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CHAPTER 1. INTRODUCTION
t.1. THE COMBINATION PROBLEM

Suppose & number - say k - of experiments are performed to detect an
effect. On many occasions the experiments are performed under different
conditions and hence the magnitude of the effect masy vary from experiment
to experiment, if there is an effect at all. A standard example is the
effect of a treatment on k different groups of patients. The question arises
how to combine the information obtained from the different experiments.

In particular, if one wishes to test the hypothesis I that there is no

effect against the alternative K,, that the effect is never negative and

15
is positive in at least one of the experimental situations, it is common
practice to test for a positive effect in each of the experimental situations
separately and to combine the individual test statistics to obtain a test

of H against K,. The problem is then how to combine the individual test

statistics. 1
To be more precise, let the parameter 05 describe the effect in the

i~-th experimental situation and let e=(e1,,,,,ek)a The parameter space is
the first orthant (boundaries included) of k~dimensional Euclidean space Rk
and the testing problem may be formulated in the following way. For
1=1,2,...,K let Ei denote a test statistic for testing ei=0 against o; > 0
in the i~th experimental situation. The statistics 34,§2,»9w,3k
posed to be independent. On the basis of these statistiecs one wishes to test

are sup-
the hypothesis

against the alternative

K1: 0.> 0,
where the symbol .> indicates that the inequality is strict for at least
one component; the symbol <. is similarly defined. We shall call this testing

problem the one-sided combination problem, since under K, all the 0 have

1
the same sign. In the literature tests of H against the alternative

Kyt 8 # 0



are usually described as combinations of two-sided tests, although it may

be argued that testing H against K. is not a combination problem at all,

2
since in this case there is no relation between the parameters 61,62,,..,6k:
under K2 some of them may be positive and others negative. It would be

appropriate to call the problem of testing H against the alternative

K3 : either 6.> or 6<.0

the two-sided combination problem, but to the author's knowledge it has so
far received relatively little attention in the literature. It is essential
to distinguish between these three testing problems, since the properties
of combination procedures depend strongly on the alternatives considered.
Although quite a number of articles on the combination of tests have
appeared, surprisingly little is known about the theoretical properties of

combination procedures. Many authors confined their attention to the parti-

cular case where the true values of the parameters 91,92,...,ek are equal
or to the still more restricted case where the statistics E4’~Q""’Ek are

identically distributed both under H and the alternative hypothesis. In this
last situation one often speaks of a goodness of fit problem (cf.[36] and [38]).
Only a limited number of papers are concerned with the power of combination
procedures. Without aiming at completeness we give a brief review of the
literature on the combination of tests (in the wide sense) in section 1.2,

In the present study only the one-sided combination problem will be
considered in some detail, since it is most frequently met in actual appli-

cations. The two-sided combination problem (testing H against K.) is more

difficult; however, it will often be possible to deal with this3problem by
applying two one-sided combination procedures of size 3a (where ¢ is the
desired significance level), because in most cases the overlap of the two
critical regions is relatively small.

In section 3 of this chapter an outline of hypothesis testing is given.
In section 1.4 tests with monotone and convex acceptance regions are con-
sidered in some detail. In section 1.5 the variation-diminishing property
of integrals with totally positive kernels is mentioned; this property is
crucial in some proofs of chapter 2. In section 1.6 most powerful tests against

simple alternatives in exponential families are discussed.



In chapter 2 the one-sided combination problem is first reduced to a
standard problem of combining normally distributed random variables with
unknown nonnegative expectations and unit variances by the asymptotic approach
of J. NEYMAN and E.J.G. PITMAN. The most stringent combination procedure is
then obtained for this standard problem in a few cases. It is also shown that
the likelihood ratio combination procedure and FISHER's omnibus test are
asymptotically optimal in some sense for this problem as the significance
level tends to zero., In the last section of this chapter several combination
procedures are compared numerically.

In chapter 3 the combination of STUDENT t-tests is considered. Restrict-
ing attention to invariant procedures, some results are obtained in the
case where the observations have equal variances. However, it turns out that
the more important case where the variances of the observations differ from

sample to sample is essentially more difficult.

Finally in chapter 4 a general asymptotic approach to testing problems is
discussed and a theorem on the asymptotic optimality of likelihood ratio tests
in multinomial distributions is proved. The relevance of this approach to combina-

tion problems is also briefly considered.

1.2. HISTORICAL SURVEY

In early statistical work chi-square tests of goodness of fit were
frequently applied. If the statistics Ei have (approximately) chi-square
distributions under the hypothesis H, large values of the Ei indicating
departures from H, a test of H may be based on the sum of the Ei' The
additivity of random variables with chi-square distributions can then be
used todetermine the appropriate critical value of the overall test. This is
the simplest and presumably the oldest correct combination procedure. It
is still often applied, e.g. when combining chimsquare tests in 2x2 tables.

Most of the other combination procedures are based on the probability
integral transformation. Let 2; denote the one-sided tail probability of

the statistic Ei (i=1,2,c0.,k); by is the probability under H of the event



Ed 3-ti in case of upper-tailed tests and of the event Ei f-ti in case of
lower-tailed tests. If the Ei have continuous distribution functions under
H, the p, are uniformly distributed on the interval [0,7] under H. Hence
the hypothesis H may be tested by a chi-square test of goodness of fit
applied to the p. after a suitable division of the interval [0,1] into
subintervals. This combination method is mentioned in [35], but it is an
approximate test that is applicable only if k is large and it is unsatis-
factory even in that case.

In 1931 L.H.C. TIPPETT in the first edition of his book [Ei] described
another test, attributed to him, that rejects H for small values of the test
statistic
(1.2.1) 1?;23 2 -

In the continuous case the critical value of this test statistic is given
by 1—(1—a)1/k

In the fourth edition of his famous book "Statistical methods for

research workers" [17}, which appeared in 1932, R.A. FISHER introduced his

, Wwhere o is the desired significance level of the test.

so-called omnibus procedure. This combination method rejects H for small

values of the statistic
k
(1.2.2) LU P
1=1

i.e. for large values of

k
(1.2.3) -2 log I p; -

If the Ei have continuous distribution functions, -2 log B; has a chi-square
distribution with 2 degrees of freedom under H and consequently (1.2.3) is
distributed as chi-square with 2k degrees of freedom under H.

In 1933 K. PEARSON, independent of FISHER, wrote a long article
[35] on the combination of tests based on the R He was primarily
interested in combining two-sided tests and was in doubt whether to

reject H for small values of the statistic (1.2.2) or for small values

*)

The symbol log will always denote the natural logarithm.



of the statistic
) k
(1.2.4) 121 (1p_i)
(PEARSON defined p; s the left-~hand tail probability of Ei)' Under H the
distributions of (1.2.2) and (1.2.4) are of course identical. In the
literature the test that rejects H in the case of one-sided tests for large
values of (1.2.4) is usually attributed to PEARSON, but this seems to be
unjustified, since in all the examples of his paper H is rejected for small
values of the product test statistic., A year later F.N, DAVID [9] proposed
to reject H for small values of the minimum of both (1.2.2) and (1.2.4); a
similar point of view was expressed in K. PEARSON's paper [EQ]ﬁ This
proposal was of course motivated by the fact that they had two-sided indivie
dual tests in mind. In her introduction to the tables [jQ] DAVID advised
the use of FISHER's procedure for the one-sided combination problem. For
testing H against K2 she advised a test based on the two-sided tail proba-
bilities that rejects H for small values of the statistic

k
(1.2.5) I 2min { B;s T=p;} -

i=1
Under H this test statistic has, in the continuous case, the same distribution
as (1.2.2) and (1.2.4). It appears that the criterion (1.2.5) has first been
described by P.V. SUKHATME [50] in 1935.

Discussing the tests based on (1.2.2), (1.2.4) and (1.2.5) E.S. PEARSON
56] remarked in 1938 that a reasonable choice between different tests can
only be made by specifying the possible alternatives and he derived, with the
aid of the likelihood ratio principle, approximately optimal tests for some
problems where the Ed_are identically distributed.

A few years later W.A. WALLIS [5%3 gave a detailed exposition of FISHER's
omnibus procedure and showed that the chi-square distribution of (1.2.3) under
H is seriously invalidated when the Ei have discrete distributiong.In the
discrete case he suggested to compute exact tail probabilities of (1.2.2) by
enumeration whenever possible. In 1949 H.O. LANCASTER @7] considered FISHER's

test applied to chi-square test statistics l% in sign tests and 2x2 tables,



with two-sided alternatives, and compared its performance with the combination
procedure based on the sum Z X; (without correction for continuity). He
showed systematically by examples that the omnibus procedure loses much of
its power in these testing problems, because the expectation under H of
~2 log B, is much smaller than 2, the theoretical value in the continuous
case. To combine discrete test statistics Ei he put forward two modifications
of FISHER's procedure, called "mean X?" and "median x2". He found that in
case the true parameter values are equal, the two modifications of the
omnibus procedure are slightly less powerful than the test based on the sum
statistic in the examples considered. E.S. PEARSON [?7] suggested to deal
with the difficulties in the discrete case by adding independent continuous
random variables v, to each Ei and applying FISHER's procedure to the sums
Ei + Xi° If the sample spaces of the Ei are sets of consecutive integers
(e.g. if the t, are binomial, Poisson or hypergeometric random variables under
H), it is convenient'to choose the v uniformly distributed on [p,f]; the
tall probabilities R; of Ei+xi are then easily determined with the aid of
tables of random numbers. In this framework the "mean X" and the "median X"
appear if -2 log Ei is replaced by its conditional expectation or its
conditional median respectively given Ei (i=1,2,...,k). As PEARSON recognized,
the justification of imtroducing random elements v, to obtain formally correct
tests remains a matter of opinion.

For the combination of 2x2 tables (with binomial data) W.G. COCHRAN
[7] advised pooling of all data in a single 2x2 table if homogeneity of
the tables may be assumed, and if not, to add the square roots_gi of the
individual chi-square test statistics (i=1,2,...,k), taking into account
the signs of the differences between the estimated success probabilities,
Under H this statistic has approximately & standard-normal distribution and
tests can be based on it. In case the totals of the tables are widely
different or the success probabilities to be compared have rather extreme
vaiuesj COCHRAN advised another combination procedure that is based on the
weighted sum of the estimated differences between the success probabilities
to be compared. The weights are chosen in such a way that the test should be
approximately optimal in the large sample case if the differences of the

success probabilities involved are constant on the probit or logit scale.



F. YATES expressed similar views in his articles [56] and [57] on the
combination of 2x2 tables, stressing the importance of an analysis by
maximum likelihood of the parameters involved. YATES also found in a nume
ber of examples that in the case of one~sided alternatives FISHER's test,
applied to thejgi, is not markedly influenced by the discreteness of the
ii' He noted that FISHER's test must be expected to have considerably less
power than the most powerful test of H against alternatives of the form

8,0,=...=0, > 0. Pooling of observations in a single 2xm table if several

Zlm ° tableg are to be combined has been suggested (without justification)
by W.M. KINCAID [26].

In 1951 B. WILKINSON [55], generalizing TIPPETT's procedure, proposed
to reject H for small values of R(y)» the r-~th smallest tail probability,
and gave a table of critical values of this test statistic.

A. BIRNBAUM [’u] was, in 195Lk, the first author to investigate the
admissibility of certain combination procedures. For the one-sided combination
problem, in the continuous case, he postulated that the tail probabilities
2 which have uniform distributions under H, have non-increasing densities
under the alternative. This postulate is equivalent with monotone likelihood
ratio of the distributions of the Ei' A test based on the 2; is called
monotone if rejection of H for a certain vector (p1,ng.,pk) implies rejection
of H for any vector (p?]@..,pZW such that pz'i_pi for each i. BIRNBAUM
showed that for any monotone test based on the B; one can find an alternative,
represented by non-increasing densities of DysBpsee ooy against which that
test is most powerful. Moreover, if the distributions of the Ei are one-~
parameter exponential families, a combination procedure can only be
admissible (i.e. cannot uniformly be improved upon) if its acceptance

region in (t1,...,t )-space is convex. This condition also holds if two~

sided tests are comléined. With the aid of this theorem (cf.[ 5]) BIRNBAUM
showed that WILKINSON's procedure for r > 1 and the procedure attributed
to K. PEARSON are not admissible in the case of exponential family distri-
butions. He recommended the use of FISHER's procedure or TIPPETT's test.
Some years later T. LIPTAK [3&], perhaps unaware of BIRNBAUM's work,
proved that any combination procedure possessing some intuitively desirable

properties (including a monotonicity property equivalent to that of BIRNBAUM)



may be written in the form: reject H for small values of the statistic

k
(1.2.6) 121 v; vipg) >
where vy >0 (i=1,2,...,k) and ¥ is a strictly increasing function that is
continuous on the interval (0,1). In the particular case Y (p)= log p and
equal weights vi FISHER's test appears. He again proved that any test genera-
ted by (1.2.6) is most powerful against some simple alternative and showed
that the procedure based on (1.2.6) is unbiased if each of the tests to be
combined is unbiased. LIPTAK suggests as a suitable choice of the function
Yy the inverse ¢—1 of the standard-normal distribution function ¢; with
this choice the distribution of the statistic (1.2.6) is normal under H
in the continuous case.

If in (1,2.6) we choose y(p)zlog p, with arbitrary weights vis 8

weighted version of FISHER's test is obtained that rejects H for small values
of the statistic

k
(1.2.7) 2 -

This test was first considered by I.J. GOOD [18], who derived the distri-
bution of the statistic (1.2.7) under H in the case that all v; are diffe-
rent. In a further paper [19] GOOD gave a highly subjective discussion on
the choice of the weights v in this test. M. ZELEN [58] noted that the problem
of combining two variance-ratios (F-tests) often arises in the analysis

of incomplete block designs and proposed a weighted FISHER procedure for
such a problem. In a joint paper [59] with L.S. JOEL the combination of two
variance~-ratios (with equal numbers of degrees of freedom of the numerstors)
by means of the procedure (1.2.7) is thoroughly discussed; they proposed a
choice of the weights and gave tables of the power of some weighted FISHER
procedures for this problem.

In 1961 H.O. LANCASTER [28] considered three transformations of the
tail probabilities B; ¢ either to -2 log B; » OF to a normal random variable
X = ®~1(Ei) - LIPTAK's proposal -, or to a chi-square random variable Xg.
with s; degrees of freedom. The overall test statistic is then obtained b%

addition of the respective random variables. In the last two cases weights



can be introduced as multipliers of the X, or by varying the degrees of
freedom s; of<xé. ; the distributions under H remain very simple and the
complicated distFibution of the weighted FISHER procedure is avoided.
LANCASTER came to the conclusion that in the case of equal weighting there
is no great difference between the three combination methods. He also com-
pared the power of the sign test applied to a sample of 20 observations

in the case of one-sided alternatives with the power of the "mean X2 pro-

cedure when applied to 2,3 or I subsamples, assuming equal probabilities

1 2n

of success. He found that the power of the "mean X test is not much
smaller than that of the (most powerful) sign test.

Notwithstanding these various developments, many statisticians prefer
to use linear combinations zvigi of the individual test statistics to test
the hypothesis H. Since man& test statistics are approximately normally
distributed in the large sample case, the distribution of Zvizi can be
approximated fairly well by a normal distribution in the nlill-case in most
applications. The choice of the weights vy is then the essential problem.

PH. VAN ELTEREN [16} discussed linear combination of two-sample tests
of WILCOXON. He considered two choices of the weights involved. The first
set of weights has the property that the alternatives, against which the
combination procedure is consistent, do not depend on the ratios of the
individual sample sizes. Such tests are called designfree; for a discussion
of designfree tests we refer to C. VAN EEDEN and J. HEMELRIJK [13] . The
second set of weights was introduced to obtain a locally best combination
procedure (for "equal" alternatives). The robustness of linear combinations
of two-sample tests of WILCOXON if there are small variations in the varian-
ces of the observations is investigated by M.L. PURI in a forthcoming
paper [ho].

W. SCHAAFSMA ([45], [46]) considered linear combination of test
statistics when the test statistics are normally distributed and the alter-
native is one-sided. He proposed the use of most stringent somewhere most
powerful tests (ef. also [hh]) and constructed such tests for various testing
problems. It turns out that for the one-sided combination problem such tests
are essentially linear combinations of the individual test statistics with

appropriate weights. In his opinion these tests cannot be improved upon to
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a "worthwhile" extent. In [46] he compared these tests with the (unrestricted)
most stringent combination procedures, which were first derived in [59].

A sampling experiment has been performed by N. BHATTACHARYA [ 2], who
considered the combination of chi-square statistics, which have central
distributions under H and non-central distributions under the alternative.
Varying the degrees of freedom and the non~centrality parameters, he compared
three procedures: FISHER's test, the sum test and TIPPETT's test. He found
that the first two tests are about equally powerful in all cases considered,
but that the power of TIPPETT's test is much smaller, except possibly in the
case where only one of the variables has a non-centrsl distribution.

Recently R.B. DAVIES ([11], [12]) approached the combination problem
in a somewhat different manner, as he supposed that the parameters ei
measuring the effect are random variables with normal N(0,02) distributions
and the hypothesis tested is 02=0 against ¢2>0. For this combination problem
he constructed B-optimal size-o tests (see section 1.3). Some power com-
parisons with FISHER's procedure (with of without weighting) are made in
[12], partly based on simulation.

A study of the decision theoretical aspects of the one-sided combination
problem was made by W.R. VAN ZWET and J. OOSTERHOFF ﬁO], The present work

is a continuation of this research and extends and generalizes the results

of [60].

1.3. PRELIMINARY DECISION THEORY

In this sections we recall some concepts of the theory of testing
hypotheses and the related decision theory and introduce some notation.

We shall be concerned with a measurable space (X,A ),where X is
Euclidean and A is the o-algebra of Borel sets of X. Let Q be a Borel sub-
set of r-dimensional Euclidean space RY and

‘PQ={P6[6€Q}

a family of probability measures defined over ( X,./2) and dominated by a

o~-finite measure ). In applications ) will usually be either Lebesque measure
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or counting measure. The measures Pe are supposed to be different, i.e. for
every pair 6',0''e @ a set Ae /& exists for which Pe,(A) # P ., (A). Accord-
ing to the RADON-NIKODYM theorem there exists for any 6 e Q) a probability
density p(x;0) with respect to ) such that

P (A) = IA p(x;0) arx(x) for all Ae A,

The index set Q will be called the parameter space.
Let x denote an observable random vector assuming values in X and in-

ducing one of the measures Pe in ( x,4&) , i.e.
Pr (x € A) =P (A) for all Ae /&,

Without confusion we shall often write Pe (xeh).

Let 2y and @, denote two disjoint subsets of Q. Suppose we wish to test

H
the hypothesis

K

against the alternative

K:06¢ QK'

A test of H against K is characterized by a critical function §(x), the
probability that H is rejected in favor of K for a given outcome x = x

in the sample space X, Such a critical function §, a measurable mapping

of X into the closed interval [0,1], is said to be nonrandomized if

8(x) = 0 or 1 for all x € X. A test will often be indicated by its critical
fonetion §. If § is nonrandomized, the set {x|8(x) =0} is called the accept-
ance region and the set {x|8(x) = 1} the critical region of the test §.

It is convenient to introduce a convergence definition in the space of all
critical functions. A sequence {dn} of critical functions is said to be

weakly convergent to a weak limit & if

(1.3.1) Lim [ 6 (x)f(x) dr(x) = [ s(x)f(x) ar(x)

n->-ee

for all l-summable f. We note that a sequence {Sn} is weakly convergent
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to 6 if and only if

lim fA Gn(x) ar(x) = [, 6(x) dx(x)

n--o
for all Ae & with A(A)< = ,
This convergence definition coincides with the concept of regular convergence
introduced by A. WALD [53]. The celebrated weak compactness theorem (cf.
E.L. LEHMANN [ 31] p. 354) asserts that the space of all critical functions
is compact in the topology of weak convergence.

We shall be concerned with tests at a fixed significance level a(O<a<1),

that is, with critical functions § whose size

%)

sup E

b€ QH

does not exceed a. The class of all such tests will be denoted by i)(a). The

g 6(x)

power function of a test § will be denoted by

def
Bg(6) "= E o 8(x).

If we wish to test a simple hypothesis e=eo against a simple alternative
6=61, the most powerful level-o test is given by the fundamental NEYMAN-
PEARSON lemma.:

1irf p(x;81) > e, p(x;eo)

. 1 0
8(x) = v, if p(x;0 ) = e, p(x;07)
0 if p(x;61) < e p(x;eo) .
where cy and Y, (Oiyajj) must be determined to satisfy
E. 6(x) = a.

If the alternative is composite, i.e. if Q . contains more than one point,

K
a uniformly most powerful (UMP) level-o test (maximizing 86(6) for all 6e

%) )

E6 denotes the expectation under Pe
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simultaneously among level-o tests § of H) usually does not exist. In such
cases it is common practice to restict attention to a subclassﬁ)*xu)C53(a)

of tests possessing some desirable property and to select the UMP test within
EYWa), i.e. a level-a test 8, satisfying

(8) > 8,(6) for all s (a) ana o€ 0y,
provided such a test exists. Well-known choices for D) are
(i) the class of unbiased level-o tests, satisfying

g.(8) > for all ee.QK R

(8) = o for all 6e QH 3
(iii) the class of invariant level-g tests. In order to define this last
class consider a group G of measurable 1-1 transformations g of the sample
space X . Let to any g € G correspond a transformation é of the parameter

space ) such that

Py (4) = Pée(gA) for all Ae J%.

The transformations é induced by the elements g of G also constitute a group
G acting on Q. We say that the problem of testing H against K remains in~

variant under G if

g Q. =Q. and g Q for all g € G.

H " Oy =4

K K

A test & is then called invariant under G if
§(gx) = 8(x) for all x € X and g e G.

A statistic T(E) is said to be a maximal invariant under G if it is invariant

and if T(x1) = T(x2) implies x, = gx, for some g € G. A maximal invariant

2 1
7(6) under G is similarly defined. A test § is invariant under G if and only
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if there exists a measurable function h such that

§(x) = n [T(x)] for all x € X,
where T is a maximal invariant. The distribution of T(x) only depends on t(6)
and the same property holds a fortiori for an invariant critical function

6(x).

Unfortunately the combination problems to be discussed do not admit
UMP tests among one of the classes (i), (ii) or (iii). In such cases one
may decide to select a minimax test. There exist several types of minimax

tests. Our main interest will be focussed on most stringent (MS) tests. Let

* (e) def sup g.(9)

1.3.2
(1.3.2) 8, OB 5

denote the level~o envelope power function and consider a particular level-o
test 6. The shortcoming of this test (with respect to envelope power) is

the amount by which the power of the test § falls short of the envelope
power, i.e.

(1.3.3) R (0) ‘27 6" (o) - 8

A level-a test 60 is called MS if

(1.3.4) sup R(5 (8) = inf sup RG(G)”
beq, 0 seD(a) e

i.e. if 60 minimizes the maximum shortcoming over Q among level-g tests.

The shortcoming R .(68) of a test § may be interpreted as expected loss

§
(and hence as a risk function in the usual sense of decision theory) if we

define the loss functions
L.(8) = g (8) -1 when rejecting H
and

when accepting H.

=
N
—
@
—
i
w™
—
@
~—
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Another approach towards a minimax solution is as follows. Let d be
a nonnegative function defined over Q such that d(e) = 0 for all bely; a(e)

may be interpreted as a distance of 6eQ to QH. Let Qk be defined by

o = {ofale) > 8,0€ 0.}

for some positive A. Typically Qk is the set of parameter values differing
so widely from those postulated by the hypothesis H that false acceptance of H
is a serious error whenever fe Qk. A level-a test 60 is called a maximin

test of H with respect to Qk if

(6) = sup inf B8_(8) ,

inf B s
0 5e®(a)eegk

' §
eaQK

i.e. if the test &, maximizes the minimum power over Q' among level-a

tests. A maximin tgst can also be interpreted as a min?max procedure since
it minimizes the maximum of the simple risk function 1—86(6) over Qéa A
serious drawback of maximin tests is their dependence on the often rather
arbitrary choice of A ( in a few cases there is no dependence on A, but
this seems to be exceptional).

A related class of procedures, B-optimal tests, have been introduced
by R.B. DAVIES [11] for the combination problem. For a given B(a<B<l) a
level-a test 8, is called B-optimal with respect to the distance function

0

a if 60 minimizes the expression

inf { o | B.(8) > B for all ¢ satisfying d(e)> A}

8

among tests def)(a). One might say that a B-optimal test minimizes (in a
sense) the zone of indifference for a predetermined minimum power.
Obviously the B-optimal tests depend in general on the choice of 8.

We remark that both MS tests and maximin tests always exist in the
present context, as is easily verified by application of the weak compact-
ness theorem. If the testing problem is invariant under a transformation
group G, a MS test which is invariant under G exists under rather general

conditions. This is formulated in the following lemma.



16

Lemma 1.3.1

Let G be a group of tranformations of X such that the induced group G
leaves QH and QK invariant. Let B be a o-algebra of subsets of G such that
for any Ae J* the set of pairs (x,g) with gxe A is an element of PxB

and for any Bed and ge G the set Bg is P - measurable. Let G be either
finite, or, if G is infinite, let there exist a sequence of probability

measures v over (G,B) and a o-finite measure v over (G,B) such that

(1.3.5) lim | v (Bg) - v (B) | =0 for all geG and Be B
n->o

and

(1.3.6) v(B) = 0 implies v(Bg) =0 for all ge G.

Then there exists, for any o, a MS level-o test of H against K that is

invariant.

The proof of this well-known result is standard. It is based on the
HUNT-STEIN theorem and the fact that the set of parameter points for which
B;(e) is constant is invariant under G. The condition (1.3.6) of the lemma
ensures that the MS test is actually invariant and not merely almost in-
variant (cf. LEHMANN [31] th.k of ch.6). Finally we remark that under the
same conditions invariant maximin tests also exist.

The minimax principle sometimes leads to quite unreasonable tests in
the sense that, although they minimize the maximum risk, the power of such
tests may be relatively small for "most" alternatives. Moreover, minimax
tests are often quite difficult to find and may have a very complicated
character. These considerations led W. SCHAAFSMA ([kL],[45],[k6]) to the
introduction of most stringent somewhere most powerful (MSSMP) tests. A
level-a test is called MSSMP if it is MS among the class of level-o tests

which are most powerful against simple alternatives in QK'

Let K denote a o~algebra of subsets of QK’ We assume that p(x;0),
considered as a function of x and 6, is measurable JAxX. A probability
distribution g over (QK,JC) is called a prior distribution. A level-o
test § of H is saild to be Bayes with respect to a prior distribution &

if it maximizes the expression
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B..(8)as(e)
Ja s

among all 8'e D (o). Fquivalently, by FUBINI's theorem, § is Bayes with
respect to g if § is a most powerful test of H against the simple alternative

that x is distributed according to the probability density
(1.3.7) hix;g) = fQK p(x;0) dg (8)

with respect to A. The class of all level-a Bayes tests of H against K will
be denoted by P (o). The power of a test § against an alternative of the
form (1.3.7) will be denoted by

(1.3.8) BG(E,) = fx s{x)n(x;e) dalx) = }'QKBG(@) dg(e).

Extending the definition of the shortcoming of a levelw~a test § to
arguments £ ,

(1.3.9) R (g) %

s R, (6) d&(6) = fQKB;w) ag(e) -g(e)

S

it is obvious that a level-q test 8 is Bayes with respect to a prior
distribution £, if it minimizes Ré(go) among all §e H(a),
. : + . .
The level-g minimax shortcoming R 1is defined as
a

(1.3.10) rY 98T ine sup R (8) 3
@ §eD(a) o € QK 6
it is equal to the maximum shortcoming of a MS level-o test (ef.(1.3.4)),
If the level-g minimax shortcoming is sufficiently small, the MS procedure
(or any level-a test with only slightly larger meximum shortcoming) may be
a satisfactory solution of the testing problem.
A prior distribution g, over (QK’j{) is said to be least favorable

(LF) at level o if

inf Ré(go) > inf R (g) for all £ ;

seDl(a) seDia)
it is the prior distribution that is hardest to distinguish from the null
hypothesis at level ¢ in the sense of the risk function R. We note that

the LF character of a prior distribution heavily depends on the risk function;
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changing R will in general entail that another prior distribution becomes
LF,

Any MS test is the weak limit of a sequence of Bayes tests (WALD [53]
th.3.12). If a LF prior distribution 50 exists, any MS level-a test is Bayes
with respect to go (WALD [53]th.3.9). A prior distribution EO and a corres-
ponding level-o Bayes test 60 constitute a LF prior distribution and a MS
procedure respectively if and only if 50 assigns probability one to the set

s (6) assumes its absolute maximum (WALD [53]
0

of parameter points for which R
th.3.10, 3.11).

However, a LF prior distribution does not necessarily exist. WALD
([52]th.5.9) has shown that LF prior distributions exist under the
assumption that p(x;e) is continuous in 6 and O is compact. The compactness
assumption is rather restrictive and unnecessarily strong. LEHMANN [30] has
shown that the compactness condition can be replaced by a weaker condition,
but the risk functions considered by him do not include the shortcoming
( he only considered risk functions of the form L(G)Ee(1—6(§)) vhere L(6)

is some loss function).

A level-o test § is said to be dominated by a level-a test §' if

(1.3.11) Bs(6) < Bgi(0) for all 6 € O

with strict inequality at least once, or equivalently, if
Rg(0) >R (0) for all 6 e Q
6'

with strict inequality at least once. A level-o test & is called admissible

K

if no level-o test &' dominating § exists; otherwise § is said to be inad-
missible. A class C of level-o tests is said to be complete if for any
level-a test not in £ there exists a §' in € dominating it. A minimal
complete class is a complete class not containing a complete proper subclass.
A class € of level-a tests is said to be essentially complete if for any
level-o test 6 there exists a test ¢' in £ such that (1.3.11) is satisfied
(possibly with equality for all Oe QK).

If Bayes tests are unique a.e. [K], then any Bayes test is admissible.

