory. Especially 
oblique discontinuities are captured badly. The accuracy of the solutions can 
be improved. This becomes clear by comparing the first-order solutions with 
the second-order solutions presented in chapter IV. 
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Chapter 

4. 1. IN'l'RODUCl'ION 

In chapter II we have derived a first-order and a monotone second-order 
upwind scheme for the steady Euler equations. Both discretizations are conser­
vative and can be written as 

(4.1.1) 

where 

(4.1.2) 

and 

Ji+ ½,j == I; + ½,j T;-+1 
½,jf R (Ti+ ½,j h,i + 1/2,j, T; + ½,j qf.1 + 1/2,j) 

Ji,j+½ ==l;,J+½Tij1+ R(Ti,j+½ h,i,j+½, T;,j+½qfi,j+½) (4.1.3) 

(see 2.1.15, 2.5.1.1,2). The discretization (4.1.1) is first-order accurate with 
( 01nitting the subsci·ipt h) 

i+½,j=q;,j ; qf+½,j==q;+I,j · (4.1.4) 

and analogous expressions for qf;;~½-
Then F1a(qh)=F1(qh), the first-order space discreti.zation operator .. The discreti­
zation (4.1.1) is monotone and second-order accurate with (again 01nitting the 
subscript h, and denoting the kth component (k=l,2,3,4) with superscript k) 

(4.1.5) 
1 l,J 

where 

R(k) == ·, ,, , 
l,] (k) - (k) . • q,,} q, -1,J 

(4.1.6) 

and where 'Po : Rt-+IR is the Van Albada lirnjter defined as 

R 2 +R = (4.1.7) 
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(see 2.5.3.44,45). Then F1z(qh)=Fi(qh), the monotone second-order space 
discretization operator. 

In chapter III we have developed a robust and efficient nonlinear multigrid 
method for solving 

F}(qh)=rh . (4.1.8) 

We have already mentioned that first-order accuracy is too low for practical 
proble111s. Therefore, the accuracy has to be i1nproved. There are rou'--' y two 
ways to improve the accuracy. A first possibility is to construct an efficient and 
robust multi grid solver for 

Fi(qh)=rh. (4.1.9) 

Unfort1Jnately, for this system of equations there are no relaxation methods 
available with g s1nootbing properties for da1nping short wavelength error 
components. The smoothing properties of point-relaxations are insufficient [6]. 
A g alternative seems the block relaxation method proposed in [12]. But 
experinnents with a multigrid method which uses this block relaxation as a 
smoothing operator show a rather disappointing convergence behaviour in case 
of solutions with shocks [unpublished results]. 
A second possilibity is to solve (4.1.9) in an indirect way, making use of the 
excellent multigrid solver for (4.1.8). This can be done by the following Defect 
Correction (DeC-) iteration process: 

F}(ql)=rh 

Fl(¢,,+ 1)=Fl(qt)+(rh -Fl(qt)) i== 1,2, .... 
( 4.1.10) 

It is clear that the fixed point of this iteration process is the solution of (4.1.9). 
But what is the convergence rate of this DeC-iteration process? In section 4.3, 
nume1·ical results show that the convergence rate is in general rather slow. 
Therefore, the DeC-iteration process is not an efficient process to obtain the 
exact solution of (4.1.9). Fortunately, to obtain second-order accurate solutions 
it is not necessary at all to iterate until convergence. For problems with 
smooth solutions, a single DeC-iteration is sufficient to obtain second-order 
accuracy [4]. In case ___ of the Euler equations, where solutions are in general 
discontinuous, expe1irnents show that a few (5-10) DeC-iterations si -.A•· cantly 
i111prove the accuracy of the solution [7]. From these considerations it follows 
that (4.1.10) must be taken as a finite process (i.e. a small n111nber of iterations 
are perfo1·1ned) only to i'mprove the accuracy of the first-order solution 

1 qh. 
In section 4.2 we derive some general theoretical results for the DeC-iteration 
process.. A description is given of the complete solution process to obtain 
second-order accurate solutions of the steady Euler equations .. 
In section 4.~ nuanerical results are given for the testproble1ns of section 3.3. It 
is shown that the first-order solutions presented in section 3.3 are improved 
considerably by a few DeC-iterations. 
Finally, in section 4.4 we consider the special and interesting case of the steady 

• 
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Euler equations with a source ter,n. In that case, second-order accurate solu­
tions are obtained again very easily by the defect correction method. 

4.2. 'h1E DEFt:cI' N 

In this section, the defect correction method is considered in a general context. 
The main result is theorem 4.2b. From this theorem it follows that a small 
nu1oher of DeC-iterations is sufficient to i1nprove the accuracy. An alternative 
proof is given. Finally, the results of the analysis are used to develop a 
complete solution process for obtaining second-order accurate solutions of the 
steady Euler equations. A large part of this section has been published else­
where [I, 2, 3, 11]. 

