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ABSTRACT

We consider the evolution of the density and temperature of a three-dimensional cloud of self-interacting parti-

cles. This phenomenon is modelled by a parabolic equation for the density distribution combining temperature-

dependent di�usion and convection driven by the gradient of the gravitational potential. This equation is

coupled with Poisson's equation for the potential generated by the density distribution. The system preserves

mass by imposing a zero-
ux boundary condition. Finally the temperature is �xed by energy conservation, that

is, the sum of kinetic energy (temperature) and gravitational energy remains constant in time. This model

is thermodynamically consistent, obeying the �rst and the second law of thermodynamics. We prove local

existence and uniqueness of weak solutions for the system, using a Schauder �xed-point theorem. In addition,

we give su�cient conditions for global in time existence and blow-up for radially symmetric solutions. We do

this using a comparison principle for an equation for the accumulated radial mass.

2000 Mathematics Subject Classi�cation: 35K60, 35A07, 35B40, 82C21.

Keywords and Phrases: non-local nonlinear parabolic equation, energy relation, existence of local solutions,

global and blowing up solutions.
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1. Introduction

Let 
 � R
3 be a bounded open set satisfying sup

x2

jxj = 1: In 
 we consider the parabolic -elliptic

system

nt = divf�(t)rn+ nr�g in 
� R
+ ; (1.1)

�� = n in 
� R
+ ; (1.2)

combined with the energy relation

E = ��(t) +

Z



n�dx in R
+ ; (1.3)

where E 2 R and � > 0 are given parameters. At the boundary @
 2 C1+� (� > 0) we prescribe

(�(t)rn+ nr�) � ~� = 0 on @
� R
+ ; (1.4)

� = 0 in @
� R
+ ; (1.5)

where ~� denotes the exterior normal vector on @
. At t = 0 we have the initial condition

n(x; 0) = n0(x) in 
; (1.6)
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satisfyingZ



n0 dx = 1; and n0(x) � 0 in 
: (1.7)

This set of equations de�nes Problem P for the unknowns n; � and �. The underlying model is
discussed in Section 2, as well as some known properties of the system.
The purpose of the paper is to demonstrate local existence for Problem P and to give su�cient

conditions on E; �; and n0 for global existence. Local existence is shown in Section 3. The proof
uses a Schauder �xed-point theorem and a careful construction of an invariant set to avoid degenerate
di�usion in (1.1). It requires n0 2 Lp(
) for p > 3

2 ; implying that n 2 L1loc((0; T ];L
1(
)) for some

T 2 (0;1): Hence we can allow for certain singular initial data which result in solutions that are
locally bounded in (0; T ]. Let

T � = supf T > 0 j Problem P has a solution in (0; T ] g:

If T � =1; the solution is de�ned globally and if T � <1 we have at least lim
t!T�

kn(t)kLq(
) =1 for

each q > 3
2 . For Problem P the optimal Lp(
) space seems to be p = 3

2 , since there exists a singular

stationary solution in the radial case belonging to L3=2(
) nLq(
), with q > 3
2 . This solution is given

in Section 2.3. Uniqueness is proven for n0 2 Lp(
) with p � 2:
Problem P with � = 3 was recently studied in [17]: local existence and uniqueness was obtained

for p > 3:
In Section 4 we consider an auxiliary problem in which we drop the energy relation (1.3) and treat

�(t) as a given function. This provides insight and bounds which we need in order to prove our main
result about global existence. In Section 5, we �rst give the following result about blow-up:

Theorem 1.1 Let 
 = B1(0) be the unit ball in R3 : If � > 6 and E < 1
4� , then T

� <1.

In Remark 5.2, we show that this choice of parameters implies n(x; T �) = �x=0 and consequently
lim
t!T�

kn(t)kLp(
) = 1 for all p > 1. When the solution satis�es this last condition, we refer to this

situation as gravitational collapse.
Before stating the global existence result we note from (1.3) at t = 0, that instead of prescribing E

and n0 one could equivalently prescribe �0 := �(0) and n0. In fact it seems more natural to consider
�0 and n0 as initial values. In view of the physical interpretation of the model we consider �0 > 0.
With this in mind we have

Theorem 1.2 Let 
 = B1(0) and assume that solutions of Problem P are radially symmetric. If the
pair hn0;�0i satis�es one of the following conditions

(i) n0 2 L1(
) and �0 is su�ciently large;

(ii) there exists B > 0 and � = �(n0; �) 2 (0; 1] such that

kn0kL1(Br(0)) � (1 +B)
r3

r2 +B
� r for r 2 [0; 1]; and �0 � 3

2

(1 +B)

�
;

(iii) n0 � 3
4� and �0 >

3
2 ;

then T � =1 (global existence).

Remark 1.3 (i) Due to the parabolic regularity, n0 2 L1(
) is not so restrictive.

(ii) Condition (iii) is an special case of (ii).
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(iii) The condition on n0 in (ii) implies a bound on the Morrey norm of exponent 3=2, since
kn0kM3=2(
) = sup

x2R3; 0�r�1
r�1kn0kL1(
\Br(x)). In [4], the space M3=2(
) was suggested as the

natural space to prove existence.

The proof of Theorem 1.2 contains two essential steps. To extend the local solution we �rst need
a uniform bound from below on �: To achieve this we use a Lyapunov functional associated with
Problem P, the so-called Boltzmann entropy (2.7). This functional provides a uniform lower bound
on �, which only depends on the initial data and �. If �0 is positive, then � remains positive in the
whole existence interval, including the blow-up time.
In the second step we construct a control on n. Here we use the radial symmetry which allows

us to transform equations (1.1) and (1.2) into a single equation, still containing � as unknown. It
has the crucial property that an ordered pair of given �0s results in an ordered pair of solutions. As
a comparison function we now use the solution of (1.1)-(1.2) with a suitably chosen �xed �: Under
certain hypotheses this auxiliary problem has a global solution which provides the control on n. The
di�erent conditions in Theorem 1.2 are closely related to global existence conditions for the auxiliary
problem.

2. Preliminaries

2.1 Model issues
Problem P describes the evolution of density and temperature of a self-attracting cluster of Brownian
particles in a bounded three-dimensional region. During the evolution mass and energy are conserved.
A detailed derivation and discussion on the physical assumptions can be found in [5, 8, 19] and the
references therein. Below we present a brief summary.
Suppose a cluster of particles is contained in a bounded region 
 � R

3 . The spatial particle density
n satis�es the mass balance equation

nt = div
n 1
�
(k�rn+ nr�)

o
in 
� R

+ ; (2.1)

where � > 0 is the friction coe�cient, k the Boltzmann constant and � the temperature of the system.
To ensure that the cluster of particles preserves mass we impose zero mass 
ux along the boundary:
i.e.

