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We study a globally gated polling system with a dormant server, which makes 
a halt at its home base when there are no customers present in the system. We 
derive an explicit expression for the cycle time distribution as well as for the 
waiting-time distribution at each of the queues. As a justification of the dor
mant server policy, we show the waiting time at each of the queues to be smaller 
(in the increasing-convex-ordering sense) than in the ordinary nondormant server 
case. 

1. INTRODUCTION 

A polling system basically consists of several queues attended by a single com
mon server. The service discipline prescribes which customers are to be served 
during a visit to a queue. In other words, it dictates to the server when to move 
from one queue to another. The server routing dictates to the server from which 
queue to which queue to move. Moving from one queue to another typically 
requires a nonzero switch-over time. 

Polling systems arise quite naturally in modeling situations in which several 
users compete for service from a single common server. Thus, polling systems 
have found a variety of applications in the areas of computer systems, telecom
munication networks, manufacturing, and maintenance (cf. Takagi [19,20], 
Levy and Sidi [15]). Motivated by the variety of applications, numerous studies 
have been devoted to the analysis of polling systems (cf. Takagi [19,20]). 
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In the present paper, we study a globally gated polling system with a dor
mant server, which makes a halt at its home base when there are no customers 
present in the system. In the polling literature, the server is usually assumed 
never to idle- in other words, to be switching when not working. In particular, 
the server is assumed to be switching when there are no customers present in the 
system. As a rare exception, Eisenberg [9) considered a two-queue model with 
either alternating priority (the exhaustive service discipline at both queues) or 
strict priority, in which the server remains idling at a queue when there are no 
customers present in the system. Eisenberg [10) studied a model with an arbi
trary number of queues and the exhaustive service discipline at all queues, in 
which the server does not idle. In a recent study [11], Eisenberg showed, how
ever, how an adapted version of the solution method in his earlier work [10) 
may be used to analyze a model in which the server makes a halt at some of 
the queues when the system is empty. The outline of the solution method in 
Eisenberg [11) may also be used to treat a similar model with the gated service 
discipline. 

Gersht and Marbukh [12) considered a two-queue model with two types of 
disciplines for switching from one queue to another. For both types of disci
plines, they showed that for some region of the system parameters the discipline 
that minimizes the mean waiting cost inserts forced idle periods. Liu, Nain, and 
Towsley [17) identified polling policies, allowing idling as a possible action, that 
stochastically minimize the total amount of work in the system at an arbitrary 
epoch. They found that optimal policies are exhaustive, greedy, and also, in 
symmetrical systems, patient; i.e., the server should neither switch nor idle when 
at a nonempty queue, and in symmetrical systems the server should remain 
idling at a queue when the entire system is empty. 

Gupta and Srinivasan [13] derived explicit expressions for the waiting-time 
distribution in a model similar to that in Eisenberg [11) by using an approach 
based on the concept of "descendant sets." They showed that while a patient 
server policy is generally better in the sense of a reduction of the amount of 
work in the system, cases do exist where a roving server strategy is better. Blanc 
and Van der Mei [3] used the power-series algorithm to analyze the performance 
of a system in which the server may be allowed to make a halt at a queue when 
the entire system is empty. They found that the performance may improve con
siderably by allowing the server to make a halt at a queue, especially in light 
traffic. Borst [5] derived a pseudo-conservation Jaw for a general polling model 
with a dormant server and used it to compare the dormant and the nondormant 
server case. Furthermore, a heuristic criterium is proposed in Borst [5] for select
ing the queues at which the server should make a halt so as to minimize the 
mean total amount of work in the system. 

One reason why in the polling literature the server is usually assumed never 
to idle may be that the option of idling in general slightly complicates the oper
ation of the system. If at all technically feasible, some mechanism is needed to 
control the server and to keep track of the customers present in the system. Con
sequently, the option of idling in general also slightly complicates the mathemat-
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ical analysis of the system. Another reason may be that the option of idling will 
have the biggest impact in light traffic, when the performance will be satisfac
tory anyhow. 