Consider the problem 
• 

Fq=r* (4.2.l) 

where F: Xa--+Y and r* EY are given and X and Y are normed vector spaces. 
We ,nay think. of X and Y as being infinite dimensional function spaces. A 
discretization of ( 4.2.1) is an associated problem 

(4.2.2) 

where Fh : Xh, ► Yh and rii E Yh is given and Xh and Yh are no1med vector 
spaces. Th.e relation between the problem and its discretization is obtained by 
introducing surjections Rh : Xt-+Xh, Rh : Yt-+Yh. The relation between the vaii­
ous spaces and mappings in the discretiz.ation is sumana1·:ized in the following 
diagra11·1 (see also subsection 2.5.2): 

X 
F 

-· _, --•---13• y 

By ass111ning h e(O, , H>O, a sequence of discretizations of (4.2.1) is 
obtain.oo. 
Suppose 

*=R * rh hr 
(4.2.3) 

and let q* denote the solution of (4.2.1) and qiz the solution of (4.2.2). The 
truncation error Th is defined as 

(4.2.4) 

order p) with the problem ( 4.2.1) if 
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I I 'Th I I Y,. =O(hP). 

Define the truncation error operator "h : X ~ Yh by 

Th =RhF-FhRh . 

DEFINITION 4.2a. (Consistency). 
The sequence of discretizations is consistent of order p if 

l I Th(q) 11 yh ~c 1 (q)hP ';lq ex, h e(O,H) . 

The discretization error E:j; E Xh is defin_ed as 

fh =Rhq* -qi, =(Rh -F-;;1 RhF)q* 

' 

(4.2.5) 

(4.2.6) 

( 4.2.7) 

(4.2.8) 

where we have assumed that Fh is a bijection. The sequence of discretizations 
(4.2.2) with h e(O,H) is called discrete convergent (of order p) to the solution of 
(4.2.1) if 

I I f j; I I XA == 0 ( hP) . . 

Define the discretization error operator t.h : X 1--+Xh by 

€.h =Rh -Fh l RhF . 

DEFINITION 4 .. 2b. (Convergence). 
The sequence of discretizations is convergent of order p if 

I lt:h(q)l lx
11 
~C2(q)hP llqeX, he(O,H). 

Another i1·11portant concept is the stability of the discretizations: 

DEFINITION 4.2c. (Stabiliry). ., 

(4.2.9) 

(4.2.10) 

(4.2.11) 

The sequence of discretizations is stable if there exist a C 3 >0 (independent of 
h) such that 

(4.2.12) 

The following well known theore1n is proved easily .. 

'l'H:EOREM 4.2a. (Equivalence theorem). 
If a sequence of discretizations is stable and consistent of order p then it is con­
vergent of order p. 

PROOF. 

I I £h ( q) I I x. = I I Rh q - Fh 1 Rh F q I I xh 

= 11 Fh l FhRhq-F-,; l RhFq) f x,. 



~C3I IFhRhq-RhFql IY,. 

~C3C1(q) · hP 
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D 

We · now for1nulate the main theorem about the defect correction method .. -
Consider two different discretizajions Fh, Fh : Xh1--+Yh. Assume that Ph is 
stable and consistent of order p, Fh is consistent of order p >p. Consider the 
DeC-iteration process: 

Fhql =rj. 
-

Fhqi+ 1 =Fhqt+(rh-Fhqt) i=l,2, ... 

First we need the con t of relative consistency. 

DEFINITION 4.2d. (Relative consistency)._ 

, 

(4.2.13) 

Two sequences of discretizations Fh, Fh are relatively consistent of order p if 
there exist a C4 >0 such that . 

- -
11 (Fh -Fh)qh -(Fh -Fh)qh I I Y,. ~C4hP 11 qh -qh 11 x

11 
'iqh, qh eXh, h e(O,H). 

'l'HEORE1!! 4.2b. (DeC-iteration ). 
Let Fh, Fh : xh~Yh be two different discretizations. Assume: 

- {h is stable and consistent of order p. 
- Ph is COl].sistent of order p >p. 
- Fh and Fh are relatively consistent of order p. 

Then the i th iterate q~ of the DeC-iteration process (4.2.13) satisfies 

11 q1 -Rhq* 11 x,, ~ch min (p, ip) • 

PROOF. 

(4.2.14) 

(4.2.15) 

The theorem is proven by induction; ( 4.2.15) is true for i = 1. Assn 111e that 
(4.2.15) is true for i. Then 

-
I tqt+I -Rhq* I Ix.= I IFh 1(Fhqt+rZ-Fhqi)-Rhq* I Ix. 

