
On the design of two small batch operating systems
1965 – 1970

F.E.J. Kruseman Aretz

November 14, 2012

Abstract

This paper describes the design considerations and decisions for two small batch
operating systems, called MICRO and MILLI, for the Electrologica X8, a Dutch
computer delivered from 1965 onwards. Their sole tasks were to run sequences of
ALGOL 60 programs, thus transforming the X8 into an ALGOL 60 computer. They
were developed in order to increase the efficient use of the hardware (MICRO) and
to reduce waiting times for ALGOL 60 programs with small demands (MILLI).

The work described here was carried out mainly by one person, namely the
author. The paper is interwoven with some personal history, describing a.o. the
background and the context in which this work was carried out.

1998 Computing Science Classification

K.2. History of Computing, D.4.7. Batch Processing Systems

Keywords and Phrases

historical, operating systems, Electrologica X8

1 How I got into the field of operating systems

Educated as a theoretical physicist, I switched to computer science after completing my
PhD. I had done quite a lot of numerical calculations for my PhD thesis and gradually
I became more and more interested in (programming algorithms for) numerical analysis.
Moreover, my interests in physics were directed to its foundations and I feared that my
capacities for doing research in that direction were insufficient. So I preferred to enter
a young and promising field and got a job at the Mathematical Center in Amsterdam,
starting September 1, 1962. Fortunately I followed many classes in mathematics, including
logic and numerical analysis, during my study.

My first task at the Mathematical Center was to write an ALGOL 60 program for the
reconstruction of particle trajectories from Wilson cloud chamber data. Execution of my
programs on the Electrologica X1, using the Dijkstra–Zonneveld ALGOL 60 implemen-
tation, produced wrong results that ultimately could only be explained by a bug in that

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301669144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

system. Dijkstra had left the Mathematical Center for a professorship at the Technical
University Eindhoven and Zonneveld returned to his work as numerical analyst. With
the help of one of my colleagues I repaired the bug in the ALGOL system, but now my
interest in system programming was excited.

In the next period I was able to rebuild the ALGOL 60 system for the X1 into a load–
and–go system, using the fact that in the period from 1960 to 1962 the X1 store was
extended from 4K words to 12 K words [5]. Originally, the ALGOL compiler had to read
the program tape twice and punched an object program tape, which afterwards had to be
loaded for execution. Also the compiler and the loader had to be read beforehand, since
the X1 had no backing store whatsoever. After the reconstruction, running an ALGOL
60 program boiled down to reading the system tape, the program tape (only once) and,
if relevant, the data tape. Already at that time I liked to lower the thresholds for users
of the computer.

In the course of the year 1963 the Mathematical Center ordered an Electrologica X8, the
successor of the X1, and undertook the task to develop an ALGOL 60 implementation
for it. Nederkoorn, Van de Laarschot, and I defined the mapping from a source text in
ALGOL 60 to the object code for the X8 and coded the subroutines necessary for the
support of object code execution (this work was mainly done by Nederkoorn and myself).
Barning developed the subroutines for ALGOL’s standard numerical functions.

The compiler was written by me in ALGOL 60 first and thereupon hand-coded in ELAN,
the assembly language of the X8. The ALGOL load–and–go system was completed in
1965, before the first deliverance of the first X8. Although the X8 was about 12 times
as fast as the X1, the ALGOL 60 implementation ran about 60 times faster than that of
the X1, due to additions to the instruction set directed to the execution of ALGOL 60
programs [6].

Since it was clear that the operating system, to be written by Electrologica, would not be
ready in time, a minimal operating system ‘PICO’ was developed at the Mathematical
Center by Mailloux and Van Berckel. Its only task was to run ALGOL 60 program after
ALGOL 60 program.

Before going into the operating systems ’MICRO’ and ’MILLI’ that I developed as suc-
cessors of PICO, I first need to discuss some aspects of the X8 computer and the PICO
system.

2 PICO

The PICO operating system for the X8 was really minimal. After initializing paper–tape
reader, paper–tape punch, the operator’s keyboard and typewriter, and, in its second
version, also the line–printer, the operator was asked the date and the serial number (to
be attached to the first ALGOL 60 program), whereafter it entered its main cycle. In
that cycle the text of the next ALGOL 60 program was read, the program was compiled
and, if syntactically correct, executed. Source text and data could be spread over several
paper tapes. If the system asked, on the typewriter, for the next input tape, the operator
had to place a tape in the tape reader. When the handling of a program was completed,
the remainder of the current input tape was skipped, after which the cycle was repeated

2

with an incremented serial number.

The handling of input/output was elementary. For both the paper–tape reader and the
paper–tape punch two core buffers (of length 32 and 150 words, respectively) were avail-
able, which were filled and emptied in turn. Especially for punch output, this implied
long idle times for the cpu in case of much output. For the line printer (in the second
release of PICO) 10 buffers of 37 words were available. In a buffer there was room for the
144 characters of a line1. But, due to the possibility of having underlinings and bars at
each character position of a line, some lines needed three buffers. Also line–printer output
could lead to cpu idle time.

