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ABSTRACT

In this report we investigate the general theory of grey-scale morphology within the framework of complete

lattices and fuzzy logic. This includes grey-scale granulometries, hit-or-miss operators for grey-scale images,

rank operators, and connected operators. We also show that the Matheron's representation theory does not

hold for general grey-scale images and we present some results related to the representation theory. Besides

these, in this report, we put forward a new approach to fuzzy morphology through the extension of in�mum,

supremum, and conjunction.
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1. Introduction

Mathematical morphology was founded in the early sixties by Matheron [10] and Serra [13] as
a novel geometry-based technique for image processing and analysis. Originally, mathematical
morphology was developed for binary images and used simple concepts from set theory and
geometry such as set inclusion, intersection, union, complementation, and translation. This
resulted in a collection of tools, called morphological operators, which are eminently suited
for the analysis of shape and structure in binary images [16]. The most well-known of these
operators are erosion and dilation. In binary morphology, a series of theories, such as the
well-known Matheron's representation theorem, hit-or-miss transform, granulometry, and
morphological �lters, have been developed.
Soon thereafter, mathematical morphology was extended to grey-scale images. Such an

extension requires rules for the `combination' of di�erent grey-values. In the binary case, the
set paradigm leads in a natural way to `combinations' based on concepts from Boolean logic.
In the grey-scale case, the set paradigm is no longer valid, and as a consequence it is not
a priori clear which `combination mechanism' should be used. Furthermore, many theories,
for instance, grey-scale granulometry, connectivity and connected operators, haven't been
developed.
In our �rst report [5], we founded morphological operators within the framework from

fuzzy logic. In that report, a large class of morphological operators for grey-scale images was
conducted, and the classical grey-scale Minkowski addition and subtraction are the special
case within fuzzy logic framework.
The �rst author using concepts from fuzzy logic in mathematical morphology is Goetcherian [6].

Since then, several authors have followed this approach, for example Sinha and Dougherty [14,
15], Bloch and Maitre [1, 2], and De Baets, Nachtegael and Kerre [4, 3, 11]. An excellent
source is the recent volume edited by Kerre and Nachtegael [8].
This report is the sequel of our �rst one. In this report, we investigate granulometry, hit-

or-miss operator, rank operator, connectivity, and the Matheron's representation theorem
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for grey-scale images. Besides these, we put forward a new approach to fuzzy morphological
operators by the extension of in�mum and supremum operators as well as conjunction. This
report just is an attempt to develop these theories, and contains some preliminary ideas which
need to be worked out in much greater detail in the future.

2. Grey-scale Mathematical Morphology

Let U be a nonempty set called a universe, let P(U) be the family of all subsets of U , and let
F(U) be the family of all fuzzy subsets (fuzzy sets) on U . In general, we take U = IRd, the
d-dimensional Euclidean space, in which case a subset X of U represents a continuous binary
image on U , or we take U = Z

d, in which case X � U represents a discrete binary image on
U .
In this section, we brie
y recall some primary concepts and results in Mathematical mor-

phology.

2.1 Binary Morphology

In set morphology, dilation � and erosion " are de�ned from the Minkowski addition and
subtraction as follows

�A(X) = X �A and "A(X) = X 	A :

for any image X 2 P(U). The set A is called structuring element in the morphological
literature.
The most important relation between dilation and erosion is

Y �A � X () Y � X 	A ; X ; Y ;A 2 P(U) ;

which is called the adjunction relation.
Let A 2 P(U) be a structuring element, for any binary image X 2 P(U), the opening and

closing of image X by A are, respectively, de�ned as follows:

�A(X) = X � A = (X 	A)�A and �A(X) = X � A = (X �A)	A :

2.2 Morphology on Complete Lattices
In mathematical morphology, the framework of complete lattices is a right implement.

2.1. De�nition. Suppose that L and M are complete lattices, and that J is an index set.
An operator � : M ! L is called a dilation if �(

W
i2J Yi) =

W
i2J �(Yi) for every collection

fYi j i 2 Jg � M. An operator " : L ! M is called an erosion if "(
V
i2J Xi) =

V
i2J "(Xi)

for every collectionfXi j i 2 Jg � L. Note in particular, by choosing J to be the empty
set, we get �(?) = ? and "(>) = >, where ? and > are the least and greatest elements,
respectively. Two operators " : L !M and � :M! L are said to form an adjunction if and
only if

�(Y ) � X () Y � "(X)

for any X 2 L and Y 2 M. In this case, we say that (" ; �) is an adjunction between L and
M.

2.2. Proposition. Let L and M be two complete lattices, and let (" ; �) be an adjunction
between L and M, then " is an erosion and � is a dilation.

2.3. Proposition. If � :M! L is a dilation, then there exists a unique erosion " : L !M
such that (" ; �) is an adjunction between L and M. Dually, if " : L !M is an erosion, then
there exists a unique dilation � :M! L such that (" ; �) is an adjunction between L and M.

2.4. Proposition. Assume that ("1 ; �1) is an adjunction between complete lattices L and
M, and that ("2 ; �2) is an adjunction between complete lattices M and N , then ("2"1 ; �1�2)
is an adjunction between L and N .
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2.5. Proposition. Let ("i ; �i) be an adjunction between complete lattices L and M for any
i 2 J , then (

V
i2J "i ;

W
i2J �i) is an adjunction between L and M as well.

2.6. De�nition. Given a complete lattice L, an operator � : L ! L is called an opening
if � is increasing (that is, X1 � X2 implies that �(X1) � �(X2)), idempotent (that is
�(�(X)) = �(X), or brie
y �2 = �), and anti-extensive (that is �(X) � X, for every
X 2 L). Dually, an operator � is called a closing if it satis�es the �rst two properties and
also extensive (that is X � �(X), for every X 2 L).

2.7. Proposition. If (" ; �) is an adjunction between complete lattices L and M, then "� is
a closing on M, whereas �" is an opening on L.

2.3 Fuzzy Logical Operations

In this subsection, we review some basic concepts from fuzzy logic which are important for the
sequel of this report. Special attention should be paid to the conjunction C and implication
I, and the interpretation of how these two notions can be paired by means of the adjunction
relation discussed in the previous subsection. There is a huge literature on fuzzy logic and
fuzzy set theory (see e.g. [9, 12, 17]), and it should be clear that the discussion presented
here is far from complete.
In fuzzy logic, the operations C and I are extended from the Boolean domain f0 ; 1g�f0 ; 1g

to the rectangle [0 ; 1] � [0 ; 1].

2.8. De�nition. A mapping C : [0 ; 1]� [0 ; 1] ! [0 ; 1] is called a fuzzy conjunction (brie
y,
conjunction) if it is increasing in both arguments and satis�es the boundary conditions of
classical logic

C(0 ; 0) = C(1 ; 0) = C(0 ; 1) = 0 and C(1 ; 1) = 1 : (2.2.1)

A mapping I : [0 ; 1] � [0 ; 1] ! [0 ; 1] is called a fuzzy implication (brie
y, implication) if it
is decreasing in the �rst argument, increasing in the second, and coincides with the classical
implication

I(0 ; 0) = I(0 ; 1) = I(1 ; 1) = 1 and I(1 ; 0) = 0 : (2.2.2)

2.9. De�nition. An implication I and a conjunction C are said to be adjoint (on [0 ; 1]) if

C(a ; t) � s () t � I(a ; s) (2.2.3)

for all a ; s ; t 2 [0 ; 1].

Thus an implication I and a conjunction C are adjoint if for every a 2 [0 ; 1], the pair
(I(a ; �) ; C(a ; �)) forms an adjunction on [0 ; 1], (brie
y, we say that the pair (I ; C) is an
adjunction). This means in particular that I(a ; �) is an erosion on [0 ; 1], or alternatively,
continuous from the right, and that C(a ; �) is a dilation, or alternatively, continuous from the
left.
In the context of grey-scale morphology, the grey-value set usually is a discrete point set,

for instance, Z= Z[ f�1 ;+1g, or fa0 ; a1 ; : : : ; aNg.
Let us �rstly present the de�nition of conjunctions and implications on arbitrary complete

lattices.

2.10. De�nition. Let L be a complete lattice, the least and greatest elements of L are
denoted by ? and >, respectively. A conjunction C on L is de�ned as an operator from
L� L to L, satisfying that C is increasing in both arguments, and

C(? ;?) = C(? ;>) = C(> ;?) = ? and C(> ;>) = > ;
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whereas, an implication I on L is decreasing in the �rst argument, increasing in the second
and satisfying that

I(? ;?) = I(? ;>) = I(> ;>) = > and I(> ;?) = ? :

An implication I and a conjunction C on L are said to be adjoint if

C(a ; t) � s () t � I(a ; s) ; a ; s ; t 2 L :

2.11. Proposition. Let L be a complete lattice, and let � : [0 ; 1] ! L be a continuous
increasing mapping such that �(0) = ? and �(1) = >. I and C be two functions from
[0 ; 1]� [0 ; 1]! [0 ; 1], respectively. For any s ; t 2 L, de�ne C�(s ; t) = �(C(��1(s) ; ��1(t)))
and I�(s ; t) = �(I(��1(s) ; ��1(t))), then the following assertions hold.