Quite often, however, there are very sound reasons for letting the server 
stop switching when no customers are present in the system. In many situations 
some mechanism to control the server and to keep track of the customers 
present in the system is needed anyhow. The option of idling then arises quite 
naturally. In manufacturing and maintenance environments, e.g., one usually 
requires already some kind of supporting system to schedule the jobs. In such 
situations it makes sense to let the server make a halt at a queue when the entire 
system is empty rather than to let the server needlessly circle around. One option 
is then allowing the server to make a halt at all of the queues, i.e., to stop 
switching as soon as the entire system is empty. Another option is allowing the 
server only to make a halt at some of the queues (thus, possibly forcing the 
server to keep switching for a while), e.g., at a queue that functions as home 
base or at the queue where a new customer is most likely to arrive. The latter 
option may be recognized in the dynamic control of traffic lights. When there 
are no vehicles waiting, typically the main stream is given passage, until a wait
ing vehicle of a crossing stream is detected. 

In many situations there are, moreover, significant cost involved in switch
ing. In manufacturing and maintenance applications, the switch-over usually 
represents the change-over from one type of jobs to another, which may involve 
labor cost, material cost, or transportation cost. In such situations a potential 
saving in switching cost is an additional reason for letting the server stop switch
ing when no customers are present in the system. 

The option of idling especially arises quite naturally in case of the globally 
gated service discipline, recently introduced by Boxma, Levy, and Yechiali [6]. 
The globally gated service discipline operates as follows. Suppose the server 
arrives at its home base. Then, all the customers in the system are marked 
instantaneously and the server immediately starts a tour along the queues. Dur
ing this tour only the marked customers are served. The service of customers 
that meanwhile arrive to the system is deferred until the next tour along the 
queues. Boxma, Weststrate, and Yechiali [7] proposed the globally gated service 
discipline to be used by a repair crew, in charge of the maintenance activities 
at several installations. As indicated in Boxma et al. [7], under the globally gated 
service discipline it does not make sense to start a tour along the queues when 
there are no customers present in the system. In the present paper, we therefore 
consider a globally gated polling system with a dormant server, which makes a 
halt at its home base when there are no customers present in the system. The 
globally gated service discipline then operates as follows. Suppose again the 
server arrives at its home base. If there are customers present in the system, they 
are all marked instantaneously and the server starts a tour along the queues, act
ing as described earlier. If no customers are present in the system, the server 
remains idling at its home base, awaiting a new customer to arrive at one of the 
queues. As soon as a new customer arrives, it is marked instantaneously and 
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the server starts a tour along the queues. During this tour only the newly arrived 
customer is served. The service of customers that meanwhile arrive to the sys
tem is again deferred until the next tour along the queues. 

The remainder of this paper is organized as follows. In Section 2 we pre
sent a detailed model description. We derive an explicit expression for the 
Laplace-Stieltjes transform (LST) of the cycle time distribution in Section 3. In 
Section 4 we obtain the LST of the waiting-time distribution at each of the 
queues. As a justification of the dormant server policy, we show the waiting 
time at each of the queues to be smaller (in the increasing-convex-ordering sense) 
than in the ordinary nondormant server case. In Section 5 we make some con
cluding remarks. 

2. MODEL DESCRIPTION 

The model under consideration consists of n queues, Q1, ••• , Q11 , each of infi
nite capacity, attended by a single common server S. Customers arrive at the 
various queues according to independent Poisson processes. Customers arriv
ing at Q; will also be referred to as type-i customers. Denote by A; the arrival 
rate at Q;, i = 1, ... ,n. The total arrival rate is A:= ~7= 1 A;. Type-i customers 
require service times B;, having distribution B; ( ·) with LST (3i ( ·), first moment 
(3;, and second moment (3/2l, i = I, ... , n. All service times are assumed to be 
independent. Define the traffic intensity at Q; as Pi:= A;(3;, i =I, ... ,n. The 
total traffic intensity is p := ~7= 1 Pi· Evidently, p < I is a necessary condition 
for stability. Throughout the paper p < I is assumed to hold. 

The server visits the queues in strictly cyclic order, Q 1 , ••• , Q,,. Moving 
from Qi to Q;+ 1 , where n + 1 is to be understood as I, the server experiences 
a switch-over time Si, having distribution Si ( ·) with LST u; ( ·), first moment Sn 

and second moment s;'2l, i = 1, ... , n. All switch-over times are assumed to be 
independent. The total switch-over time during a cycle has distribution S ( ·) with 
LST u ( ·) : = II;'= 1 u; ( ·), first moment s := ~ 7= 1 S;, and second moment s (2) : = 
,,II "" "" ( (l) 2 ) Th . 1 . d . h L.Ji=l LiJ=l s;s1 + L..Ji=I S; - S; • e arnva, service, an sw1tc -over pro-
cesses are assumed to be mutually independent. 