But in general there are inadmissible Bayes tests and admissible tests which
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are not Bayes. The importance of Bayes tests is nevertheless emphasized by
the following complete class theorem (cf. WALD [53]th.3.18 and L. LECAM [29]

th.l), which we state in the form of a lemma.

Lemma 1.3.2

For testing the hypothesis H against K at level a the closure (in
the topology of weak convergence) of the class D (a) of level-u Bayes tests

constitutes an essentially complete class.

The closure of $(a) is complete if tests with identical risk functions on
QK are equal a.e.[A] . This property is certainly satisfied if the family
of probebility measures?Q is boundedly complete, i.e. if

K

fX f(x) p(x;0) dx(x) = 0 for all e

implies f(x) = 0 a.e.[A] for any bounded measurable function f. If ¢)Q is
an exponential family and QK contains a r-dimensional rectangle, ?b K

is boundedly complete and hence the closure of B (o) is a complete glass in
this case.

B (a) is itself a complete class if Q_ is compact and p(x;0) is

K
continuous in 6. In this case weak limits of Bayes tests are also Bayes

(WALD [53]th.5.5).

1.4. CONVEX AND MONOTONE ACCEPTANCE REGIONS

In the last twenty years an extensive literature on admissibility of
statistical tests and complete classes of tests has appeared. Especially
tests of hypotheses in exponential families of distributions have been
thoroughly studied. It is well known that in this case nonrandomized tests with
convex acceptance regions are of fundamental importance. In the first part
of this section we mention some theorems on this subject and prove a related
result. If the hypotheses are one-sided, the monotonicity of the acceptance
regions plays an important part. This is shown in the second part of this
section.

We again consider the family 539 of probability measures dominated
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by a o-finite measure X over (X,.A), introduced in section 1.3. Suppose

we wish to test the hypothesis

: 6 Q
H € H

against the alternative

K: 6e QK,

where Q_ and Q_ are disjoint subsets of Q@ . First we shall assume that

H K
the null hypothesis is simple:

_ 0
QH = {6”} .

Let Co(u) denote the set of all size-a critical functions for
testing 6=6 which are equal a.e. [A\] to any critical function 8

satisfying

0 if x e int(A)
(1.4.1) §(x)=

1if x e X = A,
where A is some closed convex set in B" and int(A) denotes the interior
of A. We shall say that Co(a) is the set of size-a tests of 6=0°
with a.e. convex acceptance regions. To prove that Co(a) is an
(essentially) complete class of tests for testing 6=60 against 0 € QK’
a possible line of attack is to show first that the class ?bo(a) of
level~a Bayes tests of 0=0" is a subset of ﬁo(a). Since the closure
of 330(a) is an essentially complete class (lemma 1.3.2), the essential
completeness of Co(a) is then established if Co(a) is closed in the
topology of weak convergence. This last property, stated with an incor-
rect proof by A. BIRNBAUM [ S]in a special case, has been proved in full
generality by T.K. MATTHES and D.R. TRUAX ([35]th.2.1) with the aid of
the BLASCHKE selection theorem.

Lemma 1.4.1 (T.K. MATTHES and D.R. TRUAX)

For any o-finite measure A dominating the family ?b the class CO(Q)

is closed in the topology of weak convergence.
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The line of argument sketched above has proved to be very useful

if T%) is an exponential family, i.e.
k

(1.4.2) p(x;8) = C(6) exp [ ) eixi] , 8eq,
i=1

with respect to an appropriate measure X, where 6=(61,...,6k) and
x=(x1,»..,xk) are k-dimensional vectors (k>2) and 9 is the (convex)
natural parameter space, i.e. the set of all 6 satisfying

[ exp[} eixi]dx(x) <w , The family (1.4.2) is not the most general

exponential family, which is usually defined as

k
p(x;0) = c(8) exp [} Q. (8)1, (x Y], eeq,
i=1

but this form reduces to (1.4.2) after suitable transformations.
The following well~known result has first been obtained by
BIRNBAUM [5 ] in a particular case (cf. also [35]).

Lemma 1.4.2 (A. BIRNBAUM)

Let x = (54""’§k) be distributed according to the density (1.4.2)
with respect to the measure A. Then ﬁo(a) is an essentially complete
class for testing p=0" against ee.QK. If QK contains a k-dimensional

rectangle and P o and A are equivalent, © (o) is complete.

8 0

BIRNBAUM then investigates the absolutely continuous case more
closely and shows that the closure of 53O(u) coincides with fio(u)
under the additional assumption that Q contains hyperspheres of
arbitrarily large radii. Here it is assumed that QK=Q~{90}.If moreover
either X is bounded or assumption 3 of [5 ] is satisfied, BIRNBAUM
proves that tb(a) is minimal complete, i.e. all tests in Co(a) are

admissible. As an example let EIS S denote k independent

s e g X
=3

normal random variables with expectations 61,6 400050, and unit variances;

then BIRNBAUM's assumption 3 is satisfied and %3O(a) ?s a minimal
complete class for testing o=0° against e#eo, If the family (1.4.2)

is not absolutely continuous but discrete (e.g. if A is counting
measure), characterization of minimal complete classes is more difficult.

Generalizing the work of BIRNBAUM in certain respects, C.M. STEIN
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in a paper (h9] on the admissibility of HOTELLING's T2~test has given
a sufficient condition for admissibility of a test of 6e QH against

8 e QK for arbitrary QH and QK and exponential families with respect
to arbitrary o-finite measures A. He has shown that a nonrandomized
size~o test with closed convex acceptance region A is admissible if
for each supporting hyperplane of A there exist parameter points

in QK arbitrarily far out on some perpendicular to this hyperplane.
However, in general these acceptance regions do not generate complete
classes of tests.

MATTHES and TRUAX [35] considered composite null hypotheses of
a particular kind: under HS some components, 61,82,...,8S say,
of the vector 6 in (1.4.2) are specified while the remaining components
of 6 are unspecified nuisance parameters. In this situation it turns
out that for any o~finite measure A the totality of size~o tests 6,
which have acceptance regions {x|&(x)=0} whose (xs+1,...,xk)-sections
are convex, constitute a complete class for testing Hs against
K:06eQ =~ QH at level a. By way of examples they have shown, however,
that the test§ in this class are not necessarily admissible, unless
s=1,

Little seems to be known about essential completeness of the class
C:O(a) if @Q is not some exponential family. To investigate this point
we consider our original family of densities p(x3;6) with respect to a
o~finite measure A, where X is a convex Borel set of Bk. The index set
@ is arbitrary , but it is assumed that for different 6',0'' € Q the
corresponding distributions are also different. It will also be assumed
in this section that p(x3;6) is positive for all x € X and 0€Q, This
implies that the support of the distribution of x does not depend on 0.
If x is a discrete random variable, then A is a discrete measure and
p(x;6) may be suitably defined for all points of X with vanishing
A-measure.

A real=valued function f defined on X is said to be convex if for

any x',x''(x'#x'') and any 0 < o < 1
Flox+(1-p)x" ") < pf(x")+(1-p)F(x"").

The function f is said to be strictly convex if the above inequality
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is always strict.

Suppose we wish to test the simple hypothesis

Hy @ = 8% (6%e )

against the alternative

K :6¢ Q«{eo}

e
Let Cb(a) andAfb(a) be defined as before and let f)o(a) denote the class
of all essentially unique (in A-measure) level=o Bayes tests of Hy
against K. The following theorem is an immediate generalization of

BIRNBAUM's results.

Theorem 1.L4.1
Suppose 5F(£1""’§k) is distributed according to the density p(x3;6),
fe Q, where p(x3;0) is positive for all x e X and 6 e Q. Lét 6° denote an

arbitrary point of Q. If for all 6 € Q
0
(1.4.3) p(x30)/p(x38")

is either a convex function of x on X or a monotone function of a fixed
linear combination of Xyoees Xy (the function being either non-decreasing

for all ® or non~increasing for all 6), then
e
(1.4.4) %O(u) C ﬁo(a) for all o.

Moreover, of in addition all Bayes tests of HO against K are essentially
unique (in A-measure), then Cb(a) is an essentially complete class for

testing H_  against K.

0
Proof':

Any Bayes test of HO with respect to a prior distribution & is equal
a.e. [A] to a test § of the form

0 0 < ¢
(1.4.5) §(x) = ifé [p(x30)/p(x36 )] aele)
1

> Cy

where c¢ depends on the size of the test. Denote the integral appearing

in (1.4.5) by 1I(x). First let us assume that the functions (1.4.3) are
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convex on X. Then I is also convex on X and hence the sets A_={x|I(x)<c}
and A+={x]I(x)§p} are both convex. If § is essentially umique, either the
set {x|I(x)=c} has A-measure zero or §(x)=1 a.e. [A] on this set or
§(x)=0 a.e. [X] on this set. Hence either clos (A_) (in the first two
cases) or clos (A+) (in the last case) may serve as the closed convex
set A mentioned in (1.4.1). If (1.4.3) is a monotone function of
Zaixi for all 0, then so is I and the sets A+ and A_ are both half-spaces.
The relation (1.4.4) is then proved as before. In case ibo(a)= ?531&),
essential completeness of (io(a) follows from the lemmata 1.3.2 and 1.4.1.
Q.E.D.
At first sight the conditions on the likelihood ratios (1.4.3)
seem to be unnecessarily strong. However, it turns out that for an
important family of distributions essential completeness of tkﬁa) for
all eo € Q and all O<a<) implies that ﬁDQ is either an exponential family
or a family of distributions of an even simpler type. First we prove a basic

lemmsa,.

Lemma 1.4.3

Let X = ]Rk, let p(x3;0) >0 for all xeX and 6€Q and let p(x;60°)/p(x30'")
be continuous in x for all 9',0'' € Q, If for all 6',0'' € o (07 0'')

and all real ¢ > O the sets
{x|p(x36")/p(x36"") < ¢ } and {x|p(x30")/p(x:8'") > c}

are convex or empty, then the function p(x;0) is of one of the following
two forms:

(i) there exist functions f and QgsQq s+« +sq SUch that

k
(1.4.6) p(x30) = £(x) exp [ ] x;a,(8) + a(0)]
: i=1

identically in x for all 6 € Q; or
(ii) there exist functions f and g and constants 8s8p0c e s 8 such

k
that

k
(1.4.7) p(x;0) = £(x) g (] aixi;e)
i=1

identically in x for all 0 € Q; the function g is monotone (either
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non-decreasing or non-increasing) in its first argument.

Proof:

Let SO e some fixed point of Q and let 6& Q be arbitrary, 6#60,

Let

(1.4.8) c.= inf {p(x;e)/p(x;eo)} » C,= SUP {p(x;e)/P(X;GO)} s
X X

and consider an arbitrary ¢ € (01,c ). Since the sets A1={X[p(x;6)/p(x;60) < e}

2

and A2={x[p(x;8)/p(x;eo) > ¢} are non~empty and convex and the set A_ is open

by the continuity of p(x;@)/p(x;eo), there exists a hyperplane 3€c siparating
A1 and A2 (ef. H.G. EGGLESTON [15]section 1.7). It is easily shown by a
continuity argument that p(x;@)/p(x;@O) is identically equal to ¢ on Gﬂc«

For different ce_(c1,02) the hyperplanes SEC are parallel, because they cannot
have common points in X. Let

k 0
1 = .
(1.4.9) 121 ai(e,e )xi ao(c,O,S

0)

be the equation of étc; the coefficients a; are assumed to be normalized:
k
_21 ai(e,eo) =1, The left~hand member of (1.4.9) will be denoted by L(x;e,eo).
iZ
The function p(x;@)/p(x;@o) depends on x only through L(X;G,OO) ; this may be
expressed by writing

0 0 0
(1.4%.10) p(x30)/p(x;0") = g(L(x;6,6") 30,0)

k]

where the function g (@;9,90) is continuous and monotone (either non~decreasing
or non~increasing) and not constant, since Pe and Peo are different.
To any 0 & Q(G#SO) corresponds a linear form L(x;G*GO). We define the
relation ¥ on 0-{6°} as follows:
o' £ 611 ir ana only if L(x;a',eo) O)

L

= L(x;6'",0

(6°

fixed). The relation = is obviously an equivalence relation which defines
equivalence classes in 9~{eo}. Let O denote the set of all equivalence classes.

We consider two cases.

(i) The set 0 contains at least two elements. Let 8&§2(6¢60) be arbitrary and let

o' € Q (8'#90) belong to another equivalence class than 6. Since

p(x30) /p(x36°) =[p(x30)/p(x;6")] [p(x30")/p(x3;6°)],

we find
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(1.4.11) g(L(x36,0%)30,6°) = g(L(x36,0")30,8") a(L(x;6",06°);0",00),

where L(x;e,eo) and L(x;e',eo) are linearly independent. The three linear forms
L(X;egao), L(X;e',eo) and L(x;0,06') are not linearly independent. For if they were
linearly independent, the third linear form may vary from =« to + for fixed
values of the first two linear forms, implying that g(.;6,8') is constant which

is impossible. Thus L(x;6,6') is a linear combination of the two other linear
forms. Taking logarithms and writing h = log g,L(x;e,eO) =y and L(x;e;eo)

= 7,

we obtain
O . 1 1] ¥ t O
(1.4k.12) h(y;6,0") = h{a'y+b'z3;6,0%) + h(z;0',67),

where a' and b' are appropriate constants. It is easily seen that a'b'#0, because

otherwise one of the functions h would again be identically equal to a constant.

Putting a'y+b'z = w, a = 1/a', b = -b'/a', (1.4.12) is more conveniently expressed
as

0y _ 0 , A0
(1.4.13) h(aw + bz 36,0”) = n(w;0,67) + h(z;6°',67),

Moreover, substitution of w = 0 or z = 0 respectively in (1.4.13) yields

n(w;6,0') = n(aw;6,6%) = n(0s01,6%) ,
n(z36',8%) = h(bz;6,06°) - n(0;6,01),

and thus (1.4.13) may be written as

h(aw+bz;9,80) = h(awge,eo) + h(bz;e,eo) +
~n(036',6°) ~ 1n(0;6,0').
Defining B(y;ﬁ,eo) = h(y;e,eo) e h(O;G,BO), we find

(1.%.14) E(aw+bz;e,eo) = ﬁ(aw;e,eo) + E(bz;e,eo).

Since h is continuous, the identity (1.4.1L4) implies

bod 0 0
h(.’)’§9,9 ) = d(eae ):Y

for some non-zero d(e,eo) (cf.H. HAHN and A. ROSENTHAL [go]th.9.3.1) and thus

(1.4.15) n(y;6,6%) = a(e,0°) (6,60,

+
y )

where ao(e,eo) = h(o;e,eo), But (1.4.15) implies
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k
(1.4.16) p(x36) = p(x36%) exp [ ] a,(8,6%)a(0,6%%, + a (0,67] .

i
i=1
%a(8,6%) , i=1,2,....k and

since 0¥ vas fixed, we may write qi(e) = ai(e,e
0

qo(e) = ao(6,eo). Defining the functions QG -+ tO be zero for =6
we obtain (1.4.6).
(ii) The set © contains only one element. In this case (1.4.7) immediately

follows from (1.4.10). Q.E.D.

Theorem 1.4.2

Let X =IBk and let X be equivalent with Lebesgue measure on X. Let 5?(£1""’§k)
be distributed according to the density p(x36), 6 € Q, where p(x;0) is posi-
tive for all x € X and 6 eQ and p(x;6")/p(x;0'') is continuous in x for all
g',0'" € Q . If for all 0 < o < 1 and all 60 € Q the class ﬁb(u) is essentially
complete for testing Ho R eo against K : 6 € Q—{eo}g then the densities
p{x;0) are of one of the two forms (i) or (ii) of lemma 1.k4.3.

Proof:

If CiO(u) is essentially complete, it certainly contains a version of each

essentially unique most powerful test of H_  against a simple alternative. Let

0
9 and eo (6#60) be arbitrary points of Q. Consider the most powerful test of
GO against ©

= : Q
8, (x) = if p(x36)/p(x307)

1 > ey

where ¢ is an arbitrary positive number, and let a denote the size of this test.
The critical function 62(x) = 1*61(x) defines a most powerful test of 0

against BO,First we assume that c, < ¢ < cp, where ¢, and ¢, are defined in

(1.4.8); it follows that 0 < o < 1 in this case. Sinle bothed1 and &, are essen-
tially unique most powerful tests, they must be equal a.e. {k] to tests with
convex acceptance regions; let us denote these convex acceptance regions by A1
and A, respectively. We shall show that the sets {x|p(x;6)/p(x;60) < ¢} and
{X|P(x;6)/p(x;eo) > ¢} are both convex. It then follows by a limiting argument
that these sets are also convex or empty for values of ¢ not in (c1,c2). The proof
of the theorem is then completed by applicetion of lemma 1.4.3.

It is easily verified that any common point of A, and A, is a boundary point

1 2
of both A1 and A2. Hence int(A1) and A, are disjoint and there exists a hyperplane

2
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Bﬂc separating int(AT) end A,. By a continuity argument p(x'9)/p(X'90) = ¢ for all

X € 3{ The hyperplane 3% separates E into two open half-spaces; let A be
the open half-space contalnlng 1nt(A ) and let A2 be the other open half~space.

Then p(x3;6)/p(x;0 ) < ¢ for all x e clos( *) by the continuity of p(x;0)/p(x;0 )

1
2

=cy = < ¢. The continuity of the likelihood

ratio implles that ¢y = c- Let D be the set of points between 38 and the hyper*

plane 380 through x* and parallel to ch' Consider sup{p(x,e)/p(x 60 Yxe D} = ct,

Moreover, p(x:0)/p(x; 60) > ¢ for all x € AY
e A such that p(x°;0)/p(x’;6°)

. For suppose there exists a point

If ¢' = ¢ we have a contradiction with the definition of A, and A If ¢t > c,

let ¢'' = 3(c+c') and conmstruct the hyperplane ggc" corre;pondin; to ¢c'' in a
similar way as HQC. Then 39c,, is parallel to 3€c and separates ATnand xo, which
is also impossible. Hence a point x0 with the property stated does not exist.

It follows that {xlp(x;e)/p(x;eo) < ¢} = clos (AT) and {x[p(x;e)/p(x;eo)> cl = A:,
and thus both sets are convex. Q.E.D.

If XysXpse oo, are independent, an analysis similar to the proof of

lemma 1.4.3 shows that in case (ii) the density p(x3;0) can be written in the form

(1.%.17) p(x;08) = f*(x) exp {b(e) Z a.x, + b (6)] ,

i=1 0
i.e. the family of distributions (1.4.7) is an exponential family with a single
sufficient statistic z a.x..
i=1i
Although theorem 1.4.2 only applies to a rather resticted family of dis-
tributions, it indicates nevertheless that the essential completeness property
of tests with a.e. convex acceptance regions cannot easily by extended to other
than exponential families if the value of 6 specified by the hypothesis is an

arbitrary interior point of the parameter space.

We now consider tests of a simple hypothesis

0
: = §
HO ]

against one-sided alternatives
k6> 0%, 0eq

in a family @Q of distributions with densities p(x;0) with respect to a o-finite

measure A; X and Q are assumed to be Borel sets of Rk and R* respectively (in most

applications r = k).
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We say that a real=-valued function V¥ of vector argument x defined on
X <R" is non-decreasing in x if x' <.x (x',x ¢ X) implies y(x')< ¥(x). If
in addition x' < x (the inequality holding for all components) implies
Y(x') < ¥(x), then ¥ is said to be increasing in x.

We say that a closed subset A of‘mk is monotone if x & A and x' <. x imply
x'e€ A, If B is a closed subset of Hk, the closed monotone set {x]x <y, yeB}
is called the monotone extension of B.

A test § is sald to be monotone if for some closed monotone subset A of Bk

0 if xe X a int(A)
(1.4.18) 8(x) =
1 if x € X=A.

The class of all tests which are equal a.e.{k] to any monotone size-a test
of 6=GQ will be denoted by ﬁio(u). We call Jwb(u) the class of a.e. monotone
size~a tests of 9=90, or the class of size-a tests of p=0° with a.e. monotone
acceptance regions.

If ¥ is an increasing function of x on X and ¢ is an arbitrary constant,
a test &' satisfying

0 if ¥(x) < ¢
(1.4.19) §'{x) =
‘ 1 if ¥(x) > ¢

is a monotone test. The monotone extension of the set clos ({x|¥(x)< ¢} ) may
serve as the closed monotone set A appearing in (1.4.18). Conversely, given

any monotone test § there exist an increasing function ¥ and a constant ¢ such
that the test § satisfies (1.4.19). To show this, let A be some closed monotone

set, let ¢ = 0 and define

v, (x) = a7 (A,x) - S ®S-a,x)
where d*KB,x) = inf{dﬁxy,x)ly & B} and dﬁly,x) denotes the Euclidean distance
of x and y. Obviously wA(x) < 0 for x € int(A) and wA(x) > 0 for x € X=A. The
monotonicity of A ensures that wA is indeed increasing in x and hence the function
wA has the required properties.

Moreover, if for some function ¥ a family of tests is defined by (1.4.19)
for all sizes o by varying c, and if all these tests are monotone, then ¥ is
non=decreasing in x on X.

Let S(q) denote the solid hypersphere in R whose centre is the origin and
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whose radius is g, and let the Hausdorff distance of two subsets B
S(q) be denoted by

1 and B2 of

dgf

(1.4.20) d(B1,B2) inf {e|B1c: U(B.,e), B, C U(BTSE)} .

228 5o

where U(B,e) denotes the e~neighborhood of B.

We say that a closed subset B of S(q) is S(g)-monotone if x ¢ B and x' <,x,
x' € S(q) imply x'e B.

To obtain the analogue of lemma 1.4.1 for the class J%O(a) we use the same
method of proof as MATTHES and TRUAX [35]. Instead of BLASCHKE's selection theorem
(cf. EGGLESTON [15]th,32) we need the following more general result, which may e.g.
be found in P. ALEXANDROFF and H. HOPF [ 1], p.115.

Lemma 1.4k,

Let B1,B2,B3,... denote an infinite sequence of closed non—empty subsets of
S8(q). Then there exists a subsequence {Bn } such that
i

lim a(B , B) = 0

i i

where B is a closed non-empty set.

Corollary 1.4.1

Let B1,BgaB3,,.. denote an infinite sequence of closed S(q)~ monotone non—empty
subsets of S(g). Then there exists a subsequence {Bn }and a closed S(q)=~ monotone

non=empty set B such that *

lim 4B, , B) = 0

i i
Proof:
Apply lemma 1.k.L. The limiting set B is S(q)-monotone because a closed limit
{in the sense of the metric (1.4.20))of a sequence of closed S(q)= monotone sets

is always S(q)=~ monotone. Q.E.D.

Starting from this corollary we may proceed as in the proof of theorem 2.1.

in [35], with only minor modifications, to obtain the analogue of lemms 1.k4.1.
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Lemma 1.4.5

For any o-finite measure )\ dominating the family g)Q the class J%O(u) is closed

in the topology of weak convergence.

A feamily of densities p(x3;0), 6e9, x € X, with respect to a o=~finite measure
A is said to have monotone likelihood ratio (MLR) in the vector x if for all
8'.> 6'' the ratio p(x;6')/p(x;6'') is non-decreasing in x on X. If this ratio
is increasing in x on X, we say that the family has strict MLR in x. (Strict) MR
of one~parameter families of densities of scalar random variables is similarly

defined.

Theorem 1.4.3

Let gF(§1,...,§k) have density p(x3;0), 6€ Q, with respect to a o=finite measure A
defined on X C.Rk, and let p(x;6) be positive for all xe X and 8€ Q. If the
densities p(x36) have strict MIR in the vector x a.e. [A](where the exceptional
A-nullsets do not depend on the parameter 6 in the numerator of the likelihood
ratio), then the class J%O(a) of a.e. monotone size=-a tests is essentially complete
for testing eﬂeo against one-sided alternativese.zpo at level o for all 606- Q

and all 0 < o < 1, Conversely, if J%O(q) is essentially complete for testing

any e=eoe Q against e.zﬁo for all 0 < a < 1, then the densities p(x;6) have MLR

in ¥ a.e. [A].

Proof:
Suppose p(x3;6) has strict MLR in x a.e. [A]. Any Bayes test of p=0° againste.zpo
is equal a.e. [A] to a test & of the form

8(x) = ’ it [ [p(x30)/p(x;0%)] az(o) °
1 e.zpo > e,

where £ is a prior distribution and ¢ depends on the size of the test. The MLR
character of p implies that the integral is increasing in x a.e. [A].Hence E%D(a)
[ vﬁto(a) and the essential completeness of‘~ﬁ10(u) is a consequence of the
lemmata 1.3.2 and 1.4.5.

Conversely, suppose on(u) ig essentially complete for all 906 Q and all a.
Then any essentially unique size~o Bayes test of any e=90 against Qiﬁo is con=
tained in J%O(a). Any Bayes test of p=0° against a simple alternative 9=6'-z_60

satisfies a.e. [X]
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0 0 <c
§(x) = if p(x;0")/p(x;07)
1 >c,
where ¢ depends on the size of the test. Such tests are essentially unique if
§(x) = 0 (or 1) on the set where p(x;e')/p(x;eo) = ¢, Noting that this ratio
must be non~decreasing in x a.e. [X] since § is a.e. monotone for all c, the

proof is complete. Q.E.D.

This theorem is related to a result of BIRNBAUM f h], stating that any
monotone test is Bayes against some simple alternative. However, BIRNBAUM starts
from a much larger family of distributions and hence theorem 1.4.3 does not
follow from his result.

If X is a product measure and x seeesXy are independent with densities

1%
pi(xi;ei) (i=1,2,...,k), strict MLR in x of the family p(x3;8) = %pi(xi;ei) is
equivalent with strict MLR of each family pi(xigei) in X5, i=1,2,.4.,K.

Combining the theorems 1.4.1 and 1.4.3 we obtain sufficient conditions for
essential completeness of the class of tests with a.e. convex and monotone
acceptance regions for testing a hypothesis 6=60 against one-sided alternatives
e-iﬁoat all significance levels a. Essential completeness of this class was stated
without proof by R. SCHWARZ [h7] for exponential families. BIRNBAUM [ 5] gave a

stronger result for indepeﬂdent normal random variables.

Lemma 1,4.6 (A. BIRNBAUM)

Let S SPTRRES denote k independent random variables, where X is N(ui,1)
distrivuted (i=1,2,...,k). The class of size-a tests with a.e. convex and mono-
tone acceptance regions is minimal complete for testing u=(u1,...,uk)=0 against

p.> 0 for all 0 < a < 1,
1.5. TOTALLY POSITIVE FUNCTIONS

In subsequent chapters we shall occasionally apply the variation=diminishing
property of integrals with totally positive kernels. In this section we list the
necessary definitions and results that will be used in the sequel. The theory
has largely been developed by I.J. SCHOENBERG and S. KARLIN. For a detailed
exposition of the theory we refer to KARLIN's book [25].

Let K(y,z) denote a real function defined on YxZ where Y and Z are subsets
of.ﬁ1. The function K is said to be totally positive of order n (TPn) on ¥YxZ

if for all 1 <m <n
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K(y1,21) eaa K(y1,zm)

(1.5.1) K(V1“'”ym) def : . o

Zysens ol
1° *“m

fv

K(ym,z1) e K(ymgzm)

1 2
strictly TPn if the inequalities (1.5.1) are always strict. K is said to be

(strictly) TP if K is (strictly) TP for n=1,2,...
If a TP function K msy be written in the form K(y,z) = f(y=-z), where both

for all Y4 < y2 <eoa< ym and z, < z, <...< zm, yi € Y, zi.a 7. K is said to be

Y and 7 are the real line, then f is said to be a Pblya frequency function of
order n (PFn). If K is TPn, K(y,z) = f{y~z) but Y and Z are the set of all
integers, then f is said to be a P8lya frequency sequence of order n (also
abbreviated PFn).

Let K(y,z) be n=1 times continuously differentiable with respect to y for
each z € Z, where Y is an open interval. Then K is said to be extended totally

positive of order n in y = written ETPn(y) - if for all 1 <m <n

K(y,ZT) vee K(y,zm)
Ll P def 3 3
1.5. ? * = — ces T
(1.5.2) K (z1,.,,az ) Ay K(y,z1) oy K(y,zm) >0
m . .
o1 . m=1
et Kezg)ee Tz
3y oy
for all ye Y and 21 < 22 <ewn< zm, zi € Z.

If Y and Z are both open intervals and K(y,z) has continuous partial derivatives
of order 2n-2, then K is said to be extended totally positive of order n in both

variables ~ written ETP - if for all 1 <m < n

am—T
K(y,z) o K(y,z)
3%
(1.5.3) K*'(Z""’Z) dgf \ ) >0
et '5':; K(Yaz) o0 ’“‘“’"ﬁl‘f_:flK(yaz)
¢ dy oz N
am«1’ j2n-2"
= K(y,z)... W K(y,z)
for all y e Y and z e Z. ¥ ¥ “
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Total positivety of a function is often established by means of the following

lemma (cf. [25]th.2.2.4 and th.2.2.6).

Lemma 1.5.1 (S. KARLIN)

If K(y,z) is ETPn, then K(y,z) is also ETPn(y). If K(y,z) is ETPn(y), then K(y,z)
is also strictly TPn.

In the particular case where n = 2 we have (cf. [25]th.lL.1.5)

Lemma 1.5.2 (5. KARLIN)

Let K(y,z)>0 (ye Y, z€ Z, Y and Z are both intervals), and assume X to be
twice differentiable. Then K is TP2 if and only if

32
p log K(y,z)>0 for all ye Y, z& Z.

This lemma implies that a differentiable positive function f defined on R1 is
PF, if and only if d? log £(y)/dy? < 0 for all y.
As an example of TP functions we mention

K(y,2z) %7 a(y)o(z) expla(y)s(z)] ,

where a(y)>0, b(z)>0 and a(y) and g(z) are non-decreasing. K is strictly TP if a(y)
and B(z) are strictly increasing. Hence the densities of one-parameter exponential
families are TP.

We note that the TP2 property of one-parameter densities p(x;8) is equivalent
to monotone likelihood ratio (MLR) of p(x3;6) in x.

