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CHAPTER 1. INTRODUCTION 

1.1. THE COMBINATION PROBLEM 

Suppose a number - say k - of experiments are performed to detect an 

effect. On many occasions the experiments are performed under different 

conditions and hence the magnitude of the effect may vary from experiment 

to experiment, if there is an effect at all. A standard example is the 

effect of a treatment on k different groups of patients. The question arises 

how to combine the information obtained from the different experiments. 

In particular, if one wishes to test the hypothesis H that there is no 

effect against the alternative K1, that the effect is never negative and 

is positive in at least one of the experimental situations, it is common 

practice to test for a positive effect in each of the experimental situations 

separately and to combine the individual test statistics to obtain a test 

of H against K1• The problem is then how to combine the individual test 

statistics. 

To be more precise, let the parameter ei describe the effect in the 

i-th experimental situa~ion and let e=(e 1, ••• ,ek). The parameter space is 

the first orthant (boundaries included) of k-dimensional Euclidean space Ek 

and the testing problem may be formulated in the following way. For 

i=1,2, ••• ,k let !_i denote a test statistic for testing si=O against ei > O 

in the i-th experimental situation. The statistics !,1,.:!'._2 , ••• ,~ are sup­

posed to be independent. On the basis of these statistics one wishes to test 

the hypothesis 

H 8 = 0 

against the alternative 

K1 : e • .:_ 0, 

where the symbol ,.:_ indicates that the inequality is strict for at least 

one component; the symbol.::_, is similarly defined, We shall call this testing 

problem the one-sided combination problem, since under K1 all the Si have 

the same sign. In the literature tests of H against the alternative 



2 

are usually described as combinations of two-sided tests, although it may 

be argued that testing H against K2 is not a combination problem at all, 

since in this case there is no relation between the parameters 01 , , •• ,, 

under K2 some of them may be positive and others negative, It would be 

appropriate to call the problem of testing H against the alternative 

K3 : either 8,> or 8<,0 

the two-sided combination problem, but to the author's knowledge it has so 

far received relatively little attention in the literature. It is essential 

to distinguish between these three testing problems, since the properties 

of combination procedures depend strongly on the alternatives considered. 

Although quite a number of articles on the combination of tests have 

appeared, surprisingly little is known about the theoretical properties of 

combination procedures. Many authors confined their attention to the parti­

cular case where the true values of the parameters e1, e2 , ••• , ek are equal 

or to the still more restricted case where the statistics ,!.2 ,.,. ,~ are 

identically distributed both under Hand the alternative hypothesis. In this 

last situation one often speaks of a goodness of fit problem (cf. [36] and [38] L 
Only a limited number of papers are concerned with the power of combination 

procedures. Without aiming at completeness we give a brief review of the 

literature on the combination of tests ( in the wide sense) in section 1. 2. 

In the present study only the one-sided combination problem will be 

considered in some detail, since it is most frequently met in actual appli­

cations. The two-sided combination problem (testing H against K3) is more 

difficult; however, it will often be possible to deal with this problem by 

applying two one-sided combination procedures of size ~a (where rx is the 

desired significance level), because in most cases the overlap of the two 

critical regions is relatively small. 

In section 3 of this chapter an outline o:f hypothesis testing is given, 

In section 1 "lr tests with monotone and convex acceptance regions are con­

sidered in some detail, In section 1, 5 the variation-diminishing property 

of integrals with totally positive kernels is mentioned.; this property is 

crucial in some proofs of chapter 2, In section 1,6 most powerful tests against 

simple alternatives in exponential families a.re discussed, 
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In chapter 2 the one-sided combination problem is first reduced to a 

standard problem of combining normally distributed random variables with 

unknown nonnegative expectations and unit variances by the Hsvmnt~t approach 

of' J, NEYMAN and E,J .G, PITMAIL The most stringent combination procedure is 

then obtained for this standard problem in a few cases, It is also shown that 

the likelihood ratio combination procedure and FISHER's omnibus test are 

asymptotically optimal in some sense for this problem as the significance 

level tends to zero. In the last section of this chapter several combination 

procedures are compared numerically. 

In chapter 3 the combination of STUDENT t-tests is considered. Restrict­

ing attention to invariant procedures., some results are obtained in the 

case where the observations have equal variances. However, it turns out that 

the more important case where the variances of the observations differ from 

sample to sample is essentially more difficult. 

Finally in chapter 4 a general asymptotic approach to testing problems is 

discussed and a theorem on the asymptotic optimality of likelihood ratio tests 

in multinomial d.istributions is prove(L The relevance of this approach to combina­

tion problems is also briefly considered. 

1 , HIS1'0RICAL SURVEY 

In early statistical work chi-square tests of goodness of fit were 

frequently applied. If the statistics have (approximately) chi-square 

distributions under the hypothesis R, large values of the !i indicating 

departures from H, a test of H may be based on the sum of the , The 

additivity of random variables with chi-square distributions can then be 

used to determine the appropriate critical value of the overall test. This is 

the simplest and presumably the oldest correct combination procedure, It 

is still often applied, e, g, when combining chi-square tests in 2x2 tables, 

Most of the other combination procedures are based on the probability 

integral transfonnation, Let denote the one-sided tail of 

the statistic ( i=1 ,2,, •• ,k); pi is the probability under H of the event 
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!i .::_ ti in case of upper-tailed tests and of the event < t. in case of 
- l 

lower-tailed tests. If the have continuous distribution functions under 

H, the E: are uniformly distributed on the interval ~' 1] under IL Hence 
J. 

the hypothesis H may be tested by a chi-square test of goodness of fit 

applied to the .E.i after a suitable division of the interval [?, 1] into 

subintervals. This combination method is mentioned in [38] , but it is an 

approximate test that is applicable only if k is large and it is unsatis­

factory even in that case. 

In 1931 L.H.C. TIPPETT in the first edition of his book [51] described 

another test, attributed to him, that rejects H for small values of the test 

statistic 

( 1.2.1) min 
1<i<k 

J2. · • 
l 

In the continuous case the critical value of this test statistic is given 

by 1-(1-a) 1/k, where a is the desired significance level of the test. 

In the fourth edition of his famous book "Statistical methods for 

research workers" [n] which appeared in 1932, R.A. FISHER introduced his 

so-called omnibus procedure. This combination method rejects H for small 

values of the statistic 

( 1. 2. 2) 
k 
IT 

i=1 

Le. for large values of 

( 1.2.3) 
k 

-2 log IT 
i=1 

If the !i have continuous distribution functions, -2 log E.i has a chi-square 

distribution with 2 degrees of freedom under H and consequently ( 1. 2. 3) is 

distributed as chi-square with 2k degrees of freedom under H. 

In 1933 K. PEARSON, independent of' FISHER, wrote a long article 

[38] on the combination of tests based on the Ri. He was primarily 

interested in combining two-sided tests and was in doubt whether to 

reject H for small values of' the statistic ( 1, 2, 2) or for smalJ. values 

<l<-) 
The symbol log will always denote the natural logarithm. 



of the statistic 

( 1.2.4) 
k 
IT 

i=1 

5 

(PEARSON defined n. as the left-hand tail probability of t.). Under H the 
;;:_]_ . -]. 

distributions of ( 7. 2, 2) and ( 1. 2. 4) are of course :identical. In the 

literat;ure the test that rejects H :in the case of one-sided tests for large 

values of ( 1.2.4) :is usually attributed to PEARSON, but this seems to be 

unjustified, since in all the examples of his paper His rejected for smalJ. 

values of the product test statistic. A year later F .N. DAVID [9 J proposed 

to reject H for small values of the minimum of both (L2.2) and (L2.4); a 

similar point of view was expressed in K. PEARSON' s paper [39]. '.rhis 

proposal was of course motivated by the fact that they had two-sided indivi­

dual test,s in mind. In her introduction to the tables [l OJ DAVID advised 

the use of FIS.HER's procedure for the one-sided combination problem. For 

testing H against K2 she advised a test based. on the two-sided tail pr:oba­

bilities that rejects H for small values of the sta.tistic 

Under H th:i,; test statistic has, in the continuous case, the same distribution 

as (1.2,2) and (L2,4). It appears that the criterion (1.2.5) has first been 

described. by P.V, SUK11ATM.E Bo] in 1935, 

Discussing the tests based. on (1,2.2), (1,2,4) and (1,2,5) E,S, PEARSON 

CJ6J remarked. in 1938 that a reasonable choice between different tests can 

only be made by specifying the possible alternatives and he derived, with the 

aid of the likelihood ratio principle, approximately optimal tests for some 

problems where the !_i are identically distributed, 

A few years later W,A. WALLIS l},l+J gave a detailed. exposition of FIS!!ER's 

omnibus procedure and. showed. that the chi-square distribution of (1,2.3) under 

H is seriously invalidated when the t. have discrete distribut:ion\;i, In the 
-1 

discrete case he suggested to compute exact tail probabilities of (1.2.2) by 

enumeration whenever possible. In 19l19 !LO. LA..1\lCASTER [?7] considered FISHER's 

test applied to chi-square test statistics .Xf in sign tests and 2x2 tables, 
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with two-sided alternatives, and compared its performance with the combination 

procedure based on the sum Ir: (without correction for continuity). He 
i 1 

showed systematically by examples that the omnibus procedure loses much of 

its power in these testing problems, because the expectation under Hof 

-2 log .Ej_ is much smaller than 2, the theoretical value in the continuous 

case. To combine discrete test statistics !_i he put forward two modifications 

of FISHER' s procedure, called ·"mean X2" and "median X2". He found that in 

case the true parameter values are equal, the two modifications of the 

omnibus procedure are slightly less powerful than the test based on the sum 

statistic in the examples considered. E.S. PEARSON [37] suggested to deal 

with the difficulties in the discrete case by adding independent continuous 

random variables v. to each t. and applying FISHER's procedure to the sums 
-:J.. -J_ 

~ + !.j_· If the sample spaces of the !_i are sets of consecutive integers 

(e.g. if the t. are binomial, Poisson or hypergeometric random variables under 
-1 

H), it is convenient to choose the !.i uniformly distributed on [O, 1]; the 
• ~ • • I • ~ • • tail probabilities :E.· of t.+v. are then easily determined with the aid of 

1 -i-1 2 2 
tables of random numbers. In this framework the "mean X " and the "median X " 

I 

appear if -2 log 12.i is replaced by its conditional expectation or its 

conditional median respectively given t. (i=1,2,.,.,k). As PEARSON recognized, 
-1 

the justification of introducing random elements !.i to obtain formally correct 

tests remains a matter of opinion. 

For the combination of 2x2 tables (with binomial data) W.G. COCHRAN 

[ 7] advised pooling of all data in a single 2x2 table if homogeneity of 

the tables may be assumed, and if not, to add the square roots ]:I; i of the 

individual chi-square test statistics (i=1,2, ••• ,k), taking into account 

the signs of the differences between the estimated success probabilities. 

Under H this statistic has approximately a standard-normal distribution and 

tests can be based on it. In case the totals of the tables are widely 

different or the success probabilities to be compared have rather extreme 

values, COCHRAN advised another combination procedure that is based on the 

weighted sum of the estimated differences between the success probabilities 

to be compared, The weights are chosen in such a way that the test should be 

approximately optimal in the large sample case if the differences of the 

success probabilities involved are constant on the probit or legit scale. 



F. YATES expressed similar views in his articles [56] and [57] on the 

combination of 2x2 tables, stressing the importance of an analysis by 

maximum likelihood of the parameters involved. YNI'ES also fou.'ld in a num­

ber of examples that in the case of one-sided alternatives FISHER' s test, 

applied to the _xi, is not markedly influenced by the discreteness of the 

Xi. He noted that FISHER' s test must be expected to have considerably less 

power than the most powerful test of H against alternatives of the form 

e1=e2= ••• =ek > 0. Pooling of observations in a single 2xm table if several 

2xm tables are to be combined has been suggested (without justification) 

by W .M. KINCAID [26] • 

In 1951 B. WILKINSON [55], generalizing TIPPETT' s procedure, proposed 

to reject H for small values of X(r)' the r-th smallest tail probability, 

and gave a table of critical values of this test statistic. 

A. BIRNBAUM [ 4] was, in ·1954, the first author to investigate the 

admissibility of certain combination procedures. For the one-sided combination 

problem, in the continuous case, he postulated that the tail probabilities 

_Ei, which have uni.form distributions under H, have non-increasing densities 

under the alternative, This postulate is equivalent with monotone likelihood 

ratio of the distri·butions of the !:._i., A test based on the l:.i is called 

monotone if rejection of H for a certain vector (p 1,, •. ,pk) implies rejection 

( ,,._ "") * . -of H for any vector p 1,.,. ,pk such that p1 ::;,, pi for each 1. BIRNBAUM 

showed that for any monotone test based 

represented by non-increasing densities 

test is most powerful, Moreover, if the 

on the E:i, one can find an alternative, 

of 1:.1 •.Et,,,,,~, against which that 

distributions of the t. are one-
-1 

parameter exponential families, a combination procedure can only be 

aclJnissible ( Le. cannot uniformly be i.mpit'oved upon) if its acceptance 

region in (t 1 ,,H,tk)-space is convex, This condition also holds if two­

sided tests are combined, With the aid of this theorem (cL [ 5]) BIRNBAUM 

showed that WILKINSON' s procedure for r > 1 and the procedw:e attributed 

to K. PEARSON are not admissible in the case of exponential family distri­

butions, He recommended the use of FISHER' s procedure or '.J:'IPPETT' s test, 

Some years later T, LIPTAK [34] , perhaps unaware of BIRNBAUM' s work, 

proved that any combination procedure possessing some intuitively desirable 

properties (including a monotonicity property equivalent to that of BIRNBAUM) 
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may be WTitten in the form: reject H for small values of the statistic 

k 

.L \)i 1/! (1:.i) ' 
1=1 

(L2.6) 

where v. > 0 (i=1,2, ... ,k) and ljJ is a strictly increasing function that is 
l -

continuous on the interval ( 0, ) • In the particular case l}! (p) = log p and 

equal weights vi FISHER's test appears. He again proved that any test genera­

ted by (1.2.6) is most powerful against some simple alternative and showed 

that the procedure based on (1.2.6) is unbiased if each of the tests to be 

combined is unbiased. LIPTAK suggests as a suitable choice of the function 

iµ the inverse <1>- 7 of the standard-normal distribution function <I>; with 

this choice the distribution of the statistic ( 1.2.6) is normal 1mder H 

in the continuous case. 

If in (1,2.6)we chooselj,(phlog p, with arbitrary weights vi' a 

weighted version of FISHER's test is obtained that rejects H for small values 

of the statistic 

k 

IT ,E_i 
i=1 

( 1. 2. 7) 
\!· 

l 

This test was first considered by LJ-. GOOD [18], who derived the distri­

bution of the statistic ( 1.2. 7) under H in the case that all v- are diffe-
1 

rent. In a further paper [19] GOOD gave a highly subjective discussion on 

the choice of the weights vi in this test. M. ZELEN [58] noted that the problem 

of combining two variance-ratios (F-tests) often arises in the analysis 

of incomplete block designs and proposed a weighted FISHER procedure for 

such a problem. In a joint paper [59] with L.S. JOEL the combination of two 

variance-ratios (w:i.th equal numbers of degrees of freedom of the numerators) 

by means of the procedure (L2,7) is thoroughly discussed; they proposed a 

choice of the weights and gave tables of the power of some weighted FISHER 

procedures for this problem. 

In 1961 H.O. LANCASTER [28] considered three transformations of the 

tail probabilities ,£_· : either to -2 log , or to a normal random variable 
-1 l 

x. = <I> (E_.) - LIPTAK's proposal -, or to a chi-square random variable x2 
-1 1. • • -s1 
with si degrees of freedom. The overall test statistic is then obtained by 

addition of the respective random variables. In the last two cases weights 
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can be introduced as multipliers of the x. or by varying the degrees of 
. -i 

freedom s. of X 2 ; the distributions under H remain very simple and the 
l -s. 

complicated dist~ibution of the weighted FISHER procedure is avoided. 

LANCASTER came to the conclusion that in the case of equal weighting there 

is no great difference between the three combination methods. He also com­

pared the power of the sign test applied to a sample of 20 observations 

in the case of one-sided alternatives with the power of the "mean X2 " pro­

cedure when applied to 2,3 or 4 subsamples, assuming equal probabilities 

of success, He found that the power of' the "mean x2 " test is not much 

smaller than that of the (most powerful) sign test. 

Notwithstanding these various developments, many statisticians prefer 

to use linear combinations ';'v. t. of the individual test statistics to test 
/, i-i 

the hypothesis H. Si.nee many test statistics are approximately normally 

distributed in the large sample case, the distribution of 'i'v.t. can be 
. . ~- i-i 

approximated fairly well by a normal distribution in the n?ill-case in most 

applications. The choice of the weights vi is then the essential problem. 

PIL VAN ELTEREN [ 16] discussed linear combination of two-sample tests 

of WILCOXON. He considerecl two choices of the weights involved. 'rhe first 

set of weights has the property that the alternatives, against which the 

combination procedure is consistent, do not depend on the ratios of the 

individual sample sizes. Such tests are called designfree; for a discussion 

of designfree tests we refer to C. VAN EEDEN and J. HEMELRIJK [13] • '.rhe 

second set of weights was introduced to obtain a locally best combination 

procedure (for "equal" alternatives). The robustness of" linear combinations 

of two-sample tests of WILCOXON if there are small variations in the varian­

ces of the observations is investigated by M,L. PURI in a forthcoming 

paper [4o] . 
W. SCHAAFSMA ( [l+5], [46]) considered linear combination of test 

statistics when the test statistics are normally distributed and the alter­

native is one-sided, He proposed the use of most stringent somewhere most 

powerful tests (cf. also [44] ) and constructed such tests for various testing 

problems. It turns out that for the one-sided combination problem such tests 

are essentially linear combinations of the individual test statistics with 

appropriate weights. In his opinion these tests cannot be improved upon to 
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a "worthwhile" extent. In [46] he compared. these tests with the (unrestricted) 

most stringent combination procedures, which were first derived in [59], 
A sampling experiment has been performed by N. BHATTACHARYA [ 2] , who 

considered the combination of chi-square statistics, which have central 

distributions under Hand non-central distributions under the alternative. 

Varying the degrees of freedom and the non-centrality parameters, he compared 

three procedures: FISHER's test, the sum test and TIPPETT's test. He found 

that the first two tests are about equally powerful in all cases considered, 

but that the power of TIPPETT's test is much smaller, except possibly in the 

case where only one of the variables has a non-central distribution. 

Recently R.B. DAVIES ( [11], [12]) approached the combination problem 

in a somewhat different manner, as he supposed that the parameters e. 
l 

measuring the effect are random variables with normal N(0,0 2 ) distributions 

and the hypothesis tested is cr 2=0 against cr 2>0. For this combination probler.1 

he constructed S-optimal size-a tests (see section 1.3). Some power com­

parisons with FISHER's procedure (with of without weighting) are made in 

[12], partly based on simulation. 

A study of the decision theoretical aspects of the one-sided combination 

problem was made by W.R. VAN ZWET and J, OOSTERHOFF [60] . The present work 

is a continuation of this research and extends and generalizes the results 

of [60]. 

1. 3. PRELIMINARY DECISION THEORY 

In this sections we recall some concepts of the theory of' testing 

hypotheses and the related decision theory and introduce some notation. 

We shall be concerned with a measurable space (X,.fl) ,where X is 

Euclidean and is the er-algebra of Borel sets of x. Let Q be a Borel sub-

set of r-dimensional Euclidean space ffir and 

8 £ fl } 

a family of probab:i.li ty measures defined over ( X, A) and dominated by a 

a-finite measure:\. In applications:\ will usually be either Lebesque measure 
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or counting 1neasure. The measures are supposed to be different, i.e. for 

every pair 8 ',8 "E Q a set Ae A exists for which P8 1 (A) 'f P8 11 (A). Accord­

ing to the RADON-NIKODYM theorem there exists for any 8 £ Q a probability 

density p(x;e) with respect to A such that 

The index set Q will be called the parameter space. 

Let x denote an observable random vector assuming values in X and in-

ducing one of the measures P 8 in ( X, A) 

Pr (:'.£ E A) = Pe (A) 

i.e. 

for all A£ A. 

Without confusion we shall often write P 8 (:'.£EA). 

Let and denote two disjoint subsets of ,1. Suppose we wish to test 

the hypothesis 

against the alternative 

K 8 E 

A test of H against K is characterized by a critical function o (x), the 

probability that His rejected in favor of K for a given outcome x"' x 

in the sample space X. Suoh a critical fi:tfiction 6, a measurable mapping 

of X in-t;o the closed interval [ 0, 1] , is said to be nonrandomized if 

o(x) = 0 or 1 for all x E X. A test will often be indicated by its critical 

fr.me.ti.on 8. If 6 is nonrandomized, the set {xio(x) =O} is called tr..e accept­

ance region and the set {xio(x) = 1} the critical region of the test 6. 