- - -
~C3 I IFhqt + RhFq* -Fhqi-FhRhq* + FhRhq* -FhRhq* I I Y,, 
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N - - ~· -~ChP + C . hP . h11aio (p, ip) 

~Ch min (p, (i+ l).p) • □ 

~.2aj. -
In general, the relative consistency of the discretizations Fh and Fh can be 
established only for qh ==Rhq, f/h ==Rhq where q, q EX are sufficiently smooth. 
Therefore theore111 4.2b is only applicable to problems with sufficiently smooth 
solutions. 

In case of the Euler ~nations we have Fh =Fl (the first-order space discretia­
tion operator) and F,,=F11 (the monotone second-order space discretization 
operator). Sop= 1 and p =2 and it follows from theorem 4.2b that a single 
DeC-iteration is sufficient to obtain second-order accuracy, at least for smooth 
problerns. This has been confi1"1ned by experi111ents [4]. _ 
An alternative proof of theorem 4.2a can be given when F, Fh and Fh are 
linear scalar differential operators with constant f(>Cfficients. Then the symbols 
F(<AJ), Fh("') and Fh("') of respectively F, Fh and Fh are defined as 

- -
F(ei"'x) =F( C,J )ei"'x; Fh(eiwx) =Fh(w )ei"'x; Fh( eiwx) = Fh( w )eiwx ( 4.2.16) 

,., 

and the consistency of Fh and Fh can be expressed as 

F( w )-Fh("") = O(hP) 
- -

F(w)-Fh(w)=O(hP) 

with w fixed. 

F==aqx+bljy, a, b>O 

(Fhq);,j=-

1 +1e ( q;,J - I - 4 qi,j 

1-,c 

1 IC ( 
q;,j - I )- 4 q;,j -1 

-

(4.2.17) 

(4.2.18a) 

(4.2.18b) 

(4.2.18c) 

Notice that F,. is the first-order upwind discretization of F, Fh is the second-
order K-scheme (see 2.5.1.3). 
It is easily verified that 
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(4.2.19a) 

(4.2.19b) 

(4.2.19c) 

(4.2.20a) 

(4.2.20b) 

-
Consider the DeC-iteration process (4.2.13) and ass11me that F, Fh and Fh are 
linear ar operators satis · g (4.2.17). Suppose that the ith iterand of the 
DeC-iteration process satisfies the linear equation · 

• • 

Atqt ==ri, (4.2.21) 

and denote with A~(w) the symbol of the linear operator A~. Notice that 
Al =Fh, A}(w)=Fh((A)). Because 

we find 
-

(At+ Fh -Fh)- 1 Fhqt + 1 =qt ==(At)- 1 rj; . 

Hence, 
-

Ai +l ==At(Aj, + Fh -Fh)- 1 Fh 

and 

It is ea.sily seen that 
- • 

Aj,(w)+ Fh(w)-Fh(w) 

Assun,e 

F(tJJ)-At(w)=O(hmin(p,ip)) 

then it follows from ( 4.2.26) that 

F(w)-Ai + 1 (w) = O(hP)+ O(hmin(p,ip)) · O(hP) 

= O(hmin(p7(i + l)p)) . 

(4.2.23) 

(4.2.24) 

(4.2.25) 

(4.2.27) 

(4.2.28) 

Because ( 4.2.27) is true for i - 1, it follows by induction that ( 4.2.28) is 
satisfied for all i. Hence, the ith iterand of the DeC-iteration satisfies ( 4.2.21) 
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where A~ is a consistent discretization of order min(j,,ip ). 

In case of the Euler equations, we see from ( 4.2 .. 13) that for each DeC-iteration 
we have to solve a first-order system with an appropriate right-hand side. It 
was fo11nd that it is inefficient to solve this system very accurately. Application 
of a single NMG-iteration to approxi111ate q~ in (4.2.13) usually is the most 
efficient strategy [7]. We have to solve the first-order system Fl(ql)==riz with 
ri, =O to obtain the first iterand ql of the DeC-iteration process. It is also 
inefficient to solve this system very accurately. Therefore q}, is obtained by the 
nested iteration-NMG method with only a single NMG-iteration (see chapter 
III). So, the complete multigrid solution process to obtain second-order accu­
rate solutions consists of three successive parts: nested iteration, the NMG­
stage and the DeC-stage. In fig. 4.2a we give an illustration of the complete 
process. Suppose there are 5 nested grids. Between two succe · g points A, B 
we have one NMG-iteration (V-cycle). Between two succ · g points B, A we 
have piecewise constant interpolation in the nested iteration stage, and an 
appropriate right-hand side computation in the DeC-stage. 

ils -·---·-·- -·- - -·- -- . --·-·- -·-·-·- ---·-·-
1l4 -·-·- -·-·-
Il3 -· - ---•-- --- -·-· -··-

-·-
----1-- -·-·- --- --· -- ··--

----Dee-stage-----

FIGURE 4.2a. Schematic representation of the complete multigrid process to 
obtain second-order accurate solutions. 