The globally gated service discipline operates as follows. Suppose the server 
is just about to visit Q1• If there are customers present in the system, they are 
all marked instantaneously and the server immediately starts visiting Q 1, ••• , Q,,. 
During the coming cycle only the marked customers are served. At each queue 
customers are served in order of arrival. The service of customers that meanwhile 
arrive to the system is deferred until the next cycle. If there are no customers 
present in the system, the server remains idling at its home base Q1 , awaiting 
a new customer to arrive at one of the queues. As soon as a new customer 
arrives, it is marked instantaneously and the server starts visiting Q 1, ••• , Qn. 
During the coming cycle, only the newly arrived customer is served. Again, cus
tomers that meanwhile arrive to the system are served during the next cycle. 
During the cycle the server is not allowed to make a halt at a queue when the 
completion of a service leaves the system empty. In other words, the server is 
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only allowed to make a halt when the system is empty at the start of a visit to 
Q1 • In Eisenberg [11] the stopping convention that we adopt here is referred to 
as the Continue-Cycle-to-Home-Base rule, as opposed to the Jump-Directly-to
Home-Base rule, where the server, on emptying the system, executes a single 
change-over that takes it directly to its home base. Analogously, the starting 
convention that we apply here is referred to as the Resume-Cycle rule, as 
opposed to the Jump-Directly-to-New-Arrival rule, where the server executes a 
single change-over that takes it directly to the queue receiving the new arrival. 

Remark 2.1: For n = l, the model under consideration reduces to a gated vaca
tion model with single vacations, whereas the model in the nondormant server 
case corresponds to a gated vacation model with multiple vacations (cf. Takagi 
[21, pp. 205-213]). The latter model has been analyzed in detail in Takine and 
Hasegawa [22]. 

3. THE CYCLE TIME 

In this section we relate the cycle time distribution to the joint queue length dis
tribution at the start of the cycle and at the start of the next cycle. Thus, we 
derive a functional equation for the probability generating function (p.g.f.) of 
the joint queue length distribution at the start of a cycle and for the LST of the 
cycle time distribution. By iteratively solving the latter functional equation, we 
obtain an explicit expression for the LST of the cycle time distribution. The 
cycle time distribution will play a crucial role in the derivation of the waiting
time distribution at each of the queues in the next section. The approach used 
here is similar to the approach in Boxma et al. [6] for the ordinary nondormant 
server case. We first introduce some notation. Denote by c(ml the length of 

the mth cycle, i.e., the time from the start of the mth visit to Q 1 to the start of 
the (m + l)th visit tc Q 1 , m = 1,2, .... Denote by I(m> the length of the mth 

idling period, i.e., the mth idling time at Q1 (possibly zero), m = 1,2, .... 
Denote by B(ml the length of the mth restricted cycle, i.e., the mth cycle time 
minus the m th idling time, m = 1,2, .... Denote by C, I, and B stochastic vari
ables with as distribution the stationary distribution form--> 00 of c(m), l(!n)' 

and B(m), respectively. Let a:: ( f, w) := E(e-n-ws) for Res?: 0, Rew?: 0. Let 

')'(w) := E(e-w8 ) for Rew?:: 0. Denote by (Xi, ... ,Xn) a vector of stochastic 

variables with as distribution the stationary joint queue length distribution at the 

start of a cycle. Let Uz) := E(z 1x, ... z"!:"") for z = (Zi, ... ,Zn) with lz;J ::5 I, 
i =I, ... ,n. Define E(z) := L:7= 1 J..;(l - Z;) for z = (Z 1, ••. ,Zn) with lz;I ::5 I, 

i = I, ... ,n. 
Observing that ~ (0, ... ,0) is the probability that no customers are present 

at the start of a cycle, we find 

[ ( ;>.. n 'A; ) ] 
a::(f,w) = a(w) ~({3 1 (w), ... ,/311 (w)) - I - ;\ + S ;~ ~ /3;(w) ~(0, ... ,0) 

(3.1) 
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and 

~(z) = -y(E(z)). (3.2) 

For a detailed derivation of Eqs. (3 .1) and (3 .2), we refer to Borst [4]. From 
Eqs. (3.1) and (3.2), 

a(s,w)=a(w)['YCtAi(l-/3;(w)))--y(A)(l-A~s~ ~ fJ;(w))] (3.3) 

and 

~(z) =a(E(z)) [ ~(,61 (E(z)), ... ,/3n(E(z)))-( 1-~ ~ {J;(E(z))) ~(O, ... ,o)J. 
(3.4) 

