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Benchmark of the initial release of the LAPACK library 

Margreet Louter-Nool, Dik T. Winter 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

This Note reports on the test results of a pre-release ol LAPACK, a new scientific library for solving linear 
equations, eigenvalue problems and linear least squares. Results for five different high-performance com
puters have been collected in graphs. The figures have been arranged in such a way that each page con
tains the results for one particular routine for all tested machines. It can be easily verified whether charac
teristics like the performance ratio for blocked and unblocked routines, or for lower or upper triangular 
storage schemes are machine dependent or not. Some hints are given to improve the timing procedure, on 
the one hand to simplify the process of timing, on the other hand to modify the values of the input parame
ters. In conclusion, critical notes on the imple1.1entation, the contents and the selected datastructure of this 
release are given. 

1980 Mathematics subject classification: Primary:65V05. Secondary:65FXX 
Key Words & Phrases: Level 1, 2, 3 BLAS, Vector and Parallel Computers, Efficiency, Portability, Perfor
mance Measurements. 

1. INTRODUCTION 
A new scientific library called LAPACK is developed by Argonne National Laboratory, in conjunc
tion with the Courant Institute and the Numerical Algorithms Group, Ltd. 1hls transportable library 
in FORTRAN77 is based on the well-known LINPAC:K{3] and EISPACK{7,13] packages for solving 
linear equations, eigenvalue problems and linear least squares. We at CWI have been invited to serve 
as a test site for this project, and to comment on the contents and on the current implementation of 
these routines. 

Currently CWI has access to quite a few vector and parallel machines and in consultation with 
Argonne we have decided to run the codes on five machines: Alliant FX/4, IBM 3090-VF, CDC 
CYBER 995, CDC CYBER 205, and NEC SX~2. The first release of LAPACK[l] contains only a 
fraction of the routines that will ultimately be part of LAPACK. In spite of this limited size, hun
dreds of tables were generated to measure efficiency. In order to be able to interpret these values we 
decided it to be helpful to plot these values. The figures have been arranged in such a way that each 
page contains the results for one particular routine on several machines. At one glance it can be seen 
whether the blocked version of a routine has to be preferred or not and how many right-hand side 
vectors are required to achieve high performances. It can also be easily verified whether such charac
teristics are machine dependent or not. 

We intend to give the reader a global insight in the performance of this LAPACK release. In 
Append.ix A, we list the subroutines which are included in the initial release. 1hls Note reports on 
how we have carried out the tests and perfermance measurements. Also some hints are given to 
improve the timing procedure. The problems we encountered during the timing and testing are out
lined in Winter[l4). Finally, we make some critical remarks concerning the present LAPACK pre
release. 
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FX4: Machine: Alliant FX/4 
OS: Concentrix V 4.0 
Compiler: FORTRAN V4.0 
Options: -0 -DAS -c -g 
BLAS: Level 1, 2 - system supported 

DGEMM, SGEMM (Level 3) - system supported 
rest of Level 3 - portable FORTRAN 

205: Machine: CDC CYBER 205-642 
OS: VSOS 2.3 SYS 690C 
Compiler: FORTRAN 200 CYCLE 690B 
BLAS: portable FORTRAN 
Options: OPTIMIZE, UNSAFE 

205.opt: Machine: CDC CYBER 205-642 
OS: VSOS 2.3 SYS 690C 
Compiler: FORTRAN 200 CYCLE 690B 
BLAS: Level 1, 2 - optimized codes[9,10,l l) 

/ Level 3 - portable FORTRAN 
Options: OPTIMIZE, UNSAFE 

995: Machine: CDC CYBER 995E 
OS: NOS/VE 1.4.1 L716AE 
Compiler: VF1NV2.3 
BLAS;. portable FORTRAN 
Options: OPTIMIZATION LEVEL=HIGH 

VECTORIZATION LEVEL=HIGH 

NEC: Machine: NEC SX2 
OS: sxos R3.ll 
Compiler: FORTRAN77/SX REV. 039 
BLAS: portable FORTRAN 
Options: none 

IBM: Machine: IBM 3090-180VF 
OS: VM/HPO 4.2 level 8803, 

CMS LI 4.2/ 8803 
Compiler: VS FORTRAN LEVEL 2.3.0 
BLAS: portable FORTRAN 
Options: OPTIMIZE(3) VECTOR 

TABLE 1 Review of the Machines in the Benchmark 

2. THE MACHINES 

In Table 1 we review the machines used in this benchmark. For convenience, we refer to the machines 
by the names listed in the first column. The operating systems, the compilers and the compiler options 
used are shown, too. In Appendix B we give a review of our testing and timing of LAPACK. Some 
timing sets have not completely carried out on all available machines. This appendix gives possible 
explanations where tests failed or timings were aborted. We encountered, among others, the following 
problems: 
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a few (undocumented) machine dependencies occur 
a few non standard constructs are used ( admittedly in nonstandard routines ) 
compiler problems 
the sources supplied made a lot of assumptions about the target system, as if it were a UNIX™ 
system, which is not true for the CYBERs, the NEC and the IBM machine in this benchmark. 