The i/o system of the X8 was nicely organized. All i/o devices were equipped with a
pushbutton having a green and a red bulb inside. In the red state execution of transput
instructions kept pending, but caused the red bulb to flicker in order to draw the oper-
ator’s attention. Pressing the pushbutton then brought it in the green state, in which
transput instructions were honoured immediately. After completion of (the execution
of) an ALGOL 60 program PICO skipped the (remaining) paper tape in the paper–tape
reader until end–of–tape, which caused the paper–tape reader to pass into its red state.
It was the task of the operator to await the end of paper–tape punching and of printing
in order to tear off the output.

The operator had few possibilities to interact with the system. By pressing a key of
the operator’s keyboard he could rerun the last program executed with new data, break
off a program’s execution, prevent the compiler to be overwritten by the execution of a
program or prevent the insertion into an object program of instructions to keep record of
line numbers during program execution.

The structure of PICO was rather monolithic. It contained two separate modules: one for
number conversion decimal–binary and binary–decimal (because it was clearly a separate
subject) and one for the line–printer software (because it was added afterwards). The
complete ELAN code of PICO has been documented in [3], together with that of the
ALGOL 60 compiler and the run–time support routines2.

The first X8 was delivered to the University of Utrecht and became operational November
1965. The first PICO system (in its version for a 16 K words core store and no line printer)
was installed there that month. The Mathematical Center got its machine May 1966. The
hardware included from the start 32 K words core store, a line printer, a teletype, 3 paper–
tape readers, 3 paper–tape punches, and a drum store of 512 K words. Of these, PICO
used only the teletype, the line printer, one of the paper–tape readers and one of the
paper–tape punches.

PICO itself occupied some 3400 words for code, buffers and working space, ALGOL’s
run–time support system used about 700 words, and a library of standard functions and
procedures3 about 750 words. In a store of 16 K words, roughly 11500 words remained
for object programs and their working space. The compiler, about 5000 words long, was

1A line on the line printer was 144 characters wide. The hardware required to pack these by 4
characters in a word.

2After loading of the system – from paper tape (!) in binary code, constituting approximately 100 m
tape, read in about 40 seconds – the execution of the system started at the label DNTST.

3Besides those mentioned in the ALGOL 60 revised report the library contained procedures for input
and output, which could be used in an ALGOL 60 program without declaration.

3

placed at the end of store and could be overwritten (if permitted by the operator) during
program execution, on the penalty of having to reload the compiler from paper tape at
the end of that execution.

The main drawbacks of PICO became clear when the load of the X8 increased, although
it was about 60 times faster than its predecessor. These drawbacks were:

• inefficient use of the hardware, due to much idle time of the cpu waiting for i/o
completion, and

• long waiting times for users with only a small demand of computing time.

The latter was slightly compensated by daily having certain periods in which only two–
minute programs were dealt with, thereby, however, decreasing the overall efficiency.

Soon, the need was felt to replace PICO by some more advanced operating system.

3 MICRO

Not long after November 1965, the moment that the ALGOL 60 system embedded in the
PICO operating system became operational, Van Berckel left the Mathematical Center
and Mailloux was involved in the design of ALGOL 68. Therefore the development of a
more advanced operating system became my responsibility.

I had no previous experience in designing operating systems at all, nor had I knowledge on
the subject from literature. I was, however, aware of the troubles with parallel program
interaction and synchronization. It was therefore important to keep the system as simple
as possible.

Two ideas to improve the performance of PICO arose naturally. They were:

• using the drum store of 512 K words to buffer all input– and output streams, and
• to run programs with short execution times in parallel with programs with larger

cpu–time demands by using the drum store to swap complete programs out and in
again.

As an exercise the system PICO was changed into the system PICO–PR/DR, operational
October 1966, in which all line–printer output was buffered on the drum.

Already in the summer of 1966 ideas were developed into the direction of parallel execution
of programs. The need for more efficiency was, however, so high that I gave priority to
extend PICO–PR/DR to a system in which all transput streams were buffered on the
drum. Moreover, I hoped to learn a lot from its design and to be able to use many of
its parts in future systems. The new system, called MICRO, was assembled for the first
time in February 1967 and became fully operational in the summer that year. Now it was
possible to read the tapes of program after program in advance during the execution of
a cpu–demanding program, thus greatly enlarging the efficient use of the cpu greatly. In
the meantime the punching of paper–tape output and the printing of line–printer output
of preceding programs could continue, if not yet completed.

4

For MICRO the code for paper–tape reader, paper–tape punch and line–printer had to be
largely rewritten. This code was now divided into separate sections, resulting in a more
or less modular structure of the system (as opposed to the monolithic structure of PICO).

While the main idea of a cycle in which ALGOL 60 program after ALGOL 60 program
was elaborated was kept, the complete system now contained the following ‘modules’:

• main section,
• number conversion,
• drum section,
• tape–reader section,
• tape–punch section,
• line–printer section,
• object–program run–time support system,
• library section,
• ALGOL 60–compiler section, and
• system–tape punching section4.