(k�rn+ nr�) � ~� = 0 on @
: (2.2)

This implies Z



n(x; t) dx = constant =M for all t > 0;

where M is the total particle mass of the system, speci�ed by the initial condition.
The function � in (2.1) is the gravitational potential. It satis�es

�� = 4�Gn in 
� R
+ ; (2.3)

with

� = �GM
R

on @
� R
+ : (2.4)

Here G is the gravitational constant and R := max
x2


jxj. Note that we have chosen as boundary

condition the gravitational potential of a mass M centered at the origin of a ball of radius R.
In general the temperature varies in space and time. It satis�es an energy balance equation con-

taining thermal di�usion, heat convection and a term due to gravitational e�ects [8, Eq. (1.4)]. This
results in the so-called Streater model. However, the integrated energy balance does not contain the
thermal di�usivity [8, Eq. (2.1)]. Furthermore we expect that a large thermal di�usivity will result in
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a temperature which is nearly constant in space. Taking this limit in the integrated energy balance,
one �nds

E =
�M

2
�(t) +

1

2

Z



n�dx in R
+ ; (2.5)

where E denotes the total energy of the system and � the speci�c heat of the particles. If the cluster
resembles an ideal gas we have � = 3k.
Regarding the initial data for the system (2.1)-(2.5) there are two ways to proceed. If the energy

E is given, it su�ces to specify only the initial density

n(x; 0) = n0(x) � 0 for x 2 
: (2.6)

Equivalently we can specify both initial density and temperature

�(0) = �0 > 0:

Now E is �xed by (2.5) at t = 0.
If the temperature is constant in time as well we drop the energy balance (2.5) and obtain the

isothermal model. This model also arises in the context of polytropic stars and the biological phe-
nomena of chemotaxis. The corresponding mathematical problem has received considerable attention
in the past years because of its rich structure. Blow-up in the form of singular solutions and gravita-
tional collapse can occur, as well as global existence. To our knowledge there is no full description of
these phenomena in R3 : The reason is that in contrast to the two dimensional case, global existence
in R3 not only depends on the parameters of the problem, but also on the shape of the initial density
pro�le. A detailed discussion and references are given in [13]. The isothermal model, however, plays
a crucial role in the analysis presented in this paper.
Since Problem P has an additional equation, one expects that conservation of energy will act as a

selection principle to favor global existence. This has been demonstrated in [18] for the two-dimensional
case: the energy balance implies that temperature increases whenever density concentrates near a
point. This in turn has a smoothing e�ect (through (2.1)) on the density pro�le, preventing blow-up
from happening. Theorem 1.1 tells us that this general observation is not true in R3 .
Problem P can also be derived for collisionless systems such as galaxies. The underlying argument

is that rapid 
uctuations of the gravitational �eld during the early stage of violent relaxation plays
the same role as collisions, although the time scales involved for collisionless systems are smaller than
for collisional systems (Brownian motion). The process of violent relaxation is considered in [14].

2.2 Non-dimensionalization
We put equations (2.1)-(2.5) in dimensionless form by setting

~x =
1

R
x; ~n =

R3

M
n; ~� =

R

4�GM
(� +

GM

R
)

and

~� =
kR

4�GM
�; ~t =

4�GM

�R3
t:

Introducing ~E = R
2�GM2

�
E + 1

2
GM2

R

�
and ~� = 1

k�, and dropping the tildes, results in Problem P.

2.3 Lyapunov functional and stationary solutions
If a triple hn; �;�i solves Problem P, then it is easy to check that

W (t) =

Z



n logn dx� �

2
log

�
E �

Z



n� dx

�
on R

+ (2.7)
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satis�es

d

dt
W (t) = �

Z



j�(t)rn+ nr�j2
�(t)n

dx; for all t > 0: (2.8)

Hence W is a Lyapunov functional for Problem P, sometimes called the Boltzmann entropy [17].
One consequence of (2.8) is the following. Let hns; �s;�si denote a stationary solution of Problem

P. Then (2.8) implies
�srns + nsr�s � 0 in 
:

Introducing the scaled potential  :=
�s
�s

we observe that ns � e� R



e� dx
; where  satis�es

(S)

8<
: � =

1

�s

e� R

 e

� dx
in 
;

 = 0 on @
:

The corresponding energy relation takes the form

E
1

(�s)2
= �

1

�s
�
Z



jr j2dx: (2.9)

Problem S has only one singular radially symmetric solution [12], the Chandrasekhar solution

ns = U :=
1

4�

1

jxj2 ; (2.10)

provided �s =
1
8� . It is satis�es (2.9) for E = (��2)

8� : Observe that U 2 L3=2(
) n Lq(
), with q > 3
2 :

If this solution is attained by Problem P for t " T � <1; we have a blow-up without concentration of
mass at the origin.
For completeness we recall a result [5, Proposition 5.6.] for bounded radially symmetric solutions

of Problem S and (2.9).

Theorem 2.1 Let 
 = B1(0). For any � > 0; there exists E� 2 R such that:

(i) If E > E� there exist bounded negative solutions;

(ii) If E < E� there are no nontrivial bounded negative solutions.

This observation is originally due to Antonov [1] as a result of a computational approach. He also
showed that stationary solutions are local maxima or saddle points of an entropy and there is no
global entropy maximum.
Theorem 2.1 is still open for general domains [5]. This is related to the non-trivial nature of the set

of singular solutions [12].

2.4 Radially symmetric solutions
Our main theorem about global existence is stated in terms of radially symmetric solutions. Radial
symmetry in Problem P not only reduces the spatial dimension, it also allows us to combine equations
(1.1) and (1.2) into a single equation for the accumulated mass

Q(r; t) :=

Z
Br(0)

n(x; t)dx for r 2 (0; 1] and t 2 R+ :

This is shown in [7]. Rede�ning t := 3
4� t and � := 12��; we obtain in terms of Q(y; t) := Q(r; t);

with y = r3; the equation

Qt = y4=3�(t)Qyy +QQy for y 2 (0; 1) and t 2 R+ : (2.11)
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To transform the energy relation (1.3), we �rst note that (1.2) and (1.5) give
R
n�dx = � R jr�j2dx:

Further, radial symmetry and (1.2) imply 4�r2@r� = Q(r; t). Finally we introduce E := 12�E; to get
in terms of Q(y; t)

E = ��(t)�
Z 1

0

Q2

y4=3
dy for t 2 R+ : (2.12)

The boundary conditions for Q are

Q(0; t) = 0; Q(1; t) = 1; for t 2 R+ ; (2.13)

and the initial condition becomes

Q(y; 0) = Q0(y) :=
4�

3

Z y

0

n0(y
1=3)dy for 0 � y � 1: (2.14)

Equations (2.11)-(2.14) de�ne Problem Q.
Note that

�(t) = constant =
3

2
and Q(y; t) = y1=3

satisfy equation (2.11) and boundary conditions (2.13). The energy relation (2.12) is satis�ed for
E = 3

2 (�� 2): This is the transformed Chandrasekhar solution (2.10).

