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Censoring, truncation and filtering in statistical 
models based on counting processes 

Per Kragh Andersen1, 0rnulj Borgan2, Richard D. Giff, Niels Keiding1. 

ABSTRACT. A survey is given of the formulation of statistical models for life history data 
based on counting processes. Examples include survival data with (possibly time-dependent) 
covariates and continuous time Markov processes. First, complete life history data are dis
cussed and next, explicit modelling of mechanisms causing incomplete information like 
(right) censoring, filtering, and left truncation is superimposed onto the model for the com
plete data. The concepts of independent censoring and noninformative censoring are 
defined, and inference from such models based on (partial) likelihoods is discussed. 

1. Introduction 
The first systematic use of the terms censoring and truncation was due to HALD (1949; 
1952, p. 144), who credited J.E. Kerrich for suggesting the term censoring for use in 
statistics. Truncation is 'sampling an incomplete population' - we would nowadays 
perhaps prefer 'sampling from a conditional distribution'. Censoring occurs 'when we 
are able to sample the complete population but the individual values of observations 
below (or above) a given value are not specified'. Obviously Hald's definition of censor
ing immediately extends to more general types of incomplete observation, such as 
grouped data. 

The purpose of this paper is to survey the mathematical theory of censoring - incom
plete sampling from a complete distribution - and of truncation - complete sampling 
from an incomplete distribution - not for statistical models in general, but for longitudi
nal data that may be described by counting processes. The simplest example of such a 
model is the classical life-testing situation, where the life times of n individuals are 
modelled as independent identically distributed nonnegative random variables and 
where the nature of the observational situation implies that some individuals are lost to 
follow-up or have delayed entry. 

A main point of this paper is to demonstrate that loss to follow-up and delayed 
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parametric models, or more general function spaces, corresponding to nonparametric 
models. 

The statistical model '!P corresponding to a given filtration ('3;) is called a multiplica
tive intensity model (AuEN, 1975, 1978) if its intensity process admits a decomposition 

"Ait(t,8) = ah(t,O)Yh(t), h = 1, ... ,k, tE'5' 

where Yh(t) is predictable and does not depend on 8, while a is deterministic. 
In a moment, we shall see how the counting process N and the filtration ('3;) may be 

constructed in several examples when there is no censoring. We will either have 
§'; = ~ = O'{N(u),O~u~t} (the self-exciting filtration) or '?I; = §ii V~ with 1HQ gen
erated by a random variable Xo which can be thought of as being realised at time 0. 
Thus the observations available to the researcher at time t consist of (N(u),O~u~t) and 
(when relevant) Xo. We shall sometimes use the convention that the observations at time 
t are the O'-algebra §'; hereby meaning that at time t it can be determined whether or not 
any_ event A E§'; has occurred. Let Po,<f>;t denote the restriction of P8,<P to §;, for any 
tE'5: Whenever (§;) has the structure '&i =§(iv~, a key result by JACOD (1975) 
expresses the likelihood function dPo,<t>;t or Radon-Nikodym derivative dPe,cp;ildP00 ,<f>o;t 
in terms of the intensity of N and the likelihood function (or R.-N. derivative) for the 
data Xo at time 0. Using product-integral notation (see JOHANSEN, 1987, GILL & 
JOHANSEN, 1987) the result can be summarized as 

k 
(2.1) d.Po,q,;1 = dPo,q,;O. Il{(l-A.(s ;8,cp)ds)1-d.N(s) II (Ah(s;8,cp)ds)dN,(s)} 

s,;;;,1 h =I 

where N. = "2.hNh and A.. = "2.h>..h and (for later use) .A may depend on cf> as well as on 
8. Formula (2.1) yields the Radon-Nikodym derivative by forming the quotient of left 
and right hand sides with the same expressions for (8,c/>) = (80 ,cf>o), say. The same 
result holds for non (absolutely) continuous A8·<P, simply replacing A..ds and ;\hds by dA. 
and dAh respectively. Note that by the interpretation of the intensity as conditional pro
bability (density), the term in braces in (2.1) can be heuristically interpreted as 
dP 1J,<1>(dN(s) I~-). 

EXAMPLE 2.1. A single non-negative random variable. Let X be a non-negative random 
variable on a space (~. §=) with absolutely continuous distribution function F, survival 
function S = 1-F, density f, and hazard rate function a = f! S. We assume that the 
distribution of X depends on a (finite or infinite dimensional) parameter fJ and write 
cl(t) or a(t, 8) for the hazard function, F(t, 8) for the distribution function, etc. Further
more we assume that T, the upper endpoint of the support of F8 , does not depend on 8 
and we let '5' = [O, T ). Then 

t 

f a(u,8)du = -log(l-F(t,8))<00 
0 

T 

for all t E5; though J a(u, 8)du = oo. 
0 

Define the stochastic process 

(2.2) N(t) = I(X~t). 

Then N is a univariate counting process counting + I only at X. We let 
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entry are both special cases of a particular kind of incomplete observation that is very 

natural in the stochastic process context: what we shall here term the Aalen filter 

(A.ALEN, 1978), For this reason right censoring and left truncation may be conveniently 

handled here, whereas other kinds of censoring (such as left censoring) or truncation 

(such as right truncation) may not. Indeed, it might be more methodologically con

sistent to speak about left and right filtering rather than about delayed entry and right 

censoring in the stochastic process situation. 
Nonparametric estimation of a distribution function under left truncation and right 

censoring was surveyed by KAPLAN & MEIER (1958) (although several later authors have 

overlooked the part about left truncation). The subsequently published literature has 

been much richer for right censoring than for left truncation, important contributors 

being KALBFLEISCH & PRENTICE (1980, Chapter 5), AruAS & HAARA (1984) and JACOB

SEN (1986). There are two approaches: one is the random censorship model where censor

ing is treated (in the model) equivalently with life-length. This leads to a neat and easily 

comprehensible mathematical theory within the general area of competing risk models. 

However, the assumptions needed to complete the ambitious task of having an explicit 

stochastic model not only for the life-length but also for the censoring are often too res

trictive, which has led to an interest in the second approach, of partial models, identifying 

minimal conditions for the censoring mechanism that allow correct inference for the dis

tribution of the life-lengths, this being the distribution 'of interest'. 

Two concepts are important in the partial modelling of right censoring, both given 

early formulations by KALBFLEISCH & PRENTICE (1980, Chapter 5). There is the statisti

cal concept of noninformative censoring: the censoring mechanism should be ancillary in 

some sense, not contributing information about the unknown parameter. And there is 

the probabilistic concept of independent censoring, very heuristically stating that the extra 

randomness, and the reduced information, caused by the censoring mechanism, should 

be 'orthogonal' to the (conceptual) situation without censoring. 

We shall present here an account of the important counting process framework of 

AR.JAs & HAARA (1984) for Kalbfleisch & Prentice's concept of noninformative censor

ing, based upon a particular class of marked point processes. And we shall continue the 

analysis of independent censoring by these authors as well as by JACOBSEN (1986). 

For left truncated survival data, one may similarly choose the easy way of embed

ding everything in one model, treating the truncation time symmetrically to the life 

time. A comprehensive exposition with a complete asymptotic theory was given by 

WooDROOFE (1985), who was motivated by applications to astronomy and did not con

nect to life testing. WANG, JEWELL & TSAI (1986) put Woodroofe's results into the sur

vival analysis framework, while KEIDING & GILL (1987) demonstrated how the (exact as 

well as asymptotic) results of this random truncation model may be obtained as corol

laries of the existing statistical theory for counting processes. 

An alternative theory of partial modelling of left truncation is not available in the 

existing literature. We provide in this paper some introductory remarks in this direction 

for the counting process framework but we regard it unlikely that this theory will be as 

rich as that of right censoring. 

. Other kinds of censoring and truncation are less easily tractable by genuine stochas

tic process methods except for some tricks in very special situations, and we provide 

some explanation for this towards the end of the paper. 

The st_ructure of the paper i~ that Section 2 recalls the multiplicative intensity model 

for countmg processes and basic examples of completely observed processes. Section 3 

introduces right censoring and various models for right censoring mechanisms, and the 



CENSORING, TRUNCATION AND FILTERING OF COUNTING PROCESSES 21 

concepts of independent censoring and non-informative censoring are discussed. Section 
4 contains discussion of left truncation. In Section 5 the concept of filtering is introduced 
and more general patterns of censoring are discussed, also in connection with left trunca
tion. Section 6 outlines the situation when only a discrete skeleton is observed. Often the 
statistician is not interested in specifying a model for the whole system under considera
tion including the distribution of covariates and the censoring mechanism (or he or she 
is simply unable to do this), and therefore in Section 7 possibilities of analysing partially 
specified models are discussed. 

2. Intensity models for counting processes and examples of uncensored models 
Several expositions of the basics of statistical models for counting processes already 
exist (A.ALEN, 1978, ANDERSEN et al., 1982, JACOBSEN, 1982, ANDERSEN & BORGAN, 
1985, KARR, 1986) so we may be brief in defining our framework. 

Consider a measurable space (Q, 'If) with a right-continuous filtration ('lfr)rE!i• where 
<5" = [O,r) or [O,r] for a given time instant T, O<ro:;;;oo. We write~= [O,r] and define 
~ = v1E 5g; if re~ It is assumed that, for each member P84> of a family 

0' = {Po.p:(8,c/>)E0X<I>} 

of mutually equivalent probability measures on ~. §0 (and hence each g;) is complete in 
the sense of containing all subsets of null sets of ~. although we shall not explicitly 
include null sets in §0 in the examples. 

On (Q, ~'!fr, 0') we consider a multivariate counting process N = (N(t),t E5) = 
(N 1 (t), ... ,Nk(t),t E5) adapted to (g;). That is, each component Nh(t), t ES° is a stochastic 
process with sample functions right-continuous non-decreasing step functions, 0 at time 
0, and with jumps of unit size. Moreover, it is assumed that with probability one, no 
two components jump simultaneously and that Nh(t)<oo for tE'I 

A counting process N(t) has compensator A(t) such that N(t)-A(t) is a local mar
tingale, and A(t) is predictable and has paths of locally bounded variation. Under regu
larity conditions (see e.g. AALEN, 1978, Section 3.2), A(t) will be absolutely continuous 

t 

Ah(t) = p ... h(s)ds, h = l, ... ,k, 
0 

where A.h(t) is predictable and has the property 

A.h(t+) = lim+P{Nh(t+lit)-Nh(t) = ll'!fr}; 
ll1io {.j.t . 

A.h(t) is denoted the intensity process for Nh(t). 
We shall often construct compensators for multivariate counting processes from 

compensators of their components, combined with an independence assumption, cf. 
JACOBSEN (1982, pp. 72-73) for the case of canonical counting processes. This product 
construction is given in the Appendix. 

The family ~ is doubly indexed by (8,cp), where 0 is the parameter of interest 
parametrizing the transition intensities for the events under study and c/> a nuisance 
parameter typically parametrizing the distribution of censoring and covariates. In some 
cases there are no nuisance parameters c/>. It is assumed that the P 84>-compensator for N 
with respect to (g;) is A8(t) = A(t,8) and hence that it does not depend on cp. The sets 
0 and <I> may be subsets of either finite dimensional Euclidean spaces, corresponding to 
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(2.3) Y(t) = l(X-;;,.t) = 1-N(t-). 

It is then a direct consequence of an important representation of JACOD (1975), express
ing the intensity of a counting process N (with respect to a filtration of the type 
<?fr = % v~) in terms of the conditional distributions of the time and type of each 
jump given all preceding ones and given §b, that N has compensator 

I 

A(t,O) = J a(u,O)Y(u)du 
0 

with respect to the self-exciting filtration (<?fr) = (04) and the probability P 8 
corresponding to the distribution F 8 of X. It further follows from Jacod's result (2.1) 
that the likelihood 

L (0) = II {(I - a(t, 0) Y (t)dt)1-dN(tl(a(t, 8) Y (t)))dN(t)} 
IE'5 

= II (l-a(t,O)dt).a(X,O) 
t<X 

x 
=exp(- j a(t,O)dt).a(X,O) = S(X,O)a(X,O) = j(X,O), 

0 

the density function f (-,0) evaluated at X. D 

EXAMPLE 2.2. Uncensored survival data. Let X1 , ... ,Xn be independent non-negative ran
dom variables, )( having hazard function a/t, 0). Assume that their distributions have 
common support not depending on 0, and let T be the upper endpoint for this support. 
As in Example 2.1 we let ~ = [O, T ), and define for each i = 1, ... , n stochastic processes 
N;(t) and Y;(t) by (2.2) and (2.3). 

Identifying i with an 'individual' and X; with the 'survival time' or 'failure time' of 
that individual, then N; counts I only at the time X; when individual i dies and 
Y;(t) = I if individual i is still 'alive' or 'at risk' just before time t. 

Obviously N = (N i, ... ,Nn) is a multivariate counting process with respect to the 
self-exciting filtration (04) generated by N. The compensator with respect to (~) and 
P 8 , the joint distribution of the X;'s, may be derived directly from Jacod's representa
tion as in the previous example, or alternatively from the product construction given in 
the Appendix. 