The tape–reader section, the tape–punch section, and the line–printer section contained
similar subroutines for dealing with the transport from core buffer to drum and vice versa.
The result was an almost doubling of size: MICRO’s code, core buffers and working space
occupied more than 6100 words of core store.

The main problems to be solved were the efficient use of core store, drum store, and drum
channel.

For all three i/o devices it was decided that first the producer of the data had to store
them in one of two core buffers (used in turn) available to the producer, next they were
transported to the drum, and finally to one of two core buffers available to the consumer.
For simplicity reasons this path was never cut, even if the consumer was waiting for the
data.

In general a producer of data sent data to the drum only when, and as soon as its current
buffer was full. An exception had to be made for the last data belonging to a program:
it had to be offered to the drum immediately. This implied that each buffer contained
information about the amount of data contained in it.

The drum of the X8 contained 512 tracks of 1024 words each. Its revolution time was
40 msec. A first decision was not to try to keep record of the drum position in time.
Therefore the average waiting time for a drum transport was 20 msec and the transport
time roughly the number of words × 40 µsec. This made it advantageous to use a large
buffer size. On the other hand, having 3 i/o devices using altogether 12 core buffers asked
for a minimal buffer size. As a good compromise a buffer size of 128 words was chosen
for the paper–tape reader and punch, with an average transport time of 26 msec (waiting
included), whereas for the line–printer buffers of 256 words were adopted, with an average
transport time of 31 msec5.

Again for simplicity reasons each of the three i/o devices was assigned a fixed area on
the drum. This area was used cyclically. The tape reader possessed 192 K words (good

4activated at the end of system assemblage.
5A drum transport could start at an arbitrary drum address and was at most 4096 words long.

5

for 1536 buffer portions of 128 K), the tape punch 40 K words (320 portions), and the
line–printer 128 K (512 portions).

For the sake of efficient use of both drum space and drum channel the information of the
tape reader and for the tape punch were packed in three columns of 9 bits width. The
lines for the line-printer were already in PICO packed with 4 characters per words as
expected by the line–printer hardware. For these, three 39–word buffers were available.
When a line was completed these buffers were copied into one of the 256–word buffers.
Each of the latter buffers should contain a number of complete lines6.

The drum was also used to store the whole system. The system could be loaded by reading
a rather short paper tape containing merely instructions to load the system from drum.
Now it was also possible to reload the ALGOL 60 compiler from drum, whenever it was
overwritten during the execution of a program.

Altogether there were, after loading of the system, 7 processes to compete for the use of
the drum channel: 3 to–drum processes and 4 from–drum processes. The system should
be such that none of these processes could be passed over systematically when in need for
a transport. The method chosen was as follows:

For each of these processes one bit was reserved in a word in core store called ‘attention’.
Whenever a process wanted to use the drum channel, it raised its bit in attention in order
to indicate its need for transport. If the drum channel was idle the transport could start
immediately, otherwise it had to be postponed. After completing a drum transport the
drum channel cleared, in its interrupt program, the bit in attention corresponding to the
completed transport and inspected whether there were processes waiting for transport.
If so, it chose the next one in a circular fashion. By this ‘round robin’ method, that I
learned from Mailloux, every process got its turn and had to let precede at most 5 other
processes.

There were a number of conditions to be fulfilled in order to maintain the liveliness of the
i/o system (later I learned to call them system invariants). We met already one of them:

• (attention 6= 0) ≡ (drum channel active).

Some others read:

• (consumer buffer empty) ∧ (corresponding drum buffer not empty)
≡
(corresponding from–drum process activated7).

• (non–empty tape–punch buffer available) ≡ (tape punch is punching).

An interrupt of the tape punch could therefore invalidate three of these invariants:

1. In the first place it inactivated the tape punch, and if not all three columns of the
current buffer were punched or if the other tape–punch buffer was filled, the tape
punch had to be reactivated.

6Between the areas in the buffer occupied by the lines 3 words were reserved for the so–called start
instruction for CHARON (the i/o processor of the X8).

7i.e., drum transport announced in attention.

6

2. Next, it possibly emptied a tape–punch buffer, and if so and if there was tape–punch
stock on the drum, a request for refill had to be submitted to the drum channel.

3. In that case, if the drum channel was passive, it had to be activated.

At the same time Dijkstra was developing the THE system at the Technical University
Eindhoven. There he devised the technique of cooperating sequential processes[1], mu-
tually synchronized by semaphores with P and V operations and interacting with one
another in critical sections through common variables.

It is not so easy to map our implementation on his method. First of all MICRO does not
contain a process scheduler. Essentially one sequential program is running. That (main)
program is interrupted from time to time by a peripheral interrupt program. Some pieces
of code are executed either by the main program or by one of these interrupt programs.
An example is the activation of a from–drum activity, which can be done by the main
program while reading an input character, thereby emptying one of its core buffers, or
in the drum interrupt program itself, while finding that the other core buffer is empty
already. Mutual exclusion is, where necessary, obtained by executing pieces of the main
program in ‘deafness’, i.e. excluding peripheral interrupts temporarily. The only clear
example of a semaphore is the use of attention by the drum interrupt program. The
number of bits ‘1’ in attention is comparable to a semaphore value and a kind of P–
operation is applied to attention to find out whether further activity of the drum is to be
postponed or not.