Remark 3.1: The evolution of the joint queue length at the start of a cycle, 
(X1> ... ,Xn), in fact constitutes a multi-type branching process with state
dependent immigration (cf. Resing [18]). The crucial observation is that the 
globally gated service discipline satisfies the following property: If there are k; 
customers present at Q; at the start of a cycle, then during the course of the 
cycle each of these k; customers will be "replaced" in an independent and iden
tically distributed manner by a random population having p.g.f. {J;(E(Z)). 
Adopting the terminology of the theory of multi-type branching processes, the 
offspring generating functions are given by f;(Z) = ,6;(E(z)), i = 1, ... ,n, the 
immigration generating function for the nonzero states is given by g(z) = a(E (z)), 
and the immigration generating function for the zero state is given by g(z)h(z) 
with h(z) = 2.:7= 1 (A;IA)f;(z). From the theory of multi-type branching pro
cesses, we have 

~(z) = g(z) [~(f1 (z), ... ,f,,(z)) - (l - h(z))~(O, ... ,O)], (3.5) 

which agrees with Eq. (3.4). 
Next we solve functional Eq. (3.3). We first derive some preliminary results 

from Eq. (3.3). Noting that E(e-11) = a(s,O) for Res~ 0 and E(e-w8 ) = 
a(O,w) for Rew~ 0, 

EC= s + -y(A)/A, 
1-p 

EB = s + p-y(A)/A' 
1 - p 

El= -y(A) 
'A , 

s< 2l + (1ps + ± A;/3?l)Ec 
EB2 = 1=1 

1 - p2 

Remark 3.2: We may obtain EI also directly by observing that 

l 
E(IJI>O}=~, 

(3.6) 

(3.7) 

(3.8) 
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while 

Pr{ I> OJ= Pr[(X 1, ••• ,Xn) = (0, ... ,O)J = f"" e->-1d Pr[B < t) =')'(A). 
1=0 

(3.9) 

Also, we may obtain EC directly from El by observing that EC= (s +EI)/ 
(l-p). 

We now solve functional Eq. (3.3). Obviously, it suffices to find an expres

sion for ')'(w) for Rew~ 0, as substituting such an expression into Eq. (3.3) 
yields an expression for ex ( r, w). Define 8( w) := 2::7= I Ai (1 - {3i ( w)) for Rew~ 0. 
Putting t = 0 in Eq. (3.3), 

[ 
/'(A) ] 'Y(w) = a(w) 'Y(o(w)) - -A- o(w) , Rew~ 0. (3.10) 

Define recursively 

o<0>(w) = w, Rew ~ 0, 

o<k>(w) = o(o<k-I>(w)), Rew~ O,k = 1,2, .... 

Iterating Eq. (3.10) 

M (A) M k 

')'(w) =II a((J<k>(w))')'(o<M+I>(w)) - 'Y __ I; o<k+I>(w) II a(o<!)(w)), (3.U) 
k=O A k=O 1=0 

for Rew ~ 0, M = 1,2, .... 
Letting M-+ oo in Eq. (3.11), putting w =A. to obtain ')'(A), we find 

00 II a(o(k)(A)) 

'Y(w) =II a(o<k>(w)) - °" k=o k 

k=O A+ I; o(k+l)(A) II a(o(/)(A)) 
k=O 1=0 

00 k 

x I; 0<k+ 1>cw> II ac0u 1cw>>· (3.12) 
k=O 1=0 

For a detailed proof of the convergence of Eq. (3 .12), we refer to Appendix A 

of Borst [4]. Substituting Eq. (3.12) into Eq. (3.3) yields an expression for 

ex (t, w). 

4. THE WAITING TIME 

In the previous section, we obtained an explicit expression for the LST of the 

cycle time distribution. In this section we express the waiting-time distribution 

at each of the queues in terms of the latter LST. 
We first introduce some notation. Denote by Wi the waiting time of an 

arbitrary type-i customer, i = 1, ... ,n. Let wi(w) := E(e-"'w') for Rew~ 0, 
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i =I, ... , n. For any nonnegative integer-valued stochastic variable N, denote by 
V;(N) the total service time of N type-i customers, i = l, ... , n, so E(e-wV,<N)) = 
E((3;(w)N), Rew :2:: 0, i = 1, ... , n. For any nonnegative real-valued stochastic 
variable T, denote by A; (T) the number of type-i customers arriving during a 
period of length T, i = 1, ... ,n, so E(yAi<Tl) = E(e-"10-y>T), IYI :5 1, i = 
l, ... , n. Denote by B; and S; stochastic variables having distribution B; ( ·) and 
S; ( ·), respectively. 