It follows that N; has intensity process (a;(t,O)Yi(t)) and compensator 
I 

A;(t,O) = Ja;(u,O)Y;(u)du. 
0 

The likelihood for N is 

L(O) = II {(l-~a;(t,O)Y;(t)dt) 1 -dN.(r)fr (a;(t,O)Y;(t))dN,Ul}, 
/c,'j 1=] 

where 
n 

N.(t) = 2:N;(t). 
i=l 

Similarly to Example 2.1 the likelihood 

n X, n 
L(O) = exp(- 2: J a;(u,O)du).~ a;(X;,O) 

i=IO z-1 
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reduces to the product of the density fun~tions.Ji()J) ~v~uated a~ -??-i· . 
When XI>···,Xn are independent and idenucally distnbuted (1.1.d.) with hazard func-

tion a(·,8) the likelihood reduces to 

L(8) = IT {(1-a(t, 8) Y.(t)dt)1-dN (zJ .ft (a(t, 8) Yi(t))dN,(tJ} 
te! 1-I 

where 
n 

Y.(t) = 2;Yi(t) = n-N.(t-). 
i=I 

Thus in this case L(8) is equal to 

IT(l -a(t, 8)[n - N.(t - )]dt)1-dN.(t) a(t, 8)dN U> 
te5 

showing that the aggregated process N. is sufficient for 8 corresponding to the fact that 
the ordered observations X(IJ os;;X(2) os;; • • • o;;;;X(n) are sufficient. We may also say that 
the self-exciting filtration after aggregation is sufficient for 8. Note that in the i.i.d. case 
N. is a univariate counting process with intensity process 

A.(t,8) = a(t,8)Y.(t) 

with respect to (04) and P 8• Thus the counting process N. obtained by aggregation of 
the individual counting processes Ni each following a multiplicative intensity model is a 
univariate counting process with the same intensity structure. The intensity process for 
the aggregated counting process N. is a product of an individual intensity Cl(t) and a 
process Y. (t) which can be interpreted as the number of individuals at risk for failing just 
before time t. D 

ExAMPLE 2.3. A model for relative mortality. Let, as in Example 2.2, Xi, ... ,X11 be 
independent non-negative random variables and assume that the distribution of Xi is 
absolutely continuous with hazard rate function µi(t)ao(t, 8). Here µi(-) is assumed to be 
a known hazard rate function, e.g. a population based quantity known from vital statis
tics, and ao(·,8) is an unknown (time- or age-dependent) relative mortality common to all 
i. Now N = (N 1, •.• ,N11 ) is a multivariate counting process, Ni having intensity process 
given by 

"Ai(t,8) = ao(t,8)1L;(t)I(X;";;?;t), i = I, ... ,n 

with respect to (~) and PB. In this case the likelihood is proportional to 

II(l-ao(t,8)Y".(t)dt)1-d.N.(1)ao(t 8)dN.(rJ 
!E~ ' ' 

where 
n 

Y".(t) = Lf.L;(t)l(Xi";;?;t). 
i=I 

Th~s th~ pair (N., Y".) is s~cient for 8, whereas the self-exciting filtration after aggre
gau~n 1s r:iot._ By ~ggregauon, a univariate counting process N. = N 1 + ... + N11 is 
obtamed with mtens1ty process A.(t,8) = ao(t,8)Y".(t). Thus again the intensity process 
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for the aggregated counting process N. has a multiplicative form but in this case YJL.(t) 
is no longer simply the number at risk for failing at t. D 

ExAMPLE 2.4. A finite state Markov process. Let (X(t),t E'5}, '5" = [O;r], be a Markov 
process with finite state space S and right continuous sample paths and suppose that the 
initial distribution, i.e. the distribution of X(O) = J 0 , say, depends on parameters rp 
(and possibly on 8 too). We let T,, be the v'th jump time of X and J,, the state reached 
at T,,. Then the Markov process X is equivalent to J 0 and the marked point process 
(T,J) = {(T,,,J,,);v = 1,2, ... } in the sense that observation of X(u), O~u~t. gives the 
same data as observing J 0 and (T,J) on [O,t ]. 

We shall assume the existence of integrable transition intensities afj(t) = ahj(t, 8) 
from state h to state j, h=:f=j (some a~O may be zero for all values of 8). According to 
JACOBSEN (1972) afj(t) can then be decomposed into 

afj(t) = µf (t)'1Tfj(t), 

where µf equals ~ af j and satisfies 
JES 

t 

(2.4a) PfJ.p(Tr+1>tlJo,(T,,,J,,),P = l, ... ,r,Jr = h) =exp{- jµf(s)ds} 
T, 

and '1Tf 1 equals af1 I µf and satisfies 

(2.4b) '1Tfj(t) = PfJ.p(lr+I = jllo,(T,,,J,,),P = 1, ... ,r,Jr = h,Tr+I = t). 

Thus µf is the force of transition out of the state h and when µf(t) = 0 for all t (and 8) 
we say that the state h is absorbing. (Transition intensities into an absorbing state need 
only be locally integrable on [O;r).) 

Let Nhj(t) be the number of direct transitions for X from h to j, h=:f=j, in [O,t]. Then 
also N = (Nhj(·),h=:f=J) and J 0 are equivalent to X in the above mentioned sense and we 
define(~) to be the self-exciting filtration for N and let ~ = ~ V?fo with % generated 
by J 0 • The P fJ<P-intensity process for the multivariate counting process N with respect to 
(~)can now again be found from the representation of JACOD (1975) and (2.4) since 

Po.p(lr+I = Jllo,(T,,,J,,), P = l, ... ,r;Tr+d = '1TJ,/Tr+1). 

This shows that Nhj has P 0.p-intensity process 

A.fJ(t) = A.fj(t) = µf (t)'1Tfj(t) Yh(t) 

= af1(t)Yh(t), 

where Yh(t) = I(X(t -)=h) is the indicator for X being in the state h just before time 
t (see also JACOBSEN, 1982, p.120, and GILL & JOHANSEN, 1987). Thus the intensity only 
depends on 8 and again we have a multiplicative intensity structure. 

Next, assume that given JiO,i = l, ... ,n, independent copies X 1 (·), ••• ,Xn(·) of X(·) are 
constructed with Xi(O) = J;0 ; let Jo = (J 10 •••• ,lno) and define a multivariate counting 
process N = (NhJi•i = l, ... ,n; h=:f=j) from (X1 (-), ••. ,XnO) as above. Then, by the con
ditional independence of the Xi(-)'s and by the product construction given in the 
Appendix it is seen that Nhji has Po.p-intensity process 

A.fJ;(t) = A.fji(t) = af1(t) Yh;(t), 

where Yh;(t) = l(Xi(t-)=h) is the indicator for Xi being in state hat time t -. 
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· · · N - (N · - 1 n · h ;·ES h=I=;') has therefore The multivanate countmg process - hJ;,1 .- , .•• , , , ' a multiplicative intensity with respect to (~) which only depends on 8. By (2.1) the 
likelihood takes the form 

L(8,cp) = Lo(8,cp)L.,(8) 

where 

L 0(8,$) = Peq,(Jo) 

and 

Then Li 8) equals 

TIJ(l - 2.:Ct:~ (t) Yh.(t)dt)1-~,,.1dN,1 (1) I1a~j(t)dN,1Ul} 
IE~ h'fj :J h'fJ 

where 
n 

NhJ-(t) = "2, NhJi(t) 
i=l 

and 
n 

Yh.(t) = "2, Yhi(t), 
i=I 

the latter being a function of J0 and (Nhf,h=f=j). Thus if the distribution of Jo o~y depends on cp, then for each fixed <f>E4.>, L7 (8) is the full likelihood for 8, otherwise Lr(B) is only a partial likelihood (Cox, 1975; KALBFLEISCH & PR.ENTICE, 1980, Ch.5). At any rate, Lr(8) is the full conditional likelihood given the initial states Jo and 
(J0 ,Nhf ;h=l=i)) is sufficient for 8, the second part being a multivariate counting process 
with intensity process 

A.fr(t) = afj(t)Yh.(t). 
Again aggregation leads to a counting process following a multiplicative intensity model where the first factor is an intensity on the individual level and the second is a process indicating the number at risk just before time t for experiencing events of given types. 0 

ExAMPLE 2.5. Competing risks. As a very special case of Example 2.4 one may consider two states 0 ('alive') and l ('dead') and assume a 10 (t,8) 0 (that is, state l is absorbing) and the initial distribution degenerate at 0, yielding exactly the independent identically distributed uncensored survival times of Example 2.2, with hazard function equal to the transition intensity ao1 (t,8). 
A more general special case of the Markov process example is the competing risks model, obtained by considering one transient state 0 ('alive') and absorbing states h == l, ... ,k (so that ahj(t, 8) = 0 for h = l, ... ,k and all j). State h corresponds to 'dead by cause h'. The initial distribution is degenerate at 0 and the transition intensities lX-Oh(t,6), h = l, ... ,k, are termed 'cause specific hazard functions'. 
It is easily s~n that the competing risks model is equivalent to considering independent random vanables Xn, ... ,X;k> i == l, ... ,n, with hazard functions ao1(t,8), ... ,aok(t,6) 
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and the multivariate counting process 

N(t) = (NI (t), ... ,Nk(t)) 

with 
n 

Nh(t) = ~I(minXa = Xiho;;;;t). 
i =I I 

In reliability theory, min1Xi1 is interpreted as the lifetime for a series system of k 
independent components with life times Xi1>···,Xik· It has been debated extensively how 
useful this reliability interpretation is in biomedical contexts. In particular, even if the 
competing risks model may be generated from a set of independent 'latent' (or 'underly
ing') life times, these are often hypothetical. References to a discussion of the interpre
tability and testability of the latent life time model include Cox (1959), TSIATIS (1975), 
KALBFLEISCH & PRENTICE (1980, Chapter 7), Cox & OAKES (1984, Chapter 9). 0 

In Examples 2.1 - 2.4 the individual counting processes Nh; satisfied the multiplicative 
intensity model 

,\~;(t) = a~;(t)Yh;(t), h = I, ... ,k, i = l, ... ,n. 

Here a~;(t) was an individual force of transition, relative hazard, or hazard of type h and 
Yh;(t) a predictable process which was observable in the sense that it did not depend on 
the parameter 8. The process Yh;(t) contained information on whether or not individual 
i was at risk for experiencing an event of type h at time t. For instance (with a slight 
abuse of notation) h could correspond to a transition from one state to another in a 
Markov process. 

When a~; = a~ for all i, the aggregated counting process Nh. satisfied the multiplica
tive intensity model 

,\~(t) = a~(t)Yh(t), h = l, ... ,k 

with the predictable and observable process Yh(t) giving the size of the risk set for that 
type of event just before time t (in Examples 2.2 and 2.4 but not in Example 2.3, Yh(t) 
was simply the number at risk for a type h transition just before time t). 

The next example presents a model for completely observed life history data for 
which aggregation does not lead to Aalen's multiplicative intensity model. 

EXAMPLE 2.6. Relative risk regression models with time-independent covariates. Let 
(X;,Z;) be random variables with X; non-negative and each Z; p-dimensional. We shall 
assume that X 1 , ••• ,Xn are conditionally independent given Z = (Z i, ... ,Zn), that the 
marginal distribution of Z depends on parameters cf> (and possibly 8 too) and that the 
conditional distribution of X; given Z = z = (zi, ... ,zn) has hazard function a:;(t,8) as in 
Example 2.2. We shall consider models of the form 

(2.5) a;(t,8) = ao(t,y)r(!Fz;) 

with 8 = (y,/3), /3E RF and the relative risk function r(-) being non-negative. The main 
example is the semi-parametric Cox regression model (Cox, 1972) where r is the 
exponential function and y is infinite-dimensional, but parametric models with yERq 
may also be considered. In any case Zj, ... ,Zn are covariates upon which we want to 
condition and cf> is a nuisance parameter. In some cases it is reasonable to assume 
(Xi,Z 1),. •• ,(Xn,Zn) to be i.i.d. but when some of the X;'s correspond to life times of 
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individuals from the same family or community the above assumption of conditional 

independence of the X/s given Z is more realistic. 
From Xi, i = l, ... ,n we define stochastic processes Ni(-) and Yi(-) from (2.2) and 

(2.3) and we let (0L,) be the filtration generated by the multivariate counting process 

N = (N 1 , .•. ,Nn)· Furthermore we let% be generated by Z, define §; = <Jo v3 and let 

Po.p be the probability measure corresponding to the distribution of (Xi,Zi), i = 1, ... ,n. 

The (P 04>,(§;))-compensator for N can now be found directly from Jacod's representa

tion or alternatively from the conditional independence version of the product construc

tion. 
This shows that the compensator for Ni only depends on 8 and that it equals 

t 

A(t,O) = jY;(u)a;(u,O)du. 
0 

The likelihood takes the form 

L(O,cp) = Lo(O,cp)LT(O) 

as in Example 2.4, where 

L0(8,cp) = Poq,(Z) 

and 

L.,(0) = IT {(l - 2:ai(t, 8) Y;(t)dt)1-dN. (t) IT (a/t, 8) Yi(t))dN,(tl }. 
te5" i 1 =I 

If the distribution of Z does not depend on 0 then for each fixed cf>E<l> LT(O) is the full 

likelihood for O; otherwise it is a partial likelihood and the full conditional likelihood 

given Z. No sufficiency reduction of (N;(·),Z;), i = l, ... ,n is possible when /3 is 

unknown. It is easily seen that LT(8) is equal to 

n ~ 

IT ao(X;, y)r(/3T Z;)exp{ -r(/3T z;) j ao(u, y)du} 
z=I o 

the density for the conditional distribution of X = (XJ, .. .,Xn) given Z = z, evaluated at 

x. 
Combining the present example with Example 2.3 a regression model for the relative 

mortality is obtained (ANDERSEN et al., 1985). Here the hazard rate function for Xi 

given Z = z is 

a;(t, 0) = ao(t, Y)/li(t)r(/3T z;) 

where fJ = (y,/3) andµ./) is known. Also Example 2.4 can be combined with the present 

one into regression models for the transition intensities in a Markov process of the form 

ahji(t, 8) = ahjo(t, y)r (/3T zhi ). 