It is convenient to introduce a convergence definition in the space of' all 

critical functions, A sequence {o} of critical functions is said to be 
n 

weakly convergent to a weak. limit o if 

(L3,1) lim J o (x) 
n 

n+oo 

for all ),-summable f, We note that a sequence { <5 11 } :i.s weakly convergent, 



too if and only if 

lim f A 6(x) 
n➔= 

for all A .. A with ;\(A)< co 

This convergence definition coincides with the concept of regular convergence 

introduced by A. WALD [53], The celebrated weak compactness theorem (cf. 

E.L. LEHMANN [ 31] p. 354) asserts that the space of all critical functions 

is compact in the topology of weak convergence. 

We shall be concerned with tests at a fixed significance level a(O<o:<1), 

that is, with critical functions o whose size 

sup 
6,;: S"JH 

E o(x) e -

does not exceed a. 'rhe class of all such tests will be denoted by fl (a), 'I'he 

power function of a test 6 will be denoted by 

If we wish to test a simple hypothesis e=e0 against a s.lternative 

0==0 1 , the most powerful level-a test is given b:y· the fundamental NEYMAN­

PEARSON lemma: 

o(x) 

where c and 
a 

{ 
if 

1 
p(x;0 ) > C 

a 
1 

ya if p(x;e ) C 
a 

if 
1 

0 p(x;e ) < C 
Ci. 

(O<y <·1) must be determined - a-

EO cS(~) = a. 
e 

0 
p(x;8 ) 

0 
p(x;G ) 

0 p(x;e ) 

to satisfy 

If the alternative is composite, i.e. if D. K contains more than one point, 

a uniformly most powerful (UMP) level-a test (maximizing BO ( 8) for all 8 E: !"lK 

*) E6 deno-'.;es the expectation under P 6 
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simultaneously among level-a tests 6 of H) usually does not exist, In such 

cases it is common practice to restict attention to a subclass f)*(a)c'i)(a) 

of tests possessing some desirable property and to select the UMP test within 

D*( a), i, e, a level-a test o0 satisfying 

for all o E 

provided such a test exists, Well--known choices for f.) "'""( 0,) are 

( i) the class of unbiased level-a tests, satisfying 

for all e E nK , 

(ii) the class of similar size-a tests, satisfying 

for all 8 e: 

(iii) the class of invariant level-a tests. In orcler to define this last 

class consider a group G of measurable 1-1 transformations g of the sample 

space X • Let to any g e: G correspond a transformation g of the parameter 

space n such that 

:::: P­
g8 

for all A EA, 

The transformations g induced by the elements g of G also constitute a group 

G acting on n, We say that the problem of testing H 

variant under G if 

g for all g E cL 

A test Ii is then called invariant under G if 

o(gx) = li(x) for all x e: X and g E. G. 

K remains in-

A statistic T(!,) is said to be a maximal invariant under G if it is invariant 

and if T(x 1) == T(x2 ) implies = gx 1 for some g E. G, A maximal invariant 

,(e) under G is defined, A test o is invariant under G :i.f and only 
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if there exists a measurable function h such that 

o(x) = h [T(x)] for all x £ X, 

where T is a maximal invariant. The distribution of T(~) only depends on ,(8) 

and the same property holds a fortiori for an invariant critical function 

o(.!!_). 

Unfortunately the combination problems to be discussed do not admit 

UMP tests among one of the classes (i), (ii) or (iii). In such cases one 

may decide to select a minimax test. There exist several types of minima~ 

tests. Our main interest will be focussed on most stringent (MS) tests. Let 

( 1.3.2) sup 
o e.D(a) 

denote the level-a envelope power function and consider a particular level-a 

test o. The shortcoming of this test (with respect to envelope power) is 

the amount by which the power of the test o falls short of the envelope 

power, i.e. 

(1.3,3) 

A level-a test o0 is called MS if 

( 1.3.4) = inf 
oE:.'D(a) 

i.e. if o0 minimizes the maximum shortcoming over QK among level-a tests. 

The shortcoming R0(e) of a test o may be interpreted as expected loss 

(and hence as a risk function in the usual sense of decision theory) if we 

define the loss functions 

when rejecting H 

and 

when accepting H. 
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Another approach towards a minimax: solution is as follows, Let d be 

a nonnegative function defined over Q such that d(e) = 0 for all 8£rlH; d(e) 

may be interpreted as a distance of 0£,(l to rlH. Let Ill( be defined by 

for some positive 6. Typically ,()K is the set of parameter values differing 

so widely from those postulated by the hypothesis H that false acceptance of H 

1.s a serious error whenever 8 E: "'K' A level-a test 60 is called a maxi.min 

test of H with respect to rlK if 

inf 
ee.ri' 

K 

f3 0 ( 8) 
0 

1.. e, if the test 60 maximizes the minimum power over QK among leve1 ... a 

tests. A maxi.min test can also be interpreted as a minimax procedure since 

it minimizes the maximum of the simple risk function 1-60(8) over nK. A 

serious drawback of maxj_min tests is their dependence cm the often rather 

arbitrary choice of 6 ( in a few cases there is no derJendence on 6, but 

this seems to be exceptional), 

A related class of procedures, fl-optimal tests, have been introduced 

by R.B. DAVIES [11] for the combination problem. For a given S(a<fl.::._1) a 

level-a test o0 is called S-optimal with respect to the distance function 

d if o0 minimizes the expression 

inf { 6 I s0(e)?.. fl for all e satisfying d(e)> 6} 

among tests oe.O(o:). One might say that a S-optimal test minimizes (in a 

sense) the zone of indifference for a predetermined minimum power, 

Obviously the fl-optimal. tests depend in general on the choice of S, 

We remark that both MS tests and maximin tests always exist J.n the 

present context, as is easily verified by application of the weak compact­

ness theorem, If the testing problem is invariant under a transformation 

group G, a MS test which is invariant under G exists under rather general 

conditions, This is formulated in the following lemma, 
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Lemma 1.3.1 

Let G be a group of tranformations of X such that the induced group G 

leaves ~ and invariant. Let 1) be a a-algebra of subsets of G such that 

for any Ae:.fac the set of pairs (x,g) with gxE.A is an element of fibB 

and for any B "- f:'i and g e. G the set Bg is 'fi _ measurable, Let G be either 

finite, or, if G is infinite, let there exist a sequence of probability 

measures vn over ( G ,'.B) and a o- -finite measure v over f:i ) such that 

( 1.3,5) lim -· 0 for all g € G and B € 'f.:> 
Il-+oo 

and 

(L3.6) \J(B) = 0 implies v(Bg) = 0 for all g£ G. 
'l'hen there exists, for any a, a MS level-a test of H against K that is 

invariant. 

The proof of this well-known result is standard. It is based on the 

HUNT-STEIN theorem and the fa.ct that the set of parameter points for which 

fl+ ( 0) is constant is invariant under G. The condition ( 1. 3. 6) of the lemma 
Cl, 

ensures that the MS test is actually invariant and not merely almost in-

variant (cf. LEHMANN th.4 of ch.6), Finally we remark that under the 

same conditions invariant maximin tests also exist. 

The minimax principle sometimes leads to quite unreasonable tests in 

the sense that, although they minimize the maximum risk, the power of such 

tests may be relatively small for "most" alternatives, Moreover, minimax 

tests are often quite difficult to find and may have a very complicated 

character. These considerations led W, SCHAAFSMA ( [44], [45], [46]) to the 

introduction of most stringent somewhere most powerful (MSSMP) tests. A 

level-a test is called MSSMP if it is MS among the class of level-a tests 

which are most powerful against simple alternatives in 0.K, 

Let JC denote a a-algebra of subsets of r.K. We assume that p(x;8), 

considered as a function of x and 8, is measurable .Ax :K. A probabi.li ty 

distribution~ over (r.K,J{) is called a distribution, A level-a 

test cS of' His said to be Bayes with respect to a prior distribution~ 

if it maximizes the expression 



among all 6' e. '.O ( a). :E:qui valently, by FUBINI I s theorem, Ii is Bayes with 

respect to i; if 6 is a most powerful test of H against the simple alternative 

that xis distributed according to the probability density 

with respect to A, The class of all level-ci Bayes tests of H against K will 

be denoted by B (a), 'J'he power of a test 6 against an alternative of the 

form ( 1,3, T) will be denoted by 

(L3,8) 

Extending the definition of the shortcoming of a level-a test 6 to 

arguments s , 

j_t is obvious that a level-a test o0 is Bayes with respect to a prior 

distribution F;,0 if it minimizes R 0( so) among all 6 E. ll(a), 

'l'he level-(1 minimax shortcoming R + is defined as 
a 

(L3,10) d~_f . ( ) inf sup R0 e ; 
a e.'.O(a) e <£ nK 

it is equal to the maximum shortcoming of a MS level-ry, test (cf, ( 1, 3, 4)), 

If the level-a minimax shortcoming is sufficiently small, the MS procedure 

( or any level-a test with only slightly larger maximum shortcoming) may be 

a satisfactory solution of the testing problem, 

A prior distribution so over (nK' '.K) is said to be least favorable 

(LF) at level a if' 

inf' R 6 ( E;0 ) > inf for all E; 

oe'.D(a) <Se:D(al 

it is the prior d.istribution that is hardest to distinguish from the null 

hypothesis at level a in the sense of the risk function R, We note that 

the LF character of' a prior distribution heavily depends on the risk :ftmction; 
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changing R will in general entail that another prior distribution becomes 

LF', 

Any MS test is the weak limit of a sequence of Bayes tests (WALD [53] 

th. 3. 12). If a LF prior distribution i:; 0 exists, any MS level-a test is Bayes 

with respect to i:; 0 (WALD [53]th.3.9), A prior distribution s0 and a corres­

ponding level-a Bayes test o0 constitute a LF prior distribution and a MS 

procedure respectively if and only if s0 assigns µ~·uue,.u.LJ..1. one to the set 

of parameter points for which R0 ( 8) assumes its absolute maximum (WALD [53] 
0 th, 3 , 1 0 , 3 • 1 1 ) • 

However, a LF prior distribution does not necessarily exist. WALD 

( [52]th,5,9) has shown that LF prior distributions exist under the 

assumption that p(x; 0) is continuous in 8 and is compact. The compactness 

assumption is rather restrictive and unnecessarily strong. LEHMANN [30] has 

shown that the compactness condition can be replaced by a weaker condition, 

but the risk functions considered by him do not include the shortcoming 

( he only considered risk functions of the form L( e )E8 ( 1-o (!_)) where L( 8) 

is some loss function), 

A level-a test o is said to be dominated by a level-a test o' if 

( 1.3.11) 

with strict inequality at least once, or eg_ui valently, if 

R0 (0) > R ( 8 ) for all 8 !ii. nK - 15' 

with strict inequality at least once. A level-a test 15 is called admissible 

if no level-a test o' dominating a exists; otherwise a is said to be inad­

missible. A class E of level-a tests is said to be complete if for any 

level-a test not in l: there exists a 15' in 'e. dominating i L A minimal 

comp.lete class is a complete class not containing a complete proper subclass, 

A class I: of level-a tests is said to be essentially complete if for any 

level-a test o there exists a test o' int such that (1.3.11) is satisfied 

(possibly with equality for all 8 E. rlK), 

If Bayes tests are unique a.e. [>.] , then any Bayes test is admissible, 

But in general there are inadmissible Bayes tests and admissible tests which 
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are not Bayes. The importa11ce of Bayes tests is nevertheless emphasized by 

the following complete class theorem (cf. WALD [53]th.3. 18 and L. LECAM [29] 

th.4), which we state in the form of a lemma. 

Lemma 1.3,2 

For testing the hypothesis H against Kat level a the closure (in 

the topology of weak convergence) of the class ti (a) of level-a Bayes tests 

constitutes an essentially complete class. 

The closure of fl (a) is complete if tests with identicaJ. risk functions on 

nK are eq_ual a.e. [>-] • ~'his property is certainly satisfied if the family 

of probability measures PQ is boundedly complete, i.e. if 
K 

fx f(x) p(x;e) d\(x) = o 

implies f(x) "' 0 a.e. [;,,] for any bounded measurable function f. If if) 0. is 

an exponential family and l"JK contains a r-d.imensional rectangle, y.)0. K 

is boundedly complete and hence the closure of 13 (a) is a complete f1ass in 

this case. 

:B (a) 1.s itself a complete class if nK is compact and p(x;B) is 

continuous in e. In this case weak limits of Bayes tests are also Bayes 

(WALD [53] th, 5, 5 ). 

l • 4. CONVEX AND MONO'rONE ACCEPTANCE REGIONS 

In the last twenty years an extensive literature on admissibil:i.ty of 

statisticaJ. tests and complete clasrrns of tests has appeared. Especis.lly 

tests of hypotheses in exponential families of distributions have been 

thoroughly studied, It is well known that in this case nonrandomized tests with 

convex acceptance regions are of fundamentaJ. importance. In the first part 

of this section we mention some theorems on this subject and prove a related 

result. If the hypotheses are one-sided, the monotonicity of the acceptance 

regions plays an important part. 'rhis is shown in the second part of this 

section, 

We again consider the family j:) 0. of probability measures dominated 



20 

by a o-finite measure A over (X,A-), introduced in section 1.3. Suppose 

we wish to test the hypothesis 

H 0 E. QH 

against the alternative 

where QH and QK are disjoint subsets of S1 , First we shall assume that 

the null hypothesis is simple: 

QH "' {80} 

Let ( 0 (a) denote the set of all size-a critical functions for 

testing 8=0 O which are eq_ual a. e. [A] to any critical function 6 

satisfying 

(L4.1) { 
0 if 

6 (x)= 
1 if 

X E. int(A) 

X - A, 

where A is some closed convex set in lRk and int(A) denotes the interior 

of A. We shall say that t O (a) is the set of size-a tests of 8::::8 O 

with a.e. convex acceptance regions. To prove that E 0(a) is an 

(essentially) complete class of tests for testing 0=0 0 against 0E. 

a possible line of attack is to show first that the class '.b0 (a) of 

level-a Bayes tests of 8=00 is a subset of C0(a). Since the closure 

of '.B0(a) is an essentially complete class (lemma 1.3.2), the essential 

completeness of CO (a) is then established if LO (a) is closed in the 

topology of weak convergence. This last property, stated with an incor­

rect proof' by A. BIRNBAUM [ 5]in a special case, has been proved i.n full 

generality by T,K, MATTHES and D.R. '.l'RUAX ( [35]th.2.1) with the aid of 

the BLASCHKE selection theorem. 

Lemma 1 . 4 , 1 ( ~'. K. MAT'rIIBS and D • R , TRUAX) 

For any a-finite measure A dominating the family i)n the class (a) 

is closed in the topology of weak convergence, 
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The line of argument sketched above has proved to be very useful 

if '.PQ is an exponential family, i.e. 

( 1.4.2) 
k 

p(x;e) = c(e) exp [ I e.x.] 
i=1 l l 

with respect to an appropriate measure 1c, where 0=(e 1 ,H.,ek) and 

x::::(x 1 , ... ,~) are k-dimensional vectors (k:_2) and Q is the (convex) 

natural parameter space, Le. the set of all 8 satisfying 

f exp[/: eixi]d1c(x) <00 • The family (1.4.2) is not the most general 

exponential family, which is usually defined as 

k 
p(x;O) "'C(0) exp [ I 

i=1 
Q.(0)T.(x )] , 

l l 
0 E. (l 

but this form reduces to (1.4.2) after suitable transformations. 

The following well-known result has first been obtained by 

BIRNBAUM [5 ] in a particular case (cf. also [35] ) . 

Lemma 1.4,2 (A. BIRNBAUM) 

Let 1f = (1£1 ,. , • •~) be distributed according to the density ( 1. 4, 2) 

with respect to the measure L Then E:0 (a) is an essentially complete 

class for testing 0=00 against 0,;. OK. If QK contains a k-dimensional 

rectangle and P 0 and ;\ are equivalent, E 0(a) is complete. 
0 

BIRNBAUM then investigates the absolutely continuous case more 

closely and shows that the closure of :f.\(cx) coincides with E 0 (a) 

under the additional assUlllption that Q contains hyperspheres of 
0 

arbitrarily large radiL Here it is assUllled that Q1tii-{0 Lif moreover 

either Xis bounded or assUlllption 3 of [5] :i.s satisfied, BIRNBAUM 

proves that E0 (a) is minimal complete, Le. all tests in C0 (a) are 

admissible. As an example let ~ 1 '½, ... •-¾: denote k independent 

normal random variables with expectations G .1 ,e 2 , ... , ek and unit variances; 

then BIRNBAUM's assumption 3 is satisfied and E0 (a) is a minimal 

complete class for testing e=e 0 against 010°. If the family (1.4.2) 

is not absolutely continuous but discrete (e.g. if A is counting 

measure), characterization of minimal complete classes is more difficult. 

Generalizing the work of BIRNBAUM in certain respects, C.M. STEIN 
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in a paper· [1+9] on the admissibility of HOTELLING' s T2-test has giv-en 

a sufficient condition for admissibility of a test of 8 E DH against 

8 • for arbitrary DH and 0.K and exponential families with respect 

to arbitrary er-finite measures;\, He has shown that a nonrandomized 

size-a test with closed convex acceptance region A is admissible if 

for each supporting hyperplane of A there exist parameter points 

in QK arbitrarily far out on some perpendicular to this hyperplane. 

However, in general these acceptance regions do not generate complete 

classes of tests, 

MATTHES and TRUAX [35] considered composite null hypotheses of 

a particular kind: under Hs some components, e 1 , 8 2 , ••• , 8 s say, 

of the vector 8 in (1.1+.2) are specified while the remaining components 

of 8 are unspecified nuisance parameters. In this situation it turns 

out that for any a-finite measure;\ the totality of size-a tests o, 

which have acceptance regions {xlo(x)=O} whose (x 1 , ••• s+ 
)-sections 

are convex, constitute a complete class for testing H against 
s 

K : 8 E 0. - D at level a. By way of examples they have shown, however, 
Hs 

that the tests in this class are not necessarily admissible, unless 

s=1. 

Little seems to be known about essential completeness of the class 

l:. 0 (a) if ~ 0. is not some exponential family. To investigate this point 

we consider our original family of densities p(x;e) with respect to a 

a-finite measure A, where Xis a convex Borel set of lRk. The index set 

0. is arbitrary , but it is assumed that for different 8' , 8' ' E: D the 

corresponding distributions are also different. It will also be assumed 

in this section that p(x;0) is positive for all x €. X and 0 "- D. This 

implies that the support of the distribution of~ does not depend on 8. 

If .:e_ is a discrete random variable, then ;\ is a discrete measure and. 

p(x;0) may be suitably defined for all points of X with vanishing 

;\-measure, 

A real-valued function f defined on Xis said to be convex if for 

any x' ,x' '(x';ox'') and any O < P < 

f(px'+(1-p)x'') ..S. Pf(x')+(1-P) '). 

The fun.ction f is said to be strictly convex if the above 
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is always strict. 

Suppose we wish to test the simple hypothesis 

H0 : e = e O ( e O e:. n) 

against the alternative 

K : 8 e: Q-{00} 

Let t.O(a) and 'J\(a) be defined. as before and let f>;(a) denote the class 

of all essentially unique (in ;\-measure) level-a Bayes tests of H0 

against K. 'l'he following theorem is an immediate generalization of 

BIRNBAUM's results. 

Theorem 1.4.1 
Suppose .e."'<.e.1 , ••• ,1.Sk) is distributed according to the density p(x;8), 

0 t Q, where p(x;0) is positive for all x e. X and e "'- n. Let eO denote an 

arbitrary point of n . If for all 6 "- n 

(1.4,3) 0 p(x;0 )/p(x;e ) 

is either a convex function of x on X or a monotone function of a fixed 

linear com.bi.nation of x 1, ••• ,~ ( the function being either non-decreasing 

for all 0 or non-increasing for all 8 ) , then 

(1.4.4) for all a. 