(1) I is an implication (C is a conjunction) if and only if I� is an implication (C� is a
conjunction).

(2) (I ; C) is adjoint on [0 ; 1] if and only if (I� ; C�) is adjoint on L

2.4 Grey-scale Morphology

Let U be the universe discoursed, T be the grey-scale value set of images on U , and let
T U = fF j F : U ! T g be the family of all mappings in which every mapping F represents a
grey-scale image on U . If T is a complete lattice with a partial ordering � , then T U is also a
complete lattice with a partial ordering, also denoted by � , de�ned as, for any F1 ; F2 2 T U ,

F1 � F2 () F1(x) � F2(x) ; 8 x 2 U :

We denote T U by F(U) which can be regarded as the family of all fuzzy subsets on U .
From this viewpoint, a grey-scale image F on U is a fuzzy subset F 2 F(U). A fuzzy subset
(or fuzzy set) F is uniquely determined by its membership function �F (x), brie
y, denoted
by F (x), x 2 U .
We may extend the set relations inclusion and intersection of two crisp sets to fuzzy case.
Let F ;G 2 F(U), we denote by jG � F j the degree of fuzzy set G included in fuzzy set F ,

then

jG � F j := a quantity concerning I(G(y) ; F (y)) ; for all y 2 U

:=
^
fI(G(y) ; F (y)) j y 2 Ug

:=
^
y2U

I(G(y) ; F (y)) ;

where I is a fuzzy implication.
The degree of erosion of the grey-scale image F by G, called a structuring element (a

structuring function) at point x should be jGx � F j, here Gx is a fuzzy set, denoting the
translation of fuzzy set G along x, Gx(y) = G(y � x) ; y 2 U .
Analogously, we denote by jG * F j the degree of fuzzy set G hitting fuzzy set F , then

jG * F j := a quantity concerning C(G(y) ; F (y)) ; for some y 2 U

:=
_
fC(G(y) ; F (y)) j y 2 Ug

:=
_
y2U

C(G(y) ; F (y)) ;

where C is a fuzzy conjunction.
The degree of dilation of the grey-scale image F by the structuring function G at point

x should be j �Gx * F j, here �G and �Gx = ( �G)x mean that �G(y) = G(�y) and �Gx(y) =
G(x� y) ; y 2 U , respectively.
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2.12. De�nition. Let G 2 F(U) be a structuring element (structuring function), F 2 F(U)
be a grey-scale image. Suppose that implication I and conjunction C form an adjunction,
de�ne dilation and erosion of the grey-scale image F by G, separately as follows

DG(F )(x) = (F�CG)(x) =
_
y2U

C(G(x� y) ; F (y)) ;

EG(F )(x) = (F	CG)(x) =
^
y2U

I(G(y � x) ; F (y)) ;

for every x 2 U .

2.13. Proposition. Let I be an implication and C be a conjunction on [0 , 1], then (I ; C)
is adjoint on [0 , 1] if and only if (EG ;DG) is an adjunction on F(U) for any G 2 F(U).

2.14. Proposition. If (I ; C) is an adjunction, then

�G(F )(x) = (F �C G)(x) = EG(DG(F ))(x)

is an adjunctional closing, and

�G(F )(x) = (F �C G)(x) = DG(EG(F ))(x)

is an adjunctional opening. That means, for a �xed G 2 F(U), and any F ; F1 ; F2 2 F(U),
if F1 � F2, then

�G(F1) � �G(F2) ; �G(F1) � �G(F2) ;

�G(�G(F )) = �G(F ) ; �G(�G(F )) = �G(F ) ;

�G(F ) � F � �G(F ) :

It is easy to check that all of the morphological operators, EG and DG, as well as �G and
�G are translation invariant.

2.15. Proposition. Let (I ; C) be an adjunction, if C is continuous from the left for the
�rst argument, then for any F 2 F(U) and fGigi2J � F(U),

DS
i2J Gi

(F ) =
[
i2J

DGi
(F ) and ES

i2J Gi
(F ) =

\
i2J

EGi
(F ) ;

where (
S
i2J Xi)(x) = supi2J Xi(x) and (

T
i2J Xi)(x) = infi2J Xi(x), fXigi2J � F(U), x 2

U .

2.16. Proposition. Let (I ; C) be an adjunction, if conjunction C is commutative and asso-
ciative, then (F�CG1)�CG2 = F�C(G1�CG2) and (F	CG1)	CG2 = F	C(G1�CG2) for
any F ; G1 ; G2 2 F(U).

This proposition shows that structuring elements are decomposable.
Let the grey-value set T = f0 ; 1g, which means that the grey-scale images on U are

actually binary images. In this case, T U and P(U) are isomorphic. For this reason, we don't
distinguish between the elements in T U and that in P(U).

2.17. Proposition. Let (I ; C) be an adjunction, F ;G 2 P(U), then

DG(F ) = �G(F ) and EG(F ) = "G(F ) :

2.18. Proposition. Let (I ; C) be an adjunction, then C(1 ; t) = t for every t 2 [0 ; 1] if and
only if for any F 2 F(U), G 2 P(U), and any x 2 U ,

DG(F )(x) =
_
y2 �Gx

F (y) and EG(F )(x) =
^
y2Gx

F (y) :
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3. Granulometry

In the processing of images, granulometry is an important concept and implement. In this
report, we will investigate granulometry for grey-scale images. This work is just a beginning
in this area.

3.1. De�nition. Let G 2 F(U) be a fuzzy set, fG�g�2(0 ;1) be a family of crisp sets, if

(1) 0 < � < � < 1) G� � G� ;

(2) G(x) =
W
f� 2 (0 ; 1) j x 2 G�g; x 2 U ;

then we call the family fG�g�2(0 ;1) of sets a set representation of fuzzy set G.

3.2. De�nition. Let G 2 F(U); � 2 [0 ; 1]; [G]� = fx 2 U j G(x) � �g and [G]� = fx 2
U j G(x) > �g(� 6= 1) are called the cut set and strictly cut set of fuzzy set G at level �,
respectively.

3.3. Proposition. The families of cut sets f[G]�g�2[0 ;1] and strictly cut sets f[G]�g�2[0 ;1)
are the set representations of fuzzy set G.

3.4. Proposition. fG�g�2(0 ;1) is a set representation of fuzzy set G if and only if for all
� 2 (0 ; 1),

[G]� � G� � [G]� :

Proof. ): If fG�g�2(0 ;1) is a set representation of fuzzy set G, then 8� 2 (0 ; 1),

x 2 [G]� ) G(x) > �

)
_
fr 2 (0 ; 1) j x 2 Grg > �

) 9� 2 (� ; 1) such that x 2 G�

) x 2 G�

) G(x) =
_
fr 2 (0 ; 1) j x 2 Grg � � :

(: Suppose that there exists a family of sets fG�g�2(0 ;1) such that [G]� � G� � [G]�. If
0 < � < � < 1, then x 2 G� ) x 2 [G]� ) G(x) � � > �) x 2 [G]� ) x 2 G�. Thus, G� � G�.
We de�ne fuzzy sets �[G]�, �[G]

� and �G� as, respectively, for every x 2 U ,

�[G]�(x) =

(
� ; x 2 [G]� ;

0 ; otherwise .

�[G]�(x) =

(
� ; x 2 [G]� ;

0 ; otherwise .

�G�(x) =

(
� ; x 2 G� ;

0 ; otherwise .

By the condition [G]� � G� � [G]�, we have �[G]� � �G� � �[G]�. Thus, by Decomposition
Theorem

G =
_

�2[0 ;1)

�[G]� =
_

�2[0 ;1]

�[G]� :

It's natural that
G =

_
�2[0 ;1)

�[G]� �
_

�2(0 ;1)

�G� �
_

�2[0 ;1]

�[G]� = G :

That is, for any x 2 U ,

G(x) =
_

�2(0 ;1)

(�G�)(x) =
_
f� 2 (0 ; 1) : x 2 G�g :
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3.5. Proposition. If the family of crisp sets fG�g�2(0 ;1) is the set representation of fuzzy
set G as well as fuzzy set H, then G = H.

Extension Principle Let f : U2 ! R be a mapping, C be a conjunction, andG1 ; G2 2 F(U)
be two fuzzy sets, then f(G1 ; G2) is a fuzzy set on R. Moreover, for every x 2 R,

f(G1; G2)(x) =
_

f(x1 ; x2)=x ; (x1 ; x2)2U2

C(G1(x1) ; G2(x2)) :

If for a x 2 R, there doesn't exist (x1 ; x2) 2 U2 such that f(x1 ; x2) = x, then f(G1 ; G2)(x) =
0.