Here type specific covariates Zhi may be defined from the vector of basic covariates Zi 

for individual i, reflecting the fact that some of these basic covariates may affect the 

different transition intensities differently (e.g. ANDERSEN & BORG AN, 1985). O 

In the previous examples we have re-formulated well known models for complete life 

history data in terms of multivariate counting processes. We shall conclude this section 

by two models which are conveniently formulated directly as counting processes. 
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EXAMPLE 2.7. A model for matings of Drosophila flies (unpublished data of F.B. CHRIS

TIANSEN, 1969, cf. AA.LEN, 1978). In each mating experiment 30 female virgin flies and 
40 male virgin flies were inserted into an observation arena, the 'pornoscope', consisting 
of a circular plastic bowl I cm high, with diameter 17 cm covered by a transparent lid. 
The flies were observed continuously and times of initiation and termination of matings 
were observed. Each fly mates at most once. In particular the number of ongoing mat
ings is known for each time. The observation times are unpaired in the sense that it is 
unknown which termination times correspond to which initiation times. 

We let N(t) be the number of matings initiated in the interval [O,t] and F(t) and 
M (t) the number of female and male flies respectively not yet having initiated a mating 
just before time t. Thus F(t) = fo - N (t -) and M (t) = mo - N (t - ) where fo = F(O) 
and m0 = M (0) are the number of female and male flies respectively in the pomo
scope. Let~ = a(N(u), O~u~t) be generated by N(-) on an interval '5. Then a model 
for a univariate counting process NO can be set up by assuming that for a given locally 
integrable function ~(t) parametrized by some fJ the (P 6 ,(~))-intensity process for 
N(t) is 

"A.8(t) = ~(t)F(t)M(t). 

It can be shown from Jacod's representation that a counting process with this intensity 
process exists and is unique on(~). Thus we have another example of Aalen's multipli
cative intensity model. The interpretation of a8(t) is that of an individual mating inten
sity since it is the intensity of N(t) when M(t) = F(t) = 1. D 

EXAMPLE 2.8. An illness-death process with duration dependence. Let states 0, I and 2 
denote healthy, diseased and dead and define the counting process of transitions 

between these states by N(t) = (N 01 (t),N o2(t),N !2(t)) where N oh(t), h = 1,2, has 
intensity process IXoh(t)Y0(t) with Y0 (t) = l-N01 (t-)-No2(t-), while N12(t) has 
intensity process a12(t,t-T)Y 1(t) with Y 1(t) = No1(t-)-Nn(t-) and 
T = inf{t:N01 (t) = l}. Thus Yh(t) indicates that the individual is in state h at time 
t - , while T is the time of transition from 0 to 1 (if this transition ever occurs). It is 
seen that the intensity a 12(t,d) of dying while diseased depends on both time t and dura
tion d. This is not a multiplicative intensity model, since.a!2(t,t-T)Y1(t) cannot gen
erally be written as a product of a deterministic function and a stochastic process 
independent of the parameter, except in the particular case when al2(t,d) only depends 
on t, and the process corresponds to a Markov illness-death process, cf. Example 2.4 
above. (When al2(t,d) only depends on d, one has a special case of a semi-Markov or 
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Markov renewal process). D 

3. Right censoring 
3.1. Introduction 
In this section we consider multivariate counting processes composed of n individual 
processes (each of which may be multivariate) and we shall see how the most common 
form of incomplete observation, right censoring, may be 'superimposed' onto such a 
model. 

Right censoring will often introduce extra random variation in which case we first 
have to enlarge the filtrations compared to the (§;) considered in the uncensored exam
ples in Section 2, where §=; = % v~ with % = a(Xo). Thus a multivariate counting 
process 

N = (Nh;; i = 1, ... ,n; h = 1, ... ,k) 

defined on some space (0, §) is considered with compensator A8 with respect to some 
filtration (§1) :;i (§;) and a family of probability measures 

'iP = { P IJ<1>,8E 0,cpE<I> }. 

Typically 13> now also describes the censoring distribution. However, we do assume that 
the compensator is the same as if there had been no censoring, i.e., the same as with respect 
to the original ('small') filtration, (§=;). We consider this to be the most appropriate 
mathematical formulation of the notion of independent censoring, to which we shall 
return in Subsection 3.3. We shall indicate explicitly in the examples below how this 
may be achieved. As before, i indexes individuals and h types of events that the individu
als may experience; for example h = 1, ... ,k may indicate the different causes of death 
in a competing risks model ( cf. Example 2.5). 

Right censoring of N is the situation where observation of Nh;(·), h = 1, ... ,k is 
ceased after some (possibly random) time U;, i.e., Nhi is only observed on the random 
set E; = { t:,.;,; U;} i;;;; '3" or equivalently when the process 

(3.1) C;(t) = /(tEEi) = /(t~U;) 

is unity. Thus, right censoring is imposed onto N by individual right censoring processes 
C1(-), ... ,Cn(·); AALEN (1975, 1978), AALEN & JOHANSEN (1978). 

We shall assume that the censoring process C = (C;,i = l, ... ,n) is predictable with 
respect to (§1). Since each Ci(·) is left continuous this is the case if C is adapted, i.e. if 
the U/s are stopping times with respect to (131 ). The interpretation is that censoring may 
depend only on the past and not on future events. In the concrete examples of censoring 
to be discussed in the following, the censoring process will typically depend only on i 
and not on h. It is easily seen, however, that the calculations will go through virtually 
unchanged with C/) replaced by Chi0· Thus different censoring mechanisms for the 
different types h of transitions can be handled within the framework in which we are 
working, the important thing being that the censoring processes are predictable. 

After (possibly) having enlarged the filtrations from (§;) to (131) to include any addi
tional random variation in the right censoring times we shall now reduce the filtrations 
again by specifying which data are available to the researcher at any time t after censor
ing. Thus we do not in general assume 131 to represent the data at time t. First of all, the 
observable part of Nor the right censored counting process Ne = (N~i) is given by 
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I 

(3.2) Nh;(t) = J C;(s)dNhi(s). 
0 

Since 

Nh;(t) = Ah;(t)+ Mh;(t) 

where Mh; is a local square integrable martingale we have that 
I I 

Nh;(t) = j C;(s)dAh;(s,fJ)+ j C;(s)dMh;(s) 
0 0 

= Ni,;(t,fJ)+Mh;(t). 

Here the latter term is again a local square integrable martingale by the predictability of 
C;(·). Thus Nh; has (P8<1.,{§1))-compensator 

I 

Ah;(t, fJ) = j C;(s )dAh;(s, fJ). 
0 

For the special case where N satisfies Aalen's multiplicative intensity model 
Ah;(t, fJ) == ah;(t, fJ) Yh;(t) with respect to (§1) it is seen that also Ne satisfies the multipli
cative intensity model with respect to (§1) with intensity process given by 

Ah;(t,8) = ah;(t,fJ)Yh;(t) 

where 

Yh;(t) = C;(t) Yh;(t). 

That is, the observable counting process has the same 'individual intensity' af; as the 
uncensored process but the random part Yh;(t) of the intensity process must in most 
examples be interpreted as the (predictable) indicator process for individual i being 
observed to be at risk for experiencing a type h event just before time t. 

Next, we turn to a discussion of the available data at time t in addition to the right 
censored counting process (Nc(u);O:o;;;;u:s;;;;t). As in Section 2 we assume that Xo is 
observed (when relevant). We do not assume the whole censoring process C to be 
observed and it is then a question for each individual i of whether or not the value of 
U; is observed. The situation is most easily thought of by introducing th~ concept of an 
absorption time by which we shall mean a (possibly random) time T; E'5' with the pro
perty that all >-.f;(t)=O, h = 1, ... ,k for t~T;. In the case of uncensored survival data 
(Examples 2.2, 2.3) we have r; == X;. In an uncensored Markov process (Example 2.4) 
we haver; = inf{t :X;(t)EA} where A r;:S is the subset of absorbing states. 

te5 
The idea is that typically, when the time of absorption for individual i precedes U;, 

then (Nh;(t), h = 1, ... ,k; t E~ is observed since in this case Nh;(t) = Nh;(t), but U; 
itself is usually not observed. If there is no absorption of individual i before time U; then 
(Nh;(t), h = 1, ... ,k, t:o;;;;U;) is observed together with the value of U;. 

In the case when N satisfies Aalen's multiplicative intensity model the observations 
at time t can thus be specified as 

(Xo, (Nc(u),Yc(u)); O:o;;;;u:o;;;;t) 

where Ne = (Nh;; h = l, ... ,k, i = l, ... ,n) and ye = (Yh;; h = l, ... ,k, i = l, ... ,n). 
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Equivalently the observed data at time t can be specified as the a-algebra 

qf°f = a(Xo, (Nc(u),Yc(u)); O~u~t). 

Then it follows that the observed counting process Ne also satisfies a multiplicative 
intensity model with respect to the filtration (§' D generated by the observed family of 
a-algebras since this intensity process is given by 

E6'/>(Ah;(t,8)1§'D = ahi(t,8)Yh;(t), 

by the innovation theorem (see e.g. AALEN, 1978, Theorem 3.4). Here we used the fact 
that Yh;(t) (by definition of §' D is adapted to §'f. So, in this respect censoring by a 
predictable process CO preserves the multiplicative intensity model. 

In general, the compensator Ahi(·,6) may depend on 8 and on the past observations 
in a more complicated way than specified by Aalen's model. We shall assume that the 
observations up to time t enable the researcher to calculate Ah;(t, 8) for any given value 
of the unknown parameter 6. We may therefore specify the observations available at time 
t as 

where 

(3.3) e c(t) = (N(u,8);8e0,0~u~t) 

is the fami?Y of P 11ct>-compensators for Ne with respect to (§1). Alternatively the data at 
time t may be given as the a-algebra 

(3.4) CJ i = a(Xo,(Nc(u),O~u~t);e e(t)). 

Then (3.3) is also the family of (P 11cp,('!J D)-compensators for the right censored counting 
process Ne. 

In non-degenerate cases the two definitions of (<!f D for the multiplicative model 
coincide, e.g. when ah;(-,8) is positive on ~ 

3.2. Examples of models for right censoring mechanisms 
We shall first consider the special case where a multivariate counting process N is 
defined from independent survival times X 1,. • .,Xn (Examples 2), 2.3, 2.6). Here, obser
yation of (Nf, Yf;i = 1, .. .:.in) amounts to observing (Xi,Di;i = 1, ... ,n) where 
X; = X;/\U;; and D; = /(X;=X;). _Thus for each individual an observation time X; 
and infonnation on whether or not X; is a failure time or a censoring time is available. 
If D; = I then the censoring time U; is usually not observed; see, however, Example 3.3 
below. 

We shall now see how some commonly used models for right censoring fit into this 
set-up. In Examples 2.2 and 2.3 we had a multivariate counting process with com
ponents defined by N;(t) = l(X;~t) and we studied the compensator with respect to 
the self-exciting filtration (~). We first consider two examples of censoring processes 
Ci(t) = I(t~U;) predictable with respect to this filtration, i.e. examples where the origi
nal filtration (~) need not be enlarged to include the censoring. 

ExAMPLE 3.1. Survival data and simple type I censorship. Here the observation of each 
individual is ceased at a common, deterministic time u0 so Ci(t) = I(t~u0) is non
random and trivially predictable with respect to any filtration. 1bis censoring scheme is 
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most common in industrial life testing where n identical items are put on test simultane
ously and observed on a fixed interval [O,u0]. O 

E~LE 3.2. Surviva'. data and simple type II censorship. In this case the experiment is 
termmated at t~e tune_ of the r'th failure, r~n, i.e. U; = X<rl,i = I, ... ,n. Then 
C; = I (t ~x_(r)) is J.?red1ctable with respect to (~ ), X(r) being a stopping time with 
~espect to this filtration. Type II censorship is rarely applied in medical contexts but it 
is more common in industri11-I life tesJing experiments. Notice that in this example the 
censored observation times X i, ... , Xn are dependent. 0 

When N has (~oq,,(~))-compensator A8 then by Jacod's representation also the Pw 
compensator with respect to any enlarged filtration (§1) given by §1 = §ov3 with §o 
generated by a random variable Xo independent of (X1>···,Xn) is A8 (here cp may be 
parameters for the distribution of Xo). This is used in the next two examples. 

EXAMPLE 3.3. Survival data and progressive type I censorship. In clinical trials patients 
often enter the study consecutively while the study is closed at a particular date. When 
the interest focuses on the life time from entry (which might be the case if patients are 
randomised to some treatment at entry) the maximal time under study for patient i will 
be the time U; from entry to the closing date. If the survival times from entry are 
independent of the entry times Xo, say, and if we let §o be generated by the entry times 
then the censoring process C with components C;(t) = l(t~U;) is predictable with 
respect to (i'.31). Another way of stating this is to say that given §0 , the censoring times 
U 1 = u 1, ..• , Un = Un are deterministic and thus we have the generalisation of Example 
3.1 known as progressive type I censorship. 