3. Well-posedness for Problem P

Before we give a formal solution de�nition for Problem P we observe that � is known in terms of n
by the boundary value problem (1.2) and (1.5). Therefore we denote a solution by hn;�i instead of
the triple hn; �;�i.
We call hn;�i a weak solution of Problem P if for some T > 0:

(i) n 2 L2
�
0; T ;H1(
)

�
and nt 2 L2

�
0; T ; (H1(
))0

�
;

(ii) � 2 C([0; T ]) and �(t) > 0 for t 2 [0; T ];

(iii) the triple hn; �;�i; where � 2 C
�
[0; T ];H1

0(
)
�
solves the boundary value problem (1.2) and

(1.5), satis�es (1.1) in the weak sense and (1.3) for all t 2 [0; T ];

(iv) n(�; 0) = n0 � 0 a.e in 
.

Remark 3.1 The regularity in (i) implies n 2 C
�
[0; T ];L2(
)

�
[20, p. 260]. Therefore � and � are

continuous in time in the sense of (ii) and (iii) respectively and the initial value of n can be prescribed.

3.1 Local existence
Let RT := 
� (0; T ] for arbitrarily chosen T > 0.
The �rst result asserts local existence for Problem P.

Theorem 3.2 Let E 2 R, � > 0; and let n0 2 L2(
) be such that �(0) = �0 > 0. Then there exists
a weak solution hn;�i of Problem P with T = T (kn0kL2(
);
;�0) > 0. It satis�es n � 0 in RT and

n 2 L1loc
�
(0; T ];L1(
)

�
.

Proof: The proof uses a Schauder �xed-point theorem [21, Corollary 9.7]. For any �xed T > 0, let

X =
�
v 2 L2

�
0; T ;H1(
)

�
with vt 2 L2

�
0; T ; (H1(
))0

�	
and let F : X ! C([0; T ]) be de�ned by

F (v)(t) =
1

�

�kv(t)k2H�1(
) +E
�

for any t 2 [0; T ]; (3.1)
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and for all v 2 X . This map is clearly well-de�ned: observe that v and vt belong to L
2
�
0; T ;H�1(
)

�
:

Note that F (n)(t) is the temperature �(t) whenever n is the solution of Problem P.
Next de�ne N : X ! X , with u = N(v) satisfying

ut = div(F (v)(t)ru+ ur�)
�� = u

�
in RT (3.2)

� = 0
(F (v)(t)ru + u) � ~� = 0

�
on @
� [0; T ]; (3.3)

u(x; 0) = n0(x) for x 2 
: (3.4)

For given v 2 X , this problem is essentially Problem P with prescribed temperature. As we point
out in Remark 4.1, we have local existence and uniqueness provided F remains positively bounded
from below. Under this condition the operator N is well-de�ned.
To apply the �xed point theorem, we need to prove that there exists C � X , with C convex, bounded

and closed in (X; k � k), such that:

(i) N(C) � C;
(ii) N is weakly-weakly sequentially continuous in X.

For any v 2 C, the operator N has to be well de�ned. Thus in addition to (i) and (ii) we need

(iii) there exists F0 = F0(C) such that F (v)(t) � F0 > 0 for all t 2 [0; T ] and for all v 2 C:
We show below that

C = �v 2 X j v(0) = n0; kvkL2(0;T ;L2(
)) � RT 1=2; krvkL2(0;T ;L2(
)) � R0;

and kvtkL2(0;T ;(H1(
))0) � R00
	
;

for suitably chosen constants R;R0; R00 and for T su�ciently small. In fact R = 2kn0kL2(
); R
0 =

2kn0kL2(
)=�1=2
0 and R00 = 2kn0kL2(
)�

1=2
0 + 4Ckn0k2L2(
)=�1=2

0 ; where C = C(
) is a positive
constant. Clearly C is convex, bounded, and closed in X . Note that C is not empty: the solution
of the heat equation with initial value n0 and di�usion coe�cient �0=4 satis�es krnkL2(0;T ;L2(
)) �p
2kn0kL2(
)=�1=2

0 and kntkL2(0;T ;(H1(
))0) � 1
2
p
2
kn0kL2(
)�

1=2
0 . Hence n 2 C for T > 0.

We �rst show (iii). Di�erentiating expression (3.1), applying Cauchy-Schwartz and the continuous
injections (H1(
))0 ,! H�1(
) and L2(
) ,! H�1(
); yields the estimate

�jF (v)t(t)j � 2kv(t)kH�1(
)kvt(t)kH�1(
) � Ckv(t)kL2(
)kvt(t)k(H1(
))0 a.e. in [0; T ]; (3.5)

where C = C(
) > 0. Integration now gives

jF (v)(t)� F (n0)j � C

�
R0RT 1=2 for all t 2 [0; T ]: (3.6)

Hence F (v)(t) � F (n0) � C
�R

0RT 1=2 = �0 � C
�R

0RT 1=2 for 0 < t � T . If we now choose F0 = �0=2

and T � such that C
�R

0R(T �)1=2 = �0=2, we have established (iii) for all 0 < t � T � T �.
Next we verify (i) for a suitable T � T �: Starting point is inequality (4.3) with � = F (v)(t) and

v 2 C. It follows that the solution of (3.2)-(3.4) satis�es

1

2

d

dt
kuk2L2(
) + F (v)(t)kruk2L2(
) � kukL3(
)kr�kL6(
)krnkL2(
):

Since (4.4) holds for any � > 0; we use it with � = F0 to �nd

1

2

d

dt
(ku(t)k2L2(
)) + (F (v)(t) � F0

2
)kruk2L2(
) �

C

F 3
0

(ku(t)k2L2(
))3 +
F0
2
ku(t)k2L2(
) (3.7)
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for 0 � t � T and for some C = C(
) > 0:
Since v 2 C and consequently F (v)(t) � F0, we obtain

1

2

d

dt
(kuk2L2(
)) +

F0
2
kruk2L2(
) �

C

F 3
0

(ku(t)k2L2(
))3 +
F0
2
ku(t)k2L2(
) in [0; T ]: (3.8)

This inequality implies some useful bounds. Disregarding the gradient in the left-hand side of (3.8)
gives a di�erential inequality in terms of ku(t)k2L2(
). It follows that there exists T0 =