3.6. Proposition. Let f : U2 ! R be a non-decreasing mapping, C be a conjunction satis-
fying C(a ; b) � min(a ; b) for any a ; b 2 [0 ; 1], G1 ; G2 2 F(U) be two fuzzy sets, then

(1) [f(G1 ; G2)]
� = f([G1]

� ; [G2]
�) = ff(s ; t) j s 2 [G1]

�; t 2 [G2]
�g; � 2 [0 ; 1) :

(2) [f(G1 ; G2)]� � f([G1]� ; [G2]�) = ff(s ; t) j s 2 [G1]�; t 2 [G2]�g; � 2 [0 ; 1] :

(3) If f(G1)�g�2(0 ;1) and f(G2)�g�2(0 ;1) are the set representations of fuzzy sets G1 and
G2, respectively, then ff((G1)� ; (G2)�)g�2(0 ;1) is a set representation of fuzzy set
f(G1 ; G2), where f((G1)� ; (G2)�) = ff(s ; t) j s 2 (G1)� ; t 2 (G2)�g.

Proof. (1) For all � 2 [0 ; 1), x 2 R,

x 2 [f(G1 ; G2)]
� () f(G1 ; G2)(x) > �

()
_

f(x1 ;x2)=x ; (x1 ;x2)2U2

C(G1(x1) ; G2(x2)) > �

() 9 (s ; t) 2 U2; 3 f(s ; t) = x & C(G1(s) ; G2(t)) > �

() f(s ; t) = x & G1(s) > � & G2(t) > �

() f(s ; t) = x & s 2 [G1]
� & t 2 [G2]

�

() f(s ; t) = x 2 f([G1]
� ; [G2]

�) :

The proof of (2) is analogous.
(3) It's su�cient to prove the conclusion

[f(G1 ; G2)]
� � f((G1)� ; (G2)�) � [f(G1 ; G2)]� :

In fact, for all � 2 (0 ; 1); [G1]
� � (G1)� � [G1]� and [G2]

� � (G2)� � [G2]�. In term of the
monotonicity of mapping f and (1), (2), we have

[f(G1 ; G2)]
� = f([G1]

� ; [G2]
�)

� f((G1)� ; (G2)�)

� f([G1]� ; [G2]�)

� [f(G1 ; G2)]� :

3.7. De�nition. Let G 2 F(U) be a fuzzy set, for any x; y 2 U , r 2 [0 ; 1], if G(rx+ (1 �
r)y) � min(G(x) ; G(y)), then G is said to be a convex fuzzy set.

Note that the membership function of a convex fuzzy set is not always a (up-)convex function.
For example, a fuzzy set characterized by its membership function F (x) = e�x

2

is a convex
fuzzy set, but F (x) is not a convex function, nor a concave function. The fuzzy set of `young
people' is a convex fuzzy set.

3.8. Proposition. The following three statements are equivalent:
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(1) G 2 F(U) is a convex fuzzy set.

(2) For any � 2 [0 ; 1], [G]� is an interval.

(3) For any � 2 [0 ; 1), [G]� is an interval.

Proof. (1)) (2): If G is a convex fuzzy set, then 8� 2 [0 ; 1], for any x ; y 2 [G]�, and any r 2 [0 ; 1],
G(rx + (1 � r)y) � min(G(x) ; G(y)) � min(� ; �) = �. That is to say, rx + (1 � r)y 2 [G]�. Thus,
[G]� is an interval.
(2) ) (3): Let � 2 [0 ; 1), any r 2 [0 ; 1], and any x ; y 2 [G]�, then G(x) > � ; G(y) > �. So,

there exists "0 > 0 ("0 � 1� �) such that G(x) � � + "0 and G(y) � � + "0. Thus, x ; y 2 [G]�+"0 .
Since [G]�+"0 is an interval, rx + (1 � r)y 2 [G]�+"0 . That is G(rx + (1 � r)y) � � + "0 > �.
rx + (1� r)y 2 [G]�, e.g., [G]� is an interval.

(3) ) (1): 8x ; y 2 U , 8r 2 [0 ; 1], let � = min(G(x) ; G(y)). If � = 0, then G(rx + (1 � r)y) �

0 = � = min(G(x) ; G(y)). If � > 0, then 8" > 0 (" � �), we have G(x) � � > � � ", and

G(y) � � > �� ". That is, x ; y 2 [G]��". By the fact that [G]��" is an interval, so, rx + (1� r)y 2

[G]��", e.g., G(rx + (1 � r)y) > � � ". By the arbitrary constant of ", we obtain the conclusion

G(rx + (1� r)y) � � = min(G(x) ; G(y)) which means that G is a convex fuzzy set.

3.9. Proposition. If G is a convex fuzzy set on U , then for any s > 0, sG is also a convex
fuzzy set on U .

Proof. For any x ; y 2 U and any r 2 [0 ; 1],

sG(rx + (1� r)y) = G(rx=s + (1� r)y=s) � min(G(x=s) ; G(y=s)) = min(sG(x) ; sG(y)) ;

which means sG is a convex fuzzy set.

3.10. Proposition. Let G be a convex fuzzy set, � 2 [0 ; 1]; s > 0, then [G]� = [a ; b] ()
[sG]� = [sa ; sb]; [G]� = (a ; b) () [sG]� = (sa ; sb); (� 6= 1).

Proof. x 2 [a ; b] = [G]� () G(x) � � () sG(sx) = G(x) � � () sx 2 [sG]� = [a
0

; b
0

] ()
sx 2 [sG]� = [sa ; sb].

By analogy, the second statement can be proved.

3.11. De�nition. Let [a ; b] ; [c ; d] be two closed intervals, the Minkowski addition and sub-
traction between two intervals [a ; b] and [c ; d] are, respectively, as follows

[a ; b] + [c ; d] = [a+ c ; b+ d] ;

and
[a ; b] � [c ; d] = [a� c ; b� d] :

The Minkowski addition and subtraction between open intervals can be de�ned analogously.

3.12. Proposition. Let G 2 F(U) be a convex fuzzy set, s > 0; t > 0, then

(1) 8� 2 [0 ; 1]; [sG]� + [tG]� = [(s+ t)G]� :

(2) 8� 2 [0 ; 1); [sG]� + [tG]� = [(s+ t)G]� :

3.13. Proposition. If G 2 F(U) is a convex fuzzy set, C is a conjunction satisfying, for any
a ; b 2 [0 ; 1], C(a ; b) � min(a ; b), then , for any s > 0; t > 0, sG�CtG = tG�CsG = (s+t)G.

Proof. In Extension Principle, let f(x1 ; x2) = x1 + x2, then, for any s > 0; t > 0; f(sG ; tG) =
sG�CtG.
Let f(sG)�g�2(0 ;1) and f(tG)�g�2(0 ;1) be the set representations of fuzzy sets sG and tG, respec-

tively, then f(sG)�� (tG)�g�2(0 ;1) should be the set representation of fuzzy set sG�CtG, where � is
the Minkowski addition. That is, for any � 2 (0 ; 1),

[sG]� � (sG)� � [sG]� ; [tG]
� � (tG)� � [tG]� ; (3:1)
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and
[sG�CtG]

� � (sG)� � (tG)� � [sG�CtG]� :

By (3:1), we obtain
[sG]� � [tG]� � (sG)� � (tG)� � [sG]� � [tG]� :

Since [sG]� ; [sG]
� ; [tG]� and [tG]� are intervals,

[sG]� � [tG]� = [sG]� + [tG]� = [(s+ t)G]� ;

[sG]� � [tG]� = [sG]� + [tG]� = [(s+ t)G]� :

Thus
[(s+ t)G]� � (sG)� � (tG)� � [(s+ t)G]� ;

which means that the family f(sG)� � (tG)�g�2(0 ;1) is the set representation of fuzzy set (s + t)G.
So, sG�CtG = (s+ t)G.

Since the Minkowski addition � is commutative, tG�CsG = (s+ t)G.

3.14. Proposition. Let implication I and conjunction C be adjoint and let C be commuta-
tive and associative satisfying the condition in Proposition 3.13, G 2 F(U) is a convex fuzzy
set, s > 0; t > 0, then

DsGDtG = D(s+t)G and EsGEtG = E(s+t)G :

Proof. For any F 2 F(U), DsG(F ) = F�CsG ; DtG(F ) = F�CtG.

DsGDtG(F ) = DsG(DtG(F ))

= (F�CtG)�CsG

= F�C(tG�CsG)

= F�C(sG�CtG)

= F�C(s+ t)G

= D(s+t)G(F ) :

The second statement can be proved analogously.

3.15. De�nition. A family of opening f�rgr>0 on F(U) is called a granulometry if

�r�s = �s�r = �s; s � r > 0 :

A granulometry f�rgr>0 is called a Minkowski granulometry if for any r > 0, the opening �r
is translation invariant, and �rG(rF ) = r�1(F ) for any F 2 F(U).

3.16. Proposition. Let implication I and conjunction C form an adjunction; In addition,
if C satis�es the conditions in Proposition 3.14, and G is a convex fuzzy set, then for any
r > 0 ; f�r = DrGErGgr>0 de�ne a granulometry. Moreover, f�rgr>0 is a Minkowski granu-
lometry.

