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0. Introduction. 

In this paper we approximate the solution f to a moment problem, by means 
of truncation. The moment problem consists of finding an element f of a Hilbert 
space 1-{ which satisfies 

(!, r.pi)'}-{ = 9i, Vi E 7l (0.1) 

where {Bi} E £2( Z) and the system of vectors {r.pi}iE zlies in 1t, which has inner 

product ( , )'}-{. The space £2 ( 7l) is the set olsequences of complex numbers 
{Yi}iE z such that Lie z IYil 2 < oo. Without further conditions on the system 
{'Pihe z, (0.1) need not to have a solution. It turns out that a sufficient condition 
for (0.1) to have a solution is that {'Pihe z is a Riesz basis, cf. Young (12] . The 
computation off involves the inversion of an infinite matrix. For practical reasons, 
we want to work with finite matrices. This problem can be circumvented by first 
solving the truncated problem, 

(0.2) 

Repeating this procedure for each n E IN, we obtain a sequence f n· These functions 
f n are given in closed form, involving only finite sums and inverses of finite matrices. 
In section 2 we prove that f can be approximated by f n, 

lim II/ - fnll = 0. 
n-+oo 

In section 3 we introduce the space of bandlimited functions, i.e. functions 
whose Fourier transforms have compact support. It t~rns out that for bandlimited 
functions f, the inner product (f,r.pi) is a point evaluation off at, say, ti. If ti = i 
for all i E Z, then we say the function f is sampled uniformly, otherwise f is said 
to be sampled nonuniformly. The main application is to derive a bound for the 
truncation error in the case of nonuniform sampling, which is an extension of an 
estimate of Butzer [1] . In the literature Butzer [1] , Butzer and Splettstosser [3] , 
Butzer, Splettstosser and Stens [4] , and Papoulis [9] , estimates for the truncation 
error are given only for uniform sampling. In section 4 we make some remarks on 
the estimates from Ii terature. 

1. Preliminaries 

In this section we introduce notions wich we use in later sections. A sequence 
of vectors {'Pi} iE z is a Riesz basis (see Young [12] p. 31) if there exists a bounded 
linear invertible operator T on 1-{ such that 

(1.1) 
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where {hi}iE 7l is an orthonormal basis for rt. An operator T is invertible if its 
inverse, denoted by T-1 , exists and is bounded. 

The next theorem ( cf. Young [12] Theorem 9, p. 32) characterizes Riesz bases, 
in terms of its Gram matrix and of completeness of a system of vectors. A sequence 
{<pi} C rt is complete if its linear span, denoted by span { <,Oi he 7l, lies dense in rt. 
The Gram matrix of {'Pi} is defined by 

Gii := (<pJ, 'Pi)rt, Vi,j E 7l. 

In the case of a Riesz basis G is the matrix representation of the operator (TT*)- 1 , 

with respect to the basis {hi}· So, 

(1.2) 

Theorem 1.1 . The following statements are equivalent. 

(i) {'Pi} iE 7l is a Riesz basis. 
(ii) {'Pi} is complete and there exist positive real numbers A, B such that for each 

n E IN and for each finite sequence {ci}-n, ... ,n 

n n n 

i=-n i==-n i=-n 

(iii) { cpi} is complete and the Gram matrix G of {'Pi} generates a bounded linear 
invertible operator on £2 ( Z). 

Throughout the rest of this paper the system {'Pi} iE 71.. denotes a Riesz basis. 
By Theorem 1.1 it follows that the definition of Riesz basis is independent of the 
choice of t~e orthonormal system {hi}· 

Two systems {'I/ii}, { cpi} are called biorthogonal if 

('Pi, 'l/IJ)rt = 6iii Vi,j E 71... 