Since the ultimate source of all activity is the sequence of ALGOL 60 programs as read
into the system by the paper–tape reader, during system initialization the tape reader is
started (by giving it a read instruction). As soon as a paper tape is put into the tape
reader (and the push button is pressed in order to activate it) the first core buffer is filled,
transported to the drum, transported to core again, and read by the main program. In
turn the output generated by the main program started up the other i/o streams.

In order to separate the input tapes belonging to one and the same program from those
of its successor, the operator now had to press one key on the command teletype8. That
key could be pressed during or after the reading of the last tape belonging to a program,
something that also required careful implementation.

The MICRO system worked perfectly and was taken over by Philips Research Laborato-
ries in Eindhoven (installed there by myself) and by the Technical University Eindhoven
(where is was kept in use along with Dijkstra’s THE system after completion of the latter).

4 Extentions of MICRO

During the summer of 1967 the X8 installation of the Mathematical Center was extended
and reconfigured. Therefore it was out of operation for several weeks(!). Among the
extensions was a third core–store cabinet of 16 K words9.

8either N (for a new data tape for a fresh start of the last program executed) or an E (for announcing
a brand new program).

9The extension further consisted of 4 teletypes, a punch–card reader, and a punch–card punch. These
were not used in MICRO.

7

The use of the new core store, with addresses running from 32 K to 48 K, required an
adaptation of the ALGOL 60 system. This was caused by the fact that X8 instructions
have an address part of 15 bits, thus addressing directly core store from 0 to 32 K. Using
indirect addressing (with 18 bits addresses) the words of the third cabinet were within
reach. By keeping the locations of the compiler, the run–time support system, the library,
and all object programs produced by the compiler below the 32 K border and allowing
only the run–time stack to grow into the third cabinet only a few changes in the system
were required. It became operational in September 1967.

Already in February/March 1967 the library of the ALGOL 60 system was extended with
a number of procedures and functions. Especially important were the functions for inner
products of vectors and matrix columns (to accelerate matrix operations by avoiding
repeated indexing) and the procedures ‘todrum’ and ‘fromdrum’ by which users could
save and retrieve the contents of arrays to and from a specially reserved area on the drum
of 80 K words10.

Another extra facility (started by the operator command ‘C’) was the use of the second
paper–tape reader and the second paper–tape punch to copy, quasi off–line, paper tapes.
This was done in the simplest way: alternately reading and punching one character at a
time, completely carried out in interrupt programs.

In the end the operating system MICRO took 6080 words, as compared to PICO’s 3400
words. Including run–time support and library about 8080 words were reserved for the
system, leaving a 40 000 words for object programs and their execution stacks11.

5 MILLI

Already in 1967 work started on the development of a new operating system, MILLI. The
main purpose was to almost eliminate waiting times for ALGOL 60 programs with small
demands, by executing them in parallel with the main stream of programs.

This posed a number of new problems to be solved and decisions to be taken. We mention:

1. If there are several parallel program streams, each with its own limitations, how to
assign a program to a certain program stream,

2. How to accommodate several programs concurrently in execution into core store,
3. How to find place on the drum for buffering so many different transput streams,
4. How to restrict the growth of system code (at the expense of the space for ALGOL

60 object programs and their stacks), also if new input and output devices are
included such as a second paper–tape reader, a punch–card reader, a punch–card
punch, or a plotter.

5. How to keep the system simple, clearly structured, and easily extensible.

The major design decisions were already taken in 1967, in the time that I worked at
the Mathematical Center. There I also started programming the essential kernel of the

10The ALGOL 60 program could continue its execution, as long as it did not access the array under
transport. An untimely access enforced the program to await completion of the transport. This was
implemented using the mechanism of a wrong–address interrupt.

11For a 48 K core store, with a restriction to object–code length.

8

system, and I was able to test it at night hours. The completion of MILLI, mainly filling
in the details, however, was to be completed after my transfer to the Philips Research
Laboratories in Eindhoven.

Simplicity. To keep the system simple it was decided not to try to develop any kind of
virtual storage (as was done by Dijkstra for the Technical University of Eindhoven). All
user programs were allowed to use the full core store left over by the system and (quasi)
parallel execution of programs was realized by swapping a complete program from core
store to the drum and another program from drum to core store for giving it a time slice
of computing before it, in its turn, had to make room for another.

Also for simplicity reasons it was decided that each ALGOL 60 program and its input data
should be read into the system by one input reader, be it one of the paper–tape readers
or the punch–card reader. In order to simplify the work for the operators it should be
clear at the start of the input to which of the several program streams that input should
be assigned.

To simplify the assignment of output devices only one of the program streams was allowed
to make use of a paper–tape punch, a punch–card punch, a plotter or of the 80 K words
on the drum used by the procedures todrum and fromdrum, thus avoiding the use of the
‘Banker’s’ algorithm [2]. The only output device shared by all programs had to be the
line–printer.