Moreover, of in addition all Bayes tests of H0 against Kare essentially 

unique (in ;\-measure) then C:0 (a) is an essentially complete class for 

testing H0 against K. 

froof: 

Any Bayes test of H0 with respect to a prior distribution I; is equal 

a.e. [1c] to a test 6 of the form 

o(x) -- { 01 if J [p(x;e )/p(x;e 0 )] d 1; (e) 
n 

< C 

> c, 

where c depends on the size of the test. Denote the integral appearing 

in (1,4.5) by I(x). First let us assume that the functions (1.4.3) are 
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convex on X. Then I is also convex on X and hence the sets A_={x!I(x)<c} 

and A ={xlI(x)<c} are both convex. If 6 is essentially unique, either the 
+ -

set {xiI(x)=c} has :\-measure zero or 6(x)=1 a.e. [x.] on this set or 

Ii (x )=O a. e. [ :\] on this set. Hence either clos (A_) ( in the first two 

cases) or clos (A+) (in the last case) may serve as the closed convex 

set A mentioned in (1.4.1). If (1.4.3) is a monotone function of' 

1 a. x. f'or all 0, then so is I and the sets A and A .... are both half-spaces. 
l l l + -
The relation ( 1 • 4. 4) is then proved as before. In case '!.)0 (a,)= fl;( a), 

essential completeness of' C. O(a) follows from the lemmata 1.J.2 and 1.4, 1. 

Q.E.D. 

At first sight the conditions on the likelihood ratios (1.4.3) 

seem to be unnecessarily strong. However, it turns out that for an 

important family of distributions essential completeness of E O(a) for 

all 0 O ._ n and all O<a< i implies that 1\ is either an exponential family 

or a family of distributions of an even simpler type, First we prove a basic 

lemma. 

Lemma 1.4.J 

k 
Let X =IB, let p(x;e) >O for all xEX and 0 .. n and let p(x;8 1 ) ' ') 

be continuous in x for all B',8" E. Si, If for all 8',0" e: D (8';t 0") 

and all real c > 0 the sets 

{xjp(x;8')/p(x;8'') .:::. c} and hlp(x;8')/p(x;8'') > c} 

are convex or empty, t.hen the function p(x;8) is of one of the following 

two forms: 

(i) there exist functions f and 

( 1.4.6) p(x;8) "' 

identically in x for all 8 e:: Q; 

q0 ,q1 , .•. ,qk such that 

k 
exp [ I x. q. ( 0) + q,0 ( e ) ] 

i=1 l l 

or 

(ii) there exist functions f and g and constants a 1 

that 

( 1.4. 7) 
k 

p(x;0) = f(x) g ( L 
i=1 

;e) 

such 

identically in x for all 8 e. n; the function g 1.s monotone (either 
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non-decreasing or non-increasing) in its first argument, 

~: 

Let e O ~ some fixed point of Q and. let 8 E. fl be arbitrary, 8,08 O. 

Let 

(1.l+.8) c 1= i~f {p(x;8)/p(x;e0 )} , c 2= s~p {p(x;0)/p(x;e 0 )} 

and consider an arbitrary c €. (c.1,c2 ). Since the sets A1={x!p(x;0)/p(x;e 0 ) .::_ c} 

and A2={xlp(x;O)/p(x;e 0 ) > c} are non-empty and convex and the set A2 is open 

by the continuity of p(x;e)/p(x;e0 ), there exists a hyperplane ;Ji separating 
C 

A1 and A2 (cf. JLG. EGGLESTON [15]section 1.7), It is easily shown by a 

continuity argument that p(x;0 )/p(x;e 0 ) is identically equal to c on il£ . . C 

For different c e. ( c 1 ,c 2 ) the hyperplanes elf c are parallel, because they cannot 

have common points in X. Let 

k 
\' , 0) ( 0) l a.(8,0 x.= a O c;e,e 

i='I J. J. 

be the equation of cft. ; the coefficients 
k C 

. l a~ ( 0, 8 O) = 1. The left-hand member of 
i=·1 i O 
The function p(:x;8)/p(x;0 ) depends on x 

expressed ·by writing 

a. are assumed to be normalized: 
J. 

0 (1.4.9) will be denoted by L(x;8,8 ). 

only through L(x;0 ,e 0 ) ; this may be 

( L4.10) 0 0 0 p(x;e)/p(x;e ) = g(L(x;e,e ) ;0,0 ), 

where the function g (.;0,0°) is continuous and monotone (either non-decreasing 

or non-increasing) and not constant, since P 8 and P 80 are d.i.:fferent. 

To any B E n( 8\i\OO) corresponds a linear form L(x;0 ,0°). We define the 

relation ~ on 11-{ 8 O} as follows: 

o• ~ 8" if and only if L(x;B' ,o 0 ) ;;; L(x;B" ,e 0 ) 

(80 fixed). The relation~ is obviously an equivalence relation which defines 

equivalence classes in 0-{e 0 L Let 8 denote the set of all equivalence classes. 

We consider two cases. 

( i) The set 8 contains at least two elements, Let 8 e. '2 ( 8/0 O) be arbitrary and let 

8' Ee Q ( e ',oe O) belong to another eq_ui valence class than 0. Si.nee 

we find 
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(1.4.11) g(L(x;e ,0°) ;8 ,e 0 ) = g(L(x;8 ,0') ;8 ,e') g(L(x;e' ,e 0 ) ;8' ,e 0 ), 

where L(x;0,e0 ) and L(x;e' ,e0 ) are linearly independent. The three linear forms 
0 0 L(x;8,8 ), L(x;8',8 ) and L(x;8,8') are not linearly independent. For if they were 

linearly independent, the third linear form may vary from - 00 to +00 for fixed 

values of the first two linear forms, implying that g(.;8,8') is constant which 

is impossible. Thus L(x;8,8') is a linear combination of the two other linear 

forms. Taking logarithms and writing h == log g,L(x;e,e 0 ) = y and L(x;8' ) = z, 

we obtain 

( L4.12) 0 h(y;e,0 ) = 

where a' and. b' are appropriate constants. It is easily seen that a'b''i'O, because 

otherwise one of the functions h would again be identically equal to a constant. 

Putting a'y+b'z == w, a== 1/a', b == -b'/a', (1.4.12) is more conveniently expressed 

as 

(1.4.13) 

Moreover, substitution of w == 0 or z == 0 respectively in ( .4.13) yields 

h(w;e ,e ') = h(aw;e ,e0 ) - h(O;B • ,0°) , 
0 0 h(z;B',B) = h(bz;8,8) - h(O;B,8 1 ), 

and thus (1.l+.13) may be written as 

0 h(aw+bz;e,e ) 0 0 : h(aw;B ,8 ) + h(bz;B ,8 ) + 

. f. . ~( o) ( o) De ining h y;e,e = h y;B,8 -

-h(o;e•~0°) - h(o;e,0 1 ) • 

h(O;e,e 0 ), we find 

(1JL14) ~( 0 - 0 ~ 0 h aw+bz;0,e ) = h(aw;0,e ) + h(bz;e,e ). 

Since h is continuous, the identity ( 1.4.14) implies 

~ 0 0 h(y;e,e ) = d(e,e )y 

for some non-zero d(e,e 0 ) (cf.H. HAHN and A. ROSENTHAL [2o]th.9.3.1) and thus 

(1,4.15) 0 0 0 h(y;e,e ) = d(e,e )y + a0 (e,0 ), 

0 
0 ; 8 , 8 ) • But ( 1 • 4 . 1 5 ) 
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(1.4.16) 0 [ ~ 0 0 ( 0 )] p(x;e) = p(x;e ) exp L a.(e,e )d(G,e )x. + a 0 e,e 
i=1 l. i 

Since eO was fixed, we may write q.(e) = a.(e,e O)d(e,e O), i=1,2, ... ,k and 
i i 

qO(e) = a O(e,e O). Defining the fu..rictions qO,q 1, ... ,qk to be zero f'or e=eO 
we obtain (1.4.6). 

(ii) The set 0 contains only one element. In this case (1.4.7) immediately 

follows from ( 1 . 4 , 10) . 

Theorem 1.4.2 

Let X :::: ]Rk and let ;\ be equivalent with Lebesgue measure on X. Let ;£'-"(,£1 , ... ,~) 

be distributed according to the density p(x;e), 0 £ ti, where p(x;0) is posi­

tive for all x E X and 0 e Q and p(x;0' )/p(x;e' ') is continuous in x for all 

8 1 ,e'' e: Q • If for all O <a< 1 and all eO E. n the class 1:O(a) is essentially 
. 0 . • { O} d · · complete for testing HO : 8= 8 against K : 8 e ri- 8 , then the ensi ties 

p(x;B) are of' one of the two forms (i) or (ii) of lemma L4.3. 

Proof: 

If' C.O(a) is essentially complete, it certainly contains a version of each 

essentially unique most powerful test of HO against a simple alternative. Let 

0 and eO (0~0°) be arbitrary points of' n. Consider the most powerful test of 

eo . l against t 
< C 

> C; 

where c is an arbitrary positive number, and let a denote the size of this test. 

The critical function o2(x) = 1-o 1(x) defines a most powerful test of 8 

. t e0 . h d . agains .First we a:3su:me that c 1 < c < c 2 , w. ere c 1 an c2 are defined. in 

( ·1. 4. 8); it follows that O < a < 1 in this case. Since both 6 1 and 62 are essen­

tially unique most powerful tests, they must ·be equal a. e. [A] to tests w:i.th 

convex acceptance regions; let us denote these convex acceptance regions by A1 

and A2 respectively. We shall show that the sets {xlp(x;0)/p(x;eO) .::_ c} and 

{xlp(x;G )/p(x;e O) > c} are both convex. It then follows by a limiting argument 

that these sets are also convex or empty for values of c not in (c 1 ,c2 ). The proof 

of' the theorem is then completed by application of lemma 1.4.3. 

It is easily verified that any common point of A1 and A2 is a boundary point 

of' both A1 and 112 . Hence int(A1 ) and A2 are disjoint and there exists a hyperplane 
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0 &ec separating int(A1) and A2 . By a continuity argument p(x;6)/p(x;8 ) = c for all 

x £ af. . The hyperplane M separates lRk into two open half-spaces; let A *1 be 
C C * 

the open half-space containing int(A 1 ) and let A2 be the other open half-space, 

Then p(x;8)/p(x;e O) .:. c for all x E.. clos(A7) by the continuity of p(x;(l)/p(x;o O). 
0 Moreover, p(x;8)/p(x;8 ) > c f'or all x E. A;. For suppose there exists a point 

0 * 0 0 0 x E. A2 such that p(x ;6 )/p(x ;0 ) = cO ::_ c. 'l1he continuity of the likelihood 

ratio implies that c0 = c. Let D be the set of points between dt'. and the hyper­

plane JlO through x0 and parallel to i . Consider sup{p(x;8)/p(~;e 0 Jix E. D} = c'. 
C ~ 

If c' = c we have a contradiction with the definition of A1 and A1 • If c' > c, 

let c' ' = ~ ( c+c' ) and construct the hyperplane 6fl , , corresponding to c' ' in a 
'in C * 

similar way as ()'(. • Then cl£ , , is parallel to 'ct£ and separates A1 and , which 
C C C . 

is also impossible. Hence a point x0 with the property stated does not exist. 

It follows that {xlp(x;8)/p(x;e0 ) < c} = clos (.A.7) and {xip(x;0)/p(x;e 0 )> c} = A;, 

and thus both sets are convex. Q.E.D. 

If ~ 1 , ••• ,.:!k are independent, an analysis similar to the proof' of 

lemma L4.3 shows that in case (ii) the density p(x;8) can be written in the form 

( ·1, 4. 17) 
k 

p(x;e) = f*(x) exp [b(S) L a.x. + b0 (e)] 
i==1 ii 

i.e. the family of distributions (1.4.7) is an exponential family with a single 

sufficient statistic L a. x .. 
i,. 

Although theorem 1.4.2 only applies to a rather resticted family of dis-

tributions, :it indicates nevertheless that the essential completeness property 

of tests with a.e. convex acceptance regions cannot easily by extended to other 

than exponential families if the value of 8 specified by the hypothesis is an 

arbitrary interior point of the parameter space. 

We now consider tests of a simple hypothesis 

H · 0 = SO 0 . 

against one-sided alternatives 

K' : 8.> 80, 8 E. Q 

in a family '.P,, of distributions with densities p(x;8) with respect to a 0-finite 
, X d n d B k r . (" measure A; an "are assume to be orel sets of R and R respectively in most 

applications r = k). 
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We say that a real-valued function iJ; of vector argument x defined on 

k . d . . . ' ( ' ) . 1 · ( ) ,I, If X c:: IR 1s non- ecreasing in x if x .::_.x x ,x E. X imp 1es ij; x', .::_"' 

in addition x' < x (the inequality holding for all components) implies 

iJ;(x') < ~(x), then iJ; is said to be increasing in x. 

We say that a closed subset A of lRk is monotone if x ..:: A and x' .::_. x imply 

x' E. A, If Bis a closed subset of lRk, the closed monotone set {xjx .::_ y, ye.B} 

1s called the monotone extension of B. 

A test o is said to be monotone if for some closed monotone subset A of 1E,k 
if x E. X n int(A) 

( 1.4.18) 
if x E. X-A. 

The class of all tests which are equal a.e. to any monotone size-a test 

of 0=8Q will be denoted by Jt0(a). We call Jl.0(a) the class of a.e. monotone 
0 size-a tests of 0=0 , or the class of size-a tests of with a.e. monotone 

acceptance regions, 

If iJ; is an increasing function of x on X and c is an arbitrary constant, 

a test 0 I satisfying 

{() if ~J (x) < C 

( .4.19) 0 I (x) "' 
L 1 if ~(x) > C 

is a monotone test. The monotone extension of the set clos ({xi <c )may 

serve as the closed monotone set A appearing in ( 1,l+, 18), Conversely, given 

any monotone test 6 there exist an increasing function iJ; and a constant c such 

that the test 6 satisfies ( 1. 4. 19), 'l1o show this, let A be some closed monotone 

set, let c = 0 and define 

where d*(B,x) "' inf{d*(y,x) IY €. B} and a*(y,x) denotes the Euclidean distance 

of x and y, Obviously iµA(x) < O for x e, int(A) and > O for x E- X-A. 'I'he 

monotonicity of A ensures that 

has the required properties. 

is indeed increasing in x and hence the function 

Moreover, if for some function 1jJ a family of tests is defined by ( 1,4.19) 

for all sizes~ by varying c, and if all these tests are monotone, then iJ; is 

non-decreasing in x on X. 

Let S(q) denote the solid hypersphere in 11,k whose centre 1s the origin and 



30 

whose radius is q, and let the Hausdorff distance of two subsets B1 and B2 of 

S(q) be denoted by 

( 1. 4. 20) 

where U(B,E) denotes the £-neighborhood of B. 

We say that a closed subset B of S(q) is S(q)-monotone if x ~Band x' ::.,x, 

x' e.. S(q) imply x' e.. B. 

To obtain the analogue of lemma 1.4.1 for the class J'l.0 (a) we use the same 

method of proof as MATTHES and TRUAX [35], Instead of BLASCHKE's selection theorem 

(cf. EGGLESTON [15]th.32) we need the following more general result, which may e.g. 

be found in P. ALEXANDROFF and H. HOPF [ 1], p.115, 

Lemma 1.4.4. 

Let B1,B2 ,B3 , .•• denote an infinite sequence of closed non-empty subsets of 

S(q). Then there exists a subsequence {B } such that 
n. 

lim 
i--

d(B , B) "' 0 n. 
1 

where Bis a closed non-empty set. 

Corollary 1 • 4 . 1 

1 

Let B1,B2 ,B3 , ... denote an infinite sequence of closed S(q)- monotone non-empty 

subsets of S(q). Then there exists a subsequence {B }and a closed S(q)- monotone n. 
non-empty set B such that 

Proof: 

d(B , B) == 0 n. 
1 

1 

Apply lemma 1.4.4. The limiting set Bis S(q)-monotone because a closed limit 

(in the sense of the metric (1.4.20))of a sequence of closed S(q)- monotone sets 

is always S(q)- monotone. Q.E.D. 

Starting from this corollary we may proceed as in the proof of theorem 2.1. 

in [35], with only minor modifications, to obtain the analogue of lemma 1.4.1. 



31 

Lemma Li~, 5 

For any o-fini te measure 1- dominating the family P fi the class Ji.0 ( c1.) is closed 

in the topology of weak convergence, 

A family of' densities p(x;0), 0 E. Q, x E. X, with respect to a a-finite measure 

:>c is said to have monotone likelihood ratio (MLR) in the vector x if for all 

8'.> 0'' the ratio p(x;e')/p(x;e'') is non-decreasing in x on X. If this ratio 

is increasing in x on X, we say that the family has strict MLR in x. (Strict) MLR 

of one-parameter families of densities of scalar random variables is similarly 

defined. 

Theorem 1 • 4. 3 

Let 2S_=(2S_.1, • •• •~) have density p(x; 8), 0 e. Q, with respect to a a-finite measure ;\ 

defined on X ClRk, and let p(x;e) be positive for all xE. X and 8E.Q. If the 

densities p( x; 0) have strict MLR in the vector x :Le. [ :>c] ( where the exceptional 

1.-nullsets do not depend on the para.meter 8 in the numerator of the likelihood. 

ratio), then the class Ji0 (a.) of a.e. monotone size-a tests is essentially complete 

for testing 0==80 aga:i.nst one-sided alternatives e ·,:_e 0 at level a for all e0 €. Q 

and all O < a < 1. Conversely, if J\ (a) is essentially complete for testing 

any 8=-8°€. Q against 8.>80 for all 0 <a< 1, then the densities p(x;e) have MLR 

in x a.e. [>-]. 

Proof: 

Suppose p(x;e) has strict MLR 

is equal a.e. [1c] to a test 6 

O(x) a { : 

. [] An B O . 0 in x a.e. ic • y ayes test of 8=8 against 8 .?._0 

of the form 

if f [P ( x; 0 ) / p ( x; 8 O ) ] dt; ( 8 ) 
8 .>e 0 

< C 

> c, 

where t; is a prior distribution and c depends on the size of the test. The MLR 

charact£'>~: of p implies that the integra.1 is increasing in x a..e, [1-]. Hence '.l:\(a) 

C. J10 (a) and the essential completeness of )\ (a) is a consequence of the 

lemma.ta 1.3.2 and 1.4,5. 

Conversely, suppose .M0 (a) is essentially complete f'or all 8 O E: Q a.nd all a. 

Th t . 11 . . B t t f O · t 0 · .. en a.ny essen ia y unique size-a . ayes es o· any 0=0 a.gains a.::_ 0 is con-

tained in }{0 (a). Any Bayes test of 0=00 against a simple alternative 8=8'.> 0° 

satisfies a.e. [:>c] 
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-- { 01 6 ( x) if p(x;e' )/p(x;eO) 
<c 

>c, 

where c depends on the size of the test. Such tests are essentially unique if 

o(x) = O (or 1) on the set where p(x;8')/p(x;eO) = c. Noting that this ratio 

must be non-decreasing in x a.e. [A] since 6 is a.e. monotone for all c, the 

proof is complete. 

This theorem is related to a result of BIRNBAUM [ 4] , stating that any 

monotone test is Bayes against some simple alternative. However, BIRNBAUM starts 

from a much larger family of distributions and hence theorem 1. 4. 3 does not 

follow from his result. 

If A is a product measure and !.1 , .• , ,~ are independent with dens it i.es 

pi( ;Bi) (i=1,2, ... ,k), strict MLR in x of the family p(x;8) "'~pi(xi ) is 

equivalent with strict MLR of each family (x. ;8.) in , i=1,2, ... ,k. 
J_ J_ 

Combining the theorems 1. 4. 1 and 1. lr. 3 we obtain sufficient conditions for 

essential completeness of the class of' tests with a.e. convex and monotone 

acceptance regions for testing a hypothesis 8=80 against one-sided alternatives 
0 

8 • ?..0 at all significance levels a. Essential completeness of this class was stated 

without proof by R. SCHWARZ [4T] for exponential families. BIRNBAUM [ 5] gave a 

stronger result for independent normal random variables. 

