@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Python tutorial
G. van Rossum
Computer Science/Department of Algorithmics and Architecture

CS-R9526 1995

Report CS-R9526
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Python Tutorial

Guido van Rossum

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
guido@cwi.nl

Version 1.2 (10 April 1995)

Abstract

Python is a simple, yet powerful programming language that bridges the gap between C and shell programming,
and is thus ideally suited for “throw-away programming” and rapid prototyping. Its syntax is put together from
constructs borrowed from a variety of other languages; most prominent are influences from ABC, C, Modula-3
and lcon.

The Python interpreter is easily extended with new functions and data types implemented in C. Python is also
suitable as an extension language for highly customizable C applications such as editors or window managers.

Python is available for various operating systems, amongst which several flavors of UNIX, Amoeba, the Apple
Macintosh 0.S., and MS-DOS.

This tutorial introduces the reader informally to the basic concepts and features of the Python language
and system. It helps to have a Python interpreter handy for hands-on experience, but as the examples are
self-contained, the tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library Reference manual. The
Python Reference Manual gives a more formal definition of the language.

CR Subject Classification (1991): D.3.2, D.3.3, D.1.5, E.1, D.2.6, D.2.m.
Keywords & Phrases: Object-oriented languages, Python, Spanish Inquisition, SPAM.

Copyright (©) 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation, and
that the names of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Contents

1 Whetting Your Appetite 1
1.1 WhereFromHere 2

2 Usingthe Python Interpreter 3
21 Invokingthelnterpreter 3
211 ArgumentPassing 4

212 InteractiveMode. 4

2.2 Thelnterpreter anditsEnvironment oo 4
221 ErrorHandling. 4

222 TheModuleSearchPath 5

223 “Compiled” Pythonfiles 5

224 Executable Pythonscripts 5

225 ThelnteractiveStartupFile L 5

2.3 Interactive Input Editing and History Substitution 6
231 LineEditing 6

232 History Substitution Lo 6

233 KeyBindings 6

234 Commentary e e e e 7

3 AnInformal Introduction to Python 8
3.1 UsingPythonasaCalculator 8
311 Numbers. 8

312 SUINGS o e 10

313 ListS 12

3.2 FirstStepsTowardsProgramming 14

4 More Control Flow Tools 16
41 IfStatements e 16
42 ForStatements e 16
43 Therange() Function 17
4.4 Break and Continue Statements, and Else ClausesonLoops 18
45 PassStatements 18
46 DefiningFunctions. 19

5 Oddsand Ends 21
51 MoreonLists 21
52 Thedel statement 22

10

5.3
54
5.5
5.6

Tuplesand Sequences e
Dictionaries e e
MoreonConditions
Comparing Sequencesand Other Types

M odules

6.1
6.2
6.3

MoreonModules e e
Standard Modules e
Thedir () function

Output Formatting

Errorsand Exceptions

8.1
8.2
8.3
8.4
8.5
8.6

Syntax Errorso
Exceptions
Handling Exceptions
RaisingExceptions.
User-defined Exceptions L
Defining Clean-up Actions

Classes

9.1
9.2
9.3

9.4
9.5

9.6

Awordaboutterminology
Pythonscopesandnamespaces
Afirstlookatclasses. e
9.3.1 Classdefinitionsyntax
932 Classobjects
933 Instanceobjects
934 Methodobjects
Randomremarks L
Inheritance
951 Multipleinheritance
Oddsandends

Recent Additions
10.1 ThelastPrinted Expression i
10.2 StringLiterals

10.2.1 DoubleQuotes.
10.2.2 Continuation Of String Literals
10.2.3 Triplequotedstrings.
10.2.4 String Literal Juxtaposition L. oL

10.3 TheFormatting Operator o o i i

1031 BasicUsage
10.3.2 Referencing VariablesByName

10.4 Optional Function Arguments

10.4.1 Default ArgumentValues L
10.4.2 Arbitrary Argument Lists L oo

10.5 Lambda And Functional ProgrammingTools

11

10.5.1 LambdaForms. e 52

10.5.2 Map,Reduceand Filter L. 52
10.6 Continuation LinesWithout Backslashes. 53
10.7 Regular EXpressions 54
10.8 Generdlized Dictionaries L 54
10.9 MiscellaneousNew Built-inFunctions 55
10.10ElseClauseFor Try Statement 55
10.11New ClassFeaturesinRelease1.1o 55

10.11.1 New Operator Overloading 56

10.11.2 Trapping Attribute ACCESS L 56

10.11.3CdlingaClassinstance o 57
New in Release 1.2 59
11.1 New ClassFeatures o 59
11.2 Unix Signal Handling 59
11.3 ExceptionsCanBeClasses 59
11.4 Object Persistency and Object Copying 60

1141 PersistentObjects 61

1142 CopyingObjects 61
11.5 Documentation SIrNgS« o oo 61
11.6 Customizing ImportandBuilt-Inso 64
11.7 PythonandtheWorld-WideWeb, . 64
11.8 Miscellaneous 64

Chapter 1

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this fegling: you'd love to add yet another
feature, but it's already so slow, and so big, and so complicated; or the feature involves a system call
or other function that is only accessible from C . . . Usually the problem at hand isn’t serious enough
to warrant rewriting the script in C; perhaps because the problem requires variable-length strings or
other datatypes (like sorted lists of file names) that are easy in the shell but lots of work to implement
in C; or perhaps just because you're not sufficiently familiar with C.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real
programming language, offering much more structure and support for large programs than the shell
has. On the other hand, it aso offers much more error checking than C, and, being a very-high-level
language, it has high-level datatypes built in, such as flexible arrays and dictionaries that would cost
you days to implement efficiently in C. Because of its more general datatypes Python isapplicableto
amuch larger problem domain than Awk or even Perl, yet many things are at least as easy in Python
as in those languages.

Python allows you to split up your program in modules that can be reused in other Python programs.
It comes with a large collection of standard modules that you can use as the basis of your programs
— or asexamples to start learning to program in Python. There are also built-in modulesthat provide
thingslikefile 1/O, system calls, sockets, and even ageneric interface to window systems (STDWIN).

Pythonisan interpreted language, which can save you considerabl e time during program devel opment
because no compilation and linking is necessary. The interpreter can be used interactively, which
makes it easy to experiment with features of the language, to write throw-away programs, or to test
functions during bottom-up program development. It isalso a handy desk calculator.

Python allowswriting very compact and readable programs. Programswritten in Python aretypically
much shorter than equivalent C programs, for several reasons:

¢ the high-level datatypesallow you to express complex operationsin a single statement;
¢ statement grouping is done by indentation instead of begin/end brackets;

¢ no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or
module to the interpreter, either to perform critical operations at maximum speed, or to link Python

1

programs to libraries that may only be available in binary form (such as a vendor-specific graphics
library). Once you are really hooked, you can link the Python interpreter into an application written
in C and use it as an extension or command language for that application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus’ and has
nothing to do with nasty reptiles...

1.1 WhereFrom Here

Now that you are all excited about Python, you'll want to examine it in some more detail. Since the
best way to learn alanguageis using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane
information, but essential for trying out the examples shown later.

Therest of thetutorial introducesvariousfeaturesof the Python language and system though examples,
beginning with simple expressions, statements and data types, through functions and modules, and
finally touching upon advanced concepts like exceptions and user-defined classes.

When you're through with the tutorial (or just getting bored), you should read the Library Reference,
which gives complete (though terse) reference material about built-in and standard types, functions
and modules that can save you alot of time when writing Python programs.

Chapter 2

Using the Python Interpreter

2.1 Invokingthelnterpreter

The Pythoninterpreter isusualy installedas/ usr / | ocal / bi n/ pyt hon onthose machineswhere
itisavailable; putting/ usr/ | ocal / bi n inyour UNiX shell’s search path makesit possibleto start
it by typing the command

pyt hon

to the shell. Since the choice of the directory where the interpreter lives is an installation op-
tion, other places are possible; check with your local Python guru or system administrator. (E.g.,
[usr /| ocal / pyt hon isapopular aternative location.)

The interpreter operates somewhat like the UNix shell: when called with standard input connected to
atty device, it reads and executes commandsinteractively; when called with afile name argument or
with afile as standard input, it reads and executes a script from that file.

A third way of starting the interpreter is“pyt hon -c¢ command [arg] ...", which executes
the statement(s) in command, analogous to the shell’s - ¢ option. Since Python statements often
contain spaces or other characters that are specia to the shell, it is best to quote command in its
entirety with double quotes.

Note that there is a difference between “pyt hon fil e” and “pyt hon <file”. In the latter
case, input requests from the program, such ascallstoi nput () andr aw_i nput (), are satisfied
from file. Since this file has already been read until the end by the parser before the program starts
executing, the program will encounter EOF immediately. In the former case (which is usually what
you want) they are satisfied from whatever file or device is connected to standard input of the Python
interpreter.

When ascript fileis used, it is sometimes useful to be able to run the script and enter interactive mode
afterwards. Thiscan bedoneby passing - i beforethe script. (Thisdoesnot work if the script isread
from standard input, for the same reason as explained in the previous paragraph.)

211 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to
the script in the variable sys. ar gv, which is alist of strings. Its length is at least one; when no
script and no arguments are given, sys. ar gv[0] is an empty string. When the script name is
givenas’ -’ (meaning standard input), sys. argv[0] issetto’ -’ . When-c¢ command isused,
sys. argv[0] issetto’ - c’. Optionsfound after - ¢ conmmand are not consumed by the Python
interpreter’s option processing but left insys. ar gv for the command to handle.

2.1.2 InteractiveMode

When commands are read from atty, the interpreter is said to be in interactive mode. In thismode it
prompts for the next command with the primary prompt, usually three greater-than signs (>>>); for
continuation linesit prompts with the secondary prompt, by default threedots(. . .). Typing an EOF
(Control-D) at the primary prompt causes the interpreter to exit with a zero exit status.

The interpreter prints a welcome message stating its version number and a copyright notice before
printing the first prompt, e.g.:

pyt hon

Python 1.2 (Mar 14 1995)

Copyright 1991-1995 Stichting Mat hemati sch Centrum Anst erdam
>>>

2.2 Thelnterpreter and its Environment

221 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode,
it then returns to the primary prompt; when input came from afile, it exits with a nonzero exit status
after printing the stack trace. (Exceptions handled by an except clauseinat ry statement are not
errors in this context.) Some errors are unconditionally fatal and cause an exit with a nonzero exit;
this appliesto internal inconsistencies and some cases of running out of memory. All error messages
are written to the standard error stream; normal output from the executed commands is written to
standard output.

Typing theinterrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels
the input and returnsto the primary prompt.! Typing an interrupt while acommand is executing raises
the Keyboar dl nt er r upt exception, which may be handled by at r y statement.

LA problem with the GNU Readline package may prevent this.

2.2.2 TheModule Search Path

When amodule named spamis imported, the interpreter searches for a file named spam py in the
list of directories specified by the environment variable PYTHONPATH. It has the same syntax as the
UNIX shell variable PATH, i.e., alist of colon-separated directory names. When PYTHONPATH is not
set, or when thefileis not found there, the search continues in an installation-dependent default path,
usualy . : /usr/ 1l ocal /i b/ python.

Actually, modules are searched in the list of directories given by the variable sys. pat h which is
initialized from PYTHONPATH and the installation-dependent default. This alows Python programs
that know what they’re doing to modify or replace the module search path. See the section on Standard
Modules later.

2.2.3 “Compiled” Python files

Asan important speed-up of the start-up time for short programsthat use alot of standard modules, if
afilecaledspam pyc existsinthedirectory wherespam py isfound, thisisassumed to contain an
already-“ compiled” version of the module spam The modification time of the version of spam py
used to create spam pyc isrecorded in spam pyc, and thefileisignored if these don’t match.

Whenever spam py is successfully compiled, an attempt is made to write the compiled version to
spam pyc. Itisnot an error if this attempt fails; if for any reason thefile is not written completely,
theresulting spam pyc filewill be recognized asinvalid and thus ignored later.