It was expected that the buffer space on the drum would be too small to collect all pages
generated during the execution of an ALGOL 60 program before printing them. It should
be possible to print these pages in portions, possibly alternated with portions of other
programs in execution.

The natural unit to be printed on the line–printer was a full page (consisting of a head
line and 60 user lines). To avoid tearing off line–printer portions too frequently, portions
contained a number of pages, say 10 to 15. The head line of each page of a portion had
the same tear–off number, an increment of the tear–off number indicated the place for
the operator where to separate the portions.

Use of the drum store. All these decisions implied a restructuring of the use of the
drum. Instead of 3 data streams to be buffered on the drum now at least 11 had to
be accommodated12: 4 input streams (originating from the paper–tape and punch–card
readers), one paper-tape punch stream, one card–punch stream, a plotter stream, and 4
line–printer streams.

In MICRO, 360 of the 512 K words of the drum were available for i/o buffering, and all
three data streams got a fixed portion (we never measured how well these were used). In
MILLI such a generosity was impossible. First of all many more data streams had to be
served and, secondly, less drum space was available since several swap areas on drum (for
programs quasi executed in parallel) were needed too.

The main idea was to divide the available drum store into pages of 1 K words and to give
each of the 11 data streams a minimal claim of pages. In this way it could be guaranteed

12In case of 4 parallel program streams.

9

that each stream could proceed even if some other streams were filling up buffer space at
an enormous rate.

In fact 267 pages were assigned to three portions of pages: 147 pages for the 4 input
streams (with individual claim sizes of 5), 100 pages for the 4 printer streams (with
individual claim sizes of 19), and 20 pages for the three other output streams (paper–tape
punch, card punch, and plotter, with individual claim sizes of 2).

The decision to assign drum space to processes in portions of 1 K words (rather than 128
words as done in MICRO) followed from the requirement to chain successive portions of
a process and to keep the administration for the chains in store. There were in fact 3
chains of free portions and 11 chains of assigned portions. Now 267 words of store were
sufficient, where otherwise 2136 words would have been needed.

The four input streams, each having in all events 5 drum pages available, were competing
for the remaining 127 pages (using, when exhausted, an attention–like scheduler to obtain
a page when released by one of the input streams). If only one of the input streams
required more than its claim, it could get maximally 147− 3× 5 = 132 drum pages, good
for 1056 buffers with the capacity of storing 402 336 paper–tape punchings (i.e., more
than 1000 m of punch tape corresponding to at least 7 minutes reading time) or at least
3350 punch cards13.

Special attention had to be paid to the printer streams. When starting a new page, thereby
completing the previous one, the latter was not automatically allowed to be printed. Only
when the amount of buffers filled by a number of successive pages had exceeded the lower
print limit of 152, a printing permit was given for that set of buffers. A special measure,
however, was needed to prevent that a page used too much buffer space before a new
page was arrived at. This might occur since the ALGOL 60 programmer had a command
carriage(0) at his disposal to fill a line of a line–printer page over and over again. After
filling more than 190 buffers since the last print permit was given the execution of his
program had to be fired with an error report. In normal cases a printing permit was given
for each 10 to 15 pages. Of course, printable portions of the 4 program streams had to
compete for the line printer, again via an attention–like scheduler.

Code–length reduction. When coding the MICRO system I already observed that
much code was repeated, with only small variations. Each of the tape–reader, tape–punch,
and line–printer sections contained its own todrum and its own fromdrum routine, which
differed by process numbers, drum areas, and core addresses only. In MILLI there were
many more processes, partly with even less differences (more than one tape-reader, several
input streams, several printer streams), as well as several attention–like schedulers. In
order to reduce the code I decided to code these parts only once, parametrized by an entry
to one of a number of tables containing the necessary specific data. This parametrization
made large parts of the code re–entrant.

All these tables contain the variables, constants, instructions, references to other tables,
and code addresses relevant for the activities concerned. They are located at the very end
of the core store (in the part that could only be addressed indirectly). There are 5 types
of tables, for programs, data streams, drum processes, devices, and schedulers. All tables

13Two columns per word, but trailing blank columns were not stored at all.

10

of the same type have a fixed initial part, possibly followed by some additional fields.

The 55 tables of the final version of MILLI are enumerated in Figure 1. They occupied
789 words.

program table data stream drum process device scheduler
program base

program 1 restream 1 process 0 batch a
prstream 1 process 4 pr–chain base

program 2 restream 2 process 1 batch b
prstream 2 process 5

program 3 restream 3 process 2 batch c
prstream 3 process 6

program 4 restream 4 process 3 batch d
prstream 4 process 7
tpstream 1 process12 out–chain base
cpstream 1 process14
plstream 1 process16

process 8 tape reader 1 in–chain base
process 9 tape reader 2
process10 card reader 1
process11 printer 1 printer base
process13 tape punch 1
process15 card punch 1
process17 plotter 1
process18 drum 1 drum base

teletype 1
keyboard 1
clock 1

Figure 1: The 55 tables used in MILLI

Figure 2 reproduces the contents of table ‘tpstream 1’ 14.

address contents comment
tpstream 1[0]: :out–chain base ” address scheduler for drum pages

[1]: 128 ” buffer length
[2]: ’skip’ 1 ” number of pages - claim
[3]: 2 ” claim size
[4]: ’skip’ 1 ” level of buffer in drum page
[5]: ’skip’ 1 ” address of current drum page
[6]: ’skip’ 1 ” number of unsatisfied requests
[7]: :process12 ” base address of the to–drum process
[8]: :program 4 ” address program table
[9]: 2 ” bit to request a new drum page
[10]: ’skip’ 1 ” number of buffers
[11]: ’skip’ 1 ” address of core buffer

Figure 2: Contents of table ’tpstream 1’

The 10 schedulers schedule the activities described in Figure 3. The code to handle these
10 schedulers is given only once.