Lemma 1.4.6 (A. BIRNBAUM) 

Let .2f.1,~,···,.2f.k denote k independent random variables, where is N(µi,1) 

distributed (i=1,2, .•• ,k). The class of size-a tests with a.e. convex and mono­

tone acceptance regions is minimal. complete for testing µ=(µ 1,o<,,µk)=O against 

µ . :._ O for all o < a < 1 , 

1 • 5. TOTALLY POSI'fIVE F'UNC'fIONS 

In subsequent chapters we shall occasionally apply the variation-diminishing 

property of integrals with totally positive kernels, In this section we list the 

necessary definitions and results that will be used in the sequeL The theory 

has largely been developed by I.J. SCHOENBERG and S, KARLIN. For a detailed 

exposition of the theory we refer to KARLIN's book [25], 

Let K(y,z) denote a real function defined on YxZ where Y and Z are subsets 

of' IB. 1. The function K is said to be totally positive of order n ( TP ) on YxZ 
n 

if for all < m < n 
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K(y1,z1) 

for all y 1 < y 2 <.,.< yrn and z1 < z2 <,.,< zm, Yi E. 

strictly TP if the inequalities {1.5.1) are always 
n 

(strictly) '.rP if K is (strictly) TPn for n=1,2, .•. , 

K(y1 ,zm ) 

K(y ,z ) 
m m 

Y.' z. €. z. 
l 

strict. K 

> 0 

K is said to be 

is said to be 

If a TP function K may be written in the form K(y,z) = f(y-z), where both 
n 

Y and Z are the real line, then f is said to be a Polya frequency function of 

order n (PF). If K is TPn, K(y,z) = f(y-z) but Y and Z are the set of all 
l1 

integers, then f is said to be a Polya frequency sequence of order n (also 

abbreviated PF ) . 
n 

Let K(y,z) be n-1 times continuously differentiable with respect toy for 

each z E. Z, where Y 1s an open interval. 'rhen K is said to be extended totally 

positive of order n rn y - written ETP (y) - if for all 1,::. rn :,.,n 
n 

K(y,z) 
m 

8 , K(y,z) 
oy m 

> 0 

m-1 : a •-.- K(y z ) 
m-·1 ' m· ay 

for all YE. Y and z 1 < z2 < •• ,< zm, zi E. Z, 

If Y and Z are both open intervals and K(y,z) has continuous partial derivatives 

of order 2n-2, then K is said to be extended totally positive of order n in both 

variables - written ETP - if for all 1 < m < n 
n 

K(y,z) 

3 , K(y,z) 
oy • 

for all y E. Y and z is Z, 

82m-2' 
-m---,--m---1 K(y,z) 
3y 3z 

> 0 
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Total positivety of a function is often established by means of the following 

lemma (cf. [25]th.2.2.4 and th.2.2.6). 

Lemma 1.5.1 (s. KARLIN) 

If K(y,z) is E'TP, then K(y,z) is also E'TP (y). If K(y,z) is ETP (y), then K(y,z) 
n n n 

is also strictly TP. 
n 

In the particular case where n = 2 we have (cf. [25]th.4.1.5) 

Lemma 1.5.2 (S. KARLIN) 

Let K(y,z)>O {ye. Y, z e. Z, Y and Z are both intervals), and assume K to be 

twice differentiable. Then K is TP2 if and only if 

a2 
ayaz log K(y ,z ).::_o for all y e. Y , z e. Z . 

This lemma implies that a differentiable positive function f defined onll.1 is 

PF2 if and only if d2 log f(y)/dy2 .::_ O for ally. 

As an example of TP functions we mention 

K(y,z) d~f a(y)b(z) exp[a(y)S(z)] , 

where a(y)>O, b(z)>O and a(y) and S(z) are non-decreasing. K is strictly TP if a(y) 

and S(z) are strictly increasing. Hence the densities of one-parameter exponential 

families are TP, 

We note that the TP2 property of one-parameter densities p(x;e) is equivalent 

to monotone likelihood ratio (MLR) of p(x;e) in x. 

Leth denote a real function defined on Z. The number of sign changes S(h) 

of h is equal to n if for m=n a sequence z1 < z2 < .•• <z , z. e: Z, exists such 
. 1 • m J. 

that either (-1)J+ h(z.)>O (j=1,2, ••• ,m+1) or (-1)Jh(z.)>o (j=1,2, •.• ,m+1), 
J J 

but for m==n+1 such a sequence does not exist. In the first case we say that h 

changes sign in the order(+-+- .•. ) for increasing z, in the second case that h 

changes sign in the order(-+-+ ..• ) for increasing z. 

We now state the fundamental variation-diminishing property (cf,@5]th,5,3.1). 

Lemma 1,5,3 (S. KARLIN) 

Let K be TPn on yxz, let A be a a-finite measure on Z, and let g(y) be defined 

by the absolutely convergent integral 
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( 1.5,4) def f g(y) :::· K(y,z)h(z)d7'.(z) 

If S(h) .'.:.. n-1, then S(g) ~ S(h); if S(g) "' S(h), the functions h and g change 

sign in same order. 

The following stronger form of lemma 1 . 5. 3 is also important (cf. [25] th, 5. 3. 2) . 

Lemma 1.5.4 (S. KARLIN) 

Let K be n-1 times continuously differentiable with respect toy for all z ~: Z, 

where Y is an open interval, and let K be ETP (y) on YxZ. Let g(y) be defined by 
n 

(1.5,4) and assume that differentation of g may be performed n-1 times under 

the integral sign appearing in (1.5.4). If S(h) ~n-1, then g has at most S(h) 

zero's cow1ting multiplicities, unless h vanishes a.e. [1c] on Z. 

We shall also need a theorem due to B. EFRON [ 1 l+] • 

Lemma 1.5,2.!_ (B. EFRON) 

Let ~, •~•·,. •~ be independent ran~om variables with densities f 1 (x) ,f2 (x), .. 

.. ,fk(x) respectively, and let.§.= l x .. The measure A is assumed to be either 
. i~,-i . 

Lebesgue measure or count1.ng measure, and the funct1.ons f. are assumed to be 
l 

PF 2 . Let F be a real measurable fw1etion of k arguments that is non-decreasing 

in each of its arguments. Then the conditional expeet.ation 

is a non-decreasing function of s. 

1 • 6. MOST POWERFUL TESTS AGAINS'.1' SIMPLE AL'.I'ERNA'.I'IVES 

Let ii denote a test statistic for testing the hypothesis 8.=e? 
. . 0 . 1 1 

against the alternative Oi> 0i, 1=1,2, ... ,k, and let ::t;,1 ,~, ... ,1t: be inde-

pendent (k:'..-2). Suppose t.- has density p.(t. ;B.) with respect to a er-finite 
- -1. ·1 l l 

measure "i· defined on the Borel sets ofJR1 for all 0.e:[e?,oo), :i.=1,2, ..• ,k. 
l l 

We consider testing the simple hypothesis 

H: 8 = e0 = (e°i,,,.,8~) 

against the simple alternative 
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K': e = e• = (e 1 , ... ,ek), e•.~e0 

on the basis of 1 1 •:½, ... ,.ik. 

Let L. denote the logarithm of the likelihood ratio 
J. 

L. (t.) == log p. (t. ;8!) - log p. (t. ;e?) , 
J. J. J. J. J. J. J. J. 

then 1according to the NEYMAN-PEARSON lemma, the most powerful size-a test of 

H against K' rejects H if 

k 
( 1.6. 1) I 

i=1 
L.(t.)~c, 

J. -i 

where c depends on a(randomization may be necessary on the boundary of the 

critical region) • 

If the densities p.(t.;8.) constitute one-parameter exponential families 
J. J. J. 

Q. ( e. )t. 
(1.6.2) p.(t.;8.) = C.(8.) e 1 1 1 , i=1,2, •.• ,k, 

J. J. J. J. J. 

where Q. is an increasing function, the most powerful size-a test of H against 
J. 

K' rejects H if 

k 

I 
i=1 

(1.6.3} {Q.(e!) - Q.(e?)} t. > c. 
1 J. 1 J. -i-

Conversely, in the case of exponential family distributions any given linear 

combination procedure: reject H if 

k 

I 
i=1 

g. t. > C 
1-i -

(g. > O, i=1,2, ••• ,k) 
J. -

is most powerful against all alternatives 81 = (e1, ... ,ek) satisfying 

0 Q.(e!) - Q.(e.) = yg., 
1 1 J. 1 J. 

y > O, i=1,2, ••• ,k. 

Of course most powerful tests are only of practical value if the experi­

menter has more or less precise ideas about possible alternatives. But in that 

case a most powerful combination procedure should be used, because automatic 

application of some global combination method (e.g. FISHER's procedure) would 

involve a loss of power that may be considerable. 

It is therefore of some interest to consider combination problems and 

investigate against which alternatives well-known combination procedures are 

most powerful. The combination problems to be considered are: (i) the combination 



37 

of sign tests, (ii) the combination of tests in 2x2 tables and (iii) the combi­

nation of two-s8Jllple tests of WILCOXON. In a separate paragraph we pay some 

attention to FISHER's omnibus procedure (cf. section 1.2), since it is perhaps 

the best known combination method. The combination oft-tests :is discussed in 

chapter 3. 

( i) Consider k :independent binomial random variables §..1 •-½, ... ,; , where ~ 

is bin (p. ;n.) distributed (i=1,2, ... ,k), '.['he hYJ)othesis to be tested is 
l l 

against alternatives 

K : p.~ (a, ... ,j) 

This testing problem arises if k sign tests are to be combined. Put 

0. = p. /(1-p.) 
l. J. l 

then the distribution of ~ :i.s an exponential f8Jllily with respect to 8 i, 

where Q.(e.) "'log 0. (cf.(1.6.2)). Hence the most powerful combination procedure 
l. J. l 

for testing H against the simple alternative 

rejects for large values of the test stat:i.stie 

k 
l s. log 8! 

i=1 -:I. l 

One possible way of testing H against K is based on pooling of allko"bser­

vations ; H is then rejected for large values of the sum statistic §_ "' l !i· , 
io:::"J .l 

It is easily seen that 

(p1 , ... ,pk) satisfying 

beeause .§_ has a bin(~, 

readily available. 

this sum test is most powerful against alternatives 

p. "' 
1 

In. l 
• l. 
l 

p2 = ••• "'P{· Application of' this test is very simple, 

distribution under Hand critical values are thus 

If weights g. are introduced, i.e. if His rejected for large values of 
]. 

s 
--g 

(g. > 0 for i::e1,2, ... ,k) 
l -

this weighted sum test is most powerful against alternatives (p1, ... ,pk) 
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ygi 

p! /(1-p!) = e 
l l 
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,Y > 0 (i=1,2, ... ,k). 

To investigate this unwieldy relation more closely, we put 

(i=1,2, ... ,k) 

and obtain 

for + 0 • 

Hence for smalls. (i.e. for near alternatives) the test based on S will be 
l b 

approximately optimal against alternatives satisfying =yg. ( i=1 ,2, •.. ,k). 
l 

Critical values of fg may be obtained by direct computation (if the are very 

small and k is small) or by the normal approximation to S (if then. are not too 
-g l 

small or k is rather large). 

With the normal approximation in mind a test of H against K is often based 

on the sum of the standardized (under H) statistics . The resulting test is 
_l 

2 (i=1,2, ..• ,k). Hence the alternatives equivalent to a S -test with g1. = -g 
against which this test is most powerful heavily depend on the sample sizes ni. 

(ii) Consider k 2x2 tables, i=1,2, •.• ,k: 

Success Failure 'I'otal 

First series a. c. m. 
-i -i J. 

Second series b. d. 
7, -i 

Total r. s. m.+n. 
'-:L -i l l 

The conditional test for testing equality of the probabilities 
' 1 

and p. 2 of 
l, --

success in the first and second series against the alternative pi, 1 > Pi,2 
rejects for large values of a .. Putting 

-i 

( L6.6) 8. = p. ( l-p. 2)/{p. 2( 1-p. 1 )} ' 
l l,1 l, l, l, 

the conditional distribution of a. (given == r.) is an exponential family with 
-i ]_ 

respect to 0. , where Q. ( 0.) = log 0. (cf. ( 1. 6. 2)). Hence the optimal combination 
l l l l 

procedure for testing 
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against the simple alternative 

K' : 8 = 8'.?_ (1, ••. ,1) 

rejects H for large values of 

k 
I a. log e ! 

i=1 -:i. J. 

However, in terms of p. 1 and p. 2 the alternative K' seems rather hard to 
1, 1, 

interpret and it is therefore often preferred to test against alternatives like 

Fors.+ 0 we find 
J. 

( 1. 6.8) 

p! 1 - p' = c. > 0 
1, i,2 1 

log e ! = E • / { p ! 1 ( 1-p ! 1 ) } + C, ( / ) 
J. l l, l, l 

and thus log 8 ! depends on the unspecified value p; .1. But for large sample 
l l, 

sizes m. and n. and small e: . we may estimate p ! 1 from the marginal totals and 
J. l l 1, 

it turns out that if all m. and n. tend to infinity and s: . tends to zero as 
-1 l l • l 

fast as (m.+n.) , the conditional procedure that rejects H for large values of' 
J. J. 2 

k (m.+n.) 

I ~ / 
i=1 ii 

(1.6.9) 

is asymptotically optimal in thJs case. 

Similarly, the test that rejects H for small values of the test statistic 

( 1.6.10) 

1s approximately optimal against alternatives of the form 

P l /p'. =1+~. 1·-12 k i,1 1,2 ~1 , - ,-,···· 

for large sample sizes mi and ni and small e:i. 

Pooling of all data in a single 2x2 table leads to tl:Je test statistic 

1 a. conditional on l, 
i -:i. 

Ir.• l r .. If p 1 1 = p 1 = 
i -:i. i i ' 2 • 

- Pk, 2 , this test statistic has a hypergeometric distribution under Hand the 

related test is optimal. However, if the p. 1 and p. 2 do not have this property, 
l, l, 

the statistic has a complicated distribution both under H a.nd the alternative 

and hence pooling is not indicated in this case. 
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Conditional on for i=l,2, ... ,k the test based on the statistic l 
is of course optimal against alternatives satisfying e1 =82 = = '. 'l'he i 

test statistic proposed by COCHRAN [T ] is in fact eq_ui valent with l ; in his 
i frequently opinion situations where (p ! 1 - p ! 2 ) / { p ! 1 ( 1-p ! 1) } is constant 

1, 1, l, 1, 

occur in applications and the test based on la. is approximately optimal in this 
. -i 

case (cf. ( 1. 6. 8)). Weighted versions of thi~ test have been proposed by several 

authors for testing H against K. If the a. are standardized (under H, conditional 
-i 7 

on r. = r.) and added, the weights attached to each a. are g.=(m.+n. )(m.+n.-1) 2 • 
-:J. l1 -i l ll ll 

.(m.n.r.s.)- 1\ i=1,2,.",k. In C.L. RUMKE and C. VAJ'J EEDEN [42] the weights 
l 1 1 1 

g.=(m.+n.)/m.n. are advised. In both cases the alternatives against which these 
1 1 1 1 1 

weighted versions of the~~ test are optimal depend on the sample sizes in a 

rather intricate way. 1 

To determine critical values of all the above combination methods one has 

to rely on the asymptotic normality of the test statistics, unless the sample 

sizes are so small that exact computation is feasible. 

(iii) Consider k pairs of samples of independent observations ,1 ,2'"" 
, x. . and v. 1 , v. 2 , ... -i~m- -i, --i, 

distribution functions 

, i= 1 ,2, ... ,k, where . and v. . have continuous 
,n. ,J --i,J 

and1 G. respectively and G.(x) = F.( -6.). Let U. 
l 1 1 l -:J. 

denote the number of (x .. ,v . . , ) in the i-th sample with . < Y.· . , , 
-1 ,J --i ,J ,,l -.1 ,J 

, j'=1,2, ... ,ni.Then WILCOXON's two-sample test for testing•\= 0 

against > 0 rejects for large values of the statistic !J.i. The hypothesis 

to be tested in this case 1s 

against 

K: 6.> 0 

Since this 1s a nonparametric problem, only asymptotical results can be obtained. 

We suppose that m. and n. tend to infinity in such a way that m./n. tends to a 
l l l l 

positive finite limit and that the true value 6 ! of I!,. tends to zero. Putting 
:L l 

8 
l 

J F. ( X) dF. ( x. -/!,. ) , 
1 l 1 1. 

it can be shown (cf. [ 16] and [ 60] ) that the test that rejects H for large values 
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of the statistic 

k 

I 
i=1 

(1.6.11) . ., ) ( )-1 (8! -z m.+n.+1 U. 
J. l l -1 

i.s an asymptotically most powerfuJ. test of !! against near alternatives 

L\=1:1i (i=1,2,H.,k). In case e; = e2"' ... = 8~, the test statistic (1.6.11) 

reduces to 

-1 
(m.+n.+1) U .. 

l l -1 

This test was first proposed by VAN ELTEREN [16] who calls it the locally best 

W-test. He also put forward another test based on the statistic 

k 
(1.6.12) I 

i=1 

-1 
(m.n.) U. , 

1 l -1 

which is obviously also asymptotically most powerful against appropriate alter-

natives depending on the sample sizes. This combination procedure is also 

advised rn [42]. VAN ELTEREN proposed the test (1.6.12) because it is a designfree 

test, i.e. its consistency does not depend on the sample sizes. The designfree 

approach is motivated by the fact that it is desirable to reject H if the majority 

of the t:,i are positive and only a few are negative. However, this argument does 

not apply in the present context, since we have assumed the 6. to be nonnegative. 
1 

If the U. 
---i 

are standardized (under H) and added, the resulting linear 

comb:inaticm of the U. is 
-i 

t.ernatives 0' satisfying 

an asymptotically optimal test statistic against near al-
- 1 - ' ~ -~ -; ·- r, 8 '. - 2 - y ( m. +n. + 1 ) m. n. ( y > 0 , 1. - 1 , c , , , , ,k) 

l l l 1 l . 

Critical values of a linear combination procedure may again be determined 

by the normal approximation to the test statistic. 

In each of the examples (i), (ii) and (iii) it is seen that the linear 

combination obtained by adding the standardized :individual test statistics provides 

a test of H which :is (asymptotically) optimal against alternatives 8' depending 

strongly on the sample sizes, relatively large sample sizes corresponding to 

relatively small 8'., J\levertheless we shall find in the seauel that in the large 
l -

sample case these tests enjoy certain optimum properties among all linear com-

bination procedures if all possible alternatives are taken into account, 

In some applications the sampling design is such that the sample sizes n. 
1 

of the individual experiments are proportional to the respective population sizes 

N. ( i"' 1 ,2 p , , ,k L The combination problem is not essentially influenced by such a 
1 
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design. It may also happen that the hypotheses are formulated in terms of the 

N .. This occurs e.g. if the hypothesis IN.8.=0 is to be tested against the al-
l . l l 

ternative IN. >O. If thee. are known to be nonnegative, this problem reduces 
• l. l 

to the ori~inal one-sided combination problem of testing 8=0 against 8. > 0. 

If on the other hand the ei are not restricted to be nonnegative, we get an entire­

ly different testing problem outside the scope of this study. 

Finally we make a few remarks on FISHER's omnibus combination procedure. We 

assume that 11 ,.:½, ... ,1k are distributed. according to the exponential families 

( 1.6.2) and that the hypothesis H : 8 = e0 is to be tested against the alter­

native K: 8.> e0 . In this case FISHER's procedure rejects H for small values of 

the statistic 

k ·. 0 
11 [1-F.(t.;e.)] 

i=1 l -i l . 
( 1.6.13) 

where F.(.;e?) denotes the distribution function oft. if (i'-"1,2, ... ,k). It 
1 l -1 

is rather exceptional that the test statistic ( 1.6.13) is eq_uivalent to a linear 

function of 11 ,.:½, ... ,1k and hence FISHER' s procedure will in general not be most 

powerful against a simple alternative. Moreover, it seems to be unknown whether 

FISHER's test is admissible for all one-sided combination problems in exponential 

families. Since the tests with a.e. convex and monotone acceptance regions con­

stitute an essentially complete class (cf.section 1.l+), it would be a first 

prerequisite to show that FISHER' s test belongs to this class. '!'he monotonicity 

is evident, hut to the author's knowledge the convexity of the acceptance region 

has been established. only in special cases. 

Properties of FISHER's omnibus procedure have usually been studied starting 

from the one-sided tail probabilities p. = 1 - F.(t.;8.), i=1,2,.,.,k. It is then 
-l l -1 l 

assurned(in the absolutely continuous case) that the hypothesis 

H* is uniformly distributed on [o, 1] ,i=1 ,2, ... ,k 

is to be tested against the alternative 

K* : ~ has a non-decreasing density on LO, 1] , 

i==l,2, ... ,k. It has first "been shown by A. BIRNBAUM [ 4](cf.also T. LIPTAK [34]) 

that any test with a monotone acceptance region in (p 1 , ... ,pk)-space is most 

powerful against a simple alternative in K* . 'I'his is not surprising, because 

the class of alternative distributions defined by is a very large class indeed. 



Since FISHER's procedure has a monotone acceptance region in 

it is most powerful against a simple alternative in K*. In fact, it has already 

been shown in 1938 by E.S. PEARSON [36] that the omnibus test is most powerful 

against the alternative that each~ is distributed with density 1)(1-pi)m, 

-1 < m < 0. However, these results are only of a limited value since in most 

applications the class of alternative distributions will be much smaller than K*o 
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CHAPTER 2, NORMALLY DISTRIBUTED STATISTICS WITH KNOWN VARIANCES 

In this chapter, which is based on a joint paper [6Q] by W.R. VAN ZWET and 

the author, procedures for combining k normal random variables with known varian­

ces are discussed. 

