
/

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M. louter-Nool, D.T. Winter

Benchmark of the initial release of the LAPACK library

Department of Numerical Mathematics Note NM-N8903 November

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

/

Copyright© Stichting Mathematisch Centrum,·Amsterdam

Benchmark of the initial release of the LAPACK library

Margreet Louter-Nool, Dik T. Winter
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This Note reports on the test results of a pre-release ol LAPACK, a new scientific library for solving linear
equations, eigenvalue problems and linear least squares. Results for five different high-performance com
puters have been collected in graphs. The figures have been arranged in such a way that each page con
tains the results for one particular routine for all tested machines. It can be easily verified whether charac
teristics like the performance ratio for blocked and unblocked routines, or for lower or upper triangular
storage schemes are machine dependent or not. Some hints are given to improve the timing procedure, on
the one hand to simplify the process of timing, on the other hand to modify the values of the input parame
ters. In conclusion, critical notes on the imple1.1entation, the contents and the selected datastructure of this
release are given.

1980 Mathematics subject classification: Primary:65V05. Secondary:65FXX
Key Words & Phrases: Level 1, 2, 3 BLAS, Vector and Parallel Computers, Efficiency, Portability, Perfor
mance Measurements.

1. INTRODUCTION
A new scientific library called LAPACK is developed by Argonne National Laboratory, in conjunc
tion with the Courant Institute and the Numerical Algorithms Group, Ltd. 1hls transportable library
in FORTRAN77 is based on the well-known LINPAC:K{3] and EISPACK{7,13] packages for solving
linear equations, eigenvalue problems and linear least squares. We at CWI have been invited to serve
as a test site for this project, and to comment on the contents and on the current implementation of
these routines.

Currently CWI has access to quite a few vector and parallel machines and in consultation with
Argonne we have decided to run the codes on five machines: Alliant FX/4, IBM 3090-VF, CDC
CYBER 995, CDC CYBER 205, and NEC SX~2. The first release of LAPACK[l] contains only a
fraction of the routines that will ultimately be part of LAPACK. In spite of this limited size, hun
dreds of tables were generated to measure efficiency. In order to be able to interpret these values we
decided it to be helpful to plot these values. The figures have been arranged in such a way that each
page contains the results for one particular routine on several machines. At one glance it can be seen
whether the blocked version of a routine has to be preferred or not and how many right-hand side
vectors are required to achieve high performances. It can also be easily verified whether such charac
teristics are machine dependent or not.

We intend to give the reader a global insight in the performance of this LAPACK release. In
Append.ix A, we list the subroutines which are included in the initial release. 1hls Note reports on
how we have carried out the tests and perfermance measurements. Also some hints are given to
improve the timing procedure. The problems we encountered during the timing and testing are out
lined in Winter[l4). Finally, we make some critical remarks concerning the present LAPACK pre
release.

Note NM-N8903
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

FX4: Machine: Alliant FX/4
OS: Concentrix V 4.0
Compiler: FORTRAN V4.0
Options: -0 -DAS -c -g
BLAS: Level 1, 2 - system supported

DGEMM, SGEMM (Level 3) - system supported
rest of Level 3 - portable FORTRAN

205: Machine: CDC CYBER 205-642
OS: VSOS 2.3 SYS 690C
Compiler: FORTRAN 200 CYCLE 690B
BLAS: portable FORTRAN
Options: OPTIMIZE, UNSAFE

205.opt: Machine: CDC CYBER 205-642
OS: VSOS 2.3 SYS 690C
Compiler: FORTRAN 200 CYCLE 690B
BLAS: Level 1, 2 - optimized codes[9,10,l l)

/ Level 3 - portable FORTRAN
Options: OPTIMIZE, UNSAFE

995: Machine: CDC CYBER 995E
OS: NOS/VE 1.4.1 L716AE
Compiler: VF1NV2.3
BLAS;. portable FORTRAN
Options: OPTIMIZATION LEVEL=HIGH

VECTORIZATION LEVEL=HIGH

NEC: Machine: NEC SX2
OS: sxos R3.ll
Compiler: FORTRAN77/SX REV. 039
BLAS: portable FORTRAN
Options: none

IBM: Machine: IBM 3090-180VF
OS: VM/HPO 4.2 level 8803,

CMS LI 4.2/ 8803
Compiler: VS FORTRAN LEVEL 2.3.0
BLAS: portable FORTRAN
Options: OPTIMIZE(3) VECTOR

TABLE 1 Review of the Machines in the Benchmark

2. THE MACHINES

In Table 1 we review the machines used in this benchmark. For convenience, we refer to the machines
by the names listed in the first column. The operating systems, the compilers and the compiler options
used are shown, too. In Appendix B we give a review of our testing and timing of LAPACK. Some
timing sets have not completely carried out on all available machines. This appendix gives possible
explanations where tests failed or timings were aborted. We encountered, among others, the following
problems:

3

a few (undocumented) machine dependencies occur
a few non standard constructs are used (admittedly in nonstandard routines)
compiler problems
the sources supplied made a lot of assumptions about the target system, as if it were a UNIX™
system, which is not true for the CYBERs, the NEC and the IBM machine in this benchmark.

These problems are discussed in a separate Note on porting[14] of this LAPACK release.
Most routines in LAPACK occur in four versions : REAL, DOUBLE PRECISION, COMPLEX and

DOUBLE COMPLEX. On several machines we indeed have timing results of all four precisions. However,
we have decided to consider the results of only one comparable (64-bit floating point) precision per
machine, this implies REAL on the 205 and 995 and DOUBLE PRECISION on the IBM, NEC and FX4
and, if available (see Appendix B), one COMPLEX precision.

The performances of LAPACK depend heavily on the implementation of the BLAS (Basic Linear
Algebra Subprograms[4,5,8]). Actually, it is not fair to present LAPACK results without mentioning
the performances of BLAS. However, in the best case, the BLAS is system supported and then the
performances are often difficult to explain. In the worst case, the portable unoptimized implementa
tions had to be used. For more details on the performance of the portable Level 2 BLAS, we refer to
Louter-Nool[12]. Here, we restrict ourselves to review which BLAS have been used. Although on the
FX4 all levels of BLAS exist, only Level 1 and 2 BLAS and two Level 3 BLAS routines have been
used in this LAPACK benchmark. None of the Level 3 BLAS routines passed the error tests, except
for SGEMM and DGEMM,/Which both compute the general matrix-matrix product. Since the CYBER
CDC 205 is not able to vectorize most of the BLAS routines written in portable FORTRAN well, and
since the optimized BLAS implementations[9,10,ll] are probably not commonly used, we produced
timing results with and without these optimized BLAS implementations (cf. the results for 205 and
205.opt). On all other machines portable FORTRAN implementations have been used.

3. ExPERIMENTAL RESULTS

3.1. Timing procedure
By the timing program's input file, one can control the size of the test matrices, the blocksize for
blocked routines, the bandwidth for banded matrices, the leading dimension for the work arrays and
the individual routines to be timed (see also Anderson and Dongarra[1]). The actual input files con
tain the following values :

5 Number of values of n (the order)
32 64 128 256 512 Sn: the values of n

5 Number of values of nb (the blocksize)
] 2 8 16 32 Snb: the values of nb
5 Number of values of k (the bandwidth)

31 63 127 255 511 Sk: the values of k
2 Number of values of Ida (the leading dimension)

512 513 Sida: the values of Ida
SGE TRF TRS TRI CON
SGB TRF TRS CON
SPO TRF TRS TRI CON
SPP TRF TRS TRI CON
SPB TRF TRS CON
SSY TRF TRS TRI CON Spath: the LAPACK path names
SSP TRF TRS TRI CON
SSB TRF TRS CON
SGE QRF QRS
STR TRI
STP TRI

TABLE 2 Parameter Values of the Timing Procedure

4

For the blocked routines a blocksize of 1 means that the unblocked version is called. The general out
line of the timing procedure is as follows (not all options are applicable for each path name) :

for each relevant value of UPLO

for LDA E Stda

for K E Sk
for each path name E Spath

for N E Sn
for NB E Snb

Time the routines in this path

The parameter UPLO specifies whether the upper or lower triangular part of the matrix is stored.

In Appendix A, Table 1, a review is given of all routines involved in this release. The routines
operating on unitary and orthogonal matrices (i.e., _UNGNC, _uNMLC, _oRGNC and _ORMLC) have
been added to the present release, but, unfortunately, both the main test program and the main tim
ing program of this initial distribution of LAPACK[l] does not recognize these routines. A still con
siderable number of 38 routines has been timed, some of them for several bandwidths and for either
upper or lower triangular storage. We mention that we have also tested and timed the Level 2 and 3
BLAS completely, but)hese results will not be reported here.

The original output of the timing programs is in the form of tables which show megaflop rates for
each routine over all values of N and NB. Apparently, the difference in performance between
LDA=512 and LDA=513 is very small. All figures represent results for LDA=512.

3.2. Remarks on this benchmark
Only results of LAPfi.CK on shared memory machines are considered in this Note. This new
library should also be suited for computers with other hierarchies of memory, such as cache, local
memory or vector registers, and for parallel processing computers. For those architectures it is
often preferable to partition the matrix or matrices into blocks and to perform the computation
by matrix-matrix operations on the blocks. Though many LAPACK routines operate on blocks
the matrices are not explicitly required to be stored blockwise; the matrices are supposed to be
stored in the usual FORTRAN way (i.e., columnwise). Moreover, the dimensions of the subma
trices - on which LAPACK operates - are kept as large as possible (i.e., multiples of the block
size).
No optimal Level 3 BLAS implementations were used, except for DGEMM and SGEMM on the
FX4. This explains, that on machines with optimized Level 2 BLAS, performances of blocked
routines using Level 3 BLAS can be disappointingly compared with performance of unblocked
routines which exploit (optimized) Level 2 BLAS.

3.3. Presentation of the results
We have preferred to present the results in graphs rather than tables. For each routine eight figures,
displaying the Megafiop rates for five different N values, have been plotted, namely six figures for the
REAL case and two for the COMPLEX case. Iri all figures a dotted line indicates that a blocked version
has been used. In that case the markers specify for which blocksize the performance is obtained. For
the solve routines, which solve the system A . x = B, the matrix B can contain four different numbers
of right-hand sides : 1, 2, Y2 N, and N. We have tried to combine the results as much as possible. As
an illustration, if performance turns out to be independent of the number of right-hand sides, then the
results of all bandwidths involved for such routine have been represented by one curve only. In that
case the markers specify the bandwidths and not the number of right-hand sides. If possible, the
results of upper triangular and lower triangular storage are shown in the same figure. We mention
that we have completely tested and timed the class of routines indicated by __ coN, which compute

5

the condition number. However, we have not supplied any of its results, since most of these routines
execute at scalar speed (and therefore produce figures almost coinciding with the x-axis).

The LAPACK timing procedure LAOPS computes incorrectly the number of floating point opera
tions for _POTRI and _PPTRI, and hence their megaflop rates. The true values for these routines are
twice as high. In order to show the right performances the scaling in the relevant graphs has been
adapted. Furthermore, we mention that a complex multiplication takes 6 floating point operations
rather than 4 as is used in the codes. Unfortunately, we only noticed this after completing the experi
ments. Evidently, the total number of floating point operations for a COMPLEX routine is specified by
both the number of multiplications and the number of additions. Therefore, it is not sufficient to
increase the Mflop rates with a scaling factor of 6 I 4. It would have been too time consuming to
correct these values and, consequently, they are still incorrect.

3.4. Short discussion on results for each subroutine
_GETRF The blocked version (the dotted lines in figure la-h) performs very badly on both the 205

and the 205.opt. On the FX4, the 995 and the NEC, the performance of the blocked version
is comparable to those of the unblocked one (solid lines) for small and large matrices. For
the IBM the unblocked version is superior for N from 128 up to 512.