A Riesz basis {<pi} has a unique biorthogonal system {'I/ii}, given by 'I/ii= T'"hi, for 
i E Z. The biorthogonal sequence also is a kiesz basis. Any f E rt can uniquely 
be written as ( cf. Higgins [6] ) 

1 = I: u, 'Pi)rt-iPi· (1.3) 
iE ?l 

From this it follows that the moment problem (0.1) has the unique solution 

(1.4) 

H we want to compute the system {'I/ii}, we need a formula for the operator T, 
which may be hard to find. An alternative formula for {'I/ii} is obtained by Zwaan 
[13] 

'I/ii = L (G-1 )ij'Pii Vi E z. 
jE 71.. 
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The problem in this formula is the inversion of the infinite matrix G. In section 2 we 
circumvent this inconvenience by inverting the truncated matrix. We thus obtain 
an approximation of the system {?/Ji} and of the solution f. 

We construct an orthonormal basis {hi}iE :z for 1t in such a way that 
{hih=-n,. .. ,n is an orthonormal basis for 

1tn := span{<f?-n, ... , lf'n}, 

e.g. by Gram-Schmidt orthogonalization. In this case the operator T given by (1.1) 
leaves all the subspaces 1tn invariant, and 

Note that the adjoint of T need not to leave the subspaces 1tn invariant. Define the 
restriction of T to 1tn by Tn := T11t ... Denoting the adjoint of Tn in 1tn by T:, the 

system { 1/Jf }-n, ... ,n C 1tn can be defined as 

.1.n ·- T*h· 'l'i ·- n i, Vi E {-n, ... ,n}, (1.5) 

which is the unique biorthogonal system of { 'Pi}-n, ... ,n in 1tn· An alternative formula 
for 1/Jf is 

n 

1/Jf = L (G:;;:l )ij'Pi· 
j=-n 

Here Gn is the truncated Gram matrix, 

(Gn)ij := Gij, 'r/i,j E {-n, ... ,n}. 

A (not necessarily unique) solution to (0.2) can now be given as 

n 

1 n = ::L: 9i1fr. (1.6) 
i=-n 

(1.6) is not unique, because other solutions can be obtained by adding elements to 
fn, which are orthogonal to span{<f?-n, ... , 'Pn}· The foijowing result ( cf. Young [12] 
Proposition 1, p.147) characterizes solutions to an arbitrary moment problem. 

Proposition 1.2 • Let 1l C 1l be an arbitrary index set and let {gi} E £2(1l). 
If the problem 

(1.7) 

has a solution, then there exists a unique minimum norm solution which lies in the 

subspace span{ 1f'ihe1 C 1t. 

It follows that f n E 1tn, given by formula (1.6), is the unique minimum norm 
solution to (0.2) in 1t. 

2. Constrnction of the solution to the moment problem. 

The aim of this section is to prove that II/- fnll -+ 0, (for n _,. oo) where f E 1t 
and fn E 1tn are the unique and the unique minimum norm solution to (0.1) and 
(0.2), respectively. 
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Introduce the projection operator Pn : 1i-+ 1-ln, by 

n 

Pnf = L (!, 'Pi)1-[7/Jf • (2.1) 
i:::-n 

Pn is a normal operator (P:Pn = PnP;) from 1i onto 1-ln and it reduces to the 
identity operator on 1-ln, i.e. Png = g for g E 1-ln· If f E 1i is the solution to (0.1), 
then the minimum norm solution fn to (0.2) can be written as fn = Pnf· For any 
g E 1-ln we have 

(Id - Pn)f =(Id - Pn)U - g). 

Hence 
ll(Id - Pn)fll ~ llid - Pnlldist(f, 1-ln), 

where 

dist(J, 1-ln) = inf he1-l .. II! - hllH· 
We know that for all f E 1-l 

lim dist(J, 1-ln) = 0. 
n-+oo 

(2.2) 

(2.3) 

Note that ll(Jd- Pn)fll is the error due to truncation of the moment problem (0.1). 
The next theorem proves that IJid - Pnll ~ c, where c is a constant independent of 
n. 