T0(�0;
; kn0kL2(
)) such that u is well de�ned in RT0 and satis�es

sup
t2[0;T0]

ku(t)k2L2(
) � (2kn0kL2(
))
2; and thus kukL2(0;T0;L2(
)) � 2kn0kL2(
)T 1=2

0 : (3.9)

Integrating (3.8) and using (3.9) gives

krukL2(0;T0;L2(
)) � CT
1=2
0 + kn0kL2(
)=(F0)1=2 = CT

1=2
0 +

p
2kn0kL2(
)=�1=2

0 : (3.10)

for a positive constant C = C(�0;
; kn0kL2(
)): Note that (3.9) and (3.10) imply

u 2 L1�0; T0;L2(
)
�

and u 2 L2
�
0; T0;H

1(
)
�
:

To show that u 2 C; for su�ciently small T , it remains to prove the bound on ut. With � 2
L2
�
0; T ;H1(
)

�
, we have from (3.2)

Z T

0

hut; �i dt = �
TZ
0

F (v)(t)

Z



rur� dxdt+
TZ
0

Z



ur�r� dxdt; (3.11)

where h�; �i denotes the pairing between (H1(
))0; and H1(
). To estimate the right hand side we
�rst note that F (v) 2 L1(0; T �). Indeed, from (3.6) we deduce

F0 < F (v)(t) � C

�
RR0T 1=2 +�0; for 0 � t � T � T �: (3.12)

Next we use (6.3) and interpolation inequality (6.2) from the appendix. This gives����
Z



ur�r� dx
���� � kukL3(
)kr�kL6(
)kr�kL2(
) � C1=2

s CIkukH1(
)kukL2(
)kr�kL2(
):

Finally we combine this expression with (3.9), (3.10), and (3.12), and obtain after some manip ulation

Z T

0

jhut; �ij dt �
�
C(T 1=2 + T ) +

p
2kn0kL2(
)�

1=2
0 + 2

p
2C1=2

s CIkn0k2L2=�1=2
0

	k�kL2(0;T;H1(
)):

for some C = C(
; kn0kL2(
);�0): Taking now T1 < T0 < T � su�ciently small we obtain that u 2 C
for 0 � T � T1 and consequently N(C) � C.
Next we show (ii): i.e. we claim that vk 2 C, vk * v in X implies N(vk) * N(v) in X . For any

such sequence vk, de�ne uk := N(vk) 2 C. Using the weak compactness of C we extract a subsequence
uk0 2 C such that uk0 * u� in X . We show below that u� = N(v), which proves the assertion. Since

vk0 * v and uk0 * u� in C;

we obtain by Aubin's Lemma [16, pag. 58] for a subsequence, denoted again by k0,

vk0 ! v and uk0 ! u� in L2
�
0; T ;L2(
)

�
:
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We use this in (3.11) for uk0 ; vk0 ; and �k0 : Since ��k0 = uk0 ; we have �k0 ! �� in L2
�
0; T ;H2(
)

�
satisfying ��� = u�. Moreover, as k0 !1;

uk0t * u�t in L2
�
0; T; (H1(
))0

�
;

r�k0 ! r�� in L2
�
0; T;H1(
)

�
;

ruk0 * ru� in L2
�
0; T ;L2(
)

�
:

Now suppose F (vk0 ) ! F (v) in C([0; T ]). Then letting k0 ! 1 in (3.11) we obtain a solution u� of
problem (3.2)-(3.4) for the temperature F (v)(t): By uniqueness we have u� = N(v):
It remains to show that F (vk0) ! F (v) in C([0; T ]). In view of the continuous injection L2(
) ,!

H�1(
); we �nd from (3.1)

�jF (vk0)(t)� F (v)(t)j � C(
)
�kvk0(t)kL2(
) + kv(t)kL2(
)

� kvk0(t)� v(t)kL2(
):
This implies directly F (vk0)! F (v) in L1([0; T ]). Writing (3.5) for the di�erence F (vk0 )�F (v), using
the continuous injection (H1(
))0 ,! H�1(
); and integrating the result gives

�

Z T

0

jF (vk0 )t(t)� F (v)t(t)jdt �
TZ
0

j(v(t); vk0t (t)� vt(t))H�1 j dt

+ kv � vk0kL2(0;T ;L2(
))k(vk0)tkL2(0;T ;(H1(
))0):

Since vk0t * vt, in L
2
�
0; T;H�1(
)

�
, we obtain F (vk0 ) ! F (v) in W 1;1([0; T ]). This concludes the

proof of (ii) and establishes local existence for Problem P.
The boundedness of n follows from [6, Theorem 2] and n � 0 a.e. in RT is essentially demonstrated

in [11].

Remark 3.3 Let n0 2 Lp(
) with p > 3 and let �(0) = �0 > 0. Then Problem P has a local solution
satisfying n 2 L1�0; T ;Lp(
)� and np=2 2 L2

�
0; T ;H1(
)

�
. The proof is almost identical to the proof

of Theorem 3.2.

3.2 Uniqueness
Uniqueness is stated for an equivalent formulation of ProblemP in which we replace t by � =

R t
0 �(t)dt:

This transformation only a�ects equation (1.1), which now becomes

n� = div

�
rn+ n

�(�)
r�
�

in RT̂ : (3.13)

for T̂ =
R T
0 �(t)dt: The problem stated in terms of x and � is denoted by Problem Pe. Without proof

we remark that hn = n(x; t);� = �(t)i solves Problem P if and only if hn = n(x; �);� = �(�)i solves
problem Problem Pe. This is due to the strict positivity of � in the existence interval.

Theorem 3.4 If n0 2 L2(
) and �0 > 0, then Problem Pe has at most one solution hn;�i.
Proof: We use a uniqueness result of Biler & Nadzieja [11], who considered the problem

n� = div
�rn+ nX(n)

�
in RT ; (3.14)�rn+ nX(n)

� � ~� = 0 on @
� [0; T ]; (3.15)

n(�; 0) = n0 in 
; (3.16)

where X is a general non-local vector �eld operator in R3 . For this problem uniqueness in L2(
) was
proved in [11, Theorem 1 (i)] under the following condition: there exists C > 0 such that

(U) kX(u)�X(v)kL6(
) � Cku� vkL2(
)



10

for all u; v 2 L2(
).
Note that the constant C in (U) does not depend on the choice of u; v 2 L2(
): In our case

X(n) = r�
�(�) : Below, in Lemma 3.5, we show that again (U) holds but with C depending on both norms

kukL2(
) and kvkL2(
): Now suppose that Problem Pe admits two solutions hn1;�1i and hn2;�2i in
some interval [0; T ]: From the solution de�nition we know that both kn1(t)kL2(
) and kn2(t)kL2(
)
are uniformly bounded in [0; T ]: Therefore (U) is satis�ed for the two solutions n1(t) and n2(t), with
0 � t � T; for an appropriately chosen constant C: As a consequence we can apply the result of [11].
This proves the theorem.