We now analyze the distribution of the waiting time of an arbitrary type-i 
customer, by distinguishing whether the customer arrives during a restricted 
cycle or during an idling period (thus terminating the idling period immediately 
by initiating a new restricted cycle), in other words, whether the customer sees 
the server working/switching or idling upon arrival. The waiting time W~8) of 
an arbitrary type-i customer that arrives during a restricted cycle is composed 
of the following: 

So 

1. the residual lifetime BR of the restricted cycle in which it arrives; 

ii. the total service time of all customers arriving at Q1, •.• , Q;_ 1 during 
the same restricted cycle; 

iii. the total service time of all customers arriving at Q; during the past 
lifetime Bp of the restricted cycle in which it arrives; and 

1v. the total switch-over time experienced by the server when moving from 
Q1 to Q;; i.e., 

i-1 i-1 

w;s) 1= BR+ ~ V1 (A1(Bp +BR))+ V;(A;(Bp)) + ~ s1, 
)=I }=I 

From Cohen [8, p. 113], 

I 'Y(wR) - "((wp) E(e-wpBp-wRBR) = _ 
EB Wp- WR 

i=l, ... ,n. (4.1) 

Rewp2:::0, RewR:2::0. 

i-1 
w(BJ 

E(e-"'" 1 ) =II <J1 (w) 
J=l 

x d1P. 1R Pr[Bp< Ip, BR< tR I 

i-l 'Y( ± A.;O-f3;(w)))-'Y('~ A.1(l -f3;(w))+w) 
- II ( ) 1 J=l j=I 
- (J· (;) - -------------------

}=! 1 EB w-A.;(l-f3;(w)) 

i= 1, ... ,n. (4.2) 
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The waiting time w:I) of an arbitrary type-i customer that arrives during 
an idling period is composed solely of the total switch-over time experienced by 
the server when moving from Q 1 to Q;; i.e., 

So 

i-1 

W~I) ~ bSJ, i =I, ... ,n. 
J=I 

i-1 

E(e-wwj11) =II a1(w), 
J=l 

i= l,. . .,n. 

(4.3) 

(4.4) 

From Eqs. (4.2) and (4.4), observing that an arbitrary customer, irrespec
tive of which type, arrives during a restricted cycle and an idling period with 
probability ED/EC and El/EC, respectively, 

;-1 I 
W;(w) =II 0"1(w) -

J=I EC 

[ 'Y( t A1(1-{31(w)))--y( ;~ l..10 -{31(w)) +w)] 
El J-1 J-1 

x + ' w-A;(l -(J;(w)) 
(4.5) 

for Rew ;::: 0, i = I, ... , n. 

Remark 4.1: Denote by L; the queue length at Q; at an arbitrary epoch, i.e., the 
number of waiting customers, excluding the customer possibly in service, i = 
I, ... ,n. The distribution of L; immediately follows from Eq. (4.5) by the dis
tributional form of Little's law: E(yL') = w;(A;(l - y)), IYI ~I, i = I, ... ,n 
(cf. Keilson and Servi [14]). 

Remark 4.2: For n = 1, using Eqs. (3.6) and (3.10), Eq. (4.5) reduces to 

(1-p)w [El s 1-a(w) -y(w)] (4_6) w(w)= --+-- -- , 
w-/..(1-(J(w)) s+El s+El sw u(w) 

exhibiting the well-known waiting-time decomposition property of M/G/1 vaca
tion models. 

From Eq. (4.5), using Eqs. (3.6) and (3.7), 

[ 
i-1 ] EB2 i-1 

EW; = 1 + 2 b PJ + P; 2EC + ~ 51 
;=! ;=I 

= 1+2bp·+p; -- J=I +-p-+ +bSJ. [ 
i-1 ] 1 L...J J J s 5(2) i-1 

[ 
~ t..-(J<2

> ] 

J=I 1 I+p 2(1-p) 1-p 2 (s+ -y~!..)) 1=1 

(4.7) 
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Remark 4.3: For n = 1, Eq. (4.7) reduces to 

EB2 

EW = (1 +p] 2EC 

X(3 <2l ps s <2l 
=---+--+ ' 

2(1-p) 1-p ( 'Y(f..)) 
2 s+-

f.. 

which agrees with Takagi [21, p. 213, Eq. (5.40b)]. 