In section 2.1 it is shown that many combination problems asymptotically 

reduce to this problem for large sample sizes. In section 2.2 some fundamental 

properties of admissible combination procedures are established and in section 

2.3 the most stringent (MS) test is constructed in a number of special cases. 

Some of the results are not only derived for the normal case, but more generally 

for one-parameter exponential families of distributions satisfying appropriate 

conditions. In section 2.4 it is shown that a class of tests exists, including 

the likelihood ratio (LR) test and FISHER's omnibus procedure, having uniformly 

vanishing shortcoming as the size a tends to zero. An asymptotic expression for 

the shortcoming of the LR test is derived and the asymptotic shortcoming of se­

veral combination methods is studied in some detail ( for c,;+O). Finally in section 

2,5 various combination procedures are compared numerically. It turns out that 

for moderate or small sizes the LR test and FISHER's procedure are rather satis­

factory if no prior information concerning the k means is available. However, 

when there 1.s some prior information indicating that the means of the normal 

distributions are not very much different, symmetric linear combination is more 

adequate. 

2.1. LARGE SAMPLE THEORY 

The combination problem to be investigated may be formulated in the follow­

ing way. For i=1,2, ... ,k let t., denote k independent 
-:i. n. 

on 
i . observations, for testing the hypothesis lL 0 

.1' 

natives 8. > 
i 

• We wish to test the combined hypothesis 

test statistics, ·based 
0 . l e. = e. against a ter-

i 1 



H* ; El "' BO 

against one-sided alternatives 

where 8 denotes the vector ( 8 1 , ... , ek) . 

For most combination problems UMP, UMP unbiased or UMP invariant tests of 

H* against K* do not exist. Lacking other satisfactory criteria, one may then try 

to find a minimax test with respect to some risk function, or any other test which 

closely resembles such a minimax test. Our interest will be concentrated on MS 

tests, because they are UJ1iquely determined, as opposed to maxi.min tests which 

depend. on the zone of indifference (cf.section L3). 

In most applications the power functions of the k individual test statistfos 

t. are sufficiently intractable to defeat any attempt to obtain satisfactory 
-i,n. 
combination procedures for testing H* against K·><- in the small sample case. 

However, the statistics t. are often asymptotically normally distributed for 
--i"ln. 

increasing sample sizes, ri~tionly under H. 0 but also for sequences of alternatives 
l, 

tending sufficiently rapid. to the null hypothesis as ni -+-00, Exploiting this pro-

perty we may try· to find combination methods which are at least asymptotically 

optimal in some sense. This is the classical approach to complicated testing 

problems which has first been applied by J. NEYMAN and E.J.G. PITMAN. In chapter 

4 -we shall briefly discuss a different asymptotic approach where the size a is 

a function of the sample sizes and tends to zero as ni ➔ 00 • But for the present 

we assume that the significance level a is fixed. 

Let the sample sizes ni be functions of an integer N such that lim n. (N) "'oo 
N""" l 

for i=1,2, ... ,k. Then -we may write t.. N instead oft. Our asymptotic approach 
-i, -i ,n. 

is based on the following result of P. BILLINGSLEY and lF. 'I'OPS(l)E [3 ] . 

Lemma 2. 1 . 1 ( P. BILLINGSLEY and F. TOPS(l)E) 

Let {FN}denote a sequence of 'distribution f\mctions defined on JRk(k_:_2)converging 

-weakly to a distribution function F(Le.F'N converges pointwise to F on the set of all 

continuity points of F). Let j d.enote a class of Borel sets A of JRk satisfying 

(2. L 1) lim sup P (U(ilA,E)) :::: O, 
E+Q Af.5 

-where Pis the probability measure induced by F and U(clA,s) is the E~neighborhood 
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of the boundary of A. 'rhen 

(2. 1.2) lim 
N-+oo 

uniformly for an A£ J . 

With the aid of this lemma we prove 

Theorem 2.1.1 

k 
Let {FN} denote a sequence of distribution functions defined on E (k~) conver-

ging weakly to an absolutely continuous distribution function F. Let .11. denote the 

class of all monotone Borel sets of Ek (cf.section 1.4). 

Then 

(2. 1.3) lim 
N-+co 

uniformly for all A€ Ji.. 

Proof: 
k 

Leto> 0 be arbitrary and let;\= 1' 1x.,,x;\k denote Lebesgue measure on JR Since 

F' is absolutely continuous, there exists E > 0 such that for any Borel set B cJil 

>.(B) < E implies P(B) < !o , 

where P denotes the probability measure induced by F. Perform a rotation of the 

coordinate axes ,x2 ,. ··•~ inIBk to new axes x; ', ... ,~ such that the new 

x; - axis coincides with the line x 1=x2= ... =~· Let D be the set,{x'l-d.::._x1_:_d, 
- k-1 -1 

i=1,2, ... ,k} and choose d so large that P(D)> 1-Jo. Let O<r: 1<d2k 2 (2d) } , 

let A be an arbitrary monotone set in ]Rk and U(3A,E 1 ) the E: 1-neighborhood of its 

boundary. It follows from the monotonicity of thf set A that any line parallel to 

the ;x1-axis has at most a segment of length 2E 1k 2 in aommon with U(aA,E 1). Hence 
d d 1 

1'(U(clA,E 1)nD) "'f ... f >. 1({x~lx's U(:JA,s 1 )f"'ID}) dx; ... d~ _:_ 2E 1k 2 (2d)k-l < E 

-d -d 

and therefore;by(.'. L4),P(U(8A,c 1 )1"1D) < io. Thus 

P(U(3A,c1)) _:_ P(U(aA,E_l)nD) +1-P(D) < 6. 

As o was and E: 1 does not depend on the particular set A e: Jt , it 
follows that 

lim 
E ,-;-Q 

supN P(U(aA,E,)) ""0 
At.. jif. 

and application of leillilla. 2, 1, 1 completes the proof of the theorem. 



Corollary 2.1.1 

Let A1 •½, ... ,Ak be independent and normally distributed random variables w:i.th 

means µ 1 ,µ 2 , ... ,µk and un:i.t variances. Let the seg_uence of random vectors 
(N) 

A "' (1c1 ,N, ••• ,.Kok ,N) for N -+oo converge in law to the distribution of A = 

(~1 , ••• ,Ak). Then 

(2. L 5) l:i.m P(~(A(N)) ~ c) = P(~(A) ~ c) 
N➔co 

uniformJ.y for all real c and all. functions ~ which are non-decreasing in the 

vector z (cf,section 1.4). 

Now assume that the independent test 

norm.al., Le. there exist positive numbers 

such that, if e. N are the true values of 
J., 

statistics t. J\I. are asymptotically 
-i, 

a. N and real-valued functionsµ. N 
1, 1, 

the parameters ei, 

(2. L6) (t. N - µ. N(e, Nll/ a. N 
--:1. :;i l, 1, J., 

i.=1,2, ••. ,k 

tend in la"1 to the standard normal distribution for N-+oo for any seg_uence 

{e. N} satisfying 
J., 

lim 8. N 
N+co l. • 

Given the statistics !_1 N, 1,--, N, .. , ,!.1 N we wish to test the hypothesis H 
~ C.' \., 

against alternatives 

8. 
l 

8. N 
J., 

satisfying the conditions 

(2.1:n 

(2.1.8) 

l:i.m 
N+co 

8. N 
1, 

lim {µ. N(B. N) - µ. N(e?)J /a. N -
N+co 1, i, i, i 1, 

for i=1,2,'".,k, withµ.> 0 at least once. 
1 

Define 

µ. (say) 
1 

> 0 

* 

Then obviously z. N is asymptotically N( 0, 1) under H"" and asymptotically N( µ. , 1) 
~. 1 . ... 

under the sequence of alternatives¾ . 
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Consider any monotone combination procedure of limiting size a, 

i.e. a procedure 

(2. 1.9) 

where~ is non-decreasing in its vector argument and 

lim OLN = lim 
N-- N--

Let ~,•½•••••~ be independent and let~ be N(µi,1), i=1,2, ••• ,k. 

Consider the hypothesis 

H: µ = (µ 1, .•• ,µk) = 0 

and the composite one-sided alternative 

K : µ ,> 0. 

Then according to corollary 2.1.1 • the limiting power for N--><x> of the monotone 

combination procedure (2.1.9) against~ is equal to the power of the monotone 

size-a procedure 

reject H if ~(~1 • ••• ,~) > c 

for testing H against the alternativeµ defined by {2.1.8). 

Suppose we adopt some optimality criterion based on the power of the 

combination procedure and find an optimal test of H against K. If this test 

is monotone, the procedure obtained by replacing x. by z. N is asymptotically 
. . ... . . ~ ~ .... 

optimal for testing H against all alternatives of the form~ among all 

monotone combination procedures of limiting size a for this problem. If the 

optimality criterion adopted is stringency, this conclusion remains true ... 
provided the most powerful tests of H against simple alternatives are also 

monotone. 

In the subsequent sections of this chapter the problem of testing H against 

K will be discussed. Optimal tests of H against Kare necessarily monotone since 

all other tests are inadmissible (lemma 1.4.6). Moreover, we have shown (theorem 

1.4.3) that monotone procedures of size a constitute an essentially complete class 
. .... ... 

for testing H against K whenever the densities of the individual test statistics 

t. N have strict MLR int. N' Hence the construction of an optimal test of H 
--i., 1, * * 
against K yields an asymptotically optimal test of H against K in this case. 
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Of course the monotonicity condition is unnecessarily restrictive and the 

limit relation (2.1.5), on which the preceding discussion was based, holds for 

a much larger class of test statistics i)!. Hence we may expect that our argument 

remains valid in many cases where the densities of the individual test statistics 

do not have strict MLR int. N' In the author's opinion the assertion of corollary 
1, 

2. 1. 1 will break down only in pathological situations, where the indi. vi dual sta-

tistics t. N are inadequate for testing H. 0 • Obviously, the combination of poor 
--i, l' 

tests will only give rise to poor combination procedures. 

We conclude this section with two simple examples. 

Example 2, 1. 1 

Let y_. 1,v. 2 , ... ,v. , :i."'1,2, ... ,k, be 
1 1 -i.., --i,n.-

k samples of independent normal 

N( v. ,o?) observations -ihth 
1 1 

unknown\). and a? . To test the hypothesis H. 0 :v.= 0 
1 1 1, 1 

against v. > O the optimal 
1 

(UMP unbiased and UMP invariant) size-a test is the 

STUDENT t-test 

reject H. 0 if t. 
1, ·,,n. 

l 

where 

1 

"' Y.· n ~ / 
1.. ]. 

and c is an appropriate critical value. 
a ,r1i 

> C a,n. 
]_ 

2 1 
~ "'n.-1 

1 

Let \J. 
1,ni 

denote the true value of v- (i=:1,2, ... ,k). Writing 
1 

n. 
1 

L 
j=1 

the first term of the right hand member is asymptotically N( O, 1) for 

second term converges in probability to 

µ. = lim 
1 n.-+«> 

1 

i =1,2, ... ,k, 

n. ➔co 
l 

and the 

provided the limit exists, Hence t. tends u1 law to the N( µ. , 1) distribution 
1 -:i. ,n. 1 

if V• ]_ ,n. 
has strict MLR 

is of order n~~(i=1,2, ... ,k~1 Moreover, the non-central t-distribution 
1 

int (cf. LEHMANN [31Jp.233). Therefore the asymptotic theory 

of this section can be applied to test the hypothesis n* : v"' (v 1, •.. ,vk) "'0 

against K~- v,> O. 
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If the variances o~ are known to be equal to some unknown o2 , 
l 

2 
.§_ :::: 

k 

2 
i=1 

2 k 
(n.-1)s. / 2 (n.-1) 

l "- j=1 J 

is the best estimator of o2 and it is intuitively appealing to base tests of H.,... , 
against K* on the statistics t.._.- = v. n?/s , i=1,2, ••• ,k. These statistics 

"""l.,n. '""l, l -

are not independent, but their jofnt distribution converges to the joint dis-

tribution of k independent N(µ. ,1) random variables under the same condition 
l 

as in the preceding case. Hence corollary 2.1.1 is again applicable. More d@tails 

are given in chapter 3, 

Example 2. 1 • 2 

Let s 1 , ~ , ••• , ~ denote the number of successes ink series of 
- ,n1 ,n2 ,nk 

Bernoulli trials. In the i-th series ni independent trials are performed, each 

with probability pi of succes, i=1,2, ••• ,k. We wisk to test the combined 

hypothesis H*: p 1=p2= ••• =pk=~ against K*: pi.:_~ for all i with strict inequality 

at least once. This problem arises if k sign tests are to be combined (cf.section 

1.6 (i)),The UMP test of H. 0 : p. =} against p. >~is of course the one-sided 
l, l l 

binomial test based on s. , or equivalently on 
-i,ni 

-~ = 2 n. 
l 

i=1,2, ..• ,k, 

If p. is the true value of p1. and 
i ,ni 

exists, i.e. if p. -1,n. 

1 

µ. = 2 lim (p. n -~) n~ 
l l, i l 

, i=1,2, ... ,k, 
n-r"" 

l 

~ is of order 
_1 

n. 2 , then it is again easily verified 
l 

to the N(µ.,1) distribution. As the distribution oft. that t. tends in 1iw 
-i,ni 

has strict MLR in 
l """l.,n. 

t. , optimal tests of H against Kin the normal case lead 1 
1,n. 

to asymptotically optifi'lal tests for this problem also. 

We note that in the exceptional case where n1 = n2 = ••• == nk = 1, 

an UMP invariant test of H* against K* exists, viz. the sign test applied to 

.§.1,1'~, 1 , ... ,~,l (cf. LEHMANN [31]p.219). 
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2.2 GENERAL PROPERTIES 

In the preceding section it was shown that for sample sizes tending to 

infinity many combination problems asymptotically reduce to the following testing 

problem. 

Let 2;1 ,~, ••• ,~ denote k independent random variables ( k.::_2) , where ~ has 

a normal N(JJ.,1) distribution, i=1,2,.,.,L '11he hypothesis 
1. 

is to be tested at level a against the one-sided alternative 

K : µ • .::_ 0. 

First let us assume that the alternativeµ is known. Application of (1.6.3) 

yields that the most powerful size-a test of H against the simple alternative 

JJ rejects H if 

k 

l 
i=1 

lJ .x. > u 
i-i - a 

k 

I 
i=1 

2 1 
lJ. ) 2 ' 

J. 

where u denotes the upper a-point of the standard normal distribution, The 
a 

power of the test against this alternative is easily seen to be equal to 

(2.2.2) 
k 8: ( lJ 1 , ••• , Ilk) "' 1 -(JJ ( u -( l 

a i=1 

where <J, denotes the standard normal distribution function. 

If the alternative is unknown and His tested against K, (2.2.2) denotes the 

size-a envelope power function. 

In our search for tests with uniformly good power properties for all 

alternatives in K we may as well restrict our attention to nonrandomized tests 

with monotone and convex acceptance regions (cf. section 1.4), since according 

to lemma 1.4.6 these tests constitute a minimal essentially complete class. 

We note that the monotonicity of the admissible procedures ensures that 

any admissible size-a test of H against K is also an admissible size-a test of 

the extended null hypothesis 

Hext : µ < O 

against K, Similarly, any optimal size-a test of H against K is also optima1 
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The class of admissible size-a tests is essentially larger than the class of 

all size-a Bayes tests, as is demonstrated by the following theorem. 

Theorem 2.2.1 

For any k > 2 let A denote the acceptance region of a size-a Bayes test of H 

against !C Then any line of support of A either meets clos(A) at exactly one 

point or it is contained in the boundary of A. 

Proof: 

Let G(µ) denote an arbitrary prior distribution function on the set 

{pl1.1=(1.1 1 , ... ,µk) .> O} • '.I'he size-a Bayes test of H against this prior distri­

but;;i.on rejects H if 

(2.2.3) f ... f 
0 0 

where 
k 

I 
i=1 

/) dG(µ) 
1 

and c is an appropriate constant. Let u = ( u 1 , ••• , ~) and v 

two points on the boundary of the acceptance region A, i.e. 

t(u) = t( 

C' 

be 

and let 

two cases. 

denote the measure induced by G* on the parameter space. We consider 

a) Suppose p*( 

z :::: p u + ( 1-p 

µ . ( u. -v. ) ::f O ) = 0 ~ Let z = 
1 l 1 

,- oo < p < oo. Then 

k 
t ( z ) "' I ... f exp [ I 

0 0 i=1 

k 
µ. v. +¢ I µ. 

J_ 1 i= 1 1 

Hence the line through u and v is also part of the boundary of A 
k 

b) Suppose . I µ. ( -v. );to )>0' and let 0 < p <. 1. Since 
1=1 

1 1 

in this case. 

for all real g and h with eq_uality if and only if g = h, we find that for any 

point z defined by z = ~u + (1-~)v 

t(z) < p t(u) + (1-p) t(v) c. 
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This implies that the line through u and v is not a line of support of A since 

any point z, between u and v is an interior point of A. Q.E.D. 

It would be of some interest to characterize the boundaries of acceptance 

regions of Bayes tests, but unfortunately simple explicit conditions seem 

difficult to obtain. 

1I'he validity of' theorem 2.2. is not restricted to the case where _:ii1 . , . •~ 

are normally distributed, but obviously holds for a large class of distributions 

including the absolutely continuous one-parameter exponential families. 

As a measure of the performance of an admissible size-a. test Ii we consider 

its shortcoming 

(2.2.~) ( µ) 

(cf. section 1.3), or equivalently., if A is the acceptance region of a, 
k 

- ( I 
i=1 

2) ~) µ. • 
l 

We shall sl:10w that, with some well-defined exceptions, the shortcoming of an 

admissible test has only one relative and absolute maximum on any half-line 

through the origin in the positive orthanL In fact this fundamental property 

holds for a much wider class of distributions and we shall therefore prove a 

more general theorem. 

Let 

(2.2.6) 

be independent with joint density 

k 8.x. 
P ( x; 0 ) "' IT C . ( 8 . ) h. ( x. )<ii l l 

i= 1 l l l l 

with respect to either Lebesgue measure or counting measure, where the sample 

space Xis the cartesian product of k intervals (in the absolutely continuous 

case) or the cartesian product of' k sets of subsequent integers ( in the discrete 

case), and p(x;B) > 0 for all x.: X and 8 "- Q • It is assumed that the set 

{ 0 J e > 0} is a subset of the interior of the natural :parameter space of the 

exponential (2.2.6). We consider testing the hypothesis 

one-sided alternatives 
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By a strongly increasing (decreasing) real-valued function of scalar argument 

we mean a function with a positive (negative) deriYative. 

'rheorem 2. 2. 2 

Let ~ 1,~,· •• ,~ (k.::_?) be distributed according to the exponential family (2.2.6) 

and let the assumptions mentioned above be satisfied. Let the functions 

11 1 ,h2 , ... ,hk be PF 2 (cf. section 1. 5). Let o ·be an admissible size-a test of the 

hypothesis H' against K'. For any fixed vector (c:; 1 poo,t;k) with nonnegative 

coordinates satisfying h~ = 1 we define 
l 

(2.2.7) 

'.l'hen, with the exceptions mentioned below, f has a unique relative maximum on 

(O, 00 ) that is also its absolute maximum. In fact, f decreases strongly away from 

this maximum on both sides, vanishes for p"' 0 and p + 00 , and has a negative 

second derivative at the maximum. 

The exceptions occur in the following two cases: 

(i) the test 6 rejects H'for large values of Is.x. , in which case f vanishes 
1-i 

identically :for all P >,_ 0; 

(ii) the test ,\ does not involve x. for those values of 1 for which z;. > 0, 1n 
-i 1 

which case f L-i cJtrongly increasing for all p > 0. 

We remark that tests of the hypoth(0 sis 0= 8 O against 8 ..:':. 0 O reduce to tests 

of' H' against K' if' new parameters 8 ! = 8. - 0? are introduced. If' the f'unctiom, 
. l Q 1 1 

h1. are PF'?, the functions h. (x.) exp(e.x.) arising with this transformation are 
~ 1 l l 1 

also PF2 . 

Proof' of' theorem 2.2.2 

It follows from lemma L 4. 2 and theorem L 4. 3 that the class of' tests with a. e. 

monotone and corNex acceptance regions 1s essentially complete (cf', section 1. 4 ), 

Hence it may be assumed that o -belongs to this class. Moreover, it may be 

assumed without loss of' generality that the critical f'u..riction o 1s non-decreasing 

111 x on X, including the boundary of the acceptance region A. This 1s a con­

sequence of the fact that, if' xO :::__ x' and cS(xO) > O, o(x') < 1, the power 

of' o can uniformly be improved upon because of' the strict MLR of p(x;e) in x. 