2.24 Executable Python scripts

On BSD’ish UNIx systems, Python scripts can be made directly executable, like shell scripts, by
putting the line

#!' [usr/ 1 ocal/ bin/python

(assuming that’s the name of the interpreter) at the beginning of the script and giving the file an
executable mode. The#! must be the first two characters of thefile.

2.25 Thelnteractive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed
every time the interpreter is started. You can do this by setting an environment variable named
PYTHONSTARTUP to the name of afile containing your start-up commands. This is similar to the
. profil e feature of the UNIX shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and
not when/ dev/ tt y isgiven as the explicit source of commands (which otherwise behaves like an
interactive session). Itis executed in the same name space where interactive commands are executed,
so that objects that it defines or imports can be used without qualification in the interactive session.
You can aso change the promptssys. ps1 andsys. ps2 inthisfile.

5

If you want to read an additional start-up file from the current directory, you can program
this in the global start-up file, eg. execfile(’.pythonrc’). If you want to use
the startup file in a script, you must write this explicitly in the script, eg. inport os;
execfil e(os. environ[’ PYTHONSTARTUP]).

2.3 Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input line and history substitu-
tion, similar to facilitiesfound in the Korn shell and the GNU Bash shell. Thisisimplemented using
the GNU Readline library, which supports Emacs-style and vi-style editing. Thislibrary hasits own
documentation which | won't duplicate here; however, the basics are easily explained.

Perhaps the quickest check to see whether command line editing is supported is typing Control-P to
the first Python prompt you get. If it beeps, you have command line editing. If nothing appears to
happen, or if * P is echoed, you can skip the rest of this section.

23.1 LineEditing

If supported, input line editing is active whenever theinterpreter printsaprimary or secondary prompt.
The current line can be edited using the conventional Emacs control characters. The most important of
these are: C-A (Control-A) moves the cursor to the beginning of the line, C-E to the end, C-B moves
it one position to the left, C-F to the right. Backspace erases the character to the left of the cursor,
C-D the character to itsright. C-K kills (erases) the rest of the line to the right of the cursor, C-Y
yanks back the last killed string. C-underscore undoes the last change you made; it can be repeated
for cumulative effect.

2.3.2 History Substitution

History substitution works asfollows. All non-empty input linesissued are saved in a history buffer,
and when a new prompt is given you are positioned on a new line at the bottom of this buffer. C-P
moves one line up (back) in the history buffer, C-N moves one down. Any linein the history buffer
can be edited; an asterisk appears in front of the prompt to mark a line as modified. Pressing the
Return key passes the current line to the interpreter. C-R starts an incrementa reverse search; C-S
starts a forward search.

2.3.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing
commandsin aninitialization file called $HOVE/ . i nput r c. Key bindings have the form

key-nanme: function-nanme

or

"string": function-nane

and options can be set with

set option-nane val ue

For example:

|1 prefer vi-style editing:
set editing-node vi

Edit using a single line:
set horizontal -scroll-npde On
Rebi nd sone keys:

Met a- h: backward-ki | | -word
"\'C-u": universal -argunent
"\Cx\Cr": re-read-init-file

Note that the default binding for TAB in Python is to insert a TAB instead of Readline’s default
filename completion function. If you insist, you can override this by putting

TAB: conpl ete

inyour $HOVE/ . i nput r c. (Of course, thismakesit hard to type indented continuation lines...)

2.3.4 Commentary

This facility is an enormous step forward compared to previous versions of the interpreter; however,
some wishes are left: It would be niceif the proper indentation were suggested on continuation lines
(the parser knows if an indent token is required next). The completion mechanism might use the
interpreter’s symbol table. A command to check (or even suggest) matching parentheses, quotes etc.
would also be useful.

Chapter 3

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts
(>>>and. . .): torepeat the example, you must type everything after the prompt, when the prompt
appears; linesthat do not begin with a prompt are output from the interpreter.> Note that a secondary
prompt on a line by itself in an example means you must type a blank line; this is used to end a
multi-line command.

3.1 Using Python asa Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>.
(It shouldn’t take long.)

3.1.1 Numbers

The interpreter acts as a smple calculator: you can type an expression at it and it will write the
value. Expression syntax is straightforward: the operators+, - , * and/ work just like in most other
languages (e.g., Pascal or C); parentheses can be used for grouping. For example:

L°d prefer to use different fonts to distinguish input from output, but the amount of LaTeX hacking that would require
is currently beyond my ability.

>>> 242

>>> # This is a conment
2+2

>>> 2+2 # and a comment on the sane |line as code
>>> (50-5*6)/4

>>> # |Integer division returns the floor:
713

>>> 7/-3
-3
>>>

Likein C, theequal sign (=) isused to assign avalueto avariable. The value of an assignment is not
written:

>>> width = 20
>>> hei ght = 5*9
>>> width * height
900

>>>

A value can be assigned to several variables simultaneously:

>>>
>>>
0
>>> y
0
>>> 7

0
>>>

X =y =z=0 # Zero x, y and z
X

Thereisfull support for floating point; operatorswith mixed type operands convert theinteger operand
to floating point:

>>> 4 * 2.5/ 3.3
3. 0303030303

>>> 7.0/ 2

3.5

>>>

3.1.2 Strings
Besides numbers, Python can also manipulate strings, enclosed in single quotes or double quotes:

>>> ' spam eggs

' spam eggs’

>>> ' doesn\’'t’

"doesn’'t"

>>> "doesn't"

"doesn’' t"

>>> '"Yes," he said.
""Yes," he said.’

>>> "\"Yes,\" he said."
""Yes," he said.’

>>> ""|Isn\'t," she said.’
""lsn\'t," she said.’
>>>

Strings are written the same way as they are typed for input: inside quotes and with quotes and other
funny characters escaped by backs ashes, to show the precise value. The string is enclosed in double
guotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes.
(Thepri nt statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated with *

>>> word = 'Help' + A

>>> wor d

" Hel pA

>>> '<’ + word*5 + >’

' <Hel pAHel pAHel pAHel pAHel pA>’
>>>

Strings can be subscripted (indexed); likein C, the first character of a string has subscript (index) O.

There is no separate character type; a character is simply astring of size one. Likein Icon, substrings
can be specified with the slice notation: two indices separated by a colon.

>>> wor d[4]
lAl

>>> wor d[0: 2]
1 l_bi

>>> wor d[2: 4]
1 I p1

>>>

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index
defaults to the size of the string being sliced.

10

>>> word[: 2] # The first two characters

ll_bi

>>> word[2:] # Al but the first two characters
leAl

>>>

Here's auseful invariant of slice operations: s[:i] + s[i:] equalss.

>>> word[:2] + word[2:]
" Hel pA

>>> word[: 3] + word[3:]
" Hel pA

>>>

Degenerate dlice indices are handled gracefully: an index that is too large is replaced by the string
Size, an upper bound smaller than the lower bound returns an empty string.

>>> wor d[1: 100]
"el pA
>>> wor d[10:]

>>> word[2: 1]

>>>

Indices may be negative numbers, to start counting from the right. For example:

>>> wor d[- 1] # The | ast character

lAl

>>> wor d[- 2] # The | ast-but-one character

lpl

>>> word[- 2:] # The | ast two characters

lpA1

>>> word[: - 2] # Al but the last two characters
L l_bll

>>>

But note that -0 isreally the same as 0, so it does not count from the right!
>>> wor d[- 0] # (since -0 equals 0)

’ Hl
>>>

Out-of-range negative dlice indices are truncated, but don't try this for single-element (non-dlice)
indices:

11

>>> wor d[- 100:]

" Hel pA
>>> wor d[- 10] # error
Traceback (innernost |ast):
File "<stdin>", line 1
I ndexError: string index out of range
>>>

The best way to remember how dlices work is to think of the indices as pointing between characters,
with the left edge of the first character numbered 0. Then the right edge of the last character of a
string of n characters hasindex n, for example:

S
| Hl e I | p| A
S
0 1 2 3 4 5
-5 -4 -3 -2 -1

Thefirst row of numbers gives the position of theindices0...5 in the string; the second row givesthe
corresponding negative indices. The dicefromi toj consists of all characters between the edges
labeledi and | , respectively.

For nonnegativeindices, the length of asliceisthe difference of theindices, if both are within bounds,
e.g., thelength of wor d[1: 3] is2.

The built-in function | en() returnsthe length of a string:

>>> s = 'supercalifragilisticexpialidocious’
>>> | en(s)

34

>>>

3.1.3 Lists

Python knows a number of compound data types, used to group together other values. The most
versatile isthe list, which can be written as alist of comma-separated values (items) between square
brackets. List items need not all have the same type.

>>> a = ['spam, 'eggs’, 100, 1234]
>>> a

['spami, ’'eggs’, 100, 1234]
>>>

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

12

>>> a[0]

' spam

>>> a[3]

1234

>>> af - 2]

100

>>> g[1:-1]

[eggs’, 100]

>>> a[:2] + ['bacon’, 2*2]
['spami, 'eggs’, 'bacon’, 4]
>>> 3*a[:3] + [’ Boe!’]
['spami, ’'eggs’, 100, 'spani, ’'eggs’, 100, ’'spam, 'eggs’, 100,
>>>

Unlike strings, which are immutable, it is possible to change individual el ements of alist:

>>> a

['spami, ’'eggs’, 100, 1234]
>>> g[2] = a[2] + 23

>>> a

["spami, 'eggs’, 123, 1234]
>>>

Assignment to dicesis also possible, and this can even change the size of the list:

>>> # Repl ace sone itens:
a[0:2] =1[1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Renove sone:
a[0:2] =]
>>> a
[123, 1234]
>>> # | nsert some:
a[1l:1] = ['bletch’, "xyzzy’]

>>> a

[123, 'bletch, ’'xyzzy', 1234]

>>> g[:0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, 'bletch’, ’'xyzzy’', 1234, 123, 'bletch’, ’'xyzzy', 1234]
>>>

The built-in function | en() aso appliesto lists:

13

' Boe! ’ |

>>> | en(a)
8
>>>

It ispossibleto nest lists (create lists containing other lists), for example:

>>>q = [2, 3]
>>>p =1[1, q, 4]

>>> | en(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[1] . append(’ xtra’) # See section 5.1
>>> ¢}

[1, [2, 3, '"xtra'], 4]

>>> q

[2, 3, "xtra']

>>>

Note that in the last example, p[1] and q really refer to the same object! We'll come back to object
semantics later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For
instance, we can write an initial subsequence of the Fibonacci series asfollows:

>>> # Fi bonacci series:
the sumof two el enents defines the next

... a b=0,1

>>> while b < 10:
print b
a, b ="0b, atb

1

1

2

3

5

8

>>>

This example introduces several new features.

14

Thefirst line contains a multiple assignment: the variablesa and b simultaneously get the new
values 0 and 1. On the last line this is used again, demonstrating that the expressions on the
right-hand side are all evaluated first before any of the assignments take place.

Thewhi | e loop executes as long as the condition (here: b < 10) remainstrue. In Python,
likein C, any non-zero integer valueistrue; zero isfalse. The condition may also be astring or
list value, in fact any sequence; anything with a non-zero length is true, empty sequences are
false. Thetest used in the example isasimple comparison. The standard comparison operators
arewrittenthesameasinC: <, >, ==, <=, >=and ! =.

The body of the loop is indented: indentation is Python’s way of grouping statements. Python
does not (yet!) provide an intelligent input line editing facility, so you have to type a tab or
space(s) for each indented line. In practice you will prepare more complicated input for Python
with atext editor; most text editors have an auto-indent facility. When a compound statement
is entered interactively, it must be followed by a blank line to indicate completion (since the
parser cannot guess when you have typed the last line).