(4.8) 

As a justification of the dormant server policy, we now show the waiting 
time at each of the queues to be smaller (in the increasing-convex-ordering sense) 
than in the ordinary nondormant server case. To do so, let us label the variables 
corresponding to the dormant and the nondormant server case with a circum
flex and a tilde, respectively. 

From Boxma et al. [6], 

_ [ ;-1 ] EC2 i-1 
EW; = 1 + 2 ~ PJ + P; --- + ~ s; 

J=I 2EC J=I 

[ 
~ X (3<2l ] 

[ 
;-1 ] I Li J J (2) °'"' }=I pS S = 1 +2L..ip·+p; -- + -- + -
J=I J 1 + p 2(1 - p) l - p 2S 

Subtracting Eq. (4.9) from Eq. (4.7), 

'Y ( X) 

i-1 

+ ~ S;. (4.9) 
J=I 

EW,-EW,=-[1+2'£P1+P,]-l- A s<2l :50. 
;=I I + p f'(A) 2s 

s+--

(4.10) 

X 

Proceeding by differentiating the LST of the waiting-time distribution not just 
once but several times, we may prove that in fact not only the mean waiting 
times are smaller, but also each of the higher order moments; i.e., E(Wf) :5 
E(W7) for any k ~ 1. By using coupling techniques, we may however prove 
that the waiting times are in fact even smaller in the increasing-convex-ordering 
sense; i.e., Ef(W;) :5 EJ(W;) for any nondecreasing convex function!(·). 

LEMMA 4.1: 

i = I, ... ,n; 

i.e., Ej(W;) :5 Ef(W;), i = l, ... , n,forany nondecreasing convexfunctionf( ·). 

PROOF: See the Appendix. 

The ordering relation stated in the preceding lemma adds to the modest col
lection of stochastic ordering results that are known for polling systems so far. 
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The scarce results that are known exclusively refer to stochastic monotonicity 
properties of global performance measures, like the total amount of work in the 
system or the cycle time, or refer to monotonicity of quantities like the joint 
queue length at polling epochs with regard to the parameters of the service dis
cipline or with regard to the underlying stochastic processes. Levy, Sidi, and 
Boxma [16] showed that the total amount of work in the system is decreasing in 
the degree of exhaustiveness of the service discipline. Altman, Konstantopoulos, 
and Liu [2] proved that the cycle time and the joint queue length at polling 
epochs are stochastically increasing in the arrival rates, service times, and switch
over times. To the best of the author's knowledge, there are, however, no order
ing results known at all for the individual waiting times of the nature of the 
ordering relation stated in the preceding lemma. One might be inclined to con
jecture that also the individual waiting times are stochastically decreasing in the 
degree of exhaustiveness of the service discipline or increasing in the arrival 
rates, service times, and switch-over times, but such statements have either been 
disproved by simple counterexamples (cf. Sarkar and Zangwill [!]for example) 
or have lacked proof so far. 

5. CONCLUDING REMARKS 

We studied a globally gated polling system with a dormant server, which makes 
a halt at its home base when no customers are present in the system. As a jus
tification of the dormant server policy, we showed the waiting time at each of 
the queues to be smaller (in the increasing-convex-ordering sense) than in the 
ordinary nondormant server case. 

In the present paper, we allowed the server only to make a halt at its home 
base and only when there are no customers present in the system. In fact, we 
may also allow the server to make a halt at other queues and in other cases when 
there are still a few customers present in the system. A first option might be to 
maintain the service disciplines at the various queues but to decide at the com
pletion of each visit whether to switch or to idle, and not only at the comple
tion of a visit that leaves the entire system empty. A second option might be also 
to drop the service disciplines at the various queues and to decide at the com
pletion of each service whether to serve another customer if present, to switch, 
or to idle, like in Liu et al. [17]. Once having enlarged the freedom of decisions 
in the operation of the system, it is quite natural to consider the problem of 
finding a strategy that optimizes the performance of the system. As the enlarged 
freedom of decisions will considerably complicate the analysis, the chances of 
exactly solving the problem appear negligible. 
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APPENDIX: PROOF OF LEMMA 4.1 

LEMMA 4.1: 

i =I, ... ,n; 

i.e., Ef(Wi) ~ E/(Wi), i =I, ... ,n,for any nondecreasing convex function f(-). 