These problems are discussed in a separate Note on porting[14] of this LAPACK release. 
Most routines in LAPACK occur in four versions : REAL, DOUBLE PRECISION, COMPLEX and 

DOUBLE COMPLEX. On several machines we indeed have timing results of all four precisions. However, 
we have decided to consider the results of only one comparable (64-bit floating point) precision per 
machine, this implies REAL on the 205 and 995 and DOUBLE PRECISION on the IBM, NEC and FX4 
and, if available (see Appendix B ), one COMPLEX precision. 

The performances of LAPACK depend heavily on the implementation of the BLAS (Basic Linear 
Algebra Subprograms[4,5,8]). Actually, it is not fair to present LAPACK results without mentioning 
the performances of BLAS. However, in the best case, the BLAS is system supported and then the 
performances are often difficult to explain. In the worst case, the portable unoptimized implementa
tions had to be used. For more details on the performance of the portable Level 2 BLAS, we refer to 
Louter-Nool[12]. Here, we restrict ourselves to review which BLAS have been used. Although on the 
FX4 all levels of BLAS exist, only Level 1 and 2 BLAS and two Level 3 BLAS routines have been 
used in this LAPACK benchmark. None of the Level 3 BLAS routines passed the error tests, except 
for SGEMM and DGEMM,/Which both compute the general matrix-matrix product. Since the CYBER 
CDC 205 is not able to vectorize most of the BLAS routines written in portable FORTRAN well, and 
since the optimized BLAS implementations[9,10,ll] are probably not commonly used, we produced 
timing results with and without these optimized BLAS implementations (cf. the results for 205 and 
205.opt ). On all other machines portable FORTRAN implementations have been used. 

3. ExPERIMENTAL RESULTS 

3.1. Timing procedure 
By the timing program's input file, one can control the size of the test matrices, the blocksize for 
blocked routines, the bandwidth for banded matrices, the leading dimension for the work arrays and 
the individual routines to be timed (see also Anderson and Dongarra[ 1 ]). The actual input files con
tain the following values : 

5 Number of values of n (the order) 
32 64 128 256 512 Sn: the values of n 

5 Number of values of nb (the blocksize) 
] 2 8 16 32 Snb: the values of nb 
5 Number of values of k (the bandwidth) 

31 63 127 255 511 Sk: the values of k 
2 Number of values of Ida (the leading dimension) 

512 513 Sida: the values of Ida 
SGE TRF TRS TRI CON 
SGB TRF TRS CON 
SPO TRF TRS TRI CON 
SPP TRF TRS TRI CON 
SPB TRF TRS CON 
SSY TRF TRS TRI CON Spath: the LAPACK path names 
SSP TRF TRS TRI CON 
SSB TRF TRS CON 
SGE QRF QRS 
STR TRI 
STP TRI 

TABLE 2 Parameter Values of the Timing Procedure 
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For the blocked routines a blocksize of 1 means that the unblocked version is called. The general out
line of the timing procedure is as follows ( not all options are applicable for each path name ) : 

for each relevant value of UPLO 

for LDA E Stda 

for K E Sk 
for each path name E Spath 

for N E Sn 
for NB E Snb 

Time the routines in this path 

The parameter UPLO specifies whether the upper or lower triangular part of the matrix is stored. 

In Appendix A, Table 1, a review is given of all routines involved in this release. The routines 
operating on unitary and orthogonal matrices (i.e., _UNGNC, _uNMLC, _oRGNC and _ORMLC ) have 
been added to the present release, but, unfortunately, both the main test program and the main tim
ing program of this initial distribution of LAPACK[l] does not recognize these routines. A still con
siderable number of 38 routines has been timed, some of them for several bandwidths and for either 
upper or lower triangular storage. We mention that we have also tested and timed the Level 2 and 3 
BLAS completely, but)hese results will not be reported here. 

The original output of the timing programs is in the form of tables which show megaflop rates for 
each routine over all values of N and NB. Apparently, the difference in performance between 
LDA=512 and LDA=513 is very small. All figures represent results for LDA=512. 

3.2. Remarks on this benchmark 
Only results of LAPfi.CK on shared memory machines are considered in this Note. This new 
library should also be suited for computers with other hierarchies of memory, such as cache, local 
memory or vector registers, and for parallel processing computers. For those architectures it is 
often preferable to partition the matrix or matrices into blocks and to perform the computation 
by matrix-matrix operations on the blocks. Though many LAPACK routines operate on blocks 
the matrices are not explicitly required to be stored blockwise; the matrices are supposed to be 
stored in the usual FORTRAN way (i.e., columnwise). Moreover, the dimensions of the subma
trices - on which LAPACK operates - are kept as large as possible (i.e., multiples of the block
size). 
No optimal Level 3 BLAS implementations were used, except for DGEMM and SGEMM on the 
FX4. This explains, that on machines with optimized Level 2 BLAS, performances of blocked 
routines using Level 3 BLAS can be disappointingly compared with performance of unblocked 
routines which exploit (optimized) Level 2 BLAS. 