Let h denote a real function defined on Z. The number of sign changes S(h)
of h is equal to_n if for m=n a sequence z, < z, < seeSZos zie, 7, exists such
that either (~~»1)J+1 1(2.)>0 (321,250 ..,mt1) or (=1)9n(z,)>0 (§=1,2,...,m+1),
but for w=n+l1 such a seguence does not exist. In the fiist case we say that h
changes sign in the order (+-+-...) for increasing z, in the second case that h
changes sign in the order (~+-+...) for increasing z.

We now state the fundamental variation-diminishing property (chéﬁ]th*5‘3a1),

Lemma 1.5.3 (S. KARLIN)

Let K be TPn on Y*Z, let X be a o~finite measure on Z, and let g(y) be defined
by the absolutely convergent integral
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(1.5.4) gly) det [ X(y,z)n(z)ar(z) (yeY).

1f 8(h) < n-1, then 8(g) < s(n); if s(g) = S(n), the functions h and g change

sign in same order.

The following stronger form of lemma 1.5.3 is also important (cf.[?S}th.S.B.E).

Lemma 1.5.4 (S. KARLIN)

Let K be n-1 times continuously differentiable with respect to y for all z e Z,
where Y is an open interval, and let K be ETPn(y) on ¥xZ. Let g(y) be defined by
(1.5.4) and assume that differentation of g may be performed n-1 times under

the integral sign appearing in (1.5.4). If S(h) < n-1, then g has at most S(h)

zero's counting multiplicities, unless h vanishes a.e.[A] on Z.

We shall also need a theorem due to B. EFRON [1&],

Lemma 1.5.5. (B. EFRON)

Let x <%y be independent rangom varisbles with densities f1(x),f {(x),..

12&p0s 2
g,,fk(x) respectively, and let s =.z X The measure ) is assumed to be either
Lebesgue measure or counting measu%gl and the functions fi are assumed to be
PFg. Let F be a real measurable function of k arguments that is non—decreasing
in each of its arguments. Then the conditional expectation

(1.5.5) E[F(z,s..0x )] s=s]

is a non-decreasing function of s.

1.6. MOST POWERFUL TESTS AGAINST SIMPLE ALTERNATIVES

Let L. denote a test statistic for testing the hypothesis ei=eg

W’EQ""’Ek be inde~

pendent (k>2). Suppose &, has density pi(tigei) with respect to a o=finite

against the alternative 0.> eg s 1=1,2,...,k, and let t
1 t

measure A, defined on the Borel sets of R! for all b, € [Sg,w), i=1,2,... k.
We consider testing the simple hypothesis
6° 0y

H: 6 = K

= (e?,...,e

sgainst the simple alternative
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K' : 8= 0! = (9;,..e,e£ ), oL i.eo
on the basis of t

P oty s

Let Li denote the logarithm of the likelihood ratio

0
o= « Q1 - .
L.(t.) = log pi(ti,ei) log pi(ti,e.)

iv7i i’ ®

then  according to the NEYMAN-PEARSON lemma, the most powerful size=-o test of
H against K' rejects H if

L.
'

(1.6.1) (t.) > ¢,

= -

il D~

i
where ¢ depends on a(randomization may be necessary on the boundary of the
critical region) .

If the densities pi(ti;ei) constitute one~parameter exponential families
Q. (0.)t.

i .
(1.6.2) p,(t;30,) = C.(6.) e o 121,200 .k,
where Qi is an increasing function, the most powerful size-o test of H against

K' rejects H if
1

L 0
(1.6.3) ) fo;(01) = q(6)) &, > c .

Conversely, in the case of exponential family distributions any given linear

combination procedure: reject H if

k
_Z g, > c (gi > 0, i51,2,...,k)
1=
is most powerful against all alternatives 6' = (e%gg.naei) satisfying

0 .
Qi(ei) - Qi(ei) = Ygig Yy > 0, 1=1,2,...,k.

Of course most powerful tests are only of practical value if the experi=-
menter has more or less precise ideas about possible alternatives. But in that
case a most powerful combination procedure should be used, because automatic
application of some global combination method (e.g. FISHER's procedure) would
involve a loss of power that may be considerable.

It is therefore of some interest to consider combination problems and
investigate against which alternatives well-known combination procedures are

most powerful. The combination problems to be considered are: (i) the combination



37

of sign tests, (ii) the combination of tests in 2x2 tables and (iii) the combi=
nation of two-sample tests of WILCOXON. In a separate paragraph we pay some
attention to FISHER's omnibus procedure (cf. section 1.2), since it is perhaps
the best known combination method. The combination of t~tests is discussed in

chapter 3.

(i) Consider k independent binomial random variables s a8y where s

15_5.23-
is bin (pi;ni) distributed (i=1,2,...,k). The hypothesis to be tested is
Hip= (p,eesp) = (oeensd)
against alternatives
K:p.> (3,...,3)
This testing problem arises if k sign tests are to be combined. Put
ei =p; /(1—pi) . i=1,2,....Kk,
then the distribution of N is an exponential family with respect to ei,
where Qi(ei) = log 6, (ef.(1.6.2)). Hence the most powerful combination procedure
for testing H against the simple alternative
K' tp=op'.> (3,.00,3)

rejects for large values of the test statistic

{1.6.4) s. log 0! .
=i i

1

II.M??‘

1
One possible way of testing H against K is based on pooling of allkobser*
vations ; H is then rejected for large values of the sum statistic § =.Z 8-
It is easily seen that this sum test is most powerful against alternat%ggs
(p;,.g»,pé) satisfying p% = pé = ... =p£. Application of thig test is very simple,
because S has a bin(3, Zni) distribution under H and critical values are thus
readily available. l

If weights g, are introduced, i.e. if H is rejected for large values of
k
(1.6.5) §g =) g8, (gi > 0 for i=1,2,...,k) ,
i=1

this weighted sum test is most powerful against alternatives (p%?@..,pé)
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satisfying
Ygi .
pi /(1'pi) = e ,y > 0 (i=1,2,...,k).

To investigate this unwieldy relation more closely, we put
Pl =3} + ¢, (i=1,2,...,k)

and obtain

log [Pi/(1"pi)] = b e, * Cj(ef) for . » 0 .

Hence for small e, (i.e. for near alternatives) the test based on §g will be
approximately optimal against alternatives satisfying €:=V8; (i=1,2,...,k).
Critical values of §g may be obtained by direct computation (if the n, are very
small and k is small) or by the normal approximation to §g (if the n, are not too
small or k is rather large).

With the normal approximation in mind a test of H against K is often based
on the sum of the standardized (under1H) statistics 8. The resulting test is
equivalent to a §g*test with g, = nim§ (i=1,2,...,k). Hence the alternatives

against which this test is most powerful heavily depend on the sample sizes n; .

(ii) Consider k 2%2 tables , i=1,2,....k :

Success Failure Total

First series a. c. m.

=i =i i

Second series b. d. n.

-1 =i i

Total r. S. m.+n.
=i i1

The conditional test for testing equality of the probabilities P 4 and P 5 of
3 ?
success in the first and second series against the alternative P 4 > P 5
b k]
rejects for large values of Eﬁ' Putting

(1.6.6) ei =P (1~pi’2)/{pi’2(1-pi’1)} .

the conditional distribution of 2 (given = r.) is an exponential family with

i

i
.6.2)). Hence the optimal combination

—_

6. (0.) = 6. .
respect to 8., where Ql( 1) log 6, (ef.(

procedure for testing
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against the simple alternative
K' 28 =06",> (1,...,1)

rejects H for large values of

k
(1.6.7) 121 a; log ei .

However, in terms of 1 and pi 5 the alternative K' seems rather hard to
9 3

1
interpret and it is therefore often preferred to test against alternatives like

1 - ¢ - S =
pi’1 pi’2 ei >0 s 131,240 .. 5K,

For e 0 we find
2
[ ' wpy !
(1.6.8) log 0} = e;/ (v} ,(1=p} )} + T (e])

and thus log ei depends on the unspecified value pi . But for large sample

5 1

sizes m. and n, and small Ei we may estimate p{ from the marginal totals and

1
k]
it turns out that if all m, and n, tend to infinity and €y tends to zero as

-1 .. .
fast as (mi+ni) , the conditional procedure that rejects H for large values of
k (m.+n.)2
171

(1.6.9)

€.8.
. r.s. i=i
1= 171
is asymptotically optimal in this case.
Similarly, the test that rejects H for small values of the test statistic

k m.+n.
i

(1.6.10)

£.8.
. 5. 11
1=1 i

is approximately optimal against alternatives of the form

p! ./ p!

= + 1= oo e
i, i,0 1 ef o 1 1.2, .k

for large sample sizes m, and n; and small €;-
Pooling of all data in a single 2%2 table leads to the test statistic

a; conditional on g r, = g . If p“1 = p2,1 N Pka1 and p1’2 = p2,2 = L.,
this test statistic has a hypergeometric distribution under H and the

[ e

Pk,2 2

related test is optimal. However, if the 12 and P 5 do not have this property,
9 El

1
the statistic has a complicated distribution both under H and the alternative

and hence pooling is not indicated in this case.
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Conditional on r, =r, for i=1,2,...,k the test based on the statistic 2 2
is of course optimal against alternatives satisfying ea =8é =, ,, = ei. The *
test statistic proposed by COCHRAN [7 ] is in fact equivalent with Z 2 in his
opinion situations where (p:!L,1 - Pi,Q)/ {pi,1(1—pi,1) }is constant 'frequently
occur in applications and the test based on Z a; is approximately optimal in this
case (cf. (1.6.8)). Weighted versions of thi3 test have been proposed by several

authors for testing H against K. If the &, ere standardized (under H, conditional

gi=(mi+ni)/mini are advised. In both cases the alternatives against which these
weighted versions of the Z 2 test are optimal depend on the sample sizes in a
rather intricate way. *
To determine critical values of all the above combination methods one has
to rely on the asymptotic normality of the test statistics, unless the sample

sizes are so small that exact computation is feasible.

(iii) Consider k pairs of samples of independent observations X. .:X. ,s««-

1,171 ,2
’Ei,mi and Mi,1’xi,2""’xi,n. , i=1,2,...,k, where Ei,j and Xi,j have contilnuous

distribution functions F. and G. respectively and G.(x) = F.(x.-A.). Let U.
i i i i1l =i
denote the number of pairs (x. ..y. . in the i=th sample with x. . < y. .

P (-1,3’3&1,3') ° .5 S,

j=1,2,...,mi, j‘=1,2,...,ni.Then WILCOXON's two-sample test for testing Ai = 0
against Ai > 0 rejects for large values of the statistic Qi. The hypothesis

to be tested in this case is

H: A= (A1,...,A ) =0

k
against
K:aA.>0

Since this is a nonparametric problem, only asymptotical results can be obtained.
We suppose that m, and ng tend to infinity in such a way that mi/ni tends to a

positive finite limit and that the true value Ai of Aitends to zero. Putting

8. = [ F.(x) aF.(x.=0.) ,
1 1 1 1 1

it can be shown (cf.[16] and [60]) that the test that rejects H for large values
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of the statistic

(1.6.11) iET (e! -3) (mi+ni+1)"1 u;

is an asymptotically most powerful test of H against near alternatives

Ai=Ai (i=1,2,...,k) . In case e; = eé = ,., = ei, the test statistic (1.6.11)
reduces to

(m.+n.+1)_1 U..
i i =i

o

i=1
This test was first proposed by VAN ELTEREN [16] who calls it the locally best
W-test. He also put forward another test based on the statistic

& -1
(1.6.12) iZT (mini) u

which is obviously also asymptotically most powerful against appropriate alter-
natives depending on the sample sizes. This combination procedure is also
advised in [42]. VAN ELTEREN proposed the test (1.6.12) because it is a designfree
test, i.e. its consistency does not depend on the sample sizes. The designfree
approach is motivated by the fact that it is desirable to reject H if the majority
of the Ai are positive and only a few are negative. However, this argument does
not apply in the present context, since we have assumed the Ai to be nonnegative.
If the gi are standardized (under H) and added, the resulting linear
combination of the gi is an asymptotically ogtim?l t?st statistic against near al=-
ternatives 6' satisfying ei -3 = Y(mi+ni+1)2mi—éni“§ (y >0, i=1,2,...,k) .
Critical values of a linear combination procedure may again be determined

by the normal approximation to the test statistic.

In each of the examples (i), (ii) and (iii) it is seen that the linear
combination obtained by adding the standardized individual test statistics provides
a test of H which is (asymptotically) optimal against alternatives 6' depending
strongly on the sample sizes, relatively large sample sizes corresponding to
relatively small ei. Nevertheless we shall find in the sequel that in the large
sample case these tests enjoy certain optimum properties among all linear com~
bination procedures if all possible alternatives are taken into account.

In some applications the sampling design is such that the sample sizes n.
of the individual experiments are proportional to the respective population sizes

Ni (i=1,2,...,k). The combination problem is not essentially influenced by such a
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design. It may also happen that the hypotheses are formulated in terms of the

Ni' This occurs e.g. if the hypothesis ZNi8i=O is to be tested against the al=~
ternative ZNi6i>O. If the ei are known to be nonnegative, this problem reduces

to the oriéinal one~sided combination problem of testing 6=0 against 6.> O.

If on the other hand the ei are not restricted to be nonnegative, we get an entire=
ly different testing problem outside the scope of this study.

Finally we make a few remarks on FISHER's omnibus combination procedure. We

assume that 21’32""’Ek are distributed according to the exponential families
(1.6.2) and that the hypothesis H : 0 = 60 is to be tested against the alter—
0

native K : 6.> 6 . In this case FISHER's procedure rejects H for small values of
the statistic

k 0
(1.6.13) i£1[1—Fi(§i;ai)] ,
where Fi(.;sg) denotes the distribution function of Ei if ei=eg (i=1,2,...,k). It
is rather exceptional that the test statistic (1.6.13) is equivalent to a linear
and hence FISHER's procedure will in general not be most

function of t <t

polpoe ol
powerful against a simple alternative. Moreover, it seems to be unknown whether
FISHER's test is admissible for all one~sided combination problems in exponential
families. Since the tests with a.e. convex and monotone acceptance regions con=
stitute an essentially complete class (cf.section 1.4), it would be a first
prerequisite to show that FISHER's test belongs to this class. The monotonicity
is evident, but to the author's knowledge the convexity of the acceptance region
has been established only in special cases.

Properties of FISHER's omnibus procedure have usually been studied starting
from the one-sided tail probabilities D, = 1 - Fi(Ei;ei) , 1=1,2,...,k. It is then

assumed (in the absolutely continuous case) that the hypothesis

e

H PR is uniformly distributed on [0,1] 2,171,254 40,k

is to be tested against the alternative

K B has a non-decreasing density on [0,1] y
i=1,2,...,k. It has first been shown by A. BIRNBAUM [ L4](cf.also T. LIPTAK [34])
that any test with a monotone acceptance region in (p19..e,pk)—space is most
powerful against a simple alternative in K . This is not surprising, because

the class of alternative distributions defined by K is a very large class indeed.
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Since FISHER's procedure has a monotone acceptance region in (p1,...pk)“space,
it is most powerful against a simple alternative in K. In fact, it has already
been shown in 1938 by E.S. PEARSON [36] that the omnibus test is most powerful
against the alternative that each B is distributed with density (m+1)(1"pi)m,
=1 < m < 0. However, these results are only of a limited value, since in most

applications the class of alternative distributions will be much smaller than K
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CHAPTER 2. NORMALLY DISTRIBUTED STATISTICS WITH KNOWN VARIANCES

In this chapter, which is based on a joint paper [5@] by W.R. VAN ZWET and
the author, procedures for combining k normal random variables with known varian-
ces are discussed.

In section 2.1 it is shown that many combination problems asymptotically
reduce to this problem for large sample sizes. In section 2.2 some fundamental
properties of admissible combination procedures are established and in section
2.3 the most stringent (MS) test is constructed in a number of special cases.
Some of the results are not only derived for the normal case, but more generally
for one-parameter exponential families of distributions satisfying appropriate
conditions. In section 2.4 it is shown that a class of tests exists, including
the likelihood ratio (LR) test and FISHER's omnibus procedure, having uniformly
vanishing shortcoming as the size o tends to zero. An asymptotic expression for
the shortcoming of the LR test is derived and the asymptotic shortcoming of se~—
veral combination methods is studied in some detail (for a~>0). Finally in section
2.5 various combination procedures are compared numerically. It turns out that
for moderate or small sizes the LR test and FISHER's procedure are rather satis~
factory if no prior information concerning the k means is available. However,
when there is some prior information indicating that the means of the normal
distributions are not very much different, symmetric linear combination is more

adequate.

2.1, LARGE SAMPLE THEORY

The combination problem to be investigated may be formulated in the follow-
ing way. For i=1,2,...,k let Ei’n. denote k independent test statistics, based
on n, observations, for testing Ythe hypothesis Hi,o : ei = 92 against alter-
natives ei > eg. We wish to test the combined hypothesis
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0= 60

against one-gided alternatives

K< 0.> 0%,

vhere 6 denotes the vector (61""’6k)'

For most combination problems UMP, UMP unbiased or UMP invariant tests of
H*'against K do not exist. Lacking other satisfactory criteria, one may then try
to find a minimax test with respect to some risk function, or any other test which
closely resembles such a minimax test. Our interest will be concentrated on MS
tests, because they are uniquely determined, as opposed to maximin tests which
depend on the zone of indifference (cf.section 1.3).

In most applications the power functions of the k individual test statistics
Ei,n are sufficiently intractable to defeat any attempt to obtain satisfactory
combination procedures for testing i against K in the small sample case.
However, the statistics Ei n. are often asymptotically normally distributed for

2

. . . i
increasing sample sizes, not only under Hi 0
3

tending sufficiently rapid to the null hypothesis as n, e, Exploiting this pro=-

but also for sequences of alternatives

perty we may try to find combination methods which are at least asymptotically
optimal in some sense. This is the classical approach to complicated testing

problems which has first been applied by J. NEYMAN and E.J.G. PITMAN. In chapter

I we shall briefly discuss a different asymptotic approach where the size o is
a function of the sample sizes and tends to zero as n, > . But for the present

we assume that the significance level o is fixed.

Let the sample sizes n; be functions of an integer N such that lim ni(N) = oo
=0
for i=1,2,...,k. Then we may write t N instead of 31 ., . Our asymptotic approach

is based on the following result of P. BILLINGSLEY end 'F.TOPSGE [3 ].

Lemma 2.1.1 (P. BILLINGSLEY and F. TOPS@E)

Let {FN}denote a sequence of ‘distribution functions defined on Rk(kzz)converging
weakly to a distribution function F(i.e.FN converges pointwise to F on the set of all
continuity points of F). Let S denote a class of Borel sets A of Bk satisfying

(2.1.1) lim sup P (U(3A,e)) = 0,
e*0 Aed

where P is the probability measure induced by F and U(3A,e) is the e-neighborhood
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of the boundary of A. Then

(2.1.2) lim [,dF = [, d4F uniformly for all Ae J.
R S

With the aid of this lemma we prove
Theorem 2.1.1

Let {F } denote a sequence of distribution functions defined on RS (k>2) conver=-
ging weakly to an absolutely contlnuous distribution function F. Let.ﬁldenote the

class of all monotone Borel sets of B (cf.section 1.4).

Then

(2.1.3) lim [,aF = [,aF uniformly for all Ae J{.
N->c0

Proof':

Let § > 0 be arbitrary and let A= A1X.,°xxk denote Lebesgue measure on<Rk. Since

F is absolutely continuous, there exists e > 0 such that for any Borel set BCI¥{
(2.1.4) A(B) < e implies P(B) < 36 ,

where P denotes the probability measure induced by F. Perform a rotation of the
coordinate axes XyoXpaee s X in.]Rk to new axes x;,xé
! = axis coincides with the line x_ =x =...=x . Let D be the set {x'|~d<x <d,

1 172
i=1,2,...,k} and choose d so large that P(D)>1—26 Let O<e <a{2k (2d)k 1} -1

,...,xi such that the new
x

E)

let A be an arbitrary monotone set in R and U(%A, £, ) the e.-neighborhood of its

1
boundary. It follows from the monotonicity of th§ set A that any line parallel to

the xa—axis has at most a segment of length 2¢ ké in common with U(BA,e1), Hence

MU(34,e4) A D) -{ f% (tx!|x"e U(aA,e)ND}) ax) ...ax! < 2 iki(2a) < e,

-4
and therefore;by(2.1.4),P(U(84, 51)r\D) < 38. Thus

P(U(8A,e1)) < P(Uu(sa4, €, )AD) +1-P(D) < §.
As § was arbitrary and € does not depend on the particular set A e./(
follows that
lim  sup _ P(U(aA,e1)) =0
e>0  Aek

and application of lemma 2.1.1 completes the proof of the theorem. Q.E.D.
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Corollary 2.1.1

Let ByaZpse ey be independent and normelly distributed random variables with

1

MEANS U, sl 5000 ,5H
1
() 2 k

Z @ ('%'1,1\1””’“?:?{31\1

(g1,...,§k). Then

and unit variances. Let the sequence of random vectors

) for N - converge in law to the distribution of z =

(2.1.5) lim P(y(z <ec) = P(Y(z) <c)
uniformly for all real c¢ and all functions ¥ which are non=-decreasing in the

vector z (cf.section 1.L4).

y ére asymptotically

and real=valued functions W
5

Now assume that the independent test statistics Ei
3
normal, i.e. there exist positive numbers o

such that, if Gi

N
3
y ére the true values of the parameters 6,
9

(2.1.6)

(E'i,N - ui,N(ei,N))/ Gi,N s 1®1,2,....k

tend in law to the standard normal distribution for N»e for any sequence
{ei,N} satisfying

lim 6, _ = 6, , i=1,2,...,k.

N0

Given the statistics t we wish to test the hypothesis i

1,N° —2,N°"°’ER,N
against alternatives

e

Ky i85 =0, p 5 i51,2,0. 0k,
satisfying the conditions
(2.1.7) Lin o, y = o) ,
(2.1.8) Lin (g y(6; ) - by (090 fog = wy (sey) 2 0

for i=1,2,....,k, with My > 0 at least once.
Define

- - 0 -
Z oy = (Ei,N ”i,N(ei))/Oi,N s im1,2,....k.

Then obviously z; is asymptotically N(0,1) under H and asymptotically N(ui91)
%

N
under the sequence of alternatives K§~.
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Consider any monotone combination procedure of limiting size a,

i.e. a procedure

) > ¢,

@ ke 0
(2.1.9) reject H if w(51,N""’Ek,N >

where ¥ is non—decreasing in its vector argument and

lin ay = lin P(y(z ) > el ) = a.

Nowoo Neo

A
1,823 N

Let 51’52""’§k be independent and let Ei be N(ui,1), im1,2,...,K.
Consider the hypothesis

H:wu =(U1a"ﬂauk)=o

and the composite one-sided alternative

K:p.> 0.

Then according to corollary 2.1.1 , the limiting power for Now of the monotone
combination procedure (2.1.9) against K; is equal to the power of the monotone

sizewg procedure
reject H if y(x ,...,xk) > ¢

for testing H against the alternative y defined by (2.1.8).
Suppose we adopt some optimality criterion based on the power of the
combination procedure and find an optimal test of H against K. If this test

is monotone, the procedure obtained by replacing x by z. is asymptotically

optimal for testing H against all alternatives of the forﬁ KN among all
monotone combination procedures of limiting size o for this problem. If the
optimality criterion adopted is stringency, this conclusion remains true
provided the most powerful tests of H*-against simple alternatives are also
monotone.

In the subsequent sections of this chapter the problem of testing H against
K will be discussed. Optimal tests of H against K are necessarily monotone since
all other tests are inadmissible (lemma 1.4.6). Moreover, we have shown (theorem
1.4.3) that monotone procedures of size o constitute an essentially complete class
for testing B against K whenever the densities of the individual test statistics
t. have strict MLR in t.

=1, i,N°
against K yields an asymptotlcally optimal test of H against K in this case.

Hence the construction of an optimal test of H
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Of course the monotonicity condition is unnecessarily restrictive and the
limit relation (2.1.5), on which the preceding discussion was based, holds for
a much larger class of test statistics Y. Hence we may expect that our argument
remains valid in many cases where the densities of the individual test statistics
. In the author's opinion the assertion of corollary

N
2.1.1 will break down only in pathological situations, where the individual sta-

do not have strict MLR in ti
3

tistics gi Ny &ve inadequate for testing Hi o Obviously, the combination of poor
9 9

tests will only give rise to poor combination procedures.

We conclude this section with two simple examples.

Example 2.1.1

Let Xi91’xi,2""’xﬂ,ni , 1=1,2,...,k, be k samples of independent normal

N(Vi’ci) observations #ith unknown v; and c% . To test the hypothesis H, 0iv;= 0
2

against vy > 0 the optimal (UMP unbiased and UMP invariant) size-a test is the

STUDENT t~test

reject Hi,O if Ei,n. i-ca,n. R
i i
where
ng ng
.
. - 2 .1 2 .1 . 2
S THR s oy tn Lowy o osmtgs Lty
1 1 g=1 1 J=1
and ¢ n is an appropriate critical value.
2T
Let v, =~ denote the true value of vy (i=1,2,...,k). Writing
E R p
i
3 2
t. = RV /8.ty “s. im1,2,0 00
“i,ng (x1. vl,ni)nl/”l Vl,ninl/“1 > 15152, ok

the first term of the right hand member is asymptotically N{(0,1) for D, o and the

second term converges in probability to

e ol

o= 1im v, n
My i,n.
I, -0 1
1

lo; 5 1=1,2,000 0k,

provided the limit exists. Hence L, | tends in law to the N(ui,1) distribution
- sty
ir Vi is of order nié(im,z,...,k)l Moreover, the non=central t-~distribution
W1
has strict MIR in t (cf. LEHMANN [31]p.233). Therefore the asymptotic theory

of this section can be applied to test the hypothesis H' : v = (v ) =0

goee eV
against K ve> 0.
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If the variances ci are known to be equal to some unknown 02,

k k
2 _ .2 _
5 = i£1 (n,-1)s] /321 (nj 1)

is the best estimator of 02 and it is intuitively appealing to base tests of i
against K" on the statistics E:;n. =¥, n%/ﬁ , 1=1,2,...,k. These statistics

are not independent, but their jo%nt distribution converges to the joint dig=
tribution of k independent N(ui,1) random variables under the same condition

as in the preceding case. Hence corollary 2.1.1 is again applicable. More details

are given in chapter 3.

Example 2.1.2

Let s ] denote the number of successes in k series of

1,n1’ —2,n2"°°’ E-k,nk
Bernoulli trials. In the i=-th series ng independent trials are performed, each
with probability p; of succes, 1=1,2,...,k., We wisk to test the combined
hypothesis B : p1ﬂp2ﬂ...=pk=% against K* pii% for all i with strict inequality
at least once. This problem arises if k sign tests are to be combined (cf.section
1.6 (i)).The UMP test of Hi,O :p; = 1 against p; > 1 is of course the one=sided
binomial test based on Ei,ni’ or equivalently on

3
. (s. - .
1,0, i =i,n. i
i i

ol
js]
~—
“
-
i
-
-
n
©
.
o

If p. is the true value of p. and
i,n, i
1
W =2 lim (p. _ =3) ni s 1m1,2, 000 ,k,
nze i

it

exists, i.e. if p. - 1 is of order n.
i,n. i

that Ei tends in 18w to the N(ui,T) distribution. As the distribution of Ei
3

, then it is again easily verified
S,
has strict MLR in ti,n.’ optimal tests of H against K in the normal case lead
to asymptotically optiﬁal tests for this problem also.

We note that in the ei?eptional case where ng=n, T ... == 1,
an UMP inverient test of H against K*existss viz. the sign test applied to

81,1580, 100 o g (cf. LEHMANN [31]p.219).
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2.2 GENERAL PROPERTIES

In the preceding section it was shown that for sample sizes tending to
infinity many combination problems asymptotically reduce to the following testing
problem.

Let x 52,.e.,§k denote k independent random variables (ki?)s where Ei has

13
a normal N(ui,1) distribution, i=1,2,...,k. The hypothesis

H :U:(U.]s'“suk):O
1s to be tested at level o against the onewsided alternative

K p.> 0.

First let us assume that the alternative y is known. Application of (1.6.3)
yields that the most powerful size~o test of H against the simple alternative
W rejects H if

X.
11 o

k k 2.3
(2.2.1) Dowx. > ou () wh)®,
i=1 =
where v denotes the upper o-point of the standard normal distribution. The

power of the test against this alternative is easily seen to be equal to

k 1
(2.2.2) 8;(p1,..o,uk) =1 -0 (u = z u9)E)

where ¢ denotes the standard normal distribution function.

If the alternative is unknown and H is tested against K, (2.2.2) denotes the
size-q envelope power function.

In our search for tests with uniformly good power properties for all
alternatives in K we may as well restrict our attention to nonrandomized tests
with monotone and convex acceptance regions (cf. section 1.4), since according
to lemma 1.4.6 these tests constitute a minimsl essentially complete class.

We note that the monotonicity of the admissible procedures ensures that
any admissible size—o test of H against K i1s also an admissible size=o test of
the extended null hypothesis

Hext top < 0

against K. Similarly, any optimal size=q test of H against K is also optimal
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for testing Hext against K.
The class of admissible size-a tests is essentially larger than the class of

all size=o Bayes tests, as is demonstrated by the following theorem.

Theorem 2.2.1

For any k > 2 let A denote the acceptance region of a size-o Bayes test of H
against K. Then any line of support of A either meets clos(A) at exactly one
point or it is contained in the boundary of A.

Proof':

Let G(u) denote an arbitrary prior distribution function on the set
{u|“=(“1""’“k> .> 0} . The size-o Bayes test of H against this prior distri-
bution rejects H if

8
8
-

(2.2.3) t(x) = t(x,,0 0 0ox,) bl R ) b )AG () > e,
0 0 i=1

where

and ¢ is an appropriate constant. Let u = (uT,...,uk) and v = (v1,..,,vk) be

two points on the boundary of the acceptance region A, i.e.

t{u) = t(v) = c ,

and let P* denote the measure induced by G on the parameter space. We consider

two cases.

k
a) Suppose P( Z ui(ui—vi) #0) = 0. Let z = (21,...,zk) be defined by
151

z =pu+ (1=p)v y= ® < p < o . Then

k
o e
vy +piz1 ui(ui“vi)] ac (p) = c.