In this example cp may parametrize the arrival time process. Also in this example all 
the censoring times will be observable since it will be known when a patient would have 
left the study if he or she had not died before the closing date. This is of course a 
consequence of the assumption that all censoring is caused by patients being alive at the 
closing date, cf. the remark at the end of this subsection. 0 

EXAMPLE 3.4. Survival data and random censorship. A generalisation of Examples 3.1 
and 3.3 is the general random censorship model where U = (U 1, ••• ,Un) is independent 
of X = (X1 , .•• ,Xn) but where U may have an arbitrary distribution. 

The classical or simple random censorship model in which U1 , ••. ,Un are assumed to 
be i.i.d. is the mathematically most tractable model for the censoring mechanism and it 
underlies the majority of papers on the analysis of survival data. In any case, as long as 
U is independent of X we can introduce §o = a(U) and the censoring processes are 
then adapted to §1 = @0 v~ as required. However, except for the progressive type I 
censorship model in the previous example it is usually intuitively very unnatural to 
model the censoring times as being realised at time 0, and this would also be contrary 
to the interpretation that at time t the data can be summarized as the a-algebra <!f i. 

Therefore, we shall now discuss the random censorship model from another, 
mathematically equivalent, point of view. The approach that we shall adopt is the 
marked point process approach of ARIAS & HAARA ( 1984). This ~ay at first glance look 
unnecessarily complicated for the study of the random censorship model. But we take 
this rather simple case as an introduction to the marked point process approach that we 
shall use in much more generality in th_e next subsecti~n. . . GT 

The basic tool of Arjas & Haara is a marked pomt process on the tlille mterval :J 
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specified by time epochs O<T1 <T2 < · · · . and marks X;=(X';,X";)EE, i = 1,2, .... 
Here the mark space E is written as E = E' X E" where E' contains the so-called inno
vative marks x' and E" the non-innovative marks x". The interpretation is that the inno
vative marks signal the occurrence of the events of interest (e.g. failures) and hence con
tain infonnation on the parameter 8, whereas the non-innovative marks signal censoring 
events. Either of the components of x =(x',x") may be !he empty mark 0' or 0" 
respectively but 0 = (0', 0")~£. In fact, by E'XE" we mean precisely 
E'XE"\{0}. 

We first consider the univariate case and let X and Ube non-negative random vari
ables which are mutually independent and assume that X has hazard rate function a(·,8) 
and that the distribution of U depends on parameters <J>. (The distribution of U need 
not be absolutely continuous). We can represent the complete observation of X and U 
by a marked point process with E' = { 0',d} and E" = { 0",c} in the following way: 
there is an event at time t with mark x if and only if 

either t =X and t=l=U in which case 
or t = U and t=l=X in which case 
or t = U = X in which case 

x =(d, 0") 
x ={0',c) 
x =(d,c). 

We now let (!31) be the filtration generated by this marked point process. Then the pro
cess N(t) = l(X~t) counting the number of innovative marks in [O,t] has the same 
compensator 

I 

A(t, 8) = J a(u, 8)1 (X"P=u )du 
0 

with respect to (!31) as it has in the model without censoring, i.e. with respect to 
(<if 1) = (~). This is (by the independence of X and U) an immediate consequence of 
Jacod's representation. 

That the observation of 'the failure time' X may be prevented by right censoring at 
U now corresponds to the situation where observation is terminated at the stopping time 
X /\. U and that the mark x = (x' ,x") is observed at that time, i.e. whether X /\. U is a 
failure time or a censoring time (or both). Thus the censoring process C{t) = l(U"P=t) 
is (!31)-predictable and it follows that the censored process Ne has compensator 

I 

N(t,8) = ja(u,8)/(XAU"P=u)du 
0 

with respect to (!31) and hence also with respect to the filtration (<if D generated by the 
censored marked point process corresponding to the observation of X /\. U and the mark x 
at that time. 

In the case n>l with XJ, ... ,Xn i.i.d. and (U1,. .. ,Un) independent of Xi. ... ,Xn one 
can go through the same arguments. From the 'large' marked point process given by all 
the X's and all the Us, we can first define a multivariate counting process N counting 
the innovative marks corresponding to the X's. We can then calculate the P 8q.
compensator A(·,8) with respect to the entire history (!31) of the large process and notice 
that it coincides with the original (<if 1)-compensator in the model without censoring. 
Next, we can define a censored process Ne counting only the observed innovative marks 
and we can define observed censoring times. Finally, we can calculate the P 84>
compensator Ac(-,8) of Ne with respect to the filtration (<!f D generated by the process 
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(say, N*) consisting of observed failures and censoring times and notice that the multi
plicative intensity _structure is_ preserved. If Ui. ... , Un are mutually independent this 
r~sult can alternatively be denved from the univariate case and the product construc
tion. Thus the general random censorship model fits into our framework without 
modelling censoring times as being realised at time 0. D 

ExAMPLE 3.5. Censoring by competing risks. If interest in a study of survival data 
focuses on deaths from one specific cause then one may wish to consider deaths due to 
other causes as right censorings. As seen in Example 2.5 the competing risks model is a 
simple random censorship model as just discussed. However, as mentioned in that 
example the existence of the independent latent failure times is debatable. Hence we 
shall now demonstrate how the situation can be modelled using the marked point pro
cess approach introduced in Example 3.4 to the competing risks model. 

Let ao1 (t, 8) denote the hazard function for the cause of interest and let 
aoj(t,8,<J>), j = 2, ... ,k be the other cause specific hazards. Consider a single individual, i, 
define Ni = (N0Ji,} = l, ... ,k) as in Example 2.4 and consider the self-exciting filtration 
(9l, ). W ~ can then identify N; with a marked point process with mark space 
E = E' X E" as in Example 3.4, a non-empty innovative mark j = 1 and non-empty 
non-innovative marks j = 2, ... ,k. Then Example 2.5 shows that the (Pe.p,(9'1.,))
compensator for the component N oli(t) counting the number of innovative marks in 
[O,t] is 

I 

Ali(t,8) = Jao1(u,O)Y0;(u)du. 
0 

Here Yo;(t) = l - N 0.;(t - ) indicates whether individual i is alive (i.e. in state 0) at time 
t -. We can now define the right censoring process C;(t) = I(t~U;) where U;~T is the 
(9l, )-stopping time: 

Ui = inf{t:Na1i(t) = l;j = 2, ... ,k}. 
IE~ 

Qbservation of the censored marked point process now corresponds to observing 
~ = X; /\ U; where 

X; = inf{t :Noli(t) = l}, 
IE~ 

and the mark (0',c) if ..\'; = U; or the mark (d, 0") if X; = X;. The component 
N31i(t) = N 01;(t) counting the number of innovative marks in [O,t] in the censored 
marked point process then has (P IJ.p,(9'1.,))-compensator A1;(-,8) whic~ is adapted als? to 
the filtratio_n (§" n generated by the censored marked pomt process (sm~e 
Yo;(t) = /(X;~t)). Thus Ali(-,8) is also the (P 8.p,('!f i))-compensator for _N&li and this 
means that we can make inference on (} (and hence of the cause specific hazard of 
interest, ag1) in the presence of the competing risks by considering deaths from other 
causes as censorings. D 

ExAMPLE 3.6. The illness-death process. In the illness-~eath model _d~fined ~ Ex~ple 
2.8, consider a separate study of N 01 (t), the healt?y-d1~eased trans1ti_o~. This furmshes 
an example of (random) censoring by a co~petmg_ nsk: the trans~t:on 0..-,,2 (death, 
while healthy) removes the individual from bemg at nsk for the transition O..-,, 1 (becom-
ing ill). D 
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In Examples 3.1 to 3.6 we have demonstrated how some right censoring mechanisms 
only depending on the previous history of N or on outside random variation preserve 
the multiplicative intensity model in the case of survival data. Next, we shall consider 
right censoring in the Markov process of Example 2.4. 

Ex.AMPLE 3.7. Right censoring in a Markov process. It is easily seen going through 
Examples 3.1 to 3.4 that the same arguments will apply starting with the uncensored 
Markov process model of Example 2.4. Thus for example 'censoring at the r'th transi
tion from state h to state j' would be an admissible censoring scheme in this setting, 
being generated by an (<?fi)-stopping time. 

It should also be mentioned that in a Markov process model censoring may depend 
on the initial states generating~- For example one could have random censorship with 
different distributions according to the state in which the individuals were at time 0. D 

The last remark in Example 3.7 leads to another general class of censoring mechanisms 
relevant for regression models such as that of Example 2.6. 

ExAMPLE 3.8. Censoring depending on covariates. In the relative risk regression models 
(Example 2.6) the filtration considered was of the form '!I" 1 = % v~ with ~o generated 
by time-independent covariates Z i, .. .,Zn· This means that the previously mentioned 
models for censoring mechanisms (Examples 3.1-3.6) can be combined with censoring 
depending on the covariates generating ~- Thus in a simple two sample case there may 
be different censoring distributions in the two samples. Also, a possible censoring 
scheme in a survival study with time since entry as the basic time scale and age at entry 
and sex included as covariates would be every year to censor, e.g., the oldest woman 
still alive. Recalling that the censoring process has to be adapted to an extended filtra
tion (@1), it is crucial that the extension generated by the covariates upon which censor
ing depends does not change the compensator of N. D 

Let us finally mention that all the models for right censoring mechanisms discussed in 
this subsection may be combined to more general models for predictable processes C. 
Examples include censoring in a clinical trial with staggered entry (Example 3.3). Here 
censoring may, in addition to being caused by patients surviving until the closing date 
be a consequence of patients dying from causes unrelated to the one being studied (as 
in Example 3.5). 

Censoring of type I or type II (Examples 3.1 and 3.2) are also relevant for the por
noscope model in Example 2.7. Thus one might here choose to terminate the experiment 
at a fixed time u0 or at the time of initiation of the r'th mating. In the actual experi
ment the censoring that was used was as follows. Let X(I) denote the time of initiation 
of the first mating. Then the experiment was terminated at the first time after X(l) +45 
minutes where no matings were going on - no later, however, than at time X(I) +60 
minutes. It is seen that this censoring satisfies our requirements provided that the times 
of termination of matings are included in the filtration (§1) and do not thereby alter the 
mating intensities. 
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3.3. Independent and non-informative right censoring 
We now return to the general set-up considered in Subsection 3.1 with the purpose of 
discussing the concepts of independent right censoring and non-informative right censor
ing. So, we let N = (Nh;; i = l,. . .,n; h = 1,. . .,k) be a multivariate counting process on 
some space (0, §) and we let 6J t = ~ v3 with 6Jo generated by a random variable Xo 
realised at time 0. Furthermore C = (Ci. .. .,Cn) is a right censoring process, C is 
predictable with respect to a given, possibly larger filtration (§1):J(6J t) on the same 
space. Suppose further that a family of probabilities '3l = {P6<1>:(8,cp)e8X4»} with all 
P 6</>'s mutually equivalent is given, and that the compensator of N with respect to P 0<1> 

and (§1), A9 = (A~;; i = l,. . .,n; h = l,. .. ,k) is identical to the (6J 1)-compensator for 
N. In particular the compensator does not depend on cp. We shall denote right censoring 
generated by a process C with these properties independent right censoring. Thus () is the 
parameter of interest whereas C depends on the nuisance parameter cj>E4» and it may 
depend on 8 as well. 

The (6J 1)-likelihood based on observation of N and Xo, whose distribution may also 
depend on cp and maybe on 8 too, is by Jacod's formula (2.1) 

n k 
(3.5) L(8,cp) = Lo(8,cp)IT {(1-dA6 .. (t))1-dN .. (t) H II dA~;(t)dN.,(t)} 

te~ 1=lh=I 

n k 
Here N.. = ~ ~ Nh;, and A6 .. is the P 6</>-compensator of N .. with respect to (6J 1). If 

i=l h=I 
Xo does not depend on 8 then LT(8) is the full likelihood for 8 based on observation of 
N, otherwise LT(8) is a partial likelihood and the full conditional likelihood given 6Jo. 
Consider now the right censored counting process 

where 

Ne = (Nh;, i = l,. . .,n; h = l,. . .,k), 

I 

N~;(t) = J C;(s)dNh;(s). 
0 

Then for all cf>E4» the (P9</>,(§,))-compensator of Nh; is 
I 

A~;(t,8) = f C;(s)dAh;(s,fJ). 
0 

As explained in Subsection 3.1 we assume that the observations available at time t 
include Xo and (Nc(u),O~u~t) together with right censoring times U;~t for individu
als for which there is no time of absorption before U;. Under non-degeneracy conditions 
(e.g. ah;(t, 8)>0 for t E~ifor the multiplicative intensity model), the observations may be 
formalised as (Xo,Nc ,e c(t)) with e c(t) given by (3.3). In what follows we shall consider 
these observations as a marked point process 

N* = (Nc,N") 

with innovative marks at jump times for Ne and non-innovative marks at observed right 
censoring times as in Examples 3.4 and 3.5 and at t =O. There may be simultaneous 
marks. Thus N" is the process recording the observed right censoring times with marks 
and which also has a mark at t =O recording Xo. These two ways of describing the data 
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are equivalent in the sense that for any t e'3" 

a(Xo,(Nc(u),O~u~t);ec(t)) = a(N*(u),O~u~t) 
both being equal to ?f 1 (defined in (3.4)). 