3.3. Presentation of the results 
We have preferred to present the results in graphs rather than tables. For each routine eight figures, 
displaying the Megafiop rates for five different N values, have been plotted, namely six figures for the 
REAL case and two for the COMPLEX case. Iri all figures a dotted line indicates that a blocked version 
has been used. In that case the markers specify for which blocksize the performance is obtained. For 
the solve routines, which solve the system A . x = B, the matrix B can contain four different numbers 
of right-hand sides : 1, 2, Y2 N, and N. We have tried to combine the results as much as possible. As 
an illustration, if performance turns out to be independent of the number of right-hand sides, then the 
results of all bandwidths involved for such routine have been represented by one curve only. In that 
case the markers specify the bandwidths and not the number of right-hand sides. If possible, the 
results of upper triangular and lower triangular storage are shown in the same figure. We mention 
that we have completely tested and timed the class of routines indicated by __ coN, which compute 
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the condition number. However, we have not supplied any of its results, since most of these routines 
execute at scalar speed (and therefore produce figures almost coinciding with the x-axis). 

The LAPACK timing procedure LAOPS computes incorrectly the number of floating point opera
tions for _POTRI and _PPTRI, and hence their megaflop rates. The true values for these routines are 
twice as high. In order to show the right performances the scaling in the relevant graphs has been 
adapted. Furthermore, we mention that a complex multiplication takes 6 floating point operations 
rather than 4 as is used in the codes. Unfortunately, we only noticed this after completing the experi
ments. Evidently, the total number of floating point operations for a COMPLEX routine is specified by 
both the number of multiplications and the number of additions. Therefore, it is not sufficient to 
increase the Mflop rates with a scaling factor of 6 I 4. It would have been too time consuming to 
correct these values and, consequently, they are still incorrect. 

3.4. Short discussion on results for each subroutine 
_GETRF The blocked version (the dotted lines in figure la-h) performs very badly on both the 205 

and the 205.opt. On the FX4, the 995 and the NEC, the performance of the blocked version 
is comparable to those of the unblocked one (solid lines) for small and large matrices. For 
the IBM the unblocked version is superior for N from 128 up to 512. 

_GETRS The 205 results are very poor. Only for the NEC, the number of right-hand sides makes a 
difference. 

_GETRI The unblocked;Version performs badly on the 205 while it is favorite on the 205.opt. On the 
995 the blocked routine scores very well for all blocksizes. 

_GBTRF The results of three different bandwidths have been collected in one figure. Performances 
increase, if the bandwidths increase. The results for the NEC are disappointing; for a 
bandwidth of 31, the performances do not exceed 20 Mflops. Note that performance 
decreases for N > 128 on the FX4. 

-GBTRS Analogously to -G.BTRF we have gathered the results for all bandwidths in one figure. Four 
different numbers of right-hand sides were used in the timing procedure. As is shown, this 
number hardly influences the performance. 

_POTRF Two versions for the factorization of a positive definite matrix have been incorporated in 
this release, one for matrices stored in upper triangular form and one for matrices stored in 
lower triangular form. In UNPACK only lower triangular storage is accepted. It turns out 
that for all machines the routine which operates on the lower triangular form is to be pre
ferred both in the block and unblocked case. The unblocked implementation is superior in 
that case. The behavior of the routine for upper triangular storage is rather unpredictable. 

-POTRS Performance for the upper and lower triangular storage cases are identical, except for the 
995; its upper triangular storage performance figure is very surprising. The _POTRS imple
mentation is not very useful for the 205 and the 205.opt; it does not exceed scalar speed. 

_POTRI Similar to _POTRF the results strongly depend on whether matrices are stored in lower or 
upper triangular form. Note that here, as opposed to the corresponding factorization routine 
_POTRF, the upper triangular storage scheme is favorite. The blocked version also scores 
very well for the upper storage case. 

_PPTRF For the FX4, the 995 and the IBM i~ does not matter which storage scheme is chosen. For 
the NEC and the 205.opt the lower triangular storage scheme performs much better, even 
better than the non-packed routine _PQTRF. Notice that the 205 does not vectorize the 
packed storage scheme. 

_PPTRS Performances obtained by _PPTRS are much higher than those obtained by _POTRS for the 
IBM and the 205.opt. Probably the implementation of the unpacked version _POTRS can be 
improved. 

_PPTRI The results are comparable to _POTRI and _PPTRS. 

-PBTRF UPPER : For dense matrices (see Figure 20a-h with K=511) performance resembles the 
_POTRF UPPER results. For banded matrices with less than 25% nonzero elements (K = 32,64) 
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_PBTRS 