_GETRS The 205 results are very poor. Only for the NEC, the number of right-hand sides makes a
difference.

_GETRI The unblocked;Version performs badly on the 205 while it is favorite on the 205.opt. On the
995 the blocked routine scores very well for all blocksizes.

_GBTRF The results of three different bandwidths have been collected in one figure. Performances
increase, if the bandwidths increase. The results for the NEC are disappointing; for a
bandwidth of 31, the performances do not exceed 20 Mflops. Note that performance
decreases for N > 128 on the FX4.

-GBTRS Analogously to -G.BTRF we have gathered the results for all bandwidths in one figure. Four
different numbers of right-hand sides were used in the timing procedure. As is shown, this
number hardly influences the performance.

_POTRF Two versions for the factorization of a positive definite matrix have been incorporated in
this release, one for matrices stored in upper triangular form and one for matrices stored in
lower triangular form. In UNPACK only lower triangular storage is accepted. It turns out
that for all machines the routine which operates on the lower triangular form is to be pre
ferred both in the block and unblocked case. The unblocked implementation is superior in
that case. The behavior of the routine for upper triangular storage is rather unpredictable.

-POTRS Performance for the upper and lower triangular storage cases are identical, except for the
995; its upper triangular storage performance figure is very surprising. The _POTRS imple
mentation is not very useful for the 205 and the 205.opt; it does not exceed scalar speed.

_POTRI Similar to _POTRF the results strongly depend on whether matrices are stored in lower or
upper triangular form. Note that here, as opposed to the corresponding factorization routine
_POTRF, the upper triangular storage scheme is favorite. The blocked version also scores
very well for the upper storage case.

_PPTRF For the FX4, the 995 and the IBM i~ does not matter which storage scheme is chosen. For
the NEC and the 205.opt the lower triangular storage scheme performs much better, even
better than the non-packed routine _PQTRF. Notice that the 205 does not vectorize the
packed storage scheme.

_PPTRS Performances obtained by _PPTRS are much higher than those obtained by _POTRS for the
IBM and the 205.opt. Probably the implementation of the unpacked version _POTRS can be
improved.

_PPTRI The results are comparable to _POTRI and _PPTRS.

-PBTRF UPPER : For dense matrices (see Figure 20a-h with K=511) performance resembles the
_POTRF UPPER results. For banded matrices with less than 25% nonzero elements (K = 32,64)

6

_PBTRS

_SYTRF

_SYTRS

_SYTRI

_SPTRF

_SPTRS

_SPTRI

_SBTRF

_SBTRS

_GEQRF

_GEQRS

_TRTRI

this routine seems to be useless.
LOWER : For the lower triangular case performances for small bandwidths are not as bad as
for the upper triangular case for the "small" systems. However, for the FX4 the difference
in performance for _POTRF and _PBTRF is so big that the use of _POTRF has to be preferred
even for banded matrices thereby ignoring all zero elements. Notice that for the FX4, the
complex case slightly differs from the real case.
As compared with the results of _POTRS for dense matrices, much higher performance is
obtained, especially for the 205.opt and the IBM. The results for upper triangular and lower
triangular storage are exactly the same.
On the FX4, performance for the real case does not exceed 5 Mtlops; on all of the other
machines performance still increases with the order of the matrix. The results for lower and
upper storage are almost identical. For the complex case, the exceptionally bad perfor
mances can be explained by the absence of system supported Level 2 BLAS routines for
complex symmetric matrices. Unfortunately, the set of Level 2 BLAS does not provide for
this matrix type.
In particular for the 205, the 205.opt and the NEC t..lie number of right-hand sides is very
important for this solve routine. For one or two right-hand side vectors this routine does not
achieve high megatlop rates. Both versions on the 995 behave rather silly for N right-hand
side vectors(Fig.29b,Fig.30b).
On the 205, !Jle 205.opt, the NEC and the 995 the results for the invert routine _SYTRI are
worse than those for the solve routine _SYTRS with N right-hand sides. This implies that
_SYTRS which solves a linear system A.X = B of, for example, N equations with B arbitrary (
including identity) is faster than _sYTRI which only computes the inverse.
The packed storage version of _sYTRF displays the same characteristics as the unpacked
storage version, except for the 995 and the 205. The latter machine can not vectorize packed
storage mode. For ZSPTRF on the FX4, see _sYTRF.

There is no difference in performance between the routine for packed matrices and the one
for matrices stored in the usual way. No BLAS routines for packed matrices are used, so
even for the 205 the performance is high.
see _SPTRF.

An error message is printed for K = 511, so only four different lines are drawn in figures
36a-h. For bandwidths up to 255 the results for matrices of full order correspond to the
results of the dense matrix routine _SYTRF. Again for K=31,63 the results are poor. When
comparing the upper and lower triangular storage results one can conclude that they are
nearly equal.
Similar to the case for non-banded matrices, the influence of the number of right-hand sides
is very significant. As one can expect, the bandwidth must also be taken into account. Its
influence on the 205, the 205.opt and the NEC is larger than on other machines. On the
995, performance decreases for N from 128 to 256 when the number of right-hand sides is
equal to N. This happens for all baudwidths. A similar decrement appears for the FX4, but
less significant.
Results were obtained for three different values of N, namely N = VJM, ¥.iM, M, where the
matrix is of dimension M x N. The difference in performance is not striking, especially for
the unblocked case. On the 205, the 205.opt and the NEC the results of the blocked version
approximate those of the unblocked one. For blocksizes of 32 and 64 and for M = 256, 512
the blocked version has to be preferred for the FX4 as opposed to the IBM on which the
blocked version performs badly.
Analogously to -GEQRF, three values for N are chosen. Obviously, the present implementa
tion is not particularly suited for the 205 and the 205.opt, whereas it performs well for the
NEC when the number of right-hand side vectors is big enough.
The upper and lower storage cases perform largely the same, except for the unblocked

7

routine on the 995, the 205 and the 205.opt. On the 995 and the 205 the unblocked, lower
storage results are much worse than the blocked ones, whereas the 205.opt results are much
better.

_TPTRI The difference in performance for the upper and lower storage mode is less significant than
for the unblocked version of - TRTR1. Again we see that the 205 does not vectorize the
packed version.

Routines for Hermitian matrices
Figures 55-72 show the performance of the routines for Hermitian matrices. The graphs can
be compared with those for the symmetric complex matrices in Figures 22-45d,h. It is spec
tacular how completely different the graphs for the complex symmetric factorization and
invert routine are, compared with the Hermitian case for the FX4. The difference can be
explained by the absence of system supported BLAS2 routines for symmetric complex
matrices. On the NEC only portable implementations were used and it appears that opera
tions on both symmetric complex and Hermitian matrices are equally well optimized.

4. REMARKS AND CONCLUSIONS

We support the design and implementation of LAPACK, and we believe that it will be a good succes
sor of UNPACK and EISPACK. As a test site of the project we discovered how comparatively sim
ple it was to execute the" codes, but we realize how difficult it will be to analyze the results of all the
test sites. In general, no big problems appeared during the extensive testing and timing of both
LAPACK and BLAS. The sources are well readable and documented. Besides, we remark that also
the output files are very easy to interpret. It is clear that the obtained results are a good benchmark
not only for LAPACK but for the machines as well.

In the next subsections we mention some wishes concerning the timing procedure. Finally, we com
ment on the efficiency of this LAPACK release.

4.1. Wishes with respect to the timing procedure
For the next release we suggest the following modifications concerning the timing procedure (see Sec
tion 3.1):

Bandwidths and blocksizes ought to correspond to the order of the matrix.
Exactly 60% of the banded matrices in the present timing procedure are of full order. We prefer
to include performance measurements of really banded matrices, for example, with 2, 3, 5, or 8
diagonals.
Blocksizes should be much smaller than the order of the matrix; blocksizes greater than the
order of the matrix are not realistic. The experiments indicate that blocksizes 2 (and 8) should
be replaced by larger values, for example, 16 or 24.

A mechanism ought to be developed whereby the time measuring routines can determine good
values for N, NB and LDA.

It is not useful to time for large values of N when a routine is executing at scalar speed. It is
also possible that cache effects dominate to such an extent that it is better to use smaller values
for N.

Until it is clear that the leading dimension LOA influences the performance, only one LDA value
suffices in the timing procedure.

More restarting points are needed for timing. In this release a routine can only be timed as
prescribed by the timing procedure. If for some reason (e.g., the machine goes down or a com
piler bug) the timing procedure stops, then it is not possible to restart with, for example, UPLO
equal to LOWER. Therefore, the timing procedure should generate an output file which contains
information about the current run. By using that output file it should be possible to restart before
or just after the last obtained value. For more details the reader is referred to Winter[14).
All of the N values specified are powers of 2. It would be interesting to consider odd numbers as

8

well. Besides that, blocksizes which are no divisor of N should be specified, too.

4.2. Some critical notes on the implementation
We think that it is necessary to investigate other data structures, too. This LAPACK release allows
symmetric, Hermitian and triangular matrices to be stored in either upper or lower triangular
matrices. Moreover, routines for the out-of-date packed storage mode have been supplied. But why
are other data structures not included?

First of all, we mention the "block" form, in which the original matrices are partitioned into sub
matrices or blocks, and the algorithms are expressed in terms of basic matrix-matrix operations on the
blocks, as was planned in the first working note of this project by Demmel et al.[2]. As is shown in
Section 3.3, for most routines the unblocked or Level 2 BLAS implementation has still to be pre
ferred. To take full advantage of the blocked version, the matrix must be stored blockwise. By operat
ing on small blocks, the amount of data movement can be limited. Besides, if matrices were parti
tioned into blocks explicitly, the operations on distinct blocks could be performed in parallel. Obvi
ously, this approach requires optimal BLAS implementations for small blocks for one single processor
and, of course, directives to indicate which parts can operate in parallel. Currently, on the FX4, the
maximum performance for BLAS routines is obtained for large matrices using all available processors.
For matrices of smaller order, for example, 32, only low megafiop rates are realized. At the moment,
the only possible way to exploit parallell:sm is to operate in parallel at loop level within the BLAS
kernels. In this case tJle blocksize should not be too small.

Secondly, we prefer to allow another data structure for banded matrices apart from the present
data structure. The prescribed data storage requires diagonals to be stored in rows accordingly to the
Level 2 BLAS storage mode. If diagonals were stored in columns then longer contiguous vectors are
obtained and the effect of vectorization will increase. Again this benchmark shows that, at least for
several architectures, the present storage mode is inadequate for small bandwidths. Our proposal
implies that also the current set of BLAS needs to be extended. As a side effect, routines for solving
bi- and tri-diagonal systems, not yet available in LAPACK, become a part of the set of BLAS. More
over, since the set of Level 2 BLAS does not provide for routines for complex symmetric arithmetic,
five pseudo BLAS2 routines have been added as auxiliary routines of LAPACK. In our opinion the
set of BLAS2 must be permanently extended with these routines.

In Louter-Nool[12], UNPACK routines based on Level 2 BLAS are discussed. In UNPACK
implementations, calls to Level I BLAS were replaced by calls to Level 2 BLAS without changing the
algorithm, the data structure and the round-off pattern. As expected, large speedups were obtained.
Under the same conditions as for this LAPACK release, matrices of order 255 were time-measured on
the CDC CYBERs 995 and 205 (including 205.opt timings) and the NEC SX2. Megafiop rates of the
original and the modified UNPACK have been compared. It turned out that for general matrices
much higher performance could be achieved than for the corresponding LAPACK routines. A brief
inspection of the LAPACK routines for factorization shows that, for example, row-interchanging is
not performed by a simple _sw AP on a complete row, but in each column separately, which prohibits
vectorization (cf. SGEFA implementation in [12, Section 3.1]). The computation of the inverse of a tri
angular system _TRTRI can be improved, too. The modified UNPACK megafiop rates are about twice
as high as the for LAPACK.