The pri nt statement writes the value of the expression(s) it is given. It differs from just
writing the expression you want to write (as we did earlier in the calculator examples) in the
way it handles multiple expressions and strings. Strings are printed without quotes, and a space
isinserted between items, so you can format things nicely, likethis:

>>> | = 256*256

>>> print 'The value of i is’, i
The value of i is 65536

>>>

A trailing comma avoids the newline after the output:

>>>a, b =0, 1

>>> while b < 1000:
print b,
a, b ="0b, atb

112358 13 21 34 55 89 144 233 377 610 987
>>>

Notethat theinterpreter inserts anewline beforeit prints the next prompt if the last line was not
completed.

15

Chapter 4

More Control Flow Tools

Besidesthewhi | e statement just introduced, Python knowsthe usual control flow statements known
from other languages, with some twists.

4.1 |If Statements

Perhaps the most well-known statement typeisthei f statement. For example:

>>> if x < 0O

x =0

print 'Negative changed to zero’
elif x ==

print ' Zero’
elif x ==

print ’Single’
el se:
print ' More’

There can be zero or more el i f parts, and the el se part is optional. The keyword ‘el i f’ is
short for ‘el se i f’, andisuseful to avoid excessive indentation. Anif...elif...elif...
sequence is a substitute for the switch or case statements found in other languages.

4.2 For Statements

The f or statement in Python differs a bit from what you may be used to in C or Pascal. Rather
than always iterating over an arithmetic progression of numbers (like in Pascal), or leaving the user
completely freein theiteration test and step (as C), Python'sf or statement iterates over the items of
any sequence (e.g., alist or astring), in the order that they appear in the sequence. For example (no
pun intended):

16

>>> # Measure sone strings:
... a=1["cat’, "wndow , ’'defenestrate’]
>>> for x in a:
print x, |en(x)
cat 3
wi ndow 6

def enestrate 12
>>>

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable
sequencetypes,i.e., lists). If you need to modify the list you areiterating over, e.g., duplicate selected
items, you must iterate over a copy. The dlice notation makesthis particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire |ist
if len(x) > 6: a.insert(0, x)

>>> a

[’ defenestrate’, 'cat’, 'window ,b ’'defenestrate’]

>>>

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, the built-in functionr ange() comesin handy.
It generates lists containing arithmetic progressions, e.g.:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>

The given end point is never part of the generated list; r ange(10) generates a list of 10 values,
exactly the legal indices for items of a sequence of length 10. It is possible to let the range start at
another number, or to specify a different increment (even negative):

>>> range(5, 10)

[5 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

>>>

To iterate over the indices of a sequence, combiner ange() and| en() asfollows:

17

>>>a = ["Mary', "had’, "a, 'little, ’'lanb’]
>>> for i in range(len(a)):
print i, a[i]

0 Mary
1 had
2 a
3little

4 | anb
>>>

4.4 Break and Continue Statements, and Else Clauses on L oops

The br eak statement, likein C, breaks out of the smallest enclosing f or or whi | e loop.
Thecont i nue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statementsmay havean el se clause; itisexecuted when theloop terminates through exhaustion
of thelist (with f or) or when the condition becomes false (with whi | e), but not when the loop is
terminated by a br eak statement. Thisis exemplified by the following loop, which searches for
prime numbers:

>>> for n in range(2, 10):
for x in range(2, n):

if n %x ==
print n, "equals’, x, "*, n/Xx
br eak
el se:
print n, 'is a prinme nunber’

2 is a prinme nunber
3 is a prinme nunber
4 equals 2 * 2

5 is a prinme nunber
6 equals 2 * 3

7 is a prinme nunber
8 equals 2 * 4

9 equals 3 * 3

>>>

45 Pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the
program requires no action. For example:

18

>>> while 1:
pass # Busy-wait for keyboard interrupt

4.6 Defining Functions

We can create a function that writes the Fibonacci seriesto an arbitrary boundary:

>>> def fib(n): # wite Fibonacci series up to n
a, b=0, 1
while b < n:
print b,

a, b =b, atb

>>> # Now call the function we just defined:
fib(2000)

112358 13 21 34 55 89 144 233 377 610 987 1597

>>>

The keyword def introduces afunction definition. It must be followed by the function name and the
parenthesized list of formal parameters. The statements that form the body of the function starts at
the next line, indented by atab stop.

The execution of afunction introduces anew symbol table used for the local variables of thefunction.
More precisely, all variableassignmentsin afunction storethevaluein thelocal symbol table; whereas
variable referencesfirst look in the local symbol table, then in the global symbol table, and then in the
table of built-in names. Thus, global variables cannot be directly assigned a value within afunction
(unlessnamed in agl obal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the
called function when it is called; thus, arguments are passed using call by value.! When a function
calls another function, anew local symbol tableis created for that call.

A function definition introduces the function name in the current symbol table. The value of the
function name has a type that is recognized by the interpreter as a user-defined function. This value
can be assigned to another name which can then also be used as afunction. This serves as a genera
renaming mechanism:

>>> fib

<function object at 10042ed0>
>>> f = fib

>>> f(100)
11235813 21 34 55 89
>>>

LActually, call by object referencewould be a better description, since if amutable object is passed, the caller will see
any changes the callee makestoit (e.g., itemsinserted into alist).

19

You might object that fi b is not a function but a procedure. In Python, like in C, procedures are
just functions that don’t return avalue. In fact, technically speaking, procedures do return a value,
albeit arather boring one. Thisvalueis called None (it's a built-in name). Writing the value None
is normally suppressed by the interpreter if it would be the only value written. You can seeit if you
really want to:

>>> print fib(0)
None
>>>

It is smple to write a function that returns a list of the numbers of the Fibonacci series, instead of
printing it:

>>> def fib2(n): # return Fibonacci series up ton
result =[]
a, b=0, 1
while b < n:
resul t. append(b) # see bel ow

a, b =b, atb
return result

>>> £100 = fi b2(100) # call it

>>> 100 # wite the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>>

This example, as usual, demonstrates some new Python features:

e Ther et ur n statement returns with a value from a function. r et ur n without an expression
argument is used to return from the middle of a procedure (falling off the end also returnsfrom
aprocedure), in which case the None valueis returned.

e Thestatementr esul t . append(b) callsamethod of thelist object r esul t. A method is
afunction that ‘belongs’ to an object and is named obj . net hodnane, where obj issome
object (this may be an expression), and net hodnane isthe name of a method that is defined
by the object’s type. Different types define different methods. Methods of different types may
have the same name without causing ambiguity. (It is possible to define your own object types
and methods, using classes, as discussed later in this tutorial.) The method append shown
in the example, is defined for list objects; it adds a new element at the end of thelist. In this
exampleitisequivalenttoresult = result + [Db], but moreefficient.

20

Chapter 5

Odds and Ends

This chapter describes some things you've learned about already in more detail, and adds some new
things aswell.

51 Moreon Lists
The list data type has some more methods. Here are all of the methods of lists objects:

insert(i, X) Insert anitem at a given position. The first argument is the index of the el-
ement before which to insert, so a. i nsert (0, x) inserts a the front of the list, and
a.insert(len(a), x) isequivalenttoa.append(x).

append(x) Equivalenttoa.insert(len(a), Xx).

i ndex(x) Returntheindexinthelist of thefirst item whose valueisx. It isan error if thereisno
such item.

renove(x) Remove the first item from the list whose valueisx. Itisan error if thereis no such
item.

sort () Sorttheitemsof thelist, in place.
reverse() Reversetheeementsof thelit, in place.

count (x) Returnthe number of timesx appearsin thelist.

An example that uses all list methods:

21

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count(’ x’)
210

>>> a.insert(2, -1)

>>> a. append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a. i ndex(333)

1

>>> a.renove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

>>>

5.2 Thedel statement

Thereis away to remove an item from alist given itsindex instead of its value: the del statement.
This can aso be used to remove slices from alist (which we did earlier by assignment of an empty
list to the dlice). For example:

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[O0]

>>> a

[1, 66.6, 333, 333, 1234.5]

>>> del af 2: 4]

>>> a

[1, 66.6, 1234.5]
>>>

del can aso be used to delete entire variables:

>>> del a
>>>

Referencing the name a hereafter is an error (at least until another value is assigned to it). We'll find
other usesfor del later.

22

5.3 Tuplesand Sequences

We saw that lists and strings have many common properties, e.g., indexing and slicing operations.
They are two examples of sequence datatypes. Since Python isan evolving language, other sequence
data types may be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’'hello!’
>>> t[0]
12345
>>>
(12345, 54321, 'hello!’)
>>> # Tupl es may be nested:
u=t, (1, 2, 3, 4, 5
>>> U
((12345, 54321, 'hello!’), (1, 2, 3, 4, 5))
>>>

Asyou see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted
correctly; they may be input with or without surrounding parentheses, although often parentheses are
necessary anyway (if thetupleis part of alarger expression).

Tuples have many uses, e.g., (X, y) coordinate pairs, employee records from a database, etc. Tuples,
like strings, are immutable: it is not possible to assign to the individual items of a tuple (you can
simulate much of the same effect with slicing and concatenation, though).

A specia problem is the construction of tuples containing O or 1 items: the syntax has some extra
quirks to accommodate these. Empty tuples are constructed by an empty pair of parentheses; atuple
with oneitem is constructed by following avalue with acommal (it is not sufficient to enclose asingle
value in parentheses). Ugly, but effective. For example:

>>> empty = ()

>>> singleton = "hello’, # <-- note trailing comm
>>> | en(enpty)

0

>>> | en(si ngleton)

1

>>> sjngl eton

("hello,)

>>>

The statement t = 12345, 54321, ’'hello!’ isan example of tuple packing: the values
12345, 54321 and ' hel | 0!’ are packed together in a tuple. The reverse operation is also
possible, eg.:

>>> X, Yy, z =t
>>>

23

This is called, appropriately enough, tuple unpacking. Tuple unpacking requires that the list of
variables on the left has the same number of elements as the length of the tuple. Note that multiple
assignment isreally just a combination of tuple packing and tuple unpacking!

Occasionaly, the corresponding operation on lists is useful: list unpacking. This is supported by
enclosing the list of variablesin square brackets:

>>> a = ['spam, 'eggs’, 100, 1234]
>>> [al, a2, a3, a4] = a
>>>

5.4 Dictionaries

Another useful datatype built into Pythonisthe dictionary. Dictionaries are sometimesfound in other
languages as* associative memories’ or “associative arrays’. Unlike sequences, which are indexed by
arange of numbers, dictionaries are indexed by keys, which are strings (the use of non-string values
as keys is supported, but beyond the scope of this tutorial). It is best to think of a dictionary as an
unordered set of key:value pairs, with therequirement that the keysare unique (within one dictionary).
A pair of braces creates an empty dictionary: {} . Placing a comma-separated list of key:value pairs
within the braces adds initial key:value pairs to the dictionary; thisis aso the way dictionaries are
written on outpuit.

The main operations on a dictionary are storing a value with some key and extracting the value given
the key. It isalso possibleto delete akey:value pair withdel . If you store using akey that is already
in use, the old value associated with that key is forgotten. It is an error to extract a value using a
non-existent key.

The keys() method of a dictionary object returns a list of al the keys used in the dictionary, in
random order (if you want it sorted, just apply the sort () method to the list of keys). To check
whether asingle key isin thedictionary, usethe has_key() method of the dictionary.

Here isasmall example using adictionary:

24

>>> tel = {"jack : 4098, ’'sape’: 4139}

>>> tel[’'guido’] = 4127

>>> tel

{" sape’: 4139, 'guido’: 4127, 'jack': 4098}
>>> tel[']ack']

4098

>>> del tel[’ sape’]

>>> tel['irv'] = 4127

>>> tel

{’quido’: 4127, 'irv': 4127, ’'jack’: 4098}
>>> tel. keys()

['guido’, "irv', "jack']
>>> tel.has_key(’ guido’)
1

>>>

55 Moreon Conditions

The conditionsused inwhi | e andi f statements above can contain other operators besides compar-
isons.