_SYTRF 

_SYTRS 

_SYTRI 

_SPTRF 

_SPTRS 

_SPTRI 

_SBTRF 

_SBTRS 

_GEQRF 

_GEQRS 

_TRTRI 

this routine seems to be useless. 
LOWER : For the lower triangular case performances for small bandwidths are not as bad as 
for the upper triangular case for the "small" systems. However, for the FX4 the difference 
in performance for _POTRF and _PBTRF is so big that the use of _POTRF has to be preferred 
even for banded matrices thereby ignoring all zero elements. Notice that for the FX4, the 
complex case slightly differs from the real case. 
As compared with the results of _POTRS for dense matrices, much higher performance is 
obtained, especially for the 205.opt and the IBM. The results for upper triangular and lower 
triangular storage are exactly the same. 
On the FX4, performance for the real case does not exceed 5 Mtlops; on all of the other 
machines performance still increases with the order of the matrix. The results for lower and 
upper storage are almost identical. For the complex case, the exceptionally bad perfor
mances can be explained by the absence of system supported Level 2 BLAS routines for 
complex symmetric matrices. Unfortunately, the set of Level 2 BLAS does not provide for 
this matrix type. 
In particular for the 205, the 205.opt and the NEC t..lie number of right-hand sides is very 
important for this solve routine. For one or two right-hand side vectors this routine does not 
achieve high megatlop rates. Both versions on the 995 behave rather silly for N right-hand 
side vectors(Fig.29b,Fig.30b ). 
On the 205, !Jle 205.opt, the NEC and the 995 the results for the invert routine _SYTRI are 
worse than those for the solve routine _SYTRS with N right-hand sides. This implies that 
_SYTRS which solves a linear system A.X = B of, for example, N equations with B arbitrary ( 
including identity ) is faster than _sYTRI which only computes the inverse. 
The packed storage version of _sYTRF displays the same characteristics as the unpacked 
storage version, except for the 995 and the 205. The latter machine can not vectorize packed 
storage mode. For ZSPTRF on the FX4, see _sYTRF. 

There is no difference in performance between the routine for packed matrices and the one 
for matrices stored in the usual way. No BLAS routines for packed matrices are used, so 
even for the 205 the performance is high. 
see _SPTRF. 

An error message is printed for K = 511, so only four different lines are drawn in figures 
36a-h. For bandwidths up to 255 the results for matrices of full order correspond to the 
results of the dense matrix routine _SYTRF. Again for K=31,63 the results are poor. When 
comparing the upper and lower triangular storage results one can conclude that they are 
nearly equal. 
Similar to the case for non-banded matrices, the influence of the number of right-hand sides 
is very significant. As one can expect, the bandwidth must also be taken into account. Its 
influence on the 205, the 205.opt and the NEC is larger than on other machines. On the 
995, performance decreases for N from 128 to 256 when the number of right-hand sides is 
equal to N. This happens for all baudwidths. A similar decrement appears for the FX4, but 
less significant. 
Results were obtained for three different values of N, namely N = VJM, ¥.iM, M, where the 
matrix is of dimension M x N. The difference in performance is not striking, especially for 
the unblocked case. On the 205, the 205.opt and the NEC the results of the blocked version 
approximate those of the unblocked one. For blocksizes of 32 and 64 and for M = 256, 512 
the blocked version has to be preferred for the FX4 as opposed to the IBM on which the 
blocked version performs badly. 
Analogously to -GEQRF, three values for N are chosen. Obviously, the present implementa
tion is not particularly suited for the 205 and the 205.opt, whereas it performs well for the 
NEC when the number of right-hand side vectors is big enough. 
The upper and lower storage cases perform largely the same, except for the unblocked 
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routine on the 995, the 205 and the 205.opt. On the 995 and the 205 the unblocked, lower 
storage results are much worse than the blocked ones, whereas the 205.opt results are much 
better. 

_TPTRI The difference in performance for the upper and lower storage mode is less significant than 
for the unblocked version of - TRTR1. Again we see that the 205 does not vectorize the 
packed version. 

Routines for Hermitian matrices 
Figures 55-72 show the performance of the routines for Hermitian matrices. The graphs can 
be compared with those for the symmetric complex matrices in Figures 22-45d,h. It is spec
tacular how completely different the graphs for the complex symmetric factorization and 
invert routine are, compared with the Hermitian case for the FX4. The difference can be 
explained by the absence of system supported BLAS2 routines for symmetric complex 
matrices. On the NEC only portable implementations were used and it appears that opera
tions on both symmetric complex and Hermitian matrices are equally well optimized. 

4. REMARKS AND CONCLUSIONS 

We support the design and implementation of LAPACK, and we believe that it will be a good succes
sor of UNPACK and EISPACK. As a test site of the project we discovered how comparatively sim
ple it was to execute the" codes, but we realize how difficult it will be to analyze the results of all the 
test sites. In general, no big problems appeared during the extensive testing and timing of both 
LAPACK and BLAS. The sources are well readable and documented. Besides, we remark that also 
the output files are very easy to interpret. It is clear that the obtained results are a good benchmark 
not only for LAPACK but for the machines as well. 

In the next subsections we mention some wishes concerning the timing procedure. Finally, we com
ment on the efficiency of this LAPACK release. 

4.1. Wishes with respect to the timing procedure 
For the next release we suggest the following modifications concerning the timing procedure (see Sec
tion 3.1): 

Bandwidths and blocksizes ought to correspond to the order of the matrix. 
Exactly 60% of the banded matrices in the present timing procedure are of full order. We prefer 
to include performance measurements of really banded matrices, for example, with 2, 3, 5, or 8 
diagonals. 
Blocksizes should be much smaller than the order of the matrix; blocksizes greater than the 
order of the matrix are not realistic. The experiments indicate that blocksizes 2 (and 8) should 
be replaced by larger values, for example, 16 or 24. 

A mechanism ought to be developed whereby the time measuring routines can determine good 
values for N, NB and LDA. 

It is not useful to time for large values of N when a routine is executing at scalar speed. It is 
also possible that cache effects dominate to such an extent that it is better to use smaller values 
for N. 

Until it is clear that the leading dimension LOA influences the performance, only one LDA value 
suffices in the timing procedure. 