Proof. In order to prove the fact that f�rgr>0 is a granulometry, it's su�cient to prove that, for any
s � r > 0, and any convex fuzzy set G 2 F(U), �r�s = �s�r = �s.
By the adjunction of (ErG ;DrG) for any r > 0, we have DrGErGDrG = DrG. Thus, for any

s > r > 0, we have DsG = DrGD(s�r)G. Thus

�r�s = DrGErGDsGEsG = DrGErGDrGD(s�r)GEsG

= DrGD(s�r)GEsG = DsGEsG = �s :

Analogously, the assertion �s�r = �s is also true.
If s = r > 0, by the idempotence of opening, it's natural that �r�s = �s�r = �s.
It's not di�cult to check that the granulometry f�rgr>0 satis�es the conditions of Minkowski

granulometry.
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In fact, for any F 2 F(U), h 2 U . By the de�nition of translation Fh of fuzzy set F along h,
(Fh(x) = F (x � h); x 2 U), we have

�r(Fh) = (DrGErG)(Fh) = DrG(ErG(Fh))

= DrG((ErG(F ))h) = (DrG(ErG(F )))h = (�r(F ))h ;

and for any x 2 U ,

�r(rF )(x) = DrGErG(rF )(x) = DrG(ErG(rF )(x))

=
_
y2U

C(rG(x � y) ;
^
z2U

I(rG(z � y); rF (z)))

=
_
y2U

C(G(x=r � y=r) ;
^
z2U

I(G(z=r � y=r); F (z=r)))

=
_
y

0

2U

C(G(x=r � y
0

) ;
^
z
0

2U

I(G(z
0

� y
0

) ; F (z
0

)))

= DGEG(F )(x=r)

= �1(F )(x=r)

= r�1(F )(x) :

This means that f�rgr>0 is a Minkowski granulometry.

Note that the su�cient condition such that f�rgr>0 to be a granulometry needs to be worked
out further.

4. Hit-or-Miss Operator

4.1 Hit-or-Miss Transformation for Binary Images

4.1. De�nition. Suppose that X 2 P(U) is a binary image, A ;B 2 P(U) are two structur-
ing elements satisfying the condition A \B = ;, the Hit-or-Miss transformation of image X
by structuring element pair (A ;B) is as follows:

X~ (A ;B) = fh j Ah � X and Bh � Xc g :

It is easy to see that
X~ (A ;B) = "A(X) \ "B(X

c) :

Following this de�nition of hit-or-miss transform, the thickening and the thinning of binary
image X by the structuring element pair (A ;B) can be de�ned as, respectively,

X � (A ;B) = X [ (X~ (A ;B)) ;

and
X } (A ;B) = X n (X~ (A ;B)) :

The following properties of Hit-or-Miss transformation hold.

4.2. Proposition. Let X ;A ;B 2 P(U), h 2 U , then

X~ (A; ;) = "A(X) ;

X~ (; ; B) = "B(X
c) ;

Xc
~ (A ;B) = X~ (B ;A) ;

Xh~ (A ;B) = (X~ (A ;B))h ;

X~ (Ah ; Bh) = (X~ (A ;B))�h :

Xc � (A ;B) = (X } (B ;A)c :
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4.2 Hit-or-Miss Transformation for Grey-scale Images

4.3. De�nition. Let � be a negation, and G ;H 2 F(U), for every F 2 F(U), the Hit-
or-Miss transformation of grey-scale image F with respect to the structuring function pair
hG ;Hi is de�ned as

F
�hG ;Hi(x) = C(EG(F )(x) ; EH (F
�)(x))

for every x 2 U , where C is a given conjunction.

That means that the degree of a point x 2 U belonging to the Hit-or-Miss transformed set
F
�hG ;Hi equals to the value of conjunction at the point (s ; t), here s and t are the degree
of G `being included in' F and the degree of H `being excluded from' F , respectively.
There is some di�erence from that in crisp case. When G \ H 6= ;, the Hit-or-Miss

transformed set F
�hG ;Hi may be non-empty set.

4.4. Proposition. Let (I ; C) be an adjoint satisfying C(s ; s) = s for any s 2 [0 ; 1], then
for any s ; t ; r 2 [0 ; 1], we have

I(s ; t) � r iff s � r ) t � r :

Proof. By the fact that I(s ; t) � r () C(s ; r) � t for any s ; t ; r 2 [0 ; 1]. So, if I(s ; t) � r and
s � r, then t � C(s ; r) � C(r ; r) = r.

On the other hand, since for any s ; t ; r 2 [0 ; 1], from s � r, we have t � r, therefore t � s =

C(s ; s) � C(s ; r). Hence, I(s ; t) � r.

Let F 2 F(U) be a grey-scale image, � 2 [0 ; 1], the thresholding set X(F ; �), and strong
thresholding set X(F ; ��), by simplicity denoted by [F ]�, and by [F ]�, respectively, of F at
level � are

[F ]� = fx 2 U j F (x) � �g ;

and
[F ]� = fx 2 U j F (x) > �g :

4.5. Proposition. Let � be a negation, and let (I ; C) be adjoint, if for any s ; t ; r 2 [0 ; 1],
C(s ; s) = s, and when C(s ; t) � r; min(s ; t) � r, then for any F ;G ;H 2 F(U), and x 2 U ,

F
�hG ;Hi(x) =
_
f� 2 [0 ; 1] j x 2 [F ]� 
 ([G]� ; [H]�)g ;

where
[F ]� 
 ([G]� ; [H]�) = "[G]�([F ]�) \ "[H]�(([F ]

�(�))c) ; � 2 [0 ; 1] :

Proof. It is su�cient to prove that, for any � 2 [0 ; 1] ; [F
�hG ;Hi]� = [F ]� 
 ([G]� ; [H ]�) :
Let � 2 [0 ; 1], for any x 2 U ,

x 2 [F
�hG ;Hi]�
() C(EG(F )(x) ; EH (F

�)(x)) � �
() EG(F )(x) � � & EH(F

�)(x) � �

()
^
y2U

I(G(y � x) ; F (y)) � � &
^
z2U

I(H(z � x) ; F �(z)) � �

() 8 y 2 U ; I(G(y � x) ; F (y)) � � & 8 z 2 U ; I(H(z � x) ; F �(z)) � �
() 8 y 2 U ; Gx(y) � �) F (y) � � & 8 z 2 U ; Hx(z) � �) F �(z) � �
() 8 y 2 U ; y 2 [Gx]� ) y 2 [F ]� & 8 z 2 U ; z 2 [Hx]� ) z 2 [F �]�
() [Gx]� � [F ]� & [Hx]� � [F �]�
() ([G]�)x � [F ]� & ([H ]�)x � [F �]� = ([F ]�(�))c

() x 2 "[G]�([F ]�) & x 2 "[H]�(([F ]
�(�))c)

() x 2 [F ]� 
 ([G]� ; [H ]�)
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Note that there is slight di�erence between [F ]� 
 ([G]� ; [H]�) in Proposition 4.5 and the
binary Hit-or-Miss transformation [F ]�~ ([G]� ; [H]�) = "[G]�([F ]�) \ "[H]�(([F ]�)

c) : This
fact also shows that grey-scale Hit-or-Miss cannot be generated by binary Hit-or-Miss via the
thresholding set (binary image) of a grey-scale image. Even though, grey-scale Hit-or-Miss
still possesses properties similar to that for binary Hit-or-Miss transformation.

4.6. Proposition. Let � be a negation, and let F ;G ;H 2 F(U), h 2 U , then

F
�hG ; ;i = F	CG = EG(F ) ;

F
�h; ;Hi = �(F )	CH = EH(F
�) ;

F �
�hG ;Hi = F
�hH ;Gi ;

Fh
�hG ;Hi = (F
� hG ;Hi)h ;

F
�h[G]h ; [H]hi = (F
�hG ;Hi)�h :

The theory of thinning and skeleton for grey-scale images is to be developed.

5. About Matheron's Representation Theory

Matheron's Representation Theorem plays an important role in the theory of classical math-
ematical morphology.
Matheron's Representation Theorem Every increasing and translation invariant op-

erator � can be represented as the union of erosions "A, e.g.,

� =
[

A2V(�)

"A or �(X) =
[

A2V(�)

"A(X) ; X 2 P(U) ;

where V(�) = fB 2 P(U) j 0 2 �(B)g is the kernel of operator �.
In grey-scale morphology for fuzzy sets, Matheron's representation theorem doesn't work.

Let us give a counter-example.
Assume that U = (�1;1), and that implication I and conjunction C form an adjunction.

For every x 2 U , let F (x) � 1 ; x 2 U , and

G(x) =

(
r < 1 ; x 2 [0; 1] ;

0 ; x =2 [0; 1] ;

then for every x 2 U , and any H 2 F(U),

(F	CH)(x) =
^
y2U

I(H(y � x); F (y)) � 1 :

But, for every x 2 U ,

(F�CG)(x) =
_
y2U

C(G(x� y);
^
z2U

I(G(z � y); F (z)))

=
_
y2U

C(G(x� y); 1) = C(r; 1) < 1 :

That means that fuzzy opening which is increasing and translation invariant operator cannot
be represented as the union of fuzzy erosions.
Let 	 be an increasing, translation invariant operator on F(U), de�ne the kernel of 	 as

V(	) = fF 2 F(U) j 	(F )(0) > 0g ;

and de�ne, t 2 (0 ; 1]
Vt(	) = fF 2 F(U) j 	(F )(0) � tg ;
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then Vt(	) is a decreasing set family with respect to t. That means that

s � t =) Vt(	) � Vs(	) ;

Vt(	) =
\
s�t

Vs(	) :

Furthermore,

V(	) =
[

t2(0 ;1]

Vt(	) :

If � and 	 are two increasing, translation invariant operators, then

� � 	 () Vt(�) � Vt(	) ; t 2 (0 ; 1] ;

where � � 	 means that for any F 2 F(U), �(F ) � 	(F ).