PROOF: We sketch the intuitive idea of the proof. For a detailed technical proof, we refer 
to Appendix B of Borst [4]. We assume the arrival, service, and switch-over processes 
in the dormant and nondormant server case to be coupled as follows. In both cases the 
server experiences exactly the same switch-over times, but - because the dormant and 
nondormant server cases evolve according to different operational rules-the same 
switch-over time is not necessarily experienced at the same point in time; i.e., the switch
over times may be shifted in time. Moreover, in the dormant server case, when the server 
is actually idling, we assume that the server is experiencing a switch-over time, which is, 
however, immediately interrupted as soon as a new customer arrives, just as if the server 
would have been idling, awaiting a new customer to arrive. The remainder of the switch
over time is then resumed as soon as the server starts idling again. During one and the 
same switch-over time, the arrival processes in both cases proceed synchronously; i.e., 
the same customer arrives at the same relative time (with regard to the switch-over time 
in question), requiring the same service time. Thus, the server also provides exactly the 
same service times in both cases, but- because the dormant and nondormant server cases 
evolve according to different operational rules-the same service time is not necessar
ily provided at the same point in time. Also, during one and the same service time, the 
arrival processes in both cases proceed synchronously. So the arrivals in both cases may 
be shifted in time, however, congruently to the service or switch-over times in which they 
fall, so that the same customer arrives at the same relative time with regard to the ser
vice time or switch-over time in question. By the memoryless property of the Poisson pro
cess, the coupling does not affect the stochastic properties of the arrival process. Neither 
does the coupling affect the stochastic properties of the service and switch-over processes. 
Thus, we obtain coupled but still marginally unbiased induced stochastic processes (like 
waiting times and queue lengths) in the dormant and nondormant server cases. 

Suppose that at time t = T0 in both cases the system is empty and the server is at 
its home base Q1 , just back from switching. The server then starts switching for a time 
of length S0 • S0 ,S 1 ,S2 , .•• , are independent stochastic variables with common distribu
tion S (-). During the switch-over time S0 , a number of K customers arrive, let us say 
C1, ••. , CK, at (relative) time t = A 1, t = A 1 + A 2 , ••• , t = A 1 + · · · +AK, requiring 
service times of length B1'B2, ••• ,BK. A 1 ,A2 , .•. , are independent exponentially dis
tributed stochastic variables with mean l/A.. B1 ,82 , . •. , are independent stochastic vari
ables with common distribution I:7= 1 (A.;IA.)Bi(-). In the dormant server case, at time 
t = T0 + A 1 the server interrupts switching, suspending the remainder S0 - A1 of the 
switch-over time S0 , and starts a cycle along the queues to serve the newly arrived cus
tomer C1, just as if the server would have remained idling at Q1 from time t = T 0 on, 
awaiting the new customer to arrive. At time t = T 1, after L 1 cycles, the system is empty 
again and the server is back again at its home base Q1 (these events occurring simulta-
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neously for the first time). The server then starts switching, resuming the switch-over time 
So. 

At time t = T 1 + A2 , the server again interrupts switching, suspending the remain
der S0 - A 1 - A2 of the switch-over time S0 , and starts a cycle along the queues to serve 
the newly arrived customer C2 , again just as if the server would have remained idling at 
Q1 from time t = T 1 on, awaiting the new customer to arrive. 

In the nondormant server case, at time t = T0 + A 1 the server just continues switch
ing, disregarding the newly arrived customer C 1• At time t = T 0 + S0 , the server fin
ishes switching and starts a cycle along the queues to serve the newly arrived customers 
C,, ... ,CK. 

In the dormant server case, at time t = T K• after L 1 + · · · + LK cycles, the system 
is empty and the server is back at its home base Q1 (these events occurring simulta
neously for the Kth time). The server then starts switching, resuming the switch-over 
time S0 . At time t = U0 the server finishes switching, U0 = T K + D, D = S0 - A 1 - • • • -

AK· At time t = U0 also in the nondormant server case the system is empty and the 
server just finishes switching. In both cases the server has then experienced exactly the 
same switch-over times, viz., S0,S 1, ••• ,SL,+ ... +LK• and has provided exactly the same 
service times, viz., the service times of the customers arriving during S0 ,S1, ••. ,SL,+ ... +LK' 
and of their descendants. Let us say the total number of type-i customers among them 
is M;. (Here the descendants of a customer are recursively defined as the customers 
arriving during its service time or during the service time of one of its descendants.) Con
cluding, at time t = U0 in both cases the system is empty and the server is at its home 
base Q1, just back from switching. 