More restarting points are needed for timing. In this release a routine can only be timed as 
prescribed by the timing procedure. If for some reason (e.g., the machine goes down or a com
piler bug) the timing procedure stops, then it is not possible to restart with, for example, UPLO 
equal to LOWER. Therefore, the timing procedure should generate an output file which contains 
information about the current run. By using that output file it should be possible to restart before 
or just after the last obtained value. For more details the reader is referred to Winter[ 14). 
All of the N values specified are powers of 2. It would be interesting to consider odd numbers as 
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well. Besides that, blocksizes which are no divisor of N should be specified, too. 

4.2. Some critical notes on the implementation 
We think that it is necessary to investigate other data structures, too. This LAPACK release allows 
symmetric, Hermitian and triangular matrices to be stored in either upper or lower triangular 
matrices. Moreover, routines for the out-of-date packed storage mode have been supplied. But why 
are other data structures not included? 

First of all, we mention the "block" form, in which the original matrices are partitioned into sub
matrices or blocks, and the algorithms are expressed in terms of basic matrix-matrix operations on the 
blocks, as was planned in the first working note of this project by Demmel et al.[2]. As is shown in 
Section 3.3, for most routines the unblocked or Level 2 BLAS implementation has still to be pre
ferred. To take full advantage of the blocked version, the matrix must be stored blockwise. By operat
ing on small blocks, the amount of data movement can be limited. Besides, if matrices were parti
tioned into blocks explicitly, the operations on distinct blocks could be performed in parallel. Obvi
ously, this approach requires optimal BLAS implementations for small blocks for one single processor 
and, of course, directives to indicate which parts can operate in parallel. Currently, on the FX4, the 
maximum performance for BLAS routines is obtained for large matrices using all available processors. 
For matrices of smaller order, for example, 32, only low megafiop rates are realized. At the moment, 
the only possible way to exploit parallell:sm is to operate in parallel at loop level within the BLAS 
kernels. In this case tJle blocksize should not be too small. 

Secondly, we prefer to allow another data structure for banded matrices apart from the present 
data structure. The prescribed data storage requires diagonals to be stored in rows accordingly to the 
Level 2 BLAS storage mode. If diagonals were stored in columns then longer contiguous vectors are 
obtained and the effect of vectorization will increase. Again this benchmark shows that, at least for 
several architectures, the present storage mode is inadequate for small bandwidths. Our proposal 
implies that also the current set of BLAS needs to be extended. As a side effect, routines for solving 
bi- and tri-diagonal systems, not yet available in LAPACK, become a part of the set of BLAS. More
over, since the set of Level 2 BLAS does not provide for routines for complex symmetric arithmetic, 
five pseudo BLAS2 routines have been added as auxiliary routines of LAPACK. In our opinion the 
set of BLAS2 must be permanently extended with these routines. 

In Louter-Nool[12], UNPACK routines based on Level 2 BLAS are discussed. In UNPACK 
implementations, calls to Level I BLAS were replaced by calls to Level 2 BLAS without changing the 
algorithm, the data structure and the round-off pattern. As expected, large speedups were obtained. 
Under the same conditions as for this LAPACK release, matrices of order 255 were time-measured on 
the CDC CYBERs 995 and 205 (including 205.opt timings) and the NEC SX2. Megafiop rates of the 
original and the modified UNPACK have been compared. It turned out that for general matrices 
much higher performance could be achieved than for the corresponding LAPACK routines. A brief 
inspection of the LAPACK routines for factorization shows that, for example, row-interchanging is 
not performed by a simple _sw AP on a complete row, but in each column separately, which prohibits 
vectorization (cf. SGEFA implementation in [12, Section 3.1]). The computation of the inverse of a tri
angular system _TRTRI can be improved, too. The modified UNPACK megafiop rates are about twice 
as high as the for LAPACK. 

We anticipated LAPACK to perform much better than (modified) UNPACK, since new algorithms 
could have been implemented, and parameter lists could have been adapted as well. As an illustration, 
we mention that UNPACK allows only one single right-hand side vector, whereas LAPACK can 
solve more systems simultaneously. For some of the solve routines this results in performance 
improvements, for others it does not. Moreover, it occurs that invert routines are less efficient than the 
corresponding solve routine. Summarising, at least some of the routines of this LAPACK release can 
be improved and other data structures must be considered. 
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Appendix A. The LAPACK subroutine scheme 

In this Appendix, we provide the subroutine scheme for LAPACK as described in Anderson and 
Dongarra[l] and indicate by means of a table which subroutines are included in this initial release. 

Each routine name in LAPACK is a coded specification of the computation done by the subrou
tine. All names consist of six characters in the form TXXYYY. The first letter, T, indicates the matrix 
data type as follows : 

S - REAL 

D - DOUBLE PRECISION 

C - COMPLEX 

z - COMPLEX* 16 or DOUBLE COMPLEX 

The next two letters, xx, indicate the type of matrix. In this LAPACK release, subroutines covering 
only a subset of the total collection of matrix types to be provided in LAPACK have been included. 
Most of these two-letter codes apply to both real and complex routines; a few apply specifically to 
one or the other, as indicated below : 