14’skip’ is an assembler command to reserve one word for a variable.

11

program base: cpu assignment to a program

batch a: access to restream 1 for an input device
batch b: access to restream 2 for an input device
batch c: access to restream 3 for an input device
batch d: access to restream 4 for an input device

pr–chain base: assignment of a drum page to a print stream
out–chain base: idem to the tape–punch, card–punch or plotter stream
in–chain base: idem to a tape–reader or the card–reader stream

printer base: access to the printer for a prstream

drum base: transport to and from the drum store

Figure 3: The 10 schedulers of MILLI

This arrangement has many advantages. Apart from the reduction of code length it
provides great flexibility: adding another paper-tape punch would imply adding some
new tables and adapting a few existing ones without any need to change the monitor
code. Changing the division of drum space over the several data streams means the
adaptation of some table constants.

So far the main decisions were already taken at the Mathematical Center. There I was
also able to test large parts of the code. For that purpose I wrote some special main
programs, running in ‘parallel’, that read paper tape from two paper–tape readers and
printed the information on the line printer. In order to test the schedulers I used very
small drum–page allowances.

As mentioned before, I was not able to complete the MICRO system in my time at the
Mathematical Center. Below I will try to explain what was the cause of this and why
I left the Mathematical Center for Philips Research Laboratories Eindhoven in August
1969. Only thereafter I will proceed with the review of MICRO.

Intermezzo. August 1, 1965 J.A. Zonneveld, group leader of the Computation Depart-
ment, left the Mathematical Center to become the group leader of a newly established
computing facility at Philips Research Laboratories in Eindhoven. Then Th.J. Dekker
and I were appointed as his successors, Dekker for the numerical analysis and I for the
programming activities. Alltogether I had to give guidance to about 5 staff members,
each working with a different subject, and to a small team around the computer, an
Electrologica X1. Since the Mathematical Center also acted as an (informal) computing
center for the University of Amsterdam, I also had discussions with researchers from the
university over service possibilities. But initially my work as section leader left me ample
time to do what I preferred to do, namely to develop software.

But little by little my duties grew. In 1967 I was appointed ‘bijzonder hoogleraar’ 15 in
applied mathematics at the University of Amsterdam for one day a week on account of

15In the Netherlands, scientific foundations can get permission to appoint (and pay) professors at a
university.

12

the Stichting voor Hoger Onderwijs in de Toegepaste Wiskunde 16. For this I developed a
course on programming, dealing with compilers and operating systems, but also treating
Turing machines and showing the importance of recursion. Around the Electrologica
X8, delivered at the Mathematical Center in 1966, grew a (small) computer center, with
operators, punching personnel, and programmers. My staff grew to 9 staff members, 4
assistants, 12 programmers, 6 operators and 3 punch typists end 1968. With some staff
members we also joined a working group, started by the computer center of the University
of Utrecht, to develop a multi–access system17.

Already in 1968 I felt overworked. My stomach became troublesome and my time at home
I mostly spent lying on the couch. Late in the year I discussed my problems with Van
Wijngaarden, director of the Mathematical Center, and asked for assistance to lighten
my managerial duties. He promised to arrange something but never did. Maybe this
was caused by the fact that he had worked too hard himself to bring the conception of
the programming language ALGOL 68 in the IFIP WG2–committee on his name (in my
opinion he ruined, in this way, his health forever).

One of his remarks was that postponing some activities sometimes helps: that can make
them superfluous. One good advice was to take a skiing holidays, which I did in the first
two weeks of 1969. But in the course of that year I decided to look after a job outside the
Mathematical Center, a job in which I could spend my time in doing research myself and in
writing software. A full professorship at the University of Amsterdam (aimed at starting
a computing science program), which was offered to me, did not fit my desires. After
ample hesitations I accepted a job at the Philips Research Laboratories in Eindhoven.
The computer center there, under the supervision of my old sous–chef Zonneveld, had an
X8 (later even two of them) at its disposal and gave me the opportunity to complete the
MILLI operating system. My condition, never to be ‘promoted’ into a leading position,
was accepted and indeed honoured during the remainder of my professional career. I
continued my professorship at the University of Amsterdam for another two years. In
1971 I was appointed extra–ordinary (= part–time) professor at the Technical University
Eindhoven.

Before I left the Mathematical Center end July 1969, I introduced the structure of MICRO
to a group of my cooperators during 7 sessions. Maybe I had better trained a software
group before, but I like to work all by myself and cooperation is not one of my stronger
qualities.