We shall now write down parallel to (3.5) the P o<1>·likelihood L* (fJ,cp) for N* with 
respect to (?f D and rewrite it along the lines of AllJAs & HA.ARA (1984). We shall keep 
the calculations at an informal and intuitive level and refer the reader to ARJAS & 
HAAR.A (1984) for the full mathematical details. 

An element x in the mark space E = E'XE" of N* can be written as a pair 
x = (x',x''). Here at time t, x' = (i,h) if N~i jumps at t while x' = 0' if only censor
ings occur at t, and x" indicates the subset of { 1, ... ,n} of individuals censored at t 
where we may have x" = 0". Thus 

N* = (N~; x = (x',x")) 

and 

N~i = ~Cx',x") with x' = (i,h ). 
x" 

We can now write, starting from Jacod's formula (2.1) applied to N*, 

(3.6) L;(O,cp) = Lo(8,cp)IIPB<1>(dN*(t)l?f~-) 
1 

= ITP B<1>(dN'(t) I§" 1-).L0(8,cp)ITP B<1>(dN*(t) I dN'(t), ~ ~ -) 
t 1 

= L~(8)L./'(8,q,), 
where the contribution from Xo has been absorbed in the second factor. Here the first 
factor equals 

(3.7) L~(fJ) = II{(l-dN .. (t, 8))1-dN' .. (r)pdA~i(t, fJ)<Lv..<1>}, 
t ~h 

where Ne .. = "Zh,;N~; and N .. (-,fJ) is the (P Bcp.('!f D)-compensator for W . ., which does 
not depend on <f>. This partial likelihood function has the same form as the (partial) 
likelihood L-r(6) in (3.5) based on the uncensored process N. (It should be noticed that 
whether or not a given U; is observed does not alter L-r(fJ), cf. the discussion in Section 
3.1 ). Thus independent right censoring mechanisms preserve the form of the (partial) likeli
hood. 

The fact that the form of the partial likelihood is preserved after independent right 
censoring has the consequence that its martingale properties stay the same. For instance, 
the 'score-process' (3/o8 logLH8)) is a (P 0cp,(?f D)-martingale just as (a1ao logL,(8)) is a 
(P Bcp.('!f 1))-martingale in the model without censoring. This means that large sample sta
tistical inference for independently censored data based on the partial likelihood will be 
much the same as that for uncensored data based on the full likelihood, since this mar
tingale structure plays such a central role in asymptotic theory. Note also that if N 
satisfies Aalen's multiplicative intensity model then Yhi(t) in (3.5) is simply replaced by 
n;;(t) in (3.7). 

In the next example we shall relate our definition of independent right censoring to 
other suggestions in the literature in the special case of i.i.d. survival times. 

Ex.AMPLE 3.9. Independent censoring of i.i.d survival times. WILLIAMS & LAGAK.OS (1977) 
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considered right ce~soring of i.i.d. survival times Xi, ... ,Xn with hazard function a8(t). 
They showed that if the model for the censored data satisfies a certain 'constant sum' 
condition then the likelihood for fJ is proportional to (3.7). KALBFLEISCH & MACKAY 
~1979) showed that the constant sum condition is equivalent to another condition which 
~s a c~nsequ7nce of our definition of independent censorin& namely that the failure 
mtens1ty at time t for an individual i at risk at that time (i.e. X;;;;;i.t) is a6(t). Formulated 
in 1our notation this condition simply states that the (P 6cf>.('!f D)-compensator for Nf is 

( ( a6(u)Yf(u)du). This condition was verbally formulated by Cox (1975) and further 
&~cussed by KALBFLEISCH & PRENTICE (1980, p.120). It was given a precise mathemati
cal formulation, not restricted to the (absolutely) continuous case, by GILL (1980a, 
Theorem 3.1.1 ). Thus our requirement, being a condition on the larger filtration 
( ~,) :1 ('If D. is a stronger requirement for independent censoring than those considered 
by these various authors. However, as seen in Section 3.2 it does cover all the interesting 
models for right censoring in the case of survival data and furthermore it can be gen
eralized to other models based on counting processes. D 

In the definition of independent right censoring it is required that the censoring process 
C is predictable. So examples of dependent right censoring patterns include cases where 
C is not adapted. This is for instance the case if C depends on covariates which are not 
included in the model. Another example is the following. 

ExAMPLE 3.10. Testing with replacement. (GILL, 1980b, 1981). Suppose that objects (e.g. 
light bulbs) are life tested one at a time and at each failure time replaced by a new one. 
If observation is terminated at a fixed calendar time the last object put on test will typi
cally still be working and hence contribute with a censored life time. Thus censoring of 
the last object (at life time t, say) depends on the life times of previous objects which 
may well exceed t. A similar situation arises in the clinical trial Example 3.3 if observa
tion had not been terminated at a fixed calendar time but instead at the r'th observed 
failure X(r) (as in type II censorship). With this stopping rule patients with entry times 
later than that of the patient with failure time equal to X(r) may still be alive and thus 
censored after a time under study less than X(r)· For a further discussion, the reader is 
referred to SELLKE & SIEGMUND (1983), SLUD (1984) and .AR.JAS (1985). D 

For independent censoring mechanisms an important questio~ is now whether L7(~) 
is the full likelihood for(} for each fixed cpe4.> based on observation of (Nc,ec). This is 
of course the case when for each fixed cj>E<I> the second factor L,."(8,cp) in L;(IJ,cp) does 
not depend on fJ. In this case we te~ the ~depen~e~t right ~nsoring m~ha~sm C 
non-informative for the parameter 0. This precise defirution (but without con~1dera~on of 
a nuisance parameter et>) is due to .AR.JAS & HAAR.A (1984) who made the discussion by 
KALBFLEISCH & PRENTICE (1980, p.126) rigorous. In fact, Arjas & Haara termed it 
non-innovative censoring and considered a more general situation with other kinds of 
censoring and with time-dependent covariates. Thus t~e~ disc~ssion included the con
cept of non-innovative covariates. We shall return to this m Sections 5 and 7. 

To find conditions for C to be non-informative for 0 we now look closely at 
L "({}et>) denoting by A;(t,8,cp) the (P6.f>,(§"D)-compensator for N;(t), where 
x .,.= (x',x") and x' = (i,h) or x' = 0'. Furthermore we let N~ = ~N; be the total 

xeE 

aggregated point process. There are three possible kinds of contributions to L.,."(fJ,cp) at 
time t corresponding to 
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a) no marks at all 
b)an empty innovative mark 0' and a non-empty non-innovative mark 

x" EE"\ { 0 "} 
c) an innovative mark (i,h) = x'=f= 0' and a non-innovative mark x" EE", (pos-

sibly empty). 
In the first case we get the factor 

(3.8) 
1-dA~(t,8,cp) 

Pe.p(dN~ (t) = OldNC.(t) = 0, '?¥?-) = , 
1-dAC.(t,8) 

in the second case we get 

(3.9) 
dA(0',x"J(t,O,cp) 

Pe.p(dN(0',x")(t) = l !dN~(t) = 0, '?ff-) = -~~--
1-dA~(t,8) 

while in the third case we get 

(3.10) 
dA(x',x"i( t, 8, cf>) 

P8.p(dN{x-,x"J(t) = lldNh;(t) = 1, §"f_) = -~--""---
dAh;(t, 8) 

The (partial) likelihood for the censoring thus becomes 

(3.11) L "(8-h) = L (8-h)IT 1-dA .(t,8,p) { [ • 1 l -dN°.(1) 

.,. ''t' 0 ''t' 1 1-dAC.(t,8) 

II (0 ,x l , ,'t' I1 I1 x , •'t' [ 
dA * , ,, (t 8 .h) l a.N;.·..-1<1l [ dA * (t 8 .h) l ctN;(tJ} 

x"~0" 1-dAC.(t,8) x'=(i,h) x" dA~;(t, 8) . 

Collecting factors in (3.7) and (3.11) one can recover, after some calculation, 

L~(8)L/'(8,cp) = Lo(8,cf>)Il(l-dA*.(t,8,cp)) 1 -dN~(t) IIEdA:(t, 8,<f>)dN;(IJ 
/ XE 

as in (3.6). These heuristic calculations, for which the probabilistic interpretation is very 
clear, are of course only formal algebra. However, each calculation can be rigorized 
when we take the product over t and the ratio over two probability measures, since then 
each factor becomes a term in a product integral or a Radon-Nikodym derivative for 
which the corresponding algebra is valid. 

In order that L.,."(8,cf>) should be independent of 8 then to start with L 0 (8,cj>) should 
not depend on 8, and furthermore 

dA<*0, "l (t 8 .h) 
,x ' •'i' f all II E" or x E 

1-dAC.(t,8) 
(3.12a) 

(corresponding to (3.9)) and 

(3.12b) 
dA<* , "l (t 8 .h) x,x , •'i' f all('h) = I dall " E" 

dA~;(t, 8) or z, x an x E 

(corresponding to (3.10)) should be independent of 8 for all cpE<l>. From (3.12) and the 
relation 

~ dA(0 '.x"J(t,8,cp) + 1-dA~(t,8,cp) = 1 
x"~0" 1-dA~(t,8) 1-dAC.(t,8) 
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it follow~ ~at then also (3.8) corresponding to the first factor in (3.11) is independent of 
9. Condition (3.12) states that if for each fixed cf>E«I> the conditional distribution of 
dN*(t) given 'ff f _ and dNc(t) does not depend on 9 then C is non-informative for 9. In 
?th~r. words, ~ for each fixed cpEcf.> and each t E~ the conditional intensity of certain 
m?ividuals bemg censored at t given the past up till just before t and given a possible 
failure at t does not depend on 8 then the censoring is non-informative for 8. 

In the special case of Aalen's multiplicative intensity model 

"AXi(t, 8) = ahi(t, 8) Yfii(t, 8) 

where ahi does not depend on i, i.e. ahi = ah, it is easily seen using (3.5) - (3.7) that if the 
censoring is non-informative for 8 then (NLYX.; h = 1, ... ,k) is sufficient for 8. 
Here 

n 
YX. (t) = ~ Yf,i(t) 

i=I 

can often be interpreted as the total number of individuals observed to be at risk for 
experiencing a type h event just before time t. Thus, again, a process satisfying the mul
tiplicative intensity model is obtained by aggregation. However, in contrast to Examples 
2.2 and 2.4 with uncensored data where the aggregated counting processes 
(Nh.,h = l, ... ,k) (and J0) were themselves sufficient, Yh· being a function of Nh. (and 
Jo) it is now the pairs (NLYL h = 1, ... ,k) which are sufficient under non-informative 
right censoring. 

In Example 3.3 we have non-informative censoring provided that the entry time pro
cess does not depend on 8 and in Ex.ample 3.4 if the censoring distribution does not 
depend on 8. In Ex.ample 3.8 we have non-informative censoring when there is random 
censorship with censoring distribution depending on covariates and if this distribution 
does not depend on 8. 

Informative right censoring may occur if censoring is due to competing causes of 
deaths with cause specific intensities depending on 8 (cf. Ex.ample 3.5). One such exam
ple is the Koziol-Green model (KOZIOL & GREEN, 1976) where failure and censoring 
intensities are proportional. The more simple statistical procedures based on L~(8) will 
lose some information if we have informative censoring and in some such examples 
more efficient methods may be applied. We have seen, however, that most sensible 
models for right censoring mechanisms were non-informative. This is in contrast to 
other kinds of censoring, including left censoring, to which we return in Section 5. 

3.4. Identifiability of independent right censoring mechanisms 
So far we have strived to put conditions on the censoring pattern to make the resulting 
observable processes tractable. The opposite wish is to see how much of the underlying 
structure is uniquely given, if the observable processes are tractable. We conclude this 
section by indicating some recent results by JACOBSEN (1986), who studied i.i.d. survival 
data with hazard function a(t) (the restriction to identical distributions being made for 
convenience only). 

Jacobsen's concept of independent censoring is also more restrictive than the one 
considered in Ex.ample 3.9 and differs slightly from ours. He studied the marked point 
process N* with non-empty innovative marks at observed failure times (i.e. at jump 
times for Ne) and considered the joint distribution of N* and all the failure times 
X = (Xi. ... ,Xn). He then showed first that if for all t the conditional distribution of 
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N"(t) given (XJ. ... ,Xn) only depends on the X's through what we actually observe about 
them at time t - , i.e. that 

(3.13) X;;;;i.t if X;/\U;~t 

X; = x; if X; = x;<t and U;~x; 

X;>u; if U; = u;<t and X;~u; 

then Nf has (~ D-compensator 
I 

(3.14) Af(t) = J a(u)Yf(u)du 
0 

with respect to the probability measure corresponding to the joint distribution of N* 
and X. Secondly, he showed that given an (~D-compensator A* for N* satisfying (3.14) 
there exists one and only one joint distribution of N* and (Xi, ... ,Xn) satisfying (3.13) 
such that Xi. ... ,Xn are i.i.d. with hazard a(-) and N* has compensator A*. 

This distribution can be simulated in the way described in the following Example 
3.11 concerning a randomized version of what is known as progressive type II censorship. 