We anticipated LAPACK to perform much better than (modified) UNPACK, since new algorithms
could have been implemented, and parameter lists could have been adapted as well. As an illustration,
we mention that UNPACK allows only one single right-hand side vector, whereas LAPACK can
solve more systems simultaneously. For some of the solve routines this results in performance
improvements, for others it does not. Moreover, it occurs that invert routines are less efficient than the
corresponding solve routine. Summarising, at least some of the routines of this LAPACK release can
be improved and other data structures must be considered.

9

REFERENCES
1. EDWARD ANDERSON and JACK DONGARRA (April 1989). LAPACK Working Note # 10, Instal

ling and Testing the Initial Distribution of LAPACK, Technical Memorandum No. MCS-TM-130,
Argonne National Laboratory.

2. J. DEMMEL, J.J. DONGARRA, J.J. Du CROZ, A. GREENBAUM, s. HAMMERLING and D.C. SORENSON
(September 1987). Prospectus for the Development of a Linear Algebra Library for High
Performance Computers, Technical Memorandum 97, Argonne National Laboratory.

3. J.J. DONGARRA, J.R. BUNCH, C.B. MOLER and G.W. STEWART (1979). Linpack User's Guide,
SIAM, Philadelphia, PA.

4. J.J. DONGARRA, J.J. Du CROZ, I.S. DUFF and s. HAMMERLING (May 1988). A Set of Level 3
Basic Linear Algebra Subprograms, Technical Memorandum 88 (Revision 1), Argonne National
Laboratory.

5. J.J. DONGARRA, J.J. Du CROZ, s. fiAMMERLING and R.J. HANSON (March 1988). An Extended
Set of FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathematical
Software, Vol. 14, No. 2, 1-17.

6. R.M. DUDASH, J.L. FREDIN and O.G. JOHNSON (1987). Benchmark of the Extended Basic Linear
Algebra Subprograms on the NEC SX-2 Supercomputer, Lecture Notes in Computer Science, 297,
Springer-Verlag, Berlin.

7. B.S. GARBOW, J.M. BOYLE, J.J. DONGARRA and C.B. MOLER (1977). Matrix Eigensystem Rou
tines - EISPACK GUide Extension, Lecture Notes in Computer Science, 51, Springer-Verlag, Ber
lin.

8. C.L. LAWSON, R.J. HANSON, D.R. KINCAID and F.T. KROGH (1979). Basic Linear Algebra Sub
programs for FORTRAN usage, ACM Transactions on Mathematica/ Software, 5, 308-323.

9. W.M. LIOEN, M. LOUTER-NOOL and H.J.J. TE RIELE (1987). Optimization of the real Level 2
BLAS on the CYBER 205, In: Algorithms and Applications cm Vector and Parallel Computers,
H.J.J. te Riele, Th. J. Dekker and H.A. van der Vorst (eds.), North-Holland, Amsterdam-New
York-Oxford, 199-212.

10. M. LoUTER-NooL (1987). Basic linear algebra subprograms (BLAS) on the CDC CYBER 205,
Parallel Computing, 4, 143-165.

11. M. LOUTER-NOOL (June 1988). ALGORITHM 663, Translation of Algorithm 539: Basic Linear
Algebra Subprograms for FORTRAN Usage in FORTRAN 200 for the CDC CYBER 205, ACM
Transactions on Mathematical Software, Vol. 14, No. 2, 177-195.

12. M. LOUTER-NOOL (1989). UNPACK Routines Based on Level 2 BLAS, The Journal of Super
computing, 3, 331-349.

13. B.T. SMITH, J.M. BOYLE, J.J. DoNGARRA, B.S. GARBOW, Y. IKEBE, V.C. KLEMA and C.B. MOLER
(1976). Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer Science, 6,
2nd edition, Springer-V erlag, Berlin.

14. D.T. WINTER. Porting large packages of numerical software (to appear).

10

Appendix A. The LAPACK subroutine scheme

In this Appendix, we provide the subroutine scheme for LAPACK as described in Anderson and
Dongarra[l] and indicate by means of a table which subroutines are included in this initial release.

Each routine name in LAPACK is a coded specification of the computation done by the subrou
tine. All names consist of six characters in the form TXXYYY. The first letter, T, indicates the matrix
data type as follows :

S - REAL

D - DOUBLE PRECISION

C - COMPLEX

z - COMPLEX* 16 or DOUBLE COMPLEX

The next two letters, xx, indicate the type of matrix. In this LAPACK release, subroutines covering
only a subset of the total collection of matrix types to be provided in LAPACK have been included.
Most of these two-letter codes apply to both real and complex routines; a few apply specifically to
one or the other, as indicated below :

GE - general (i.e., unsymmetric, in some cases rectangular)
GB - general band
PO - symmetric or Hermitian positive definite
PP - symmetric or Hermitian positive definite, packed storage
PB - symmetric or Hermitian positive definite band
SY - symmetric (i.e., indefinite)
SP - symmetric, packed storage
SB - symmetric band
HE - (complex) Hermitian (i.e., indefinite)
HP - (complex) Hermitian, packed storage
HB - (complex) Hermitian band
OR - (real) orthogonal
UN - (complex) unitary
TR - triangular
TP - triangular, packed storage

The last three characters, YYY, indicate the computation done by a particular subroutine. Included in
this release are subroutines to perform the following computations :

TRF - perform a triangular factorization (LU, Cholesky, etc.)
TF2 - unblocked triangular factorization, if TRF is blocked
TRS - solve systems of linear equations (based on triangular factorization)
TRI - compute inverse (based on. triangular factorization)
TI2 - unblocked computation of inverse, if TRI is blocked
CON - estimate condition number
QRF - perform the QR factorization without pivoting
QR2 - unblocked version of QRF

QRS - solve linear least squares problems (based on QR factorization)
GNC - generate a real orthogonal or complex unitary matrix as a product of Householder

matrices, where each Householder vector is stored in a column of the matrix
GC2 - unblocked version of GNC

MLC - multiply a matrix by a real orthogonal or complex unitary matrix by applying a

11

product of Householder matrices, where each Householder vector is stored in a
column of the matrix

MC2 - unblocked version of MLC

Given the above definitions, the following table indicates the LAPACK subroutines provided in this
release:

HE HP HB UN

GE GB PO pp PB SY SP SB OR TR TP

TRF x x x x x x x x
TF2 x x x
TRS x x x x x x x x
TRI x x x x x x x
TI2 x
CON x x x x x x x x
QRF /X

QR2 x
QRS x
GNC x
GC2 x
MLC x
MC2 x

12

Appendix B. Timing tests on various types

In this Appendix we explain why the timing tests were done only for part of the types available on
the different machines.

Alliant FX/ 4:
The timings for complex have not been completed. After more than 40 hours the machine
went down. No significant differences between single and double precision complex
appeared. The run for double precision stopped when the performance for general band
matrices is checked. A restart with only LDA = 512 delivered no more problems.

CDC CYBER 205: On this machines, timings were only carried out for (64-bit) single precision and
only in part for complex and double precision. For single precision only the case LOA= 512
was done. The reason is that complex and double precision does not vectorize and that
there is no t;mng difference between LDA=512 and LDA=513.

CDC CYBER 995: Also on this machine complex and double precision do not vectorize, so only tim
ing data for (64-bit) single precision has been obtained.

NEC SX2: On this machine single and double precision real and complex do vectorize, but quadruple
precision does not, so no timing was done for the latter case.

~

IBM 3090: The situation is similar to the NEC with respect to vectorization, but there are severe
problems with complex arithmetic. The test programs that check for correct installation gave
many errors, and therefore no attempt was made to do timings. The double precision tim
ings were only carried out for matrices of order up to 256 because of budget constraints.

13

FIGURES 1 - 72

Graphs of the LAPACK Timing Results.

/

14

10

25

20

15

10

5

0

20

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64
" •••• ~ •••• w . •.• ~ 32
Q. · · ·D· · · ·D· · · ·G 8
A····A····A····A 2

3264 128 256 512

Fig.la, FX4: Timing data for DGETRF

3264 128 256- 512

Fig.lb, 995 : Timing data for SGETRF

3264 128 256 512

Fig.le, IBM: Timing data for DGETRF.

,, '' ,liQ

3264 128 256 512

Fig.Id, FX4: Timing data for ZGETRF

3264 128 256 512

Fig. le, 205 : Timing data for SGETRF

80

60

40

20

0

3264 128 256 512

Fig.If, 205.opt : Timing data for SGETRF

3264 128 256 512

Fig.lg, NEC: Timing data for DGETRF

3264 128 256 512

Fig. lh, NEC : Timing data for ZGETRF

RHS vectors :
A A A A N

10 lh N

5

25

20

15

10

5

0

25

20

15

10

5

0

3264 128

2
1

256 512

Fig.2a, FX4: Timing data for DGETRS

/

p f :f

3264 128 256 512

Fig.2b, 995 : Timing data for SGETRS

~r t

3264 128 256 512

Fig.2c, IBM: Timing data for DGETRS

3264 128 256 512

Fig.2d, FX4 : Timing data for ZGETRS

15

3264 128 256 512

Fig.2e, 205 : Timing data for SGETRS

3264 128 256 512

Fig.2f, 205.opt : Timing data for SGETRS

3264 128 256 512

Fig.2g, NEC: Timing data for DGETRS

3264 128 256 512

Fig.2h, NEC : Timing data for ZGETRS

16

10

5

25

20

15

10

5

0

Blocksizes :
I I I N
X· · · ·X· · • ·X· · · ·X 64

G····G····G····G
A··· ·A··· ·A··· ·A

32
8
2

. ,Qi!•''·'-'·'.'.'.'::!::::':':':':':':':':':':':':':::::~
,.

3264 128 256 512

Fig.3a, FX4: Timing data for DGETRI

3264 128 256~ 512

Fig.3b, 995 : Timing data for SGETRI

3264 128 256 512

Fig.Jc, IBM: Timing data for DGETRI .

3264 128 256 512
Fig.3d, FX4 : Timing data for ZGETRI

80

60

3264 128 256 512

Fig.3e, 205 : Timing data for SGETRI

80

3264 128 256 512
Fig.3f, 205.opt: Timing data for SGETRI

300

200

100

0

3264 128 256 512
Fig.Jg, NEC : Timing data for DGETRI

3264 128 256 512
Fig.3h, NEC : Timing data for ZGETRI

17

Bandwidths : 80)I H II)(127
10 63

I 31
60

5

~
40 ; ;
~ 20

0 0

3264 128 256 512 3264 128 256 512

Fig.4a, FX4 : Timing data for DGBTRF Fig.4e, 205 : Timing data for SGBTRF

25
80

20

60
15

/

10 40

5 20

0 0

3264 128 256 512 3264 128 256 512

Fig.4b, 995 : Timing data for SGBTRF Fig.4f, 205.opt : Timing data for SGBTRF

25

20 300

15

~
200

10

~
l<

100
5

~
0 0

3264 128 256 512 3264 128 256 512

Fig.4c, IBM : Timing data for DGBTRF Fig.4g, NEC : Timing data for DGBTRF

10 300

r + ----- ==:ii 200

~ 5 l<

~ 100

0 0

3264 128 256 512 3264 128 256 512

Fig.4d, FX4 : Timing data for ZGBTRF Fig.4h, NEC: Timing data for ZGBTRF

18

Bandwidths :
)()()()(127 80-

10 63
t---t---tl---11 31

60-

s 40-

20-

.I I
0

I I I I I
3264 128 2S6 Sl2 3264 128 2S6 Sl2

Fig.Sa, FX4: Timing data for DGBTRS Fig.Se, 20S : Timing data for SGBTRS

20

IS
/

10

s

3264 128 2S& Sl2 3264 128 2S6 Sl2

Fig.Sb, 99S : Timing data for SGBTRS Fig.Sf, 20S.opt : Timing data for SGBTRS

2S

20- 300-

IS-
200-

10-

~ 100-
S-

I

0 0 I I I I I I I I I I
3264 128 2S6 Sl2 3264 128 256 512

Fig.Sc, IBM: Timing data for DGBTRS. Fig.Sg, NEC: Timing data for DGBTRS

10 300

200

~ 100

5

0

3264 128 256 512 3264 128 256 512

Fig.5d, FX4 : Timing data for ZGBTRS Fig.Sb, NEC : Timing data for ZGBTRS

10

5

Blocksizes :
I I I N
X· · · ·X· · • ·X· · • ·X 64

Q •.•. Q ..•• Q •••• Q

A··· ·A··· ·A··· ·A

32
8

'~· ..• ~·. •·•···•···•. :~ · : ,, '.: ':: '':
0....a.-'I'--.-~-.-~~~...-~~~~~~--,,.........