Theorem 2.1 . 
(2.1). Then 

Let { cpi} iE :z be a Riesz basis for 1-l, and let Pn be given by 

llld - Pnll ~ 1 + (llG-1 ll llGll)112 , Vn E IN. (2.4) 

Proof: 

Using·?/Ji = T*hi, and (1.5), we obtain 

n n 

IJPn/ll = II L (!, 'Pi}1/Jf II = II L (!, 'Pi}J-lT:hi II ~ 
i=-n i=-n 

n ~ 

llTnllll L (J,cpi)J-lhdl ~ llTllll L (J,cpi}J-lT*- 1 7/Jdl ~ llTIJJIT-1 1111/11. 
i=-n iE :Z 

Hence, by (1.2) and Theorem 1.1. (iii), 

IJid- Pnll ~ 1 + (llGllJIG-1 11)112 < oo, Vn E IN. 

This proves the estimate. D 

By (2.2) and (2.4) it follows that, 

ll(Id- Pn)fll ~ (1 + (llG-1 i1 JIGJl)1l 2 ) dist(J, 1-ln)· (2.5) 

Hence, by (2.3), for all f E 1-l, 

lim ll(Id- Pn)fll = 0. 
n-+oo 

(2.6) 

We have proved the following result. 
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Corollary 2.2 . If {<pihe 7l is a Riesz basis and if fn (formula (1.6)) is the 
minimum norm solution of the truncated problem (0.2), then {fn}nelN converges to 
the solution of problem (0.1). 

This applies in particular to biorthogonal sequences { 1f'ihe 7l of a lliesz basis. 
It follows by definition of Pn that 'lf;f = Pn'l/Ji, for i E {-n, ... , n }. Hence by (2.6) 

(2.7) 

for i E ?l. This procedure of solving the truncated problem (0.2), instead of (0.1), 
is an application of a projection method of Natterer [8] . 

3. Truncation error for nonuniform sampling 

In this section we derive a formula for the truncation error in the case of nonuni­
form sampling of a bandlimited function. We apply-the results of the previous section 
in the case that 1t is the space of bandlimited functions and 'Pi := sincr(. - ti'lr /r ), 
where {ti} is a sequence of real numbers. Here the sine-function is given fort E JR, 
by 

{ 
sin(rt) -t 

. , t r 0 
smcr(t) := rt . 

l, t = 0 

The space of bandlimited functions, also refered to as the Paley-Wiener space, con­
sists of all L2(JR)-functions f such that the Fourier transform off, denoted by J, is 
zero outside the interval [-r,r]. 

Definition 3.1. 1Pr := {f E L2 (1R)lsupp f C [-r, r]} 

If we define the inner product ( , ) P, on Pr by, 

(f,g)p. := JR f(x)g(x)dx, 

then 1Pr is a Hilbert space. By the theorem of Paley-Wiener (see Young [12] Theorem 
18, p. 101) any J E 1Pr can be extended to an entire function J : ([: ~ ([: which 
satisfies lf(z)I 5 llfllP. erllmzl, for all z Ea:. Hence any element of 1Pr satisfies the 
inequality, 

11/lloo 5 llJllP,' VJ E 1Pr• 

Here the oo-norm is defined by llflloo := SllPteRlf(t)I. 

(3.1) 

The system {<pi} iE 7l is a lliesz basis for 1Pr if the sequence of ti 's satisfies 

(3.2) 

If ii = i for all i E Z, then {'Pi} is an orthonormal basis for 1Pr. 
The point evaluation can be written in terms of the <pi's, 

(3.3) 
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With (3.3) and (1.3) we write an arbitrary element flying in 1i = IPr as 

f = L ( .;:i/r)J(tt1r/r)?/Ji, 
iE :Z 

and the projection from f onto 1in as (cf. definitions (2.1) and (1.5)) 

n 

In:= Pnf = L (.;:i/r)J(trrr/r)?/Jf. 
i=-n 

The distance from f to 1in can be expressed in terms of the system {hi} ( cf. section 
2), 