After this detour I come back to the further development of MILLI, now at Philips Re-
search Laboratories.

The completion of MILLI. From August 1969 I had ample time to work on the
completion of MILLI. The backbone and all major decisions taken already, this came
down to filling in lots of details. This was done in close consultation with two cooperators,
W.P.J. Fontein and A.J. Dekkers, and with Zonneveld. An important aspect was the
interface with both the users and the machine operators. I first deal with the user interface.

16Foundation for Higher Education in Applied Mathematics.
17For this purpose a magnetic disk of 2 M words(!) and 4 teletypes were purchased. When leaving the

Mathematical Center I had not seen them in use.

13

The user interface. As earlier already indicated implicitly it was decided to have four
program streams or batches indeed, called a, b, c, and d, differing in maximal allowed
program execution time and output devices. The choice of a stream was left to the user.
In an obligatory first line he had to specify the program stream, some user data, and
optionally some allotments:

<monitor heading> ::=
<stream letter> <box number>.<group number>.<user number>,<name> <directions>

<directions> ::= <empty> | ,<direction><directions>

<direction> ::= z | b<int> | k<int> | p<int> | r<int> | t<int> | u1 | u2

An example of a monitor heading is:

d23.86043.5053,p de vries,t300,b100

asking specifically for 300 millihours computer time18 and 100 000 punchings on the paper–
tape punch (in stead of the default portions of 30 millihours and 50 000 punchings); for
line–printer (direction letter r), card punch (direction letter k), and plotter (direction
letter p) the default portions for batch d of 15 pages, 1000 cards, and 200 millihour
plotter time were allowed.

Direction ‘z’ indicated that the printing of the ALGOL source program should be sup-
pressed, whereas directions ‘u1’ and ‘u2’ specified a certain reaction on the occurrence of
floating–point underflow, different from the default one.

For introducing the card reader as an input source the representation of the ALGOL 60
alphabet on cards had to be decided upon. This was done together with the computing
centers of Utrecht University and the Technical University Eindhoven19. Furthermore
it was decided that (X8–ALGOL 60) procedure rehep would give the user program ac-
cess to the individual columns of punch cards, whereas procedure resym would translate
columns to symbols (in internal representation). In the operating system the uninter-
preted columns had to be transported to user programs via the drum20. The first card
of a program should contain the monitor heading. This concludes the discussion of the
(new) interface for the users.

The machine operators’ interface. Next we turn to the interface for the machine
operators. It should also be as simple as possible, minimizing their work (as was already
pursued in PICO and MICRO) and also giving a good insight in the status of the machine
on the command teletype.

On this teletype each status change was reported by a line. As an example we present a
number of successive teletype lines in Figure 4.

Most lines start with the time, followed by 4 numbers, giving the number of programs in
the four program batches, (figure 9 meaning 9 or more). An asterisk preceding a figure
indicates that the last program still is read on one of the input devices. Then follow two
letters, the first one indicating the program batch, the second one on which of the input

18Since the X8 use was priced fl 1000 per hour, the millihour was used as unit of computer time.
19Among other things, this concerned the representation of ‘[’, ‘]’ and ‘10’.
20In compact form: two columns packed into one word, at all invents the first two columns, blank

columns at the back not transmitted but regenerated by rehep.

14

event teletype line
starting paper–tape reader 2 for a new program 1315 2 *2 1 1 BS
the completion of program execution in batch a 1316 1 *2 1 1 AP 035 86123.2213 0024
the (elaboration) start of a program in batch a 1316 1 *2 1 1 AP 038 86043.5053
operator command S on teletype keyboard S
end of tape on tape reader 2 1318 1 2 1 1 BS
starting card reader for a new program 1318 *2 2 1 1 AK
operator command K on teletype keyboard K 0012/0018 0103/0047 0361/0139 0256/0744
termination of a program due to time exhaustion 1320 *1 2 1 1 AP 997 038 86043.5053 0030
the start of next program in batch a 1320 *1 2 1 1 AK 039 86123.2213
after a card with 7-9 in the first two columns 1320 1 2 1 1 AK

Figure 4: Fragment of a command teletype report

devices it is or was read21.

• In the first line of the table the tape of a new program for program batch b is put into tape reader 2,
that device is started and destination b is recognized.

• In the second line the program in batch a is completed; its serial number and its computer time
consumption are printed (the latter in millihours).

• Since there is still one program in batch a, that is started; the third line is printed after analyzing
its monitor heading and assigning it the next serial number.

• In the fourth line the operator has pressed key ’S’, indicating that the paper tape now being read
in tape reader 2 is the last tape for the program.

• When that tape is read to its end, the program is administrated as complete.
• Line six reports the introduction of a new program for batch a on the card reader.
• Operator command ’K’ gives for all four batches two numbers: the computer time consumed and

the computer time left over for the programs in elaboration.
• The execution of the program in batch A is terminated by the system because of exceeding the time

limit, indicated by error number 977.
• The next program in batch A, although not yet completely read, is taken into execution.
• A card with 7-9 holes in its first two columns was appended by the operator after each program on

punch cards.