Il o~ b

oo (o]
t(z) = f..,f exp [
0 0 1=1
Hence the line through u and v is also part of the boundary of A in this case.
k
b)  Suppose P’ y ui(ui—vi)¢o )>0, and let O <p < 1. Since
i=1

g h

exp (pg + (1=p)h)< p e® + (1=p) e

for all real g and h with equality if and only if g = h, we find that for any
point z defined by z = pu + (1-p)v
t(z) < o t(u) + (1~0) t(v) = c.
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This implies that the line through u and v is not a line of support of A since

any point z between u and v is an interior point of A. Q.E.D.

It would be of some interest to characterize the boundaries of acceptance
regions of Bayes tests, but unfortunately simple explicit conditions seem
difficult to obtain.

The validity of theorem 2.2.1 is not restricted to the case where EioeoosXy
are normally distributed, but obviously holds for a large class of distributions
including the absolutely continuous one~parameter exponential families.

As a measure of the performance of an admissible size-o test ¢ we consider

its shortcoming
+
(2.2.4) Rg(u) = R ) = 8 () = Bs(u)

(ef. section 1.3), or equivalently, if A is the acceptance region of §,

k

(2.2.5) Rd(u) = P((§1,...,§k)€: Al w) - ¢(ua - (121

2,3

Hi)).

We shall show that, with some well-defined exceptions, the shortcoming of an
admissible test has only one relative and absolute maximum on any half-line
through the origin in the positive orthant. In fact this fundamental property
holds for a much wider class of distributions and we shall therefore prove a

more general theorem.

Let XyaXpseeooXy be independent with joint density

k eixi
(2.2.6) p(x30) = T C.(0.) h.(x.)e , 6e

. itit it

1=1
with respect to either Lebesgue measure or counting measure, where the sample
space X is the cartesian product of k intervals (in the absolutely continuous
case) or the cartesian product of k sets of subsequent integers (in the discrete
case), and p(x3;06) > 0 for all xe X and 6e¢ Q . It is assumed that the set
{e]e > 0} is a subset of the interior of the natural parameter space of the

exponential family (2.2.6). We consider testing the hypothesis
H' 2 8=(8,,...,6) =0

against one-sided alternatives
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By a strongly increasing (decreasing) real-valued function of scalar argument

we mean a function with a positive (negative) derivative.

Theorem 2.2.2

Let RIS SPRRRYS. N (k>2) be distributed according to the exponential family (2.2.6)
and let the assumptions mentioned above be satisfied. Let the functions

h1gh2,...,h be PF2 (cf. section 1.5). Let 8 be an admissible size-a test of the

k
hypothesis H' against K'. For any fixed vector (c1,a.,,ck) with nonnegative

coordinates satisfying 2§§ = 1 we define

dgf

+
(292n7) f(p) Ré(C-Ipa"':CkD) =Sa(€1p9”'~&Ckp)"86(C»‘pa'=*9Ckp)o

Then,with the exceptions mentioned below, f has a unique relative maximum on
(0,%) that is also its absolute maximum. In fact, f decreases strongly away from
this maximum on both sides, vanishes for p = 0 and p »», and has a negative
second derivative at the maximum.

The exceptions occur in the following two cases:

(i) the test & rejects H'for large values of zciﬁi , in which case £ vanishes
identically for all p > 0

(ii) the test § does not involve X, for those values of i for which L, > 0, in

which case f is strongly increasing for all p > O.

We remark that tests of the hypothesis 6= 60 against 8.3.60 reduce to tests

of H' against K' if new parameters 8{ =9, = @? are introduced. If the functions
h, are PF,, the functions hi(xi) exp(egxi) arising with this transformation are
also PFQ.

Proof of theorem 2.2.2

It follows from lemma 1.4.2 and theorem 1.L4.3 that the class of tests with a.e.

monotone and convex acceptance regions is essentially complete (cf. section 1.4),

Hence it may be assumed that § belongs to this class. Moreover, it may be

assumed without loss of generality that the critical function § is non-decreasing

in x on X, including the boundary of the acceptance region A. This is a con-

sequence of the fact that, if 0 <. x' and G(XO) > 0, 6(x') < 1, the power

of § can uniformly be improved upon because of the strict MLR of p(x;6) in x.
First we consider the exceptions to the theorem. In case (i) the test &

is a most powerful (MP) size~a test of H' against the alternative (Q1p5s,sggkp)
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for every p > 0. Hence f(p) = 0 on (0,») in case (i). In all other cases we have
f(p) > 0 for all p > 0. In case (ii) the power of § against (§1p,...,gkp) does not
depend on p and to prove the assertion for this case we have to shovw that the
envelope power is strongly increasing in p.. The MP size=~g test of H' against
(Q1p,...,§kp) rejects H' for large values of the statistic
k

=7 i—; Ed
The density of s is again of exponential family type with parameter p; let us
write its density with respect to the appropriate measure )\ as

v(o) g(s)e”®

(cf.(2.2.9)) and let §"(s) denote the critical function of the MP test. Then

(2.2.8) B: (;1p,...,gkp) = Y(g)f §*KS)S(S) eps as),

and, since & is non=decreasing, exp(ms) is ETP(p) (cf.section 1.5) and (2.2.8)
may be differentisted with respect to p under the integral, it follows from
theorem 6.3.4(c) of S. KARLIN [25] that (2.2.8) is a strongly increasing
function of p.

Disregarding the exceptions (i) and (ii) for the remainder of the proof,
we shall first establish that f(p) > 0 for p ==, Let X*E X = clos (A). Since
the exceptional case (ii) has been excluded and A is monotone and convex, there

exists a supporting hyperplane
k
i=1
of A separating x*-and clos(A) such that Ve > 0 for i=1,2,...,k and vjcj > 0 for

some je{1,2,...,k} . Writing z = Zviéi , we find for any p > 0
Bs(qoseenatyp) 2 P(22a]2 psenvuty0) 2 P(22d [Lg0, £ip= 0 For if]) = bld,p), sey.

The last inequality is motivated by the fact that VX is stochastically increas=
ing for increasing p for any i for which vi§i> 0. The positivety of the functions
hi implies that b(d,p) > 0. Moreover, under the condition g, 0= 0 for i # J, the

distribution of g is an exponential family with parameter ngyvje It is now

easily shown that b(d,p) > 1 forp - , implying
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lim Bs (g1p,...,; ) = 1.

o ¥

Hence f(p) -~ 0 for p»« . In the discrete case it may happen that no point

x"e X = clos(A) exists (although O<a<1). In this situation 6(x) = 0 for all

x € X with the exception of Xoox = (x1,max""’xk,max)’ where xi,max is the

largest value that can be assumed by X, (i=1,2,...,k). But in this case §

is a MP test of H' against <C1p,--.,§kp), i.e. we are in the exceptional case (1i).
Thus we have found that f£(0) = 0, f(p) > 0 for all p > 0 and f(p) + O for

p =, Without loss of generality we assume in the sequel that g, > 0 for i=1,2,...,m

and g.= 0 for i=m+1,m+2,...,k (1 <m < k).

First suppose m > 2. Introducing the random variables

g T 0qFqoee ol T LK s M T Epeqoeeody T X o

i£1 Hoe

=l

and putting

m
y(e) = 121 C; (g0,
X .
hl(yl) - hl<yi/c\l) ] 1—1:25-'-3111:

Yqodpoe ool have the joint density
m m k

ey
v(p)exp (o ) y,) 1 ni(y;) m b (y,)
i=1 i=1 i=m+1

with respect to a product measure ATX.,.XAK, and s has the density

m m
v(p)eP® [ h?ls—iz2 v;) R 3y, ayyy). . .an (v)
(2.2.9) =y(p)eP® gm(s) , say,

#ith respect to a measure A.The critical function 8 in x-space transforms into a
critical function § in y=space which remains non-decreasing. The MP size-o test
of H' against all alternatives of the form (c1p,...,ckp), O<p<wo , rejects H'

for large values of s; let us again denote its critical function by 8. We have
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[ (s)v(p) e B g (s) aA(s) +
m m k

f.,fgkyq,...yk)v(p) exp (p ]
i=1 i=1

L)
—
-
hd
i

H

[§7(s)v(e) e °% g (s) ar(s) +

_ m ps % m mo
- [ 8(s= ) V.esYaseesy )Y(0) € h.(s= ) y.) 1 hily:).
. 1’72 k 1 PP R 171
1=2 i=2 i=2
k
il A A co.dhr
- 1 hi(yi)d (s) a 2(y2) a k(yk)
i=m+1
e - m k
§ =~ [..) 6(s~ . v I Ay.).
fG [ (s) f f (s izz ylay23 ayk) iy hl(yl)

(2.2.10) . i=2 % A (y,)e e ar (7)] v(p)e%g (s)ar(s),

k
where G is the measurable set {slgm(s)> 0} . The second term between the brackets

in (2.2.10) is easily recognized as a version of the conditional expectation of

- k

2. o) 8 N . Ay, 3 .o

(2.2.11) Jord 8agaee ity Yppqoe o) i£m+1 By (7 )8 g (g ) Ay ()
m

given Z ¥, = s. Since (2.2.11) is non=-decreasing in P SYRERES A application
of EFRbﬁ;s theorem (lemma 1.5.5) yields that this conditional expectation is a non-
decreasing function of s. Moreover, it is bounded below by O and above by 1.
Denoting the expression between brackets in (2.2.10) by Hm(s) , it follows that

for any positive constant a the function
H (s) - a
m

changes sign at most twice on G ; furthermore if it does have two changes of
sign, the signs occur in the order (=,+,-) for increasing s.
So far we have assumed m > 2. If m = 1 we simply have s = ¥4 and we obtain

in a similar fashion

P e k
£(p) = [, [67(s) =[..] 8(s,¥,0 0¥y ) 152 b (y,) ary(y,).dn (v )] -
y(p) eP® g1(S) dr(s),

where g,(s) = h?ls). Denoting the form between brackets by H, (s), it is obvious

1 1
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that the conclusion previously drawn for Hm(s)“a in case m > 2 also holds for
m= 1.

Since any 6 > O is an interior point of the natural parameter space of (2.2.6),
f is certainly twice continuously differentiable and the differentiation may be
carried out under the integral. Furthermore f cannot be identically equal to a
constant since f£(0)= 0 and f(p) > 0 for p > 0, and v(p) gm(s) exp(ps) is ETP(p).
These conditions being satisfied, it follows from lemma 1.5.4 that for any a > 0

the function
(2.2.12) £(p)-a = fG {8 (s)-a} v(o) ePs g (s) ar(s)

has at most two zeros counting multiplicities. As f(p) > 0 for p > O and £(p)
tends to zero for p + 0 and p =+ ®, the function f has a unique relative maximum
on (0,~) which is also its absolute maximum. A vanishing derivative of f at

some point O < po< © other than the point where the maximum is reached would
produce at least one double and one single zero of the function £(p) = f(po).
Choosing for a the maximum value of f(p), a vanishing second derivative at the
maximum would produce a triple zero of f(p)=a. Hence neither of these situations

can occur, and all the assertions of the theorem are proved. Q.E.D.

The conditions of theorem 2.2.2 are certainly satisfied if EioKyoereXy
have normal distributions with unit variances and the hypothesis H is tested
against K, since hi(xi) = exp(~%x§) in this case and this function is PF. A simpler
proof for this particular case was given in [6 ]a

The crucial condition of the theorem that hi is PF_ ig satisfied by many

2
exponential families occuring in well-knowm combination problems, as is demon~—

strated by the following examples.

Example 2.2.1

The combination of k sign tests. In this case the random variables Epoyseor Xy
have binomial distributions
ei ~ni ni eixi
P(Zc“izxi) = (1+e ) (X->e 5 i=1923-°°5ks
nT

where 0. = log (pi/(?mpi)), and to prove that (Xl) is PF, we have to show that

’ i

n. n. n. n.

i iy i 1 N
(Xq“ﬁ )(szyg) ( ,yg)( x2~y1) >0
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for all integers O j_x1 < x j_ni and 0 j_y1 < Y, j,ni. Putting X, 7Y, e,

2
Xy =¥, = b and X, " K =T, where r > 0 and b ~ a < r, we find
; . L~ . ~b+
S e S e O = e A M
a b b-r a+r b-r+1 b ni—a+r+1 n.-a ’

proving the desired inequality. Hence the theorem holds in this case if the

hypothesis p = (p1,...,pk) = (},...,2) is tested against p.> (3,...,3).

Example 2.2.2
The combination of k 2x2 tables :

Success Failure Total
First series a c. m,
-1 =i i
Second series b d. n.
=i et i
Total r 5. m.+n. s 1%1,2,...,K.
=i =1 i

The optimal conditional test for testing equality of the probabilities b and
E
TS of success in the first and second series respectively against the alter=—
9

i ., > D, y . Fini
native pl, pl’2 rejects for large values of 21 Defining

1

6, = log { pi’1(1“pi22)/(Pi,2(1‘Pi’1))} s

1

. n. 0.a. m. n.
1 L 1 1 1 1
i (e ) e /g (e

the conditional distribution of a. given r, = r, and s. = s, is
=i =i i et
m
.=oa.| 0,,r.,s.) =
P(él all 1’r1’sl) (a

m, n.
and we have to show that (al) (r ia ) is PF, (as a function of ai). Since the

product of two PF functions’is aéai% PF2, it is sufficient to prove that both

2

factors are PF, and this follows as in example 2.2.1.

2

Hence theorem 2.2.2 also applies in this case.

Example 2.2.3

Let x. ooy be gamme distributed with densities

1230
Y.~ *Bixi

(2.2.13) Cgil /F(Yi))xil e (x; > 0) , i=1,2,..0,k ,

6.3
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where Yi is the shape parameter and Bi the scale parameter. Suppose we wish to

test S=(B1,...,Bk) = 60 against B <. BO, assuming Ys¥pseeesYy to be known.

Writing 6, =8, 4~ By, the density (2.2.13) transforms to the canonical form
3
(2.2.6) with
Y.=1 =B, x.
1,001 .
hi(xi) = Xil e , i=1,2,...,k.

Since d2 log h.(x.)/dx? = —(y.~1)x?2 is nonpositive for y. > 1, h.(x,) is PF

11 1 1 1 i i1 2

for Yi > 1 (cf. lemma 1.5.2). Hence theorem 2.2.2 holds for this testing problem,
provided \fl > 1 (i=1,2,...,k).

We have thus shown that for a large class of combination problems the short-
coming of an admissible test has only one maximum on any half-line through the
origin in the positive orthant. Returning now to the case of normal random varia~
bles, we present a lemma stating that the maxima of the shortcoming along these

half-lines cannot be reached for alternatives close to the origin if o is small.

Lemma 2.2, 1

Let k > 2 and let in the normal case § be any admissible size-a test of H against
K (0 < a < 1), Then the shortcoming f(p) of § along any half=-line in the positive
orthant defined by (2.2.7) reaches its unique maximum for some p > us if £(p)
has a maximum at all.

Proof:

We consider the shortcoming of § along the half-line Hy = C1p, u2 SCEQ,,Q.uk =Ckp,
p > 0, wheri Ci > 0 (i=1,2,...,k) and 2 Q? = 1, Consider an orthogogal transfor—
mation in R, carrying X aXpse e sX into Yqodpsee sl » where x =.Z1 Lo Then
P> SYRRRI M independent and, if Eﬁi = e = Cip for i=1,2,...,i: then ¥, is
N(p,1) and b is N(0,1) for i=2,3,...,k. Let A denote the acceptance region of &

in x-space and let B be its map into y=space. Consider two points (y1,y2,...,yk)
and (y%,yz,...,yk) with y% <V in y-space, corresponding to points (x1,x2,°..,xk)
and (x%,xé,...,xﬂ) respectively in x-space. If (y1,y2,...9yk)e B then (x1,x2,...,xk)

€ A and inverting the transformation we find

Hence by lemma 1.4.6 (x;,x',...,xg)e.A, implying (y%,yg,a.a,yk)s B. Therefore we

can write B in the form
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B = {(y1:--~yk) | y1 < b(yz’-":yk)} B

Thus , if ¢ denotes the standard normal density,
k

o) = [..f o(0(y ey ) = )T ¢(y.) dy ...y, = o(u =0 ),
i=2

and hence, differentiating with respect to p,

W

£100) = [oof [8(u, = 0) = 6(blyyseensyy) )] 1 ¢ (3,)ay,...dy, .

2
It follows that f'(ua) > 0, since ¢(0)> ¢ (z) for all z # 0. The assertion of

1

the lemma is now an immediate consequence of theorem 2.2.2. Q.E.D.

If k = 2, i.e. if only two random variables X, and x, are involved, a stronger
theorem can be obtained. First we introduce some notation. Let p and n denote polar
coordinates in (u1,u2)~space, i.e.

= cos = sin .
U.] P n 3 U2 P n

By lemma 1.4.6 we may assume that an admissible combination procedure for testing
2)| %, Y,

where a is a non-increasing concave function on the interval where a(x1)> -

H against K (for k=2) has an acceptance region of the form {(x1,x < alx

1

(as a boundary case we have a(xT) =+ @or - @ for x <u andx >u respectively).

Theorem 2.2.3

If k = 2, the shortcoming of any admissible combination procedure for testing

H against K has a finite number of absolute maxima.

Proof:
We start by assuming that the procedure involves both X, and %, and is not linear.
Let R:'denote the shortcoming of the test § as a function of p and n ,
Y
(2.2.1k4) Ry (psm) = P(gc2 < a(51)i psn) = @(ua - )

i

[ o(a(x,)=p sin n)¢(x

- dx - .
: o cos n) @(ua p)

1 1

(c£.(2.2.5)),where ¢ denotes the standard normal density. Since ¢ and ¢ are

analytic functions, R, is analytic in p and inn for p > 0 and 0 < n < T,

§
cf. [52]. (Here analyticity of a real-valued function of a real variable on an

interval may be taken to mean that the function can be expanded in a power series
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converging on that interval). By theorem 2.2.2 there exists a unique value

o(n) for each 0 < n < 3w such that

(2.2.15) SE-RE'(p,n) lo = o(n) = ©
and
32 e
(2.2.16) ;:5 RcS (p,n){p= o(n) < 0,

Application of the implicit function theorem yields that p(n) is analytic for
0 < n < 37 and hence so is g(n) = R: (p(n),m).
Theorem 2.2.2 asserts that the absolute maxima of R*'lie on the curve p=p(n).

8

If R: and hence g would have an infinite number of absolute maxima, g(n)

would assume the same value infinitely often and hence would be equal to a
constant on [0,%W] because of its analyticity. However, this is impossible since
R, has a local maximum at the boundary point n=0, p=p(0), because of (2.2.15),

§
(2.2.16) and

(2.2.17) 32" R:_ (p,n) } = -p ¢(alx )¢ (x =) dax, < O.
1 n=0

It remains to consider the two exceptions of theorem 2.2.2. If the procedure

§ depends on both x. and x, but is linear, i.e. rejects H if v x +v x> d for

1 =1 272

positive v, and Vo then the assertion of theorem 2.2.2 continues to hold for

1

every half-line ¢ > 0, n = no with O j_no 5_%ﬂ s N

Hence in this case we have analyticity of p(

0 # Ny where tn n, = vE/v1.

) and g(n) on both [O,n1) and

=

(n1,%ﬂ]. By partial integration we find

EYS

(2.2.18) -2 B (o,n) = o/ o(alx,)=0)d"(x

on s n=4 1 p)ax

1

)dx1 > 0,

i

-p [ olalx,)=0) ¢ (x)a'(x,

since a'(x1) T - \)1/\)2 < 0 in this case. It now follows from (2.2.15) through
e

(2.2.18) by a similar argument that Ré can only have a finite number of
absolute maxima.

Finally, if the test 8 does not depend on both x. and x_, e.g. rejects H

1 =2
if 51 iAuu , then RG (u15u2) is a strongly increasing function of u2 for each
value of u, and hence R, does not possess any absolute maxima at all. Q.E.D.

1 8
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It is unknown whether the assertion of theorem 2.2.3 continues to hold
for k > 2. Generalization of the theorem to one~parameter exponential families
under the conditions of theorem 2.2.2 is not immediate, even if the functions
hi in (2.2.6) are analytic, since the relations (2.2.17) and (2.2.18) are not
automatically satisfied and are not so easily replaced by other relations
He-

(

ensuring that the function R5 p,n) is not constant on the curve p = p(n).

2.3. THE MOST STRINGENT TEST

As & UMP test, a UMP unbiased or UMP invariant test for testing H against
K (cf.section 2.2) do not exist, we shall try to determine the most stringent
(MS) size=o test for this problem with the aid of a least favorable (LF) prior
distribution. A test that is invariant under permutations of KqoXpaer Xy will
be called symmetric.

Lemma 2.3.1

For any size 0 < a < 1 an essentially unique MS test of H against X and a LF
prior distribution exists. The MS test is symmetric.

Proof:

As the permutation group of k elements is finite, the existence of a symmetric
MS size=-o test follows from lemma 1.3.1. This procedure is of course also MS
relative to the class éf(a) of admissible symmetric size=o procedures. For
each test in 5(a) the point x = (XT""’XK) = (b,...,b), where &(b) = (1 *a)1/k,
must lie either outside its acceptance region A or on the boundary of A. For
otherwise, by lemma 1.4.6, A would contain the set {xixii‘b+ £, 1=1,2,...,k}

for some ¢ > O and the size of the test would be smaller than a. Also the
symmetry of A together with lemma 1.4.6 guarantees that A has a supporting
hyperplane in = d (4 < kb) and hence that for every test in §(a) the acceptance
region A is Contained in the set (x| Z %, < kb} . Therefore we have for every
test § in J (a) *

(2.3.1) Re(w) < PO ) < kb p) = elu - (

=
H]
— ey
=
o
H
.
o
=
H
o
o
]
r—'-A .
e 1w
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which tends to zero whenever Z u? +© and p > 0.
i
+ . .. . . .
Let Ra denote the size=o minimax shortcoming (cf.section 1.3 ). Since

o . . P
Ra > 0, it follows from (2.3.1) that there exists a positive number g such
that for every test de j (a)
1.t
Rd {u) < QRa

for u? >q , ¥ > 0.

Ifhdw

i=
Hence for every § € 5 (a) the shortcoming assumes its absolute maxima (which
are z_R;) only on the set
koo

Q = {u] 21 wp <, w20}
Now consider the problem of testing H against the alternative that neQ , u # 0.
Obviously the MS test for the original problem (which is a member of S(a)) is a1-
so MS for this new problem. However, as the parameter space of the new problem
is compact, there exists a LF prior distribution £ for this new problem
(cf. section 1.3). Hence the MS test considered must be Bayes with respect to £
and £ is thus also LF for the original problem.

As every MS size-o test is Bayes relative to £, the essential unigqueness
of the MS test follows from the fact that the family of normal distributions
with unit variance is boundedly complete, implying that any Bayes test is

essentially unique. Q.E.D.

This lemma can also be generalized to exponential families. Let EyoHpoe Xy

have the joint density

(2.3.2) p(x;6) = T C (8.)n(x.) e ™ @ > 0,

with respect to either Lebesgue measure or counting measure; note that the mar-

ginal distributions of x sesXy are of the same type. Then lemma 2.3.1 also

2Ky e
holds true for testing téeuiypothesis H' against K' (cf. section 2.2). The
proof remains literally the same (replacing My by ei) with the exception of the
inequality (2.3.1) and its derivation. However, by the same line of argument
that we used previously in the proof of theorem 2.2.2 it can be shown that the
shortcoming of the symmetric MS test tends uniformly to zero for z 6? »o gnd

8 > 0.
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We return again to the combination of normal random variables. As a LF
prior distribution assigns probability one to the set of points for which the
shortcoming of the MS test assumes its absolute maximum, we have the following

corollary to theorem 2.2.3.

Corolliary 2.3.1
For k = 2 and any 0 < o < 1 a LF prior distribution for the problem of testing

H against K assigns probability one to a finite point set.

W. SCHAAFSMA ([16 ]p.538) conjectured that corollary 2.3.1 also holds for

general k.
Now let us, for a moment, restrict the alternatives to the set

k
(2.3.3) = U {u My 05wy = 0 for all i # j} .
J=1

Qrestr

and consider tests of H against the restricted alternative

K:ue

Qrestr'

It is easily verified that lemma 2.3,1 also holds for testing H against the
Y

alternative K. For this problem we have the following result.

Theorem 2.3.1

For each O < o < 1 there exists a unique size=a combination procedure 6@ that

rejects H if

k
(2.3.4) ) exp [r(e) Ei] > cla)
i=1
and for which the shortcoming R_ assumes its absolute maxima on the set Q
. (1) (2) éa(k) restr
at the k points u 51 ssscsesll of the form
(2.3.5) uﬁll r(a) . u§1)= 0 for j # i, 1=1,2,. .0 4K,

This test is the essentially unique MS test for testing H against K at level a.
If, for a certain o, Réa (r{e),0,...,0) is also the meximum value of Rda

on the entire parameter space {u|u > 0} , then this test is also MS for testing

H against K.

Proof':

By the analogue of lemma 2.3.1 there exists an essentially unique MS test for

N
testing H against K at level a, which is symmetric and Bayes with respect to
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a LF prior distribution concentrated on 9 . Since this procedure is admis=-

restr
sible for the original problem and depends on all variables LSS SR be~
cause of its symmetry, its shortcoming has exactly one maximum on each of the

half-lines of Qr . by theorem 2.2.2. The symmetry of the test implies that

est
the shortcoming is symmetric about the line By =, = o = and hence it
assumes the same maximum value on the k half-lines Ofﬂrestr at the points u§l)= T

(say),ugl)= 0 for j # i, i=1,2,...,k. It follows that the LF prior distribution
concentrates on those k points; denote the LF prior probabilities by PysPpyoe ey
(Zp:.L = 1). Application of the NEYMAN~PEARSON lemma yields that the MS test for

the restricted problem rejects H if

k TX,
} p.e ">
.:=,1 1

1

The symmetry of the critical region of the MS test now implies that P, =D, =
Y]
cee =P = 1/k. Hence the test (2.3.4) is a MS size—a test of H against K if

its size is o and the maxima of its shortcoming on Qrestr are reached at the k

points defined by (2.3.5). Since MS size~o tests are essentially unique, the
test (2.3.4) satisfying these requirements is unique. The second part of the

theorem is obvious. Q.E.D.

In the sequel we shall call tests that reject H if
k rX.
e >
i=1
exponential combination procedures with parameters r and c.

Theorem 2.3.71 also holds if the random variables x,

buted according to the exponential family of densities (2.3.2) and the hypothesis

X geee are distri=
s 9%

H' is to be tested against the slternative K' (or its restriction %'), provided
the conditions of theorem 2.2.2 are satisfied.

We now turn to the question whether exponential combination procedures
are MS for testing H against K, for appropriate values of r and c¢. At this
point the usefulness of theorem 2.3.1 depends heavily on our ability to verify
the condition in the last part of theorem 2.3.1 for a given value of o. SCHAAFSMA
tried to solve this question by computing the maximum shortcoming of the test
(2.3.4) on a large number of half-lines in the positive orthant and comparing
these with Ry (r(a), 0,...,0), which is rather cumbersome and, from a theoreti-

. a, . . . .
cal point of view, unsatisfactory. If the combination problem involves only two
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random variables (i.e. k=2) a more satisfactory solution is possible. For more
than two variables the problem is still theoretically unsolved and we only
present a conjecture.

We introduce some more notation. Let A denote the (nonrandomized) acceptance

region of an admissible symmetric test of H against K. Then we may write
(2.3.6) A= {(x1,...,xk) lx1 < a(xgs...gxk)} .

where the function a is symmetric in its k~1 arguments and is non-increasing
and concave in each of its arguments by lemma 1.4.6. We make the assumption that
a has continuous first order partial derivatives on the interval where a is finite.