5.1. Proposition. Let (I ; C) be an adjunction, if C(s ; 1) = s for any s 2 [0 ; 1], then the
equivalence relation

s � t () I(s ; t) = 1

holds for any s ; t 2 [0 ; 1]. Furthermore, the equivalence relation

G � F () EG(F )(0) = 1

holds. Meanwhile,

Vt(	) =
[

G2Vt(	)

V1(EG) ;

where

Vt(EG) = fF 2 F(U) j EG(F )(0) � tg

= fF 2 F(U) j I(G(y) ; F (y)) � t ; y 2 Ug ;

and
V1(EG) = fF 2 F(U) j G � Fg :

Proof. For any s ; t 2 [0 ; 1], if s � t, then for any r 2 [0 ; 1], C(s ; r) � C(s ; 1) = s � t. Thus
I(s ; t) =

W
fr 2 [0 ; 1] j C(s ; r) � tg = 1.

On the other hand, if I(s ; t) = 1, then s = C(s ; 1) = C(s ; I(s ; t)) = C(s ;
W
fr 2 [0 ; 1] j C(s ; r) �

tg) =
W
fC(s ; r) j C(s ; r) � tg = t.

The second equivalence relation can be proved straightforwardly.
Now, we prove the third equality.
For any H 2 Vt(	), we have that H 2 V1(EH) = fF 2 F(U) j H � Fg �

S
G2Vt(	)

V1(EG). Thus

Vt(	) �
S
G2Vt(	)

V1(EG).

On the other hand, when H 2 Vt(	), 	(H)(0) � t, By the increasingness of 	, for any F , if

H � F , then 	(F )(0) � 	(H)(0) � t. So, F 2 Vt(	), and fF 2 F(U) j H � Fg � Vt(	). But,

fF 2 F(U) j H � Fg = V1(EH). Therefore,
S
G2Vt(	)

V1(EG) � Vt(	).

5.2. Proposition. For every F 2 F(U), let

�(F ) =
[

G2Vk(	)

EG(F ) ;

then
Vt(�) =

[
G2Vk(	)

Vt(EG)

for any k ; t 2 (0 ; 1]. Moreover, when k = 1,

V1(�) = V1(	) :

Proof. F 2 Vt(�)) () �(F )(0) � t () (
S
G2Vk(	)

EG(F ))(0) � t () there exists a H 2

Vk(	) such that EH(F )(0) � t () F 2 Vt(EH) () F 2
S
G2Vk(	)

EG(F ).

Since V1(	) =
S
G2V1(	)

V1(EG) and V1(�) =
S
G2Vk(	)

V1(EG) =
S
G2V1(	)

V1(EG), the last equal-

ity holds.
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6. Rank Operator

Let U be a �nite universe, F 2 F(U) be a fuzzy subset, and G = f(ai; G(ai)) j i = 1; 2; : : : ; ng
be a �nite fuzzy subset on U . Assume that I and C form an adjunction are implication and
conjunction, respectively, and C(1 ; t) = t for every t 2 [0; 1].
For every x 2 U , let ui = C( �Gx(bi) ; F (bi)) = C(G(ai) ; F (x � ai)) (bi = x � ai) and

vi = I(Gx(bi) ; F (bi)) = I(G(ai) ; F (x+ ai)) (bi = x+ ai).
For every x 2 U , 1 � k � n, we de�ne rank operators

rCG ;k(F )(x) := the k th largest number among u1 ; u2 ; : : : ; un ;

rIG ;k(F )(x) := the k th largest number among v1 ; v2 ; : : : ; vn ;

then rCG ;k(F ) and rIG ;k(F ) are non-increasing with respect to k, k = 1 ; 2 ; : : : ; n. That is

rCG ;n(F ) � rCG ;n�1(F ) � : : : � rCG ;2(F ) � rCG ;1(F ) ;

and
rIG ;n(F ) � rIG ;n�1(F ) � : : : � rIG ;2(F ) � rIG ;1(F ) :

Thus
rCG ;1(F ) =

_
i

ui = DG(F ) = F�CG ;

rIG ;n(F ) =
^
i

vi = EG(F ) = F	CG :

When G is a crisp set, ui = F (x� ai) and vi = F (x+ ai), i = 1 ; 2 ; : : : ; n. So,

rCG ;1(F )(x) =
_
i

ui =
_
i

F (x� ai) = F�CG ;

and
rIG ;n(F )(x) =

^
i

vi =
^
i

F (x+ ai) = F	CG :

Furthermore, if G is symmetrical and 0 2 G, then ui = vi for every i = 1 ; 2 ; : : : ; n. So,
rCG ;k(F ) = rIG ;k(F ) for every k = 1 ; 2 ; : : : ; n.

7. Connectivity and Connected Operators

Let U be a nonempty set, P(U) be the power set of U , and let L be a complete lattice, whose
least element is denoted by ?, and whose greatest element by >. Let LU be the family of all
L-fuzzy subsets (or L-fuzzy sets) on U , that is LU = fF j F : U ! Lg. Any grey-scale image
F on U can be regarded as a L-fuzzy set F 2 LU , whose membership function is written as
F(x) 2 L ; x 2 U . Let LUp denote the family of all L-fuzzy points on U , e.g.,

LUp = ff = fx ; � j x 2 U ; � 2 Lg ;

where f = fx ; � is a L-fuzzy point satisfying fx ; �(y) =

(
� ; y = x

? ; otherwise
for any y 2 U .

1. Every L-fuzzy point in U is a special L-fuzzy set on U , so LUp � LU .

2. LUp is a sup-generating family of LU . Let F 2 LU be a L-fuzzy set, then for any x 2 U ,

F(x) =
_
ffx ; � 2 L

U
p j � � F(x) ; � 2 Lg : (7:1)

3. If L = [0 ; 1], then L-fuzzy sets and L-fuzzy points are, respectively, ordinary fuzzy sets
and fuzzy points.
Let C satisfying LUp � C � LU be a sub-family of L-fuzzy sets on U . If C satis�es
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(1) f = 0 2 C, where 0 means that 0(y) =

(
> ; y = 0

? ; otherwise
for any y 2 U ,

(2) If Fi 2 C, for any i 2 I, and
V
i2I Fi 6= 0, then

W
i2I Fi 2 C,

then C is called a connectivity.
In the sequel of this section, we call a L-fuzzy set brie
y a fuzzy set if there is no confusion

occurred.

7.1 Path-Connectivity
Given a fuzzy set F 2 LU , which denotes a grey-scale image on U . For every fuzzy subset
F � F , which represents a sub-image of image F , and which may be a fuzzy point such as
fx ; � or a fuzzy set generated by means of (7:1).

7.1. De�nition. The degree of connectivity of F at points x ; y 2 U is de�ned as

DF (x ; y) = sup
Lxy

inf
z2Lxy

F (z) ;

where Lxy denotes a path from point x to y.

For any x ; y 2 U we always have,

DF (x ; y) � min(F (x) ; F (y)) :

For a � 2 L, if DF (x ; y) � �, then we say that the fuzzy set (grey-scale image) F is �-
connected from point x to y. If F is �-connected for any two points in U , we say that F
is �-connected in U . In general, for a given � 2 L, an image F is not always �-connected
in the whole area U . However, it may be true in some parts (zones) of U , respectively. Let
P?(F ) = fx 2 U j F (x) = ?g, then for any x ; y 2 P?(F ) ; DF (x ; y) = ?. The area P?(F )
is called the background of image F .
For any F � F , DF is a fuzzy relation from U � U to L. Moreover, it is obvious that

DF is symmetric. For any x ; y ; z 2 U , let min(DF (x ; y) ; DF (y ; z)) = �. If there exists
at least one point p 2 fx ; y ; zg such that p 2 P?(F ), then DF (x ; z) � � = ?. Otherwise,
there exist paths Lxy and Ly z, respectively, such that for any z1 2 Lx y and for any z2 2 Ly z,
F (z1) � �, F (z2) � �. Therefore, for any z3 2 Lx y z, F (z3) � �. So, DF (x ; z) � �, which
means that DF is transitive.
Let IU be an identity relation on U , e.g., for any x 2 U ; IU (x ; x) = >, then the new

relation DF = DF [IU is a fuzzy equivalence relation on U . By DF , given di�erent thresholds
� 2 L, U can be partitioned into di�erent kinds of set-families (partitions of U) P�(F ), called

at zones partitions.

(1) When � = ?, P�(F ) = fUg, which is the coarsest partition of U for any F � F .