The comparison operators i n and not i n check whether a value occurs (does not occur) in a
sequence. The operatorsi s andi s not compare whether two objects are really the same object;
thisonly mattersfor mutable objectslikelists. All comparison operators have the same priority, which
is lower than that of all numerical operators.

Comparisons can be chained: eg., a < b == c tests whether a is less than b and moreover b
equalsc.

Comparisons may be combined by the Boolean operatorsand and or , and the outcome of a compar-
ison (or of any other Boolean expression) may be negated with not . These all have lower priorities
than comparison operators again; between them, not has the highest priority, and or the lowest, so
that A and not B or Cisequivaentto (A and (not B)) or C. Of course, parentheses
can be used to express the desired composition.

The Boolean operators and and or are so-called shortcut operators: their arguments are evaluated
from left to right, and evaluation stops as soon as the outcome is determined. E.g., if Aand Caretrue
but Bisfalse, A and B and Cdoesnot evaluate the expression C. In general, thereturn value of a
shortcut operator, when used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For
example,

>>> stringl, string2, string3 ="'', "Trondheim, ’Hanmmrer Dance’
>>> non_null = stringl or string2 or string3

>>> non_nul |

" Trondhei m

>>>

25

Note that in Python, unlike C, assignment cannot occur inside expressions.

5.6 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison
uses lexicographical ordering: first thefirst two items are compared, and if they differ this determines
the outcome of the comparison; if they are equal, the next two items are compared, and so on, until
either sequence is exhausted. If two items to be compared are themselves sequences of the same
type, the lexicographical comparisonis carried out recursively. If al items of two sequences compare
equal, the sequences are considered equal. If one sequenceis an initial subsequence of the other, the
shorted sequence is the smaller one. Lexicographical ordering for strings uses the Ascli ordering for
individual characters. Some examples of comparisons between sequences with the same types:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] <[1, 2, 4]

"ABC < 'C < 'Pascal’ < 'Python’

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) = (1.0, 2.0, 3.0

(1, 2, ("aa’', 'ab’)) < (1, 2, ("abc’, 'a'), 4)

Note that comparing objects of different typesislegal. The outcome is deterministic but arbitrary:
the types are ordered by their name. Thus, alist is always smaller than a string, a string is always
smaller than atuple, etc. Mixed numeric types are compared according to their numeric value, so 0
equals 0.0, etc.

1The rules for comparing objects of different types should not be relied upon; they may change in afuture version of the
language.

26

Chapter 6

M odules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions
and variables) arelost. Therefore, if you want to write a somewhat longer program, you are better off
using atext editor to prepare the input for the interpreter and running it with that file as input instead.
Thisisknown as creating ascript. Asyour program gets longer, you may want to split it into several
filesfor easier maintenance. You may also want to use a handy function that you’ve written in several
programs without copying its definition into each program.

To support this, Python hasaway to put definitionsin afile and usethem in ascript or in an interactive
instance of the interpreter. Such afileis called a module; definitions from a module can be imported
into other modules or into the main module (the collection of variables that you have accessto in a
script executed at the top level and in calculator mode).

A moduleis afile containing Python definitions and statements. The file name is the module name
with the suffix . py appended. Within a module, the module’s name (as a string) is available as the
value of the global variable __nane__. For instance, use your favorite text editor to create a file
caledf i bo. py inthe current directory with the following contents:

Fi bonacci nunbers nodul e

def fib(n): # wite Fibonacci series up to n
a, b=0, 1
while b < n:
print b,

a, b =1b, atb

def fib2(n): # return Fibonacci series up to n
[

result =[]
a, b=20, 1
while b < n:

resul t. append(b)
a, b =1b, atb
return result

27

Now enter the Python interpreter and import this module with the following command:

>>> jnport fibo
>>>

This does not enter the names of the functions defined in f i bo directly in the current symbol table;
it only entersthe module namef i bo there. Using the module name you can access the functions:

>>> fibo.fib(1000)

112358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

"fibo’

>>>

If you intend to use a function often you can assign it to alocal name:

>>> fib = fibo.fib

>>> fib(500)
112358 13 21 34 55 89 144 233 377
>>>

6.1 Moreon Modules

A module can contain executable statements as well as function definitions. These statements are
intended to initialize the module. They are executed only the first time the module is imported
somewhere!

Each module hasitsown private symbol table, which isused asthe global symbol tableby all functions
defined in the module. Thus, the author of a module can use global variablesin the module without
worrying about accidental clasheswith auser’s global variables. On the other hand, if you know what
you are doing you can touch a modul€e’'s global variables with the same notation used to refer to its
functions, nodnane. i t emmane.

Modules can import other modules. It is customary but not required to placeal i nport statements
at the beginning of a module (or script, for that matter). The imported module names are placed in
the importing module’s global symbol table.

There is a variant of the i nport statement that imports names from a module directly into the
importing module’s symbol table. For example:

1n fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the
modul€e's global symbol table.

28

>>> fromfibo inmport fib, fib2

>>> fib(500)
112358 13 21 34 55 89 144 233 377
>>>

This does not introduce the module name from which the imports are taken in the local symbol table
(so intheexample, f i bo is not defined).

There is even avariant to import al names that a modul e defines:

>>> fromfibo inport *

>>> fib(500)
112358 13 21 34 55 89 144 233 377
>>>

Thisimports all names except those beginning with an underscore (_).

6.2 Standard Modules

Python comes with alibrary of standard modules, described in a separate document (Python Library
Reference). Some modulesare built into theinterpreter; these provide accessto operationsthat are not
part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitivessuch as system calls. The set of such modulesisa configuration option;
e.g., theanoeba moduleisonly provided on systemsthat somehow support Amoeba primitives. One
particular module deserves some attention: sys, which is built into every Python interpreter. The
variablessys. ps1 andsys. ps2 define the strings used as primary and secondary prompts:

>>> jnport sys

>>> sys. psl

T>>>

>>> SyS. ps2

>>> sys.psl = ' C
C print ' Yuck!’
Yuck!

(02

These two variables are only defined if the interpreter is in interactive mode.

Thevariablesys. pat hisalist of stringsthat determinetheinterpreter’s search path for modules. 1t
isinitialized to a default path taken from the environment variable PYTHONPATH, or from a built-in
default if PYTHONPATH s not set. You can modify it using standard list operations, e.g.:

>>> jnport sys
>>> gys. pat h. append(’ / uf s/ gui do/Iib/python’)
>>>

29

6.3 Thedi r () function

The built-in function di r isused to find out which names a module defines. It returns a sorted list of
strings:

>>> jnport fibo, sys
>>> dir(fibo)

[' __name_ ', 'fib, "fib2']

>>> dir(sys)

[" _nane__ ', ’argv’, 'builtin_nodul e_nanmes’, ’'copyright’, ’'exit’,
"maxint’, 'nodules’, 'path’, 'psl', 'ps2’, 'setprofile’, ’'settrace,
"stderr’, 'stdin', 'stdout’, ’'version’]

>>>

Without arguments, di r () liststhe names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> jnport fibo, sys

>>> fib = fibo.fib

>>> dir()

[" _nanme_ ', &', 'fib, "fibo, 'sys']
>>>

Note that it lists all types of names: variables, modules, functions, etc.

di r () doesnot list the names of built-in functions and variables. If you want alist of those, they are
defined in the standard module__bui [tin__:

>>> jnport __builtin__
>>> dir(__builtin_)

[AccessError’, 'AttributeError’, 'ConflictError’, "EOFError’, 'ICError’,
"InmportError’, 'lIndexError’, ’'KeyError’, ’'Keyboardinterrupt’,
"MenoryError’, 'NaneError’, 'None', 'Overflowkror’, 'RuntinmeError’,
"SyntaxError’, 'SystenError’, 'Systenk&xit’', 'TypeError’, ’ValueError’,
"ZeroDivisionError’, ' __nane__', 'abs’, "apply’, 'chr’, 'cnp’, ’'coerce’,
"compile, 'dir’, "divhmod’, 'eval’, 'execfile', 'filter’, "float’,
‘getattr’, ’hasattr’, "hash’, "hex', 'id, ’'input’, 'int’, 'len’, 'long,
"map’, 'max’, 'mn, 'oct’, 'open’, 'ord , 'pow, 'range’, ’'raw_input’,
"reduce’, 'reload’, 'repr’, 'round , 'setattr’, 'str’, 'type’, ’'xrange’]
>>>

30

Chapter 7

Output Formatting

So far we've encountered two waysof writing values: expression statementsandthepr i nt statement.
(A third way isusing thewr i t e method of file objects; the standard output file can be referenced as
sys. st dout . Seethe Library Reference for more information on this.)

Oftenyou’ |l want more control over theformatting of your output than simply printing space-separated
values. The key to nice formatting in Python is to do all the string handling yourself; using string
dlicing and concatenation operations you can create any lay-out you can imagine. The standard
module st r i ng contains some useful operations for padding strings to a given column width; these
will be discussed shortly. Finaly, the %operator (modulo) with a string left argument interprets this
string as a C sprintf format string to be applied to the right argument, and returns the string resulting
from this formatting operation.

One question remains, of course: how do you convert valuesto strings? Luckily, Python has away to
convert any valueto astring: just write the value between reverse quotes (* *). Some examples:

>>> x = 10 * 3.14
>>> y = 200*200
>>> s = '"The value of x is ' + ‘x* +’', andyis’' + ‘'y" + .. .7

>>> print s

The value of x is 31.4, and y is 40000...

>>> # Reverse quotes work on other types besides numnbers:

oo p =X Y]

>>> ps = ‘p

>>> ps

"[31.4, 40000]’

>>> # Converting a string adds string quotes and backsl ashes:
hello = "hello, world\n’

>>> hellos = 'hell o

>>> print hellos

"hell o, worl d\012’

>>> # The argunent of reverse quotes nmay be a tuple:

..o "X, Yy, ('spami, 'eggs’)’

"(31.4, 40000, (’'spam, ’'eggs’))"

>>>

31

Here are two ways to write a table of squares and cubes:

>>> jnport string

>>> for x in range(1, 11):
print string.rjust(‘x‘, 2), string.rjust(‘x*x", 3),
Note trailing comma on previous |ine
print string.rjust(’x*x*x', 4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

>>> for x in range(1,11):
print '9%2d %3d %d’ % (X, X*X, X*X*X)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
>>>

(Note that one space between each column was added by the way pri nt works: it always adds
spaces between its arguments.)

This example demonstrates the function st r i ng. rj ust (), which right-justifiesastring in afield
of agivenwidth by paddingit with spacesontheleft. Therearesimilar functionsst ri ng. | j ust ()

andstring. cent er (). Thesefunctionsdo not write anything, they just return anew string. If the
input string is too long, they don’t truncate it, but return it unchanged; thiswill mess up your column
lay-out but that’s usually better than the alternative, which would be lying about avalue. (If you really
want truncation you can aways add a slice operation, asinstring. | just (x, n)[0:n].)

There is another function, st ri ng. zfi | | , which pads a numeric string on the left with zeros. It
understands about plus and minus signs:

32

>>> string. zfill('12", 5)

' 00012

>>> string.zfill('-3.14", 7)
'-003. 14

>>> string. zfill (' 3.14159265359’, 5)
' 3. 14159265359’

>>>

33

Chapter 8

Errorsand Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried out the examples
you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors
and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get
while you are till learning Python:

>>> while 1 print "Hello world’
File "<stdin>", line 1
while 1 print "Hello world’

SyntaxError: invalid syntax
>>>

The parser repeats the offending line and displays alittle ‘arrow’ pointing at the earliest point in the
line where the error was detected. The error is caused by (or at |east detected at) the token preceding
the arrow: in the example, the error is detected at the keyword pri nt, sinceacolon (:) ismissing
before it. File name and line number are printed so you know where to ook in case the input came
from ascript.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is
made to executeit. Errors detected during execution are called exceptions and are not unconditionally
fatal: you will soon learn how to handle them in Python programs. Most exceptions are not handled
by programs, however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (innernost |ast):
File "<stdin>", line 1
ZeroDi vi sionError: integer division or nodul o
>>> 4 + spanf3
Traceback (innernost |ast):
File "<stdin>", line 1
NameError: spam
>>> "2 4+ 2
Traceback (innernost |ast):

File "<stdin>", line 1
TypeError: illegal argunent type for built-in operation
>>>

The last line of the error message indicates what happened. Exceptions come in different types, and
the type is printed as part of the message: the types in the example are Zer oDi vi si onError,
NanmeEr ror and TypeEr r or. The string printed as the exception type is the name of the built-in
name for the exception that occurred. Thisis true for all built-in exceptions, but need not be true for
user-defined exceptions (although it is a useful convention). Standard exception names are built-in
identifiers (not reserved keywords).