Then there exists a function xO(XB,.,wyxk) such that

(2.3.7) a(xo(x3,...,xk),x3,,..,xk) = xo(x3,...,xk);
for k = 2 this function reduces to a constant X5
The symmetry of A also implies that

(2.3.8) a(a(xgg.e.,xk)$x3,.oa,xk) SN

Define

. def 2 2
(2.3.9) g(xg,...,xk) i (x2 + a (xg,...,xk>)

N f

.
3X2

= . 9
=x, + a(xg,...,xk). 7 a(xe,...,xk).
Then the following two lemmata will prove helpful. B

Lemma 2.3,2

Let k > 2 , let § be an admissible symmetric test of H against K and let the
function g be defined by (2.3.9). If g is nonpositive on the interval

" e < X, < XO(X3’°“"5xk) for all KypenesXy for which g is defined, the maximum
shortcoming of the test § can only be assumed on the set Qrestr'
Proof':

Let Hgses sl be fixed and let p,n denote polar coordinates in (U1,u2)*space

Hy =p CO8 7 I =5 sin n, p > 0, O <n < 3mw. Let R:'denote the shortcoming of
the test § as a function of p,n, Mooty e We shall study the behavior of R:
for fixed p > 0 (and fixed u3""’”k) as a function of n. Since the shortcoming

is symmetric about n = p/b, we restrict attention to the interval 0 <n < Jh,
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We have

k
RZKp,n,u3,...,uk) = [..] ¢ (x1 - p cos n) (x, =p sin n) E ¢ (x. -ui)dx]..@dxk +

2

and hence

) ¥
_3_1'—] Rd(p’nau RS ) =

o [..] {sin n.¢(a(x25,a,,x ) = o cos n )¢{x, =p sin n) = cos n.

k 2
k
P ¥ - 3 -
. @(a(xgabpksxk) p cos n)o (X2 p sin n)}i£3¢ (xi ui)dxg.“dxk
. 3
=p [..f {sinn + 5;;’ a(xg,..,,xk) cos n} ¢(a(x2,..,9xk) “ p cos n).
k
o (x2 ~p sin n)'H ) (xi - ui) dx2.,,dxk
i=3
| 2 ;
~3p plx, sinn+a(x M,.p{;k)ccssn}
e . 3 2 2
= 9“5;—‘ f,.f { sin n + 3;; a(xg,..,gxk) cos nle
2
=2 (%] + a (x,..05% )} k
2 P "
i -
e i=3¢(xl Mp) dx...dx
2 .
e”%D ) p{x231nn+a(x2,@@@,xk)cos n}
= =5 [ {sinn+ a(x2,,.,,xk) cos n} e .
2 2 )
-3 {xZ + a“(x ,n..,xk)} Kk
. e 2 2 n ¢(x. =~ y.)dx,...d
i=3 1 1 2 Xk
2 .
e“%p o {%, sin n+ a(x2,,..,xk) cos n}

i

o fe,f g(X29~~~an)e

w3 {xg + a2(x2,...,xk)} k
.e 1 ¢(xi - ui) dx, .o wdxy
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by repeated partial integration with respect to x,. By the substitutions

2

x alx!,x ,...,xk and x = a(xz,...xk) and relation (2.3.8) we may change

2 2
the integral over the reglon o < x < o into an integral over the region

- < < Pen i
%, XO(XB’ ,xk) and obtain

(2.3.10) 82 Ré( 2N u3,,..,uk) =
en%p2 xo(x3,...,xk) Q{Xg 2 Xg""’xk)}
f f j g(xeﬁ' 'ka) 25'**33{1{ apgn) dx2
k
LI d(x. o~ pl)dxo...d .
i=3 3 "

where

f(xz,...,xk;p,n) =
p{x2 sin n+ a(x?,...,xk)cos n} p{xg cos n+ a(xz,...,xk) sin n}

= e - e .

i . < con s n > si <n < w/h
Since a(xg, Xk) > x, for x,<x (x3, ’Xk and cos n > sin n for 0 < n /k,
we find

X, sin nt a(xz,...,xk)cos n = %, cos n - a(xg,...axk)51n n =

= {a(xqﬁs,‘,xk)-x } {cos n = sinn } > o0

on the region of integration. As by assumption g(xg,...,xk <0 on the region

of integration and g cannot be identically gzero a.e. because xg + a (x ,...,Xk
Eaad
tends to infinity for x> = «, it follows that = E. R, is negativeon 0 < n < m/h

on ° ¢
for all p > 0. Since Rz-is symmetric about n = m/k, it can only have absolute
maxime for n= O and n= 27 , i.e. for My = 0 and for u, = 0,
As the test 6 is symmetric, its shortcoming is also symmetric in Hyshgsenestys

implying more generally that if the shortcoming of & reaches a maximum for a

certain u=(u1,s.,,u ), at least one of any pair of its coordinates is zero.There=

k
fore a maximum of R_can only be reached for parameter points u with k~1 coordi-

§
nates equal to zero, i.e. for ue Q Q.E.D.

restr’
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Lemma 2.3.3

Let k = 2 and let § be an admissible symmetric test of H against K. If the
function g(xe) defined by (2.3.9) changes sign exactly once in the order

(~4+) for increasing %, on the interval (~<,x ), then the maximum shortcoming

0
of § can attain its absolute maxima only on the three half-lines u1=09u2 > 03
= > S >

My O,u1 0 and My By 0.
Proof':
We start again from (2.3.10), which in this case reduces to

) e
(2.3.11) 3n Rg (Pon) =

-3 *o ~4Hx2 + 8%(x,)}
= £ [ elx,) £z 30,n) e 2 2 dx
on ) Bl 2P 2*

where

p {x, sin n + a(x,.) cos n} o{x. cos n + a(x.) sin n}

» 2 2 2 2
f(xg;p,n) = e - e .
In the proof of the preceding lemma it was seen that f(xgsp,n) > 0 for
~© < X, < %yand 0.2 < m/k, p > 0. Consider the determinant
3
f(xzspm) a7 f(x530,0)
D= \ 32 =
E{Zf(XZ;o,n) 5_;;5—”_ £(x,30,0)

) p(a(x2)+x2)(cos n+sinn ) 5 5 5 '
= e A o7 (cosn - sin n)(a(xg)“xg)(a (xg)mi) -

= p(cos n = sinn)(a'(x2)+1)} +

2p(a(x2)cos N+ ox, sin n )
+ e A=p a'(xz) sin n + p cos n} +

op(a(x, )sin n + x_ cos n )

2 2 . )

+ e o a (x2) cos n = p sin n}t.
Let us denote the sum of the last two terms in this expression by D and consider
the inequality

ued = ve ™ > (u=v) + (u+ vy,

holding for u > v, u+ v > 0 and y > 0. Application of this inequality yields
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pla(x.) + xg)(cos n + sin n)

P o=e 2 Ao (—a'(xz)sin n+ cos n.
pleos n = sin n)(a(x2) —x2)
.e - o("a'(xg)cos n + sin n).
~p{cos n - sin n)(a(xz) —xg)
.e }
pla(x )+x, )(cos n + sin n)
> e 2" 72 i pz(cos2 n o singn)(a(xe)mxe)(1wa’(x2))+

+ p{cos n- sin n)(a'(xg) + 1),

since a'(xo) = =1 because of the symmetry of a and hence =] i_a'(xg) < 0 and
a(xz)“xg > 0 for x2 < XO' It follows that D > 0, and hence that the function
{x

P;p,n) is E'I‘P2 in n and x, (ef.section 1.5) for 0 < n < n/k and %y < Xy

Let g(x2) change sign exactly once in the order (=,+) for increasing %,

on (~w,xo). Then, according to lemma 1.5.3, expression (2.3.11) and the ETP2

property of f(x?;p,n) imply that for any p > O the function BR:XDan)/an has at

most one zero for 0 < n < m/b; if it does have a zero it changes sign in the
P
6(95“)

has at most one minimum and no maximum for 0 < n < n/k. As R:'is symmetric
about n = w/lk, its absolute maxima can only occur for n = 0 and n = %n and

order (=,+) for increasing n. Hence for every p > 0 the function R

n = m/k, which proves the desired result. Q.E.D.

With the aid of the lemmata 2.3.2 and 2.3.3 we prove the following theorem

on exponential combination procedures involving only two variables %, and Xye

Theorem 2.3.2

Let k = 2. For any exponential combination procedure with parameters r and ¢ the

shortcoming can assume its absolute maximum only on the three half-lines Hy = 0,
> 05 u

= Osuy > 0 and y, =y, > 0. Moreover, if ¢ < 2e, this absolute

u
2 2 2
maximum can only be attained on the first two half-lines.

Proof:
The assertions of the theorem are immediate consequences of the preceding two

lemmata if for exponential combination procedures the function g(x,.) defined

2
by (2.3.9) has at most one change of sign (in the order(=,+) for increasing x

o)

for X, < X, and is nompositive forx, < x, if ¢ < 2e. We have



-1 rx
a(xe) =r ' log (c~e ),
-1 rx2 rx =1 rx2

a ! = - e o ®
g(x2) X, + a(x2)a (xg) X, = r e (c =e ) log (¢ ~e )
The point x, for which a(xo) =X, is givegxby %, = e log(c/2). To study the
sign changes of g on (~w,x0) we set s = e and consider the function

rXx,
(2.3.12) his) = r(c =e )g(xe) = (c - s) log s - s log (¢ = s)
X,
for 0 < s < e = }c. We find
1im h(s) = =~ » ., h(e/2) =0,

hi(s) = - log s ~ log (¢ = s8) + (¢ - s)/s + s/{c ~s),

lim h'(s) = + « ,  h'(e/2) = 2(1= log(c/2)) ,
s>0

n't(s) = {1/(c-s) - 1/s} + c{i/lc-3s)2-1/9 < 0
for 0 < s < % c.

If ¢ < 2 e, then h'(c/2) > 0 and since h' is decreasing, it is positive on

(0,3¢) . Hence h is negative on (0,3e¢) , implying that g is negative on

).
0
If ¢ > 2 e, then h'(c/2) < O and since h' is decreasing, it changes sign

(“msx

exactly once on (Oa%C) in the order (+,—) for increasing s. Hence h has one
maximum and no minimum on (0,3c). It follows that h changes sign exactly once on
(0,3¢) in the order (=-,+) for increasing s, and so does g on («m,xo) for increas~

ing x,.. QR.E.D.

2

Combining theorems 2.3.1 and 2.3.2 we obtain

Corollary 2.3.2

For k = 2 and any size 0 < o < 1 the exponential combination procedure (2.3.h4)

of theorem 2.3.1 is MS if and only if one of the following conditions is satisfied

(1) ela) < 2 e,
(ii) the maximum shortcoming of the test on the half=line I P 0 does not

exceed that on the half-line U1 = 0, wy > 0.
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The generalization of corollary 2.3.2 to k > 2 is still an open problem. It
is easily verified that for general k condition (i) of the corollary again
guarantees the MS character of the test (2.3.4), but this condition is of little
practical interest as will be seen in the sequel. To obtain a generalization to
k > 2 of condition (ii) we need a lemma similar to lemma 2.3.3 for k > 2. However,
the proof of this lemma is not easily adapted to the case k > 2, since the
decreasing~increasing character of a function does not necessarily remain unper-
turbed if this function is integrated with respect to another variable. Neverthe-

less we make the following conjecture.

Conjecture.

For k > 2 and any exponential combination procedure with parameters r and c the

shortcoming can assume its absolute maximum only on the 2%~1 half-lines

(2.3.13) He = oo =y, = 0, My = .. =y > 0, m=0,T,...,k~1,
1 m mt k

where {i1""’ik} runs through the permutations of {1.,2,...,k} .

If this conjecture holds true, then for general k the exponential procedure
(2.3.4) of theorem 2.3.1 is MS if and only if either c(a) < 2 e or the maximum

= 0, p_ > 0 is not

shortcoming of the test on the half=-line My =, .. = "

U
k=1
exceeded by that on any other of the half-lines (2.3.13).
Corollary 2.3.2 cannot easily be extended to variables with one-parameter
exponential family distributions, since the proof of the lemmsta 2.3.2 and 2.3.3
leans heavily on the fact that in the normal case the envelope power is constant

on hyperspheres, a property that is not shared by many other distributions.

Returning to the combination of two normal random variables, corollary 2.3.2
enables us to verify whether the exponential combination procedures of theorem
2.3.1 are MS tests of H against K (for k = 2). Some details on the computations
are given in section 2.5.

It turns out that condition (i) is of little practical interest, since it
only covers large values of a. For a > 0.75 the acceptance region of any expo=
nential procedure cannot include the origin as an interior point, since it would
o) | x o < O} that has probability

0.25 under H. Therefore c(a) < 2 for o > 0.75, as may be seen by substitution of

then strictly contain the set {(xT,x < 0, x
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(x1,x2) = (0,0) in the test statistic, and hence the procedure (2.3.4) is MS.
Of course the estimate involved is rather rough and it turns out that the pro—
cedure of theorem 2.3.1 has c(a) = 2 for o = 0.60 and reaches the point where
c{a) = 2e only for o = 0,24k, Here we have assumed without proof that c(o) is
a decreasing function of o.

For smaller values of o the validity of condition (i) seems to end and
we have to rely on condition (ii). For o = 0.1 and o = 0.05 the procedures
(2.3.4) still satisfy condition (ii) and we find that the tests rejecting H if

1.635x 1.635x

(2.3.1h) e Tie T2 > 16.52 for o
1.900x 1.900x

(2.3.15) e Ve T2 5 kLT for o

]

0.1

i

0.05

are MS for testing H against K.
The point where the shortcoming of the test (2.3.4) assumes equal maxima
on the half-lines u

= 0, 4, > 0 and u1 = u2 > 0 is reached for o= a_ = 0,043,

Although such a res;lt seem§ difficult to prove, numerical evidence 2trongly
suggests that exponential combinstion (with appropriate parameters) is MS for
all @ > a, = 0.0k3.

Ancther unsolved problem is connected with the tail probabilities of the
procedures of theorem 2.3.1. Such tail probabilities can only be defined if the
critical regions of these tests constitute a decreasing sequence of sets for
decreasing o. As the MS tests have different test statistics for varying o, this
property is not obvious in this case. It is easily verified that a sufficient
(although not a necessary) condition for the monotonicity of the critical regions
in the above sense is, that both r(a) and {r(oz)}_1 log clo) are decreasing
functions of a. Although numerical evidence points in that direction, we have not
been able to prove the monotonicity of these functions. Since the shortcoming of
an exponential procedure (2.3.L4) assumes its maximum on the half-line
= = ..o= =0, p, >0, for y, = r(a), it follows by lemma 2.2.1 that
r(a) > u , giving some support to our conjecture about r(gy).

Now zét us consider sizes o smaller than o ( for k = 2). The situation
becomes more complicated in this case. We conjecture that for values of ¢ slight=—
ly smaller than o the LF prior distribution will assign positive probability
to three points : (r(1)(a), 0) , (O,r(1)(a)) and (r(g)(a), r(z)(a)) in the
(UT,UE)—plane. The symmetry of the MS procedure implies that the first two points
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will have equal prior probabilities and hence the MS test would reject H if

(1) (1) (2)
r a)x r ' (a) " a) {x, + x.}
(2.3.16) e + e %2 +v(a) e * 3_0(1)(

(1)( (2)(

where via), r a), T a) and c(1)(a) are positive and depend on «.These
four numbers are uniquely determined by the following conditions: the test
(2.3.16) has size o and its shortcoming assumes equal maxima on the three half=-
> 03w

lines Hy = 0, u = 0, u, > 0 and pn, = by 0 at the three points with

positive prior ;robabilgtiesa Tien one still has to verify whether the test is
MS relative to the entire parameter space. Since the computational labour
involved is enormous and the test statistic (2.3.16) is too complicated to
have any practical value, we did not start a further investigation.

As o further decreases towards zero, the LF prior distribution will sup-
posedly concentrate on an indefinitely increasing (but finite) number of
points (cf. corollary 2.3.1). This will be demonstrated in the next section.
As a result the number of terms involved in the test statistic of the MS test
also increases indefinitely for o~ 0 and the task of determining the MS test

becomes even more hopeless.

We briefly consider the case k = 3. Although not so simple as the case of
two variables, it is still fairly easy to determine the parameters r(a) and c(a)
of the test (2.3.4) of theorem 2.3.1. If the conjecture about the possible
maxime of the shortcoming of exponential combination procedures holds true,
it can be verified whether this test is MS for testing H against K by computing

the meximum shortcoming on the two half-~lines My E > 0 and wy = 0,

2 % M3

> 0 and comparing these with R, (r(a), 0,0). These computations were

Hp = Mg 5

o
performed for o= 0.1 and o= 0.05. It turned out that the test that rejects H if

1.706x,  1.706x,  1.706x,
(2.3.17) e + e +e > 27.35  for a = 0.1

3 = 0, Hy > 0 than on
both other half-lines and hence this test is supposedly the size = 0.1 MS test.

has a larger maximum shortcoming on the half=-line Wy =M

For a = 0.05 however, exponential combination cannot be MS since the test (2.3.4)

has a larger maximum shortcoming on the half-line By o= 0, By ® Ha > 0 than on

the half-line Mo = p3 = 0, M > 0.
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For k > 3 the complexity of the computations necessary to determine the
parameters r(o) and c(a) of the test of theorem 2.3.1 increases at a high rate.
For k = 4 some partial results were obtained by SCHAAFSMA [h6], but nevertheless
we are inclined to say that the usefulness of MS tests ends at k = 3, from
theoretical as well as from practical points of view. In this connection we
remark that SCHAAFSMA ([L46]th.5) has shown that, for fixed o, the maximum short-
coming of the MS test tends to 1-a for k+«. Hence tests with uniformly good power

properties simply do not exist for large k.

2.4, ASYMPTOTICALLY OPTIMAL PROCEDURES FOR o ~ O.

In this section we study the problem of testing H : p = 0 against K :

o> 0 (cf.section 2.2) for small values of the significance level o. In the
preceding section it was shown that for k = 2 the LF prior distribution is dis=
crete with a finite spectrum for all o(0 < o < 1), cf. corollary 2.3.1. The

MS tests of H against K were obtained in a number of cases and turned out to be
exponential combination procedures in these cases, but we found empirically that
exponential combination is not MS for small values of a. In view of this we
suggested that the LF prior distributions concentrate on an ever increasing

number of points for o + 0. These ideas are confirmed by the following results.

Theorem 2.4.1

Let k > 2, let m be any fixed positive integer and let e(0 < ¢ < 1) be arbitrary.

Consider a set of discrete prior distributions {£(a)|0 < a < 1} assigning

nonnegative probability to m points u“’u), 11(2’0‘) ,...,p(m’a) in the set p .> 0;

the position of these m points and the associated prior probabilities pj N
9

(j=1,245..,m) may depend on a. The half-lines in the parameter space through

(§sa)

the origin and are denoted by Mj OL(j=1,2,..,m) and the distances from
2

(§s0) (J’a)"= o. (§=1,2,...m).Let M denote the

the origin of the points p by "u b
2

( jam .

0sa)_ Z q. u(J’a),where Q: =P: .

.2 A 1. ds® . sl T Js0

.exp(~§pj a)’ J=14245...,m. Let Ra denote the shortcoming of the size~o test 5@ of
2

half-line through the origin and the point u

H which is Bayes with respect to &{a). Then,

(i) if the condition
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(2.4.1) limu o, = for j=1,24...,m
a0 o dsa

is satisfied, we have

(2.k.2) 1im sup R () = 1 uniformly for all L e L s
0»0 pel o “ o
o

where Jf is the set of all half-lines L in the parameter space through the
o o
origin meking an angle larger than arc cos (1=¢) with each of the Mj . for
E
j=1,2,...,m;
(ii) if on the other hand the condition

(2.4.3) limy p. = 0 Tor 3=1,2,...,m
0=+0 0 Js0

is satisfied, we have

(2.4.14) lim  sup R (u) = 1  uniformly for all Laeﬁﬁg,
a0 ve La o

where 552 is the set of all half-lines La in the parameter space through the

origin making an angle larger than arc cos (1-e) with M

.

0.0

Proof:

Let Aa denote the acceptance region of the test 5@B We write

(J.a) _ .
" - (C1ajaapjaaa T U’Cksjsa pjao") ? 9=152,. 00 0m,
where p. > 0 and . . > 0{(i=1,2,...,k) Z Eg .= and
5 Ot 140,07 ae e i 1,,0 ?
m k
(2.4.5) b (x) =t (x5 .00% ) = 321 %G o eXp(Dj,a izl TR %)

Then we have by the NEYMAN~PEARSON lemma

A, = { x| tu(x) < e, | B

where ¢ is an appropriate constant.

First we consider case (i). Let €5 0 < e, <1, be arbitrary. Let L € Jia

1

and let wj o denote the acute angle between La and M. o " Then, by assumption,
3 2

cos w'a“ < 1= ¢ for j=1,24,..,m. Congsider the map u+x = y of u=space onto x-space.
By this map there corresponds to each line (or point) in p-space a line (or point)
in x-gpace. Lines in x~space corresponding to lines in U=space are denoted by
superscripts in this proof. Let u(d;La) be the point on L at a distance d from
the origin 0; the corresponding point in x~space is denoted by x(d;LZ}. At

B,
x = x(d;La) the test statistic ta(é) assumes the value



78

(2.4.6) t (x(a;L)) =
o [0}

g

. exp(d p. cos y. ).
j 1 qJ s QL P pJ 50 wJ 50
The point of intersection of the half=-line MZ‘Q and the hypersphere with radius u
E]
and centre O in x—space is an interior or boundary point of Aa , for otherwise
there would exist a supporting hyperplane of Aa at a distance smaller than u from

the origin and the size of du would be larger than o. Hence

k
. exp(p. u
q oy “121

i g

.. . c
=1 J s Cng,OL Clag’d = a
J
for g=1,2,...,m , implying
1 m m k
- . exp(p. u . . L. ) <e¢c
o jz1 qn]so" gZ»‘ P J sl ai£1 15350 158,50 oo

It follows from this inequality and (2.4.6) that
t (x(a;30)) < ¢
o o o

if the conditions

(2.4.7) exp(d p, cos ¢, ) <
N J 0
1 m k
< ={e .ou )+ e . ... )}
m Xp(p«] 50 Ot) g£1 @(DJ ,(lu(liz1 ClaJ ,acl,g,a
gt

are satisfied for j=1,2,...,m.

Put b = (2 log m)/e ; then there exists a positive number a . (ec) such that

0

pj o > b for j=1,2,...,m and all a < ao(e) by condition (2.4.1). Choose
3

(2.4.8) a =(1+3e)u ,
o a
then
d p. .o=(1+3 . . 143 . o
o DJ PYeA cos ll)J 50 ( EE)uO. pJ 30 cos wJ ,(1< ( zﬁ) u(l QJ 9(1( E)
i-pj,a u, - (1+e) log m

. u - log m
DJ’a o g My
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implying

1 .
) < o exp (QJ u ) s JF1,2,00 0,10
s

exp (& p. cos wj, o Ua

a T J a0 a

Hence, if 4 = da’ the inequalities (2.4.7) are satisfied and therefore x(da;D:)
is an interior point of Aa'
Now consider a simple alternative
(a) _ 1 .
W= ua, -y e ush)

)

on La' The size~a envelope power at u=u(a is equal to (cf.(2.4.8))

. (a)y _ 1

B, (u 7)) =0 (feu ).

Let Sa be the solid hypersphere with centre X(da - % eu, ;L:.) and radius

%‘6 u in x~space. Then Sac Aa’ for otherwise there would again exist a supporting
[s2

hyperplane of Aa at a distance smaller than u, from the origin. Hence the power

of 6aat U= U o) satisfies the inequality

B (u(a))<1~P((§1,---,§k) 3 Salu(a)) = P(x~§ > %‘s ul s

§
o

where X2 has a chi-square distribution with k degrees of freedom. Thus

+
Ba(p(a)) +1 and 66 (u(a)) -+ 0 for o ~ 0, and we find that for all o < “0(8951)
a
+
R R D B A LU IR
o o
establishing the desired result (2.4.2), since o (e, €,) may be taken independent

0 1
of the particular choice of La .
To prove the second part of the theorem, consider an arbitrary half-line
L € 110 with direction cosines g, ,...,0 (0. > 0 for i=1,2,...,k). Let
o o 1,0 X 0 1,0 —
soeesT denote the direction cosines of the half-~line M :
1,0 k,0 0,0

m k m
t. =()da. p. T. . { ( q
1s0 321 Js0 Ja0 1o s i'z1 g£1

T

p 4
&350 &0 it,8,0

for i=1,2,...,m. The point of intersection of M:_a and the hypersphere with radius
5

u, and centre O in x-space is an interior or boundary point of Aa (by the by now

familiar argument), and hence



) <ec

m k
(2.4,9) E q. explp. u .Z Ci,j,d Ti’u .

By condition (2.4.3) p. u < 1¢ for j=1,2,...,m and all o < a_(e).
j.a o L 0

Hence, for a < ao(e) and d_ defined by (2.%.8),

m k
t(x(da;L:)) = jZ1 %G o exp((1+3¢) Uy P30 iZ1 %50 1’a) <
m ; k 1 5 k
< j£1 qj,a [1 * (1+ze) ua pj,a iz1 1,J,0 1,0 * E e(i+ze) upj,u 121 1,350 i,a]
m k
< 321 %, [1+ (14e) u_ o " i£1 1,50 i’u]
m k m
= j£1 a4 + (1+e) u 121 % .a 321 .o P3,0%1,5,0
_ m ‘ k k m 2 1
= 321 % + (1+e) u j£1 % 4 Tlsa{i2=1 (gz1 %Y, a0 L‘,g,a) }
m k m 2. 1
< 321 %G oot (1+e) (1=e)u, {i£1(gz1 %Y a pg,aci,g,a) }
m k
< 321 4 [1+u Pia i£1 %5 1,a]
m k
< j£1 qJ,a exp(ua pJ a i§1 1,Js0 1,a) S

where the third inequality is motivated by the fact that by assumption

Jo. 1. < 1=e. Hence x(d ;L) is an interior point of A and the proof of
is0 i,0 o o

(2.4.4) can be completed by the same argument that we used in the first part of

the proof. Q.E.D.

The proof of the theorem above is based on the fact that, roughly speaking,
for o > 0 under condition (2.4.1) the acceptance region of Gu approaches regions

bounded by m hyperplanes orthogonal to Mg.aand that for o + 0 under condition (2.L4.3)
3
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the acceptance region of Gm approaches regions bounded by one hyperplane orthogonal
ol
to Mo,a’

The exponential combination procedures of theorem 2.3.71 are Bayes with respect
to prior distributions which are concentrated on k points in the parameter space.
By lemma 2.2.1 these prior distributions satisfy condition (2.4.1) of theorem 2.k.1
and hence the maximum shortcoming of exponential combination procedures tends to
one for a - 0 and all fixed k > 2. In the sequel we shall find that the maximum
shortcoming of the likelihood ratio test of H against K tends to zero for a - 0
(lemma 2.4.2), implying that exponential combination cannot be MS for small a.

Thus we obtain as a first application of theorem 2.4.1

Corollary 2.4.1

For each k > 2 there exists a positive number ao(k) such that exponential combinatior
procedures cannot be MS tests of Hagainst K for any o < ao(k). Moreover, the maxie-
mum shortcoming of the exponential combination procedures of theorem 2.3.1 tends

to one for o + 0 on any half-line bounded away from Qrestr (ef.(2.3.3)).

The LF prior distribution assigns probability one to the set of points for
which the shortcoming of the corresponding MS test attains its absolute maximum.If
for a+0 the LF prior distributions would remain concentrated on a bounded number of
points, condition (2.4.1) of theorem 2.4.1 is satisfied by lemma 2.2.1 and hence
the maximum shortcoming of the MS tests would tend to one for o -+ 0. However,
this is impossible because the maximum shortcoming of the LR tests tends to zero

for o + 0. Hence we obtain as a second spplication of theorem 2.h4.1

Corollary 2.4.2

For o -+ 0 the LF prior distributions do not remain concentrated on a bounded
number of points.

As the MS tests have a very complicated structure for small values of o,
we dry to find tests with uniformly good power properties by another approach.

To this end we consider the likelihood ratio (LR) test of the hypothesis
H against K. It is easily verified that the size~a LR test rejects H if

LI >
e el
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where I(O w) denotes the characteristic function of the set (0,*) and LN is
9 $

an appropriate constant. We note that LR tests exist only for sizes o smaller

than 1—2_k, since the acceptance region AL of the test strictly contains the

R,a
negative orthant. In the positive orthant the region ALR “ is bounded by a hyper=—
2
i o [t follows from lemna 1.4.6 that the LR tests are admissible;
3
however, by theorem 2.2.1 these tests are not Bayes and hence cannot be MS for

sphere 2x§ =p

any size a.

As o tends to zero, p N tends to infinity. Moreover,

k,

since otherwise there would exist a supporting hyperplane of ALR o at a distance
4
of at most u, from the origin and the LR test would have a larger size than a.

In the following lemma the asymptotic behaviour of p is described more precisely

k0
in terms of u, -

Lemma 2.4, 1

For o - 0

=1

3 k - -2
(2.4.11) =u, +(k°1)uu log u, + {2 log m= §(k~1)1og 2“logF(§)} u, +Cnuu ).

pk,u

Proof:

During the proof we omit the index k of Py o Let by denote the test statistic of
k

the LR test appearing in (2.4.10). Then under H

o k
Pt < = k 2
YR pa) = g ) P(_@_LR < o, [§1 > O,B.,ggj > O,§ﬁ+1§_09».»,§k§p).

£@1>muw%>o&ﬁ1im””%io)

-« £k I 2 2
= 2 (%) p( T <
jgo J i§1 <o)

_ K P 1 s
(2.4.12) 27 [+ ] (?){ 22 r(d)y g WRITIE 4 T,

where, by repeated partial integration,
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p2
1s ; - 12t wl

2290 () 7 0T T gy =
0 i
2, W Lo, L

1 - eXP("%Da) Z (époc) / T(i+1) if j is even

i=0

(2.4.13) = 1(5-1)
2 2\d 1 2 1"“2‘ -1 . PR
2 Q(Oa) - - eXP(‘%pa) ) (zpa) / r(i+3) if j is odd.
i=1
The numbers paand ua are connected by the relation
(2.4.1h) o(u) =Pt <p° |H) =1-a.
o -LR o

Since both u and‘patend to infinity for a - 0, the well-known approximation

(2.4.15) o(z) = 1 - exp(=3z°)} Z\/;.%. +O(273)) for z -+

can be applied to both.¢(Qx) and @(pa). Substituting (2.4.13) into (2.4.12) and
applying (2.4.15) we find, fora - 0,

Kk 12 Ty -
(2.4.16) Pt < o2 [H) = 1= E— &™%Pa (3p2)371 (1 v a(o7h)).
¢ r(3)
2
Combining (2.4.14) through (2.4.16) we obtain
1.2 9] k=2 1 2
(o + O &M = 2 e O 1)) 7,
o 2% r(k/2) ¢

or, taking logarithms,

1 2_. 2 - 1 -2 T -
g(pa ua) log u -z logem +(3(ua ) = =k log 2 +(k=2) log oyt

~3(k~2) log 2 - log r(-g) +C7(p;1)
and hence

=1

- - -3 (e
P, U= 2(pa+ua) {(x~2) log p* logu -3 (k-1) log 2 +

+ 3 log m - log F(%) +C5(u;1)}

for o >~ 0. This relation immediately yields (2.L4.11). Q.E.D.



8k
In particular we have

(2.4.17) lim (p - u ) = 0.
a0 k.o a

From(2.4.12) and (2.4.13) critical values of the LR test can easily be determined.

Table 2.4.1 shows pi o for selected values of k and a.
2

Let RLR adenote the shortcoming of the size-o LR test. Since the LR test satis—
3

fies the conditions of lemma 2.3.2, there exists a positive number Hy, such that for

all u = (ul,...,uk)

RLR,G.(U) f_R (Uasoa"’ao)-

LR ,a

Consider therefore

= 2 - - <
RLR,OL(L[OL’O’ON’O) = P(‘t‘LR,OL< pk,d‘ud’o’..‘,o) o (U-OC UOL)

k 2 3 L 5 6 7 8
.2 1.725 2.595 3.390 h.1k2  h.865  5.567 6.252
A 2,952 L4.010 L4.955 5.835 6.671 T.h76  8.257
.05 4,231  5.434%  6.498 T7.480  8.h0T  9.295 10.152
.025 5,537  6.861 8.023 9.091 10.095 11.053 11.976
.01 7.289 8.746 10.019 11.183 12.27h 13.312 1L.310
.005 8.628 10.171 11.516 12.74k 13.893 14.985 16.032
.001 11.763 13.L7h  1h.962 16.317 17.582 18.780 19.927
.0001 16.287 18.188 19.840 =21.3k 22.7h 2k.06  25.33
.00001 20,84 22.89 24,67 26.30 27.81 29.23  30.59

Table 2.4.1. Critical values pi N of the LR combination procedure.