(2) When � = >, P�(F ) is the �nest partition of U for any F � F and F 6= ;. At this

time, P�(F ) is the partition of binary image [F ]� = [F ]> =

(
> ; F (x) = > ;

? ; F (x) < > :

(3) When �1 � �2, the partition P�1(F ) is coarser than P�2(F ). That is, for every P�2 2
P�2(F ), there exists a unique set (class) P

0

�1
2 P�1(F ) such that P�2 � P

0

�1
. That means

that every class (set) in P�2(F ) is a subclass (subset) of a certain class in P�1(F ).

(4) F (x) � supf� 2 L j x 2 P� 2 P�(F ) ; P� \ P? = ;g ; x 2 U .

[x 2 P� 2 P�(F ) =) 8 y 2 P�;DF (x ; y) � � =) F (x) � � =) x 2 [F ]� =) P� �
[F ]� =)

W
�P�(x) = supf� j x 2 P�g �

W
�[F ]�(x) = F (x)]
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In the sequel of this section, we always assume that � > ?.
For a given F 2 F and � 2 L, P�(F ) possesses the following properties.

� For any P� 2 P�(F ) =) P� 6= ;.

� For any (P�)1 ; (P�)2 2 P�(F ) =) (P�)1 = (P�)2 or (P�)1 \ (P�)2 = ;.

� U =
S
P�(F ) =

S
fP� j P� 2 P�(F )g.

� For any x 2 P?, there exists one and only one set P� 2 P�(F ) such that P� = fxg.

� P?(F ) =
S
x2P� ;F (x)=?

P� = fx 2 U j x 2 P� 2 P�(F ) ; F (x) = ?g.

Let (P�)?(F ) = fP� 2 P�(F ) j x 2 P� ; F (x) = ?g. For any class P� 2 P�(F ) n (P�)?(F ),
we have for any x ; y 2 P�, DF (x ; y) � �, which means that F is connected in P�, or F is
�-connected in P�, or P� is a singleton fxg such that F (x) > ?. Let


x ; �(F ) = fP� 2 P�(F ) n (P�)?(F ) j F is �-connected in P� ; x 2 P�g ;

then 
x ; �(F ) is a connected component of grey-scale image F at level �.

x ; � possesses the following properties.

1. For any x 2 U , 
x ; �(0) =

(
f0g ; if � > ? ;

U ; if � = ? ;
and P?(0) = U n f0g.

2. Let fy ; � 2 LUp , then 
x ; �(fy ; �) =

8><
>:
fxg = fyg ; if y = x & � � � � ? ;

U ; if y = x & � = � = ? ;

; ; otherwise;

and

P?(fy ; �) = U n fyg.
3. For a �xed � 2 L, and any x ; y 2 U , 
x ; �(F ) = 
y ; �(F ) or 
x ; �(F ) \ 
y ; �(F ) = ;:
4. For a �xed x 2 U and F � F , 
x ; �(F ) is decreasing set function with respect to �.

That means that when �1 � �2 ; 
x ; �2(F ) � 
x ; �1(F ).
5. For a �xed x 2 U and � 2 L, if F1 � F2 � F , then P?(F2) � P?(F1), and 
x ; �(F1) �


x ; �(F2). That is, every set in P�(F1) n (P�)?(F1) is a subset of a set in P�(F2) n (P�)?(F2).
6. Let LU j F = fF j F 2 LU ; F � Fg. Given a x 2 U and a � 2 L n f?g, a mapping

F : LU j F ! L given by
F(F ) = F (
x ; �(F ))

or concretely, for any y 2 U ,

F(F )(y) =

(
� ; y 2 
x ; �(F ) ;

? ; otherwise ;

then it is easy to show that F(�) = �(
x ; �(�)) is an opening. That means that

� F(�) is increasing: F1 � F2 =) F(F1) � F(F2).

� F(�) is idempotent: F2(F ) = F(F ).

� F(�) is anti-extensive: F(F ) � F .

For the opening operator F(�) = �(
x ; �(�)), and F 2 LU , let

fx ; � = F(F) = F(
x ; �(F)) ; x 2 U ; � 2 L ;

then ffx ; �g, together with 0, forms a connectivity of F .
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7.2 Connected Operator

Let F 2 LU , an operator � : LU j F ! LU is called connected (connected operator) if
the partition [P�(�(F )) n (P�)?(�(F ))] [ fP?(�(F ))g is coarser than the partition [P�(F ) n
(P�)?(F )] [ fP?(F )g for F � F and any � 2 L ; � > ?.

7.2. Proposition. An anti-extensive operator � is a connected operator if and only if

D�(F )(x ; y) � DF (x ; y) x ; y 2 U (7:2)

where

DF (x ; y) =

(
> ; x ; y 2 P?(F ) ;

DF (x ; y) ; otherwise .

Proof. If �(F ) � F , then by the �fth result of the above subsection, we have, P?(F ) � P?(�(F )),
and also, every class in P�(�(F )) n (P�)?(�(F )) is a subclass of a certain class in P�(F ) n (P�)?(F )
for any � 2 L ; � > ?.
(: If (7:2) is true, then for any class P� 2 P�(F ), if P� � P?(F ), then P� � P?(�(F )); If

P� 2 P�(F ) n (P�)?(F ) and DF (x ; y) � � for any x ; y 2 P�, then D�(F )(x ; y) � �. So, there exists

a class P
0

� 2 P�(�(F )) n (P�)?(�(F )) such that P� � P
0

�; Otherwise, D�(F )(x ; y) < �. In this case,
P� � P?(�(F )). Therefore, the partition [P�(�(F ))n (P�)?(�(F ))][fP?(�(F ))g is coarser than the
partition [P�(F ) n (P�)?(F )] [ fP?(F )g, which implies that � is connected operator.
): If � is a connected operator, then for any F � F , any � 2 L, and for any class P� 2 [P�(F ) n

(P�)?(F )] [ fP?(F )g, there exists a class P
0

� 2 [P�(�(F )) n (P�)?(�(F ))] [ fP?(�(F ))g, such that

P� � P
0

�.

For any x ; y 2 U , if x ; y 2 P?(F ) then x ; y 2 P?(�(F )). So, D�(F )(x ; y) = 1 � DF (x ; y) = 1.

If x ; y 2 P� 2 P�(F ) n (P�)?(F ), there exists a set P
0

� 2 [P�(�(F )) n (P�)?(�(F ))] [ fP?(�(F ))g

such that P� � P
0

�. If P
0

� � P?(�(F )), then D�(F )(x ; y) = 1 � DF (x ; y). If P
0

� 2 P�(�(F )) n

(P�)?(�(F )), then D�(F )(x ; y) � �. So, D�(F )(x ; y) � DF (x ; y). If for the x and y, one is in

P?(F ) and another is in P� 2 P�(F ) n (P�)?(F ), then DF (x ; y) = ?, and moreover DF (x ; y) = ? �

D�(F )(x ; y). Therefore, (7:2) holds.

In this case, the operator � only changes some connected components into background or
remove some connected components and leave other parts unchanged.
It's natural that the opening F(�) = �(
x ; �(�)) de�ned above is a connected operator.

7.3 Function Connectivity
Given a relation R on L, we say that F satis�es relation R, which means that for any x ; y 2 U ,
(F (x) ; F (y)) 2 R. Let

FR = fF 2 LU j F satis�es relation R on Lg :

Since L is a complete lattice, FR with a certain partial ordering also forms a complete lattice.
For example, if R is an identity relation, then FR is a family of constant functions.
Assuming that C is a (crisp) connectivity class on P(U), F 2 FR, let

GC ; F (y) =

(
F (y) ; y 2 C 2 C

? ; otherwise ;

then the collection fGC ;FgC2C , together with the constant function G � 0 forms a connec-
tivity.
Taking di�erent fuzzy relations R, there are di�erent kinds of connectivities for a given

fuzzy set F .
Let F 2 LU , � 2 L,

X(F ; �) = fx 2 U j F (x) � �g

is the threshold set of F at level �.
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Let C be a connectivity class, F 2 FR, then

GC ; F ; �(y) =

(
� ; y 2 C \X(F ; �)

? ; otherwise
; C 2 C ; � 2 L ;

together with the constant function G � 0 forms a connectivity.
For any x 2 U and � 2 L,


x(X(F ; �)) =
[
fC 2 C j x 2 C ; C � X(F ; �)g

is a connected component of U . Also, it is a partition of set U .
Let

�(X(F ; �)) =
[
fC 2 C j C � 
x(X(F ; �)) ; C \X(F ; �) 6= ;g ;

then X(F ; �)
T
�(X(F ; �)) is coarser than f
x(X(F ; �))g.

8. Fuzzy Morphology

In Section 2, we fuzzi�ed the inclusion relation and the intersection relation of two sets,
respectively. There, we dealt with the arbitrary variant family by means of common inf-
operation and sup-operation, respectively.
Let F ;G 2 F(U), and H(y) = I(G(y) ; F (y)), the degree of fuzzy set G being included in

fuzzy set F is

jG � F j =
^
y2U

I(G(y) ; F (y)) =
^
y2U

H(y) :

In this expression we want to replace the in�mum or ^ by another operator INF or u which
is compatible with the respective conjunction C, e.g.,

jG � F j = INF(H) = uy2UH(y) :

8.1. De�nition. An extended operator INF is a function mapping from F(U) to the unit
interval [0 ; 1] satisfying the following properties:

(1) H 2 F(U), H � 1 () INF(H) = 1.