GE - general (i.e., unsymmetric, in some cases rectangular) 
GB - general band 
PO - symmetric or Hermitian positive definite 
PP - symmetric or Hermitian positive definite, packed storage 
PB - symmetric or Hermitian positive definite band 
SY - symmetric (i.e., indefinite) 
SP - symmetric, packed storage 
SB - symmetric band 
HE - (complex) Hermitian (i.e., indefinite) 
HP - (complex) Hermitian, packed storage 
HB - (complex) Hermitian band 
OR - (real) orthogonal 
UN - (complex) unitary 
TR - triangular 
TP - triangular, packed storage 

The last three characters, YYY, indicate the computation done by a particular subroutine. Included in 
this release are subroutines to perform the following computations : 

TRF - perform a triangular factorization (LU, Cholesky, etc.) 
TF2 - unblocked triangular factorization, if TRF is blocked 
TRS - solve systems of linear equations (based on triangular factorization) 
TRI - compute inverse (based on. triangular factorization) 
TI2 - unblocked computation of inverse, if TRI is blocked 
CON - estimate condition number 
QRF - perform the QR factorization without pivoting 
QR2 - unblocked version of QRF 

QRS - solve linear least squares problems (based on QR factorization) 
GNC - generate a real orthogonal or complex unitary matrix as a product of Householder 

matrices, where each Householder vector is stored in a column of the matrix 
GC2 - unblocked version of GNC 

MLC - multiply a matrix by a real orthogonal or complex unitary matrix by applying a 
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product of Householder matrices, where each Householder vector is stored in a 
column of the matrix 

MC2 - unblocked version of MLC 

Given the above definitions, the following table indicates the LAPACK subroutines provided in this 
release: 

HE HP HB UN 

GE GB PO pp PB SY SP SB OR TR TP 

TRF x x x x x x x x 
TF2 x x x 
TRS x x x x x x x x 
TRI x x x x x x x 
TI2 x 
CON x x x x x x x x 
QRF /X 

QR2 x 
QRS x 
GNC x 
GC2 x 
MLC x 
MC2 x 
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Appendix B. Timing tests on various types 

In this Appendix we explain why the timing tests were done only for part of the types available on 
the different machines. 

Alliant FX/ 4: 
The timings for complex have not been completed. After more than 40 hours the machine 
went down. No significant differences between single and double precision complex 
appeared. The run for double precision stopped when the performance for general band 
matrices is checked. A restart with only LDA = 512 delivered no more problems. 

CDC CYBER 205: On this machines, timings were only carried out for (64-bit) single precision and 
only in part for complex and double precision. For single precision only the case LOA= 512 
was done. The reason is that complex and double precision does not vectorize and that 
there is no t;mng difference between LDA=512 and LDA=513. 

CDC CYBER 995: Also on this machine complex and double precision do not vectorize, so only tim
ing data for (64-bit) single precision has been obtained. 

NEC SX2: On this machine single and double precision real and complex do vectorize, but quadruple 
precision does not, so no timing was done for the latter case. 

~ 

IBM 3090: The situation is similar to the NEC with respect to vectorization, but there are severe 
problems with complex arithmetic. The test programs that check for correct installation gave 
many errors, and therefore no attempt was made to do timings. The double precision tim
ings were only carried out for matrices of order up to 256 because of budget constraints. 
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FIGURES 1 - 72 

Graphs of the LAPACK Timing Results. 

/ 
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Fig.19c, IBM: Timing data for DPBTRF, Upper,, K=255 Fig.19g, NEC: Timing data for DPBTRF, Upper, K-255 
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Fig.20a, FX4: Timing data for DPBTRF, Upper, K=511 Fig.20e, 205: Timing data for SPBTRF, Upper, K=511 
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Fig.20c, IBM : Timing data for DPBTRF, Upper, K =·511 Fig.20g, NEC : Timing data for DPBTRF, Upper, K = 511 
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Fig.21a, FX4: Timing data for DPBTRF, Lower, K""31 Fig.2le, 205: Timing data for SPBTRF, Lower, K""31 
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Fig.2lb, 995 : Timing data for SPBTRF, Lower, K==31 Fig.2lf, 205.opt: Timing data for SPBTRF, Lower, K-31 
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Fig.2ld, FX4: Timing data for ZPBTRF, Lower, K=31 Fig.21h, NEC: Timing data for ZPBTRF, Lower, K=31 
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Fig.22b, 995 : Timing data for SPBTRF, Lower, K""63 Fig.22f, 205.opt: Timing data for SPBTRF, Lower, K-63 
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Fig.22c, IBM: Timing data for DPBTRF, Lower, K=63 Fig.22g, NEC: Timing data for DPBTRF, Lower, K=63 
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Fig.23a, FX4: Timing data for DPBTRF, Lower, K= 127 Fig.23e, 205 : Timing data for SPBTRF, Lower, K= 127 
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Fig.23b, 995 : Timing data for SPBTRF, Lower, K== 127 Fig.23f, 205.opt : Timing data for SPBTRF, Lower, K= 127 
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Fig.23c, IBM: Timing data for DPBTRF, Lower,, K"" 127 Fig.23g, NEC : Timing data for DPBTRF, Lower, K-127 
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Fig.23d, FX4: Timing data for ZPBTRF, Lower, K= 127 Fig.23h, NEC: Timing data for ZPBTRF, Lower, K= 127 
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Fig24a, FX4: Timing data for DPBTRF, Lower, K=255 Fig.24e, 205 : Timing data for SPBTRF, Lower, K=255 
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Fig.24b, 995 : Timing data for SPBTRF, Lower, K""'255 Fig.24f, 205.opt: Timing data for SPBTRF, Lower, K=255 
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Fig.24c, IBM: Timing data for DPBTRF, Lower, K=255 Fig.24g, NEC: Timing data for DPBTRF, Lower, K=255 
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Fig.25c, IBM: Timing data for DPBTRF, Lower\ K==511 Fig.25g, NEC: Timing data for DPBTRF, Lower, K==511 
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Fig.25d, FX4 : Timing data for ZPBTRF, Lower, K = 511 Fig.25h, NEC : Timing data for ZPBTRF, Lower, K = 511 
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Fig.26a, FX4 : Timing data for DPBTRS, Upper 