Lemma 3.5 Suppose there exist � > 0 and u; v 2 L2(
) such that

min

�
�u := E +

Z



jr�uj2 dx; �v := E +

Z



jr�v j2 dx
�
� � > 0;

where

��u = u; ��v = v in 
; (3.17)

�u = �v = 0 on @
: (3.18)

Then 



r
�
�u
�u

� �v
�v

�




L6(
)

� Cku� vkL2(
)

where C = C(�; kukL2(
); kvkL2(
)):
Proof: Using

kr(�u � �v)kL6(
) � CIku� vkL2(
)
we estimate



r

�
�u
�u

� �v
�v

�




L6(
)

=





r
�
�u
�u

� �u
�v

+
�u
�v

� �v
�v

�




L6(
)

� 1

�u�v
kr�ukL6(
)j�u ��vj+ CI

�v
ku� vkL2(
)

� CI
�v

�kukL2(
)
�u

����
Z



�jr�uj2 � jr�v j2
�
dx

����+ ku� vkL2(
)
�
:

Since ����
Z



�jr�uj2 � jr�v j2
�
dx

���� � kr(�u + �v)kL2(
)kr(�u � �v)kL2(
);

� C
�kukL2(
) + kvkL2(
)

�ku� vkL2(
)
for some C > 0, we obtain the assertion.

Remark 3.6 Note that for n0 2 Lp(
) with p > 2; we can apply the above theorem and obtain
uniqueness of solutions for such initial data. Thus the local solution given in Remark 3.3 of Theorem
3.2 for n0 2 Lp(
) with p > 3 is unique.

Remark 3.7 A slight modi�cation of the above argument directly gives uniqueness for n0 2 Lp(
)
with p > 3 and �0 > 0. Again following [11, Theorem 1 (ii)], we need to show

(U 0) kX(u)�X(v)kL1(
) � Cku� vkLp(
) (p > 3):

With X(n) = r�
�(�) ; inequality (U 0) results from inequality (6.3).
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The next theorem extends the local existence result for n0 2 Lp(
) with p > 3
2 . To do this

we modify our de�nition of weak solution for 1 < p < 2. We replace (i) by n 2 L1(0; T ;Lp(
))
and nt 2 Lp

�
0; T ; (W 1;p0)0

�
with 1

p + 1
p0 = 1: We show that n 2 C

�
[0; T ];Lp(
)

�
, implying that

n0 can be prescribed. In fact as n 2 L1
�
0; T ;Lp(
)

�
and n 2 C

�
[0; T ]; (W 1;p0(
))0

�
, (since n 2

Lp
�
0; T ; (W 1;p0(
))0

�
and nt 2 Lp

�
0; T ; (W 1;p0(
))0

�
), we use the injection Lp(
) ,! (W 1;p0(
))0; and

follow the argument in [16, p. 23] to conclude.

Theorem 3.8 Let n0 2 Lp(
) with p > 3=2; and �(0) = �0 > 0. Then there exists T =
T (
; kn0kLp(
);�0) > 0, and a weak solution hn;�i of Problem P. It satis�es np=2 2 L2

�
0; T ;H1(
)

�
and furthermore n 2 L1loc

�
0; T ];L1(
)

�
. This solution is unique.

Proof: Due to Remarks 3.3 and 3.6, we only need to demonstrate local existence for n0 2 Lp(
) with
p 2 (3=2; 3):We follow the proof of [11, Theorem 1 (iii)] and approximate n0 2 Lp(
) by functions in
Lp�(
) with p� > 3. Thus let fn0�g � Lp�(
) satisfy kn0� � n0kLp(
) ! 0 as �! 0.
For each � > 0 we consider Problem P with initial data hn0�;�0i. By Remark 3.6 there exists a

solution hn�;��i, with �� � �0=2, in some interval [0; T�]. Next we use the estimate [11, Eq. (10)]

kn�(t)kpLp(
) +

tZ
0

��rjn�jp=2��2 d� � exp

 
C

tZ
0





r����






2q
q�3

Lq(
)

d�

!
kn0�kpLp(
) (3.19)

for almost every t 2 [0; T�]. Here p 2 (3=2; 3); 1=q = 1=p � 1=3 and C = C(
; p). Note that q > 3.
Further, using kr��kLq(
) � Ckn�kLp(
) and the uniform lower bound on ��; we obtain

kn�(t)kpLp(
) � C exp

 
2

�0

tZ
0



n�(�)

 2q
q�3

Lp(
) d�

!
for almost every t 2 [0; T�];

where C = C(��) > 0 and 0 < � � ��. Since C does not depends on � we have that T� = T and

kn�(t)kLp(
) � C and ��(t) � �0=2 for almost every t 2 [0; T ] (3.20)

and for all 0 < � � ��: Using this and (3.19), we deduce

kn�(t)p=2kH1(
) � C and ��(t) � �0=2 for almost every t 2 [0; T ]: (3.21)

and for all 0 < � � ��:
Next we separate the demonstration into two cases: p < 2 and p > 2.
We begin with p < 2. Under this condition, we have

krnkLp(
) � C(
; p)krnp=2kL2(
)knk(2�p)=2Lp(
) for np=2 2 H1(
):

Combining this with (3.20) and (3.21), since p < 2, we obtain

krn�kLp(0;T ;Lp(
)) � C for all 0 < � � ��: (3.22)

Consequently, we can check that kn�tkLp
�
0;T;(W 1;p0 (
))0

� � C for all 0 < � � ��: Now using a compact-

ness theorem [16, p. 141], with Lp(
) ,! (W 1;p0(
))0; we �nd for a subsequence �! 0;

n� ! n in Lp
�
0; T ;Lp(
)

�
: (3.23)

Now using standard arguments and above estimates, we get as �! 0

n�t * nt in Lp
�
0; T; (W 1;p0(
))0

�
; (3.24)

r�� ! r� in Lp
�
0; T;W 1;p(
)

�
; (3.25)

rn� * rn in Lp
�
0; T ;Lp(
)

�
: (3.26)
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To conclude, it su�ces to prove �� ! � in C([0; T ]). This follows from showing that

�

TZ
0

j��t ��tj dt � 2

TZ
0

����
Z



n���t � n�t dx

���� dt! 0 as �! 0: (3.27)

We obtain this using [21, Proposition 23.9 (d)], combining (i) strong convergence of n� ! n in
Lp

0
�
0; T ;Lp(
)

�
with (ii) weak convergence of ��t * �t in Lp

�
0; T ;Lp

0

(
)
�
: In fact (i) is conse-

quence of (3.20) and (3.23); and (ii) yields using (3.24) and the estimate k��tkp0 � Ck��tkW 1;p(
) �
Ckn�tk(W 1;p0 (
))0 ; where we have used p >

3
2 .