(2) H 2 F(U), and H(u) = 0 for some u 2 U =) INF(H) = 0.

(3) H1 � H2 =) INF(H1) � INF(H2).

(4) If H(y) =

8><
>:
t1 2 [0 ; 1] ; y = y1

t2 2 [0 ; 1] ; y = y2

1 ; y 2 U n fy1 ; y2g

then INF(H) = C(t1; t2), where C is a given fuzzy conjunction.

(5) For every bijection � : U ! U , INF(�(H)) = INF(H). Here �(H)(y) = H(�(y)).

We may de�ne an operator SUP, or denoted by t which is an extension of sup-operation.

8.2. De�nition. Let � be a negation, INF be an extended operator from a conjunction C.
Let

D(s ; t) = �(C(�(s) ; �(t))) ;

for all s ; t 2 [0 ; 1], then D is a disjunction, and the extension of disjunctionD is the extended
operator SUP.
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8.1 Examples

In this subsection, we give some examples for the extended function operators INF and the
respective conjunctions.
(1) When the universe U is a �nite point set, every associative conjunction C can be

extended to the extended operator INF.
(2) The inf-operation is a particular function operator INF, and the respective conjunction

C is the min-operation.
(3) For every F 2 F(U), de�ne

INF(F ) =
Y
x2U

S(F (x)=2) ;

where the function S is de�ned as

S(x) = (�x lnx� (1� x) ln(1� x))= ln 2 :

The respective conjunction is
C(s ; t) = S(s=2)S(t=2) :

When the universe U is �nite, this de�nition of INF makes sense.
(4) Let � : [0 ; 1] ! R+ = [0 ;+1] be a decreasing and continuous mapping satisfying

�(1) = 0 ; �(0) = +1.
If U is a continuous space: U = IR, de�ne INF as follows

INF(F ) = ��1(

Z
U

�(F (y)) d�) :

If U is discrete, e.g., U = Z, de�ne INF as follows

INF(F ) = ��1(

+1X
y=�1

�(F (y))) :

Meanwhile, the respective conjunction and implication are respectively

C(s ; t) = ��1(�(s) + �(t)) ;

I(s ; t) =

(
1 ; s � t ;

��1(�(t)� �(s)) ; s > t :

At this time, for any F ;G 2 F(U),

jF � F j = uy2UI(F (y) ; F (y)) = 1 ;

and if conjunction C satis�es the condition C � min, and (F\G)(y) = C(F (y) ; G(y)) ; y 2 U ,
then

jF \G � F j = uy2UI(C(F (y) ; G(y)) ; F (y)) = 1 :

From these examples, we know that the extended operator INF should be the extension of
a conjunction C.

8.2 Commutative and Associative Conjunction

Assume that INF or u is an extension of a certain conjunction C, and that SUP or t is the
dual operator of INF or u.

8.3. De�nition. Let u be an extension of conjunction C such that for any mapping H :
U2 ! [0 ; 1],

uy2U ux2U H(x ; y) = ux2U uy2U H(x ; y) ;

then we said that u is commutative and associative.
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If u is commutative and associative, then for any family of fuzzy sets fFvgv2U � F(U), we
have

(uv2UFv)(y) = uy2UH(y ; v) = uv2UFv(y) :

8.4. Proposition. Let (I ; C) be an adjunction, and C(a ; 1) = a for any a 2 [0 ; 1], then

jF � F j = 1 ;

and
jF1 � F2j = 1 () F1 � F2 :

for any F ; F1 ; F2 2 F(U).

Proof. Since for any a 2 [0 ; 1], C(a ; 1) = a, for any t 2 [0 ; 1],

I(t ; t) =
_
fr 2 [0 ; 1] j C(t ; r) � tg = 1 :

Therefore, jF � F j = uy2UI(F (y) ; F (y)) = 1:
For the proof of the second assertion,
(: If a � b, then I(a ; b) =

W
fr 2 [0 ; 1] j C(a ; r) � bg =

W
fr 2 [0 ; 1] j C(a ; r) � C(a ; 1) �

bg = 1. Therefore, when F1 � F2, for any y 2 U , I(F1(y) ; F2(y)) = 1. Hence, jF1 � F2j =
uy2UI(F1(y) ; F2(y)) = 1.

): By the condition of jF1 � F2j = 1, we have for any y 2 U , I(F1(y) ; F2(y)) = 1. So, for any y 2 U ,

F1(y) = C(F1(y) ; 1) = C(F1(y) ; I(F1(y) ; F2(y))) = C(F1(y) ;
W
fr 2 [0 ; 1] j C(F1(y) ; r) � F2(y)g) =W

C(F1(y); fr 2 [0 ; 1] j C(F1(y) ; r) � F2(y)g) =
W
fC(F1(y) ; r) j C(F1(y) ; r) � F2(y)g = F2(y).

8.5. De�nition. Let C be a conjunction and D be its dual disjunction, if for any s ; t1 ; t2 2
[0 ; 1],

D(s ; C(t1 ; t2)) = C(D(s ; t1) ;D(s ; t2)) ;

and
C(s ;D(t1 ; t2)) = D(C(s ; t1) ; C(s ; t2)) ;

then C and D are called distributive.

8.6. Proposition. Let implication I and conjunction C form an adjunction. If C and D
can be distributive, then for arbitrary index set J ,

C(s ;tj2Jtj) = tj2JC(s ; tj) and I(s ;uj2J tj) = uj2JI(s ; tj) ; (8:1)

hold for any s 2 [0 ; 1] and any family ftjgj2J � [0 ; 1].

If C and D are distributive, and C � min, then (I ; C) is an adjunction if and only if (8:1)
holds.

8.3 Fuzzy Adjunction

Let U and V be two nonempty sets, F(U) and F(V ) be the families of all fuzzy subsets on
U and V , respectively.

8.7. De�nition. Let E be a mapping from F(U) to F(V ), and D be a mapping from F(V )
to F(U). If

jD(G) � F j = jG � E(F )j

for any F 2 F(U) and G 2 F(V ), we call the pair (E ;D) a fuzzy adjunction between F(U)
and F(V ). If U = V , we call the pair (E ;D) a fuzzy adjunction on F(U).



8. Fuzzy Morphology 21

8.8. De�nition. An operator E : F(U)! F(V ) is called a fuzzy erosion if

E(uv2UFv) = uv2UE(Fv)

for every family fFvgv2U � F(U). An operator D : F(V ) ! F(U) is called a fuzzy dilation
if

D(tv2UFv) = tv2UD(Fv)

for every family fFvgv2U 2 F(V ).

In the sequel of this section, we assume that U = V .

8.9. Proposition. Let (I ; C) be an adjunction, and let the extended conjunction u be com-
mutative and associative, C and D be distributive, then

EG(F )(x) = uy2UI(G(y � x) ; F (y))

is an erosion, and
DG(F )(x) = ty2UC(G(x� y) ; F (y))

is a dilation for any G 2 F(U) and x 2 U .

Proof. Let fFvgv2U � F(U) be a family of fuzzy sets, then for any G 2 F(U), and any x 2 U ,

uv2U I(G(y � x) ;uv2UFv(y)) = uy2U uv2U I(G(y � x) ; Fv(y))

= uv2U uy2U I(G(y � x) ; Fv(y)) :

Therefore, EG(F ) is an erosion.

Similar proof to the dilation.

8.10. Proposition. Let I be an implication and C be a conjunction, and C � min, then
(I ; C) is adjoint if and only if (EG ;DG) is a fuzzy adjunction for any G 2 F(U).

Proof. If C � min, then D � max.
): For any a ; s ; t 2 [0 ; 1], we have C(a ; t) � s () t � I(a ; s). So for any F ;G ;H 2 F(U),

DG(F ) � H () 8 x 2 U ; DG(F )(x) � H(x)

() 8 x 2 U ;ty2UC(G(x � y) ; F (y)) � H(x)

() 8 x 2 U ; 8 y 2 U ; C(G(x � y) ; F (y)) � H(x)

() 8 x 2 U ; 8 y 2 U ; F (y) � I(G(x� y) ; H(x))

() 8 y 2 U ; F (y) � ux2UI(G(x � y) ; H(x)) = EG(H)(y)

() F � EG(H) :

(: Given a ; s ; t 2 [0 ; 1], de�ne the constant functions G � a ; F � s ; andH � t. Then DG(F )(x) =

ty2UC(G(x�y) ; F (y)) = C(a ; s) and EG(H)(x) = uy2UI(G(y�x) ; H(y)) = I(a ; t), for every x 2 U .

Therefore, C(a ; s) � t () DG(F ) � H () F � EG(H) () s � I(a ; t).