3264 128 256 512

Fig.6a, FX4 : Timing data for DPOTRF, Upper

20

15 /

10

3264 128 256 512
Fig.6b, 995 : Timing data for SPOTRF, Upper

20

15

10
.. Q·····················Gl

5
:'..«.\::~~;~;;;;; ;: : ::¥;111t1 t: ::::: ! tl tl 1!1$

3264 128 256 512

Fig.6c, IBM : Timing data for DPOTRF, Upper·

10

5
•j"l"l'l"l'I ... 't t I 1(1

···\illfillllt(•'•'•'•

·. ll!J:;::]iii·'·'·'·"·····

3264 128 256 512

Fig.6d, FX4 : Timing data for ZPOTRF, Upper

80

60

40

20 ;;iiiliiiiiilJii••············;;;;;;lli

3264 128 256 512

Fig.6e, 205 : Timing data for SPOTRF, Upper

80

60

40

20 iiiiiiili~;iiiii;;;;;;;;ii;;;;;~

3264 128 256 512
Fig.6f, 205.opt: Timing data for SPOTRF, Upper

3264 128 256 512

Fig.6g, NEC: Timing data for DPOTRF, Upper

300

200

100
;;;;;;;;;;ilijiiiiiii;;;;;;;;;;;;1;1i!i

3264 128 256 512

Fig.6h, NEC: Timing data for ZPOTRF, Upper

20

10

Blocksizes :
I I I
X· · .. x ... ·X· ·

80

60

5
•': :: : : : : : :: : :x

.-:::~::::: ... ··
. " .. ;.:·' ,:: ;. ..•• .[:J

............ ·A

3264 128 256 512 3264 128 256 512
Fig.7a, FX4: Timing data for DPOTRF, Lower Fig.7e, 205 : Timing data for SPOTRF, Lower

80

60

3264 128 256~ 512 3264 128 256 512
Fig.7b, 995 : Timing data for SPOTRF, Lower Fig.7f, 205.opt : Timing data for SPOTRF, Lower

3264 128 256 512 3264 128 256 512
Fig.7c, IBM : Timing data for DPOTRF, Lo"'.'-'r Fig.7g, NEC: Timing data for DPOTRF, Lower

10

5

3264 128 256 512 3264 128 256 512
Fig.7d, FX4: Timing data for ZPOTRF, Lower Fig.7h, NEC: Timing data for ZPOTRF, Lower

10

5

20

15

10

5

25

20

15

10

5

0

RHS vectors :
.!i .!i A A N
X---*-*---4<1/z N

2
1

3264 12S 256 512

Fig.Sa, FX4 : Timing data for DPOTRS, Upper

/

3264 128 256 512

Fig.Sb, 995 : Timing data for SPOTRS, Upper

3264 128 256 512

Fig.Sc, IBM : Timing data for DPOTRS, Upper.

3264 128 256 512

Fig.8d, FX4 : Timing data for ZPOTRS, Upper

21

3264 128 256 512

Fig.Se, 205 : Timing data for SPOTRS, Upper

3264 12S 256 512

Fig.Sf, 205.opt : Timing data for SPOTRS, Upper

300

200

100

0

3264 128 256 512

Fig.8g, NEC : Timing data for DPOTRS, Upper

3264 12S 256 512

Fig.Sb, NEC : Timing data for ZPOTRS, Upper

22

RHS vectors :
A 6 6 6 N

10)(H H l<\12 N

5

20

15

10

5

25

20

15

10

5

0

2
1---+-----l1---1I I

3264 128 256 512

Fig.9a, FX4 : Timing data for DPOTRS, Lower

/

3264 128 256~ 512

Fig.9b, 995 : Timing data for SPOTRS, Lower

3264 128 256 512

Fig.9c, IBM : Timing data for DPOTRS, Lower

3264 128 256 512

Fig.9d, FX4 : Timing data for ZPOTRS, Lower

3264 128 256 512

Fig.9e, 205 : Timing data for SPOTRS, Lower

80-

60-

40-

20-

.L • .I .I .

0
I I I I I

3264 128 256 512

Fig.9f, 205.opt: Timing data for SPOTRS, Lower

300

200

100

0

3264 128 256 512

Fig.9g, NEC: Timing data for DPOTRS, Lower

3264 128 256 512

Fig.9h, NEC : Timing data for ZPOTRS, Lower

10

5

20

10

5

Blocksizes :
I I I N
x x x x 64

G· ···G· · ··G····G
A··· ·A··· ·A··· ·A

32
8
2

' : ,:\ill: ' '•,'<C ,.,. I il!i I ! !l ! l ! ! ! ! ' ! ! ! ! ! ! '. '. '. '.lijl

3264 128 256 512

Fig.lOa, FX4: Timing data for DPOTRI, Upper

3264 128 256 512

Fig. lOb, 995 : Timing data for SPOTRI, Upper

. .Q

3264 128 256 512

Fig.lOc, IBM: Timing data for DPOTRI, Upper

'····;;.
0 0 i I ~ ~ :. :, :. ~.:' :.: ,'. ' .'

3264 128 256 512

Fig. lOd, FX4 : Timing data for ZPOTRI, Upper

23

3264 128 256 512

Fig.lOe, 205 : Timing data for SPOTRI, Upper

3264 128 256 512

Fig.lOf, 205.opt : Timing data for SPOTRI, Upper

3264 128 256 512

Fig.tog, NEC: Timing data for DPOTRI, Upper

3264 128 256 512

Fig. !Oh, NEC : Timing data for ZPOTRI, Upper

24

10

5

20

15

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

GJ •••• GJ •••• GJ •••• GJ
A··· ·A··· ·A··· ·A

3264 128

32
8
2

256 512

Fig.lla, FX4: Timing data for DPOTRI, Lower

/

.; ;;·:·:·:·:·:·:·'.:r:::::::::::::::::::is
m·~··········A··.···················l ~,,.·A

o~~~~~~~~~~~~~~~~

3264 128 256- 512

Fig.I lb, 995 : Timing data for SPOTRI, Lower

20

15

10

... "t: : : : : : : : : :~ i : : : : i : : : : :: : : :: i i i ;;~
~-·· !..

5

3264 128 256 512

Fig.I le, IBM : Timing data for DPOTRI, Lo~er

10

5
•••• ••• 11111¥

3264 128 256 512

Fig.lld, FX4: Timing data for ZPOTRI, Lower

80

60

40

20

0

80

60

40

20

.. ::

3264 128

........... x
•• •• •••• •• •••••• • •••• 8

,,.-:~:::· .. .

256 512

Fig.I le, 205 : Timing data for SPOTRI, Lower

........... x

3264 128 256 512

Fig.llf, 205.opt: Timing data for SPOTRI, Lower

300

200

100

... : :: ::::x: ::: :::::: :: ::: :: ::: ::

3264 128 256 512

Fig.I lg, NEC : Timing data for DPOTRI, Lower

300

200

3264 128 256 512

Fig. l lh, NEC : Timing data for ZPOTRI, Lower

25

Storages:
Upper 80-{!,. .!. .!. 6

10 D D D D Lower

60-

5 40-

20-

0 0 - -
I I I I I

3264 128 256 512 3264 128 256 512

Fig.12a, FX4 : Timing data for DPPTRF Fig.12e, 205 : Timing data for SPPTRF

20

15
/

10

3264 128 256 ~ 512 3264 128 256 512
Fig.12b, 995 : Timing data for SPPTRF Fig.12f, 205.opt : Timing data for SPPTRF

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.12c, IBM : Timing data for DPPTRF Fig.12g, NEC: Timing data for DPPTRF

3264 128 256 512 3264 128 256 512
Fig.12d, FX4 : Timing data for ZPPTRF Fig.12h, NEC : Timing data for ZPPTRF

26

10

25

20

15

10

5

0

RHS vectors :
b. .!a .!a e. N
><----*-"*-~'n N

2
1

3264 128 256 512

Fig.Ba, FX4: Timing data for DPPTR.S, Upper

/

r· *

3264 128 256- 512

Fig. Bb, 995 : Timing data for SPPTRS, Upper

3264 128 256 512

Fig.Be, IBM: Timing data for DPPTRS, Upper

3264 128 256 512

Fig. Bd, FX4 : Timing data for ZPPTR.S, Upper

3264 128 256 512

Fig. Be, 205 : Timing data for SPPTRS, Upper

3264 128 256 512

Fig.Bf, 205.opt : Timing data for SPPTRS, Upper

3264 128 256 512

Fig.13g, NEC: Timing data for DPPTRS, Upper

3264 128 256 512

Fig.13h, NEC : Timing data for ZPPTRS, Upper

RHS vectors :
.!. A A A N

10)()()(l<\.2 N

5

20

15

10

5

10

5

3264 128

2
l

256 512

Fig.14a, FX4: Timing data for DPPTRS, Lower

/

3264 128 256 512

Fig.14b, 995 : Timing data for SPPTRS, Lower

3264 128 256 512

Fig.14c, IBM: Timing data for DPPTRS, Lower·

3264 128 256 512

Fig.14d, FX4: Timing data for ZPPTRS, Lower

27

3264 128 256 512

Fig.14e, 205 : Timing data for SPPTRS, Lower

3264 128 256 512

Fig.14f, 205.opt: Timing data for SPPTRS, Lower

3264 128 256 512

Fig.14g, NEC: Timing data for DPPTRS, Lower

3264 128 256 512

Fig.14h, NEC : Timing data for ZPPTRS, Lower

28

10

Storages:
4 A 6 A Upper
o o o oLower

80-

60-

5 40-

20-

I
0

I I I I I
3264 128 256 512 3264 128 256 512

Fig.15a, FX4: Timing data for DPPTRI Fig.15e, 205 : Timing data for SPPTRI

20

15 /

3264 128 512
3264 128 256 512

Fig.15b, 995 : Timing data for SPPTRI
Fig.15f, 205.opt : Timing data for SPPTRI

3264 128 256 512
3264 128 256 512 Fig.15g, NEC : Timing data for DPPTRI
Fig.15c, IBM: Timing data for DPPTRI

10

5

3264 128 256 512
3264 128 256 512 Fig.15b, NEC : Timing data for ZPPTRI
Fig.15d, FX4: Timing data for ZPPTRI

10

5

Blocksizes :
I I I N
x x x x 64

Q Q Q Q

A··· ·A··· ·A··· ·A

3264 128

32
8
2

256 512
Fig.16a, FX4: Timing data for DPBTRF, Upper, K-31

20

15
/

10

5

3264 128 256 512

29

3264 128 256 512
Fig.16e, 205: Timing data for SPBTRF, Upper, K-31

3264 128 256 512
Fig.16b, 995: Timing data for SPBTRF, Upper, K=31 Fig.16f, 205.opl: Timing data for SPBTRF, Upper, K=31

20 300-

15
200-

10

100-
5

~:!!1®1111111111~
0

3264 128 256 512

-'- I I

l I I
3264 128

I

I
256

I

1
512

Fig.16c, IBM: Timing data for DPBTRF, Upper, K=31 Fig.16g, NEC: Timing data for DPBTRF, Upper, K=31

10 300

200
5

100

o--'-'F-H~·~'-'''~'®'-'"-'''-'"~~,_,,,_,,,_,,,_,,,_,,,_,,,~,,~~

3264 128 256 512 3264 128 256 512
Fig.16d, FX4 : Timing data for ZPBTRF, Upper, K= 31 Fig.16h, NEC : Timing data for ZPBTRF, Upper, K= 31

30

10

5

Blocksizes :
I I I N
X· • · ·X· · · ·X· · • •X 64

G····G····G····G
A··· ·A··· ·A··· ·A

3264 128

32
8
2

256 512 3264 128 256 512

Fig.17a, FX4 : Timing data for DPBTRF, Upper, K=-63 Fig.17e, 205 : Timing data for SPBTRF, Upper, K=-63

25
80

20

60
15

/
10

40

s
~

20

0
.