Now we take the limit �! 0 to conclude that n satis�es Problem P.
For p > 2; we use that n0� 2 L2(
) and in particular (3.20) implies

kn�(t)kL2(
) � C and ��(t) � �0=2 for all t 2 [0; T ]:

We follow the proof of Theorem 3.2, to �nd kn�tkL2(0;T;(H1(
))0) � C. With this we may apply again

the compactness theorem [16, p. 141], now with Lp(
) ,! (H1(
))0, since p > 2; and obtain n� ! n
in Lp

�
0; T; Lp(
)

�
: Finally, we show (3.27) using p = p0 = 2 and obtain �� ! � in C([0; T ]); which

concludes the proof of the theorem.

3.3 Radially symmetric solutions
In Section 2.4 we introduced Problem Q describing radially symmetric solutions of Problem P in the
unit ball. In this paper we do not prove existence for Problem Q. Instead we shall assume that if

 = B1(0) and if n0 is radially symmetric, then the corresponding weak solution is radially symmetric.
By standard regularity theory weak solutions of Problem P satisfy equations (1.1)-(1.3) and boundary
conditions (1.4)-(1.5) in a classical sense. With this in mind we introduce for Problem Q the following
solution de�nition.
Let DT = (0; 1)� (0; T ]. A pair hQ;�i solves Problem Q, if for some T > 0:

(i) Q 2 C2;1(DT ) \ C(DT ); and � 2 C([0; T ]);
(ii) (Q;�) satis�es equations (2.11)-(2.14);

(iii) Qy � 0 in DT and � > 0 in [0; T ]:

Clearly radial solutions of Problem P with n0 2 Lp(B1(0)); p >
3
2 , satisfy this de�nition. This follows

directly from the identity

Qy(y; t) =
4�

3
n(y1=3; t) for (y; t) 2 DT : (3.28)

4. Prescribed temperature problem

In this section we study Problem P with prescribed temperature �(t) satisfying

�: [0; T ]! R such that � 2 C([0; T ]) and �(t) > � > 0 for t 2 [0; T ]: (4.1)

Thus we drop the energy relation (1.3) and assume that � in (1.1) and (1.4) is given and satis�es (4.1).
We denote this modi�ed problem by P�. Clearly, if Problem P� has a radially symmetric solution,
then the corresponding formulation in terms of the mass Q, which we denote by Q�; has a classical
solution according to the de�nition given in Section 3.3.
We �rst recall some recent results of Biler & Nadzieja [3, 11], related to local existence for Problem

P� and global existence for Problem Q�:

Remark 4.1
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(i) Let n0 2 L2(
) and let � satisfy (4.1). Then there exists T = T (
; kn0kL2(
); �) > 0 so that

Problem P� has a unique weak solution in [0; T ] which satis�es n 2 L1loc
�
(0; T ]; L1(
)

�
: Proof:

see [11, Theorem 1 (i)].

(ii) Let n0 2 Lp(
) with p > 3
2 and let � satisfy (4.1). Then there exist T = T (
; kn0kLp(
); �) > 0

so that Problem P� has a weak solution in [0; T ] satisfying n 2 L1
�
0; T; Lp(
)

�
and np=2 2

L2
�
0; T;H1(
)

�
: For p > 3 the solution is unique. Proof: see [11, Theorem 1 (ii) and (iii)].

(iii) If for some B > 0, Q0(y) � y 1+B
y2=3+B

for 0 � y � 1 and �(t) = constant � 3
2 (1 + B) then

Problem Q� has a global classical solution satisfying Q(y; �) � y 1+B
y2=3+B

for (y; �) 2 D1: Proof:
see [3, Theorem 1 (iii)].

In the remainder of this section we present some new results related to Problem P� with constant
temperature � > 0. We �rst extend a global existence result of [9].

Theorem 4.2 For a given domain 
; there exist positive constants, �1; �2; A;B; and C with �2 � �1
so that if the constant temperature � and the initial condition n0 satisfy

� � �1 and kn0k2L2(
) � A+
B

�4

or
� � �2 and kn0k2L2(
) � C(�2 ��);

then Problem P� has a global (weak) solution for which the L2(
) norm is uniformly bounded in time.

Proof: Integrating (1.1) we obtain the expression

1

2

d

dt
knk2L2(
) +�krnk2L2(
) = �

Z



nrnr� dx: (4.2)

As in the proof of [9, Theorem 2 (iii)] we estimate

1

2

d

dt
knk2L2(
) +�krnk2L2(
) � knkL3(
)kr�kL6(
)krnkL2(
): (4.3)

The aim is to obtain a di�erential inequality for kn(t)k2L2(
). From the appendix we �rst use (6.2)

and then (6.3) with r = 6 and p = 2. This gives

knkL3(
)kr�kL6(
)krnkL2(
) �
�

2
knk2H1(
) +

C1

�3
(knk2L2(
))3: (4.4)

Further, we use (6.1) with q = 2 and p = 1 to obtain

2�knk2L2(
) �
�

2
knk2H1(
) + C2�knk2L1(
): (4.5)

The combination (4.3)-(4.5) eliminates the gradient term. Since knkL1(
) = 1, we are left with an
inequality of the form

d

dt
w � p�(w) :=

C1

�3
w3 ��w + C2� for t > 0 (4.6)

with w(t) := kn(t)k2L2(
): Here C1 and C2 are positive constants only depending on 
: The assertions

of the theorem now follow from particular properties of (4.6).

First observe that if � > �1 :=
33=4

21=2
(C2C

1=2
1 )1=2, then p�(w) = 0 has two positive real roots w� < w�

and p�(w) < 0 for w� < w < w�: If � = �1; these roots coincide. A simple calculation shows that

w0 = C2 +
C3
2C1

�4
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satis�es 0 < w0 < w� for all � � �1: Since p�(w) > 0 for 0 � w < w�; we deduce that w(t); with
w(0) � w0; satis�es w(t) � w� for all t � 0: This proves the �rst assertion.
Next consider

w0 := C
�1=2
1 (�2 ��):

Then p�(w
0) � 0 provided

� � �2 =

 �
3 + C2C

1=2
1

4

�2

� 1

2

!1=2

+
3 + C2C

1=2
1

4
:

Clearly �2 � �1; since p�(w) > 0 for � < �1 and for all w > 0. As before we have that w(t); with
w(0) � w0; satis�es w(t) � w0 � w� for all t � 0: This proves the second assertion.
In a similar fashion global existence results are obtained in Lp(
) for p > 3=2. Instead of (4.6) one

now �nds

d

dt
w � C1

��
w� ��w + C2� for t > 0 (4.7)

with w(t) := kn(t)kpLp(
): Here

� =

8<
:

2p�1
2p�3 for 3=2 < p < 3

p+2
p for p > 3:

Inequality (4.7) implies the following result.