First we consider the exceptions to the theorem. In case (i) the test o 

is a most powerful (MP) size-a test of H' against the alternative (;:; 1p, ... ,,:;kp) 
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for every p > O. Hence f(p) = 0 on ( 0 , 00 ) ir1 case ( i). In all other cases we have 

f(p ) > O for all p > 0. In case (ii) the power of 6 against (; 1p , ... , i;kp ) does not 

depend on p and to prove the assertion for this case we have to show that the 

envelope power is strongly increasing in p .. The MP size-a test of H' against 

(;; 1p, •.• ,;;:kp) rejects H' for large values of the statistic 

k 
I z;.x .• 

i=1 1.--i 

s = 

The density of.§.. is again of exponential family type with para.meter Ill; let us 

write its density with respect to the appropriate measure 1s as 

(cf.(2.2.9))and let o.,,..(s) denote the critical function of the MP test. Then 

and, since o* is non-decreasing, exp(i"s) is E'rP(p) (cf.section 1.5) and (2.2.8) 

may be dif'f'erentiated with respect top under the integral, it follows from 

theorem 6.3.4(e) of S. KARLIN [25] that (2.2.8) is a strongly increasing 

function of P • 

Disregarding the exceptions (i) and (ii) for the remainder of the proof, 

we shall first establish that f(p) -+ O for P ➔oo. Let x*E X - clos (A). Since 

the exceptional case (ii) has been excluded and A is monotone and convex, there 

exists a supporting hyperplane 

k 

I 
i==1 

v.x. "'d 
1. 1. 

of A * separating x and clos(A) such that vi::_ 0 for i=1,2,.H,k and v . i;; • > O for 
J J 

some jc{1,2, ... ,k}. Writing z"" 'v.x. , we find for any p > 0 
- l l-:L " 

'rhe last inequality is motivated by the fact that v.x. is stochastically· increas­
r-i 

ing for increasing p for any i for which v. i;. > O. The positi vety of the functions 
1. 1. 

h. implies that b(d,p) > 0. Moreover, under the condition 
1. 

z;. p "' O for i # j , the 
l. 

distribution 

easily shown 

of ~ is an exponential family with parameter ;:; . p/v .• It is now 
J J 

that b( d, p) -+ 1 for p ·+= , implying 
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Hence f(p) + 0 for p+oo. In the discrete case it may happen that no point 

x*t X - clos(A) exists (although O<a<1)a In this situation O(x) = 0 for all 

x £ X with the exception of x = (x 1 , ... ,x ), where x. is the 
max ,max k ,max 1 ,max 

largest value that can be assumed by x. ( i==1,2,.,. ,k). But in this case 6 
-i 

is a MP test of H' against (1; 1p, ... ,i:;kp), i.e. we are in the exceptional case (i). 

Thus we have found that f'( 0) "' 0, f( p) > 0 for all p > 0 and f( r,) ➔ 0 for 

P ->«,. Without loss of generality we assume in the sequel that 1;. > 0 for i== 1 ,2, ... ,m 
1. 

and ,;; 1 = O for i=m+1,m+2, ... ,k (1.::..m.::..k). 

F'irst suppose m > 2. Introducing the random variables 

:I.7 "" 1; ,~1 ' ... ·~ ::: c;nAn ' ~+ 1 "' ~+ 1 ' •. ' •~, "' ~ ' 

m 

and putting 

.s..=I~, 
i=1 

y(p ) 
m 
TI 

i=1 
c.(i:;.p), 

l l 

1/"(y.) = h.(y./1:.) , i=1,2, ... ,m, 
l l l l l 

;y:,1 ,;y_2 , ••. ,:'.4: have the joint density 

m 
y ( p) exp (p l 

i=1 

lll 

y.) TI h~(y.) 
J. i= 1 l l 

k 
TI 

i=m+1 
h. (y.) 

l l 

with respect to a product measure ;i. 1x ••• x;\k' and§. has the density 

m m 
y(p)eps J ... J h*1(s- I y.) II h°':"(y.) d>. 2 (y2 ) ... d;\ (y) 

i==2 l i=2 l l m m 

==y ( p ) eP s g ( s ) , say, 
m 

;,rith respect to a measure ;\,The critical function 6 in x-space transforms into a 

critical function 6 in y-space which remains non-decreasing. The MP size-a test 

of H' against all alternatives of the form (i:; 1p , ... ,r;kp), 0<p< 00 , rejects H' 

for large values of .§_; let us again denote its critical function by a""'. We have 



f ( p) = f6*(s)Y(P) e PB g (s) dA(s) + 
m 

m 
- f .. f6(y 1 , ••• yk)y(p) exp (P_l 

i=1 

= f 6 .,,,.( s )y ( p ) e P s g ( s ) d:\ ( s ) + 
m 
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y.) 
l 

k 

m 
TI 

i=1 
* h. (y.) 
l l 

k 
11 hi ( y i) d:\ 1 ( y 1 ) • • • d;\ ( y k) 

i=m+1 

m 
11 h':(y.). 

l J_ 
i=2 

TI hi(yi)d:\(s) d\2 (y2 ) ... d\k(yk) 
i=m+1 

(2.2, 10) 
g (s 

m 

h~(y.) 
l l 

k 
TI 

i=m+1 
h. (y.). 

l l 

where G is the measurable set {slg (s)> O} . The second term between the brackets 
m 

in (2.2.10) is easily recognized as a version of the conditional expectation of 

(2.2.11) 

m 
given _ l Lj_ = s. Since ( 2. 2. 11) is non-decreasing in y 1 ,~, ••• •~, application 

of EF'RON Is theorem ( lemma 1. 5. 5) yields that this conditional expectation is a non­

decreasing function of s. Moreover, it is bounded below by O and above by 1. 

Denoting the expression between brackets in ( 2. 2. 10) by H ( s) , it follows that 
m 

for any positive constant a the function 

H (s) - a 
I!) 

changes sign at most twice on G furthermore if it does have two changes of 

sign, the signs occur in the order(-,+,-) for increasings, 

So far we have assumed m > 2. If m == 1 we simply have~= x_1 and we obtain 

in a similar fashion 

.y(p) eps g 1(s) d:\(s), 

where g1 ( s) h7( s). Denoting the form between brackets by H1 ( s), it is obvious 



that the conclusion previously drawn for H (s)-a in case m > 2 also holds for 
m 

m == 1. 

Since any 8 > 0 is an interior point of the natural parameter space of (2.2.6), 

f is certainly twice continuously differentiable and the differentiation may be 

carried out under the integral. Furthermore f cannot be identically equal to a 

constant since f(O)= 0 and f(p) > 0 for p > O, and y(p) g (s) exp(ps) is ETP(p). 
m 

These conditions being satisfied, it follows from lemma 1.5.4 that for any a> 0 

the function 

(2.2.12) 

has at most two zeros counting multiplicities. As f(p) > 0 for p > 0 and f(p) 

tends to zero for p + O and p + 00 , the function f has a unique relative maximum 

on (0,00 ) which is also its absolute maximum. A vanishing derivative off at 

some point O < p0< 00 other than the point where the maximum is reached would 

produce at least one double and one single zero of the function f(p) - f(p 0 ). 

Choosing for a the maximum value of f(p), a vanishing second derivative at the 

maximum would produce a triple zero of f(p)-a. Hence neither of these situations 

can occur, and all the assertions of the theorem are proved. Q.E.D. 

The conditions of theorem 2.2.2 are certainly satisfied if ~,•½•···•lSit 
have normal distributions with unit variances and the hypothesis His tested 

against K, since h.(x.) == exp(-~x~) in this case and this function is PF. A simpler 
l l l 

proof for this particular case was given in [60]. 

The crucial condition of the theorem that hi is PF2 is satisfied by many 

exponential families occuring in well-knowm combination problems, as is demon­

strated by the following examples. 

Example 2.2.1 

The combination of k sign tests. In this case the random variables .2S.,•½•·•·•~ 
have binomial distributions 

8. -n. n. 8 .x. 
P(x.=x.) :::: ( 1+e l) l ( l) e l l i=1,2, .•• ,k, 

-:L l x. 
l n. 

where e. :::: log (p./(1-p.)), and to prove that ( l) is PF2 we have to show that 
l l l x. 

l 
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for all integers O 2_ x 1 < x2 2_ ni and O 2_ y 1 < y 2 2_ ni. Putting x 1 - y 1 "' a, 

x2 - y 2 = b and x2 - x 1 "' r, where r > 0 and b - a < r, we find 

a+t .•. a+1::_ 
b-r+1 b 

n.-b+1 n.-b+r 
l ... _l __ _ 

n.-a+r+1 n.-a 
> 1, 

l l 

proving the desired inequality. Hence the theorem holds in this case if the 

hypothesis p = (p 1 ,,eo,pk) = 0,,,.,~) is tested against P•.:'... 0,.,.,;). 

Example 2.2.2 

The combination of k 2x2 tables : 

Success Failure Total 

First series 

Second. series d.. 
"7. 

m. 
l 

n. 
]. 

'l'otal r. 
-i 

8. 
-i 

m.+n. 
l l 

The optimal conditional test for testing equality of the probabilities p. 1 and 
l, 

p. 2 of success in the first and second series respectively against the alter­
i,_ 

native p_. 1 > p. 2 rejects for large values of a . . Defining 
.1, l:> -i 

e. ""log { p. 1 (1-p_. 2 )/(p. 2 (1-p_. 1 ))} 
l 1 1 ~, 1 1 1 1 

the conditional distribution of a. given r. = r. ands.= 
"7. ··-i l -i 

m. n. 
P(a.=a.le.,r.,s.)=( 1 )( 1 ) 

-:J.. l l l l a. r. -s.. 
1. 1 l m. n. 

S. lS 
l 

e eiai/ ~ 
J 

and. we have to show that (/) (r.~a.) is PF2 (as a function of s.iL Since the 

product of two PF2 f'unctions 1 is a~aifi PF2 , it is sufficient to prove that both 

factors are PF2 and this follows as in example 2.2.1. 

Hence theorem 2.2.2 also applies in this case. 

Example 2.2.3 

Let 2i:i ,~2 , ... •-1\ be gamma distributed with densities 

(2.2.13) e 

-s .x. 
l l (x. > o) 

J. 
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where y. is the shape parameter and. S. the scale parameter. Suppose we wish to 
1 0 . 10 . 

test S==(s 1 , ... ,Sk) = S against B ::_. B, assuming Y.1 ,y2 , ... ,yk to be known. 

Writing 8. = B. 0 - B., the density (2.2.13) transforms to the canonical form 
1 1, J. 

(2.2.6) with 

h. (x.) 
1 1 

i=1,2, ..• ,k. 

Since a.2 log h.(x.)/d.x~ :::: -(y.-1)x:-2 is nonpositive for y . .:_ 1, h.(x.) is PF2 1 1 i i i 1 - i i 
for y. > 1 (cf. lemma 1.5,2). Hence theorem 2.2.2 holds for this testing problem, 

i -· 

:provided y i .:_ ·1 ( i=1,2, •.. ,k). 

We have thus tihown that for a large class of combination problems the short­

coming of an admissible test has only one maximum on any half-line through the 

origin in the positive orthant, Returning now to the case of normal random varia­

bles, we present a lelllllla stating that the maxima of the shortcoming along these 

half-lines cannot be reached for alternatives close to the origin if a is small. 

Lelllllla 2.2. 1 

Let k. i:_ 2 and let in the normal case o be any admissi'ble size-a test of H against 

K (0 <a< 1). Then the shortcoming f(p) of o along any half-line in the positive 

orthant defined by ( 2. 2. 7) reaches its unique maximum for some p > u , if f'( p) 
Ci. 

has a maximum at all. 

Proof': 

We consider the shortcoming of' Ii along the half-line µ 1 '" 1: 1P, JJ 2 =i;; 2p,,, • µk =1;1/, 

( . ) ,· 2 . P > O, where 1;. > 0 J.=1,2, ... ,k. and l i;;. = 1. ConsJ_der an orthogonal transfor-
i - i k 

mation in lRk, carrying _!; 1 ,~, •. , ,~ into ;y:_1 •½, . .. ,~ , where ;y:_1 "'. l t;i-~-i, Then 
. . . J.=1 . 

;z.1 ,X-2, ... ,X.k. are independent and, if E_!.("i == l\ = t;ip for 1= 1 ,2,,.. ,.K, then ;y:1 is 

N(p,1) and Lj_ is N(0,1) for i=2,3, ... ,k. Let A denote the acceptance region of 15 

in x-space and let B be its map into y-space. Consider two points (y 1 ,y 2 , ... ,yk) 

and (y1,y2 , ... ,yk) with y 1 < y 1 , in y-space, corresponding to points (x1 ,x2 , ... ,~) 

and (x;,x2, ... ,-\:) respectively in x-space, If (y 1 ,y2 , ... ,yk)e: B then (x1,x200 .. ,~) 

E A and inverting the transformation we find 

x. - x! "'i;;.(y 1 - y'1 ) > O. 
]_ J. ]. 

Hence by lelllllla 1J1.6 (x1,x2, ... ,~)E.A, implying (yj,y2 , ..• ,yk)E-B. Therefore we 

can write Bin the form 
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Thus , if ¢ denotes the standard normal density, 
k 

f(p) = f .. f 4i(b(y0 , ••• yk) - p)IT q,(y.) dy2 ... dyk 
C. i=2 1 

and hence, differentiating with respect top, 

k 
f' ( p ) "' f .. f [ q, ( u a - p ) - q, ( b ( y 2 , ... ,Y k) -p ) ] TI 

i=2 

-<Ji(u-P), 
a 

it, (y. )dy,, ... dyk. 
1 C. 

It follows that f' (u ) > O, since ¢(0)> ¢ (z) for all z ¥ 0. The assertion of 
a 

the lemma is now an immediate consequence of theorem 2.2.2. 

If k "' 2, 1. e. if only two random variables _]£1 and ½ are involved, a. stronger 

theorem can be obtained. First we introduce some notation, Let p and n denote polar 

coordinates :rn (µ 1 ,µ 2 )-space, Le. 

By lemma 1. 4. 6 we may assume that an admissible combination procedure for testing 

H against K (:for k=2) has an acceptance region of the form [(x1 ,x2 )1 x2 < a(x 1)}, 

where a is a non-increasing concave function on the interval where a(x 1 )> 

(as a boundary case we have a(x 1) = + 00 or - 00 for x 1 < ua and x 1 > ua respectively). 

Theorem 2.2.3 

If k = 2, the shortcoming of any admissible combination procedure for testing 

H against K has a finite number of absolute maxima. 

Proof: 

We start by assuming that the procedure involves both 15.1 and½ and is not linear. ,.,. 
Let R0 denote the shortcoming of' the test 6 as a function of p and n , 

(2.2.14) R; (p,n) = P(½ < a(_J£1)1 p,n) - <Ji(ua - p) 

= J cii(a(x1hl sin n)q,(x1 -p cos nl dx 1 - 0(ua - p) 

(cf.(2.2,5)),where <j, denotes the standard normal density. Since q, and 4 are 

analytic functions, R; is analytic in p and in n for p :':. O and O .::__ n ..'.:. ~ n , 

cf. [52] . (Here analyticity of a real-valued function of a real variable on an 

interval may be tal<::en to mean that the function can be expanded in a power series 
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converging on that interval). By theorem 2.2.2 there exists a unique value 

p(n) for each O ::_ n ::_ ~TT such that 

(2.2.15) 

and 

(2.2.16) 

Application of the implicit function theorem yields that p ( n) 1.s analytic for 

0 ::_ n ::_ ~TT and hence so is g(n) = R; (p(n),n). 

'.I'heorem 2. 2. 2 asserts that the absolute maxima of lie on the curve P"'P ( n). 

* If R6 and hence g would have an infinite number of absolute maxima, g(n) 

would assume the same value infinitely often and hence would be eq_ual to a 

constant on [o,~rr] because of its analyticity. However, this is impossible since 
0<·· 

R0 has a local maximum at the boundary point n=O, p=p ( 0), because of' ( 2. 2. 15) , 

( 2 • 2 • ·1 6 ) and 

(2.2.17) 
a 

an ( p , n ) I = -pf <P ( a ( ) ) <P ( -p ) 

1n=O 
< o. 

It remains to consider the two exceptions of' theorem 2.2.2. If the procedure 

o depends on both E 1 and½ but is linear, i.e. rejects H if v1~tv2½ > d for 

positive v 1 and , then the assertion of' theorem 2.2.2 continues to hold for 

every half-line p ::_ o, n = n0 with O ::_ n0 ::. ;rr n0 ¥ 11 1 , where tn n1 == 

Hence in this case we have analyticity of p(n) and g(n) on both [o,n 1) and 

( n .1, ~TT J . By partial integration we find 

(2.2.18) 
3n ( P 'n ) I n= ~ ir = -pf ,Ji( a ( x 1 )-p ) <P ' ( x 1 ) dx 1 

= -pf <j, ( a ( )-p ) <j, ( x I ) a' ( x ·1 > 0, 

since a' (x1) = - v /v < O in this case. It now foJ.lows from (2.2.15) through 
1 2 * 

(2.2.18) by a similar argument that R0 can only have a finite number of 

absolute maxima. 

Finally, if the test 6 does not depend on both ~ 1 and ½, e.g. rejects H 

if' lf,1 > , then R cl ( i1 1 , µ) is a strongly increasing function of µ 2 for each 

value of' µ 1 and hence R0 does not possess any absolute maxima at alL Q.E,D. 
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It is unknown whether the assertion of theorem 2.2.3 continues to hold 

for k > 2. Generalization of the theorem to one-parameter exponential families 

under the conditions of theorem 2.2.2 is not immediate, even if the functions 

h. in (2.2.6) are analytic, since the relations (2.2. 17) and (2.2.18) are not 
l 

automatically satisfied and are not so easily replaced by other relations 

ensuring that the function R;(p,17) is not constant on the curve p "'p(17). 

2. 3. THE MOST STRINGENT TES'r 

As a UMP test a UMP unbiased or UMP invariant test for testing H against 

K (cf.section 2.2) do not exist, we shall try to determine the most stringent 

(MS) size-a test for this problem with the aid of a least favorable (LF) prior 

distribution. A test that is invariant under permutations of 

be called symmetric. 

Lemma 2.3.1 

For any size O <a< 1 an essentially unique MS test of H against Kand a LF 

prior distribution exists. The MS test is symmetric. 

]:'.r....9of: 

As the permutation group of k elements is finite, the existence of a symmetric 

MS size-(1 test follows from lemma 1. 3, 1. This procedure is o.f course also MS 

relative to the class J (a) of admissible symmetric size-a procedures. For 

each test in J(a) the point ( ) ( ) ( ) ( -N ) 1 /k , x = x 1 , ••• ,¾ = b, •.. ,b , where~ b = 1 ~ 

must lie either outside its acceptance region A or on the boundary of A. For 

otherwise, by lemma .4.6, A would contain the set {xj < b+ s, i=1,2 ... ,k} 

for some s > 0 and the size of the test would be smaller than c,,. Also the 

symmetry of A together with lemma 1.tr.6 guarantees that A has a supporting 

hyperplane zxi "'d (d 5__ kb) and hence that for every test in J(a) the acceptance 

region A is ~ontained in the set {xi Z < kb} • 'fherefore we have for every 

test 6 in j (a) i 

k. 
Ro(µ) < P( I 

i=1 
< kb I µ ) - w(u 

a 

1 k. 
"' <P(k- 2 (kb - l 

i=c 1 
) ) - ¢(u 

a 

k 
- ( I 

i=1 
k. 

- ( I 
i=1 

2);) 
µ. ' 

l 
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which tends to zero whenever and µ ~ O. 
J_ 

Let R+ denote the size-a minimax shortcoming (cf.section 1.3 ), Since 
a 

R+ > O, it follows from (2.3.1) that there exists a positive number q_ such 
a 

that for every test o e: j (a) 

for 

Hence for every 6 E j (a) the shortcoming assumes its absolute maxima ( which 

are> R+) only on the set 
- Ct 

k 2 
n ~ {µ I l µ . .::._ q_' µ:... o} 

q_ i::a1 l 

Now consider the problem of testing H against the alternative that µI!:~ , i1 ,;, O. 
q 

Obviously the MS test for the original problem ( which is a member of J (a)) is al.-

so MS for this new problem. However, as the parameter space of' the new problem 

is compact, there exists a LF prior distribution(; for this new problem 

(cf. section 1.3). Hence the MS test considered must be Bayes with respect to I; 

and I; is thus also LF for the original problem. 

As every MS size-a test is Bayes relative to i;, the essential uniqueness 

of the MS test follows from the fact that the family of normal distributions 

with unit variance is boundedly complete, implying that any Bayes test is 

essentially unique. 