0

3264 128 256 512 3264 128 256 512

Fig.17b, 995: Timing data for SPBTRF, Upper, K=63 Fig.17f, 205.opt: Timing data for SPBTRF, Upper, K=63

20 300

15
200

10

100

o_l_,~·m···~·=:::D::TI:·IT::·t.:TI::IT::w:::L::IT::w:::L::TI::~::W

3264 128 256 512 3264 128 256 512

Fig.17c, IBM: Timing data for DPBTRF, UpperJ K=63 Fig.17g, NEC: Timing data for DPBTRF, Upper, K=63

10 300

200

5

100

3264 128 256 512 3264 128 256 512

Fig.17d, FX4: Timing data for ZPBTRF, Upper, K=63 Fig.17h, NEC: Timing data for ZPBTRF, Upper, K=63

10

5

Blocksizes :
I I I N
x x .. ··X 00 .. x 64

Gl····Gl····Gl····Gl
4· ···A··· ·A····&

3264 128

32
8
2

256

31

512 3264 128 256 512

Fig.18a, FX4: Timing data for DPBTRF, Upper, K=-127 Fig.18e, 205 : Timing data for SPBTRF, Upper, K== 127

20

15
/

10

3264 128 256 512 3264 128 256 512

Fig.18b, 995 : Timing data for SPBTRF, Upper, K= 127 Fig.18f, 205.opt : Timing data for SPBTRF, Upper, K"" 127

20

15

3264 128 256 512 3264 128 256 512
Fig.18c, IBM: Timing data for DPBTRF, Upper, K"" 127 Fig.18g, NEC: Timing data for DPBTRF, Upper, K 127

10

5

3264 128 256 512 3264 128 256 512
Fig.18d, FX4: Timing data for ZPBTRF, Upper, K= 127 Fig.18h, NEC: Timing data for ZPBTRF, Upper, K= 127

32

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

Q .••• GJ •••• GJ •••• GJ
A··· ·A··· ·A··· ·A

3264 128

32
8
2

·····················

256 512 3264 128 256 512

Fig.19a, FX4: Timing data for DPBTRF, Upper, K=255 Fig.19e, 205 : Timing data for SPBTRF, Upper, K==255

25
80

20-

60
15 -

/
10- 40

5-~ 20
Q
A

0
I I I I I

0

3264 128 256 512 3264 128 256 512

Fig.19b, 995 : Timing data for SPBTRF, Upper, K==255 Fig.19f, 205.opt: Timing data for SPBTRF, Upper, K==255

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512

Fig.19c, IBM: Timing data for DPBTRF, Upper,, K=255 Fig.19g, NEC: Timing data for DPBTRF, Upper, K-255

10

5

.... ··· ·····················Ji:
... Q··········Gl·····················Gl

:. :: ... 4 ... ·······A···················· ·A
o~__.,._~~~~~~~~~~~~~~

3264 128 256 512 3264 128 256 512

Fig.19d, FX4: Timing data for ZPBTRF, Upper, K==255 Fig.19h, NEC: Timing data for ZPBTRF, Upper, K=255

10

5

Blocksizes :
I I I N
x x x x 64

GJ •••. GJ ... ·Gl GJ
a·.· ·'1· ···a··· ·a

3264 128

32
8
2

256

33

512 3264 128 256 512

Fig.20a, FX4: Timing data for DPBTRF, Upper, K=511 Fig.20e, 205: Timing data for SPBTRF, Upper, K=511

20

15
/

10

3264 128 256 512 3264 128 256 512
Fig.20b, 995: Timing data for SPBTRF, Upper, K==511 Fig.20f, 205.opt: Timing data for SPBTRF, Upper, K=511

20

15

10 .x

3264 128 256 512 3264 128 256 512
Fig.20c, IBM : Timing data for DPBTRF, Upper, K =·511 Fig.20g, NEC : Timing data for DPBTRF, Upper, K = 511

10 300

200

5

100

3264 128 256 512 3264 128 256 512
Fig.20d, FX4: Timing data for ZPBTRF, Upper, K=511 Fig.20h, NEC: Timing data for ZPBTRF, Upper, K=511

34

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

G· ···G····G· · ··G
A··· ·A··· ·A··· ·A

~I

32
8
2

llll• .@:::: :!jl::::::::: :l)j1:::::::::::::::::::: :~
0 -'-~~-~--~-------.,-!--'

3264 128 256 512

80

60

40

20

o~-"I'"·~·~·~,,~·~· ~"~'-"-'-"-·~·~·-"-'-"-'-"-'-"-'-"-'-"-'-",,.........

3264 128 256 512

Fig.21a, FX4: Timing data for DPBTRF, Lower, K""31 Fig.2le, 205: Timing data for SPBTRF, Lower, K""31

25
80

20-

60
15 -

/

10-
40

5-

~
20

0 0
I I I I I

3264 128 256~ 512 3264 128 256 512

Fig.2lb, 995 : Timing data for SPBTRF, Lower, K==31 Fig.2lf, 205.opt: Timing data for SPBTRF, Lower, K-31

20 300

15
200

10

100

3264 128 256 512 3264 128 256 512

Fig.2lc, IBM: Timing data for DPBTRF, Lower,.K=31 Fig.2lg, NEC: Timing data for DPBTRF, Lower, K=31

10 300

200

5

100

~ ~ ~ ~
o~-.--r---.-----.-------..,--'

3264 128 256 512 3264 128 256 512

Fig.2ld, FX4: Timing data for ZPBTRF, Lower, K=31 Fig.21h, NEC: Timing data for ZPBTRF, Lower, K=31

10

Blocksizes :
I I I N
x .. · ·X· · · ·X· · .. x 64

G· ·· ·G·· ··G·· ··G
A··· ·A··· ·A··· ·A

3264 128

32
8
2

256 512

Fig.22a, FX4: Timing data for DPBTRF, Lower, K=63

20

15
/

3264 128 256 512

35

80

60

40

20

.. " " .Qi!' " ' :: ' " •rill: :: : : :: : :: : : : :: : " ·~
0-'--"I'---.-~..--~~-,-~~~~~~-.--'

3264 128 256 512

Fig.22e, 205 : Timing data for SPBTRF, Lower, K==63

3264 128 256 512

Fig.22b, 995 : Timing data for SPBTRF, Lower, K""63 Fig.22f, 205.opt: Timing data for SPBTRF, Lower, K-63

20

15

~ p.:::;;-g.' ... ''' ::~

10

5

3264 128 256 512

300

200

100

:: : :: :~
o~----.-~..--~~-,-~~~~~~-.--'

3264 128 256 512

Fig.22c, IBM: Timing data for DPBTRF, Lower, K=63 Fig.22g, NEC: Timing data for DPBTRF, Lower, K=63

10 300

200

5

100

1 1 1 I 1ii1 I I I I I I I i 1lj1 i I I I I I I I I I l I I I I I I I I 1lji

. ,,,,.(\00········ ··lliil···· ,,,,,' ,,,,,,,,,, •@

3264 128 256 512 3264 128 256 512

Fig.22d, FX4: Timing data for ZPBTRF, Lower, K=63 Fig.22h, NEC: Timing data for ZPBTRF, Lower, K=63

36

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

Q ••.• Q •.•• Q .•.• Q

A•·· ·A··· ·A··· ·A

32
8
2

I I I

.;>;::::::::::~:::::::::::::::::::::~
. : ; :'Ii· b; ·A

j§i'"
11r·

0--'---.--.-~T"""""~~-.-~~~~~~-.---'

3264 128 256 512 3264 128 256 512

Fig.23a, FX4: Timing data for DPBTRF, Lower, K= 127 Fig.23e, 205 : Timing data for SPBTRF, Lower, K= 127

20

3264 128 256 512 3264 128 256 512

Fig.23b, 995 : Timing data for SPBTRF, Lower, K== 127 Fig.23f, 205.opt : Timing data for SPBTRF, Lower, K= 127

300

200

100

,,::;~:::::;;;;;~;;:::::::::::::::::::~

3264 128 256 512 3264 128 256 512

Fig.23c, IBM: Timing data for DPBTRF, Lower,, K"" 127 Fig.23g, NEC : Timing data for DPBTRF, Lower, K-127

10 300

200
5

100
'·~::: ~: ~ J f I 1i1:; I I I JI I I I I I I I I I I I I 1lj

: : :- .

3264 128 256 512 3264 128 256 512
Fig.23d, FX4: Timing data for ZPBTRF, Lower, K= 127 Fig.23h, NEC: Timing data for ZPBTRF, Lower, K= 127

10

Blocksizes :
I I I N
x x. · · ·X· · · ·X 64

GJ ..•. GJ ••.. GJ •.. ·Gl
A··· ·A··· ·A··· ·A

3264 128

32
8
2

256

37

512 3264 128 256 512
Fig24a, FX4: Timing data for DPBTRF, Lower, K=255 Fig.24e, 205 : Timing data for SPBTRF, Lower, K=255

25

80
20

60
15

10 .:=~;:::·>:·"
40

20 5 .~:'.·'

0
ij!I"

0

3264 128 256 512 3264 128 256 512
Fig.24b, 995 : Timing data for SPBTRF, Lower, K""'255 Fig.24f, 205.opt: Timing data for SPBTRF, Lower, K=255

25

20 300
.GJ

15
200

10GJ

... 100
:: ',,.' ••..•• •l!i

5 ..
::\j,·''''

0 0

3264 128 256 512 3264 128 256 512
Fig.24c, IBM: Timing data for DPBTRF, Lower, K=255 Fig.24g, NEC: Timing data for DPBTRF, Lower, K=255

10 300

200

5
1·····~·::::::· ··:·1.1.::::: ~:::·::::::::::::::'''Ill

3264 128 256 512 3264 128 256 512
Fig.24d, FX4: Timing data for ZPBTRF, Lower, K=255 Fig.24h, NEC: Timing data for ZPBTRF, Lower, K=255

38

10

Blocksizes :
I I I N
x .. · ·X .. · ·X· .. ·X 64

GJ •••• GJ •.•• GJ ••• ·Gl
A··· ·A··· ·A··· ·A

3264 128

32
8
2

256 512 3264 128 256 512

Fig.25a, FX4 : Timing data for DPBTRF, Lower, K ... 511 Fig25e, 205 : Timing data for SPBTRF, Lower, K .. 511

80
20

3264 128 256 512 3264 128 256 512

Fig.25b, 995 : Timing data for SPBTRF, Lower, K==511 Fig.25f, 205.opt: Timing data for SPBTRF, Lower, K==511

20

3264 128 256 512 3264 128 256 512

Fig.25c, IBM: Timing data for DPBTRF, Lower\ K==511 Fig.25g, NEC: Timing data for DPBTRF, Lower, K==511

10 300

200

100

3264 128 256 512 3264 128 256 512
Fig.25d, FX4 : Timing data for ZPBTRF, Lower, K = 511 Fig.25h, NEC : Timing data for ZPBTRF, Lower, K = 511

10

25

20

15

10

5

0

Bandwidths :
>r----'*-~ 511
-~~~~255
D D D
A A A
I I I

D 127
A 63
I 31

3264 128 256 512

Fig.26a, FX4 : Timing data for DPBTRS, Upper

/

3264 128 256 512
Fig.26b, 995 : Timing data for SPBTRS, Upper

3264 128 256 512
Fig.26c, IBM : Timing data for DPBTRS, Upper .

