
Centrum voor Wiskunde en lnformatica 
Centre for Mathematics and Computer Science 

A.B. Olde Daalhuis 

Asymptotic expansions of an integral 
containing a phase function with three saddle points 

Department of Analysis, Algebra and Geometry Report AM-R8922 December 



The Centre for Mathematics and Computer Science is a research institute of 
the Stichting Mathematisch Centrum, which was founded on February 11, 
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research 
(N.W.O.). 

Copyright © Stichting Mathematisch Centrum, Amsterdam 



Asymptotic Expansions of an Integral 

containing a Phase Function with three Saddle Points 

A.B. Olde Daalhuis 

Centre for Mathematics and Computer Science 
P.O. Box 4019, 1009 AB Amsterdam, The Netherlands 

New asymptotic expansions are given for a special function of two complex variables. Our 
approach is based on an integral representation. The phase function of the integral has three 
saddle points, and for certain combinations of the variables two of these saddle points coalesce. 

1980 Mathematics Subject Classification: 41A60, 30E15, 33A40. 
Keywords & phrases: uniform asymptotic expansions of integrals, saddle point method, Airy 
approximation. 

1. Introduction 

The integral 

Q(h,µ) = - e-(u-µ)2+h/udu 
l joo-if3 

yfi -oo-if3 

1 

(1.1) 

plays a role in electrodynamics, radio physics etc. The function Q( h, µ) cannot be expressed, in 
a simple way, in terms of the well-known special functibns of mathematical physics. In [2] it is 
shown that Q( h, µ) can be viewed as a generating function of parabolic cylinder functions: 

oo n 
_s_ __!__ - z2 /4 ~ ::.__ Q(. 1"' . r.i) - e L,; 1 D_n(z). 
Zy 2 Zy 2 n=O n. 

In [2] several analytical properties are derived, and numerical aspects are considered, especially 
for complex values of the parameters with µ large and h a constant. In this paper we further 
investigate the function Q(h,µ), and we derive new asymptotic expansions for large µ and 
h = 1µ 3 , where/ is an uniformity parameter andµ, h E JR. 
Substituting u = µt, we obtain 

Q(h,µ) = _!!:_ e-µ2((t-1)2-"!/t)dt. j oo-i/3 

yfi -oo-i(3 
(1.2) 
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We consider the following cases: 
Case 1 : h > 0, µ > 0, thus / > 0. 
Case 2 : h > 0, µ < 0, or h < 0, µ > 0, thus / < 0. 
Case 3 : h < 0, µ < 0, thus / > 0. 

Because of Q(-h,-µ) = Q(h,µ), we only give expansions in case 1 and case 2. 
In case 1 we use the saddle point method. It will appear that we have to consider two subcases. 
But we also give an expansion in terms of Airy functions which is valid for/ > 0. 
In case 2 we also use the saddle point method, and again we have two subcases. 

2. Case 1 : Expansions when both parameters are positive 

2.1. Saddle points 

We write 
f(t) = (t - 1 )2 - 1, 

t 
I> 0. 

This function has three saddle points (31, (32 and-{t3. By writing 

we have 
f31 + f32 + (33 = 1, 

f31f32 + f32f33 + (33(31 = 0, 

f31f32f33 = -~/· 

(2.1.1) 

(2.1.2) 

(2.1.3) 

For the remaining part of the analysis we only use these facts about the saddle points. Because 
of g(O) = !1 > O, limt-+-oo g(t) = -oo and g is real valued and monotonous on (-oo, O], it 
follows that one and only one saddle point is in (-oo, 0), say 

f31 E (-oo, 0). (2.1.4) 

Notice that by (2.1.3), it is impossible that f31 = f32 = (33, and only when / = 287 two saddle 
points coalesce: f32 = (33 = i· Because of this we shall split up this case in two subcases 1) 

/ E (0, 287 ) and 2) / > 287 • 

By considering (2.1.3) it is easy to show that 

(2.1.5) 

2.2. Saddle point method when / E (0, 287 ) 

The condition / E (0, 287 ) implies g(O) > 0, g(i) < 0 and g(l) > 0. Thus we may conclude 

(2.2.1) 

From (2.1.5) and the graph off on 1R it easily follows that 

f ((33) < f (f32) < 1 < f (f31 ). (2.2.2) 
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Thus the main contribution to the integral in (1.2) comes from {33. The steepest descent curve 
we consider is given by 

p(t)= { t-i~ 
See Figure 2.2.1. 