4.3. CAI, RFSIJLTS 

In this section n1l 1nerical results are presented for the sa rne testproblen1s as in 
section 3.3. For each testproblem we consider the convergence history of the 
DeC-iteration process, i.e. after each DeC-iteration we compute the L 1 -norm 
of the residual 

4 
11 Fi(if,z) 11 = (Fi(qt)~f (4.3.1) 

k = I (i,j) 

where q~ is the cuw1ent approxirnate solution. A fixed nu1nber (25) of DeC­
iterations is pedo11ned for each testproblem. This rather large number (10 

...... -iterations would be sufficient) is only chosen to give a good i 1npression of · 
the convergence behaviour of the DeC-iteration process. 
The irnprovement of the solutions obtained can be seen by compat'ison with 
the first-order solutions presented in section 3.3. 
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PROBLEM 1. Transonic flow in a channel with a 4.2% circular bump. 
The geometry of the channel and the grids have been given in section 3.3, 
problem I. The transonic testproblem is sp · ed by M inlet =0.85, 
Pinlet ==poutlet; (see section 3.3, problem lb). The result has been obtained on 
the 40 X 16 grid. In fig. 4.3.1 we show the convergence history of the DeC­
iteration process. Although the convergence is rather slow we may expect that 
it is possible to drive the residual to machine-zero. 
Fig. 4.3.2-4 show respectively the iso-Mach lines, pressure contours and 
entropy contours of the second-order solution obtained after 25 DeC­
iterations. The pressure coefficient cP is defined in (3.3.3) and the entropy is 
defined as (s -s - 00 )/ s _ 00 with s =pp--,. The i 1nproved capturing and sharp­
ness of the shock is clearly observed ( compare with fig. 3.3 .. 6, 8, 9). 
In fig. 4.3.5-7 we give the Mach number, -cP and entropy distribution along 
the lower surface of the channel. Especially the entropy distribution shows a 
clear improvement (compare with fig. 3.3.12). The spurious entropy generation 
at both comers of the b11111p is reduced and the spurious entropy rise along the 
entire bump has disappeared completely. For reference results we refer to [10]. 
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FIGURE 4.3.1. Convergence history of the DeC-iteration process for test­
problem 1 (40 X 16 grid). 
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FIGURE 4.3.2. Iso-Mach lines for testproblem 1 (40 X 16 grid). 
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FIGURE 4.3 .. 3. Pressure contours for testproblem I (40 X 16 grid). 
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FIGURE 4.3.4. Entropy contours for testproblem 1 (40 X 16 grid). 
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FIGURE 4.3.5. Mach nu111ber distribution along the lowe~ channel wall for 
testproblem 1 (40 X 16 grid). 
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FIGURE 4.3.6. Pressure distribution along the lower channel wall for test­
problem 1 (40 X 16 grid). 
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FIGURE 4 .. 3.7. Entropy distribution along the lower channel wall for test­
problem I (40 X 16 grid). 

PROBLEM 2. Supersonic flow in a channel with a 4% thick circular arc bump. 
The geometry of the channel and the grids have been given in section 3.3, 
problem 2. At the inflow boundary (x = -1) the Mach number is prescribed: 
M inlet == 1.4. We compare the second-order solutions obtained on two different 
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grids (viz. grid 48 X 16 and grid 96 X 32). In section 3.3, first-order solutions are 
presented on these grids. Therefore, ...... a g compa1·ison between first- and 
second-order solutions obtained on different grids is possible. 
In fig. 4.3.8, 9, we show the convergence history of the DeC-iteration process 
on grid 48X 16 and grid 96X32, respectively. A very slow convergence 
behaviour is observed for both cases and we may not expect that it is possible 
to drive the residual to machine-zero .. In fig. 4.3.10, 11 we show the conver­
geQ.ce history of the w-DeC-iteration process on grid 48X 16 and grid 96X32, 

F}(q})=rh 

Fl(qt + 1 )=Fl(q1)+w(rh -Fl(qi)) i == 1,2, ... 
(4.3.2) 

where we[O, l]. We take w==0.5 .. By taking w=0.5 instead of w= 1 (which 
corresponds to the standard DeC-iteration method), damping (under­
relaxation) is introduced. In general, we may expect that the w-DeC-iteration 
process with (,J==0.5 is more robust than with w== 1 (see also problem 4 in this 
section). Here, we see that the convergence histories, are simllar for w= 1 and 
w ==0.5. But we may expect that with '-' == 0.5 it is possible to drive the residual 
to machine-zero. A disadvantage of the w-DeC-iteration process with w< l is 
that long wavelen error components (which determine the accuracy) are 
dan1ped with a factor 1-w in each iteration. Therefore, even for very smooth 
probler·ns, a single w-DeC-iteration with w=0.5 is not sufficient to obt.ain 
second-order accuracy. On the other hand, 10 w-DeC-iterations with w=0.5 
reduce the long wavelen error components 'With a factor 0.001, which is 
sufficient in practice. 
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FIGURE 4.3.11. As figure 4.3. l O but 
on grid 96 X 32. 