Theorem 4.3 For a given domain 
; there exist positive constants, �1; �2; �A; �B; and �C with �2 � �1
so that if the constant temperature � and the initial condition n0 satisfy

� � �1 and kn0kpLp(
) � �A+
�B

��+1

or

� � �2 and kn0kpLp(
) � �C(�
 ��); with 
 =
� + 1

� � 1
;

then Problem P� has a global (weak) solution for which the Lp(
) norm is uniformly bounded in time.

5. Global existence for Problem Q

In this section we study radially symmetric solutions of Problem P. We will use the classical formu-
lation in terms of Problem Q. Before we prove the global existence results, we �rst demonstrate the
blow-up result Theorem 1.1.

Theorem 5.1 Let � > 6 and E < 3. Then T � <1:

Proof: Suppose Problem Q has a global solution Q = Q(y; t) and � = �(t) 2 (0;1) for all t > 0:
Setting

w�(t) :=

1Z
�

Q(y; t)y�1=3 dy for all t > 0;

we �nd, after di�erentiating and using equation (2.11),

dw�(t)

dt
= �(t)Qy(1; t)� ��(t)Qy(�; t)��(t) + �(t)Q(�; t)

� 1

2

Q(�; t)2

�1=3
+
1

2
+
�

6
�(t)� E

6
+
1

6

�Z
0

Q2(y; t)y�4=3 dy for all t > 0: (5.1)
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Since �(t) <1; we obtain from (2.12)

Q(y; t)2=y4=3 2 L1(0; 1) for all t > 0;

which implies that we can choose a sequence �n # 0 along which lim
�n#0

Q(�n;t)

�
1=6
n

= 0 for all t > 0: Using

this and Qy(1; t) � 0 in (5.1), we �nd in the limit

dw0(t)

dt
� 1

2
��(t) +

�

6
�(t)� E

6
for all t > 0:

The parameter choice implies that dw0(t)
dt � � > 0 for all t > 0: This contradicts w0 � 3

2 (implied by

Q � 1 in D1).

Remark 5.2 Using (3.28) we can express w0(t) in terms of the second moment of the corresponding
radially symmetric solution: Z

B1(0)

n(x; t)jxj2 dx = 1� 2

3
w0(t):

Since dw0(t)=dt is bounded away from zero, there exists a T � 2 (0;1) (blow-up time) such that
lim
t"T�

w0(t) =
3
2 and

lim
t!T�

Z
B1(0)

n(x; t)jxj2 dx = 0:

This implies the gravitational collapse n(x; T �) = �x=0:

Next we turn to global existence. The proof uses a comparison principle for the Q-equation (2.11)
with respect to given ordered temperatures, and the fact that temperature is positively bounded from
below. The results are stated in terms of an equivalent formulation, as in (3.13), in which we replace
t by � : i.e.

Q� = y4=3Qyy +
1

�(�)
QQy in DT (5.2)

Q(0; �) = 0; Q(1; �) = 1 for � 2 [0; T ]; (5.3)

Q(y; 0) = Q0(y) for y 2 [0; 1]; (5.4)

and the energy relation

E = ��(�)�
1Z

0

Q2

y4=3
dy for � 2 [0; T ]: (5.5)

We �rst consider (5.2)-(5.4) for given ordered temperatures and ordered initial data.

Proposition 5.3 Let i = 1; 2: Suppose Qi solves (5.2)-(5.4) in DTi subject to Q0 = Q0i; and given
� = �i; satisfying (4.1) in [0; Ti]: Let T = minfT1; T2g: If

�1 � �2 in [0; T ]; and Q01 � Q02 in (0; 1)

and if there exists K > 0 such that either

0 � Q1y � K or 0 � Q2y � K in DT ;

then
Q1 � Q2 in DT :
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Proof: Suppose 0 � Q2y � K: Since

Q2� = y4=3Q2yy +
1

�1(�)
Q2Q2y +

�
1

�2(�)
� 1

�1(�)

�
Q2Q2y in DT :

It follows from �1 � �2 and Q2y � 0 that

Q2� � y4=3Q2yy +
1

�1(�)
Q2Q2y in DT :

This inequality and the boundedness of Q2y allows us to use [15, Theorem 3.2], which show that Q2

is a subsolution for the Q-equation with �1:
Next we use the Boltzmann entropy (2.7) in terms of Q = Q(y; �) to establish a positive lower

bound on �:

Proposition 5.4 Let hQ;�i be a solution of Problem (5.2)-(5.5). Suppose �(0) = 1
�

�
E+

1R
0

Q0(y)
y4=3

dy
�

> 0: Then

�(�) � ��(0) for � > 0; with � = exp

�
� 2

�

1Z
0

Q0y logQ0y dy

�
: (5.6)

Proof: Rewriting (2.7) results in

W (�) :=

1Z
0

Qy logQy dy � �

2
log

�
E +

1Z
0

Q2

y4=3
dy

�
for � > 0

and di�erentiation gives, see also (2.8),

dW (�)

d�
= �

1Z
0

Q2
�

y4=3Qy
dy � 0 for � > 0:

Hence W (�) is decreasing in � . As a consequence

W (�) =

1Z
0

Qy logQy dy � �

2
log

�
E +

1Z
0

Q2

y4=3
dy

�
�

� W (0) =

1Z
0

Q0y logQ0y dy �
�

2
log

�
E +

1Z
0

Q2
0

y4=3
dy

�
for � > 0:

Here we use Jensen's inequality to estimate

1Z
0

Qy logQy dy �
� 1Z

0

Qy dy

�
log

� 1Z
0

Qy dy

�
= 0;

from which lower bound (5.6) directly follows.
Note that whenever � is bounded away from zero, blow-up in Problem (5.2)-(5.5) can only occur

at the boundary y = 0: This is a direct consequence of classical regularity theory, which implies that
Q is smooth away from y = 0. Blow-up manifests itself through singular behaviour of Qy as (y; �)
approaches the point (0; T �): This corresponds to unbounded density at the origin of the radially
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symmetric solution of Problem P. Below we use the comparison argument (Proposition 5.3) to control
the behaviour of Qy(0; �). We show that this implies a uniform bound on kQy(�)kL2(0;1) and thus on
kn(�)kL2(B1(0)) for all 0 � � < T �: Global existence for Q = Q(y; �) as a consequence of Theorem 3.2.
The results translate in a straightforward manner to the assertions of Theorem 1.2