3264 128 256 512

Fig.26d, FX4 : Timing data for ZPBTRS, Upper

39

80-

60-

40-

20-

0
I I I I I

3264 128 256 512

Fig.26e, 205 : Timing data for SPBTRS, Upper

80

60

40

20

0

3264 128 256 512
Fig.26f, 205.opt : Timing data for SPBTRS, Upper

3264 128 256 512
Fig.26g, NEC : Timing data for DPBTRS, Upper

300

200

~ ~ o~-.-.----.,-----.--------.--'

100

3264 128 256 512

Fig.26h, NEC : Timing data for ZPBTRS, Upper

40

Bandwidths :
)(II u "511 80-

10 255
(3 E3 E3 EJ 127
A " " 6 63
I I I I 31

60-

5
40-

1 20-
'"' -:-

0
I I I I I

3264 128 256 512 3264 128 256 512

Fig.27a, FX4 : Timing data for DPBTRS, Lower Fig.27e, 205 : Timing data for SPBTRS, Lower

20

15
/

3264 128 25& 512 3264 128 256 512

Fig.27b, 995 : Timing data for SPBTRS, Lower Fig.27f, 205.opt : Timing data for SPBTRS, Lower

3264 128 256 512 3264 128 256 512

Fig.27c, IBM : Timing data for DPBTRS, Lo~er Fig.27g, NEC : Timing data for DPBTRS, Lower

300

3264 128 256 512 3264 128 256 512
Fig.27d, FX4 : Timing data for ZPBTRS, Lower Fig.27h, NEC : Timing data for ZPBTRS, Lower

41

10

Storages:
a a A a Upper
o o o oLower

3264 128 256 512

Fig.28e, 205 : Timing data for SSYTRF

25

80
20

60
15

10 40

5 20

0 0

3264 128 256 512 3264 128 256 512
Fig.28b, 995 : Timing data for SSYTRF Fig.28f, 205.opt : Timing data for SSYTRF

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.28c, IBM : Timing data for DSYTRF Fig.28g, NEC : Timing data for DSYTRF

10-

5-

o_J_~~ll==l:i~l:::::::=~~=====~~============l~:ILJ
I I I I I

32 64 128 256 512 3264 128 256 512
Fig.28d, FX4 : Timing data for ZSYTRF Fig.28h, NEC : Timing data for ZSYTRF

42

10

RHS vectors :
A A A A N

~---1<--1h N 2
I

3264 128 256 512

Fig.29a, FX4 : Timing data for DSYTRS, Upper

20-

15-

10-

5-

O_j_~l~l==11=====L-1~~~~--.--JI
3264 128 256 ~ 512

Fig.29b, 995 : Timing data for SSYTRS, Upper

3264 128 256 512
Fig.29c, IBM : Timing data for DSYTRS, Upp~r

10

~ lJ[

: ~;

5

3264 128 256 512
Fig.29d, FX4 : Timing data for ZSYTRS, Upper

3264 128 256 512

Fig.29e, 205 : Timing data for SSYTRS, Upper

3264 128 256 512
Fig.29f, 205.opt : Timing data for SSYTRS, Upper

3264 128 256 512

Fig.29g, NEC : Timing data for DSYTRS, Upper

300

200

100

0

3264 128 256 512
Fig.29h, NEC : Timing data for ZSYTRS, Upper

10

25

20

15

10

5

0

10

5

RHS vectors :
.i A 6 6 N ,.._ __ -><---Kh N

3264 128

2
l

256 512

Fig.30a, FX4 : Timing data for DSYTRS, Lower

/

0
3264 128 256 512

Fig.30b, 995 : Tinting data for SSYTRS, Lower

3264 128 256 512
Fig.30c, IBM : Timing data for DSYTRS, Lower-

~
*

:
3264 128 256 512

Fig.30d, FX4 : Timing data for ZSYTRS, Lower

43

3264 128 256 512

Fig.30e, 205 : Timing data for SSYTRS, Lower

3264 128 256 512
Fig.30f, 205.opt : Timing data for SSYTRS, Lower

3264 128 256 512

Fig.30g, NEC : Timing data for DSYTRS, Lower

300

200

100

0

3264 128 256 512
Fig.30h, NEC : Timing data for ZSYTRS, Lower

44

10

Storages:
& t. A a Upper
D D D D Lower

5

3264 128 256 512 3264 128 256 512
Fig.31a, FX4: Timing data for DSYTRI Fig.31e, 205 : Timing data for SSYTRI

20-

15-
/

10-

5-

0-'--,,.......,,~-..--,~~-..--,~~~~~~,.-',

3264 128 256 ~ 512 3264 128 256 512
Fig.3lb, 995 : Timing data for SSYTRI Fig.31f, 205.opt : Timing data for SSYTRI

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.3lc, IBM: Timing data for DSYTRI Fig.3lg, NEC: Timing data for DSYTRI

3264 128 256 512 3264 128 256 512
Fig.3ld, FX4: Timing data for ZSYTRI Fig.3lh, NEC: Timing data for ZSYTRI

45

Storages:
Upper 80 & .a. & A

10 0 D D 0 Lawer

60

5 40

20

0 0

3264 128 256 512 3264 128 256 512

Fig.32a, FX4 : Timing data for DSPTRF Fig.32e, 205 : Timing data for SSPTRF

25

80
20

60
15

/

10 40

~ 5 20

0 0

3264 128 256 512 3264 128 256 512

Fig.32b, 995 : Timing data for SSPTRF Fig.32f, 205.opt : Timing data for SSPTRF

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512

Fig.32c, IBM : Timing data for DSPTRF Fig.32g, NEC : Timing data for DSPTRF

3264 128 256 512 3264 128 256 512

Fig.32d, FX4 : Timing data for ZSPTRF Fig.32h, NEC : Timing data for ZSPTRF

46

10

5

RHS vectors :
A A A A N
,._____,.._..,.__--..:'I.! N

2
I

0--'--l=-+--~---.-------~I-'

3264 128 256 512
Fig.33a, FX4 : Timing data for DSPTRS, Upper

20-

15 -
/

10-

5-

0 _J_~1=t==1=~1====1L-~~~~~1,-J
3264 128 256 ~ 512

Fig.33b, 995 : Timing data for SSPTRS, Upper

3264 128 256 512
Fig.33c, IBM : Timing data for DSPTRS, Upper

10

3264 128 256 512
Fig.33d, FX4 : Timing data for ZSPTRS, Upper

3264 128 256 512
Fig.33e, 205 : Timing data for SSPTRS, Upper

3264 128 256 512
Fig.33f, 205.opt : Timing data for SSPTRS, Upper

3264 128 256 512
Fig.33g, NEC : Timing data for DSPTRS, Upper

3264 128 256 512
Fig.33h, NEC : Timing data for ZSPTRS, Upper

47

RHS vectors :
A A A A N

10 JI l(ll l(~ N

2
,_____,.____.,___,1 1

3264 128 256 512 3264 128 256 512
Fig.34a, FX4 : Timing data for DSPTRS, Lower Fig.34e, 205 : Timing data for SSPTRS, Lower

25
80

20-

60
15 - /

10- 0
40

5- 20

0
I I I I I

0

3264 128 256 512 3264 128 256 512
Fig.34b, 995 : Timing data for SSPTRS, Lower Fig.34f, 205.opt : Timing data for SSPTRS, Lower

3264 128 256 512 3264 128 256 512
Fig.34c, IBM : Timing data for DSPTRS, Lower Fig.34g, NEC : Timing data for DSPTRS, Lower

10

3264 128 256 512 3264 128 256 512
Fig.34d, FX4 : Timing data for ZSPTRS, Lower Fig.34h, NEC : Timing data for ZSPTRS, Lower

48

10

Storages:
t. A A a Upper
o o o o Lower

80

60

40

20

~!di !di b!!I

0

3264 128 256 512 3264 128 256 512

Fig.35a, FX4 : Timing data for DSPTRI Fig.35e, 205 : Timing data for SSPTRI

3264 128 256 ~ 512 3264 128 256 512
Fig.35b, 995 : Timing data for SSPTRI Fig.35f, 205.opt : Timing data for SSPTRI

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 l '.'.R 256 512
Fig.35c, IBM : Timing data for DSPTRI Fig.35g, NEC : Timing data for DSPTRI

10-

5-

O-L~~it:::!$~t::=~~:l!=====~~:l!============::!~j!_j
I I I I I

32 64 128 256 5 12 3264 128 256 512
Fig.35d, FX4 : Timing data for ZSPTRI Fig.35h, NEC : Timing data for ZSPTRI

10

5

20

Bandwidths :
-~-~~255
0 D D
A A A
I I I

3264 128

D 127
A 63
I 31

256 512

Fig.36a, FX4 : Timing data for DSBTRF, Upper

3264 128 256 512

Fig.36b, 995 : Timing data for SSBTRF, Upper

3264 128 256 512

Fig.36c, IBM : Timing data for DSBTRF, Upper

10-

5-

I I

o_L~~~i~~;;;~~~=========~~J
I I I I I

3264 128 256 512

Fig.36d, FX4 : Timing data for ZSBTRF, Upper

49

3264 128 256 512

Fig.36e, 205 : Timing data for SSBTRF, Upper

3264 128 256 512

Fig.36f, 205.opt: Timing data for SSBTRF, Upper

300

200

100

0

3264 128 256 512

Fig.36g, NEC : Timing data for DSBTRF, Upper

3264 128 256 512

Fig.36h, NEC : Timing data for ZSBTRF, Upper

50

Bandwidths : 80 255
10 G g g D 127

/!J e. e. e. 63
I I I I 31 60

5 40

p=?T : 20

0 0

3264 128 256 512 3264 128 256 512
Fig.37a, FX4 : Timing data for DSBTRF, Lower Fig.37e, 205 : Timing data for SSBTRF, Lower

3264 128 250 512 3264 128 256 512
Fig.37b, 995 : Timing data for SSBTRF, Lower Fig.37f, 205.opt : Timing data for SSBTRF, Lower

3264 128 256 512 3264 128 256 512
Fig.37c, IBM : Timing data for DSBTRF, Lower Fig.37g, NEC : Timing data for DSBTRF, Lower

10-

5-

I I

o_LJ~~ile=1~1;:;~~1~===========~,LJ
32 64 128 256 512 3264 128 256 512

Fig.37d, FX4 : Timing data for ZSBTRF, Lower Fig.37h, NEC : Timing data for ZSBTRF, Lower

51

RHS vectors :
a A A A N

10)~ H)I)<\12 N
2
1

5

32 64 128 256 512 3264 128 256 512
Fig.38a, FX4: Timing data for DSBTRS, Upper, K= 31 Fig.38e, 205 : Timing data for SSBTRS, Upper, K=31

25

80
20-

60
15 -

/

10- 40

~ 20 5-

0
I I I I I

0

3264 128 256 ~ 512 3264 128 256 512
Fig.38b, 995 : Timing data for SSBTRS, Upper, K"" 31 Fig.38f, 205.opt: Timing data for SSBTRS, Upper, K= 31

25

20 300

15
200

10

~ 100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.38c, IBM: Timing data for DSBTRS, Upper, K=dl Fig.38g, NEC: Timing data for DSBTRS, Upper, K==31

10

32 64 128 256 512 3264 128 256 512
Fig.38d, FX4 : Timing dala for ZSBTRS, Upper, K"' 31 Fig.38h, NEC: Timing data for ZSBTRS, Upper, K""31