As mentioned before, the DeC-iteration process ( w .. ,,,, l) is not used to obtain 
the exact solution of (4.1.9) but to i1nprove the accuracy of the first-order solu­
tions. The following figures, obtained by 25 DeC-iterations, show clearly that 
the solutions obtained after 25 DeC-iterations are much more accurate than 
the first-order solutions presented in section 3 .. 3, problem 2. Fig. 4.3.12, 13 
show the iso-Mach lines of the second-order solutions. The figures show very 
sharp shocks. The reflection of the leading edge shock at the upper wall, its 
i 11tersection with the trailing edge shock, its f111·ther reflection at the lower wall 
and finally its merging with the trailing edge shock are all clearly visible. The 
leading-edge oblique shock is spread nu1oerically over 2-3 volumes halfway the 
channel (y = 0.5). 
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FIGURE 4.3.12. Iso-Mach lines of the second-order solution obtained on 
the 48 X 16 grid for testproblem 2. 
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FIGURE 4.3.13.. As figure 4.3.12 but on grid 96 X 32. 
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In fig. 4.3.14-17 we give the Mach nl11nber and the entropy distributions along 
the lower surface of the channel. Do\VD.stream of the bump, a large qualitative 

· erence between the first- and second-order solutions is observed once -more. 
The first-order solutions show spurious entropy generation along the entire 
bun1p (see fig. 3.3 .. 20, 21). The second-order solution has no such entropy gen­
eration, but shows some spurious non-monotonicity. The latter is caused by 
the fact that no ]irniter can be used near bounda,ies (see 2.5.3.46) . 
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FIGURE 4.3.14. Mach nurnber distribution along the lower surface of the 
channel for testproblem 2 (48X 16 grid) . 
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PROBLEM 3. Resolution of contact discontinuities 

PB.OBI.EM 3a. Contact discontinuiry aligned to the grid 

• 

1. S 2.0 
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For a description of this problem see section 3.3, problem 3a. The first-order 
solution is exact and cannot be ienproved. Therefore, the solution obtained 
with the DeC-iteration process should be the sa111e as the first-order solution 
presented in section 3.3, problem 3a. 
The convergence history of the DeC-iteration process is shown in fig. 4.3.18 
and the obtained entropy (s =pp--r) distribution along the line x =0.5 is 
shown in fig .. 4.3.19. The entropy distribution is exact and the sa111e as in fig. 
3.3.24. The convergence history of the -iteration process is rapid and 
simil.ar to the convergence history of the NMG-iteration process (see fig. 
3.3.23). 
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FIGURE 4.3.18. Convergence history of the DeC-iteration process for test­
problem 3a (32 X 32 grid). 
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FIGURE 4.3.19 .. Entropy distribution along the line x =0.5 for test­
problem 3a (32 X 32 grid). 

PROBLEM 3b. Oblique contact discontinuity 
For a description of this problem, see section 3.3, problem 3b. In fig. 4.3.20 
we show the convergence history of the DeC-iteration process. The process 
converges but not very rapidly. In fig. 4.3.21 we show the entropy distribution 
along the line x =0.5 and entropy contours are shown in fig 4.3.22. In com­
parison with the first-order solution, the spreading of the contact discontinuity 
is redu si · cantly. But it is clear that an oblique contact discontinuity is 
captured not so well as an oblique shock (the width of oblique shock and con­
tact discontinuity is about 3 and 6 volu1~oes, respectively). 
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FIGURE 4.3.22. Entropy contours of the second-order solutions for 
testproblem 3b (32 X 32 grid). 

• 

PROBLEM 4. Cylinder in a supersonic free-stream 
We refer to section 3.3, problem 4, for a description of this problem and the 
grids u . 
For this problem the standard DeC-iteration process (4.1.10) does not work. 
The first iterand in the standard DeC-iteration process is an approxi111ate first­
order solution. Then, the second iterand is computed by solving a first-order 
system with an appropriate right-hand side. Unfortunately, in the solution 
pr for the second-iterand, divergence was observed for the local Newton 
iteration process in the CSGS relaxation on the finest grid. Therefore, for this 
problem some damping is necessary in the DeC-iteration process. Da111ping is 
achieved by the w- ___,--iteration process which is defined by ( 4.3.2). Again we 
take w=0.5. The convergence history of the w-DeC-iteration process is shown 
in fig. 4.3.23. 
The pressure in the stagnation point in front of the cylinder can be computed 
analytically because of the fact that I y the shock is norrr,aJ to the x-axis. 
Der1ote with q0 . the state ahead of the shock, with q1 the state behind the 
shock and with q2 the state in the stagnation point. The relation between q1 
and q2 is given by 

2 1-l 
(isenthalpy) 

P1P1.., =p2P21 (isentropy) 

from which it is easily derived that 

(4.3.3) 

(4.3.4) 



• 

P2 = 
PI 

l 

where M 1 is the Mach n1Jtt1ber of q1• 

Using the normal shock relations (1.2.27, 28) it can be derived that 

I+ y l M2 
2 0 

My=------

2 

where M 0 is the Mach nu1nber of q0 . 