8.11. Proposition. Let (I ; C) be an adjunction, C and I be exchangeable, C(a ; 1) = a for
a 2 [0 ; 1], and the extended conjunction u be commutative and associative, then E is an
erosion. Furthermore, if C is continuous from the left with respect to the �rst argument, then
D is a dilation.
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Proof. For any family fFvgv2U � F(U), and G 2 F(U),

jG � E(uv2UFv)j = jD(G) � uv2UFvj

= uu2U I(D(G)(u) ;uv2UFv(u))

= uu2U uv2U I(D(G)(u) ; Fv(u))

= uv2U uu2U I(D(G)(u) ; Fv(u))

= uv2U jD(G) � Fvj

= uv2U jG � E(Fv)j

= uv2U uu2U I(G(u) ; E(Fv)(u))

= uu2U uv2U I(G(u) ; E(Fv)(u))

= uu2U I(G(u) ;uv2UE(Fv)(u))

= jG � uv2UE(Fv)j :

Taking G = E(uv2UFv), we have

jE(uv2UFv) � uv2UE(Fv)j = 1 ;

and taking G = uv2UE(Fv), we have

j uv2U E(Fv) � E(uv2UFv)j = 1 :

By Proposition 8.4, we have that

E(uv2UFv) = uv2UE(Fv) :

The second assertion van be proved analogously.

8.12. Proposition. Let (E ;D) be an adjunction, C(a ; 1) = a for a 2 [0 ; 1], and the extended
conjunction u be commutative and associative, then for any F ;G 2 F(U),

jDE(F ) � F j = 1 and jG � ED(G)j = 1 :

EDE = E and DED = D :

Proof. Since (E ;D) is an adjunction, then for any F ;G 2 F(U), jD(G) � F j = jG � E(F )j. Taking
G = E(F ) we have

jDE(F ) � F j = jE(F ) � E(F )j = 1 :

On the other hand, taking F = D(G) yields

jG � ED(G)j = jD(G) � D(G)j = 1 :

Similarly, we have that

jE(F ) � EDE(F )j = 1 and jDED(G) � D(G)j = 1 :

By the increasingness of E and D, we obtain that

EDE(F ) � E(F ) and D(G) � DED(G) :

Combination of these results yields

EDE = E and DED = D :
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Figure 1: Original 256 � 256 grey-scale image.

9. Experimental Results

In this section we present some experiments showing the di�erences between basic morpholog-
ical operators using di�erent conjunctions. We compare the outcomes of the operators based
on fuzzy logic with the corresponding 
at operators using a crisp structuring element. Our
input image is depicted in Fig. 1. The structuring function G used for the `fuzzy' operators
is represented by the matrix

G =
1

20
�

0
BBBBBBBB@

0 2 4 5 4 2 0
2 6 9 10 9 6 2
4 9 13 15 13 9 4
5 10 15 20 15 10 5
4 9 13 15 13 9 4
2 6 9 10 9 6 2
0 2 4 5 4 2 0

1
CCCCCCCCA

Observe that this matrix approximates a cone in the sense that an entry is approximately
given by 1 � 1

4(i
2 + j2)

1

2 , where (i; j) are the coordinates of the entry relative to the center
of the matrix. This approximation is based on the 5-7-11 chamfer distance [7]. The binary
structuring element is obtained by thresholding the (fuzzy) structuring function at level 0.5,
and is given by

A =

0
BBBB@
� � 1 � �
� 1 1 1 �
1 1 1 1 1
� 1 1 1 �
� � 1 � �

1
CCCCA

In Fig. 2 we show the dilation, erosion, closing and opening for the 
at structuring element A,
as well as the various conjunctions. The images in columns represent dilation, erosion, closing
and opening, respectively. The �rst row is the images using 
at structuring element A. The
last �ve rows stand for the operators using the structuring function G in combination with
the G�odel-Brouwer conjunction, the Lukasiewicz conjunction, the Kleene-Dienes conjunction,
the Reichenbach conjunction and the Hamacher conjunction, respectively.
In Fig. 3 and in Fig. 4 we show the di�erences between dilation, erosion, closing , opening,

and the original image, respectively. The interpretation of the rows is same as that in Fig. 2,
the �rst column stands for the dilation minus erosion, the second is the dilation minus original,
and the third is the original minus erosion in Fig. 3, and in Fig. 4, the columns represent the
closing minus opening, the closing minus original, and the original minus opening.
The fuzzy nature of the operators is clearly re
ected by the images, especially close to

the edges. Furthermore, there are various di�erences (again near the edges) among these
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operators, indicating that the particular choice of the conjunction does have a serious impact
on the results.

10. Conclusion

In this report, within the framework of complete lattices and fuzzy logic, We have investigated
the general theory of grey-scale morphology, which includes grey-scale granulometry, hit-or-
miss operator for grey-scale images, rank operator, and connectivity and connected operators.
We also gave an example to show that the Matheron's representation theory doesn't hold for
general grey-scale images and presented some results related to the representation theory.
Many results of this report have to be considered as a hint and the beginning towards

a general theory of grey-scale morphology using concepts from fuzzy logic. Especially, the
content in Section 8 is very di�erent from the existing approaches to fuzzy morphology.
We believe that the rich theory will be founded through the �rst step work in grey-scale
morphology and fuzzy morphology.
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dilation for flat SE erosion for flat SE closing for flat SE opening for flat SE

dilation for GBR erosion for GBR closing for GBR opening for GBR

dilation for LUK erosion for LUK closing for LUK opening for LUK

dilation for KLD erosion for KLD closing for KLD opening for KLD

dilation for REI erosion for REI closing for REI opening for REI

dilation for HAM erosion for HAM closing for HAM opening for HAM

Figure 2: Left to right: dilation, erosion, closing and opening. Top to bottom: 
at op-
erator, fuzzy operator using G�odel-Brouwer conjunction, fuzzy operator using Lukasiewicz
conjunction, fuzzy operator using Kleene-Dienes conjunction, fuzzy operator using Reichen-
bach conjunction, and fuzzy operator using Hamacher conjunction.
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dilation−erosion for flat SE dilation−original for flat SE original−erosion for flat SE

dilation−erosion for GBR dilation−original for GBR original−erosion for GBR

dilation−erosion for LUK dilation−original for LUK original−erosion for GBR

dilation−erosion for KLD dilation−original for KLD original−erosion for KLD

dilation−erosion for REI dilation−original for REI original−erosion for REI

dilation−erosion for HAM dilation−original for HAM original−erosion for HAM

Figure 3: Left to right: dilation minus erosion, dilation minus original, and original minus
erosion. Top to bottom: Same as in Fig. 1.
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closing−opening for flat SE closing−original for flat SE original−opening for flat SE

closing−opening for GBR closing−original for GBR original−opening for GBR

closing−opening for LUK closing−original for LUK original−opening for LUK

closing−opening for KLD closing−original for KLD original−opening for KLD

closing−opening for REI closing−original for REI original−opening for REI

closing−opening for HAM closing−original for HAM original−opening for HAM

Figure 4: Left to right: Closing minus opening, closing minus original, and original minus
opening. Top to bottom: Same as in Fig. 1.



28

References

1. Bloch, I., and Maitre, H. Fuzzy mathematical morphology. Annals of Mathematics
and Arti�cial Intelligence, 10 (1994), 55{84.

2. Bloch, I., and Maitre, H. Fuzzy mathematical morphologies: a comparative study.
Pattern Recognition 28, 9 (1995), 1341{1387.

3. De Baets, B. Fuzzy morphology: A logical approach. In Uncertainty Analysis in
Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, B. M.
Ayyub and M. M. Gupta, Eds. Kluwer Academic Publishers, Norwell, 1997, pp. 53{67.

4. De Baets, B., and Kerre, E. The fundamentals of fuzzy mathematical morphology
part 1: basic concepts. International Journal of General Systems 23 (1995), 155{171.

5. Deng, T.-Q., and Heijmans, H. J. A. M. Grey-scale morphology based on fuzzy
logic. Report PNA-R0012, CWI, 2000.

6. Goetcherian, V. From binary to grey tone image processing using fuzzy logic concepts.
Pattern Recognition 12 (1980), 7{15.

7. Heijmans, H. J. A. M. Morphological Image Operators. Academic Press, Boston, 1994.

8. Kerre, E., and Nachtegael, M. Fuzzy Techniques in Image Processing : Techniques
and Applications. Studies in Fuzziness and Soft Computing, Vol. 52. Physica Verlag,
2000.

9. Klir, G. J., and Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice Hall, Upper Saddle River, 1995.

10. Matheron, G. Random Sets and Integral Geometry. John Wiley & Sons, New York,
1975.

11. Nachtegael, M., and Kerre, E. Connections between binary, grey-scale and fuzzy
mathematical morphology. Fuzzy Sets and Systems (submitted).

12. R. Kruse, J. G., and Klawonn, F. Foundations of Fuzzy Systems. John Wiley &
Sons, England, 1994.

13. Serra, J. Image Analysis and Mathematical Morphology. Academic Press, London,
1982.

14. Sinha, D., and Dougherty, E. R. Fuzzy mathematical morphology. Journal of Visual
Communication and Image Representation 3, 3 (1992), 286{302.

15. Sinha, D., and Dougherty, E. R. Fuzzi�cation of set inclusion: theory and applica-
tions. Fuzzy Sets and Systems, 55 (1993), 15{42.

16. Soille, P. Morphological Image Analysis. Springer-Verlag, Berlin, 1999.

17. Zimmerman, H. J. Fuzzy set theory and its applications. Academic Press, Boston, 1991.