The rest of the line is a detail whose interpretation depends on the exception type; its meaning is
dependent on the exception type.

The preceding part of the error message showsthe context where the exception happened, in the form
of a stack backtrace. In genera it contains a stack backtrace listing source lines; however, it will not
display lines read from standard input.

The Python library reference manual lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It ispossibleto write programsthat handle selected exceptions. Look at the following example, which
prints atable of inverses of some floating point numbers:

>>> nunbers = [0.3333, 2.5, 0, 10]
>>> for x in nunbers:
print x,
try:
print 1.0/ x
except ZeroDi visionError:
print '*** has no inverse ***’

0. 3333 3.00030003

2.5 0.4

0O *** has no i nverse ***
10 0.1

>>>

35

Thet ry statement works asfollows.

o First, thetry clause (the statement(s) between thet r y and except keywords) is executed.

¢ If no exception occurs, the except clause is skipped and execution of the t ry statement is
finished.

¢ |f an exception occurs during execution of thetry clause, therest of the clauseis skipped. Then
if its type matches the exception named after theexcept keyword, therest of the try clauseis
skipped, the except clause is executed, and then execution continues after thet r y statement.

¢ If an exception occurs which does not match the exception named in the except clause, it is
passed on to outer try statements; if no handler is found, it is an unhandled exception and
execution stops with a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions.
At most one handler will be executed. Handlersonly handleexceptionsthat occur in the corresponding
try clause, not in other handlers of the samet ry statement. An except clause may name multiple
exceptions as a parenthesized list, e.g.:

except (RuntinmeError, TypeError, NanmeError):
pass

Thelast except clause may omit the exception name(s), to serve asawildcard. Use thiswith extreme
caution, sinceit is easy to mask areal programming error in thisway!

When an exception occurs, it may have an associated val ue, also known as the exceptions's argument.
The presence and type of the argument depend on the exception type. For exception typeswhich have
an argument, the except clause may specify avariable after the exception name (or list) to receive the
argument’s value, asfollows:

>>> try:

spam()
except NanmeError, x:
print 'nane’, x, 'undefined’

name spam undefi ned
>>>

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled
exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also
if they occur inside functionsthat are called (even indirectly) in the try clause. For example:

36

>>> def this_fails():

x =1/0
>>> try:
this_fails()
except ZeroDivisionError, detail:
print 'Handling run-tine error:’, detail

Handling run-tine error: integer division or nodulo
>>>

8.4 Raising Exceptions

Ther ai se statement alows the programmer to force a specified exception to occur. For example:

>>> rai se NaneError, ’'Hi There’
Traceback (innernost |ast):

File "<stdin>", line 1
NaneError: H There
>>>

Thefirstargumenttor ai se namesthe exceptionto beraised. Theoptional second argument specifies
the exception’s argument.

8.5 User-defined Exceptions

Programs may name their own exceptions by assigning a string to a variable. For example:

>>> my_exc = 'ny_exc’
>>> try:
rai se ny_exc, 2*2
except ny_exc, val:
print 'My exception occurred, value:’, val

My exception occurred, value: 4

>>> raise nmy_exc, 1

Traceback (innernost |ast):
File "<stdin>", line 1

my_exc: 1

>>>

Many standard modules use this to report errors that may occur in functions they define.

37

8.6 Defining Clean-up Actions

Thet r y statement has another optional clause which isintended to define clean-up actions that must
be executed under all circumstances. For example:

>>> try:
rai se Keyboardlnterrupt
finally:
print ' Goodbye, world!’

Goodbye, worl d!
Traceback (innernost |ast):

File "<stdin>", line 2
Keyboar dl nt er r upt
>>>

Afinal |y clauseisexecuted whether or not an exception hasoccurred inthet r y clause. When an
exception has occurred, it is re-raised after thef i nal | y clauseis executed. Thefi nal | y clause
is also executed “on theway out” whenthet r y statementisleft viaabr eak or r et ur n statement.

A t ry statement must either have one or more except clauses or onefi nal | y clause, but not
both.

38

Chapter 9

Classes

Python’s class mechanism adds classesto the language with aminimum of new syntax and semantics.
It isa mixture of the class mechanisms found in C++ and Modula-3. Asistrue for modules, classes
in Python do not put an absolute barrier between definition and user, but rather rely on the politeness
of the user not to “break into the definition.” The most important features of classes are retained with
full power, however: the class inheritance mechanism allows multiple base classes, a derived class
can override any methods of its base class(es), a method can call the method of a base class with the
same name. Objects can contain an arbitrary amount of private data.

In C++ terminology, al class members (including the data members) are public, and all member
functions are virtual. There are no specia constructors or destructors. Asin Modula-3, there are no
shorthands for referencing the object’s members from its methods: the method function is declared
with an explicit first argument representing the object, which is provided implicitly by the call. As
in Smalltalk, classes themselves are objects, albeit in the wider sense of the word: in Python, all
data types are objects. This provides semantics for importing and renaming. But, just likein C++ or
Modula-3, built-in types cannot be used as base classes for extension by the user. Also, likein C++
but unlike in Modula-3, most built-in operators with special syntax (arithmetic operators, subscripting
etc.) can be redefined for class members.

9.1 A word about terminology

Lacking universally accepted terminology to talk about classes, I’ll make occasional use of Smalltalk
and C++ terms. (1'd use Modula-3 terms, since its object-oriented semantics are closer to those of
Python than C++, but | expect that few readers have heard of it...)

| also have to warn you that there’s a terminological pitfall for object-oriented readers. the word
“object” in Python does not necessarily mean a class instance. Like C++ and Modula-3, and unlike
Smalltalk, not all types in Python are classes: the basic built-in types like integers and lists aren't,
and even somewhat more exotic types likefilesaren’t. However, all Python types share alittle bit of
common semanticsthat is best described by using the word object.

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object.
This is known as dliasing in other languages. This is usually not appreciated on a first glance
at Python, and can be safely ignored when dealing with immutable basic types (numbers, strings,

39

tuples). However, dliasing has an (intended!) effect on the semantics of Python code involving
mutable objects such as lists, dictionaries, and most types representing entities outside the program
(files, windows, etc.). This is usually used to the benefit of the program, since aliases behave like
pointers in some respects. For example, passing an object is cheap since only a pointer is passed by
the implementation; and if afunction modifies an object passed as an argument, the caller will seethe
change — this obviates the need for two different argument passing mechanisms asin Pascal.

9.2 Python scopesand name spaces

Before introducing classes, | first have to tell you something about Python's scope rules. Class
definitions play some neat tricks with name spaces, and you need to know how scopes and name
spaces work to fully understand what’s going on. Incidentally, knowledge about this subject is useful
for any advanced Python programmer.

Let’s begin with some definitions.

A name space is a mapping from names to objects. Most name spaces are currently implemented as
Python dictionaries, but that's normally not noticeable in any way (except for performance), and it
may change in the future. Examples of name spaces are: the set of built-in names (functions such
as abs(), and built-in exception names); the global names in a module; and the local namesin a
function invocation. Inasensetheset of attributes of an object also form aname space. Theimportant
thing to know about name spaces is that there is absolutely no relation between names in different
name spaces, for instance, two different modules may both define a function “maximize” without
confusion — users of the modules must prefix it with the module name.

By the way, | use the word attribute for any name following a dot — for example, in the expression
z.real, real isan attribute of the object z. Strictly speaking, references to names in modules
are attribute references: in the expression nodnane. f uncnane, nodnane isamodule object and
f uncnane isan attribute of it. In this case there happens to be a straightforward mapping between
the modul€'s attributes and the global names defined in the module: they sharethe same name space!!

Attributesmay beread-only or writable. Inthelatter case, assignment to attributesispossible. Module
attributesarewritable: youcanwritenodnane. the_answer = 42. Writableattributesmay also
be deleted with the del statement, e.g. del nodnane. the_answer.

Name spacesare created at different momentsand have different lifetimes. Thename space containing
the built-in names is created when the Python interpreter starts up, and is never deleted. The global
name space for a module is created when the module definition is read in; normally, module name
spaces also last until the interpreter quits. The statements executed by the top-level invocation of
the interpreter, either read from a script file or interactively, are considered part of a module called
__mai n__, sothey have their own global name space. (The built-in names actually also live in a
module; thisiscalled __builtin__.)

The local nhame space for a function is created when the function is called, and deleted when the
function returns or raises an exception that is not handled within the function. (Actually, forgetting
would be a better way to describe what actually happens.) Of course, recursive invocations each have

LExcept for one thing. Module objects have a secret read-only attribute called __di ¢t __ which returnsthe dictionary
used to implement the modul€e's name space; thename __di ct __ isan attribute but not a global name. Obviously, using
this violates the abstraction of nhame space implementation, and should be restricted to thingslike post-mortem debuggers...

40

their own local name space.

A scopeisatextual region of aPython program where a name spaceis directly accessible. “Directly
accessible” here meansthat an unqualified reference to a name attempts to find the name in the name
Space.

Although scopes are determined statically, they are used dynamically. At any time during execution,
exactly three nested scopes are in use (i.e., exactly three name spaces are directly accessible): the
innermost scope, which is searched first, contains the local names, the middle scope, searched next,
containsthe current modul€e’s global names, and the outermost scope (searched last) isthe name space
containing built-in names.

Usually, the local scope references the local names of the (textually) current function. Outside of
functions, the local scope references the same name space as the global scope: the module’s name
gpace. Class definitions place yet another name space in the local scope.

It isimportant to realize that scopes are determined textually: the global scope of a function defined
in amoduleisthat modul€' s name space, no matter from where or by what aiasthe functionis called.
On the other hand, the actual search for names is done dynamically, at run time — however, the
language definition is evolving towards static name resolution, at “compile”’ time, so don’t rely on
dynamic name resolution! (Infact, local variables are already determined statically.)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do
not copy data— they just bind namesto objects. Thesameistruefor deletions: the statementdel x
removes the binding of x from the name space referenced by the local scope. In fact, all operations
that introduce new names use thelocal scope: in particular, import statements and function definitions
bind the module or function namein theloca scope. (Thegl obal statement can be used to indicate
that particular variableslivein the global scope.)

9.3 Afirstlook at classes

Classes introduce alittle bit of new syntax, three new object types, and some hew semantics.
9.3.1 Classdefinition syntax

The simplest form of class definition lookslike this:

cl ass C assNane:
<statenent-1>

<st at enent- N>

Class definitions, like function definitions (def statements) must be executed before they have any
effect. (You could conceivably place a class definition in a branch of ani f statement, or inside a
function.)

41

In practice, the statements inside a class definition will usually be function definitions, but other
statementsare allowed, and sometimesuseful — we' [l comeback tothislater. Thefunction definitions
inside a class normally have a peculiar form of argument lit, dictated by the calling conventions for
methods — again, thisis explained later.

When a class definition is entered, a new name spaceis created, and used as the local scope — thus,
all assignmentsto local variables go into this new name space. In particular, function definitions bind
the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically
a wrapper around the contents of the name space created by the class definition; we'll learn more
about class objectsin the next section. The original local scope (the onein effect just before the class
definitions was entered) is reinstated, and the class object is bound here to class name given in the
class definition header (ClassName in the example).