Using (1.2.30) we also have 

P1 
Po 

141 

(4.3.5) 

(4.3.6) 

(4.3.7) 
• 

Because M O ==2 we find the pressure ratio p 2lp0 ==5.64. The first-order solution 
gives a pressure ratio p 2 lp 0 == 5.92 (see fig. 3.3.33). The second-order solution 
(obtained after 25 £A>-DeC-iteratios) gives a much better ratio: p 2 /p 0 ==5.65. In 
fig.. 4.3.24 we show the pressure ratio of the solutions obtained after each w­
DeC-iteration step. Fig. 4.3.25 shows the surface pressure distribution of the 
second-order solution along the surface of the cylinder. Finally, fig. 4.3 .. 26, 27 
show iso-Mach lines and pressure contours of the second-order solution 
obtained after 25 w-DeC-iterations. There is a small change in the shock posi­
tion: the bow shock starts in x== -2 .. 375 while the bow shock position accord­
ing to the first-order solution is x == -2 .. 5. These results agree well with the 
results published in [9]. 
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FIGURE 4.3.23. Convergence history of the w-DeC-iteration process for 
testproblem 4 (40 X 32 grid). 
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FIGURE 4.3.24. The stagnation pressure after each w-DeC-iteration step for 
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FIGURE 4.3.25. Pressure (pip-co) distribution along the surface of 
the cylinder for testproblem 4 (40 X 32 grid). 



c::, 
• 

U) 

0 
• 

c:, -. 
• .... 

I 

0+------------ ..u..... ----L-.l.-...J.....1...------, 
-6.0 o.o 

X 
C 

FIGURE 4.3 .. 26. Iso-Mach lines for testproblem 4 (40 X 32 grid). 

c::, 
• O...L..-----------
-6.0 

X 

• en 
• 

("\I 

f,;l 
• 
t.,l 

o.o 

FIGURE 4.3.27. Pressure contours for testproblem 4 (40 X 32 grid). 

143 

For these four testproblems we can conclude that the DeC-iteration method is 
an effective way to improve the accuracy of the first-order solutions. In gen- · 
eral, about 10 DeC-iterations are sufficient. Therefore, the amount of work to 

relaxations on the finest grid. 
Finally, we refer to the work of B. Koren showing the feasibility of the method 

. 

?_ 

·- . . 1 
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for ai1~foil flow computations [5,7]. 
. 

4.4. SoLUTION OF '11-IE S'I'EADV EULER. EQUATIONS Wl'IH A SOURCE 

Consider the Euler equations with a source ter1r1: 

r(q) (4.4.1) 

where q, f(q), g(q) are defined by (2.1.lb) and r(q) is the source ter1n. On a 
finite volurne grid { D;,j} the discretization of the steady Euler equations with 
source ter1n r(q) is given by 

(Fh(qh))i,j =/;+½,j + .fi,j+½ -J;-½,j -J;,j-½ ==(rh(qh));,j (4.4.2) 

where 

(4.4.3) 

with Vt,j the area of oi,j. 

The operator Fh(qh) is first-order accurate when fi+½,j, Ji,J+½ are defined by 
(4.1.3,4), then we write Fh(qh)==Fl(qh)- The operator Fh(qh) is second-order 

Fh(qh)=F,,(qh) .. 
The defect correction method 

Fl(ql)=O 

Fhl (~h· + l) = phl (q'h.) + ( ( i ) -prl ( i )) . == 1 2 ':l I rh qh h qh l , , ... 
(4.4.4) 

is a sirnple method to obtain a second-order accurate solution of the steady 
Euler equations with a source term. 

A source terr1, appears in the Euler equations when a body force F=(F1,F2)r 
is present. Then the Euler equations become (see section 1.1): 

Conservation of mass: 

d 
p(n . v)do 

ao 
Conservation of momentum: 

d 
to 

pv(n . v)do- pndo+ Fda 
aa aa o 

Conservation of energy: 

E(n. v)do-
dt o an - - ao - - o-

From these equations we obtain. (4.4.1) with 

r · (O.,F1,F2,uF1 +vF2)T. 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 
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Note that Fis a force per unit of voltarne. 
A special case of the presence of a body force is the actuator disk where F is a 
line distribution along a line segment I such that for an arbitrary control 
vol11111e Sl we have 

-
Fdv== FdG. (4.4.9) 