ExAMPLE 3.11. Survival data and randomized progressive type II censorship. Suppose that 
n identical items are put on test simultaneously, as in Example 3.9, and let X1, ... ,Xn be 
the i.i.d. life times that would have been observed had there been no censorinf" Next, 
generate n potential (possibly mutually dependent) right censoring times V'i1 , ••. , U',,1l 
independent of the X;'s and find X(IJ' the smallest X; with X; ~ U, 11. Items j for which 
U'/l <X(I) and U)1l <X. are removed at the time points U'/l. At time X(l) new potential 
right censoring times i:12> > X(I) are generated for each item j still on test. The joint dis
tribution of the U}2l may depend on X(ll and the censoring times for those items actu
ally removed in [O,X(I)) (and on the labels of these items) but not on the life times Xj of 
the items still on test. Next, X<2l, the smallest X; with X; ~ U,2l is found and items j still 
on test and for which U)2l <X(2) and U)2> <Xj are removed at U)2l. At X<2> the censor
ing times for items still on test are once more updated and allowed to depend also on 
X<2l and censorings in [X(l),X(2i) and so on. At every point in time the decision to cen
sor an item 'still working' may depend arbitrarily on the past observations but not on 
the future. 0 

Jacobsen illustrated the concepts by the following 'counterexample'. 

Ex.AMPLE 3.12. Let X 1 and X2 be i.i.d. with hazard function a(t) and let the censoring 
variables U 1 and U 2 be given by assuming that U 1 is independent of X 1 and X 2 and 
exponentially (I) distributed, and by defining 

U2 = {oo 
X1 +a if V1 <X1 

One may check that this strange censoring pattern satisfies Jacobsen's as well as our 
definition of independent censoring. Of course it is not defined by a simulation experi
ment as described in Example 3.11 above, because the censoring time U2 depends on 
the value of X 1 exactly when this is not observed. Jacobsen's result then tells us that 
there exists one and only one simulation experiment resulting in exactly the same 
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observable process as in this example. The reason one feels unhappy about this exam
ple is that, though the censoring is independent, it is also informative. Thus the problem 
with it is statistical, not probabilistic. D 

In our view the simulation experiment represents the canonical form of what one should 
understand by well-behaved right censoring. It would be desirable to obtain a more 
abstract formulation (perhaps as a suitable stopping time condition on the U1, ... ,Un) so 
that the concept may be defined for general counting processes. 

4. Left truncation 
The most common kind of incomplete information on life history data, right censoring 
was discussed in the previous section. 

To exemplify a different kind of incomplete observation consider a study of survival 
among insulin dependent diabetics in Fyn county (GREEN et al., 1981, GREEN & 
HouGAARD, 1985). Out of the about 450,000 inhabitants in Fyn county, Denmark, it 
was ascertained from prescriptions in the National Health Service files that n = 1499 
suffered from insulin dependent diabetes mellitus on l July 1973. They were all followed 
until l July 1980 with the purpose of assessing the age-specific mortality of diabetics. 
Since a diabetic was only included in the sample conditionally on being alive on l July 
1973, the relevant distribution to consider for the survival times X;, i = l, ... ,n is the 
conditional distribution of X given X > V where the entry time, Vis the time since birth 
at 1 July 1973. The survival data are then said to be left truncated. 

In this section we shall consider in more generality counting process based models 
for left truncated life history data. The set-up is analogous to that studied in Section 3. 
We consider a single individual, i, at a time and we drop the subscript, i. We let 

N = (Nh, h = l, ... ,k) 

be a basic, untruncated multivariate counting process on a space (Q, '!i) with P e<1>
compensator A6 and intensity process A.8 with respect to a filtration ('if 1) of the form 
~r 1 = %V~/4, cf. Section 3.l. We assume the existence of a larger filtration (§1):;)(§' 1) 

such that the (Pl!<f>,(§1))-compensator of N is also A9 ; this is intended to carry the possi
ble extra random variation involved in the truncation time. Furthermore, we let V be a 
(91)-stopping time and consider an event A dv. The process N started at Vis defined as 

(4.l) vN(t) = N(t)-N(t/\V). 

We want to study the process N, starting from the time V, given that the event A (prior 
to V) has actually occurred. We call the process vN, under this conditional distribution, a 
left truncated process. The proposition below (proved in the Appendix) shows that left 
truncation of N by the event A (before V) preserves the intensity of N after time V. For 
ease of presentation we suppose P e<1>(A )>0; similar results can be obtained for any 
event A E§v using the technical apparatus of proper regular conditional probabilities 
and Blackwell spaces; see JACOBSEN (1982, Exercise 8, p. 51, and Appendix 1 ). 

PROPOSITION 4.1. The left truncated counting process vN has intensity process 

(4.2) vA.8(t) = A.8(t)/(t > V) 

with respect to the filtration (v§1) given by 

V§t = §t V§v 
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and the conditional probability Pjt/> given by 

Pdt/>(F) = Petj>(FnA)IPe.p(A), FE6J. 

Suppose (just as in the right censoring case) that as well as observing vN, the available 
data also allows us to write down v>..8 for any 8E8. If §1 has the special form 

\31 = \JoV~ 
then 

v\31 = \JvVa{vN(u);O.;;;;u.;;;;t} 

and the (Pdq, ,(v@1)) conditional likelihood for vN given \Jv, also the partial likelihood for 
vN, is 

k 
(4.3) vL(8) = t~V{(l-vf..~(t)dt) 1 -dvN.(t)/1/vA.~(t)dtfN,(t)}. 

For instance, if N satisfies Aalen's multiplicative intensity model 

A.~(t) = a~(t)Yh(t), tE~ h = l, ... ,k 

with respect to P OtJ> and (§" 1) then the left truncated process vN satisfies the multiplica
tive intensity model 

vA.f (t) = a~(t)v Yh(t), t > V 

with respect to Pdq, and (v\31), where 

v Yh(t) = Yh(t)I (t > V). 

In this case the data needed at time t, t >Vis (vN(u), vY(u); V <u .;;;;i). 
A general discussion of how the truncated data becomes available as time procedes 

in parallel with the situation for censored data, cf. (3.3) and (3.4), is possible, but we do 
not give it here. In the most trivial example V = v0 is deterministic and we have 
\31 = ~ 1• More interesting is the following example. 

ExAMPLE 4.1. Random left truncation of a survival time. Let the random variable X>O 
have hazard function a~. Define N(t) = Nx(t) = I(X~t) and let(~) be the filtration 
generated by Nx. Assume that V>O is independent of X with distribution depending 
on parameters cp. Define the bivariate counting process (N x,Nv) with components 
N x(t) and N v(t) = I (V ~t) and let (\31) be the filtration it generates. The (§1 )-intensity 
process A. 6/ for N x with respect to the joint distribution P oq, of X and V is (as previ
ously, cf. Example 3.4) 

f..6/(t) = A.~(t) = a~(t)I (t ~X) 

which is the same as the intensity process with respect to (~). If the event 

A ::: {X>V} 

has positive probability then the intensity process for the left truncated process 
vN x = N x(t)-N x(t /\ V) with respect to the conditional joint distribution Pdt/> of X and 
V given A is 

vA.~(t) = vA~(t) = a~(t)I(V <t.;;;;X) 

as shown above. We see that random left truncation preserves the multiplicative 
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structure of the intensity process and in particular, vA.x still only depends on e. The 
conditional (given V) or partial likelihood for vN x with respect to the conditional distri
bution given X >Vis by ( 4.3) 

vL(()) = ITV(l -vA.i(t)dt)l-dvNAt\A.~(t)dvNx(t) = Si(X)ai(X)! Si(V). 
t> 

It is seen that this is the conditional density of X given X >v, evaluated at (X, V). 0 

When the distribution of X depends on covariates Z (Examples 2.6 and 3.8) the basic 
filtration is given by CJ 1 = <Jo v~ with <Jo = o(Z). In order to write down the intensity 
process vA.8 for the left truncated process vN we must include not only V but also Z in 
the 'observed filtration'. 

In Examples 2.5, 3.4 and 3.5 the relationship between the random censorship model 
for survival data and a certain Markov process, the competing risks model, was studied. 
The next example establishes the relationship between the random truncation model and 
a certain Markov process. 

EXAMPLE 4.2. The random truncation model for a survival time viewed as a Markov process 
(KEIDING & GILL, 1987). In the model of Example 4.1, assume for convenience the dis
tribution of V absolutely continuous with hazard ai(t). Define the Markov process U(t) 
by U (0) = 0 and transition intensities as specified in the diagram. The random 

ai(t) 

ai(t) 

variabl~s X and V correspond to the times of transition from 1 to 2 or 0 to 3, and from 
O to 1 or 3 to 4, respectively. Observation of (V,X) given V <X is equivalent to observ
ing U(t) in the conditional distribution given U(r) = 2 (ultimate absorption in 2). The 
counting process 

vN x(t) = N x(t)-N xU /\ V) 

is identical to that counting transitions from state 1 to state 2: 

vNx(t) = Nu(t), 

and it is a standard result for Markov processes (see HoEM (1969) for an explicit formu
lation) that the intensity 1~2 in the conditional Markov process is 

e (t) P(U(r)=21 U(t)=2) = ao (t). 
ax P(U(r)=21 U(t)= l) x 

It now follows from Example 2.4, used for the conditional Markov process given 
{ X > V}, that N !2(t) has intensity process 
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a~(t)Y1(t) = a~(t)l{V<t~X} 

with respect to the conditional distribution given V <X and the filtration given by 

v'?f 1 = a(l{V~u,V<X},I{V<X~u}, O:o;;;;;uo;;;;;t). 

The likelihood with respect to 0 consequently has the form (4.3) which may thus in this 
case be obtained without recourse to the proof given there. 0 

ExAMPLE 4.3. ujt truncation of a Markov process. Let the Markov process 
X = (X(t),tE5), the counting process N and the filtration ('?f 1) be defined as in Exam
ple 2.4. Let V>O be independent of X with distribution depending on parameters 4> 
and define Nv(t) = l(V:$;;t). Then N has the same compensator both with respect to 
('if 1) and with respect to the filtration (§1) defined by 

§1 =<ff 1Va(Nv(u), O~uE;;t) 

and we can apply Proposition 4.1 to any event AE§v = a{V,J0;N(t/\V),t;;a.O} with 
Poc/>(A)>O. Examples include events A indicating that a certain component Nh had at 
least or at most some specified number of jumps before V. 

As an alternative to such partly external truncation ( V independent of X) one might 
consider internal truncation, where V is an ('?f / )-stopping time. The obvious examples 
are the first arrival time to a particular state ( cf. the illness-death process to be further 
discussed below) or the first (or p'th) time that the process (or one of its components) 
jumps. 0 

EXAMPLE 4.4. The illness-death process. Consider the illness-death process earlier dis
cussed in Examples 2.8 and 3.6. A separate study of the transition 1~2 (death when 
diseased) may be performed by studying the counting process N 12 which has intensity 
process a 12(t,t-T)Y1(t) where Y1(t) =/(the individual is in state 1 at time t-), T= 
entry time into state 1; define also X = time of death. Consider left truncation by the 
event A = { T,,;;;;; V <X <-r} at some random time V. 

Internal truncation is obtained by choosing for instance V = T, that is, follow the 
individual from the time of disease occurrence conditioning on it occurring: the trun
cated counting process would be 

vN !2(t) = N 12(t)-N !2(t /\ V) = N 12(t) 

with intensity process 

a!2(t,t -V)Y1(t)l(t > V) = a12(t,t -nY1 (i). 

In this case, except for the conditioning, left truncation is equivalent to observation of 
the original process N 12 . 

External truncation is exemplified by choosing V independent of the illness-death 
process. On the conditioning event A, the truncated counting process N dt)-N 12(t/\ V) 
has intensity process 

an(t,t -nY1(t)l(t > V) = an(t,t -nI(V <t~X). 

It is seen that this is only observable (for given au) if we not only follow the diseased 
individual from time V (> T) until death at time X, but also actually know the time T 
of disease occurrence. The latter condition (technically: that a nontrivial part of §v is 
needed) is not always fulfilled and forms the basic problem in the modelling of latency 
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times for epidemics such as AIDS. 

F~ally, in the particular case where a_12(_t,d) d_oes not depend on d (the original pro
cess l~ a Mark~v ~ess-death process), 1t is easily seen that both types of truncation 
(that 1s, followmg diseased individuals only, either from disease occurrence or from 
some r_andom time_, until death) are equivalent to studying a left truncated random vari
able with hazard gi.ven by the death intensity of the diseased. O 

So far ~e ha~e ~~y considered a (possibly multivariate) counting process corresponding 
to a smgl~ mdiVldual. We shall now briefly study left truncation of the processes 
corresponding to several independent individuals simultaneously. Let 
N; = (Nh;, h = 1, ... ,k), i = 1, ... ,n be independent and define N = (N;, i = l, ... ,n). 
Assume that N has the same P 8<1>-compensator with respect to (§1) and (§;), where 
(§1):?(§"1) and §" 1 =§(iv~. 

If Vis a (§i)-stopping time then we may apply the general result to the process 

vN(t) = N(t)-N(tAV) 

corresponding. to truncation of all individuals at the same time. Alternatively we can let 
(V1,N1), ... ,(Vn,Nn) be mutually independent. In this case 

v;N;(t) = N;(t)-N;(tAV;), i = l, ... ,n 

are independent and the theorem may be applied to each individual separately after 
which the relevant intensity process for the multivariate counting process 

(v;N;, i = l, ... ,n) 
• 

can be found using the product construction (Appendix). 
More general cases with VI>···· Vn being dependent seem to be more difficult to han

dle and the theory of left truncation as a whole seems to be less rich than the theory of 
right censoring. 