By typing a letter ’A’, ’B’, ’C’, or ’D’ the operator could terminate the execution of the
program in the corresponding batch (to be applied if that program was clearly malfunc-
tioning, e.g. by generating lots of empty line–printer pages).

All output, also that for the paper–tape punch, the card punch, and the plotter, was
marked with the serial number, the box number, and the group/user number of the
program in a form that was easily readable by both the operator and the user.

The use of MILLI. MILLI was put into operation in February 1970. It made a
tremendous difference: for small jobs as well as for syntax checking of new programs
users could wait for the results. MILLI was soon adopted by the Mathematical Center.
It was also offered to the Technical University of Eindhoven, but there Dijkstra’s THE
system came into use as a multi–programming system along with the continued use of the
MICRO system.

The time slice was chosen to be 15 seconds. This was short enough to suggest parallel
execution of the four batches, at the same time long enough to make the time needed for

21P(rimo) for tape reader1, S(econdo) for tape reader2, and K(aart) for the card reader.

15

program swap acceptable: depending on the number of words to be swapped to and from
the drum in the order of 1 second.

In its first version the software for the card punch and the plotter still had to be written;
these were added gradually.

Another addition was the possibility to store on the drum a set of pre–compiled ALGOL
60 procedures and functions that could be called in a program without further notice or
declaration. If in a program such a library routine was called, its code was automatically
loaded from drum and added to the object program at the end of compilation. For this
facility only small changes to the ALGOL compiler were necessary, both for the pre–
compilation of the library and for the insertion in the object programs of the code of
called procedures or functions.

A final addition to MILLI was the ability to use ISO code instead of Flexowriter code on
paper tape for programs and their input data.

The development of MILLI would not have been possible without the experience and the
know–how obtained in the construction of MICRO: the step from PICO to MILLI would
have been too large. In retrospect MILLI was, for a single programmer without previous
experience in operating–system design, a huge job. Nevertheless no essential mistakes were
made and astonishingly little testing was required to come to a truly reliable system.

The final operating system used about 6600 instructions (to be compared with the 6080
words of MICRO). The bulk of it, 5120 instructions, were situated in directly addressable
store. Only the plotter section, the code for wrong–parity interrupts, and some conversion
tables were positioned in indirectly addressable store. For ALGOL 60 object code and its
working space were alltogether 25856 words available.

6 Final remarks.

Apart from the card–punch section all the code was written, punched, tested, and main-
tained by one man only.

It was written in X8 assembly language; I never experienced that as a problem or a
drawback.

Of course the text–editing facilities of today were totally absent. All the code was typed
on a FRIDEN Flexowriter, a typewriter which produced both a print on paper and a
paper–tape encoding. A Flexowriter could also read and print a paper tape and, if so
desired, re–punch the tape; in this way it could be used for corrections. All this was rather
labour–intensive. For MILLI allmost all code was rewritten and, therefore, retyped.

Was the work meaningfull in the time that the first time–sharing systems came into
existence22?

We should not forget that the hardware of the Electrologica X8 lend itself hardly to
build time-sharing systems. It had no monitor/user mode, it had, at least initially, no
memory protection, it had no virtual memory facilities (allthough Dijkstra’s THE system

22e.g. CTSS (1961), MULTICS (1969), UNIX (1969)

16

implemented virtual memory for the X8), and magnetic–disc units were small (8K words)
and expensive.

Acknowledgement
I would like Philips Research Eindhoven for giving me the opportunity to write this paper.
I am also grateful to Jan Korst who was so kind to read it and to make useful comments.

References

[1] E.W. Dijkstra, ”Cooperating sequential processes”,
EWD 123, 1965.
reprinted in F. Genuys (ed.), ”Programming Languages”,
Academic Press 1968.

[2] E.W. Dijkstra, ”Een algorithme ter voorkoming van dodelijke omarming”,
EWD 108, 1964.
E.W. Dijkstra, The mathematics behind the Banker’s Algorithm”,
EWD 623, 1977.
reprinted in E.W.Dijkstra, ”Selected writings on computing: a personal perspective”,
Springer Verlag 1982, p. 308–312.

[3] F.E.J. Kruseman Aretz and B.J. Mailloux, ”The ELAN source text of the Mathemat-
ical Center ALGOL 60 system for the EL X8”,
Mathematical Center report MR 84, Mathematisch Centrum 1966

[4] F.E.J. Kruseman Aretz, ”Doelstellingen en achtergronden van de operating systems
PICO, MICRO en MILLI ”,
Informatie 16 (1974) 672–678 (in Dutch).

[5] F.E.J. Kruseman Aretz, ”The Dijkstra–Zonneveld ALGOL 60 compiler for the Elec-
trologica X1”,
CWI report SEN–N0301, Centrum Wiskunde en Informatica, June 2003.

[6] F.E.J. Kruseman Aretz, ”A comparison between the ALGOL 60 implementations on
the Electrologica X1 and the Electrologica X8”,
CWI report SEN–E0801, Centrum Wiskunde & Informatica, September 2008.

17