9.3.2 Classobjects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for al attribute references in Python: obj . nane.
Valid attribute names are all the names that were in the class's name space when the class object was
created. So, if the class definition looked like this:

cl ass MWd ass:
i = 12345
def f(x):
return "hello worl d’

then MyCl ass. i and MyCl ass. f are valid attribute references, returning an integer and a func-
tion object, respectively. Class attributes can also be assigned to, so you can change the value of
MyCl ass.i by assignment.

Classinstantiation usesfunction notation. Just pretend that the class object isaparameterlessfunction
that returns anew instance of the class. For example, (assuming the above class):

x = Myd ass()

creates anew instance of the class and assigns this object to the local variable x.

9.3.3 Instanceobjects

Now what can we do with instance objects? The only operations understood by instance objects are
attribute references. There are two kinds of valid attribute names.

Thefirst I'll call data attributes. These correspond to “instance variables’ in Smalltalk, and to “data
members’ in C++. Data attributes need not be declared; likelocal variables, they springinto existence
when they are first assigned to. For example, if x in the instance of MyCl ass created above, the
following piece of codewill print the value 16, without leaving a trace:

42

x.counter =1
whil e x.counter < 10:
X.counter = x.counter * 2
print x.counter
del Xx.counter

The second kind of attribute references understood by instance objects are methods. A method is a
function that “belongs to” an object. (In Python, the term method is not unique to class instances:
other object types can have methods as well, e.g., list objects have methods called append, insert,
remove, sort, and so on. However, below, we'll use the term method exclusively to mean methods of
class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class
that are (user-defined) function objects define corresponding methods of its instances. So in our
example, x. f isavalid method reference, since MyQl ass. f isafunction, but x. i is not, since
MyCd ass.i isnot. But x. f isnot the samething as MyCl ass. f — it isamethod object, not a
function object.

9.34 Method objects

Usually, amethod is called immediately, e.g.:

x. f()

In our example, thiswill return the string’ hel | o wor | d’ . However, it is not necessary to call a
method right away: x. f isamethod object, and can be stored away and called at alater moment, for
example:

xf = x.f
while 1:
print xf()

will continueto printhel | o wor | d until the end of time.

What exactly happenswhen amethod iscalled? You may have noticed that x. f () wascalledwithout
an argument above, even though the function definition for f specified an argument. What happened
to the argument? Surely Python raises an exception when a function that requires an argument is
called without any — even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is
passed as the first argument of the function. In our example, thecall x. f () isexactly equivalent to
MyCl ass. f (x). Ingenera, calling amethod with alist of n argumentsis equivalent to calling the
corresponding function with an argument list that is created by inserting the method’s object before
the first argument.

If you still don’'t understand how methods work, a look at the implementation can perhaps clarify
matters. When an instance attribute is referenced that isn’t adataattribute, itsclassis searched. If the

43

name denotes a valid class attribute that is a function object, a method object is created by packing
(pointersto) the instance object and the function object just found together in an abstract object: this
is the method object. When the method object is called with an argument list, it is unpacked again,
a new argument list is constructed from the instance object and the original argument list, and the
function object is called with this new argument list.

9.4 Random remarks

[These should perhaps be placed more carefully...]

Data attributes override method attributes with the same name; to avoid accidental name conflicts,
which may cause hard-to-find bugs in large programs, it is wise to use some kind of convention
that minimizes the chance of conflicts, e.g., capitalize method names, prefix data attribute names
with asmall unigue string (perhaps just an underscore), or use verbs for methods and nouns for data
attributes.

Data attributes may be referenced by methods as well as by ordinary users (“ clients’) of an object. In
other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python
makes it possible to enforce data hiding — it is al based upon convention. (On the other hand, the
Python implementation, written in C, can completely hide implementation details and control access
to an object if necessary; this can be used by extensions to Python writtenin C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the
methods by stamping on their data attributes. Note that clients may add data attributes of their ownto
an instance object without affecting the validity of the methods, as long as name conflicts are avoided
— again, anaming cornvention can save alot of headaches here.

Thereis no shorthand for referencing data attributes (or other methods!) from within methods. | find
that this actually increases the readability of methods: there is no chance of confusing local variables
and instance variables when glancing through a method.

Conventionally, the first argument of methods is often called sel f. Thisis nothing more than a
convention: the name sel f has absolutely no special meaning to Python. (Note, however, that by
not following the convention your code may be |ess readable by other Python programmers, and it is
also conceivable that aclass browser program be written which relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that class. It is not
necessary that the function definition istextually enclosed in the class definition: assigning afunction
object to alocal variable in the classis also ok. For example:

Function defined outside the class
def fil(self, x, y):
return mn(x, X+y)

class C
f =11
def g(self):
return "hello world’
h =g

Now f , g and h are all attributes of class C that refer to function objects, and consequently they are
all methods of instances of C— h being exactly equivalent to g. Note that this practice usually only
serves to confuse the reader of a program.

Methods may call other methods by using method attributes of the sel f argument, e.g.:

cl ass Bag:
def enpty(self):
self.data = []
def add(self, x):
sel f. dat a. append(x)
def addtwi ce(self, x):
sel f. add(x)
sel f. add(x)

The instantiation operation (“calling” a class object) creates an empty object. Many classes like
to create objects in a known initial state. Therefore a class may define a special method named
__init__, likethis:

def __init__ (self):
sel f.empty()

When aclass definesan __i nit __ method, class instantiation automatically invokes __init__
for the newly-created class instance. So in the Bag example, a new and initialized instance can be
obtained by:

x = Bag()

Of course, the__i ni t __ method may have argumentsfor greater flexibility. Inthat case, arguments
given to the classinstantiation operator arepassedonto __i ni t __. For example,

>>> cl ass Conpl ex:

def __init__(self, realpart, imagpart):
self.r = real part
self.i = imgpart

>>> x = Conpl ex(3.0,-4.5)
>>> X.r, X.i

(3.0, -4.5)

>>>

Methods may reference global names in the same way as ordinary functions. The global scope
associated with amethod is the modul e containing the class definition. (The classitself is never used
asaglobal scope!) While onerarely encounters agood reason for using global datain amethod, there
are many legitimate uses of the global scope: for one thing, functions and modulesimported into the
global scope can be used by methods, aswell asfunctions and classesdefined init. Usually, the class
containing the method is itself defined in this global scope, and in the next section we'll find some
good reasons why a method would want to reference its own class!

45

9.5 Inheritance

Of course, alanguage featurewould not be worthy of the name* class’ without supporting inheritance.
The syntax for a derived class definition |ooks as follows:

cl ass DerivedC assNane(BaseC assNane) :
<st at ement-1>

<st at enent- N>

The name BaseCl assNanme must be defined in a scope containing the derived class definition.
Instead of a base class hame, an expression is also allowed. Thisis useful when the base class is
defined in another module, e.g.,

cl ass DerivedCd assNane(nodnane. BaseC assNane) :

Execution of a derived class definition proceeds the same as for a base class. When the class object
is constructed, the base class is remembered. This is used for resolving attribute references: if a
requested attribute is not found in the class, it is searched in the base class. This rule is applied
recursively if the base classitself is derived from some other class.

There's nothing special about instantiation of derived classes: Deri vedCl assNane() creates a
new instance of the class. Method referencesareresolved asfollows: the corresponding class attribute
is searched, descending down the chain of base classesif necessary, and the method referenceisvalid
if thisyields afunction object.

Derived classes may override methods of their base classes. Because methods have no special
privileges when calling other methods of the same object, a method of a base class that calls another
method defined in the same base class, may in fact end up calling a method of a derived class that
overridesit. (For C++ programmers: all methodsin Python are “virtual functions’.)

An overriding method in a derived class may in fact want to extend rather than simply replace the
base class method of the same name. There is a simple way to call the base class method directly:
just call BaseC assNane. met hodnane(sel f, argumnents). Thisisoccasionally useful to
clientsaswell. (Notethat thisonly worksif the base classis defined or imported directly in the global
scope.)

9.5.1 Multipleinheritance

Python supports alimited form of multiple inheritance as well. A class definition with multiple base
classes looks as follows:

cl ass DerivedC assNane(Basel, Base2, Base3):
<st at ement-1>

46

<st at enent- N>

Theonly rulenecessary to explain the semanticsistheresolution ruleused for classattributereferences.
This is depth-first, left-to-right. Thus, if an attribute is not found in Der i vedd assNane, it is
searched in Basel, then (recursively) in the base classes of Basel, and only if it isnot found there,
itissearchedin Base2, and so on.

(To some people breadth first—searching Base2 and Base3 before the base classes of Basel—
looks more natural. However, thiswould require you to know whether a particular attribute of Basel
isactualy defined in Basel or in one of its base classes before you can figure out the consequences
of a name conflict with an attribute of Base2. The depth-first rule makes no differences between
direct and inherited attributes of Base1l.)

Itisclear that indiscriminate use of multipleinheritanceisamaintenancenightmare, giventhereliance
in Python on conventions to avoid accidental name conflicts. A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a common base class. Whileit is
easy enough to figure out what happens in this case (the instance will have asingle copy of “instance
variables’ or data attributes used by the common base class), it is not clear that these semanticsarein
any way useful.

9.6 Oddsand ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling
together a couple of named dataitems. An empty class definition will do nicely, e.g.:

cl ass Enpl oyee:
pass

john = Enpl oyee() # Create an enpty enpl oyee record

Fill the fields of the record
j ohn. name = ' John Doe’

john.dept = 'conputer |ab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that
emulates the methods of that data typeinstead. For instance, if you have afunction that formats some
data from a file object, you can define a class with methods r ead() and r eadl i ne() that gets
the data from a string buffer instead, and pass it as an argument. (Unfortunately, this technique has
its limitations. a class can’t define operations that are accessed by special syntax such as sequence
subscripting or arithmetic operators, and assigning such a“ pseudo-file” tosys. st di n will not cause
the interpreter to read further input fromiit.)

Instance method objects have attributes, too: m i m sel f is the object of which the method is an
instance, and m i m_f unc isthe function object corresponding to the method.

47

Chapter 10

Recent Additions

Python is an evolving language. Since this tutorial was last thoroughly revised, several new features
have been added to the language. While ideally | should revise the tutorial to incorporate them in
the mainline of the text, lack of time currently requires me to take a more modest approach. In this
chapter | will briefly list the most important improvements to the language and how you can use them
to your benefit.

10.1 Thelast Printed Expression

In interactive mode, the last printed expression is assigned to the variable _. This means that when
you are using Python as adesk calculator, it issomewhat easier to continue cal culations, for example:

>>> tax = 17.5 / 100
>>> price = 3.50

>>> price * tax

0. 6125

>>> price +
4.1125

>>> round(_, 2)
4.11

>>>

For reasonstoo embarrassing to explain, thisvariableisimplemented asabuilt-in (living in themodule
__builtin__),soitshould be treated as read-only by the user. |.e. don’t explicitly assign avalue
to it — you would create an independent local variable with the same name masking the built-in
variable with its magic behavior.

48

10.2 StringLiterals

10.2.1 Double Quotes

Python can now also
use double quotes to surround string literals, e.g. "thi s doesn’t hurt a bit". Thereis
no semantic difference between strings surrounded by single or double quotes.

10.2.2 Continuation Of String Literals
String literals can span multiple lines by escaping newlines with backslashes, e.g.

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C \n\

Note that whitespace at the beginning of the line is\
significant.\n"
print hello

which would print the following:

This is a rather |long string containing
several lines of text just as you would do in C
Not e that whitespace at the beginning of the line is significant.

10.2.3 Triple-quoted strings

In some cases, when you need to include really long strings (e.g. containing severa paragraphs of
informational text), it is annoying that you have to terminate each line with \ n\ , especialy if you
would liketoreformat thetext occasionally with apowerful text editor like Emacs. For such situations,
“triple-quoted” strings can be used, e.g.

nnn

hello =

This string is bounded by triple double quotes (3 tines ").
Unescaped newlines in the string are retained, though \
it is still possible\nto use all normal escape sequences.