Let Rjhl be the hth type-i customer served from time t = T0 on in the dormant 
server case, h = 1,2, .... Denote by Wjhl and W)h> the waiting time of R)h> in the dor
mant and nondormant server case, respectively, h = 1,2, .... As the stochastic processes 
IW)h>,h = 1,2, ... land {W)h> ,h = 1,2, ... l are regenerative with regard to h =land 
h =M; + l, 

E/(W;) = - E ~ f(W)h') l ( M· ) 

EM; h=l 
(A.I) 

and 

(A.2) 

Consider now Figure l, representing the customer offspring process in the dormant 
and nondormant server cases. In both cases dots at the same (horizontal) level correspond 
to customers served in the same cycle. An arc indicates that the customer at the head 
arrives during the service time of the customer at the tail. A dot without any incoming 
arc represents a customer that arrives during a switch-over time or, in the dormant server 
case, during an idling period. A dot without any outgoing arc represents a customer 
requiring a service time during which no single customer arrives. 

To prove that Eq. (A.2) majorizes Eq. (A.l), we need to introduce some additional 
terminology. In the dormant server case, the interval from time t = T k- l to time t = T ki 

comprising the cycles L 1 + · · · + Lk-I + l to L1 + · · · + Lk, is referred to as the kth 
busy interval, k = l, ... ,K. Customers arriving during S0 (thus interrupting S0 in the 
dormant server case), together with their descendants, are called primary customers (cor-
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c, c, c, CK 

A Ill + I 
0()I 2 

A 
0 b 1 r . r· L, 
c, 

LI+ I 

iA0A. ArA. 
L,+ 2 

L,+L, 

CK 
L1 + ... + LK-1 + I 

r AfAI AfAI 
L1 + ... + LK 

The dormant server case. The nondormant server case. 

FIGURE 1. The customer offspring process. 

responding to the grey dots in Figure I). The remaining customers, i.e., customers arriv
ing during S1, . .. ,Si.K, together with their descendants, are called secondary customers 
(the black dots). 

With the busy intervals as background, the dormant and nondormant server cases 
differ in the service of primary customers, but not in the service of secondary custom
ers. In the dormant server case, the service of primary customers is balanced over the K 
busy intervals. In the nondormant server case, the service of primary customers is con
centrated in the first busy interval. The service of secondary customers occurs in both 
cases in corresponding cycles. So in the nondormant server case, the primary custom
ers all bother one another and all bother the same secondary customers. To make the lat
ter intuitive idea precise, observe that the waiting time of every customer is composed 
of switch-over time, service time of primary customers, and service time of secondary 
customers. For any waiting time wj"l, denote by vj~l the share constituted by service 
time of primary customers that are descendants of C~, k = I, ... , K. Denote by Vj hl the 
remaining share in wj"l, i.e., the share constituted by switch-over time and service time 
of secondary customers. 

For a primary customer Rj"l, we have 

vu') + zih) ~ v<") 
f I I ' 

(A.3) 
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Assuming that R) 17 l is a descendant of Ck> 
'ih) -111) '(h) 
v,,k = vi,k, vi,111 = o, rn =F k. (A.4) 

For a secondary customer R) 17 l, we have 

v)"l = vih). (A.5) 

Let H;, 1 be the index set of the secondary type-i customers served in the !th cycle in the 
dormant server case, I= I, ... ,L 1 + · · · + LK· Let Hi.kl be the index set of the second
ary type-i customers served in the L1 + · · · + Lk- I + Ith cycle in the dormant server 
case if! s Lk, k = I, ... ,K. If!> Lk> let H;,ki be the empty set. We then have 

" v<h) E... " v1") L.J 1,k - L.J t,k' 
" '(h) LJ vi.m = 0, m=t=k. (A.6) 

hEJ!i,kl hEHi,I hEHi,kl 

Relations (A.3)-(A.6) constitute the key elements in proving that Eq. (A.2) majorizes 
Eq. (A.I). For a detailed comparison, we refer to Appendix B of Borst [4]. 11111 