52

10

RHS vectors :
.!. A A A N
)()E)(x\-2 N

3264 128

2
I

256 512 3264 128 256 512
Fig.39a, FX4: Timing data for DSBTRS, Upper, K=63 Fig.39e, 205 : Timing data for SSBTRS, Upper, K=63

25

80
20-

60
15 -

/

10- 0
40

5- 20

0
I I I I I 0

3264 128 256 ~ 512 3264 128 256 512
Fig.39b, 995 : Timing data for SSBTRS, Upper, K=63 Fig.39f, 205.opt: Timing data for SSBTRS, Upper, K=63

25

20 300

15

p 200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.39c, IBM: Timing data for DSBTRS, Upper, K=63 Fig.39g, NEC: Timing data for DSBTRS, Upper, K=63

10 300

5 r 200

100

~ i t
o~-.--~~~~~~~~~~~~~_,

3264 128 256 512 3264 128 256 512
Fig.39d, FX4 : Timing data for ZSBTRS, Upper, K = 63 Fig.39h, NEC : Timing data for ZSBTRS, Upper, K = 63

10

RHS vectors :
.!. A a A N
,...__,.._..,._----;<.~ N

3264 128

2
I

256

53

512 3264 128 256 512

Fig.40a, FX4: Timing data for DSBTRS, Upper, K= 127 Fig.40e, 205 : Timing data for SSBTRS, Upper, K= 127

25

80
20-

60
15- /

10- 0
40

5- 20

0
I I I I I 0

3264 128 256 512 3264 128 256 512
Fig.40b, 995 : Timing data for SSBTRS, Upper, K= 127 Fig.40f, 205.opt : Timing data for SSBTRS, Upper, K= 127

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.40c, IBM : Timing data for DSBTRS, Upper, K= 127 Fig.40g, NEC : Timing data for DSBTRS, Upper, K= 127

10 300

200

100

3264 128 256 512 3264 128 256 512
Fig.40d, FX4: Timing data for ZSBTRS, Upper, K= 127 Fig.40h, NEC: Timing data for ZSBTRS, Upper, K= 127

54

10

RHS vectors :
A 6 6 A N
-"---*"""~'h N

2
1

3264 128 256 512 3264 128 256 512
Fig.41a, FX4: Timing data for DSBTRS, Upper, K=255 Fig.41e, 205 : Timing data for SSBTRS, Upper, K=255

25

80
20-

60
15-

/

10-

~
40

5- 20

0
I I I I I

0

3264 128 256~ 512 3264 128 256 512
Fig.4lb, 995 : Timing data for SSBTRS, Upper, K==255 Fig.4lf, 205.opt: Timing data for SSBTRS, Upper, K-255

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.41c, IBM: Timing data for DSBTRS, Upper, K=255 Fig.4lg, NEC: Timing data for DSBTRS, Upper, K=255

10 300

200

100

3264 128 256 512 3264 128 256 512
Fig.41d, FX4: Timing data for ZSBTRS, Upper, K=255 Fig.4lh, NEC: Timing data for ZSBTRS, Upper, K=255

10

5

RHS vectors :
A A A &!. N ,.___..._..,.._-><'h N

3264 128

2
I

256

55

512 3264 128 256 512
Fig.42a, FX4 : Timing data for DSBTRS, Lower, K = 31 Fig.42e, 205 : Timing data for SSBTRS, Lower, K = 31

25

80
20-

60
15 -

/

10- 40

~ 20 5-

0
I I I I I

0

3264 128 256 512 3264 128 256 512
Fig.42b, 995: Timing data for SSBTRS, Lower, K=31 Fig.42f, 205.opt: Timing data for SSBTRS, Lower, K=31

25

20 300

15
200

10

~ 100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.42c, IBM: Timing data for DSBTRS, Lower, K ... 31 Fig.42g, NEC: Timing data for DSBTRS, Lower, K ... 31

10 300

200

5

100

~-4---j --t------1

0-'--..-...,.--..-----.-------~--'

3264 128 256 512 3264 128 256 512
Fig.42d, FX4 : Timing data for ZSBTRS, Lower, K = 31 Fig.42h, NEC: Timing data for ZSBTRS, Lower, K=3l

56

10

RHS vectors :
A A A A N
~--"*"---KVz N

2
1

3264 128 256 512 3264 128 256 512
Fig.43a, FX4: Timing data for DSBTRS, Lower, K=63 Fig.43e, 205 : Timing data for SSBTRS, Lower, K=63

25
80

20-

60
15 -

/
10-

~
40

5- 20

0
I I I I I

0

3264 128 256 ~ 512 3264 128 256 512
Fig.43b, 995 : Timing data for SSBTRS, Lower, K=63 Fig.43f, 205.opt: Timing data for SSBTRS, Lower, K=63

25

20- 300

15 -

p 200

10-

100
5-

0 I I I I I
0

3264 128 256 512 3264 128 256 512
Fig.43c, IBM: Timing data for DSBTRS, Lower, !}=63 Fig.43g, NEC: Timing data for DSBTRS, Lower, K=63

10 300

200

100

3264 128 256 512 3264 128 256 512
Fig.43d, FX4: Timing data for ZSBTRS, Lower, K=63 Fig.43h, NEC : Timing data for ZSBTRS, Lower, K = 63

10

RHS vectors :
Ii A A A N
)~ H H lC\.i N

3264 128

2
1

256

57

512 3264 128 256 512

Fig.44a, FX4: Timing data for DSBTRS, Lower, K== 127 Fig.44e, 205 : Timing data for SSBTRS, Lower, K== 127

25
80

20-

60
15 - /

10-

0
40

5- 20

0
I I I I I

0

3264 128 256 512 3264 128 256 512
Fig.44b, 995: Timing data for SSBTRS, Lower, K== 127 Fig.44f, 205.opt: Timing data for SSBTRS, Lower, K ... 127

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.44c, IBM: Timing data for DSBTRS, Lower, K== 127 Fig.44g, NEC: Timing data for DSBTRS, Lower, Kmo 127

10 300

~
200

5 ii!

~~
100

0 0

3264 128 256 512 3264 128 256 512
Fig.44d, FX4: Timing data for ZSBTRS, Lower, K= 127 Fig.44h, NEC: Timing data for ZSBTRS, Lower, K= 127

58

10

RHS vectors :
.!. 6 6 A N
lf-----~~'h N

2
l

3264 128 256 512 3264 128 256 512
Fig.45a, FX4 : Timing data for DSBTRS, Lower, K = 255 Fig.45e, 205 : Timing data for SSBTRS, Lower, K = 255

25

80
20-

60
15 -

/

10-

~
40

5- 20

0
I I I I I 0

3264 128 256~ 512 3264 128 256 512
Fig.45b, 995 : Timing data for SSBTRS, Lower, K=255 Fig.45f, 205.opt: Timing data for SSBTRS, Lower, K=255

25

20 300

15
200

10

100
5

0 0

3264 128 256 512 3264 128 256 512
Fig.45c, IBM: Timing data for DSBTRS, Lower, K=255 Fig.45g, NEC: Timing data for DSBTRS, Lower, K=255

10 300

200

100

3264 128 256 512 3264 128 256 512
Fig.45d, FX4: Timing data for ZSBTRS, Lower, K=255 Fig.45h, NEC: Timing data for ZSBTRS, Lower, K=255

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

D····G·· ··G·· ··G
I>·. ··I>··. ·I>· .. ·I>

3264 128

32
8
2

256

............ ··I>

512

Fig.46a, FX4 : Timing data for DGEQRF, N = l "M/3

20

15
/

3264 128 256 ~ 512

Fig.46b, 995 : Timing data for SGEQRF, N =I *M/3

20

15

10
)(. ... : ..

5 /it<:: :\,ii:::':::,:~;
~·

3264 128 256 512

Fig.46c, IBM: Timing data for DGEQRF, N= l*M/3

10

... · ~·.::: :: : ;: :: : : :: :: : : :~
':.>15; ;:,:,:,::::::)JS;.''' "'

5

3264 128 256 512

59

80

3264 128 256 512

Fig.46e, 205 : Timing data for SGEQRF, N = l "'M/3

80

60

3264 128 256

:=·
::·

.;· .X

512

Fig.46f, 205.opt: Timing data for SGEQRF, N "' l*M/3

300

200

100
Jl!I°'.:.::

..::.:::x:-··
.ii:IJ:'·'·::.".

,,11'

3264 128 256

.X
' . " . ..

512

Fig.46g, NEC : Timing data for DGEQRF, N ""' 1 *M/3

300

3264 128 256 512
Fig.46d, FX4: Timing data for ZGEQRF, N = l*M/3 Fig.46h, NEC: Timing data for ZGEQRF, N = l*M/3

60

10

5

Blocksizes :
I I I N
X· · · ·X· · · ·X· · · ·X 64

G· ···G····G·· ··G
a·.· ·a··· ·a·.· ·a

32
8
2
.•

::::x

..... ~:,' ... " ".Q ·G

...
(!l""f." a· · · · .. a · · · · · · · · · · · .. a

o~-.--.-~....-~~-,...~~~~~~-r-~

3264 128 256 512

Fig.47a, FX4: Timing data for DGEQRF, N=2*M/3

20-

15-
/

10-

5-

0 ~~1~1~~,~~~~1~~~~~-1,__.,

3264 128 256~ 512

Fig.47b, 995: Timing data for SGEQRF, N=2*M/3

20

15

10

5 '/'"' .. ·X·
~,:'.l3J··:::lliJ11111;;ii11iifj

3264 128 256 512

Fig.47c, IBM: Timing data for DGEQRF, N""'2~M/3

10

3264 128 256 512

80

60

40

3264 128 256 512

Fig.47e, 205 : Timing data for SGEQRF, N = 2*M/3

80

. ..
60 ": .x

'.:_,_ '

40

20

3264 128 256 512

Fig.47f, 205.opt : Timing data for SGEQRF, N = 2"'M/3

300

3264 128 256 512

Fig.47g, NEC : Timing data for DGEQRF, N "" 2*M/3

3264 128 256 512
Fig.47d, FX4 : Timing data for ZGEQRF, N = 2"'M/3 Fig.47h, NEC : Timing data for ZGEQRF, N = 2*M/3

10

5

20

15

20

15

10

5

10

5

Blocksizes :
I I I N
X· · · .x .. · ·X· .. ·X 64
oa • • • ·I!!· • • • e • • • • $ 32
G· · · .c:J. · · ·G· · · ·G 8 · · · . · '.x