'.J:'his lemma can also be generalized. to exponential families, Let _!1 •½, ... •~ 
have the joint density 

(2.3.2) p(x;O) "' 
k 
n 

j_"' 1 
C (O.)h(x.) e 

1 l. 

0 .x. 
l 1 

, 8 .::.. 0, 

with respect to either Lebesgue measure or counting measure; note that the mar­

ginal distributions of _:i::_1 ,~, ... ,~ are of the same type. Then lemma 2. 3. 1 also 

holds true for testing the hypothesis H' against K' (cf. section 2.2L The 

proof remains literally the same (replacing iii by ei) with the exception of the 

inequality (2.3.1) and its derivation. However, by the same line of' argument 

that we used previously in the proof of theorem 2.2.2 it can be shown that the 

shortcoming of the symmetric MS test tends uniformly to zero for l 8~ -= and 
]. 

0 > o. 



We reti.ll'n again to the combination of normal random variables. As a LF 

prior distribution assigns probability one to the set of points for which the 

shortcoming of the MS test assumes its absolute maximum, we have the following 

corollary to theorem 2.2.3. 

Corollary 2. 3. 1 

Fork= 2 and any O <a< 1 a LF prior distribution for the problem of testing 

H against K assigns probability one to a finite point set. 

W. SCRAAFSMA ( [46] p. 538) conjectured that corollary 2. 3. 1 also holds for 

general k, 

Now let us, for a moment, restrict the alternatives to the set 

k 
(2.3.3) n = 

restr 
U { µ [ µ . > 0 , µ. = 0 for all i "f j } 
j=1 J i 

and consider tests of H against the restricted alternative 

It is easily verified that lemma 2.3. 1 also holds for testing H against the 
'v 

alternative K. For this problem we have the following resu..lt. 

Theorem 2 . 3. 1 

For each O <a< 1 there exists a uniq_ue size-a combination procedure 6 that 
a 

rejects H if 

k 
l exp [r(a) _:x--:i] > c(a) 

i=1 

and for which the shortcoming R assumes its absolute maxima on the set n 
. (1) (2) oa(k) restr 

at the k points µ , µ , •• , •• , µ of the form 

i=1,2, .•. ,k. 

This test is the essentially uniq_ue MS test for testing H against K at level a .• 

If', f'or a certain a, R (r(a) ,O,". ,O) is also the maximum value of R oa 6a 
on the entire parameter space {µI µ .:::_ O} , then this test is also MS f'or testing 

H against K. 

Proof': 

By the analogue of lemma 2,3.1 there exists an essentially uniq_ue MS test for 
'\, 

testing H against Kat level a, which is symmetric and Bayes with respect to 
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a LF prior distribution concentrated on rt t Since this procedure is admis-
res r 

sible for the original problem and depends on all variables~,,~•···•~ be-

cause of its sy=etry, its shortcoming has exactly one maximum on each of the 

half-lines of rt res tr by theorem 2. 2. 2. The sy=etry of the test implies that 

the chortcoming is symmetric about the line µ 1 = µ0 - - µk and hence it 

assumes the same maximum value on the k half-lines '-of n t at the points µ ~ i J,,., r 
(i) res r · i 

(say),µ. = 0 for j :p i, i=1 ,2, •.• ,k. It follows that the LF prior distribution 
J 

concentrates on those k points; denote the LF' prior probabilities by p 1 ,p2 , •.. ,pk 

( 'i'p. = 1). Application of the NEYMAN-PEARSON lemma yields that the MS test for l l 

the restricted problem rejects H if 

k 

I 
i=1 

'.rhe sy=etry of the critical region of' the MS test now implies that p 1 = p = 
'I, 2 

==pk= 1/k. Hence the test (2.3.4) is a MS size-a test of H against Kif 

its size is a and the maxima of its shortcoming on rtrestr are reached at the k 

points defined by (2.3,5), Since MS size-a tests are essentially m1ique, the 

test (2.3.4) satisfying these requirements is unique. The second part of the 

theorem is obvious. 

In the sequel we shall 
k 

I 
i= 1 

call tests that reject H if 
rx, 

e -"'.l. > C 

exponential combination procedures with parameters rand c. 

Theorem 2,3,1 also holds if the random variables 
~1 '~' •• ' ·~ 

buted according to the exponential family of densities (2. 3.2) and 

are 

the 

H' is to be tested against the 
•;,, 

alternative K' (or its restriction K' ) , 

the conditions of theorem 2.2.2 are satisfied. 

distri-

hypothesis 

provided 

We now turn to the question whether exponential combination procedures 

are MS for testing H against K, :for appropriate values of rand c. At this 

point the usefulness of theorem 2.3.1 depends heavily on our ability to verify 

the condition in the last part of theorem 2.3.1 for a given value of a. SCHAAFSMA 

tried to solve this question by computing the maximum shortcoming of the test 

(2.3.4) on a large number of half-lines in the positive orthant and comparing 

these with R0 (r(a), 0, ... ,0), which is rather crunbersome and, from a theoreti-
a 

cal point of view, unsatisfactory. If the combination problem involves only two 
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random variables (Le. k=2) a more satisfactory solution is possible. For more 

than two variables the problem is still theoretically unsolved and we only 

present a conjecture. 

We introduce some more notation, Let A denote the (nonrandomized) acceptance 

region of an admissible symmetric test of H against K. 'I'hen we may write 

(2.3.6) 

where the function a is symmetric in its k-1 arguments and is non-increasing 

and concave in each of its arguments by lemma 1.~ .. 6. We make the assumption that 

a has continuous first order partial derivatives on the interval where a is finite. 

Then there exists a function x0 ( x3 , . .. •¾) such that 

fork= 2 this function reduces to a constant x0 . 

'I'he symmetry of A also implies that 

(2.3.8) 

Define 

_3_ 
ax2 

""x2 + a(x2 , ... ,¾). c1!
2 

a(x2 , ... ,xk). 

Then the following two lemmata will prove helpful. 

Lemma 2.3.2 

Let k > 2 , let 6 be an admissible symmetric test of H against K and let the 

function g be defined by (2.3.9). If g is nonpositive on the interval 

- 00 < x2 < x0 (x 3, ... ,¾) for all x3 , ... ,~ for which g is defined, the maximum 

shortcoming of the test o can only be assumed on the set rirestr" 

_PrC29.f: 

Let µ 3 , .. , , µk be fixed and let p , n denote polar coordinates in ( µ 1 , µ 2 )-space : 

µ 1 "'P cos n ,µ 2 "'P sin n, p > O, 0 .::.. n.::.. ~1T• Let R; denote the shortcoming of 

the test 6 as a function of p ,n, µ 3 ,, .. ,µk. We shall study the behavior of R; 

for fixed p > 0 (and fixed p3 , ... ,µk) as a function of 11 . Since the shortcoming 

is symmetric about 11 = 11 /4, we restrict attention to the interval O .::.. 11 < 11 /lr. 
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We have 

2 k 2 1 
-<l>(u -(p + I µ_)2) 

a i=3 1 

k 
cos n)¢(x2 - p sin n) IT ¢ (x. -µ.) dx2 ••• dx + 

i=3 i J. k 

and hence 

= P f .. f {sin n.¢(a(x2 , ... ,~) - p cos n )¢(x2 -p sin n) - cos n, 

k 
<l>(a(x2 , ... ,~) - p cos n)¢'(x2 - p sin n}} IT¢ (xi - µi)dx2 ... d~ 

i=3 

= P f .. f {sin n + a!2 a(x2 , ... ,~) cos n} ¢(a(x2 , ... ,~) - p cos n). 

k 
.¢ (x2 -p sin n) IT¢ (x. - µ.} dx2 ... ~ 

i==3 1 J. 

1 2 
= pe-2P 

211 

e 

f .. f { 
Ph2sinn+a(x2 ,.,. ,~)cosn} 

a(x2 , • ., ,~) cos n}e • 

-i 



by repeated partial integration with respect to x2 . By the substitutions 

x2 = a(x2,x3 , ... ,Y)) and x2 = a(x2 , .. ,.i,,.) and relation (2.3.8) we :may change 

the integral over the region - 00 < x < 00 into an integral over the region 
2 

< x2 < x0 (x3 , ... ,~) and obtain 

(2.3.10) 

where 

f ( x2 , ... , .i,t; P , Tl ) "' 

p{x2 sin n+ a(x2 , ... ,¾_)cos n} p{x2 cos n+ a(x2 , ... ,~) sin n} 
e -e 

Since a(x2 , ... ¾_) > x2 for x2 < x0 (x3 '" .. ,¾_) and cos ,1 > srn n for O ::_ n < n/4, 

we find 

0 

on the region of integration. As by assmnption g( x2 , ... ,x, .. ) < 0 on the region 
" 2 ') 

of integration and g cannot "be identically zero a.e. because x2 + a.'-(x2 , .•. '"k) 
a *. 4 

- 00 , it follows that -811 Ri5 1 s negative on O ::_ n < TI/ 
symmetric a.bout n = ·rr /4, it can only have absolute 

tends to infinity for x2➔ . ~. 
for all p > O. Since R6 1s 

maxima for Tl"' 0 and Tl"' ~11 

As the test 6 is symmetric, its shortcoming is also synnnetric 1.n ~1 1 , \.1 2 , .•. , \lk, 

implying more generally that if the shortcoming of o reaches a maximum for a 

certain µ=( µ 1, ... , pk), at least one of any pair of its coordinates is zero. There­

fore a maximmn of R6ca.n only be reached for parameter points µ with k-·1 coordi-

nates equal to zero, Le. for \l E: ::-lrestr' Q.E.D. 
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Lemma 2.3.3 

Let k = 2 and let 6 be an admissible symmetric test of H against K. If the 

function g(x2 ) defined by (2.3.9) changes sign exactly once in the order 

(-,+) for increasing x2 on the interval (-00 0 x0 ), then the maximum shortcoming 

of o can attain its absolute maxima only on the three half-lines µ1=o,µ 2 > O; 

µ2 = 0,µ 1 > 0 and µ1 = µ2 > o. 
Proof: 

We start again from (2.3.10), which in this case reduces to 

(2.3.11) 

where 

P {x2 sin n + a(x2 ) cos n} 
f ( x2 ; p , n ) "' e 

p{x2 cos n + a(x2 ) sin n} 
- e 

In the proof of the preceding lemma it was seen that f(x2 ;p,n) > O for 

- 00 < x2 < x0 and O.:. n < n/4, p > O. Consider the determinant 

D == 

= e 
p(a(x2 )+x2 )(cos n + sin n 

2p(a(x2 )cos n + x2 sin n 
+ e 

2p(a(x2 )sin n + x2 cos n 
+ e 

a 
anf(x2;p,n) 

"' a2 
ax an f(x2;p,n) 

2 

2 2 
.{ p (cos n sin2n)(a(x2 )-x2 )(a'(x2 )-1) + 

- p(cos n - sinn)(a'(x2 )+1)} + 

.{-p a'(x2 ) sin n + p cos n} + 

.{p a'(x2 ) cos n - p sin n}. 

Let us denote the sum of the last two terms in this expression by D.,.. and consider 

the inequality 

uey - ve-Y > (u - v) + (u + v)y, 

holding for u _::. v, u + v > 0 and y > 0. Application of this inequality yields 



* D 

Tl 

p(a(x2 ) + x2 )(cos n + sin n) 
:::: e .{p (-a'(x,.,)sin n + cos nL 

c:. 

p(a(x2 )+x2 )(cos n + sin n) 
> e 

since a' (x0 ) = -1 because of the symmetry of' a and hence -1 ::_ a' (x2 ) ::_ 0 and 

a(x2 )-x2 > 0 for x2 < x0 . It follows that D > CJ, and hence that the f1mction 

f'(x2 ;p,n) is ETP2 inn and x2 (cLsection L5) for O ~- n < TT/4 and x2 < x0 . 

Let g(x2 ) change sign exactly once in the order(-,+) for increasing x2 

on (-00 ,x0 ). Then, according to lemma 1,5,3, expression (2.3.11) and the ETP2 
* property of f(x2 ;p,n) imply that for any p > CJ the f1mction ,m 0 (p,n)/an has at 

most one zero for O ::_ n < rr /4; if it does have a zero it changes sign in the 

order (-,+) for increasing n. Hence for every p > 0 the fwiction R;(p,n) 

has at most one minimum and no maximum for O < n < 1r/lr. As R;· is symmetric 

about 11 "' 11/4, its absolute maxima can only occur for 11 = 0 and n "' ~-11 and 

n"' 1r/l1, which proves the desired result. 

With the aid of the lemmata 2.3.2 and 2.3.3 we prove the following theorem 

on exponential combination procedures imrolving only two variables !_1 and ½. 

Theorem 2.3.2 

Let k = 2. For any exponential combination procedure with parameters rand c the 

shortc'.o:ming can assume its absolute maximwn only on the three half-lines i1 1 :::: 0, 

µ 2 > O; µ 2 = 0,µ_1 > 0 and µ 1 "' µ2 > 0. Moreover, if c .::.. 2e, this absolute 

maximum can only be attained on the first two half-lines. 

Proof: 

'.I'he assertions of the theorem are immediate consequences of the preceding two 

J.emmata if for exponential combination proceduncro the function g(x2 ) defined 

·by (2,3,9) has at most one change of sign (in the order(~,+) for increasing x,.,) 
c; 

for x2 < x0 and is nonpositive forx2 < x0 if c < 2e. We have 



-1 rx2 
a(x2 ) = r log (c-e ) 

g(x2 ) = x2 + a(x2 )a'(x2 ) 
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_1 rx2 rx2 -1 rx2 
= x - r e ( c - e ) log ( c - e ) • 

2 

The point x0 for which a(x0 ) = x0 is given by x0 = r- 1 log(c/2). To study the 
rx2 

sign changes of g on (-00 ,x0 ) we sets= e and consider the function 

(2 ,3, 12) 
rx2 

h(s) = r(c -e )g(x2 ) = (c - s) logs - slog (c - s) 

rxo 
for O < s < e = ~c. We find 

for O < s < ~ c. 

lim h(s) = - oo 

s+O 
h(c/2) = 0 3 

h'(s) = - logs - log (c - s) + (c - s)/s + s/(c - s), 

lim h'(s) == + 00 

s+O 
h'(c/2) = 2(1- log(c/2)) 

h''(s) = {1/(c - s) - 1/s} 

If c < 2 e, then h'(c/2) .::_ 0 and since h' is decreasing, it is positive on 

(O,~c). Hence his negative on (O,~c) implying that g is negative on 

(-oo,xo). 

If c > 2 e, then h'(c/2) < 0 and since h' is decreasing, it changes sign 

exactly once on (O,~c) in the order(+,-) for increasings. Hence h has one 

maximum and no minimum on (O,~c), It follows that h changes sign exactly once on 

(o,ic) in the order(-,+) for increasings, and so does g on (-oo,x0 ) for increas­

Q,E,D. 

Combining theorems 2.3.1 and 2.3.2 we obtain 

Corollary 2.3.2 

Fork= 2 and any size O <a< 1 the exponential combination procedure (2,3.4) 

of theorem 2.3.1 is MS if and only if one of the following conditions is satisfied 

(i) c(a) .::_ 2 e, 

(ii) the maximum shortcoming of the test on the half-1ine µ 1 = µ 2 > 0 does not 

exceed that on the half-line µ 1 = O, µ 2 > 0. 
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The generalization of corollary 2.3.2 to k > 2 is still an open problem. It 

1 s easily verified that for general k condition ( i) of the corollary again 

guarantees the MS character of the test (2.3.4), but this condition is of little 

practical interest as will be seen in the seq_uel. ~'o obtain a generalization to 

k > 2 of condition (ii) we need a lemma similar to lemma 2. 3. 3 for k > 2. However, 

the proof of this lemma 1s not easily adapted to the case k > 2, since the 

decreasing-increasing character of a function does not necessarily remain unper­

turbed if this function is integrated with respect to another varial11e. Neverthe­

less we make the following conjecture. 

Conjecture. 

For k > 2 and any exponential combination procedure with parameters r and c the 

shortcoming can as,1Ullle its absolute maximum only on the 2k-1 half-lines 

(2.3. 13) 0 

where {i 1 , ... ,ik} runs through the permutations of { 1 ,2, ... ,k] 

If this conjecture holds true, then for general k the exponential procedure 

(2.3.4) of theorem 2,3.1 is MS if and only if either c(a) < 2 e or the maxim= 

shortcoming of the test on the half-line µ 1 = • • • "' pk- .1 = 0, pk > 0 is not 

exceeded by that on any other of the half-lines (2.3.13). 

Corollary 2.3,2 cannot easily be extended to variables with one-parameter 

exponential family distributions, since the proof of the lemmata 2.3.2 and 2.3, 3 

leans heavily on the fact that in the normal case the envelope power is constant 

on hyperspheres, a property that is not shared by many other distributions. 

Returning to the combination of two normal random variables, corollary 2,3.2 

enaliles us to verify whether the exponential combination procedures of theorem 

2. 3. 1 are MS tests of' H against K (for k "' 2). Some details on the computations 

are given in section 2.5, 

It turns out that condition ( i) is of little practical interest, since it 

only covers large values of a. For a> 0.75 the acceptance region of any expo­

nential procedure cannot include the origin as an interior point, since it would 

then strictly contain the set { ( x 1 ,x2 ) I x 1 .::_ O, x2 .::_ O} that has probability 

0,25 under lL '.l'heref'ore c(a) < 2 for a> 0,75, as may be seen by substitution of' 



(x.1 ,x2 ) = (O,O) in the test statistic, and hence the procedure (2.3.4) is MS. 

Of course the estimate involved. is rather rough and it turns out that the pro-

cedure of theorem 2.3.1 has c(ci) "'2 for a" 0.60 and reaches the where 

c(ci) :::: 2e only for a " 0.24. Here we have assumed without proof that c(ci) is 

a decreasing function of a .. 

For smaller values of a. the validity of condition ( i) seems to end and 

we have to rely on condition (ii). For a== 0.1 and a= 0,05 the procedures 

(2,3.4) still satisfy condition (ii) and we find that the tests rejecting H if 

(2.3.14) 
1. 635.:x.:, 

+ e 
1.635~ 

16.52 f'or ex o. 1 e > --
1.9oox 1.900~ 

(2,3, 15) -1 44.47 for CJ. "' 0.05 e + e > -

are MS for testing H against K, 

The point where the shortcoming of the test (2.3.4) assumes eg_ual maxima 

on the half-lines µ 1 = O, µ2 > O and µ 1 = µ 2 > O is reached for a= a 0 " 0.043. 

Although such a resuJ.t seems difficult to prove, numerical evidence strongly 

suggests that exponential combination (with appropriate parameters) is MS for 

all a> ci 0 ~ 0.043. 

Another unsolved problem is connected. with the tail probabilities of the 

procedures of theorem 2.3.1. Such tail probabilities can only be defined if the 

critical regions of these tests constitute a decreasing seg_uence of sets for 

a. As the MS tests have different test statistics for varying a, this 

property is not obvious in this case. It is easily verified. that a sufficient 

(although not a necessary) condition for the monotonicity of the critical regions 

in the above sense is, that both r(a) and {r(a)}-1 log c(a) a.re decreasing 

functions of a, Although numerical evidence points in that direction, we have not 

been able to prove the monotonicity of these functions. Since the shortcoming of 

an procedure (2,3.4) assumes its maximum on the half-line 

"' 11k = O, µ 1 > O, for µ 1 = r(a), it follows by lemma 2,2.1 that 

> u , giving some support to our conjecture about r(u), 
Cl 

Now let us consider sizes a smaller than a0 (fork"' 2), The situation 

becomes more complicated in this case. We conjecture that for values of a slight­

ly smaller than a 0 the LF prior distribution will assign positive probability 

to three points: (/ 1)(a), 0) , (O,r( 1)(a)) and (r( 2 )(u), r( 2 )(ci)) in the 

(p 1 )-plane, The symmetry of the MS procedure implies that the first two points 
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will have equal prior probabilities and hence the MS test would reject H if 

r(1)(a).!_1 r(1)(o:).!_2 /2)(a) (~1 + ½} (I) 
e +e +v(a)e ::_c (o:) 

where v(a), r( 1)(a), r( 2 )(a) and c( 1)(o:) are positive and depend on a/rhese 

four numbers are uniquely determined by the following conditions: the test 

(2.3.16) has size o: and its shortcoming assumes equal maxima on the three half­

lines \.1 2 "' 0, 11 1 > 0; \.1 1 = 0, 11 2 > 0 and p 1 = 1-1 2 > 0 at the three points with 

positive prior probabilities. Then one still has to verify whether the test is 

MS relative to the entire parameter space, Since the computational labour 

involved is enormous and the test statistic (2.3.16) is too complicated to 

have any practical value, we did not start a further investigation. 