3
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<P - -
() <oy ol vg) m ol mw)

= @(pk’a - Ua) - ¢(u a‘ ua)~

But (2.4.17) implies that this expression tends to zero for o - 0,and thus we have

proved

Lemma 2.4.2

The shortcoming R of the size=y LR combination procedure attains its absolute

LR’O!.
maximum exclusively on the edges of the parameter space and

(2.4,18) 1lim RLR,a(“) = 0 wiformly for all y .> O.
a0
_ We have thus shown that the maximum shortcoming of LR tests tends to zero

for g»0. This is of course a desirable property. Families of tests with this pro-
perty will be called asymptotically optimal for ¢+0. Obviously the MS size=-o tests
have a smaller maximum shortcoming, but this advantage becomes negligible for (very)
small values of q.

It now remains to investigate what other families of combination procedures
besides the LR tests are asymptotically optimal for g+0. We shall show that, in
a sense to be made precise below, any family of admissible end asymtotically
optimal tests approaches the LR tests for g-»0.

Consider an arbitrary family of admissible (nonrandomized) combination
procedures with acceptance regions Au (0 < @ < 1), where the procedure characterized
by Aa has sizeq and shortcoming Ra . Let A” denote the intersection of the set A

and the positive orthant, i.e.

Af=an {xlx>01},
and let d(A,B) denote the Hausdorff distance of two sets A and B (cf.(1.4.20)).
Theorem 2.U4.2

(2.4%.19) lim sup R (u) =0
o
a0 1.0
if and only if

. ¥ %
(2.h.20) ii‘é‘ d(Aa . ALR’G ) = 0.
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Proof':
First we show that (2.4.19) implies (2.4.20). Suppose that (2.4.20) is false

and hence a number § > 0 exists such that for any o > O there is o' < o satisfying

- kSl

(2.k.21) ARy (s App g0) > 8
Let € be defined by .
k-1 2 _ 2
€ =2 P() x5<6°|u=0)
i=1 "t

and let g > 6§ be so large that

P( f x2 > qz[u =0) < e,
i=1 %

Furthermore let ao be so small that for all o < o, we have
(i)
(ii)

- < 16
pk,a Y, 2%

516+ (2 =628 {1-q(e® - 6?)

POl

-1
Py o Yo,
(iii) sup R (w) < e,
.20

and choose @', 0 < a' < a,, such that (2.4.21) holds. The set {x| Zx§<uu,, x> 0}

LR,a

ka3
is a proper subset of Ad,, since otherwise there would exist a supporting hyper=
plane of A , at a distance smaller than u , from the origin and the test would have

a size larger than a'.

ALR,oL'

1 - 2 - * 1 1 i @
Fig. 2.4.1. Common boundary points of ALR,a' and Aa' inside Gq
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ki
Hence by (i) AZ£ o © U(Au,,% §), the 38 -neighborhood of A:}. Therefore (2.4.21)
9
implies the existence of a point P, = (x;,..,,xﬁ) in the positive orthant on the
boundary of Aa' at a distance I + 4 > Pl ot +6 from the origin. Let L1 be the
3 %
line through the origin O and Pl’ and let P

He
and the boundary of ALR,a"

5 be the point of intersection of L

Define the region Gq by

1

k
G = {x| ) (x. = x)% < qz}-
a e 1 i

i=1

We shall show that the boundaries of A,y and ALR o1 have no common points in the
2

set Gq. For suppose to the contrary that such a point would exist, say P,. This
would imply P2

let V be the plane through the points P

3¢
€ Gq and hence d < g. Denote the line through P1 and P3 by L2 and
1 P2 and P3; then the origin O also lies
in V (see fig.2.L4.1). Purthermore let ¢ denote the positive acute angle between L,

and the line of support of ALR ot in V through PE.Finally let ste the line through 0
k]

orthogonal to L, in V and let Ph be the point of intersection of L, and L,. Then

2 2 3

OPM = (pk,a' + d) cos ¢ <(pk,a' + q) cos C.
Since

sin ¢ = 4 / 5:?5 > 8/q,
we have by (i) and (ii)
(2.h.22) By <o, +1- O < L -lscu,

’4 kgOL' g kgu' O(.'
Since P., P_ and P, are collinear and P_ is situated between P, and P, , P, lies
3 b 3 1 Lo Fh

outside Aa' or on its boundary. This follows from the fact that Aa’ is convex
and that P, and P3 are boundary points. Therefore 5§h 2 u e contradicting (2.L4.22).

Hence the assertion that Aa' and A . have no common boundary points in Gq is

LR,a
proved.
It follows that (Gq - ALR,G,) ! (GCl - Aa,) and that (Gq - ALR,@')"<Gq - Au,)
contains a sector Cd of a hypersphere with centre P1 and radius 4
k
= (v 2 2
Cy= {xliz1 (xi - xi) <da”, x<x'}

Taking u' = x' , the definitions of ¢, q and Gq imply



R, (u") (ut) >

o - RLR,OL'

> Plxecyu)-e

k
> 2K p(Y 2 6®u=0)-c=e.
o=
i=1
Hence Ru‘(u')> £, contradicting (iii), which proves that (2.4.19) implies (2.4.20).

To prove the converse,suppose to the contrary that (2.4.20) holds and that sequences

(3

{0..} and {n J>} exist such that lim a. = O, u(J).z 0 for all j=1,2,... and
J v dJ
(2.4.23) R, Wy s . for j=1,2,...,
dJ

where ¢ is some positive number. Define 4 > O by

L 1
(2.4.2h) P(iz1 x> a |y = 0) = e
and let
(2.4.25) ¢. = {x | % (x. - w92 < g i=1,2
; DGR < , I

Furthermore, let Dj be the intersection of Cj and the symmetric difference of

Aa, and ALR,a.' Then
J J
(2.4,26) lim A (D.) = 0,
j»m

where X denotes k~dimensional Lebesgue measure. Relation (2.4.26) is obvious from
(2.4,20) if Cj (and hence Dj) is a subset of the positive orthant. But the uniform

convergence of the boundary of Aa to the boundary of AL in the positive orthant

R,o
also ensures uniform convergence within the larger set {x|xiz_~d, i=1,2,...,k}
This may be verified by the same line of argument that we used in the first part

of the proof to show that Gq contained no common boundary points of A,y and ALR ol
£l

Hence by (2.4.24) through (2.4.26)

(2.4,27) IRLR’u_ ( '
J J

for all sufficiently large j. Since by lemma 2.k4.2



(2.4%.27) contradicts (2.4.23), showing that (2.4.20) indeed implies (2.%.19).
Q.E.D.

A well~known family of tests satisfying condition (2.4.20) of theorem 2.k4.2

are FISHER's combination procedures which reject H if

(2.4.28)

1
B -3
where ck,u exp (=~ 3

denoted by RF,a'

Lemma 2.4.3

FISHER's combination procedure (2.4.28) is admissible and its shortcoming Ry o
k]

attains its absolute maximum exclusively on the edges of the parameter space.
Moreover,

lim R, (w) =0 uniformly for u .> O,

F,o Z

a+0

Proof:

We write the acceptance region AF N of FISHER's size=-o test as
k-

AF,a = {x’x1 < a, (x2’°"’xk)} .

where (omitting the index k in e a)
9
k

] -
(2.4.29) a, (xg,.,.,xk) = - O (ca / o xi))9
i=2
¢m1 denoting the inverse function of &. This is legitimate, since the test is ob=

viously monotone. Furthermore it follows from the celebrated inequality
(2.4.30) 1= a(z) < ¢(z)/z for z > 0

that log ®(-2z) is concave in z and hence

k k
I ¢(=x!)>ec , I ®(~x;') > ¢

a1 1 R o
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imply

[ =Ny

o(= yx; =(1=y)x!") > c

1 o

i
Thus AF o is monotone and convex, and the a
E
Of course AF,u 1s also symmetric.
Now consider the function (cf.(2.3.9))

g(xg,...,xk) = x, + aa(X2’°"
k

Let KysX) e oo sXy be fixed, denote Cu/ I o(=

. . 3
XS’XM""°’Xk in the notation for g. We shal

for 0 < y < 1.

dmissibility follows from lemma 1.4.6.

3
’Xk) 5;; 8, (xz,...,xk).

xi) by 4 and suppress the variables

1 show that g(x.) < 0 for =w<x < x_,

-1, 1 2 2 0
where x, = = @ '(d®). We have
®m1(d/®(—x2)) ¢(x2)
glxy) = x, + 4 —— 2
oo "(da/e(-x,))) {o(=x,)}
As AF,a is convex and monotone, the (x3,..°,xk)-sectlon of AF,u is also convex and

monotone, implying that a(§x2,...,xk) is a

*o F,

With the aid of this relation and

. The symmetry of A . then implies that

POt

o (a/e(-x)) = ¢ (@)

non=increasing and concave function of

=1<0 a (X 5000
S ES

3 < .
- xk)/ E 0 for all X< X,

_xo

it is easily verified that g(xg) is negative for X, < min(O,xO), Hence we restrict

our attention to the case where Xy > 0 and 0
sufficient to prove that g‘(xg) > 0 for O <

to x,. we obtain

X, < Xy Since g(xo) = 0, it is

%, < xO.Differentiating g with respect

2 2
‘ 42 {¢(x2)}
g'lxy) =1 « = P ot
- {o(e7 " (a/0(-x,)))} fo(-x,))
(0™ Na/0(-x,))}° {(6(x,)1° 2" (a/e(-x,)) x,0(x,)
v &2 2 . 2 v - a 2 A S,
to(o™ (a/0(=x))¥%  {o(-x,)} s(07 (a/0(=x,)))  La(-x,))?
o a/e(-xy))  {elxy))
+ 2d T . 3 -
oo (a/e(=x,)))  {o(-x,)}
Consider some fixed Xps 0 < %, < Xgs and write z = ®-1(d/®("x2)).
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Then
z < 8" (a/o(=x)) = -x_ < 0
0 0
and d = ¢(z) @(-xg). In this notation

zx2®(z) ¢(x2)

§(z) ()

2
o(z) [ ¢(%) ¢(z) 2 o(z)
o(z) {¢(—x2) { oz T F s T 2z} .

(2.%.31) g'(x2> = ] -

o

We need the following inequalities

(2.4,32) o(-y) > _JL2 o(y) fory >0 ,
1+y
(2.5.33)  o(-y) > g+ V5oHh) o(y) for y > 0.

The first inequality is due to Z.W. BIRNBAUM [ 61, the second inequality may

be derived from the inequality
- 3 2, . in
o(=y)/o(y) > Ry(y) = (2y” = by + 2 (y° + 12))/(y" + 3)
given by L.R. SHENTON [48]. Application of (2.4.32) to the expression between
braces in (2.4.31) yields

2
) zo(z) [20%) )
g (xz) > 1 4+ ¢(z§ [5(:;54 {1 ~—ET;;7— }

The expression between braces in the right~hand member is positive and hence,
applying (2.4.30),
2
¢(x,) x,0(~x,)
g'(x,) > 1= 2 (1-=2__-2
2 o —xg) ‘—ET;;T—

o(x,) T2 o(-x)  [o(=x,)]
P __-——”(“‘XZ {"" 1 + X2 ¢(X2) + ¢(""X2) }.

The last expression of the right~hand member is positive by (2.4.33) and hence

g'(xg) > 0, implying g(xz) < 0 for == < x, < x,. Then, by lemma 2.3.2, R

assumes its absolute maximum only on the edges of the parameter space.

F.ao
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Assume o < 3. Introducing polar coordinates r,w Cealy g in x—~space, the

1°°
boundary of AF,a may be written as r = b (wT”"’wk—T)' As g(xe,...,xk) <0
for == < x, < x4 (X3""’Xk) and‘AF’a is symmetric, ba(w1""’wk-1) attains its
Ir  and its minimum for

o
arc cos 2 °= %‘ﬂ. We denote

maximum in the positive orthant for woE e, =W
1

sees Wy
respectively. Now consider the function

e -
w, = arc cos k 2, w, = arc cos({k=1) ¢ ,
these values by w!, mé,...,w£_1

(2.1#.31#) A :'.ba(%‘rr,...,:lg"") - ba(w!]’.u’awl'{."“l)

- 1 - cors
= o7 e MEn - o e ).
Q o

From (2.4.30) we have

-1 —1v2
o(=v) < v ¢(v) <e? for v > 1,
hence
2
-
-y < 0 1(e 2V
and therefore
- 1 1
(2.4.35) o 1(w) > =(=2 log w)*® for 0 < w < e °

Let ¢ be an arbitrary positive number. Then (2.4.32) yields

-1 2
o(~v) > ?:%? o(v) > e 2(vre)

for all v > VO(E). Hence

- 1
(2.4.36) o} 1(w) < g =(=2 log w)? for O <w <w

O(E)b

Combining (2.4.34) through (2.4%.36) we obtain

0t

A < { -2 log (2k—1c )}% ol - 2_10 ¢ }% < ek
a o k & ¢y

for all sufficiently small Cy» i.e. for all o < aO(E). Hence

(2.4.37) lim A, = 0.
a0
Furthermore,
Yy < ba (w;,—--,wi_1) < Dk,a 2
where the last inequality is motivated by the fact that otherwise ALR,a would be

strictly contained in Ap - Hence, because of (2.k.17), b, (w;,o ) - u, tends
bl

i
® -L\ka 1
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to zero for o + 0 and consequently (2.4.37) implies that condition (2.4.20) of

theorem 2.4.2 is satisfied. Application of this theorem completes the proof.
Q.E.D.

The usefulness of asymptotic optimality for o - O of families of combination
procedures, like the LR tests and the omnibus tests of FISHER, of course depends
on the rate of convergence of the maximum shortcoming to zero. In this connection

the following theorem is enlightening.

Theorem 2.4.3

For o +~ 0 and fixed k > 2

usgg "R, ) =
(2.4.38)
-3 - 3 1 ky 1
=(2q) u {(x~1) log u, - —2—(1{—1) log 2 + 3logn w"].ogl“‘(—é)m X(k—”} +
+C5(u;210g ua).
Proof:

By lemma 2.4.2 the maximum shortcoming of the LR test is assumed st a point

uoc = (ua,o,,”,o), where Hy depends on o. First we consider
2

o 1
» oy . o 2 _ 3 -
1 BLR,a(” ) = g_ o( o) =t} u, Jar(s),
def X 2
. . . . . . e )
where F is the distribution function of t' o g x; I(ng)(ggi) under H (we
. . . . . . . 2
again omit the index k of Pk a)' We split the region of integration [O,pa]
3

into two parts: [0 , 2(p§ - ui Y] and (2(95 - ui), pi), and denocte the corres—

ponding integrals by J. and J_ respectively. From (2.4.11) we derive

1 2
(2.4.39) 2 - @® = 2(k=1) log u_ + 2a + &t £ 0
Po o g Uy o or a = U,
3 . ‘e
vhere g = = —?-(kﬂ) log 2 + } log v =logl (k/2). Hence, by an obvious modification

) > ~
of (2.4.16), P(EI"R > 2(p - ui)) = @’(uug) and therefore
J, = U(u—g) £ -
o o or o 0.
T < < 2 2 Lo . -
(£ O t Q(DOc - ua), then it is easily verified that for o - 0

;
JURY N -1 _q =1 -1
£)% -u (k=1)u, " log u, +au -iu, b+ (y(ua log u,)
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and hence
o((p2 = 637 = 4 ) =
Pa Mo/ 7
=0 (u - u )+ (102 - 63F = w) ola —p ) + O30 ~u Jolu -1 )og%u )
o a a a o Mo 0 Mo /elu, e Jlog u
= @ (ua —uu) + {(k—1)u;1log u + au;1 —%u;1t} ¢(ud —ua) +
-2
+ C7(ud log ua) + I (u - ua)¢(ua -ua)logg ua).
Since

2 2 - .
(0 < &y < 2(p7 = u2)) = 1+ o(u?), ve find

2(p2 =u?)
3.o=o(u =p )+ {(k=1)u_ ' 1 vel -1l tar(t)
1 0 "My u  logu, +au 2y, % tdr(t)} ¢(ua mua) +

_2 -
+ C7(ua log u ) + C7(ua2(ua~ua)¢(ua —ua) logzua).

To determine the integral appearing in the right-hand member, we note that

2(p§—u§) -
/ tar(t) = B ¢! / tdF(t).
0~ IR 2(p§ us)

1
By (2.4.12) and (2.14.13)F'(t)=(7'(e2t 3k 3%for t + = and hence application of
(2.4.39) yields that the last integral is (3(ua log ua).

Moreover

k 2 1
P = A ke

E bl ize E X5 T(gm (%) = 20k-1).

Therefore, for ¢ > 0,

o
= - -
RLR,a(“ ) =J, + 3, - ¥uy -u,)

= (=1 Toguy + e - (k=1) wy'd ¢ (uy, =4y) +O(u,” log uy) +

+ C7(u;2(ua - ua)¢(uu —ﬁa) log2 ua). 1
=u +(3Yu 2y,

This expression is maximized as a function of Uy if Uy, satisfies v, =
Substitution immediately yields the desired result. Q,.E,D°

It follows from this theorem that the leading terms of the maximum shortcoming
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of the LR test become small only for extremely smell values of o, because the
rate of increase of u, for a > 0 is very low (e.g. for a= 10" we have u = 4.26).
Hence the practical value of the asymptotic optimality for o + 0 of the LR tests
remains somewhat dubious.

In this respect FISHER's omnibus tests do not behave any better. On the
contrary, comparison of the acceptance regions of the LR tests and FISHER's
tests suggests that on the edges of the parameter space FISHER's tests are
slightly less powerful than the LR tests. Since both families of tests attain
their maximum shortcoming on the edges of the parameter space, it may be ex—
pected that FISHER's tests have a larger maximum shortcoming that the LR tests.

In fact, if the acceptance regions {Aa} of a family of admissible tests
with shortcoming {Ra} do not approach the acceptance regions of the LR tests
sufficiently fast for a =+ 0, the LR tests have the smaller maximum shortcoming
for small values of o. This refinement of theorem 2.L.2 is established in the
following lemma. The set A*'again denotes the intersection of a set A and the

positive orthant, and U(A,e) the e~neighborhood of A.

Lemma 2.4.4

For any k > 2 there exists a positive number ao(k) with the following property.

If for some o < uo(k) the condition

e

* 1 3/2
(2.4.50) A CU(ALR’Q, 3 )

1 1
5 -] 2
2 (k+1 u (log ua) )

is not satisfied, then

sup Ru@)> sup R (u).

>0 wro LR

Proof':
We only give a sketch of the proof and omit some technical details. Let P=(x;,...,x£
be a point in A" at a Gistance u_ + p from the origin; we assume that u + p > p
o3 o o o o k50

Let Ca be the half-cone with vertex P tangent to the hypersphere Sa with centre O
(the origin) and radius u, and let ¢ be its semi~angle. Consider the alternative
u' = x' , then

R (') =8 () =8 (u)

o a o ?

where Ba denotes the power function of the test with acceptance region Aa and
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POl

;
+ . - -
(2.1.41) B fu) =alp ) > 3+ (2n)7%p - (81) .
a o o a
To estimate 8 (u') we remark that the convex hull of P and Sa is a subset of
a
A since A is convex, S < A and Pe A . However, Ca is not necessarily a subset
[ o a o
of Aa . Let Ta be the hypersphere with centre P and radius (ud + pa)cos z, and
let G be the set C =(S uT ) (see fig.2.4.2). Then A > C =~ G and hence
a a a o o o a

1) = - v - P ! =
B, (u") = 1=P(A | u) <1 =P, -G [u')
- — ] ¥
1 P(Cal u') o+ P(Ga[ u').
GrOL
*2
SU.
T
¢}
4
P(l
>
0 Y X,
G
a

Fig., 2.4.2. The acceptance region A, of the test in lemms 2.4.4 for k=2,
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The solid angle subtended by Ca (i.e. the surface area of the unit hypersphere
with centre P intercepted by Ca) is equal to

=11 3 (k-1
B, ELh 20 e 2),
where the first factor is the incomplete beta function

sinac

f y%(k_?’)“-y)—ﬁdy-
0

1
Since the surface area of a unit hypersphere in R" is equal to 2ﬂ2k/F(k/2),
we find that

(k."'1

1 1 k=1 1
P(C, lu') =2 B 57 5)/B(E5n).

Evaluation of the incomplete beta function yields that for 0 < & < 2w

P(Calu') > 3 = = (k+1) cos €,

O\f—

where

. 2 ~2.3 2
2 7 = a =
(2.4.42) cos ¢ = {1 ua(ua+pa) } (2uapa+pa)
Moreover, it can be shown that

....2
¥ = > oo
P(Galu ) (7(uu log ua) for ua

(this probability only depends on u_ and p, » not on Au). Let

(SR =)
ol

(1«1-:—1)3’/2 u“1(log ua)

(2.4.43) A =o +-%—1r ¥

o k,0

end let p =d - u . Then, by lema 2.h.1,

-1 1 % 3/2 =1 % -
= (k= o + +
1 (k: 1)ua log u g (k+1) u (1log ua) Cy(ua )

for u > =, and hence, from (2.4.41) and (2.h.L2),

o=t

1 -
-z (k+1)(2paua )

R (u') > (21)%p_ - (8n)7%p> ~P(G [u")
3/2,-

o - -
> (21) 2 (k=1)u 1 log u + j‘E Sx+1)7 "y 1(log u
o o 3 o o

1
)2+
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Rt
Y

+ Cj(un1)

- %-2%(k+1)(k“1) -

-1
u, {1log ua)

1

= (2w)-%(k—1) u;1 log u, + %‘22(k+1) { (k+1)%—(km1)%} u
. (log uu)% + CT(u;1),

Hence, by theorem 2.4.3,

1

R (u') ~R (u') > 3-2%(k+1){ (k+1)%"(k“1)%} u;1(108 u,)

a LR,a
+ .
o

For sufficiently large U i.e., for sufficiently small o, the right-hand member

is positive. Let a.(k) be a positive number such that it is positive for all

0
a < uo(k).

Suppose condition (2.4.40) is not satisfied for some o < uo(k)° Then there
exists a point E’&A;‘at a distance da from the origin, where da is defined by

(2.4,43), It follows that Ru(u‘) - R (u') > 0 and the lemma is proved. Q.E.D.

LR ,o

It turns out that FISHER's omnibus procedures do not satisfy condition (2.4.L40)
of lemma 2.4.L4. Hence the maximum shortcoming of FISHER's tests is indeed larger
than that of the LR procedures for sufficiently small values of a. A proof of
this assertion is omitted because of the rather complicated nature of the com~

putations involved.

We now turn to other combination procedures for testing H against K. First
we consider the exponential procedures of theorem 2.3.1

By lemma 2.2.1 the parameter r(o) of these exponential procedures satisfies
rla) > u and hence r(a) + » for a » 0, implying c(a) +» ®» for o -+ 0. The boundary

of the acceptance region Au cuts the axis A= =xk=0 at

1 r(;) log(e(a) = k+1)

P
i

and cuts the line x, = x_ = ... = X, at

1= ;'(1;*)‘ log (ela)/k).

"
i

B

Ol

+
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Taking the limit ¢ + 0 we find that the difference of the expressions in the
right-hand members converges to zero. Hence, recalling that Aa is symmetric,
convex and monotone, we conclude that for a > 0 the exponential procedures

approach TIPPETT's procedures which reject H for large values of the statistic

(2.h4.hh) max (51’52""’§k)'

TIPPETT's test is admissible according to lemma 1.4.6; however, by theorem 2.2.1

it is not Bayes. As the exponential procedures of theorem 2.3.1 have a maximum
shortcoming tending uniformly to one for a - 0 on every half-line through the
origin in the positive orthant bounded away from the edges (corollary 2.4.1),

the same holds for TIPPETT's procedures. The exponential procedures of theorem
2.3.1 have uniformly vanishing shortcoming for a -+ O on the edges of the para-
meter space,because they are MS tests of H against @ __ . (ef.(2.3.3)) and hence
their maximum shortcoming on Qrestr is smaller than that of the LR tests which tend:
to zero for a + 0. It follows that TIPPETT's tests also have uniformly vanishing

shortcoming on Q .
restr

Next we consider linear combination procedures which reject H if

k k 5
(2.k.k45) z \)._}_{_i _>_uQL (Z \)i) R

i=1 * i=1

=

where v = (v1,,,.,v ) .> 0. As the test (2.4.45) is Bayes against any simple

alternative on the ialfwline R} Py = vy (i=1,2,...,k), p > 0, this test has
for o » 0 limiting maximum shortcoming one that is reached on every half-line

through the origin in the positive orthant with the exception of LV (cf.theorem
2.4.1). On L, the shortcoming is of course identically equal to zero for all o.

In particular this is true for symmetric linear combination: reject H if

k
(2.4.46) i; X 2, k.

For reasons of symmetry the maximum shortcoming of this test is smaller than that
of any other linear combination procedure. Obviously the meximum shortcoming is
reached on the k edges of the parameter space. Symmetric linear combination has
been strongly advocated by SCHAAFSMA ([L5],[46]), who calls (2.%.46) the most

stringent somewhere most powerful (MSSMP) size-t test.
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Finally we consider the weighted FISHER procedures that reject H if

k .
i
(2.4.47) o [1 @(%)] <e, s
i=1
where v_,v .,V are non-identical positive constants. These tests have been

17722
considered by I.J. GOOD [18] , who derived a method for determining the critical

value c, in the case where all vi are different. Proceeding as in the proof of
lemma 2.4.3 it can be shown that these tests are admissible. One would expect
that the shortcoming of these tests is reached on one (or more) of the edges
of the parameter space, but this is not easily proved since lemms 2.3.2 does
not apply. However that may be, we shall show that the maximum shortcoming of
the test (2.4.47) tends to one for o - 0.

To simplify the notation, we assume without loss of generality that Zvi =
and that v, > v_ > 0. The boundary of the acceptance region of the test (2.L4.h47)

1 2
cuts the xjwaxis at

-1

Hence, applying (2.4.35) and (2.4.36) with e= 1, we find

T=v_ 1/v 1oy /v
-1 177V -1 2 2
Xy o " Xy = ([e2 ] )- o ([caz ] )

[ -1 =, ]% -1 v, |2
> - | -2y, log(cu 2 )|+ =2V, log(caz )

for sufficiently small ot Since ¢y 0 for a + 0, the leading term of the last

(A

i
expression is 2§(v22

>u , it follows that x

and consequently xz,u‘ x19u+w for a »~ 0.

(o)

~u > » for a » 0. Let u '= (Ogua,o,o.“,o),

.
oy 2) (e
vy Y~ log ca)

(OL))

o 2,0
where y = %(ua + X, a)' Then it is easily verified that the shortcoming Ra(u
u

El
of (2.4.47) at u = (o) tends to one for o = 0.

=1
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2.5. NUMERICAL COMPARISON OF SOME COMBINATION PROCEDURES

In this section we study the shortcoming of some combination procedures
for testing H against K in the normal case. The section is concluded with two
remarks concerning more general combination methods. The procedures to be
considered are
(i) +the MS exponential procedures (2.3.k4),

(ii) the LR tests (2.L4.10),

(iii)FISHER's omnibus procedures (2.4.28),

(iv) symmetric linear procedures (2.4.46).

All computations were performed on the EL~X8 of the Mathematisch Centrum, with
programs written in ALGOL 60. The figures were drawn by a plotter attached to
the EL~X1.

First we make some remarks on the determination of the parameters r(a) and
c{a) of the exponential procedures of theorem 2.3.1.

For k=2 we used the following method. For any given values r and ¢ of the
parameters the power function Br,c (or its derivative) in any given point was
computed with the ald of a numerical integration procedure based on SIMPSON's
rule. The repeated integrals were reduced to single integrals by direct
approximation to the standard normal distribution function @. Suppose the
significance levela is given. Then for any given r the corresponding critical
value c=c of the test was determined as the zero of the function Br,c(o’o) -0,

(considered as a function of c¢) by an iterative procedure. Finally r(a) was

found as the unique zero of the function

- - -9
W o=r ¢(ua r) 3 Brgc

R, . (1,0)]
I T

3
u Ty (U’O)lu:r ®

where Rr denotes the shortcoming of the exponential procedure with para=

.C.
meters r aid cr.This process could easily be executed with high precision.
Having found the parameters r(o) and c(a), it is very simple to compute the
maximun shortcoming on the half~lines u2=0,u1 > 0 and Hy =Hy > 0.

For k=3 a more delicate approach was necessary, since the computation
of the power functions and their derivatives involves repeated numerical

integration, which is rather time=consuming if good precision is wanted.
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In this case & stepwise procedure was used, approximating r{c) and c(a) step
by step and simultaneously modifying the tolerances of the numerical inetegration
procedures at each step. Once r(a) and c¢(a) are determined, it is relatively
easy to compute the maximum shortcoming on the three half-lines =l
u2=u3 > 0, u1=0 and u1=u2=u3 > 0.

As was already mentioned in section 2.3, exponential combination turned
out to be MS for k=2, ¢ > aq = 0.043 and for k=3, o=0.1, but not for k=3, «=0.05.
For k=2, a=0.1 or a=0.05 and for k=3, a=0.1 the MS procedures are given by (2.3.1k4),

(2.3.15) and (2.3.17) respectively.

3=09u1 > 0y

The computation of the (maximum) shortcoming of the combination procedures
(ii), (iii) and (iv) is much easier, because the test statistics do not depend

on o

The boundaries of the acceptance regions of the four tests for k=2 and 0=0.05
and e=0.001 are sketched in fig. 2.5.1 and fig 2.5.2 respectively; in the latter
case exponential combination is omitted because it is not MS for a=0.001.