. ("'"" 2) 1/2 dist(/,1in)= L..Jl(/,hi}Prl · 
lil>n 

Because {<pi} is a Riesz basis, we obtainby (1.1), 

( ) 1/2 ( )1/2 
dist(/,1in)= L l(T*/,<pi}Prl2 = X:(7r/r)l(T*f)(ti11"/r)l 2 • 

lil>n lil>n 

Generalizing Butzer [1] , we assume T* f to satisfy, 

l(T* f)(t)I :s; MT .. J 1/ltl'Y' (3.4) 

for t E 1R \ {O} and I > 1/2. Here MT .. 1 is a constant which depends on T* f. It 
follows by a straightforward computation (for n > 0), and by {3.4) that 

dist (/ 1i ) < v'2 MT*J (r/11")(-y-1/2) (n - 1/4)(1-2-r)/2. 
' n - J21 - l (3.5) 

Define the truncation error as etr := II/- /nlloo· By Theorem 2.1, and (3.5) we have 

( 1/4)(1-2-y)/2 
etr :s; (i + (llG-1llllGll)112) (v'2 MT"/ (r../7r)h-l/2) n- ). (3.6) J21- 1 

A remark is in order. In the case of uniform sampling (i.e. a = 0 or, equivalently, 
ti = i for i E :Z) T* is the identity on IPr, and G = a-1 = Id. In the case of 
nonuniform sampling (i.e. a :f 0) the norms of G and a-1 are estimated in Zwaan 
[14] ' 

where .X := 1 - cos 11"0: + sin 11"0:. 

4. Conclusions and Remarks 

From (3.6) it follows that the moment problem (0.1) is stable for truncation 
(i.e. lim In = /, for n -t oo ), if the ti's satisfy (3.2). The rate of convergence is 
governed by the norms of the matrices G and a-1 • In the case of uniform sampling 
(i.e. a= 0 or, alternatively ti = i, for i E :Z) the number llGllllG-1 11 is equal to 
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one, but if we sample nonuniformly, especially when a is dose to 1/4, this term may 
become large. So, in the case of uniform sampling, the truncated solution f n may 
converge faster to the solution f than in the case of nonuniform sampling. 

Next we make some remarks on estimates of the truncation error which are 
given in the literature. The estimates given by Butzer [1] , Butzer and Splettstosser 
(3) , Butzer, Splettstosser and Stens [4] are valid for functions f which are sampled 
uniformly. Purthermore f is assumed to lie in the Lipschitz class of order a, given 
by 

{/ E C(IR)lsuplh1«5llf(. + h) - /(.)II s Loa}. 

The estimate from Butzer [1] , Lemma 2, 

II L ..;;r;.J(i7r/r)ll S ./2M1(r/7r)'Y-1/2 n<t-2"1)/2, 
lil>n 

holds for functions f that satisfy the additional estimate 

( 4.1) 

( 4.2) 

for t E 1R \ {O}. This can be proved by straightforward computation. Note that 
for uniform sampling T* is the identity operator on IPr and G = a-1 = Id, hence 
condition (3.4) reduces to ( 4.2) and (3.6) reduces to an error bound which is sim­
ilar to (4.1). By using de la Vallee Poussin kernels, Theorem 6.1. of Butzer and 
Splettstosser [3] provides the error bound, (if f satisfies ( 4.2) and if s is such that 
t - t 8 f(t) belongs to the Lipschitz class of order a) 

n 

etr :=II/(.)- L J(i7r/r)sinc7r(· - i7r/r)ll Sc n-s-alnn. 
i::::-n 

In Butzer [1] and Butzer, Splettstosser and Stens [4] a similar error is stated for 
functions fin a special subspace of L1 (1R), 

etr = O(n(-s-a)). 

The truncation error is expressed in terms of its own energy, by Papoulis [9] , p. 
142, in the following manner. Define, for f E IPr, 

n 

etr(t) := J(t)- L ..;;r;.J(i7r/r)sinc7r(t - i7r/r). 
i=-n 

Since etr E IPr, it follows by (3.1) that letr(t)I S lletr(.)llL2· 

In this paper we obtained a new bound for the truncation error in the case of 
nonuniform sampling, for functions f E IPr. We approximated the solution to the 
moment problem (0.1) and used this procedure to derive the error bound (3.6). 
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