-1 II 

t E (-00,/31] U [/32, oo ), 

t E [/31, /32]. 

(h 

FIGURE 2.2.1. Steepest descent curve for the case 0 < "'f < /.,. 

(2.2.3) 

On this path, f is real valued and f attains its minimum at {33. From OLVER [3, P. 127] and 
(2.1.5) we obtain 

Q(h µ),..., ~µe-µ2(3,8~-4/h+I) ~ r(s + !)~ 
' fi 6 2 µ2s+I ' 

V" s=O 

µ~ oo. (2.2.4) 

Formulas for the first three coefficients are 

1 f3l 3 ({33 - l)(f33 + 1) 
ao = - 1 , a2 = - - 1 , 

. 2 (3{33 - 2)2 4 f31 (3{33 - 2)~ 

5 (/33 - 1 )(15/3~ - 9f3§ - 15(33 + 1) 
a4 = - -------------..-----------

16 f3} (3{33 - 2)¥ 

(2.2.5) 

Notice that 3f3§ -4f33 +1 < 0 and that the coefficients have a singularity at /33 = !, which is the 
coalescing position of the saddle points {32 and {33 as "Y .=...+. 287 • Also, notice that the coefficients 
a2s (s 2:: 1) all vanish when {33 = 1 (i.e., "Y = 0). Expansion (2.2.4) is valid asµ~ oo, uniformly 
with respect to "YE [O,"'fo], where 0 <"Yo<.},, "Yo fixed. 

2.3. Saddle point method when / > 287 

H we take "Y > 287 , then f has only one real saddle point. Thus we have f32, {33 </. IR, and by 
(2.1.3) we also have f32 + {33, f32f33 E IR. Thus 

f31 E (-oo, 0). 

We write f32 = x + iy and {33 = x - iy. Then (2.1.3) gives 

f31+2x = 1, 

2xf31 + x2 + y2 = 0, 

f31(x2 + y2) = -~"Y· 

(2.3.1) 

(2.3.2) 
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So we obtain 
/31 = 1 - 2x, 

y2 = 3x2 - 2x. 

It follows that x > ~ and (31 < -t. Moreover, by (2.1.5), we have 

f(/31) = 12x2 - 4x, 

f(/32,3) = -6x2 + 2x + 1 ± iy(6x - 4). 

(2.3.3) 

(2.3.4) 

Since f(/31) > Re(f(/32,3)), the main contribution to the integral in (1.2) comes from /32 and (33. 
A steepest descent path through f33 is given by 

{p + iq E <C I p,q E lR I q(2(p-1) + 2 
1 

2 ) + y(6x - 4) = O}. 
p +q 

See Figure 2.3.1. 

~1 0 

FIGURE 2.3.1. Steepest descent curve through (33, for the case fr < / < oo. 

(2.3.5) 

A possible integration curve p is given in Figure 2.3.2. It exists of a part of the steepest descent 
path through (33, and of the negative real axis. The main contribution comes from the steepest 
descent path through (33. 

FIGURE 2.3.2. Contour of integration for the case f.r < 'Y < oo. 

Thus, from OLVER (3, P. 127] and (2.3.4), we obtain 

µ-+ oo, (2.3.6) 
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with a2 8 as in (2.2.4). This expansion is valid asµ-+ oo, uniformly with respect to/ E [11,00), 

where /1 > /.,, /1 fixed. 