In table 2.5.1 the maximum shortcoming of the four tests on the half-lines
u2=O, B1 > 0 and u1=u2 > 0 is given for k=2 and a number of signifance levels a .
Table 2.5.2 shows the maximum shortcoming of these tests on the half-lines
u23u3% 0, u1 > 0 and u1mu2mu3 > 0 for k=3 and some values of o.

Exponential combination is only included for those values of o for which the pro=-
cedure is MS. We recall that the procedures (i), (ii) and (iii) assume their
maximum shortcoming on the edges of the parameter space (cf. section 2.4);
whenever exponential combination is MS it also assumes its maximum shortcoming
on this set (ef.section 2.3).

To obtain a better impression of the performance of the four tests than by
their meximum shortcoming alone, the shortcoming of the tests has also been
sketched with the aid of lines of equal shortcoming in the figures 2.5.3 through
2.5.6 for k=2 and 0=0.05 and in the figures 2.5.7 through 2.5.9 for k=2 and
a=0,001 (exponential combination was again omitted in the latter case).

More numerical details about symmetric linear combination and exponential
combination are given in a report(TWw-L0 (1967), University of Groningen) by
H.J. VAN LINDE, W. SCHAAFSMA and D. VELVIS.

Inspection of table 2.5.1 and the figures 2.5.3 through 2.5.9 permits us to

draw the following tentative conclusions for the case k=2.
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exponential test

_..‘l,..
Fig. 2.5.1. Boundaries of the acceptance regions of

4 symmetric tests; size a = .05.

LR test

Tinear test Fisher's test

) 3 ] e i i ] i i
-1 1 2 3 L V{T

1R

Fig. 2.5.2. Boundaries of the acceptance regions of

3 symmetric tests; size o = ,001.
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exponential LR FISHER's symmetric

size a half-line combination test procedure linear comb.

1 u2=0, u1>0 .108 .108 121 213
u1=u2 >0 .068 .059 .022 0

.05 u2= s u]>0 107 110 .130 .255
u=n, >0 .099 .06k .025 0

.025 U =0, 1,>0 110 136 .292
u1=u2 >0 .068 .028 0

.01 u2=0, u1>0 . 109 L1h .33k
Hab>0 .072 .030 0

.005 =0, up>0 .108 143 .363
u1=u2 >0 073 .032 0

.001 M,=0, >0 .105 146 Do
u1=u2 >0 075 .035 0

.0001 =0, >0 .100 L1k6 491
W=y, >0 075 037 0

Table 2.5.1. Maximum shortcoming of U symmetric combination procedures

for k=2 on the half-lines u2=O, oy 2 0 and p =H, > 0.

1
For moderate values of o the maximum shortcoming of the LR procedure is barely
lerger than the shortcoming of the MS (exponential) test. For alternatives in the
central part of the parameter space the LR test is slightly more powerful than the
MS test for o=.1 and .05. As the LR test approaches the MS test for a > 0 (theorem
2.4.2, ¢f. also lemma 2.4.4), we expect that the maximum shortcoming of the LR test
will remain close to the minimax shortcoming for small values of o. Hence the IR test
may as well be applied as the more complicated MS test if a small maximum shortcoming
is wanted. FISHER's test is somewhat more powerful than the LR test against alternati-
ves in the central part of the parameter space and somewhat less powerful against

alternatives along the edges.
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exponential LR FISHER's symmetric

size half-line combination test test linear comb.

. u2=u3=0, uy >0 167 170 .193 .327
u1=u2=u3 >0 112 .085 .031 0

.05 u2=u3=0, My >0 LA75 .209 .389
u1=u2=u3 >0 .09k .035 0

.025 u2=u3=0, u1 >0 176 .220 RN
u1=u2=u3 >0 . 101 .039 6]

.01 u2=u3=0, U1 >0 176 .229 .500
WS, >0 .108 .0b3 0

.005 u2=u3=0, Uy >0 175 .234 .539
u1=u2=u3 >0 111 .0k6 0

.001 u2=u3=o, uy >0 172 .2ko 615
u1=u2=u3 >0 .116 .050 0

Table 2.5.2. Maximum shortcoming of U symmetric combination procedures
for k=3 on the half-lines u2=u3=0, u1>0 and u1=u2=u3>0.

In section 2.4 it was shown that the maximum shortcoming of both FISHER's and
the LR test tends to zero for o -+ 0; the numerical results indicate that this con-
vergence is very slow (cf, lemma 2.4,3). Since the maximum shortcoming of both
tests is not very large at the usual significance levels (about 11% for the LR
procedure and 12-14% for FISHER's test), they appear to be satisfactory combination
procedures for k=2 if no prior information about the alternatives is available.
The shortcoming of the symmetric linear procedure shows a quite different pattern;
this test is of course very powerful against alternatives in the central part of
the parameter space but rather insensitive to alternatives close to the edges,
especially for small values of o (cf. section 2.4). This suggests that symmetric
linear combination should only be applied if there is some prior information indi-

cating that Hy and M, are not widely different.
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¢u2

_}U‘]

Fig. 2.5.3. Lines of equal shortcoming of the exponential

procedure (in percents); size o = .05 and k = 2.

Fig. 2.5.4. Lines of equal shortcoming of the LR test

(in percents); size o = .05 and k = 2.
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Fig. 2.5.5. Lines of equal shortcoming of FISHER's test

1

(in percents); size o = .05 and k = 2.

Tug
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Fig. 2.5.6. Lines of equal shortcoming of the symmetric

linear test (in percents); size a = .05 and k = 2.
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Fig. 2.5.7. Lines of equal shortcoming of the LR test

(in percents); size o = .001 and k = 2.

Fig. 2.5.8. Lines of equal shortcoming of FISHER's test

(in percents); size o = .001 and k = 2.
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Fig. 2.5.9. Lines of equal shortcoming of the symmetric

linear test (in percents); size o = .00%1 and k = 2.

For k=3 numerical evidence is scarcer. It is seen from table 2.5.2 that in
this case the maximum shortcoming of the tests considered is much larger than for
k=2. Nevertheless, in the absence of prior information the LR test and FISHER's
test seem to be relatively good combination procedures, FISHER's test being more
powerful against alternatives in the central part of the parameter space and less
powerful against alternatives near the edges.

For k=3 numerical data about FISHER's test and the LR procedure are not avail-
able. However, we expect that for increasing k the meximum shortcoming of these
tests (and of any other test) will increase rapidly (cf,[}%] th.5), and hence the
advantage of a relatively small meximum shortcoming of the LR test and FISHER's
test will diminigh accordingly. One might say that, the larger k, the more impor=

tant it is to have some prior knowledge about most likely alternatives.

In section 1.6 linear combination procedures were considered for some well=~
known non-normal combination problems. It was asserted (cf. page 41) that the test
based on the sum of the standardized individual test statistics is optimal in some

gense among all linear combination procedures in the large sample case.
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The individual test statistics considered in the examples of section 1.6 are
asymptotically normal and hence, for increasing sample sizes, the shortcoming

of the linear procedures is asymptotically equal to the shortcoming of the corres=
ponding tests of H against K in the normal case by the theory of section 2.1. The
test based on the sum of the standardized individual test statistics corresponds
to the symmetric linear combination procedure (2.4.46) for testing H against K.

It follows that in the large sample case the test based on the sum of the standard-
ized test statistics has a smaller maximum shortcoming than any other linear com=~
bination procedure. This property holds quite generally whenever the individual

test statistics are asymptotically normal.

J. HEMELRIJK [21] suggested a different general approach to the combination
problem if the densities of the individual test statistiecs Ei belong to an ex~
ponential family of the form (1.6.2) and are based on samples of observations of
size n. (i=1,2,...,k). The parameter B 00005 0y being unknown, estimators
§1,..., ﬁk of the parameters may be obtained from the respective samples and the
optimal test of H against 62(61,.,,,3k) may be constructed (cf.(1.6.3)). The
resulting combination procedure (with §4°““‘9§k considered as random variables
and due modification of the critical value) may be expected to possess good power
properties in the large sample case if the method of estimation is efficient.
Curiously enough it turns out that, for fixed o, the maximum shortcoming of such
procedures does not necessarily tend to zero for n,> @ (i=1,2,...,k). In fact, the-

se tests are often equivalent to LR tests.

Example 2.5.1
Let M191”°'°x15n1; ces 3 Xk,1”°"xk,nk

be k samples of independent observations with normal N(ui,1) distributions
(i=1,2,...,k). The sample means X seee ol constitute a set of sufficient statistics
and the MP test of H : u = 0 againft a simple alternative u' .> 0 rejects H for

2

large values of the statistics ) n uixi . Substitution of the maximum likelihood

=

. R T . i oot . .
estimators : u, =y, if ¥; >0, =0ify. < 0 (i=1,2,...,k) yields the

i

test that rejechs H for large values of the statistic
R

2% 4 How ()

i.e. the LR test of H against K : u .> 0. Its maximum shortcoming is equal to

that of the LR test (2.4.10).

Y ol

1
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CHAPTER 3. COMBINATION OF ONE SAMPLE t-TESTS

3.1. OBSERVATIONS WITH EQUAL VARIANCES

Let
x1,130us,l1’n1; seo 3 lk,.‘g...,lk’nk
be k samples of independent observations with normal N(vi,qi) distributions

(i=1,2,...,k). In this section we assume

2 _ 2 = 2. 2
94 9, ‘e o. o .

One wishes to test the hypothesis

i
H :v= (“1""’Vk) =y s 0o >0

against the one-sided alternative

K : v .2 vo, 02 > 0.

0 . . 2 .
Here v is a given vector and ¢° an (unknown) nuisance parameter.

Then

-1 % .
% =1 leij s i=1,2,....k ,
=1
and
, k n
2
s =l L )
21 = i .

constitute a set of sufficient statistics. Putting

0 .
% (Xi, - vi) /hi , i=1,2,....k ,

0 .
wy = (v - vi) /hi s A=1,2,...,k

k
N= z (nj - 1),
=

we obtain the following canonical form of the combination problem.

The random variables Xys XpseeesX, are independent and normally distributed

with common variance o~ and expectations Egi =W > 0 for i=1,2,...,k , §? is
. . . . 2 .
independent of the X and is distributed as ozﬁﬁ , Where ZN has a chi=-square

. distribution with N degrees of freedom. The hypothesis to be tested is
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H :p = (u1,ea.,uk) = Q
against
K :uq > 0.
In section 2.1 (example 2.1.1) the large sample approach to this combination
problem was considered. In the large sample case we may apply one of the com~
bination methods of section 2.5 to the t-statistics

,
3i=1\réggi /S, i=1,2,....k

(3.1.1)
because the Ed are asymptotically normal and independent for N = «, In this
section we study the small sample case.

Let

2= { (wo) [u=0,0>01,
{ (Usd) I ¥ =u.2 0, 0 > 0} 5

e

and consider the group G of transformations g of the sample space

g
>

(51""’§k’ s) (cxis..000x, © 8) ., ¢ >0,

This group induces a group G of transformations E'of the parameter space

&
(u1,..,,uk,c) > (cu1,...,cuk, co),

which leaves QH and QK invariant. Obviously

2/ 5 en s X /8
is a maximal invariant under G. The power function of any test based on this

maximal invariant depends only on

U1/0: oo g Uk/U B

the meximel invariant under G (cf.section 1.3).
It is well-known that the envelope power is a function of the maximak
invariant under G only. Moreover, the envelope power remains unchanged if we

test H against the extended alternative

K' :u#0, 00> 0.

Since this testing problem is invariant under the group of orthogonal trans-
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formations applied to u1/o,...,uk/o, the envelope power is a function of the
maximal invariant

X 2,2

L wi/o

i=1 i
of this group only.

The envelope power can be determined by the same line of argument that

E.L. LEHMANN and C.M. STEIN [32] used to derive the most powerful test of H
against a simple alternative for k=1. It turns out that for o < 3 the most

powerful size-a test of H against the simple alternstive (u,0) rejects H if

- 1
[x - %”i {1+ (1 + (N + k)a’o M 1)‘;5} ]2 +§2 <
!

fl e~

1

< (1= (N + k)”1) M {1 +(1 + (N + k)3202M~1)% } 2,

where

and a and b are positive numbers, depending on N + k and o, determined by the

relations
Q(a,b) = sup Qa’,b) = o , b <N +k,
a'>0
where
X 2 2
Qla,b) = P( ] (u. = a)” < (N+k=bla")
. =i -
i=1
and Byslpsee .oy are independent and normally N(0,1) distributed. Hence, for

o < 3, the envelope power is equal to
+
(3.1.2) B, (us0) =

- - P
= P2 < (1= p + 1)TM 072 {101+ b + K)e%W 2D,

where Xﬁfk has a non-central chi-square distribution with N+k degrees of freedom

and non-centrality parameter
- - 1
-Q:Ma 2 -1+ 5N + K)a%e® M 1)§ 32,

The complicated nature of the envelope power function suggests that without
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further restrictions combination methods with attractive theoretical pro=-
perties will be hard to find.

In many testing problems the class of tests to be considered is restrict=-
ed to unbiased, similar or invariant tests. In this connection it is enlightening
to note that by lemma 1.3.1 a MS test for testing H against K exists that is
invariant under G.As our interest is focussed on tests with a small maximum
shortcoming, this result suggests a restriction to tests which are invariant
under G. At this point the question arises whether the shortcoming of an in-
variant test with respect to the envelope power (3.1.2) is still an adequate
measure of its performance. It seems more natural to measure the shortcoming
of invariant tests with respect to envelope invariant power, i.e. with respect
to the supremum of the power taken over all invariant size-a tests.

Henceforth we shall restrict our attention to invariant tests,l.e. to tests
based on the statistics EJ’EQ"°"EK’ and measure their performance by the
shortcoming with respect to the envelope invariant power function. Without

loss of generality we assume that c2=1. The parameter space then reduces to the

set {u|u > 0}. The joint density of 31,t ""’Ek is easily derived from the
Jjoint distribution of XoXyse ooy and §? ; in the general case we find
(3.1.3) p(tiu) = p(t1,,.@,-k; u) =

1 1 et ) k 1 ]
- {22(N+k)("N)2k r(am)y [ S (T 2)exp vy .1 ) (tlvzwu.Nﬁ)zl av,
o 2 2N j=q 1t i

where the integral can also be written as

k k 1
(3.1.4) exp(~ 1 Z u_g)‘ [1 . 1 Z t? ] _E(N+k).
2 i=1 * N i=1 1
2 1 - .11k
. 2 (W 2)exp[ - % + (N+ t?) 2y? ) “iti] av.
0 i=1 i=1

Under H this density reduces to

1 1 1 k 1

-3k 3N I(F(N+k)) 2,=3(W+k)
.1, 30) = 2 2 + =) F .

(3.1.5) p(t30) = = e (@ iLtl)

First we determine the most powerful invariant size-a test of H against a

simple alternative.
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Lemma 3.1.1

The most powerful invariant size=o test of H against a simple slternative

¢ rejects H if

k ko,
(3.1.6) () we )+ ) £59)7%>a,
Lo, i o i - o
i=1 i=1
where
N 2 -3
(3.1.7) da = tN+k-1;a(i£1 ui) (=1 4 tN+k'-1;oc)

and tv_adenotes the upper a~point of the t-distribution with v degrees
3

Proof':
From the NEYMAN-PEARSON lemme and (3.1.3) through (3.1.5) we find that
powerful (MP) invariant size-a test of H against u rejects H for large

of the statistic

o~y

1 . 2y
[ V2(N+k 2)exp[ - % + (N + ) t5)7 % HiEi] avs
0

i=1 i=1

of freedom.

the most

values

-
that is, for large values of (N+Z E?) 2 Zuiii’ To determine the critical value

d, » we note that under H the distribution of the vector t is rotation

variant (cf.(3.1.5)). Hence

k koo,
P( 121 wt (e ) og5)F>a |B) =

ine

i=1
k 1
= 2y~3 =
= P(g(+ J35)° > a | H),
i=1
e 2 —% .
where da = da (Zui) . Since the event
i K ,
M) £2)72 > gF
=07t T @

is equivalent to

and hence to



X, (8% +

d:.obviously must be solved from the equation

i

°

e _-)(-2-—%__ R
da (1 da ) (N+k=1)

CNak=1 50

This immediately yields (3.1.7). Q.E.D.

The class of MP invariant size-a tests has also been obtained (in a
different notation) by W. SCHAAFSMA [L5] (ef. also [bL] ), who proved that the
tests (3.1.6) are in fact the MP similar size-o tests of H against simple al-
ternatives.

Performing an orthogonal transformation of the sample space it is easily

.o . . . +
verified that the envelope invariant power function Ba inv only depends on
9
z ui and is equal to
i
(3.1.8) g (u) = P(t} >t )
a,inv “Netk=1 = “Ntk=130" °
where t! has a non-central t-distribution with N+k-1 degrees of freedom

'—N"‘k— 1 2 1
and non-centrality parameter (z ui)z.
i
The critical region of the test (3.1.6) is, for o < 3, one solid sheet
of a hyperbole of revolution in t—space. The tangent half-cone of this sheet
has vertex O (the origin), an axis orthogonal to the hyperplane z“iti = 0
1

and semi-angle

arc tn { (N+k—1)%/ T

CNak-130

SCHAAFSMA [hSJ has shown that the symmetric test which rejects H if

(3.1.9)

o~

t.
i=1 "t
is MS among the class of tests (3.1.6); he calls it the MSSMP similar size=g
test. He also demonstrated that a unique MSSMP similar size-o test exists if
and only if the condition

2

(3.1.10) (N+k~=1) > (k~1) k=130
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is satisfied; if not, the solid tangent half~cone of the critical region
defined by (3.1.9) is a proper subset of the positive orthant and the maximum
shortcoming of every MP invariant size-o test is equal to one. In applications
o will not often be so small that the inequality (3.1.10) is not satisfied.
Nevertheless, compared with the symmetric linear size-a test procedure (2.4.46)
in the normal cese with unit variances, the test (3.1.9) undoubtedly has a
stronger tendency to concentrate its power on alternatives near the central

> 0 of the positive orthant and hence it does not

half-line u C N}

=
1 2 k
appear to be very satisfactory from an overall point of view (SCHAAFSMA does

not share this opinion, cf. [hS] ch.b),

In the case of known variances treated in chapter 2 the admissible tests
for the one-sided combination problem were characterized as the tests with a.e.
convex and monotone acceptance regions (cf. lemma 1.L.6). This result does
not immediately extend to the present problem, as is demonstrated by the Bayes
tests (3.1.6) vhose acceptance regions are neither convex nor monotone. However,
by applying the transformation

ko5
(3.1.11) gi=:s_i(m+j£1_t_j) . 1=1,2,....k,

we obtain a theorem similar to BIRNBAUM's result. We note that under this

transformation (N + Z t?) transforms into N(1 = J z?)m1 and that the Jacobian

of the transformatiofi is equal to t

1 k 1y
T L
. i
i=1
Hence we £ind from (3.1.3) and (3.1.4) that in the general case the density

of z .5Z.  1s given by

1280

-ak
(3.1.12) £(z3u) = £z 50000z 5p0) =
k ® 3 1 k
N 2L 2 3 (N+k~2) v 2
= exp( > 1'-E1Ui) h(z1,¢a.azk) v exp| - T i£1“izi] dv
x ' 0
for z zi < 1 and 0 elsewhere, where
i=1
Hue) 1 - Koo Ik
Bz . m) = (2 g T g - GBI,

i=1
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We note that the MP invariant size-o tests (3.1.6) transform into linear

procedures in z=space which reject H if

(3.1.13) U,

z., >d .
I

o4

o~

i

The class wa of size=q tests of H with a.e. convex and monotone acceptance
regions in zmspace is minimal complete for testing H against X among invariant

size-a tests.

Proof':

To prove the theorem we essentially use BIRNBAUM's approach (cf.[S]). The

proof is given in several steps; technical details are omitted. (i)Since
£(z3u)/f(2z30) is convex in z and f(z;u) has strict MLR in z, theorems 1.4.1

and 1.4.3 imply that W, is essentially complete.(ii) The class W, is complete.
To prove this property it is convenient to return to the class of all, not
necessarily invariant,size-o tests and to the original parameter space (with

02 > 0). The joint density of B SPRRREE §? is an exponential family with
parameters u1/02,u2/02,...,uk/02 and 1/0°. Since such a family is boundedly
complete, equality of the power functions of two size—o tests implies equality
of their critical functions a.e. As the invariant tests are a subclass of all
size—a tests, essential completeness of Wa implies completeness of Wa.

(iii) The class Wuminimal complete.Since thesample space is the solid unit hyper-
sphere and hence bounded, the same argument that BIRNBAUM used to prove theorem
3 of [5] can be adapted to prove minimal completeness of Wa. BIRNBAUM's
assumption that the distributions of the statistics constitute an exponential
12Bpae e aly s but their
distribution possesses all the properties that are required in BIRNBAUM's
proof. Q.E.D.

family is not satisfied by the joint distribution of z

In chapter 2 it was shown (theorem 2.2.2) that in the case of exponential
femily distributions under some mild conditions the shortcoming of every ad-
missible test has a unique maximum on each half=-line through the origin in the
parameter space. Since the proof of theorem 2.2.2 hinges on the independence of

the random variables, it cannot be adapted to the present problem and it is
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still unknown whether the shortcoming of admissible invariant procedures has
unique maxima on half-lines through the origin in the parameter space. This
implies that the construction of MS tests by the method of section 2.3 cannot
be justified here.

However, & lemma similar to lemma 2.3.2 does hold for the present combination

problem.

Lemma 3.1.2

Let A be the acceptance region of an invariant test § in t-space satisfying
the following conditions:

(i) the set A is symmetric in tystpaenestys
(ii) the set A is monotone; this implies the existence of a function a such

that A can be written as

A= {t | ty<a (bt )) s

(iii) the function a defined in (ii) has continuous first order partial deri-
vatives on the interval where a is finite.

Let the functions g and to be defined Dby

2
ate
to(tB,...,tk),

). alt t. ) s

Y=t + alt preeesty

g(tegeea,tk 5 poe ety

.,tk)

lH

ah%ﬁt3§,“,tk),t3,“

Then, if g is nonpositive on the interval = = < t, < to(t3

t3,...,tk for which g is defined, the maximum shortcoming of § can only be
attained on the edges of the parameter space, i.e. on the set Qr
by (2.3.3).

Proof:

,,a.gtk) for all

defined
estr

Since the envelope invariant power function is constant on hyperspheres
Zu? = constant, the method of proof of lemma 2.3.2 carries over to the present

ﬁrobleme The joint density (3.1.3) of t.,t ""’Ek looks very much like a

jointly normal density if we disregard ;he integration with respect to the
variable v. As we can perform all the operations of the proof of lemma 2.3.2
under this integral sign and the factors v% arising from differentiation

and partial integration cancel out in the final expression corresponding to

(2.3.10), the desired result follows by similar arguments. Q.E.D.
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Hence the computation of the maximum shortcoming of a test satisfying
the requirements of this lemma is relatively easy.

In chapter 2 we found that the LR test and FISHER's combination pro-
cedure are rather satisfactory combination methods in the case where the
variances are known. FISHER's procedure cannot be applied to the present
t, are not independent. However,

Pty
the LR test can easily be obtained. Starting from the joint distribution

problem, because the statistics t

of x 2Xpse oKy and §? (with o° > 0), we find that the LR test rejects H if

1

k k
2 2 2 -1 _ 2
(3110 (L5 Lo, () (87 1o T gya)) 2w
or equivalently, if
k k
2 2 -1 _ 2
(3.1.15) { Z 5 I(O,m)(p_i)} {n+ 7§ 8 I(_m’o)(ﬁ_i)} > T,

i=1
where Ty~ 0 is a constant such that the size of the test is o. We note that
the LR testexists only for o < 1 = Q_k, since the acceptance region ALR o in
3
t-space of the test (3.1.15) strictly contains the negative orthant. In the
positive orthant the region ALR N is bounded by a hypersphere with radius
9

Ta VN and centre O.

As the test (3.1.15) is a function of Lystyseeeot, only, it is invariant.
In z—-space the acceptance region assumes the form
k
2 2 2y=1
A = . .
IR0 {z |i£1 z; I(O,w)(zl) < Tt7(1 + Ta) }

(cf.(2.4.10)), and since the region is convex and monotone, the LR test is an
admissible invariant test by theorem 3.1.1. Moreover, the LR test satisfies
the conditions of lemma 3.1.2 and hence its maximum shortcoming is attained
on the edges of the parameter space.

To determine the critical value 12 of the size~o LR test we consider
(3.1.14). Denoting the test statistic in (3.1.14) by t; > we have under H

- 2
o = Pt z_ra)

¥ k 2
j£1 (j)P(ELR 3_Ta|§1>0,...,5j>0,§j+1§p,.,.,§k§p)-
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. P(§1>0,...,§ﬁ>0,§ﬁ+1§p,,..,gkjp)
k .
-k k N+k=-j 2
(3.1.16) = 2 (%) p(F. . > )
321 B L A '’
where F. has an F-distribution with j and N+k~j degrees of freedom. With

J ’N+k"«j o) .
the aid of & computer T, can easily be solved from equation (3.1.16).

Since §?/N converges in probability to o2 for N »=,the LR test appr ches
for N + « the LR test in the case of known 02. In particular,

2

. 2
lim NTa = pk,a N

oo
where pi’a is the critical value of the LR testQin the case of unit variances
(ef.(2.4.10)). In table 3.1.1 some values of Nt are showm.

We note that HEMELRIJK's suggestion (cf. section 1.5) to insert efficient
estimators of the B in the MP invariant test (3.1.6) again leads to the IR
test if the u; are estimated by maximum likelihood.

In section 2.4 it was shown that the LR test for the problem of testing
H against K with ° known is asymptotically optimal for o+0,i.e.its shortcoming
tends uniformly to zero for a -+ 0. This property does not extend to the present
problem with 02 unknown; on the contrary, for fixed N and k the maximum short-—
coming of the LR test tends to one for a - 0 on each half-line through the
origin in the parameter space. We shall not prove this assertion but a more
general result showing that for sufficiently small values of o the maximum

shortcoming of every combination procedure is close to one.

Theorem 3.1.2

For o > 0 and N and k fixed the maximum shortcoming (with respect to envelope
invariant power) of the MS invariant size~a tests of H against K tends to one.

Proof:

First we derive an asymptotic expression for t for o -+ 0. Omitting

N+k=130
the index N+k-1, we find from the definition of the t~distribution

Nek 1y, =1 -1 2 l(N+k
a = { B(—Z—', 2 (k1) ° {(H' ﬁ%{jﬁ;;) 2() g
o)
o .‘ = o o o
= {(ZE 1) Varsemn) 2 (I¥8=3) =(Wke=1) (0 0142y
o [+
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N .2 .05 .025 .01 .005 .001

2 2.240 5.4k 11,434

in 1.981  L.010 6.886 10.922 18.836  27.66 64.28
6 1.896  3.623 5.839 8.6L1 13.489 18.259 34 .56
8 1.853  3.h4L3 5.381 7.708 11.485 14.978  25.82
10 1.827  3.339 5.126 7.203 10.451 13.343 21.82
12 1.810  3.272 4.963 6.888 9.823 12.370 19.563
15 1.793  3.205 L. 806 6.589 9.2k0 11.484 17.590
20 1.776  3.1k0 .65k 6.305 8.697 10.670 15.838
30 1.759  3.076 4.508 6.036 8.19k 9.929 14,307
® 1.725 2.952 L. 231 5.537 7.289 8.628 11.763

Table 3.1.1. Some values of Nrs for k = 2, vhere rs is the

critical value

of the LR test (3.1.15).
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for ta + » (i.e. for o -+ 0), and hence

-1/(N+k—1)(

1
(3.1.17) ta = (N+k=1)° v 1+ (1)) for o - 0,

Nk ¢
where vy only depends on N and k.
Wk (a)
Consider a simple alternative y = (u

1

o 0,...,0) depending on a. The
2
MP invariant size—o test of H against this alternative rejects H if (cf.(3.1.6))

kK 1
2 2\~3
u1’a§1(§ + i£1 gc,i) 24,

or equivelently, for a < 3, if

k
-2, 2 2 2 2 2
4y (u1,am da) -8 - .Z %; 20 end x, > 0,
i=2
where by (3.1.7)
-2, 2 2 -2
d, (u19a - da) = (N+k~1) t, -

Since under the alternative x., has & normal N(u1 0L,1) distribution, it follows

£

1

that
. + (o)
(3.1.18) lim B . (u ') =1
wvg  %einv
if and only if
. -1
lim t =
T PE *

or equivalently, by (3.1.17), if and only if

a1/(N+k"1)

(3.1.19) lim u =
o0 tso

Also

(3.1.20) vmet . )y =0
awp Ooinv

if and only if

(3.1.21) lim g, ol/(N=1) _ o

a0

We recall that the critical region in t-space of the MP invariant size=-a
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test against a simple alternative is one solid sheet of a k-dimensional
hyperbole of revolution, whose tangent half-cone has a semi-angle

arctn {(N+k~1)%/ta} . Since arctn z = z + Cj(z3) for z -~ 0, we obtain from
(3.1.17)

-1

o) = Yk o /D (14(1)) for o » 0.