Wi t espace at the beginning of alineis
significant. |If you need to include three opening quotes
you have to escape at |east one of them e.g. \""".

This string ends in a newine.

nnn

Triple-quoted strings can be surrounded by three single quotes as well, again without semantic
difference.

49

10.2.4 String Literal Juxtaposition

One final twist: you can juxtapose multiple string literals. Two or more adjacent string literals (but
not arbitrary expressions!) separated only by whitespace will be concatenated (without intervening
whitespace) into a single string object at compile time. This makes it possible to continue a long
string on the next line without sacrificing indentation or performance, unlike the use of the string
concatenation operator + or the continuation of the literal itself on the next line (since leading
whitespace is significant inside all types of string literals). Note that this feature, like al string
features except triple-quoted strings, is borrowed from Standard C.

10.3 TheFormatting Operator

10.3.1 Basic Usage

The chapter on output formatting is really out of date: there is now an almost complete interface to
C-style printf formats. Thisis done by overloading the modulo operator (%9 for aleft operand which
isastring, e.g.

>>> jnport math

>>> print ' The value of Pl is approximtely 9%.3f." % nath. pi
The value of Pl is approximtely 3.142.

>>>

If there is more than one format in the string you pass a tuple as right operand, e.g.
>>> table = {" Sjoerd : 4127, ’'Jack’: 4098, 'Dcab’: 8637678}
>>> for nanme, phone in table.itens():

print % 10s ==> %10d" % (nanme, phone)

Jack ==> 4098

Dcab ==> 8637678
Sj oerd ==> 4127
>>>

Most formatswork exactly asin C and require that you passthe proper type (however, if you don’t you
get an exception, not a core dump). The % format is more relaxed: if the corresponding argument
is not a string object, it is converted to string using the st r () built-in function. Using * to pass the
width or precision in as a separate (integer) argument is supported. The C formats %, and %p are not
supported.

10.3.2 Referencing Variables By Name
If you have areally long format string that you don’'t want to split up, it would be nice if you could

reference the variables to be formatted by name instead of by position. This can be done by using an
extension of C formatsusing the form %4 nane) f or mat , e.g.

50

>>> table = {" Sjoerd : 4127,
>>> print ’Jack: 9% Jack)d; S oerd: %Sjoerd)d;
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

>>>

"Jack’: 4098, 'Dcab’: 8637678}

Dcab: 9% Dcab)d’

This is particularly useful in combination with the new built-in var s() function, which returns a

dictionary containing all local variables.

10.4 Optional Function Arguments

It is now possible to define functions with a variable number of arguments. There are two forms,

which can be combined.

10.4.1 Default Argument Values

The most useful form isto specify adefault value for one or more arguments. This creates afunction
that can be called with fewer arguments than it is defined, e.g.

def ask_ok(pronpt, retries
while 1:

ok

i f

i f

i f

4, conplaint ='Yes or no,

raw_i nput (pronpt)
ok in ('y', 'ye’', 'yes'): return 1

ok in ("n, 'no’, 'nop’, 'nope’): return O
retries = retries - 1

retries < 0: raise |CError,
print conpl aint

pl ease!’):

"refuseni k user’

This function can be called either like this: ask_ok(’' Do you really want to quit?')
or likethis: ask_ok(’ OK to overwite the file? , 2).

The default values are evaluated at the point of function definition in the defining scope, so that e.g.

i =5

def f(arg =i): print arg

i =6
f()

will print 5.

10.4.2 Arbitrary Argument Lists

It is also possible to specify that a function can be called with an arbitrary number of arguments.
These arguments will be wrapped up in atuple. Before the variable number of arguments, zero or

more normal arguments may occur, e.g.

51

% t abl e

def fprintf(file, format, *args):
file.wite(format % args)

This feature may be combined with the previous, e.g.

def but __is_it_useful (required, optional = None, *renmins):
print "I don’t know'

10.5 Lambda And Functional Programming Tools

10.5.1 LambdaForms

By popular demand, a few features commonly found in functional programming languages and Lisp
have been added to Python. With the | anbda keyword, small anonymous functions can be created.
Here's afunction that returns the sum of itstwo arguments: | anbda a, b: a+b. Lambdaforms
can be used wherever function objects are required. They are syntactically restricted to a single
expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested
function definitions, lambda forms cannot reference variablesfrom the containing scope, but this can
be overcome through the judicious use of default argument values, e.g.

def make_increnentor(n):
return | anbda x, incr=n: x+incr

10.5.2 Map, Reduce and Filter

Three new built-in functions on sequences are good candidate to pass |lambda forms.

Map.

map(function, sequence) calsfunction(item for each of the sequence’s items and
returns alist of the return values. For example, to compute some cubes:

>>> map(l anbda x: x*x*x, range(1l, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>>

More than one sequence may be passed; the function must then have as many arguments as there are
sequences and is called with the corresponding item from each sequence (or None if some sequence
is shorter than another). If None is passed for the function, a function returning its argument(s) is
substituted.

Combining these two specia cases, we see that map(None, |istl, |ist2) isaconvenient
way of turning a pair of listsinto alist of pairs. For example:

52

>>> seq = range(8)
>>> map(None, seq, map(lanbda x: x*x, seq))

[(O0, O0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]

>>>

Filter.

filter(function, sequence) returnsa sequence (of the same type, if possible) consisting
of those items from the sequence for which f unct i on(i t en) istrue. For example, to compute
some primes:

>>> filter(lanbda x: x% !'= 0 and x%3 != 0, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
>>>

Reduce.

reduce(function, sequence) returnsasinglevalueconstructed by calling the (binary) func-
tion on the first two items of the sequence, then on the result and the next item, and so on. For
example, to compute the sum of the numbers 1 through 10:

>>> reduce(l anbda x, y: x+y, range(1, 11))
55
>>>

If there's only one item in the sequence, its value is returned; if the sequence is empty, an exception
israised.
A third argument can be passed to indicate the starting value. In this casethe starting value isreturned

for an empty sequence, and the function is first applied to the starting value and the first sequence
item, then to the result and the next item, and so on. For example,

>>> def sun(seq):
return reduce(l anbda x, y: x+y, seq, 0)

>>> sun(range(1l, 11))
55

>>> sum([])
0
>>>

10.6 Continuation Lines Without Backsashes

While the general mechanism for continuation of a source line on the next physical line remains to
place a backslash on the end of the line, expressions inside matched parentheses (or square brackets,

53

or curly braces) can now also be continued without using a backslash. Thisis particularly useful for
calls to functions with many arguments, and for initializations of large tables.

For example:
mont h_nanes = [’ Januari’, ’'Februari’, 'Mart’,
"April’, "Mei T, "Juni’,
“Juli’, " Augustus’, ' Septenber’,
" Cktober’, ' Novenber’, ’'Decenber’]
and

Copyl nt er nal Hyper Li nks(sel f. cont ext. hyperli nks,
copy. cont ext . hyperli nks,
ui dr emap)

10.7 Regular Expressions

WhileC'sprintf-styleoutput formats, transformed into Python, areadequatefor most output formatting
jobs, C's scanf-style input formats are not very powerful. Instead of scanf-style input, Python offers
Emacs-styleregul ar expressionsasapowerful input and scanning mechanism. Read the corresponding
sectionin the Library Referencefor afull description.

10.8 Generalized Dictionaries

The keys of dictionaries are no longer restricted to strings — they can be any immutable basic
type including strings, numbers, tuples, or (certain) class instances. (Lists and dictionaries are not
acceptable as dictionary keys, in order to avoid problems when the object used as a key is modified.)

Dictionaries have two new methods: d. val ues() returns a list of the dictionary’s values, and
d.itens() returnsalist of the dictionary’s (key, value) pairs. Liked. keys(), these operations
are slow for large dictionaries. Examples:

>>> d = {100: ’'honderd’, 1000: ’'duizend', 10: "tien'}
>>> d. keys()

[100, 10, 1000]

>>> d. val ues()

[honderd’, 'tien’, ’'duizend’]

>>> d.itenms()

[(100, 'honderd), (10, 'tien’), (1000, ’'duizend)]
>>>

10.9 Miscellaneous New Built-in Functions

The function var s() returns a dictionary containing the current local variables. With a mod-
ule argument, it returns that module’'s global variables. The old function di r(x) returns
vars(x).keys().

The function round(x) returns a floating point number rounded to the nearest inte-
ger (but still expressed as a floating point number). E.g. round(3.4) == 3.0 and
round(3.5) == 4.0. With a second argument it rounds to the specified number of digits,
eg. round(nmat h. pi, 4) == 3.1416 orevenround(123.4, -2) == 100.0.

The function hash(x) returns ahash value for an object. All object types acceptable as dictionary
keys have ahash value (and it is this hash value that the dictionary implementation uses).

The function i d(x) return a unique identifier for an object. For two objects x and v,
id(x) ==id(y)ifandonlyifx is y. (Infacttheobject'saddressisused.)

The functionhasat t r (x, nane) returnswhether an object has an attribute with the given name
(astring value). The function get attr (x, nane) returns the object’s attribute with the given
name. Thefunctionsetattr(x, nane, val ue) assigns a value to an object’s attribute with
the given name. These three functions are useful if the attribute names are not known beforehand.
Note that getattr (x, 'spam) isequivalenttox. spam andsetattr(x, 'spam, Vy)
is equivalent to x. spam = y. By definition, hasattr (x, name) returns true if and only if
getattr(x, name) returnswithout raising an exception.

10.10 ElseClause For Try Statement

Thetry. .. except statement now has an optiona el se clause, which must follow all except
clauses. Itisuseful to place code that must be executed if thet r y clause does not raise an exception.
For example:

for arg in sys.argv:

try:
f = open(arg, 'r’)

except | OError:
print ’'cannot open’, arg

el se:
print arg, 'has’, len(f.readlines()), 'lines’
f.close()

10.11 New Class Featuresin Release 1.1

Some changes have been made to classes: the operator overloading mechanism is more flexible,
providing more support for non-numeric use of operators (including calling an object asif it were a
function), and it is possible to trap attribute accesses.

55

10.11.1 New Operator Overloading

It is no longer necessary to coerce both sides of an operator to the same class or type. A class may
still providea___coer ce___ method, but this method may return objects of different types or classes
if it feelslikeit. If no___coer ce__ isdefined, any argument type or classis acceptable.

In order to makeit possible to implement binary operatorswhere theright-hand sideis aclassinstance
but the left-hand sideis not, without using coercions, right-hand versions of al binary operators may
be defined. These havean ‘1’ prepended to their name, e.g. __radd__.

For example, here’'s a very simple class for representing times. Times are initialized from a number
of seconds (liketime.time()). Times are printed likethis: Wed Mar 15 12: 28: 48 1995. Sub-
tracting two Times gives their difference in seconds. Adding or subtracting a Time and a number
givesanew Time. You can't add two times, nor can you subtract a Time from a number.

i mport tinme
class Tine:
def __init__(self, seconds):

sel f.seconds = seconds
def __repr__(self):
return tine.ctinme(sel f.seconds)
def __add__(self, x):
return Tine(self.seconds + x)
__radd = add _ # support for x+t
def _ sub__(self, x):
if hasattr(x, 'seconds’): # test if x could be a Tine
return self.seconds - x.seconds
el se:
return self.seconds - x

now = Tinme(tinme.time())

tonorrow = 24*3600 + now

yesterday = now - today

print tonorrow - yesterday # prints 172800

10.11.2 Trapping Attribute Access

You can define three new “magic” methods in a class now: __getattr__(self, nane),
__setattr__(self, name, value) and__delattr__(self, name).

The __getattr__ method is called when an attribute access fails, i.e. when an attribute access
would otherwise raise AttributeError — this is after the instance’s dictionary and its class hierarchy
have been searched for the named attribute. Note that if this method attemptsto access any undefined
instance attributeit will be called recursively!