/ 

3264 128 256 512 
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Fig.26c, IBM : Timing data for DPBTRS, Upper . 
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Fig.26d, FX4 : Timing data for ZPBTRS, Upper 
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Fig.26g, NEC : Timing data for DPBTRS, Upper 
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Fig.26h, NEC : Timing data for ZPBTRS, Upper 
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Fig.27d, FX4 : Timing data for ZPBTRS, Lower Fig.27h, NEC : Timing data for ZPBTRS, Lower 
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Fig.28b, 995 : Timing data for SSYTRF Fig.28f, 205.opt : Timing data for SSYTRF 
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Fig.28c, IBM : Timing data for DSYTRF Fig.28g, NEC : Timing data for DSYTRF 
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Fig.28d, FX4 : Timing data for ZSYTRF Fig.28h, NEC : Timing data for ZSYTRF 
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Fig.29f, 205.opt : Timing data for SSYTRS, Upper 
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Fig.29h, NEC : Timing data for ZSYTRS, Upper 
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Fig.30f, 205.opt : Timing data for SSYTRS, Lower 

3264 128 256 512 

Fig.30g, NEC : Timing data for DSYTRS, Lower 

300 

200 

100 

0 

3264 128 256 512 
Fig.30h, NEC : Timing data for ZSYTRS, Lower 
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Fig.31a, FX4: Timing data for DSYTRI Fig.31e, 205 : Timing data for SSYTRI 
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Fig.3lb, 995 : Timing data for SSYTRI Fig.31f, 205.opt : Timing data for SSYTRI 
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3264 128 256 512 3264 128 256 512 
Fig.3ld, FX4: Timing data for ZSYTRI Fig.3lh, NEC: Timing data for ZSYTRI 
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Fig.32a, FX4 : Timing data for DSPTRF Fig.32e, 205 : Timing data for SSPTRF 
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Fig.32b, 995 : Timing data for SSPTRF Fig.32f, 205.opt : Timing data for SSPTRF 
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Fig.32d, FX4 : Timing data for ZSPTRF Fig.32h, NEC : Timing data for ZSPTRF 
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Fig.33a, FX4 : Timing data for DSPTRS, Upper 
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Fig.33h, NEC : Timing data for ZSPTRS, Upper 
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Fig.34a, FX4 : Timing data for DSPTRS, Lower Fig.34e, 205 : Timing data for SSPTRS, Lower 
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Fig.34d, FX4 : Timing data for ZSPTRS, Lower Fig.34h, NEC : Timing data for ZSPTRS, Lower 
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Fig.35a, FX4 : Timing data for DSPTRI Fig.35e, 205 : Timing data for SSPTRI 
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Fig.35b, 995 : Timing data for SSPTRI Fig.35f, 205.opt : Timing data for SSPTRI 
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Fig.35c, IBM : Timing data for DSPTRI Fig.35g, NEC : Timing data for DSPTRI 
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Fig.35d, FX4 : Timing data for ZSPTRI Fig.35h, NEC : Timing data for ZSPTRI 
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Fig.36d, FX4 : Timing data for ZSBTRF, Upper 
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Fig.37d, FX4 : Timing data for ZSBTRF, Lower Fig.37h, NEC : Timing data for ZSBTRF, Lower 
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Fig.38a, FX4: Timing data for DSBTRS, Upper, K= 31 Fig.38e, 205 : Timing data for SSBTRS, Upper, K=31 
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Fig.38b, 995 : Timing data for SSBTRS, Upper, K"" 31 Fig.38f, 205.opt: Timing data for SSBTRS, Upper, K= 31 
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Fig.39a, FX4: Timing data for DSBTRS, Upper, K=63 Fig.39e, 205 : Timing data for SSBTRS, Upper, K=63 
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Fig.39b, 995 : Timing data for SSBTRS, Upper, K=63 Fig.39f, 205.opt: Timing data for SSBTRS, Upper, K=63 
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Fig.39c, IBM: Timing data for DSBTRS, Upper, K=63 Fig.39g, NEC: Timing data for DSBTRS, Upper, K=63 
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Fig.39d, FX4 : Timing data for ZSBTRS, Upper, K = 63 Fig.39h, NEC : Timing data for ZSBTRS, Upper, K = 63 
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Fig.40a, FX4: Timing data for DSBTRS, Upper, K= 127 Fig.40e, 205 : Timing data for SSBTRS, Upper, K= 127 