·;5···!••······ >·········~
t.~·<<~A· · ········A·· ·A
3264 128 256 512

Fig.48a, FX4: Timing data for DGEQRF, N=M

/

3264 128 256 ~ 512
Fig.48b, 995 : Timing data for SGEQRF, N = M

1111·."·~;;;;i!il·.' •••.•. ·l!il

3264 128 256 512

Fig.48c, IBM: Timing data for DGEQRF, N=M

~~~l:-:-::-::-.• ~::~:~~:~.~~~~~-.:! 

~? 

3264 128 256 512 

Fig.48d, FX4 : Timing data for ZGEQRF, N = M 

61 

80 

60 

40 

20 . :.'·' .:t'::::" . ' 

3264 128 256 512 

Fig.48e, 205 : Timing data for SGEQRF, N = M 

3264 128 256 512 
Fig.48f, 205.opt: Timing data for SGEQRF, N = M 

3264 128 256 512 

Fig.48g, NEC : Timing data for DGEQRF, N = M 

3264 128 256 512 

Fig.48h, NEC : Timing data for ZGEQRF, N = M 



62 

10 

# RHS vectors : 
A a a A N 
,.___,._...,._--KY.! N 

3264 128 

2 
I 

256 512 

Fig.49a, FX4 : Timing data for DGEQRS, N = 1 *M/3 

20-

15 -
/ 

10-

~ 
o_l_J,~,r:=~,=====::::t,~~~~~-,_J, 

5-

3264 128 256 ~ 512 

Fig.49b, 995 : Timing data for SGEQRS, N = l *M/3 

3264 128 256 512 

3264 128 256 512 

Fig.49e, 205 : Timing data for SGEQRS, N = l *M/3 

3264 128 256 512 

Fig.49f, 205.opt: Timing data for SGEQRS, N = I*M/3 

3264 128 256 512 
Fig.49c, IBM: Timing data for DGEQRS, N= l*.M/3 Fig.49g, NEC: Timing data for DGEQRS, N = l*M/3 

10 300 

c== 
200 

5 

100 

0 0 

3264 128 256 512 3264 128 256 512 
Fig.49d, FX4 : Timing data for ZGEQRS, N = 1 *M/3 Fig.49h, NEC : Timing data for ZGEQRS, N = 1 "M/3 



10 

5 

# RHS vectors : 
.lo A A a N 
,.____,.._..,_--«Jh N 

2 
! 

c.J--=--=~ 
3264 128 256 512 

Fig.50a, FX4: Timing data for DGEQRS, N==2*M/3 

25 

20-

15-
/ 

10-

5-~ 
0 

I I I I I 
3264 128 256 512 

Fig.SOb, 995 : Timing data for SGEQRS, N ... 2*M/3 

3264 128 256 512 
Fig.50c, IBM: Timing data for DGEQRS, N=2*M/3 

10 

5 c::= : 
3264 128 256 512 

63 

3264 128 256 512 

Fig.50e, 205 : Timing data for SGEQRS, N = 2*M/3 

80 

60 

40 

20 

0 

3264 128 256 512 

Fig.50f, 205.opt: Timing data for SGEQRS, N "" 2*M/3 

3264 128 256 512 

Fig.50g, NEC: Timing data for DGEQRS, N = 2*M/3 

300 

200 

100 

0 

3264 128 256 512 
Fig.50d, FX4: Timing data for ZGEQRS, N = 2*M/3 Fig.50h, NEC: Timing data for ZGEQRS, N = 2*M/3 



64 

# RHS vectors : 
.i. a a A N 

10 ~ N 

25 

20 

15 

10 

5 

0 

20 

15 

10 

2 
1---1-----1--il 1 

3264 128 256 512 

Fig.Sla, FX4: Timing data for DGEQRS, N=M 

/ 

~ 
3264 128 256~ 512 

Fig.Slb, 995: Timing data for SGEQRS, N=M 

3264 128 256 512 
Fig.Slc, IBM: Timing data for DGEQRS, N=;M 

3264 128 256 512 
Fig.5ld, FX4: Timing data for ZGEQRS, N = M 

80-

60-

40-

20-

:;: 
0 

I I I I I 
3264 128 256 512 

Fig.Sle, 205 : Timing data for SGEQRS, N = M 

80 

60 

40 

20 

0 

3264 128 256 512 
Fig.Slf, 205.opt: Timing data for SGEQRS, N = M 

3264 128 256 512 
Fig.Slg, NEC: Timing data for DGEQRS, N = M 

3264 128 256 512 
Fig.5lh, NEC: Timing data for ZGEQRS, N = M 



10 

Blocksizes : 
I I I N 
X· · · ·X· · · ·X· · · ·X 64 

GJ ...• GJ •••. GJ ••. ·Gl 
A··· ·A··· ·A··· ·/J. 

3264 128 

32 
8 
2 

256 512 

Fig.52a, FX4 : Timing data for DTRTRI, Upper 

3264 128 256 ~ 512 

Fig.52b, 995 : Timing data for STRTR.I, Upper 

3264 128 256 512 

Fig.52c, IBM : Timing data for DTRTR.I, Upper 

3264 128 256 512 

Fig.52d, FX4: Timing data for ZTRTRI, Upper 

65 

3264 128 256 512 

Fig.52e, 205 : Timing data for STRTRI, Upper 

3264 128 256 512 

Fig.52f, 205.opt : Timing data for STRTRI, Upper 

3264 128 256 512 

Fig.52g, NEC: Timing data for DTRTRI, Upper 

3264 128 256 512 

Fig.52h, NEC: Timing data for ZTRTRI, Upper 



66 

10 

5 

Blocksizes : 
I I I N 
X· · · ·X .... x ... ·X 64 

D····D····D··· ·O 
II.· .. ·II.··. ·II.·. ··II. 

3264 128 

32 
8 
2 

:;:.:.:,:.:,:.:,:.:.:.:,:,:.:.:.:.:;:: 

256 512 

Fig.53a, FX4: Timing data for DTRTRI, Lower 

20-

15 -
.~ 

/ 
o~~l~l~~l~~~~,~~~~~~I~ 

10-

5-

3264 128 256 ~ 512 

Fig.53b, 995 : Timing data for STRTRI, Lower 

20-

15 -

10-

5-

0-'--,...-.,~-..--,~~-..--,~~~~~~,..--1, 

32 64 128 256 512 

Fig.53c, IBM : Timing data for DTRTRI, Low.er 

10 

5 
o ', :: : I > .' : ,: •! .: : : ; 

3264 128 256 512 

Fig.53d, FX4: Timing data for ZTRTRI, Lower 

80 

60 

40 

20 

80 

60 

40 

20 

''''' ,, •''~"''''' ,, ''''''. 
:::: : : :~ 

3264 128 256 512 

Fig.53e, 205 : Timing data for STRTRI, Lower 

". 

3264 128 256 

... "Si 
". 

512 

Fig.53f, 205.opt: Timing data for STRTRI, Lower 

3264 128 256 512 

Fig.53g, NEC: Timing data for DTRTRI, Lower 

3264 128 256 512 

Fig.53h, NEC : Timing data for ZTRTRI, Lower 



67 

10 

Storages: 
.!a & .!. A Upper 
o go oLower 

5 

3264 128 256 512 3264 128 256 512 

Fig.54a, FX4 : Timing data for DTPTRI Fig.54e, 205 : Timing data for STPTRI 

25 

80 
20-

60 
15 -

/ 

10- 40 

r 5- 20 

0 
I I I I I 0 

3264 128 256 512 3264 128 256 512 

Fig.54b, 995 : Timing data for STPTRI Fig.54f, 205.opt : Timing data for STPTRI 

25 

20 300 

15 
200 

10 

100 
5 

0 0 

3264 128 256 512 3264 128 256 512 
Fig.54c, IBM : Timing data for DTPTRI Fig.54g, NEC : Timing data for DTPTRI 

3264 128 256 512 3264 128 256 512 

Fig.54d, FX4 : Timing data for ZTPTRI Fig.54h, NEC : Timing data for ZTPTRI 



68 

10 

Storages: 
A A A A Upper 
o El El o LOwer 

5 

3264 128 256 512 3264 128 256 512 
Fig.55d, FX4 : Timing data for ZHETRF Fig.55h, NEC: Timing data for ZHETRF 

# RHS vectors : 
<!. "' "' "' N 

10 ~N 
2 

300 
I 

/ 200 

~~ 
II: 

~ 
100 

~ 0 

5 

3264 128 256 ~ 512 3264 128 256 512 
Fig.56d, FX4 : Timing data for ZHETRS, Upp-"r Fig.56h, NEC : Timing data for ZHETRS, Upper 

# RHS vectors : 
A "' "' "' N 

10 ~N 300 
2 
I 

200 

5 
* ~~ 
~ 

100 

~ 0 0 

3264 128 256 512 3264 128 256 512 
Fig.57d, FX4 : Timing data for ZHETRS, Low.er Fig.57h, NEC : Timing data for ZHETRS, Lower 

10 

Storages: 
/!; A A "' Upper 
o El o o Lower 

3264 128 256 512 3264 128 256 512 
Fig.58d, FX4 : Timing data for ZHETRI Fig.58h, NEC : Timing data for ZHETRI 



10 

5 

10 

5 

10 

5 

Storages: 
A A A A Upper 
o El El o LOwer 

3264 128 256 512 
Fig.59d, FX4 : Timing data for ZHPTRF 

# RHS vectors : 

"' A A A N 
\.2 N 

2 
l 

/ 

~~ 
ill 

~ ~ 
3264 128 256 512 

Fig.60d, FX4 : Timing data for ZHPTRS, Upper 

# RHS vectors : 
.!. A A A N 
X----*-"*-~\.2 N 

2 
l 

3264 128 256 512 
Fig.6Id, FX4: Timing data for ZHPTRS, Lower. 

Storages: 
ll A A A Upper 

10 - o o o o LOwer 

3264 128 256 512 
Fig.62d, FX4 : Timing data for ZHPTRJ 

69 

3264 128 256 512 

Fig.59h, NEC : Timing data for ZHPTRF 

300 

200 

100 

0 

3264 128 256 512 
Fig.60h, NEC : Timing data for ZHPTRS, Upper 

3264 128 256 512 
Fig.6lh, NEC: Timing data for ZHPTRS, Lower 

3264 128 256 512 

Fig.62h, NEC : Timing data for ZHPTRJ 



70 

10 

5 

Bandwidths : 
:><--~-~---!< 255 
-~------~ 127 
A A A t. 63 
I I I I 31 

3264 128 256 512 
Fig.63d, FX4 : Timing data for ZHBTRF, Upper 

Bandwidths : 
)( II H )( 255 

10 127 
A A A t. 63 
I I I I 31 

/ 

5 

3264 128 256~ 512 

Fig.64d, FX4: Timing data for ZHBTRF, Lower 

3264 128 256 512 
Fig.63h, NEC : Timing data for ZHBTRF, Upper 

3264 128 256 512 
Fig.64h, NEC : Timing data for ZHBTRF, Lower 



10 

5 

# RHS vectors : 
A A A a N 
*---~~~N 

2 
1 

3264 128 256 

71 

512 3264 128 256 512 

Fig.65d, FX4: Timing data for ZHBTRS, Upper, K=31 Fig.65h, NEC: Timing data for ZHBTRS, Upper, K""31 

10 300 

/ 200 

5 
1$ ~ 

100 

0 0 

3264 128 256 512 3264 128 256 512 

Fig.66d, FX4: Timing data for ZHBTRS, Upper, K=63 Fig.66h, NEC: Timing data for ZHBTRS, Upper, K=63 

# RHS vectors: 
A A A A N 

10 ~N 300 
2 

1--l l 

200 

5 

0: lit 

=! 
100 

0 0 

3264 128 256 512 3264 128 256 512 
Fig.67d, FX4: Timing data for ZHBTRS, Upper, K=·l27 Fig.67h, NEC: Timing data for ZHBTRS, Upper, K= 127 

10 

5 

3264 128 256 512 3264 128 256 512 
Fig.68d, FX4: Timing data for ZHBTRS, Upper, K=255 Fig.68h, NEC: Timing data for ZHBTRS, Upper, K=255 



72 

10 

5 

0 

# RHS vectors : 
A a a A N 
,.___,._..,._--><'h N 

~ 
~ 

3264 128 

2 
1 

256 512 3264 128 256 512 

Fig.69d, FX4: Timing data for ZHBTRS, Lower, K=31 Fig.69h, NEC: Timing data for ZHBTRS .. Lower, K=31 

10 300 -

/ 200 

5 r 
0 ~ 

3264 128 256~ 512 3264 128 256 512 

Fig.70d, FX4: Timing data for ZHBTRS, Lower, K=63 Fig.70h, NEC: Timing data for ZHBTRS, Lower, K=63 

10 300 

200 

100 

3264 128 256 512 3264 128 256 512 
Fig.7ld, FX4: Timing data for ZHBTRS, Lower, K= 127 Fig.7lh, NEC: Timing data for ZHBTRS, Lower, K= 127 

10 300 

200 

"' 
3 

100 

0 

3264 128 256 512 3264 128 256 512 
Fig.72d, FX4: Timing data for ZHBTRS, Lower, K=255 Fig.72h, NEC: Timing data for ZHBTRS, Lower, K=255 