0 On/ - ,.. 
Then F is a force per unit of length. For an actuator disk the force F is per-
pendicular to land acts in such a way that there is a prescribed pressure j11111p 

at the disk .. Ass1i1·11e that / coincides with the y-axis and let qL and qR be the 
left and right state at the disk in a steady flow. 
First, we show that the nor1nal velocity is discontinuous at the disk. Suppose 
there is no velocity ju1np. By taking a control volume with · .......... ·tesimal width 
but finite length across I (see fig. 1.2a) we find that 

(pu)R -(pu)L==O 

(pu 2 +p)R-(pu2 +p)L ==F1 

(puv)R -(puv)L ==O 

• 

((E +p )u)R -((E +p)u)L =F1 u (4.4.10) 

where u = uL = uR >0 .. 
From the first and second equations it follows that F 1 =pR -PL· On the other 
hand, from the fourth equation we find that 

Fi =(E+p)R-(E+p)L-P<.HR-HL) 

and we have a contradiction. Hence, there must be a velocity and density jump 
at the disk. Thus, the no1mal velocity at the disk is not defined and it is not 
clear how to compute F . v at the disk. 
A way to model the actuator disk is the following. Denote with o2 and o4 the 
x-momentum and energy source itnposed by the actuator disk~ 
Thus 

(pu)R-(pu)L=O 

(pu 2 +p )R -(pu2 +p)L ·- 82 

(puv)R-(puv)L=O 

((E+p)u)R -((E +p)u)L =a4 (4.4.11) 

The sources 82 and 84 are computed by asst11uing that the prescribed pressure 
jump is isentropic. The assu1nption that the flow is isentropic is based on the 
fact that the material derivative of the entropy is zero for a smooth flow, even 
when body forces are present. This result is derived in the following way (see 
also section 1.2, fo1'1:·11ulae 1.2.9-19). 
When body forces are present, we have 
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D 

and 

div (pv)+F. v. 

Combining the last two equations we find 

De= _p_di 
D 

. vv 
t p 

(4.4.12) 

(4.4.13) 

( 4.4.14) 

which is the san1e expression as in (l.2.12) .. Following the derivation (1.2.13-
19) we find again 

Ds (4.4.15) 

Assume that u>O andpR=apL with a>l. Then a force is acting on the disk 
in the negative x-direction. From the isentropy it follows that 

PRPR1 =pLPL1 
• 

Using (4.4.11),pR=apL and (4.4.16) we find 

PR a.pL, VR VL 

1 

PR = a-Y PL 
l -

UR = a y UL 

1-l 

CR = cLa 2-y 

2 
CR l 2 2 

-y 

82 = PRu1+pR-pLui-pL 

84 = PLUL(HR. HL) 

(4.4. 16) 

(4.4 .. 17) 

Hence, given a state qL, from (4.4 .. 17) the state qR and the sources 82 and 84 
can be computed for a given pressure jl1m.p. 

To compute a flow with an actuator disk, the disk is modelled in the following 
way. Assu1·ne that aG;+½~j coincides with I (see fig. 4.4.1) 



I 

X 

FIGURE 4.4.1. Modelling of an actuator disk. 

Then we take 

(rh(qh))i + I,j =Ii+ ½,j(0,(82)i,J·, 0,(84);,.j )T 
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(4.4.18) 

where li+½,j is the length of an,+½,i and (&i)i,j, (84)i.J are computed by (4.4.17) 
vri.th qL -qi,j· 

We present two flow computations 'With an actuator disk. See [8] for an airfoil 
computation with an actuator disk .. 

PROBLEM 1. Actuator disk in a channel flow 
The first exa1nple is a channel flow with an actuator disk extending from the 
lower to the upper wall. The channel is straight. The physical and computa­
tional domain are the sarne (the mapping between the computational and phy­
sical domain is the identity: x =€, y =11). We take 0=[0,5]X[O, I], the coarsest 
grid consists of 5 X 1 volumes, the finest grid consists of 20 X 4 volumes. At 
inflow u, v,z are prescr·ibed: u ==0,5, v =O, z == -ylny, at outflow the pressure is 
prescribed: p == 1. The other two boundaxies are solid walls. 
The actuator disk is located at x ==2.5 and the prescribed pressure ju1r1p is 
a= 1.2. Hence, for the exact solution we have an upstrear:n pressure 

1 

entropy s -y--r r= :~0.6243 is uniformly constant. 
The numerical solution has been obtajned by the defect correction iteration 
process (4.4.4) with rh(qh) defined by (4.4.18). The iteration process has an 
average reduction factor 0.63. The pressure and entropy distribution obtained 
along the line y ==0 .. 5 are given in fig. 4.4.2,3 .. We see that the flow is indeed 
isentropic and the right pressure j1J rnp is obtained. 