Very frequently in practice there will be both left truncation and right censoring. 
Here we briefly indicate how the methods from this and the previous section can be 
combined. If in the construction of our model truncation precedes censoring then condi
tionally on an event before a stopping time v; the individual process Nhi0 started at V; 
is observed on a set of the form (V;,U;] with V;;;;:oO and U;;;;:.V;. If censoring precedes 
truncation then the right censored process Nh; started at v; is only observed condition
ally on an event before V;. 

In either case, one needs a specification of the conditional joint distribution of Vi 
and U; given U;;;;:. V; for i = l, ... ,n, possibly via a specification of their joint uncondi
tional distribution. 

5. General censorship, filtering and truncation 
In Section 3 we studied the case where the observation of the individual counting 

processes N; = (N Ji, ... ,Nki) was right censored, i.e .. ~e compone~t i was observed not 
on '5 but only on a set of the form E; = [O, Ui ]. This is t~e most unporta:it example of 
incomplete observation but there may be other observat10nal plans of interest where 

observation of N; is restricted to a subset E; k'I 
Left censoring corresponds to a set E; = (V;,r], V;;;;:oO; as an example we may recall 

the problem of recording the time of descent of baboons from the trees CV:f AGNER & 
ALTMANN, 1973). Troops of baboons in the Amboseli R~serve, Kenya, sleep m the trees 
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and descend for foraging at some time of the day. Observers often arrive later in the 
day (say, at time V;) than this descent and for such days they can only ascertain that 
descent took place before V;, so that the descent times are left censored. 

When defined in terms of random variables, left censoring is of course a concept 
symmetric to right censoring, and indeed WARE & DEMETS (1976) solved the baboon 
estimation problem by reversing time and using standard methods for right censored 
data. This trick however violates the basic role of the filtration in our framework, and as 
we shall see presently, in more complicated models left censoring presents special prob
lems because of this. 

Notice the difference between left censoring where N; is only observed on (V;;r] and 
left truncation (discussed in Section 4) where N;, started at a stopping time Vi, is only 
observed on (V;;r] conditionally on an event prior to V;. We shall return to a com
parison of these two concepts later on in this section. 

Censoring on intervals and combination of left and right censoring correspond to 
observing N; on a set of the form 

r 
(5.l) E; = LJ (Jj;, UJi] 

j ==I 

where 

O~Vuo;;;;;Uu~ · · · ~Vr;~Ur;o;;;;;T. 

Thus, censoring corresponds to observing N on (possibly random) subintervals of '5' 
only. Closely related to censoring is the concept of filtering where dN is observed on 
certain subintervals of 5" only. To exemplify the difference between these two concepts 
we can consider a simple two-state Markov process model for a reversible disease (states 
healthy and diseased, transitions possible both ways, mortality disregarded). We can 
think of the case where occurrences of a recurrent disease are being studied in an indivi
dual on two intervals [O,Uli] and (V2i,U2;] where Uli<V2;. If only new information is 
being collected during the two intervals we are observing the disease process via a filter 
and the number of disease occurrences in (U1;, V2;] will not be known. If, however, at 
time V 2i this number can be observed (via hospital records, interviews or whatever) the 
observation of the disease process is censored. So, for a set E; of the form (5.1) more 
information is available after a censored observation of the process than after observa
tion via a filter, and only in the right censoring case E; = [O, U;] do the two concepts 
coincide. As we shall see presently, however, there may be cases where one deliberately 
throws away some pieces of information about the censored process and analyses it as if 
it had been observed via a filter. 

We shall now extend the method for handling right censoring in Section 3 to the 
more general plans of observation of N; considered above. Corresponding to the set Ei 
we define a censoring or filtering process C by 

Ci(t) = l(t EEi) 

and the filtered counting process by 
I 

N~;(t) = J Ci(u)dNm(u). 
0 

"W_e shall assume the existence of a filtraJion (§1 );;;!(~) such that N = 
(N;, z = l,. .. ,n) has the same Po<1>-compensator .L\: with respect to both. We also 
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assume t~at t~e set E; is such that C; is (§1 )-predictabl~, i.e. that the U/s and Vj's are 
(§r)-stoppmg times. Then the P oq.-compensator for Nh; with respect to (§1) is 

t 

Ah;(t,8) = j C;(u)dAh;(u,8). 
0 

As in the cases of right censoring we assume that the available data include Xo and 
Ne. For a set E; of the form (5.1) time points Vj;, UJi before the time T; of absorption 
are also observed. If T; is not observed i.e. when T; belongs to some interval (lf;;,V)+ul 
then we may also observe the smallest Vj; such that Vj; ~T;. This is for instance the case 
when we have a left censored survival time X; and observe V; when V; > X;, see Exam
ple 5.2 below. In the case of censoring we also observe the values of Nh; at the observed 
entry times Vj;. In the case of filtering these values are not observed. We do, however, 
assume that the data at time t enable us to calculate N (t, 8) for any given value of 8. 
Viewing these observed data as a marked point process N' = (Ne ,N") we can calculate 
the likelihood L; (8,cp) corresponding to the filtration (CS D generated by N'. Letting 
jumps in Ne carry the innovative marks of N* the corresponding partial likelihood 

L~(O) = IT(l-dA~(t,0)) 1 -cW(r)ITdAh;(t,O)d~(r) 
IE5 h,i 

is identical to (3.7) and thus it has the same form as (3.5). We therefore term the 
predictable process C an independent filter. We shall also denote it an Aalen filter. 

When Nh; satisfies Aalen's multiplicative intensity model 

A.h;(t, 0) = a~;(t) Yh;(t) 

with respect to (CS 1) it follows that Nh;(t) follows the multiplicative intensity model 

Ah;(t, 8) = a~;(t) Yh;(t) 

with respect to (CSf). Here, Yh;(t) = Yh;(t)C;(t). 

EXAMPLE 5.1. Mau's concept of partitioned counting processes (MAU, 1985). Assume k = 1, 
let, for i = l, ... ,n and some m, O~SiO~Sn ~ ... <:;;;S;m~S;,m+1 = T be (§i)-stopping 
times and define stochastic processes 

CYl(t) = /(S;,j-l <t~SiJ), i = 1, ... ,n; j = I, ... ,m +I. 

Then to each component N; there exists an (m + 1 )-variate partitioned counting process 
given by 

{
O, O~t~Su 

N;j(t) = N;(O-N;(:j), Su <t ~si,j +, ~ 
N;(S1,1 +d N1(S11 ), S1,1 +1 <t--.T, 

i = I, ... ,k, j = l, ... ,m + 1. Obviously (N;j(t)) counts the e~ents in the r~do~ interval 
(S;j,Si,j+il· MAu (1985) noted that _the_ parti?oned countmg process still satisfies the 
multiplicative intensity model, now with mtens1ty processes 

af (t)Y/t) = af (t)CYl(t)Y;(t). 

In our terminology C = (CYl) is an Aalen filter, so that the analysis of w~at happens to 
the counting process in particular random intervals may be performed usmg th_e power
ful tools of the multiplicative intensity model. MAu (1987) showed how this allows 
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monitoring of clinical trials, e.g. by separately analysing the information from several 
calendar time intervals in a trial with staggered entry, cf. also KEIDING, BAYER & 
WATI-BOOLSEN (1987). 0 

When inference is based on L~(O) alone using the Aalen filter, the non-innovative marks 
of N* are disregarded. These marks will at time t contain information on certain indivi
duals either leaving the risk set or entering the risk set at that time and they may also 
be defined to carry information on occurrences of earlier events the exact times of which 
are not observed. In that case the marks will typically carry information on 8, the 
parameter of interest, and we then term the censoring mechanism (or the filter) C infor
mative for 0. If C is non-informative for 8, L$(8) is the full likelihood (or at least the 
full conditional likelihood given Xo) and no information is lost by basing the statistical 
inference on it. In the example mentioned above concerning a disease process observed 
on the set E; = [O,U1;]U(V2;,U2il the mark at V2i may thus contain information of 
disease occurrences in (U1;, V2;] if this piece of information is available. In this case 
some information is lost by only considering the process counting the number of disease 
occurrences filtered via the process C with components C; = I(tEE;). Thus C is infor
mative (for the parameters of the disease intensity) and it would be more efficient to 
base inference on the entire likelihood L;(8,cp) than on the partial likelihood L~(8). On 
the other hand, the entire likelihood may depend on the nuisance parameter cp which is 
often inconvenient. In fact, one may not even be prepared to write down a full statisti
cal model for N,C. 

To return to a comparison of left truncation, left censoring and left filtering note first 
the technical difference that the latter two keep the original sample space and probabil
ity measure whereas left truncation is a conditional procedure, restricted to a subset of 
the sample space and the corresponding conditional probability. Some further aspects 
are best considered in the simplest possible example. 

ExAMPLE 5.2. Random left censoring of a non-negative random variable. We consider 
once more the set-up from Examples 3.4 and 4.1: X and V are independent non
negative random variables, X has hazard function ax(·,8) and V has distribution func
tion Fv(-,tf>) (and hazard function av(A) if it exists). Furthermore complete observation 
of X and V is considered as observation of a marked point process as described in 
those examples. Right censoring at V corresponds to only being able to observe X /\ V 
and the mark at that time, i.e. the counting process N x(t) = I (X ~t) is only observed 
on the random interval E = [O, V]. Similarly left censoring corresponds to the case 
where N x(t) is only observed on a set E = ( V, -r] and we shall assume that V is always 
observed. Thus we observe the filtered counting process 

t 

Nc(t) = J C(u)dN(u) = (N(t)-N(V))I(t>V), 
0 

its §1-compensator (except for the value of the unknown 8) 

t I 

N(t,8) = jC(u)dA(u,8) = J a(u,8)yc(u)du, 
0 0 

(where yc(t) = C(t)Y(t) = I(V <t~X)), and the value N(V) = I(X~ V). That is, if 
X > V then we observe both V and X, and if X ~ V then we observe V and know that 
X~V. The partial likelihood L~(O) is in this case, according to (3.7) 
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(5.2) L$(0) = V<If<xO-ax(t,O)dt) ax(X,O)I(X>V) 

_ [ Sx(X,O) II(X>VJ 
- Sx(V,O) ax(X,O) 

The second factor of the full likelihood (3.6) is 

L/'(0,cj>) = Sv(V, cj>)av( V, cj>)S x( V, O/(V <X) F x(V, Oi(V;;.X) 

and it doe~ depend on O_. ~o, obviously observation of N ( V) gives us some information 
on 0 meamng that C 0 is informative for (} and that inference based on U ( 0) only will 
not be fully efficient. r 

The fact that Vis always observed is in contrast to the case of right censoring (see, 
however, Example 3.2). A more direct parallel definition of left censoring would be to 
assume that Xv V were observed together with the mark at that time. That situation 
gives a different likelihood but it can be handled in a similar way. D 

The way ~n which left censored data are analysed using the Aalen filter is by treating 
the countmg process as being observed with delayed entry or as being left filtered. The 
partial likelihood (5.2) for the left filtered process Ne is identical to ( 4.3) in the sense 
that the data used in the two situations are the same and that the parameter 0 enters 
into the two likelihoods in the same way. Formally, however, the likelihood (4.3) is 
with respect to a conditional distribution Pj<P whereas (5.2) is with respect to the origi
nal probability measure P eq,. These results show that left truncated counting processes 
can be correctly analysed as counting processes observed with delayed entry. If individu
als i = l, ... ,n are observed then individual i is included in the relevant risk set from the 
time Jli. Analysing left censored data as data with delayed entry is, however, not fully 
efficient. 

For survival data the basic difference between a left censored and a left truncated 
survival time X; is that in the latter case individual i is only included in the sample con
ditionally on its survival time exceeding the entry time Vi whereas in the former case 
individual i is always included in the sample but observation of the exact failure time 
may be prevented for some reason. So for n independent left truncated observations the 
partial likelihood will be a product of a fixed number (n) of factors of the form (5.2) 
whereas for n independent left censored observations the partial likelihood is a product 
of a random number (:s;;;n) of factors of this form. 

Also the situation with both left truncation and right censoring can be handled using 
the Aalen filter. In this case we can define the filtering process by 

Ci(t) = l(Vi<t~Ui) 

and base the inference on (} on the (partial) likelihood L~({}) with the form (3.7). In 
many realistic models for the distribution of N, V and U the filtering process 
C = (CJ.···· Cn) will be non-informative about 0 and this analysis will be efficient. It 
should, however, be emphasized once more that for other incomplete plans of observa
tion a more efficient analysis can be carried out using the entire likelihood L; ({},cf>). 

Right truncation and more general types of truncation may be defined similarly to 
left truncation, but none of these are conveniently dealt with in the present framework. 
As for left versus right censoring, the explanation is ~hat the time direction ~ven by the 
filtration destroys the symmetry between left and nght, except for some simple cases 
where one may study right truncation by reversal of time. See KEIDING (1986) for 
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applications to the disease intensity ('incidence') in the illness-death model under special 
epidemiological sampling plans. . . . . 

The literature on general censoring and truncation is rather unsophisticated as 
regards concepts of independence and non-informativity of the censoring (and tf1:1nca
tion) patterns, in effect assuming these to be deterministic. However aspect_s o~ the itera
tive methods (versions of the EM algorithm) necessary to study the full likelihood and 
primarily developed by 'fuRNBULL (1974, 1976) and DEMPSTER, LAIRD_& RUBIN (19~7, 
Section 4.2) are instructive in the general modelling framework of this paper. While 
censoring is readily interpreted as being an example of incompletely observed data, it is 
at first sight more surprising that truncation may also be interpreted in this way. The 
idea is to consider among the unobserved data also the number of individuals who were 
never observed, because their values are outside the relevant truncation set. TuRNBULL 
(1976) termed these the 'ghosts' and DEMPSTER, LAIRD & RUBIN (1977) gave a 
comprehensive discussion. 