25 

80 
20-

60 
15- / 

10- 0 
40 

5- 20 

0 
I I I I I 0 

3264 128 256 512 3264 128 256 512 
Fig.40b, 995 : Timing data for SSBTRS, Upper, K= 127 Fig.40f, 205.opt : Timing data for SSBTRS, Upper, K= 127 
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Fig.40c, IBM : Timing data for DSBTRS, Upper, K= 127 Fig.40g, NEC : Timing data for DSBTRS, Upper, K= 127 
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Fig.40d, FX4: Timing data for ZSBTRS, Upper, K= 127 Fig.40h, NEC: Timing data for ZSBTRS, Upper, K= 127 
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Fig.41a, FX4: Timing data for DSBTRS, Upper, K=255 Fig.41e, 205 : Timing data for SSBTRS, Upper, K=255 
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Fig.4lb, 995 : Timing data for SSBTRS, Upper, K==255 Fig.4lf, 205.opt: Timing data for SSBTRS, Upper, K-255 
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Fig.41c, IBM: Timing data for DSBTRS, Upper, K=255 Fig.4lg, NEC: Timing data for DSBTRS, Upper, K=255 
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Fig.41d, FX4: Timing data for ZSBTRS, Upper, K=255 Fig.4lh, NEC: Timing data for ZSBTRS, Upper, K=255 
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Fig.43a, FX4: Timing data for DSBTRS, Lower, K=63 Fig.43e, 205 : Timing data for SSBTRS, Lower, K=63 
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Fig.44b, 995: Timing data for SSBTRS, Lower, K== 127 Fig.44f, 205.opt: Timing data for SSBTRS, Lower, K ... 127 

25 

20 300 

15 
200 

10 

100 
5 

0 0 

3264 128 256 512 3264 128 256 512 
Fig.44c, IBM: Timing data for DSBTRS, Lower, K== 127 Fig.44g, NEC: Timing data for DSBTRS, Lower, Kmo 127 

10 300 

~ 
200 

5 ii! 

~~ 
100 

0 0 

3264 128 256 512 3264 128 256 512 
Fig.44d, FX4: Timing data for ZSBTRS, Lower, K= 127 Fig.44h, NEC: Timing data for ZSBTRS, Lower, K= 127 



58 

10 

# RHS vectors : 
.!. 6 6 A N 
lf-----~~'h N 

2 
l 

3264 128 256 512 3264 128 256 512 
Fig.45a, FX4 : Timing data for DSBTRS, Lower, K = 255 Fig.45e, 205 : Timing data for SSBTRS, Lower, K = 255 
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Fig.50d, FX4: Timing data for ZGEQRS, N = 2*M/3 Fig.50h, NEC: Timing data for ZGEQRS, N = 2*M/3 
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Fig.54a, FX4 : Timing data for DTPTRI Fig.54e, 205 : Timing data for STPTRI 
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Fig.54d, FX4 : Timing data for ZTPTRI Fig.54h, NEC : Timing data for ZTPTRI 
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Fig.55d, FX4 : Timing data for ZHETRF Fig.55h, NEC: Timing data for ZHETRF 

# RHS vectors : 
<!. "' "' "' N 

10 ~N 
2 

300 
I 

/ 200 

~~ 
II: 

~ 
100 

~ 0 

5 

3264 128 256 ~ 512 3264 128 256 512 
Fig.56d, FX4 : Timing data for ZHETRS, Upp-"r Fig.56h, NEC : Timing data for ZHETRS, Upper 

# RHS vectors : 
A "' "' "' N 

10 ~N 300 
2 
I 

200 

5 
* ~~ 
~ 

100 

~ 0 0 

3264 128 256 512 3264 128 256 512 
Fig.57d, FX4 : Timing data for ZHETRS, Low.er Fig.57h, NEC : Timing data for ZHETRS, Lower 

10 

Storages: 
/!; A A "' Upper 
o El o o Lower 

3264 128 256 512 3264 128 256 512 
Fig.58d, FX4 : Timing data for ZHETRI Fig.58h, NEC : Timing data for ZHETRI 
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Fig.65d, FX4: Timing data for ZHBTRS, Upper, K=31 Fig.65h, NEC: Timing data for ZHBTRS, Upper, K""31 

10 300 

/ 200 

5 
1$ ~ 

100 

0 0 

3264 128 256 512 3264 128 256 512 

Fig.66d, FX4: Timing data for ZHBTRS, Upper, K=63 Fig.66h, NEC: Timing data for ZHBTRS, Upper, K=63 
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Fig.67d, FX4: Timing data for ZHBTRS, Upper, K=·l27 Fig.67h, NEC: Timing data for ZHBTRS, Upper, K= 127 
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Fig.68d, FX4: Timing data for ZHBTRS, Upper, K=255 Fig.68h, NEC: Timing data for ZHBTRS, Upper, K=255 
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Fig.70d, FX4: Timing data for ZHBTRS, Lower, K=63 Fig.70h, NEC: Timing data for ZHBTRS, Lower, K=63 
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Fig.7ld, FX4: Timing data for ZHBTRS, Lower, K= 127 Fig.7lh, NEC: Timing data for ZHBTRS, Lower, K= 127 
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Fig.72d, FX4: Timing data for ZHBTRS, Lower, K=255 Fig.72h, NEC: Timing data for ZHBTRS, Lower, K=255 