The__setattr__ and__del attr__ methodsare called when assignment to, respectively dele-
tion of an attribute are attempted. They are called instead of the normal action (which is to insert

56

or delete the attribute in the instance dictionary). If either of these methods most set or delete any
attribute, they can only do so by using the instance dictionary directly —sel f. __dict __ —else
they would be called recursively.

For example, here's a near-universal “Wrapper” class that passes all its attribute accesses to another
object. Notehow the __i ni t __ method inserts the wrapped objectinsel f. __dict__ inorder
to avoid endless recursion (__setattr__ would call __getattr__ which would call itself
recursively).

cl ass W apper:
def __init__(self, wapped):
self. dict__["wapped] = wapped
def _ getattr__ (self, name):
return getattr(sel f.wapped, nane)
def _ setattr__(self, nane, value):
setattr(sel f.wapped, nane, val ue)
def _ delattr_ (self, name):
del attr(sel f.wapped, nane)

i mport sys
f = Wapper (sys. stdout)
f.wite(’hello world\n") # prints "hello world

A smpler exampleof __get attr__ isan attribute that is computed each time (or the first time) it
it accessed. For instance:

frommath i nport pi

class Circle:
def __init__(self, radius):
sel f.radius = radius
def _ getattr__ (self, name):
if name == ’'circunference’:
return 2 * pi * self.radius
if nanme == 'di aneter’:
return 2 * self.radius
if name == 'area’:
return pi * pow(self.radius, 2)
raise AttributeError, nane

10.11.3 Callinga ClassInstance

If aclassdefinesamethod __cal | __ itispossibleto call itsinstances asif they were functions. For
example:

cl ass Preset SoneAr gunent s:

57

def __init__(self, func, *args):
self.func, self.args = func, args
def __call__(self, *args):
return apply(self.func, self.args + args)

f = Preset SoneAr gunent s(pow, 2) # f(i) conputes powers of 2
for i in range(10): print f(i), # prints 1 2 4 8 16 32 64 128 256 512
pri nt # append new i ne

58

Chapter 11

New Iin Release 1.2

This chapter describes even more recent additions to the Python language and library.

11.1 New Class Features

The semantics of __coer ce__ have been changed to be more reasonable. As an example, the
new standard module Conpl ex implementsfairly complete complex numbersusing this. Additional
examples of classeswith and without __coer ce___ methods can be found in the Denp/ cl asses
subdirectory, modulesRat and Dat es.

If aclassdefinesno __coer ce__ method, thisis equivaent to the following definition:
def _ _coerce_ (self, other): return self, other

If __coerce__ coercesitself to an object of adifferent type, the operation is carried out using that
type — inrelease 1.1, thiswould cause an error.

Comparisonsinvolving classinstances now invoke __coer ce___ exactly asif cnp(x, y) werea
binary operator like + (except if x andy are the same object).

11.2 Unix Signal Handling

On Unix, Python now supports signal handling. The module si gnal exports functions si gnal ,
pause and al ar m which act similar to their Unix counterparts. The module aso exports the
conventional names for the various signal classes (also usablewithos. ki I | ())and SI G_| GNand
SI G_DFL. Seethesectiononsi gnal inthe Library Reference Manual for more information.

11.3 Exceptions Can Be Classes

User-defined exceptions are no longer limited to being string objects — they can be identified by
classes aswell. Using this mechanismit is possible to create extensible hierarchies of exceptions.

59

There are two new valid (semantic) formsfor the raise statement:
rai se C ass, instance
rai se i nstance

Inthefirst form, i nst ance must be an instance of Cl ass or of aclass derived fromit. The second
form is ashorthand for

rai se instance. class__, instance

An except clause may list classes aswell as string objects. A classin an except clauseis compatible
with an exception if it is the same class or a base class thereof (but not the other way around — an
except clause listing a derived class is not compatible with a base class). For example, the following
code will print B, C, D in that order:

cl ass B:
pass
class C(B):
pass
class D(O):
pass

for cin[B, C D:

try:
raise c()
except D:
print "D
except C
print "C'
except B:
print "B"

Note that if the except clauses werereversed (with “except B’ first), it would have printed B, B, B
— thefirst matching except clauseistriggered.

When an error message is printed for an unhandled exception which is a class, the class name is
printed, then a colon and a space, and finally the instance converted to a string using the built-in
functionstr ().

In thisrelease, the built-in exceptions are still strings.
11.4 Object Persistency and Object Copying

Two new modules, pi ckl e and shel ve, support storage and retrieval of (almost) arbitrary Python
objects on disk, using the dbmpackage. A third module, copy, provides flexible object copying
operations. More information on these modulesis provided in the Library Reference Manual.

60

11.4.1 Persistent Objects

Themodulepi ckl e providesageneral framework for objectsto disassemblethemselvesinto astream
of bytesand to reassemble such astream back into an object. 1t copeswith reference sharing, recursive
objects and instances of user-defined classes, but not (directly) with objects that have “magical” links
into the operating system such as open files, sockets or windows.

Thepi ckl e module defines asimple protocol whereby user-defined classes can control how they are
disassembled and assembled. Themethod __geti ni targs__() , if defined, returns the argument
list for the constructor to be used at assembly time (by default the constructor is called without
arguments). Themethods __getstate_ () and__setstate__ () areused to passadditiona
state from disassembly to assembly; by default the instance’'s__di ct ___ ispassed and restored.

Note that pi ckl e does not open or close any files— it can be used equally well for moving objects
around on anetwork or storethem in a database. For ease of debugging, and the inevitable occasional
manual patch-up, the constructed byte streams consist of printable Ascil characters only (though it's
not designed to be pretty).

The module shel ve provides a simple model for storing objects on files. The operation
shel ve. open(fil enane) returns a “shelf”, which is a simple persistent database with a
dictionary-like interface. Database keys are strings, objects stored in the database can be anything
that pi ckl e will handle.

11.4.2 Copying Objects

The module copy exports two functions: copy() and deepcopy() . The copy() function
returns a“shallow” copy of an object; deepcopy() returnsa“deep” copy. The difference between
shallow and deep copying is only relevant for compound objects (objects that contain other objects,
like lists or class instances):

¢ A shallow copy constructs a new compound object and then (to the extent possible) inserts the
same objects into in that the original contains.

¢ A deep copy constructs a new compound object and then, recursively, inserts copiesinto it of
the objects found in the original.

Both functions have the same restrictions and use the same protocols as pi ckl e — user-defined
classes can control how they are copied by providing methods named __getinitargs_ (),
__getstate_ () and__setstate_ ().

11.5 Documentation Strings

A variety of objectsnow haveanew attribute, _doc___, whichissupposed to contain adocumentation
string (if no documentation is present, the attribute is None). New syntax, compatible with the old
interpreter, allows for convenient initialization of the __doc___ attribute of modules, classes and
functions by placing astring literal by itself asthefirst statement in the suite. 1t must be aliteral — an

61

expression yielding a string object is not accepted as a documentation string, since future tools may
need to derive documentation from source by parsing.

Here is ahypothetical, amply documented module called Spam

""" Spam oper ati ons.
Thi s nodul e exports two cl asses, a function and an excepti on:

class Spam full Spamfunctionality --- three can sizes
class SpanLight: limted Spamfunctionality --- only one can size

def open(filenane): open a file and return a correspondi ng Spam or
Spanli ght obj ect

GoneOf f: exception raised for errors; should never happen

Note that it is always possible to convert a SpanLi ght object to a
Spam obj ect by a sinple method call, but that the reverse operation is
generally costly and may fail for a nunber of reasons.

nnn

cl ass SpanLight:
"""Limted spam functionality.

Supports a single can size, no flavor, and only hard di sks.

nnn

def __init__(self, size=12):
"""Construct a new Spanli ght instance.

Argunment is the can size.
etc.
etc.

class Span(Spanti ght):
"""Full spam functionality.

Supports three can sizes, two flavor varieties, and all floppy
di sk formats still supported by current hardware.

nnn

def __init__ (self, sizel=8, size2=12, size3=20):
"""Construct a new Spam i nstance.

62

Argunents are up to three can sizes.

nnn

etc.
etc.
def open(filename = "/dev/null"):

"""Open a can of Spam

Argunment nust be an existing file.

nnn

etc.

cl ass GoneOff:
""" ass used for Spam excepti ons.

There shoul dn’t be any.

nnn

pass

Afterexecuting“i mport Spant, thefollowing expressionsreturn thevariousdocumentation strings
from the module:

Spam __doc__

Spam SpaniLi ght.__doc__

Spam SpanLight.__init__.__doc__
Spam Spam __doc__

Spam Spam __init__. doc__

Spam open. __doc__
Spam GoneOFf. __doc___

There are emerging conventions about the content and formatting of documentation strings.

Thefirst line should alwaysbe ashort, concise summary of the object’s purpose. For brevity, it should
not explicitly state the object’s name or type, since these are available by other means (except if the
name happens to be a verb describing a function’s operation). This line should begin with a capital
letter and end with a period.

If there are more linesin the documentation string, the second line should be blank, visually separating
the summary from therest of the description. Thefollowinglines should be one of more of paragraphs
describing the objects calling conventions, its side effects, etc.

Some people like to copy the Emacs convention of using UPPER CASE for function parameters —
this often saves afew words or lines.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that
process documentation have to strip indentation. This is done using the following convention. The
first non-blank line after the first line of the string determines the amount of indentation for the
entire documentation string. (We can't use the first line since it is generally adjacent to the string’s

63

opening quotes so itsindentation is not apparent in the string literal.) Whitespace “equivaent” to this
indentation is then stripped from the start of al lines of the string. Linesthat are indented less should
not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace
should be tested after expansion of tabs (to 8 spaces, normally).

In thisrelease, few of the built-in or standard functions and modul es have documentation strings.

11.6 Customizing Import and Built-Ins

In preparation for a “restricted execution mode” which will be usable to run code received from an
untrusted source (such as a WWW server or client), the mechanism by which modules are imported
has been redesigned. It is now possible to provide your own function __i nport __ which is
called whenever ani nport statement is executed. There's abuilt-in function __i nport __ which
provides the default implementation, but more interesting, the various steps it takes are available
separately from the new built-in module i np. (See the section on i np in the Library Reference
Manual for more information on this module.)

When you do di r () in afresh interactive interpreter you will see another “secret” object that's
presentinevery module: __bui | ti ns__. Thisiseither adictionary or amodule containing the set
of built-in objects used by functions defined in current module. Although normally all modules are
initialized with areference to the same dictionary, it is now possible to use a different set of built-ins
on a per-module basis. Together with the fact that the i nport statement usesthe __i nport __
function it finds in the importing modules' dictionary of built-ins, this forms the basis for a future
restricted execution mode.

11.7 Python and the World-Wide Web

There is a growing number of modules available for writing WWW tools. The previous release
aready sported modules gopherlib,ftplib,httplibandurllib (which unifiesthe other
three) for accessing data through the commonest WWW protocols. This release also providescgi ,
to ease the writing of server-side scriptsthat use the Common Gateway Interface protocol, supported
by most WWW servers. The module ur | par se provides precise parsing of a URL string into its
components (address scheme, network location, path, parameters, query, and fragment identifier).

A rudimentary, parser for HTML files is available in the module ht m | i b. It currently supports
a subset of HTML 1.0 (if you bring it up to date, I’d love to receive your fixes!). Unfortunately
Python seems to be too slow for real-time parsing and formatting of HTML such as required by
interactive WWW browsers— but it’s good enough to write a“robot” (an automated WWW browser
that searches the web for information).

11.8 Miscellaneous

e Thesocket module now exports all the needed constants used for socket operations, such as
SO _BROADCAST.

e The functions popen() and f dopen() in the os module now follow the pattern of the
built-in function open() : the default mode argument is’ r’ and the optional third argument
specifies the buffer size, where 0 means unbuffered, 1 means line-buffered, and any larger
number means the size of the buffer in bytes.

65