Later authors have primarily been concerned with the (difficult) task of proving 
asymptotic properties of estimators derived this way. An interesting modelling contribu
tion was made by SAMUELSEN (1988), who suggested a stochastic process model for dou
ble censoring, generalizing the competing risk framework for random right censoring 
(Example 3.5) and the Markov process model for random left truncation (Example 4.2). 

6. Intennittent observation of a counting process: models for grouped data 
An extreme example of incomplete observation formally covered by the concept of 
interval censoring is observation of a discrete skeleton of the process, that is, the h'th 
component Nh is observed at times 0 = Tbh)<T\h>< ... <T}h>~T. Because one will then 
(with probability 1) never observe the exact time of a transition, the Aalen filter will 
reduce observation to nothing: the partial (filtered) likelihood L~(8) = 1. This is for 
instance the case in connection with various kinds of grouped data from a Markov pro
cess as exemplified in this section. 

Let the Markov process X with state space S, the counting process N and the filtra
tion(§' 1) be defined as in Example 2.4. The statistical model is given by assuming some 
transitions impossible and the rest of the transition intensities (specified by the set 
R c;;, {(h,j):h,j ES,h=l-j}) arbitrarily varying. Intermittent observation of the counting 
process N = (Nhj,(h,j)ER) is observation of (Nhj(T\hj>), ... ,Nhj('T}~))), where the T's are 
assum~d to be. deterministic times unless otherwise specified. Note that 
Nh~(T~"J..\)- Nhj('TfhJ)) counts the number of transitions h-+J in the time interval 
( Tf !!), Tf"J..\ ], and therefore intermittent observation of the transition counts corresponds 
to grouped observation of the transition times. As indicated above, filtering removes all 
lnformation, in the sense that (with probability one) we have Nc=o and L~(8)= I. So, 
in this case the partial likelihood contains no information on 8. In connection with 
other kinds of grouped data even less information may be available. Sometimes, only 
the state occupied at To, ... , Tr is observed, i.e. (X(Tj), j = 0, l, ... ,r) or equivalently 
(Y(T1 + ), j = 0, l, ... ,r). Also in this case L~(O)= 1 and one has to consider the full likel
ihood. KALBFLEISCH & LAWLESS (1985) studied maximum likelihood estimation in the 
~odel with constant transition intensities based on panel data, i.e. observation of 
mdependent Markov processes X/0, i = 1, ... ,n at time points To,Ti. .•. , Tr· 

There may ev~n ~e.cases "'.here the individual panel data are not available but only 
the num?er of mdividuals m each state. In this case the aggregated data are 
(Yh.(Tj); J = 0, l, ... ,r, h = 1, ... ,k). 
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EXAMPLE 6.1. The illness-death process. This example was discussed earlier in Examples 
2.8, 3.6 and 4.4. While the time of death can usually be observed exactly, it is often 
difficult to assess exactly when disease occurred. 

One group of problems of this kind is long-term animal carcinogenicity trials where it 
is usually assumed that it can always be assessed after death whether disease had 
occurred or not. Often supplementary data are obtained by serial sacrifice, that is, 
animals are killed at pre-specified times and it is assessed whether or not they already 
had the tumour. Most of the literature on designs of such trials (see e.g. BORGAN et al, 
1984) studies deterministic observational plans as opposed to plans determined adap
tively by the development of the process. An exception is MAu (1986) who formulated 
an explicitly random 'associated design process'. The likelihood function usually 
becomes complicated and sometimes only certain functionals of the process are 
identifiable. Recent reviews well in tone with the approach taken here are by 
McKNIGHT & CROWLEY (1984), McKNIGHT (1985) and DEWANJI & KALBFLEISCH 
(1986); see also the monograph by GART et al. (1986). 

A somewhat different application of the simple illness-death process is to non
reversible complications of chronic diseases such as diabetis (ANDERSEN, 1988) or 
cancer. Here patients are examined at visits to the hospital and the determination of 
whether a transition 04 l (onset of disease complication) has happened may only be 
performed at those times. It is here very important (though often overlooked in practice) 
to know whether the visits to the hospital are planned independently of the underlying 
disease process (as would be true for deterministic observational plans) or whether they 
may be triggered by the disease. Motivated by these problems GROGER (1986) 
developed an interesting theory of noninformative observational plans for counting 
processes much along the lines of the present paper. 0 

7. Partial model specification. Time-dependent covariates 

The essence of the concept of independent censoring or filtering is that under such a 
scheme of observation it is possible to write down a partial likelihood for 0, the parame
ter of interest, which has the same form as the likelihood for the full data and which 
does not depend on the nuisance parameter cf>. Thus, the partial likelihood can be com
puted without actually specifying a model for the censoring mechanism, in fact as if 
censoring had been at fixed given times. Another example of a partially specified model 
is the Cox regression model (Example 2.6) where inference could be performed condi
tionally on the covariates and without specifying a model for their distribution. 

In these examples the covariates were time-independent, i.e. they were fixed given '?fo, 
but in several examples it is also of interest to study for instance a death intensity con 
ditionally on covariates which change in time. Some such time-dependent covariate: 
may be deterministic or at least fixed given ~; in the example mentioned at the begin 
ning of Section 4 concerning survival among insulin dependent diabetics in Fyn county 
time was taken to be the age of the patients whereas the age at diagnosis was included 
as a time-independent covariate. The death intensity may also depend on the time
dependent covariate 'disease duration' which can be computed for each age t knowing 
the age at diagnosis. Thus the stochastic process Z;(t)='disease duration for patient i at 
age t' is adapted to the filtration generated by the data. 

In such a case, where the intensity depends on what KALBFLEISCH & PRENTICE 
( 1980, p.123) termed a defined time-dependent covariate, the (partial) likelihood stays the 
same and inference based on the likelihood can be performed as if the covariate paths 
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had been fixed in advance. 
In other examples there may be time-dependent covariates which are truly random in 

the sense that the processes Zk), i = l, ... ,n are not automatically adapted to the filtra
tion under consideration. KALBFLEISCH & PRENTICE (1980, Section 5.3) distinguished 
between ancillary covariates and internal covariates (much corresponding to exogenous 
and endogenous variables in econometrics, cf. HENDRY & RICHARD, 1983). An ancillary 
covariate could for instance be the level of air pollution in a study of the occurrence of 
asthma attacks, while an important class of internal covariates are 'disease complica
tions' developing in a fashion unpredictable from the history of the process itself. 

In order to include such covariates in the model we must extend the filtration. One 
way of doing that is to consider the whole system of uncensored observations as 
developing according to a (very large) marked point process N2 recording, with innova
tive marks, failures (and other transitions or events of interest) and, with non-innovative 
marks, changes of covariate values. To consider everything as a point process does pose 
some restrictions on the types of covariates considered in that (random) changes of 
covariate values have to be generated by an underlying process changing at discrete 
(possibly random) points in time and not continuously. So, if a continuously observed 
time-dependent covariate, which is not adapted, is to be included in the model then its 
path has to be discretised in some way; for instance by defining its changes of values to 
happen at discrete points in time or at least to let its path vary deterministically except 
at a discrete set of points. 

As in the previous sections one may superimpose censoring or filtering onto the 
marked point process N2 via a process C which is predictable with respect to a filtration 
(§1) larger than that generated by N2 . In this way a censored or filtered marked point 
process, say NZ., is obtained, and we may write 

NZ. = (Nc,Nz"). 

Here Ne, as before, counts the observed transitions of interest and carries the innovative 
marks, whereas Nz" carries the non-innovative marks including information on indivi
duals entering or leaving the risk sets and information on observed changes in covariate 
values, AluAS & HAARA (1984). We assume that observation of NZ. enables us to calcu
late for each value of 8 the (P8<1>,(§1))-compensator for Ne. We can then calculate the full 
likelihood for NZ. with respect to the filtration (§' D generated by itself and factorise it 
into a partial likelihood L~(8) not depending on the nuisance parameter cp and a second 
factor L/'(8,cp) which may or may not depend on 8. This means that inference on ()can 
be based on L~(8) only and it can be made without specifying the model for the censor
ing mechanism and the covariate processes. However, as before, a more efficient infer
ence on 8 may be obtained from the full likelihood if the second factor does in fact 
depend on 0, i.e. if censoring or covariates are informative. 

The partially specified model specifying only the (§' D-compensator A~ for Ne has, 
however, got some limitations due to the fact that only a small part of a big system is 
modelled. If one wants to make predictions then this is not directly possible if the 
model for Ne includes time-dependent covariates whose development in time is not 
modelled (ANDERSEN, 1986). So, if prediction making is an important issue of a study 
o_n~ ?as to either disregard t_ime-dependent covariates or to model them. The latter pos
s1b1lity corresponds to labelling the marks for changes in these covariates innovative and 
to includ~ the parameters ~or the~ in 0 rathe_r than ~n cf>: It should be emphasized that 
the labelling of marks as mnovative or non-mnovat1ve is up to the statistician and it 
depends on the purposes of the study. 
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. An ex~ple o~ this problem was s~en previously in that one may sometimes be 
mterested m studymg sev~ral cause specific hazard functions in a competing risks model 
(Example 2.5) and sometimes only deaths due to one cause are of interest while deaths 
due to othe~ causes ar_e treated as censorings and the corresponding cause specific 
hazard functions as nmsance parameters (Example 3.6). Another problem with cen
sored or filtered observation of time-dependent covariates is that values of these covari
ates may not be observed, which may prevent one from computing even the partial 
likelihood L~(O). As discussed in Example 4.4 this might be the case in the illness-death 
model with duration dependence introduced in Example 2.8. Suppose that the l -+ 2 
transition intensity is modelled as a!2(t,t -T) = o:o(t)exp(/3(t -T)) using the time
dependent covariate z (t) = t - T = 'sojourn time in state l at time t', and suppose 
that at the entry time V> T, the value of T is unknown. Then the value of z (t) is unob
servable. 

8. Appendix 
8.1. The compensator of a product of independent counting processes 
The product construction, without loss of generality for k = 2 components, proceeds as 
follows. From (Q<il,<!fUl,(<!f\il,tE'5),P;),i = 1,2, we define 

Q = gOlxQ<2l,<!f = <!f(ll®<!f<2l, 

<!f 1 = <!f)1l0<!f\2l,p = p(l)@p(2); 

thus P is the product probability measure on '!f. If the counting processes NUl(t) have 
compensators A{i)(t), with respect to P1 and (<!f }1>),i = 1,2, then it is easy to check that 
the A~l(t) are also predictable viewed as defined on Q , with respect to P and (<:.T 1 ), and 
that the N~l(t)-A~l(t) are (local) martingales. However §; is not necessarily right
continuous. A sufficient condition for this is that §'~il = <!f8lva{N(il(s):s~t} in which 
case 

C!f 1 = <!fb1 l0<!fb2lva{N(ll(s),N<2l(s):s~t} 

which is obviously right-continuous. The filtrations also have to be completed, which 
creates no further problems. . . 

Instead of this combination of independent component process we will occasionally 
need to combine conditionally independent components. The situation now is that there 
is one probability space (0, GJ,P) on which N(t) = (N<1l(t),N2l(t)) ~s. define~; we con
sider two filtrations (§' ~ 1 >) and (§' \2l) and assume that they are condztwnal{y independent 
given some a-algebra tfc;:GJ, that is, if A EiJ\1l,BE<!f\2l,CE6P.,P(C)>O, then 

P(A nB IC) = P(A I C)P(B IC). 

(Often c:J~il = cr{Nil(s):s~t}). Define 

§' 1 = tr,vlfflnv<!f\2l. 

One may then check directly that any (tfv§' \1l)-martingale is also an (§' 1 )-mar_tingale, 
which is the key step in verifying that the (<!f 1)-compensator of N(t) may be obtained by 
combining the (crv<!f ~i))-compensators of N<1l(t). 
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8.2. Proof of Proposition 4.1. 
The basic point is to show that if Mis a (P,(@1))-martingale and A C@v has P(A)>O, 
then 

vM(t) = M(t)-M(tf\V) 

is a (PA ,(v@1))-martingale. This may be seen as follows (M. JACOBSEN, personal com
munication, September 1986). 

Clearly vM is adapted to (v@1). We have to verify that 

(*) E[I(A nF){vM(u)-vM(t)}] = 0 

for all Fe y§1, t < u. Since { V > t} e v@1 it suffices to consider the two special cases 
FC{V>t} and F~{V~t}. 

If Fc{V~t}, we have 

AnF = (An{V~t})n(Fn{V~t})e@, 

(definition of §v resp. of v@1) and since on {V~t} we have 

vM(u)-vM(t) = M(u)-M(t), 

(*)follows from the martingale property of M: 

E[I(A nF){M(u)-M(t)}] = 0 for A nFe§,. 

IfFC{V>t},defineB = {V~u}. Thelefthandsideof(*)maybewrittenas 

E[I(A nBnF){M(u)-M(u/\V)}]. 

Now since Fe§1vv and F~{V>t}, Fe@v, and hence A nBnFe§v. Furthermore 
A nFe@v implies 

A nBnF =(A nF)n {V~u}e@u, 

hence A nB nFe@uAV = @u n@v and(*) follows by optional stopping. 0 
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