. 
• 

. .. . .., j 
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PROBLEM 2. Actuator disk in a subsonic free stream 

• 

An adaptive mesh has been used. The mapping from the computational space 
(~,1J)E[-5,5]X[-5,5] to the physical domain (x,y) is given by 

-
5.0 ~~~ -2.5 ~ ~ = (8~+ 15)/5 

-
2.5 :e;;t~ +2.5 ~ ~ ~15 

-
+2.5 ;c::;t~ +5.0 ~~ (~ 15)/5 

(4.4.19) -
e-.B<~+5) 1 

5.0 ~t~ 1.0 5+4 X -4/J 1 e 
-

1.0 ~t~ + 1.0 ==>X t -e +P<_~-5) 1 + 1.0 ~~~ +5.0 +5 -··4 ==> X -4/j I e 

with P=0.585 and y depends on TJ in exactly the sarne way as x depends on~-
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The finest grid has 32 X 32 vol11n1es, the coarsest 2 X 2 voltJ unes. Fi e 4.4.4 
shows the finest grid. The actuator disk is located at x =O, y e[-0.5,0.5]. The 
prescribed isentropic pressure j11 mp is again a= 1.2. 
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FIG E 4.4 .. 4. Finest grid (32 X 32) for problem 2. 

Two cases are considered: 

PROBLEM 2a. Actuator disk perpendicular to the free stream flow direction. 
The bo11ndary conditions are as follows: 

X == -5, ye[-5,5] 
other three bo11nda ries 

: subsonic inflow: u 0.5, v =O, z = -ylny 
: subsonic outflow: p 1.0 .. 

The solution has been obtained by a w-DeC-iteration process with w=0 .. 5, i.e. 

Fl(ql)=O 

Fl(qt + 1)=Fl(qt) + w(rh(q~) - Fi(qJi)) i = 1,2, ... 
(4.4.20) 

where rh(qh) is computed by (4.4.18) (with w=l sianilar difficulties occur as in 
case of problem 4, section 4.3). The w-DeC-iteration process has an average 
reduction factor 0.8.. Fig. 4.4 .. 5,6 give a qualitative i1npression of the obtained 
Mach n111nber and_ pressure distribution after 25 iterations. The largest 

l,J 

-' --~-~--.....,---....... -, .I 
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FIGURE 4.4.5.. Mach nt1mber distri­
bution for proble1n 2a. 

PROBLEM 2b. Inclined 
The angle of inclination is 45 °. 
The boundary conditions are: 

• 

0 
• 

N 
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X 

FIGURE 4.4.6. Pressure distribution 
for problem 2a. 

x= -5,ye[-5,5] 
y= -5, xe(-5,5] 
other two boundaiies 

: subsonic inflow: u = 2 I 4, v = 
: subsonic inflow: u = 2 I 4, v = 
: subsonic outflow: p = 1. 

214, z= -ylny 
214, z ylny 

The solution has been obtained by a w-DeC-iteration process with w==0.5. The 
iteration process has an average reduction factor 0.85. The largest observed 

l,J 
itative i r11pression of the Mach nu1nber and pressure distribution obtained after 
25 iterations. 
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FIGURE 4.4.7 .. Mach nu1a1ber distri­
bution for problem 2b. 
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Another exa1nple where source ter111s appear in a natural way is in case of axi­
ally syn1metrical flow. In cylindrical polar co-ordinates R,z, IJ (where 8 is the 
aziinuthal angle about the axis R ==O) and suppressing all components and 
derivatives in the 8-direction, the Euler equations are 

p 

a pu 

ot pv 
E 

pu 

pu2+p 
puv 

(E+p)u 

pu 

a puv 

(E +p)v 

pu 

1 pu2 

R puv 
(E +p)u 

where u, v are the velocity components in the R-and z-direction respectively .. 
Hence, Euler flow computations for steady axial sy1n1netrical flow can be per­
f 01·111ed by merely adding source te1·1ns in an existing e for steady 2D 
planar flow computations. 
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APPENDIX : List of i1nportant physical quantities and relations 

Cv 

Cp 

y==cplCv 

R ==cp-Cv 

u 
V 

p 
T 
p:pRT 
e-cvT 

h=e+L 
p 

H=h+½(u 2 +v2 ) 

E==pe+½ u 2 +v 2 ) 

c== 
:tJ!_ 
p 

z ==In _]!_ 
pY 

M= 
u2+v2 

C 

RELATIONS: 

h== 
p 

: sp · c heat at constant volume 
: specific heat at constant pressure 
: ratio of sp · c heats 
: gas constant 

: velocity component in x-direction 
: velocity component in y-direction 
: density 
: temperature 
: pressure (perfect gas law) 
: internal energy 

: enthalpy 

: total enthalpy 
: total energy 

: speed of sound 

: entropy (scaled) 

: entropy (unscaled) 

: Mach n111nber 

== Cv p_== 1 ]!_= __ 1_ 2 

R P y- P y y­
·I h=ye=---c2 

2y-l 
H== c +1/i(u2 +v2) 

y-1 

p y-1 2 

' 
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