2.4. Airy function expansion 

When / ranges over (0, oo ), f has two coalescing saddle points at / = 2
87 • We use the 

following transformation, suggested by CHESTER, FRIEDMAN and URSELL [l] 

(t - 1)2 - 1 = -.!.s3 +as+ c. (2.4.1) 
t 3 

We prescribe that the saddle point t = (h must correspond with s = -fo, and t = /32 must 

correspond with s = fo. It follows that 

c = ~(l + 4(31 - 3f3i), 
(2.4.2) 

The quantity a can be viewed as an analytic function of/, I > 0. Mapping (2.4.1) is not 

conformal at the remaining saddle point t = (31 , and at t = 0. Thus possible s-integration 

curves must stay away from these singularities. It is easy to prove that this is possible for all 

/ > 0. The_ curves in the s-domain, which correspond with p and p, begin at s = -oo and end 

at s = e-¥ oo. So we have 

(2.4.3) 

where 

(2.4.4) 

Starting from (2.4.3), we write 

k(s) = ko(s) = ao + bos + (s 2 - a)lo(s), (2.4.5) 

where ao, bo and lo are to be determined. We now substitute (2.4.5) in (2.4.3). An integration 

by parts yields 

(2.4.6) 

where kl(s) = Zb(s) and AL1(z) = Ai(e~ z). The above procedure can be repeated, and we 
obtain 

m-1 

Q(h,µ) =27ri ~e~-µ2cAL1(µfa) f;(-ltanµ-2n-~ 

m-1 

-27ri_!:_e~-µ2cAi~ 1 (µfa) L:c-1rbnµ- 2n-f 
ft n:::::O 

(2.4.7) 

ooe-¥ 
+ (-lr ~µ1-2me-µ2cj eµ?(is3-as)km(s)ds, 

y7r -oo 
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where 
km+1(s) = z:n(s), (2.4.8) 

and 
am = ~(km( vfa) + km(-vfa)), 

b _ km(fo) - km(-fo) 
m - 2y'a . 

(2.4.9) 

It can be shown that km, lm, and hence am, bm, are analytic functions of a, and hence of/, 
/ > 0. Formulas for the first two coefficients are 

(2.4.10) 

The expansion (2.4.7) is valid asµ-> oo, uniformly with respect to/, for I in compact subsets 

of (0, oo ), and possibly for / ?: 0. 

3. Case 2: some remarks 

Because of/ < 0, we have g(l) < 0, limt-+oo g(t) = oo and g is real valued and monotonous 
on [1, oo ). Thus we may conclude that one and only one saddle point is in (1, oo ), say fh E (1, oo ). 

It is easy to verify that g does not have zeros on (-oo, 1]. However (2.1.3) yields {31 + {32 < 0 
and f31f32 > 0. Consequently 

{33 E (1, oo ), 

We write again f31 = x + iy, f32 = x - iy and obtain 

f(f31,2) = -6x2 + 2x + 1 ± iy(6x - 4), 

f(!h) = 12x2 - 4x, 

x < o. 

(3.1) 

(3.2) 

For determining the dominant saddle point we consider1 the equation Re(f(f31,2 )) = f(f33 ). This 

gives the changing point /o = i-i-JJ. In subcase 1, that is/ E (10, 0), {33 is dominant, whereas 
in subcase 2, that is/ E (-oo, 10), {31 and {32 are dominant. 
Subcase 1 goes like/ E (0, 287 ), and gives expansion (2.2.4), which is valid uniformly with respect 
to/ E [10,0]. 
Subcase 2 goes like / E ( 287 , oo ), and gives expansion (2.3.6), which is valid uniformly with 

respect to/ E [/1,10], where /1 < /o, /1 fixed. 

Observe that for small values of I two saddle points, {31 and /32 , are close to the origin. For 
a treatment of that asymptotic phenomenon a Bessel function may be used. However, when bi 
is small, the dominant saddle point is /33 . Therefore it is not needed to consider this particular 
case of coalescing saddle points near a pole of J( t). 
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