1
arctn {(N+k=1)2/t

Hence, for sufficiently small o, there exist at least

. =1/ (N+k=1
(3.1.22) m = entier{ %’YN,k ! )}

half=-lines in the parameter space through the origin, L goeogls say ,

1,0 myse
o
such that the critical regions in t—space of the MP invariant size-s tests
against alternatives on these half-lines are disjoint. Let Tj N be the
3
critical region of the MP invariant size-o test against alternatives on
J N (j=1,2,. ,ma), and let Ts .o denote the critical region of the MS
’

invariant size=—o test. Furthermore let T =T, AT J= 142,000

,_],OL J,OL lds’a 9 J £l 9 ’ma

Then there exists an index jmja such that

fa¥

iol
(3.1.23) P(T‘j a! B)< a/m
Now choose an alternative u(a) on Lj o whose coordinates satisfy
a)
k 1
(3.1.214) ( z TJ? )é__ l—a1 + 1/{2(N+k 1)}‘| 1/(N+k 1)
j=1 t 7T -
From (3.1.23) we find
~(a) = (a) =(a)
T o = p(%, + P(T . =T,
( Ms,a]” ) ( Ja’u!u ) ( WS o Ja’al )
< P(T,] sedy 4 g 2 op(r, IE(“)) )
J 0
o
where a' = a/ma and Ta' is the critical region of the MP in variant size=-a'
test against ﬂ((llAs the envelope invariant power function is invariant under

rotations in u-~space, it follows from (3.1.18),(3.1.19) and (3.1.24) that

= lim 8 . (E(a)) =
o,inv

(a)
o a)

lim P(7, | %
a0 Jos o0
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and from £3.1.20), (3.1.21) and (3.1.24) that

("'(0.))

lim P(T [E("‘)) = lin 6, u = 0.

a~>Q a0 ¢ 210V
Hence

i’i’é Rys o (G("‘)) = 1im P(Tj {I(“)) - P(TMS,OLI G(“))] =1,

5O
L @ Q.E.D.

As a simple consequence of theorem 3.1.2 we find that the maximum short-
coming of every invariant size=-o test tends to one for a - 0., Of course it is
rather unrealistic to let a tend to zero for fixed N. If we let N tend to in-
finity (o fixed) the shortcoming of the MS invariant size-o tends to the short-
coming of the MS size-a test in the case where 02 is known and this short—
coming is uniformly small for small values of a (cf.section 2.4). Nevertheless
theorem 3.1.2 indicates that the invariant combination procedures will have
larger (maximum) shortcoming in the case where 02 is unknown than in the case
where 02 is known.

We note that the MS invariant size-o tests of the theorem, which are MS
relative to envelope invariant power, do not necessarily coincide with MS size~a
tests of the original testing problem unrestricted by invariance (although there
exist such tests which are invariant!), since these tests are MS with respect
to different risk functions. However, as the shortcoming with respect to envelope
power is larger than the shortcoming with respect to envelope invariant power
for all invariant tests and all alternatives in the original parameter space,
theorem 3.1.2 also holds for the shortcoming with respect to envelope power

of the MS tests of the testing problem unrestricted by invariance.

The simplest invariant combination procedure for testing H against K is of

course the symmetric linear procedure that rejects H if

t, >t VK.
-1 Z Nio

(3.1.25)

il‘Mx‘

1=
This test is admissible by theorem 3.1.1 and assumes its maximum shortcoming
on the edges of the parameter space by lemma 3.1.2. Compared with the LR test
it is more powerful for alternatives near the central half-line R O 0
and less powerful for alternatives near the edges of the parameter space, but

not in such & merked degree as the MSSMP test (3.1.9). For N »« and fixed o the
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MSSMP test tends to the test (3.1.25).

Finally we mention the STUDENT t~test that arises if all the original
observations in the k samples are pooled and 02 is estimated from the pooled
sample. Obviously this test is the MP invariant test of H against alternatives
with equal v, - vg , or eguivalently, against alternatives where ui=y/hi,y >0
(i=1,2,...,k). Its maximum shortcoming heavily depends on the ratio's of the
/ni and its power is relatively small for alternatives with widely different
v, - vg. Hence this test should only be applied if prior informetion indicates
that the Vi - vg are nearly equal.

Although numerical comparison of different invariant combination procedures
is hardly feasible because of the complicated nature of the non-central dis—
tribution of &1’3"""Ek
true means is available the LR test is the most adequate procedure for testing

, we feel that if no prior information regarding the

H against K since it gives the best protection against all alternatives

simultaneously.
3.2. OBSERVATIONS WITH UNEQUAL VARIANCES

In this section it will be assumed that

Ly,ieeeeolyn, 5o T, 120 o egn

are k samples of independent observations with normal N(vi,ci) distributions

(i=1,2,...,k). Then o

i
= .
¥, =g j£1 Y5 e i=1,2,...,k,

1

n
2
§ = j; (.5 ~ %,

)2

constitute a set of sufficient statistics. Setting

0 .
(Xi, - vi) /ni, i=1,2,....k,

i

0 .
Wy = (\)i - vi) /ni s 1=1,2,....k,

m. =n, -1, i=1,2,4... 5K,

the problem of testing H*-against K%‘may be formulated as follows.
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The random variables KoKy e oXy 8T independent and normally distributed

with expectations Ezi = Wy > 0 and variances 0? for i=1,2,...,k, the random
variables Se, 82 ,,..,82
=1 = =k
distributed as oy X (i=1,2,...,k).
i
The hypothesis to be tested is

are independent of each other and of the £ and are

. 2 .,
H:yus= (u1,...,uk) = 0, oy > 0 (i=1,24...,k)

against

2 .
K:w.> 0, 0.>0 (1=1,25.0.4k).

In applications this testing problem is of more importance than the problem
discussed in the preceding section (with equal c?). Unfortunately it turns out
that the present problem is essentially more difficult and our attempts to obtain
theoretical properties of combination procedures were defeated. There are two

reasons for these difficulties: the fact that we have k (instead of one) nuisance
2
k
the independence of the t~statistics is of little help.

parameters o?,.ﬁ.,c and the untractable form of the non-central t-distributions;

The testing problem remains invariant under the group G of scale transforma-

tions g

&
[a
(51,.«.,§k, §1"°"§k) > (c1§1,..,,ckgk,c1§1ﬁ.*”gck3k),

where CqsvesC, are positive. A maximel invariant under G is the set of inde~

k
pendent t-statistics

T

.
201 t, = 2 Caa e ) = 2 D, .

(3.2.1) S O REREE S

The power of any invariant test, i.e. any test based on t t. depends only

«l!""__ki
on the parameters

u1/o1a~-,uk/ak,

a maximal invarisnt under the induced group G.

Restricting our attention to invariant tests, we may assume without loss
vee = ci = 1, Each statistic Ei has in the general case

a non-central t-distribution with m, degrees of freedom; the density function is

— N

of generality that o

(3.2.2) pi(ti;ui) =

.
§(m-+1) 1 o - P A
5 = 1 3 3.2
w {p 1 (ﬂmi)ér(%mi)} [v * exp| = LA A wemi )l dv,
o B PR =t
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where the integral may also be written as

hSRES

1 m. 1

~3(mg 1) 2 1(mg-1) -3 3
exp(~ %‘u?)(T + l~t? * [V exp |~ 5 * (mi+t§) évzuiti dv.
i 0

Application of the NEYMAN-PEARSON lemme yields that the MP invariant size-a test

.t >
ult;] dav 2 ¢y

where ¢ is @ suitable constant. If u; > 0 and My = 0 for j#i, this test reduces
to the test

of H against a simple alternative p rejects H if

S

(3.2.3)

=
e ol

1

© 1 —1) V.
2 i 2y~
. é Vi exp{: >+ (mi+ti) Vi

reject Hif t. > t .
1= mse

But in general the critical value of the test (3.2.3) cannot easily be determined
and hence it is virtually impossible to obtain the envelope invariant power
function, except on the edges of the parameter space.

We have not been able to characterize the admissible invariant test of H
against K (cf. theorem 3.1.1); the class of invariant tests with a.e. monotone
acceptance regions in t-space is essentially complete by theorem 1.4.3, but
this class is suspected to contain many inadmissible procedures.

The LR test of H against K is invariant and rejects H if

¥ -1
(3.2.4) iz1 (m +1) log {1 +m % T(o,
where e is an appropriate constant. For not too small values of the m, this test

)(Ei)} =%

is approximately equivalent to the test that rejects H if

(

t.) > ¢
=’ ="

(3.2.5) % 21
e 5y 71 T(0,e)
(cf.(2.4.10)). Although in principle the critical value of this test can be
computed, this test does not have much practical value because Ca depends on
m1,m2,..q,mk and o and extensive tables would be necessary.
Linear combination of the Ei gives rise to!the same difficulties; computation
of the critical values is again a tedious affair since the convolution of (central)
t-distributions does not have a nice form.

Hence it appears that FISHER's combination procedure applied to E4’£2”"’Ek
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is the only exact combination method that is readily availeble. The results
of chapter 2 suggest that this might be a reasonable solution to the com~
bination problem.

In the large sample case we have of course more possibilities; symmetric
linear combination of the L, and the (approximate) LR test (3.2.5) with c.® pi’a
are then competitors of FISHER's procedure.
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CHAPTER 4. RELATED ASYMPTOTIC RESULTS

4.1. A GENERAL ASYMPTOTIC APPROACH

In the preceding chapters we studied two asymptotic approaches to combination
problems.

In the first place we reduced quite general combination problems to the
simpler problem of combining k independent normal random variables with unit
variances. This was accomplished by letting the sample sizes tend to infinity
for a fixed significance level a and relying on the asymptotic normality of many
test statistics (section 2.1).

Secondly we studied in section 2.4 and section 3.1 the shortcoming of test
procedures for the normal combination problem and the combination of t-tests res-
pectively if the significance level o tends to zero. In the normal case we found
that the shortcoming of the LR test tends uniformly to zero for o - 0. If we
have k samples from normal distributions with known variances (cf. example 2.5.1),
this property of the LR test continues to hold. In some other combination problems
the maximum shortcoming of the LR test also tends to zero for a -+ 0 and fixed
sample sizes. As an example we mention the combination of k tests of the hypothe-
ses Bi = Bg against Bi < BS (i=1,2,...,k), where the Bi are the scale parameters
of gamma distributions with known shape parameters and sample of size n, from
each of the k populations are available (cf. example 2.2.3). However, it was
shown in chapter 3 (theorem 3.1.2) that if one-sample t-tests are to be combined,
the maximum shortcoming of the LR combination procedure tends to one for a - 0
and fixed sample sizes.

However, it does not seem to be very realistic to let o tend to zero for
fixed sample sizes n. (i=1,2,...,k). It is more natural to let the sample sizes
tend to infinity and the significance level to zero simultaneously. In this setup
both the probabilties of errors of the first and second kind tend to zero. More-
over, it is then possible to study the perormance of test procedures for non=
local alternatives, as opposed to the classical NEYMAN-PEARSON approach which
provides information on the power functions for near alternatives only. Of course

one has to decide on the choice of o as a function of the sample sizes and this
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may be & difficult decision since simple rules of thumb are not (yet) available.

One would expect that if the test statistics are asymptotically normal and
the rate of convergence of o to zero as a function of the sample sizes is re-
latively slow, then the maximum shortcoming of the LR combination procedure
will tend to zero as in the normal case. However, if the rate of convergence
of a to zero is fast, the extreme tails of the distributions become essential
and here the asymptotic normality breaks down. A different analysis is then
necessary.

In fact, W. HOEFFDING ([?i],[?#] ) used this general asymptotic approach
to study a quite different testing problem. He investigated the performance of
the LR procedure for testing a hypothesis in multinomial distributions against
general alternatives. He found that if the significance level Ay tends fast
to zero as a function of the sample size N, the LR test is considerably more
powerful than any other test which is sufficiently different from the LR test.
For a more precise formulation we refer to [23] (ef. also[:22:| and D+3:|).

In section 4.2 it will be shown that the maximum shortcoming of the LR test
of a simple hypothesis in a multinomial distribution tends to zero if oy tends
to zero slowly for N -+ «, This property is based on the fact that the multi~
nomial distribution is asymptotically normal for N - =,

The same kind of argument that we shall use to prove this result can also be
applied to show that the LR procedure for combining k binomial tests of the
hypotheses p, = pg against p; > pg (i=1,24...,k) has uniformly vanishing short-
coming if the sample sizes tend to infinity and o tends slowly to zero as a
function of the sample sizes. The proof of this property is more or less parallell
to the proof of theorem 4.2.1 for multinomial distributions and is omitted because
of its technical character.

The study of the LR test in multinomial distributions is motivated by our
feeling that in this case the LR test has a uniformly vanishing shortcoming

converges slowly but also if o tends fast to zero.,

for o_ + 0 not only if o N

N N
Further work on this subject is in progress.

4.2, THE LIKELIHOOD RATIO TEST IN MULTINOMIAL DISTRIBUTIONS

Let x pe Xy have a multinomial distribution with parameters PysPyseeesbys

1%
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= ey )z N1
(h.2.1) P(§1—X1,...,§k-xk)- 1 TR

] T
X1....xk.

i i ese + = = i
where N i1s the sample size, x1 + x2 + X, N and p (P1, ,pk) is any

point in the simplex

(k.2.2) Q= { (y1,...,yk) | v, =1, y; 20 for i=1,2,...,k} .

1 1

II.MW

1

Let po be an arbitrary point of the set

k

(4.2.3) Q= { (ypseesw) 1L vy
i=1

1, v; 2 0 for i=1,2,...,k } .

We consider tests of the simple hypothesis
H:p=poe§2*

against the composite alternative
0
K:pe@ -~ {p}

It i1s assumed that the significance level oy depends on N in such a way that

aN >~ 0 for N » =,

The size“uN LR test of H against K rejects H if

-

(h.2.h) P

0
L x, log (x;/(Np;)) > ey,

possibly with randomization on the boundary of the critical region. The MP
size- oy test of H against a simple alternative p = p'ESfﬁ - {po} rejects
Hif

-

o)

(4.2.5) L ox log (pl/p) 2 4y »

i=1
possibly with randomization on the boundary of the critical region. The critical

value dN depends not only on N but also on the alternatives p' considered.

+ .
Let BN(p) and BLR 1\I(p) denote the envelope power function and the power
b

function of the LR test respectively for a given N (we omit the subscript oy

because it is a function of N). The shortcoming of the LR test for a given N is

then denoted by
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(4.2.6) Rip,u(®) = gy(p) = 8o y(p).

We shall often make use of the notation vN~w , meaning that vN/wN + 1 for
N + «, In the sequel the alternatives considered will usually depend on N. Never=-
theless we shall often write p' instead of p'(N).

First we determine the size=-o. envelope power function for values of oy

N
converging slowly to zero.

Lemma 4.2.1

Let p be any fixed positive function of N satisfying

(h.2.7) lim NYp(N) = 0 for some y > O
N->co
and
(h.2.8) 1in 8/ () = o
N-oo
Then, if
(4.2.9) w =8,
N
we have
02 _3%
11k (p! =-p;)q°
(k.2.10) Bg (p') =1 - o(u - N° [Z -L-B-—L—] ) + @ (1)
N i=1 P

1

for N + « uniformly for all p'e Q.
Proof':

Let

. 0
min  p.
1<i<k

(h.2.11) e =

=

since pg > 0 (i=1,2,...,k) we also have ¢ > 0. For each N we divide the parameter

space Q into three parts:

1 .
Q(N)= { ptl min pi <e},

i
(2)_ 0 -1/6 .

Q= A p'| m?xlpi - s | >N ) min pi > s
(3)_ . . 0 -1/6 . .

ey=1{p | m§X|P2 p. | < W » min pf > ¢ }

We shall prove uniform convergence for each of these three subspaces.
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First we assume that p' > e, i.e. p'e,(Qég)\J QéB)). We denote the test
statistic of the MP test of H against p' by
k
t! o= ) X, log (pi/Pg).

i=1
For general p this statistic is the sum of N independent identically distributed

random variables gj (j=1,2,...,N), where the distribution of Ej is given by

- Oyy . .

P(E‘_J - lOg (Pi/Pl)) - Pl ) 1-192,--°9k~

Hence
¥ 0

(k.2.12) Be'lp) = [ p; los (p{/p)
and

2 & 2 oy [ & L 0\12
(4.2.13) o“(£'p) = W {121 p; log (Pi/Pi)"[i__X_1 p;1og(p}/p;)] " 1.

Moreover, the central limit theorem implies that
- E(t' [p)

W)+Oforl\l+m

(L.2.14) P(t’ >_dN|p) -1 + o
uniformly for all dN and all p' > €, p > €. The uniformity in p' and p is a
consequence of the fact that the characteristic function of {t'~E(t'|p)} /o(t'|p)
tends to the characteristic function of the standard normal distribution
uniformly for all p' > € and all p > ¢

From theorem 3 of YU.V.LINNIK ([33],I) we derive that

0
o dy = E(t'[p")
o =P(t'>dN|p)~1-¢( ) for N » o
N == 1.0
o(t'[p)
uniformly for all dN and p' > e satisfying
LR
ay - E(x [p7) 1/6
(h.2.15) A w0,

o(t']p%)

Hence, if u is given by (4.2.9), we find that under H
)

- B(x' [%) _
EE~————~6l—~m- =u (1 +e(u 2)) for N + =,
a(t']p) Oy oy
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or, by (4.2.12) and (Lk.2.13),

1 ' P!2%
3 0 2P . 0 -2
(4.2.16) dy = N4{ Z p; log ~% - [ Z p, log -%} bou (1 + G(uu )) +
1 N 1 P N N
p!
0 1
+ N g p, log =
i

- i
where <s'(ua2 ) does not depend on the particular choice of p . From (4.2.1k4) we
obtain thatNunder the alternative p = p'
&y - E(x'[p)

Sy ) rely ger il

(k.2.17) P(t' Z_dN|p') = 1= 9

uniformly for all p' > e, where dN is given by (L4.2.16). By (4.2.12) and (4.2.13)

the argument of ¢ in the right-hand member is equal to

0. 2P 0. P2k -1 1y, 0y Pi
{Jp. log”= — *[ Yp: log —-J Yu (1 +o(u ) - N2 J(p!-p;)log —=
e} 0] e 0 o o R R § 0
1 P. 1 P N N 1 P
i i i
p: P! 42 2
{)p! log2 e [ Yp! log == ] }
i 0 i 0
i P i X
i i
This expression tends uniformly to = « for N + = and all p'e Qée)a
It follows from (4.2.17) that in this case (4.2.10) is uniformly satisfied.
Now let us assume that p'e,9§3) and define
= 1 (U
(4.2.18) Ly = mex [p! - .| ;
1<i<k
then 0 Ty §_N_1/6. By expansion of the logarithm it is easily shown that for
N+ o . . 0,2
p: (p! = p;)
0 2 Fi 1 i 3
Z P log 0= g T + Cf(CN)s
* P L5
Piqy 2
i b
[Z p, log | = Olgy),
1 D.
i
p: 1 (p) - pi)2 3
) p! log—= =% ) + (),
@ T 0 2 & 0 N
(1.2.19) { P i o
! (p! - p9)°
i i i
I (o} -39 10g 2= ] 2T L 03,
i p; i 14
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2p' ---p>2 3
1
) p! log” —¢ = Z—————-— + Oy,
i pl i pi

|

l

(12 2085
1

Substitution of these relations yields that the argument of ¢ in the right-hand
member of (4.2.17) is equal to

i

1 (p! - P-) -
fu - E (1w () (1 (u))
oy [ i pg ] N Oy

for ¥ + «, and hence (4.2.10) is uniformly satisfied in this case also.

( . Without loss of generality

?. Consider the test GN that

. By the same line of argument that we used be=-

It remains to consider the case where p' € Q

eI =1E

we assume that pi < c. Hence by definition p! < 3

rejects H for small values of X,

fore its critical value &y is equal to

1 1 -
g, = M0 + 8 [p001-p0)] 2w (o)),
N 1 1 1 oy @y

provided (4.2.9) is satisfied, and its power against p' is equal to
gy ~ Mo}
1 = ¢(—————r ) +0o(1) for N + o,
N {p;(1=p)} *

where (1) does not depend on p' (if p!=0, the power is obviously equal to

1+@(1). It is easily verified that the argument of ¢ tends uniformly to = » for
N tends uniformly to one for all p'e Q§1).

Since the MP test against p' has a power which is at least equal to that of 6

p; < g, and hence the power of §

NS
it follows that the power of the MP test also converges uniformly to one for

(1)
¥
all p'e QN

complete. Q.E.D.

, in accordance with (4.2.10), and the proof of the lemma is

Next we study the power of the size-aN LR test for oy tending slowly to

zero. To this end we need an asymptotic expression for the critical value of the

size~a. LR test (Lk.2.k)

N

Lemma 4.2.2

Let X E-T‘QN denote the upper aN“point of the chi-square distribution with k-1
3
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degrees of freedom. Then, if the condition

(4.2.20) 2 = o@®)  forno e
k=130
N
is satisfied, we have
(4.2.21) e =+ X2 +o(1)  for N » =,
N 2 k~1,aN
Proof:
Throughout the proof we asgsume that the hypothesis H holds true. Since
5 ;o3
log = log (1 + L) =
np? p?
Pi Pl
0 2
T T (x; - Np;) ~3/2
0 ) 0,2 + Op(n=7)
Np (Np)

for N » », the test statistic of the LR test can be written in the form

% X ¥ 0 et ¥ o0 x
_Z X, log —=5— = ) (éi"Npi) log T+ ) p. log o= =
i=1 Np. i=1 Np. 1= Np.
i i i
.k (x - Np )2 -1
) £ 0 + Upn )

It is well~known (ef. W. RICHTER [41] ) that for N » «

0,2
ko(x Npi)

2
(k.2.22) P(_g 5 >ayg) o PG> ag)
i=1 Np.
¢ i
if ay = G(N1/ ). Moreover, it can be shown as in section 20.6 of H. CRAMER [8}
that
0,2
BT LA L (g - Te))
P 5 z «w—“mamdm—m + & (N S cN)m P(E- E -————6-—*" > cN)
i=1  Np; P i=1  Np,
i i
if cy = G(N1/6)q The assertion of the lemma is now an immediate consequence of

assumption (4.2.20) and (4.2.22)

Lemma L4.2.3

Let 1 be any fixed positive function of N satisfying
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lim @ =0 , lim 8/® @) ==
Neveo o0
Then, if
(4.2.23) x2 =% (),
k-1;aN
0,2
we have k {p! = p.)
2 1 1
e
L )4 XKM1’0LN i=1 pi )
) = . 7
(h.2.2k) BLR,N(p) 1 = ¢ THEE O Y+ o (1
1 k 1 1
2N2|: ) 0 ]
i=1 Pi
for N + o uniformly for all p'e Q.
Proof':
We start by remarking that from (2.4.13) and (2.L4.15)
- (X2 2 :
(h.2.25) u o= (X )2 o+ o(1) for N » o,
oy k“T;aN
Let ¢ againbe defined by(kh.2.11)and let p' denote the true parameter value. For
each N we divide the parameter space Q into four parts:
(1) . .
oy * = {p'| minp! < e},
i
(2) _ 0 =1/5 .
2y —{p'lm?x lpJ!”pth » min p! > e}
0 3.=5/12 % .
Q§3) = {p'] mex lpj - pj] :ﬂg/k)gN 5/ 2(N), min pi > £}
i i
h 3 . =5/12 3 0 -1
Qé ) = {p'i (e/k)2 N 5/ 2TZ(N) < max [pj - pjl < W /5 .
i
win pi > e}
i
We shall again prove uniform convergence for each of these subspaces.
First we assume that p' > ¢. Since
2
X. p! X. p! x. - Np! (x. =~ Np!) “3/0
log:1—=log-—l——-+logj——=log-—:L = i1l = = +@(1\I3/)
Np? p; Np! < Np! 2 (wpy)® P
i i Y1 i i i



139
for W + «» uniformly for p' > €, the test statistic Ef‘of the LR test can be

written in the form

X. X. X.
> = = = - N = 4 _1‘““"‘“ =
t § %, log 0 g (x; Npi) log 5 + N g p! log -9
Pi P; P3
2
! (x. = Wp!) P!
(L.2.26) . . P 1 e H . i
=1 (?5.1 Npi) log ot 3 ZmNp' + N Z B log o
1 P 1 1 P,
1 1
O (v
+ UL
By writing
k p! p! p!
Z pf log o p! log . X p! log k. (je{1,2,...,k})
PP | 0 3 0 .4. "1 0
i=1 pi Pj -L#J i

and minimizing the last expression in the right~hand member for fixed pj and po
with the aid of Lagrange multipliers ( the stationary point is a minimum because

the function Zpi log (pi/pg) is convex in p' on Q), we find

k pi p! 1=p!
) pi log =5 z‘ps log —g~+ (1=p!) log _~j%
im X X 1=p.
Pl PJ "'P'J
for any J € {1,2,...,k} . It is now easily verified that
’ . 0
k i 1 Pi - P
(h.2.27) )l log =5 >3 (p! - p;) log (1435 =) .
L= pi B PJ'

Hence, if p' & Qé2>, we find that

k P! 1
} p! log S § max (p! =~
= 9 it

0y2. 1 . =2/5
i) > B N
i
for all suffiently large N (independent of p') and the third term in (4.2.26)
is of larger order (in probability) than the first two terms. It follows that

the probability

Brg y(') = P> Xiuuaw +o(1) [p')=
= p(t" SRS +<(1)|p")

N in accordance with (4.2.24),

converges uniformly to one for all p' & Q
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Henceforth we assume that

£ max [p] - ?Ci)l <N

1

-1/5.

Bij (4.2.13) and (4.2.19) the variance of the first term in the right~hand

member of (4.2.26) is equal to
2
(] = p})
(L.2.28) e
i P
. (3) .
Suppose that p'e QN s L.e.

(1 + C7(CN)) for N -+ «,

ey < (e/m)? W12 Ay,

Then for sufficiently large N (independent of p') the expression (4.2.28) is

smaller than —E 1\11/6 7(N) and we deduce from (L.2.25) and lemma L4.2.1 that
Bg(p') and hence B. (p*) converges uniformly to zero for all p' e ng3)5 in

IR,N
accordance with (L,2.24).

(k)

Next we consider the case where p'e @ '. In this case the variance (4.2.28)

tends uniformly to infinity for N - «, implying (cf.(Lk.2.26))

P 0
Pt zey [p*) = P(Z X log(p:!L/pi) >_cN|p‘) + (1)
uniformly in p' for N - », From (4.2.14) and (4.2.19) we derive that

He
P(t" 2cpfp')

2 1
“;‘Xk-‘lgoa P
= 1 = o = T ) (1)

, which immediately yields (L4.2.2L4).

uniformly for N + « and p'e lerh)

(1)
N
p% < g. From (4.2.26) and (4.2.27), with p' replaced by x/N and j=1, we find

that with probability one

It remains to consider Q . Without loss of generality we assume that

% "‘NPO

1, 0 1 &Py
5 (§1~Np1) log (1 + 5 T )
Np1

YN

L
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Hence it is easily verified that P(Ef_>c|p') tends uniformly to one for N -+ o

and p' € Q(1> , which completes the proof of the lemma. Q.E.D.

N
From the lemmata 4.2.1 and 4.2.3 we derive

Theerem 4,2.1

Let Ay be a function of N satisfying lim oy = 0 and
N->oo
= 1/6
(h.2.29) log oy =e(N ') for N + =,
Then
lim RLR,N (p) = 0 uniformly for all peQ .

M

Proof':

. . 2
To prove this theorem we need a more precise relation between u, and Xa
N N
(we omit the subscript k-1) than (4.2.25). Since for N -+

POl

o =1 - Q)(uuN) = (2m)” u;; exp("%uiN).U +C7(u;§ ))

and p

Q
i

o
v

2 2 _ poa(ke1) kel 1,2 13(k=3)
X X“N ) = {2 M=)} [X“N]

Cexp(-E ). (1 + R T,
(= [“N]

we find that for N

¥
8

2
¥ -(k~3) log ¥ +(J(1) = u, +2logu,
N “y N N
and hence
(k.2.30) Xs = uz + T (log u ) for N » =,
N N y

Moreover, it is seen that if condition (4.2.29) holds, then the conditions of the

lemmata 4.2.1 and 4.2.3 are also satisfied. We define

Lok (pr - p0)2 .
(L.2.31) QN = N2 [i£1 ~—£}FT—£;"‘]

i
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and divide the parameter space @ for each N into three parts,

(1) :

Q = |~ logu < u -Qﬂ<logu b,
N O‘N ocN aN
(2)

9 = {p' |u - Qg < - logu Y,

N OLN ocN

(3) _ (.

Q= {p [uu Qp > log u, 1

N N

1)

First we consider alternatives p'e QIET . From (4.2.10) and (b4.2.2L) we obtain

Rig,x (p') = By (") - BLR,N (p') =

=o((x2 -2 )/eq) -0 (u =-q) +o(1)
o " 20 0 -y

for N + «, where (1) does not depend on p'. We consider the difference of the

arguments of both functions ¢. By (4.2.30) we have

1 2 2 1 2 -
%(X@N—Qﬂ)—(uumb%)zgg-} |310‘1\1+Q'N“EQ’I\IH logu )]—

x“---'-[(u mQ) i-(jlogu :|< (-jlogu)=
‘N N 1\]

B

=]
O log u )
“y “y

for N -+ «» and hence the difference of both arguments tends uniformly to zero, im=-

plying that R tends uniformly to zero for p'e& Q( 1)
LR,N (2)

Next we suppose that p' € QN . In this case we have

B (@) = 1+ o({xjN - Q2 3/2q) + (1)
= 1 - o(tu® +O10g 5, ) - o5 1eay) + (1)

> 1 - LD({Q,; - 2Qp logu + @(loggua ) - QE} /QQN) +
i) N

= 1= ¢( = logu +(5’(u.m1 loggu )) + o(1)
Gy “n oy

(2)

and hence B ¥

tends to one for N -+ « uniformly for all p'e Q , implying

LR,N
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uniform convergence of R on this set also.
IR,N

. L. . +
Finally, 1t is obvious that BN and hence R

for N + «» and all p' € QéS).

converges uniformly to zero
Q.E.D.

IR,N

Although at first sight (4.2.29) seems to include very high rates of con-

vergence of o to zero, it can easily be deduced from the preceding lemmata that

N
under condition (4.2.29) the error of the second kind of the LR test (or of the

MP test) for any fixed alternative tends much faster to zero than o Hence

N
higher rates of convergence of aN to zero are also of interest. However, the work
of RICHTER [h1] shows that for higher rates of convergence of Oy the normal

approximation to the multinomial distribution cannot be used to derive critical

values of the LR test. Moreover, it is apparent from the work of LINNIK ([33] I,I11)

that the envelope power function cannot be obtained as before, since the critical
value of the MP test statistic cannot be found by normal approximation as in

lemme L4.2.1 if log a_ is not of order cr(N1/3) for N - «, Hence a different approach

N

is necessary if faster rates of convergence of oy are to be considered.
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