Theorem 5.5 Let Q0 : [0; 1] 7! [0; 1] be nondecreasing, Q0y 2 L1(0; 1) and Q0(0) = 0, Q(1) = 1. Let
�(0) = �0 > 0. If either

(i) �0 is su�ciently large;

or

(ii) there exists B > 0 such that

�0 � 3

2

(1 +B)

�
; and Q0(y) � y(1 +B)

y2=3 +B
; with � = exp

�
� 2

�

1Z
0

Q0y logQ0ydy

�
:

Then Problem (5.2)-(5.5) has a global solution hQ;�i in the sense of Section 3.3. Moreover there
exist constants L > 0 and �� > 0 such that �(�) � �� and kQy(�)kL2(0;1) � kQ0ykL2(0;1) exp(L�) for
all � > 0: If (ii) is satis�ed we have in addition

Q(y; �) � y(1 +B)

y2=3 +B
for all (y; �) 2 D1:

Proof: First we consider the auxiliary problem

(AP)

8>>>><
>>>>:

�Q� = y4=3 �Qyy +
1
A
�Q �Qy in D1;

�Q(0; �) = 0; �Q(1; �) = 1 for � > 0;

�Q(y; 0) = Q0(y) for y 2 [0; 1];

(5.7)

where A > 0 and where Q0 satis�es the conditions of the theorem.
By Theorem 4.2 and Remark 4.1 (iii), we have: if either

(H1) A � �2 and kQ0yk2L2(0;1) � C(A2 �A)

or

(H2) A = 3
2 (1 +B) and Q0(y) � y(1+B)

y2=3+B
for 0 � y � 1; and for some B > 0;

then Problem AP has a global solution �Q : D1 7! [0; 1]: Since Q0y 2 L1(0; 1), the regularity theory
of [7, Theorem 2] gives

k �QykL1(0;1) 2 L1loc([0;1)): (5.8)

The conditions on Q0 and �0 guarantee that Problem (5.2)-(5.5) has a classical solution in DT for
some T . Now suppose

T � = supfT > 0 j solution of Problem (5.2)-(5.5) exists in DT g <1: (5.9)

Fix A > 0 such that (H1) is satis�ed, and choose �0 � A

�
: By (5.6), we have

�(�) � A for all � 2 [0; T �) (5.10)
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and by Proposition 5.3 and (5.8), we �nd

Q(y; �) � �Q(y; �) � Ky for (y; �) 2 [0; 1]� [0; T �) (5.11)

for some K > 0: Below we show that this implies a uniform bound on kQy(�)kL2(
) in [0; T �): Multi-

plying (5.2) by Q�=y
4=3 gives

1

y4=3
Q2
� = Q�Qyy +

1

�(�)y4=3
Q�QQy in [0; 1]� (0; T �): (5.12)

Using (5.10) and (5.11), the second term on the right can be estimated by

1

�(�)y4=3
Q�QQy � 1

y4=3
Q2
� +

1

4�2(�)y4=3
Q2Q2

y

� 1

y4=3
Q2
� +

K2

4A2
Q2Q2

y:

Using this in (5.12) and integrating the results gives

d

d�
kQy(�)k2L2(0;1) �

K2

2A2
kQy(�)k2L2(0;1) for all 0 � � < T �:

Hence

kQy(�)kL2(0;1) � kQ0ykL2(0;1) exp
 �

M

2A

�2

T �
!

and

A � �(�) � 1

�

�
E +

1Z
0

�Q2(y; �)

y4=3
dy

�
� 1

�

�
E +

3

5
K2

�

for all 0 � � < T �: This allows us to use Theorem 3.2 at T ��; which contradicts (5.9). The uniform
upper bound in the temperature follows from the observation

�Q(y; �) =

yZ
0

�Qy(y; �) dy � y1=2k �Qy(�)kL2(0;1);

implying
1Z

0

�Q2(y; �)

y4=3
dy � 3

2
k �Qy(�)k2L2(0;1);

and thus last expression is uniformly bounded if A satis�es (H1) (Theorem 4.2).
If (ii) holds, global existence follows in a identical way. Again (5.10) and (5.11) hold, yielding the

same bounds on kQy(�)kL2(0;1) and �(�): The pointwise bound on Q in D1 results from the fact that

y(1 + B)=(y2=3 + B) is a supersolution for Problem AP if A and Q0 satisfy (H2): Take for instance
K = B+1

B in (5.11). The corresponding temperature bound is a direct consequence.
As a special case of Theorem 5.5 (ii) we have

Corollary 5.6 If Q0(y) = y, and �0 >
3
2 , then Problem (5.2)-(5.5) has a global hQ;�i solution and

�0 � �(�) < �0 +
12
5� for all � � 0.

Proof: Since � = 1; we can select a su�ciently small B > 0 such that Theorem 5.5 (ii) holds. The
pointwise bound on Q implies Q(y; �) � y1=3 for all (y; �) 2 D1: Since

�(�) = �0 +

Z 1

0

Q2(y; �)�Q2
0(y)

y4=3
dy;

the upper bound is immediate.
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6. Appendix: Inequalities

For completeness we give in this appendix some inequalities which are used at various places in the
paper.
Let 
 be a bounded open subset of RN with a C1+�(� > 0) boundary.

First interpolation inequality. Let N > 2; r � 2N
N�2 and let p � q � r satisfy 1

q =
�
p +

(1��)
r for

some � 2 (0; 1): Then

knkLq(
) � C1��
s knk1��H1(
)knk�Lp(
) for all n 2 H1(
) \ Lp(
): (6.1)

Proof: Use the Sobolev inequality knkLr(
) � CsknkH1(
) for N > 2 and r � 2N
N�2 ; and the interpo-

lation inequality knkLq(
) � knk�Lp(
)knk1��Lr(
):

Second interpolation inequality. Let N = 3. Then

knkL3(
) � C1=2
s knk1=2H1(
)knk

1=2
L2(
) for all n 2 H1(
): (6.2)

Proof: Take p = 2, q = 3; r = 2N
N�2 = 6 and � = 1=2 in (6.1).

Poisson's equation and Lp-norms. Let n 2 Lp(
); p > N
2 ; and let � satisfy (1.2) and (1.5).

Then8<
:

kr�kLr(
) � CIknkLp(
) for 1 < r � pN
N�p and N

2 < p < N;

kr�kL1(
) � CIknkLp(
) for p > N:

(6.3)

where the constant CI depends on 
 and p:
Proof: Since � satis�es (1.2) with (1.5), we use the representation by the Green's function to obtain

k�kLp(
) � k��kLp(
) for N > 2 and p > N=2: If p < N we combine this with the Sobolev inequality
kr�kLr(
) � C(k��kLp(
)+ k�kLp(
)) for r � pN=(N � p) to obtain the desired inequality. If p > N
we proceed similarly.
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