As a further decreases towards zero, the LF prior distribution will sup­

posedly concentrate on an indefinitely· increasing (but finite) number of' 

points (cf'. corollary 2. 3. 1). '.l'his will be demonstrated in the next section. 

As a result the number of' terms involved in the test statistic of the MS test 

also increases indefinitely for a➔ 0 and the task of determining the MS test 

becomes even more hopeless. 

We briefly consider the case k = 3, Although not so simple as the case of 

two variables, it is still f'airly easy to determine the parameters r(a) and dcd 

of the test (2.3.4) of theorem 2.3.1. If' the conjecture about the possible 

maxima of thB shortcoming of exponential combination procedures holds true, 

it can be verif'ied whether this test is MS for testing H agaim,t K by computing 

the maximum shortcoming on 

11 2 = µ 3 > 0 and comparing 

performed for cv."' O. 1 and 

the two half-lines p 1 = \.1 2 = 11 3 > 0 and 11 1 "' O, 

these with R0 (r(a), 0,0), These computations were 
a 

a= 0. 05. It turned out that the test that rejects H if 

for a = 0. 1 

has a larger ma:x:imum shortcoming on the half-line \.1 2 = \.1 3 = O, \1 1 > 0 than on 

both other half-lines and hence this test is supposedly the size - 0.1 MS test. 

For a "' 0. 05 however, exponential combination cannot be .MS since the test ( 2. 3. 4) 

has a larger maximum shortcoming on the half-line \1 1 "'O, 11 2 "' \1 3 > 0 than on 

the half-line 11 2 "' 11 3 = O, 11 1 > 0. 



Fork> 3 the complexity of the computations necessary to determine the 

parameters r( a) and c (a) of the test of theorem 2. 3. 1 increases at a high rate. 

For k "' lr some partial results were obtained by SCHAAFSMA [46], but nevertheless 

we are inclined to say that the usefulness of MS tests ends at k = 3, from 

theoretical as well as from practical points of view. In this connection we 

remark that SCHAAFSMA ([46]th.5) has shown that, for fixed a, the maximum short­

coming of the MS test tends to 1-ex for k-+m, Hence tests with uniformly good power 

properties simply do not exist for large k. 

2. 4. ASYMPTOTICALLY OP'I'IMAL PROCEDURES FOR ex -► 0, 

In this section we study the problem of testing H: µ = 0 against K: 

µ ·.::.. 0 (cf.section 2.2) for small values of the significance leYel ex. In the 

preceding section it was shown that fork = 2 the LF prior distribution is dis­

crete with a finite spectrum for all ex(O <ex< 1), cf. corollary 2.3.1. The 

MS tests of H against K were obtained in a number of cases and turned out to be 

exponential combination procedures in these cases, but we found empirically that 

exponential combination is not MS for small Yalues of ex. In view of this we 

suggested that the LF prior distributions concentrate on an ever increasing 

number of points for ex+ O. These ideas are confirmed by the following results. 

Theorem 2,4.1 

Let k > 2, let m be any fixed posi ti Ye integer and let s ( 0 < s < 1 ) be arbitrary. 

set of discrete prior distributions {~(a) IO < ex < 1} assigning Consider a 
. b. . . t ( 1 ,ex) ( 2 ,ex) (m,ex) . th t 0 nonnegative proba ility tom poin s µ , µ , ••• ,µ in e se µ .> ; 

the position of these m points and the associated prior probabilities p. 
J ,a 

1 , 2, . . . may depend on a, The half-lines in the parameter space through 

the origin and µ(j,a) are denoted by Mj,ex(j=1,2, ... m) and the distances from 

th · · f t· · ( j ,ex) b II ( j ,ex )II ( · ) L .eorigino he pointsµ y µ :::: .J=1,2, •.. m. et 
la m ,a 

( ( . ) 
the point µ O ,ex = l c1. · J ,a ,where g_. =p. . 

1 . J J ,a J ,a 
denote the shortco!lllng of the siz.e-a test of 

denote the 

half-line through the origin and 
( 1 2 ) . ,exp -2PJ· , J"'1,2, ... ,m. Let R 

,a a 
H which is Bayes with respect to ~((1). Then, 

( i) if the condition 



(2.4. 1) lim u p "' 
a j ,a 

a-+O 

is satisfied, we have 

(2.4.2) 
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for j=1,2 , ... ,m 

uniformly for all L f_ I., 
a Cl 

lim sup 
a-,.0 u e: L 

Cl 

where f is the set of all half-lines L in the parameter space through the 
Cl a 

origin making an angle larger than arc cos (1-s) with each of the M. 
J ,a 

j = 1 , 2, • , . ,m ; 

(ii) if on the other hand the condition 

(2.4.3) lim u p. = O 
a-+O a J ,a 

is satisfied, we have 

lim 
a-+O 

sup 
p€L 

Cl 

for j=1,2, .•. ,m 

. .10 
uniformly for all LE.A.. , 

a CI 

for 

where I_ O 1s the set of 
a 

all half-lines L 
a 

origin making an angle larger than arc cos 

in the parameter space through the 

(1-c) with M 
0 ,a 

Let Aa denote the acceptance region of' the test '\,:. We write 

(j ,o.) - ( ) 
µ - i; 1 . P. ' ' ' ",1:;k . p' ' ,,J ,a J ,a ,J ,a. J ,a 

where p. 
J,Cl > 0 and z:;., :;:.o(i=1,2'" .. ,k), I 

l,J,a i - 1' and 

l, ID 

t (x) = t,Jx1 ,. n ,x.._ ) "' l 
a ~ K j= 1 

q. exp(p. l C . x.). 
J,a J,a i=l 1,J,a 1 

Then we have by the NEYMAN-PEARSON lemma 

A = { x It (x) < c 
a a a 

where ca is an appropriate constant. 

First we consider case (i). Let c 1 , O < c 1 < 1, be arbitrary, Let La€ ./...a 

and let i,iJ. denote the acute angle between L and M. . Then, by assumption, 
J,a a J,a 

cos i,iJ. < 1 - E for j= 1 ,2, ... ,m. Consider the map w►x "' µ of JJ-space onto x-space. 
J,a 

By this map there corresponds to each line (or point) in JJ-space a line (or point) 

in x-space. Lines in x-space corresponding to lines in u-space are denoted by><­

superscripts in this proof. Let u(d;La) be the point on La at a distanced from .... 
the origin O; the corresponding point in x=space is denoted by x(d;La). At 

:x "' x(d:L*) the test statistic t (x) assumes the value - · a a -
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m 
(2.4.6) I 

1 
g_. exp ( d p . cos iJ; • ) , 
J,a J,a J,a 

The point of intersection of' the half-line M* and the hypersphere with radius u 
g,a a 

and centre O in x-space is an interior or boundary point of A , f'or otherwise 
a 

there would exist a supporting hyperplane of' A 
a 

at a distance smaller than u from 
a 

the origin and the size of oa would be larger than a, Hence 

m k 
l g_J. N exp(pJ. Nua l 

j=1 ,~ ,~ i=1 

for g=l,2, ..• ,m, implying 

It follows from this inequality and (2.4.6) that 

t (x(d;L*)) < c 
a a a 

if the conditions 

exp(d p cos lj;. ) < 
j,a, J,a 

1 
< - { exp(p. u ) + 

m J ,a a 

k 
exp(p. u I i;;. • 

J,a ai=1 J.,J 

are satisfied for j=1,2, ..• ,m. 

< C • -- a 

,g,a 
) } 

Put b = (2 log m)/E ; then there exists a positive number a0 (E:) such that 

p. u > b f'or j=1,2, H. ,m and all a < a 0 (E) by condition (2.4.1). Choose 
J ,a, a -

(2.4.8) 

then 

d = ( 1 + ; du 
a a 

d p. cos lj;, •(1+as)u p. cos lj;. < (1+is) u p. (1-s) 
a J,a J,a a J,a J,a a J,a 

.::_ Pj,a ua - (1+s) log m 

< p. u - log m, 
J ,a a 
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implying 

exp ( d p . cos ljJ. ) < l exp ( p . u ) 
a J,a J,a m · J,a a 

Hence, if d = d , the inequalities (2.4.7) are satisfied and therefore x(d ;L*) 
()[ ()[ ()[ 

is an interior point of Aa. 

Now consider a simple alternative 

µ(a)= µ(d - l cu ·L) 
a !, a' a 

on L. The 
()[ 

. l (a) . size-a enve ope power atµ=µ is equal to (cf. (2.4.8)) 

Let S 
·1 a 
-8 cu in x-space. Then Sc A, 

a a a 

be the solid hypersphere with centre x(d - -41 c u ·1* ) and radius 
a a ' a 

for otherwise there would again exist a supporting 

hyperplane of A at a distance smaller than u from the origin. Hence the power 
f (a) a . f" . . a 

o o a at p= µ satis 1.es the 1.nequall.ty 

,; 

where x'- has a chi-sq_uare distribution with k degrees of freedom. 'l'hus 
+ (a) -ck 

S(µ )-,-1 
Cl 

( (a) ) and 80 p ->- O for a-+ O, and we find that for all a< ci 0 (c,c 1 ) 
a 

of the particular choice of L 
a 

1 - e 1 , 

c 1 ) may be taken independent 

To prove the second part of' the theorem, consider an arbitrary half-line 

L E: .f... O with direction cosines a 1 , ... ,a (a. > 0 for i=:1 ,2,'". ,k). Let 
a a ,a k,a i,a -

, -r denote the direction cosines of' the half-line M 1,a'"""' k,a O,a 

m k 
r. "' ( Z: q · P • z;:" • l { I i,a j= 1 J,a J,a i,J,a i'= 1 

m 2 
I qg,a P s l 

g=1 g,a i 1 ,g,a 

for i=1 ,2, .•. ,m. The point of intersection of M*0 and the hypersphere with radius 
,a 

ua and centre O in x-space is an interior or boundary point of Aa (by the by now 

familiar argument) , and hence 



(2.4,9) 

So 

rn k 
l qJ. a exp(pJ. Nua l 

1 ' ,~ i=1 
I;;. • T. ) < C • 
1,J,a 1,a - a 

1 By condition (2.4,3) p. u < -4 s for 1,2, ••. ,rn and all a< c). 
J,a a 

Hence, for a< c) and d defined by (2.4.8), 
a 

m 
< I 

j=1 

m 
< I 

j=1 

m 
"' \ l 

j=1 

m 

I 

m 
< I 

1 

m 
< I 

1 

m 
< I 

Ill k 
t(x(d ;L.,°)) "' I qj ,a. exp( ( 1+h l u p. I a a 

j=1 
a J,a i= 1 

,j ,a 

k k 
+ ( o. 1 ( 1 ) 2 

q. a. [1 p. I I;;. • up. I 
J , J,a i=1 l ,J ,a i,a + 5 E 1+2E 

a J,a i=1 

k 

qj ,a [1 + (1+c) p. I ;:; .. 
J,a 1 ,J ,a 

q. +(1+E) 
J,Ol 

q. + ( 1+E) 
. J ,a 

k 

u I 
a i==1 

k 

I 
i=1 

qj ,a + (1+.c:)(1-,:)u 
a 

[1 + u p. 
k 
I 

i=1 

a. 
l,Ol 

a . 
1,a 

k 
{ I 

m 

I qJ. ,a 
j=1 

k 

I 
i'=1 

m 
I 

i =1 g=1 
qg,a 

r; .. "[. ] qj ,a a ,1 'Ot i== 1 1. ,J ,a 1. ,a 

k 

qj ,a exp(u p. I ;:; .. T. ) 
a J,a i=1 1,J ,a 1,a 

0 i a] 
' 

p. ;:; • . 
J,a 1,J,a 

Ill 2 1 

I q p ;:;., l }~ 
g=l g,c g,a 1 ,g,a 

)2} 
1 

p z;. 2 

g,a 1,g,a 

< C - a 

where the third inequality is motivated by the fact that by assumption 

(J. ) < 
1 ,a. 

r;. . a. l 
i,J,a 1,a 

l a. T. < 1-s. Hence x( d ;L *) is an interior point of 
1,a. 1,a a. a 

and the proof of 

(2.4.lt) can be completed by the same argument that we used in the first part of 

the proof. 

The proof of the theorem above is based on the fact that, rougl:i.J.y speaking, 

for a ➔- 0 under condition ( 2. 4. 1) the acceptance region of approaches regions 

bounded by m hyperplanes orthogonal to M~ and that for a -r O under condition ( 2" 4 ® 3) 
J ,a 
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the acceptance region of 6a approaches regions bounded by one hyperplane orthogonal 

* to M O,a 

The exponential combination procedures of theorem 2,3.1 are Bayes with respect 

to prior distributions which are concentrated on k points in the par8Jlleter space. 

By lemma 2. 2. 1 these prior distributions satisfy condition ( 2 )i, 1 ) of theorem 2. 4. 1 

and hence the maximum shortcoming of exponential combination procedures tends to 

one for a + 0 and all fixed k :::_ 2. In the sequel we shall find that the maximum 

shortcoming of the likelihood ratio test of H against K tends to zero for a+ 0 

( lemma 2. 4. 2) • implying that exponential combination cannot be MS for small a. 

Thus we obtain as a first application of' theorem 2.4.1 

Corollary 2. 4 . 1 

For each k :::_ 2 there exists a positive number a 0 (k) such that exponential combinatior 

procedures cannot be MS tests of H against K for any a < a 0 (k). Moreover, the maxi­

mum shortcoming of the exponential combination procedures of theorem 2. 3. 1 tends 

to one for er->- 0 on any half-line bounded away from nrestr (cf.(2.3,3)). 

The LF prior distribution assigns probability one to the set of points for 

which the shortcoming of the corresponding MS test attains its absolute maximum. If' 

for a+O the LF prior distributions would remain concentrated on a bounded number of 

points, condition (2.l+.1) of theorem 2,4.1 is satisfied by lemma 2.2.1 and hence 

the maximum shortcoming of the MS tests wou.J.d tend to one for a -• O. However, 

this is impossible because the maximum shortcoming of the LR tests tends to zero 

for a~ 0. Hence we obtain as a second application of theorem 2.4.1 

Corollary 2. ~ .. 2 

For a+ 0 the LF prior distributions do not remain concentrated on a bounded 

number of points. 

As the MS tests have a very complicated structure for small values of a, 

w:: crsry to find tests with uniformly good power properties by another approach. 

'110 this end we consider the likelihood ratio (LR) test of the hypothesis 

H against K. It, is easily verified that the size-a, LR test rejects H if 

k 2 2 j 1 ~ 1( 0 , 00) (?Si) 2:. Pk ,a' 



where I(o,oo) denotes the 

an appropriate constant. 
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characteristic function of the set (0,00 ) and pk is ,a 
We note that LR tests exist only for sizes a smaller 

-k 
than 1-2 , since the acceptance region ALR,a of the test strictly contains the 

negative orthant. In the positive orthant the region ~R,a is bounded bya hyper­

sphere Ix~= pk2 . It follows from lemma 1.4.6 that the LR tests are admissible; 
J. ,a 

however, by theorem 2.2.1 these tests are not Bayes and hence cannot be MS for 

any size a. 

As a tends to zero, Pk,a tends to infinity. Moreover, 

since otherwise there would exist a supporting hyperplane of ~R,a at a distance 

of at most ua from the origin and the LR test would have a larger size than a. 

In the following lemma the asymptotic behaviour of pk is described more precisely 
,a 

in terms of u 
Cl 

Lemma 2.4. 1 

For a+ O 

(2.4.11) 

Proof: 

During the proof we omit the index k of Pk,a Let !LR denote the test statistic of 

the LR test appearing in (2.4.10). Then under H 

(2.4.12) 

k 
= 2-k l 

j=O 

k ~ 2 2 
(.) P( l x. < p ) 
J i== 1 """l. Cl 

where, by repeated partial integration, 

dw], 
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(2.4.13) 

I 1 
if j is even 

"'l 2 <j) (p ) - 1 -
a 

if j 1.s odd. 

The numbers paand ua are connected by the relation 

Since both u and tend to infinity for a -+ 0, the well-known approximation 
a 

can be applied to both <l> (u ) and <l> (p ) • Substituting (2.4.13) into (2.li, 12) and 
Cl a 

applying (2.4.15) we find, for a-+ O, 

(2.4. 16) PC t < 2 I ·-LR Pa 

or, taking logarithms, 

and hence 

-1( ) (k) ,,c, -·1 
- 2 k-2 log 2 - log r 2 +v(pa) 

-k log 2 +(k-2) log p + 
Cl 

-1 3 p - u = 2(p +u ) { (k-2) log p + log u - -'-· (k-1) log 2 + 
a a a a a a 2 

+~log 'IT - log r(½) + - 1 )} 

for a ➔ O. '.I'his relation immediately yields (2.4.11). Q.E.D. 
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In particular we have 

(2.4. nl 

From(2.4.12) and (2.4.13) critical values of the LR test can easily be determined. 

Table 2. 4. 1 shows pk2 for selected values of k and a. 
,a 

Let RIR denote the shortcoming of the size-a LR test. Since the LR test satis-
' ,a 

fies the conditions of lemma 2.3.2, there exists a positive number µot such that for 

allµ= (µ 1, .•• ,µk) 

RLR ( µ) < R (" , 0 •• ., , O) • ,a - LR,a ~a • 

Consider therefore 

~ k 2 3 4 5 6 7 8 

~, 
a·~ 

.2 1. 725 2.595 3,390 4. 1!.r2 4.865 5.567 6,252 

. 1 2.952 4.010 4.955 5,835 6.671 7 ,l+T6 8.257 

.05 4.231 5.434 6.498 7,480 8.40, 9.295 10. 152 

.025 5,53, 6.861 8.023 9,091 10.095 11. 053 1 L9'76 

. 01 ,.289 8.,46 10.019 11. 183 12.27lr 13.312 14.310 

.005 8.628 10. 171 1 L 516 12.744 13.893 111.985 16.032 

,001 11. 763 13.474 14,962 16.317 17.582 18.780 19,927 

.0001 16.287 18. 188 19.8~0 21. 34 22.74 24.06 25,33 

.00001 20.84 22.89 24,67 26,30 27. 81 29.23 30.59 

Table 2.4.1, Critical values r 2 of the LR combination procedure. 
k,ot 



<P(.?f.1 < Pk,al µ ) - ¢(u - µ ) 
a a a 

"' <j) (p - jJ ) 
k,a a 

-<1>(u -µ ). 
a a 

But (2.4. 17) implies that this expression tends to zero for a-• O,and thus we have 

proved 

Lemma 2.4.2 

The shortcoming R of the size-a LR combination procedure attains its absolute 
LR,a 

maximum exclusively on the edges of the parameter space and 

(2.11.18) uniformly for all µ • > 0. 

We have thus shown that the maximum shortcoming of LR tests tends to zero 

for a➔O, This is of course a desirable property. Families of tests with this pro­

perty will be called asymptotically optimal for a➔O, Obviously the MS size-a tests 

have a smaller maximum shortcoming, but this advantage becomes negligible for (very) 

small values of a, 

It now remains to investigate what other families of combination procedures 

besides the LR tests are asymptotically optimal for a➔O. We shall show that, in 

a sense to be made precise below, any family of admissible and asymtotically 

optimal tests approaches the LR tests for a➔O, 

Consider an arbitrary family of admissible (nonrandomized) combination 

procedures with acceptance regions A (0 <a< 1), where the procedure characterized 
a * by Aa has size a and shortcoming Ra . Let A denote the intersection of the set A 

and the positive orthant, i. e, 

l"" = A n { x Ix::.. o } , 

and let d(A,B) denote the Hausdorff distance of two sets A and B (cL ( L4.20)). 

Theorem 2.4.2 

(2,li.19) lim sup R (µ) = 0 
a-+O )1 .?:..,0 

a 

if' and only if 

(2.4.20) * lim ·~,R,a "' o. 
a➔O 
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Proof: 

First we show that (2.4.19) implies (2.4.20). Suppose that (2.4.20) is false 

and hence a number 6 > 0 exists such that for any a > 0 there is a' < a satisfying 

(2.4.21) 

Lets be defined by 

and let q > 6 be so 

* ]\~ I) d(Aa, , > 0 
,a 

-k-1 k 
x~ < 62 C "' 2 P( I Iµ 

i=1 -:1 

large that 
k 

P( I 
i=1 

x~ > q 21µ = O) < c 
-i -

= o) 

Furthermore let a 0 be so small th~t for all a< a 0 we have 

( i) Pk,a -u < 1 
Ii ' 2 a 

2 6 2) ~} -1( 2 02)1 -1 ( :i.:i.) { 1 () (q { 
Pk,a 

> 2 + 1 - q q - } ' 

(iii) sup R (µ) < E , 

µ • .::_O LR,a 

and choose a•, 0 <a'< a 0 , such that (2.h.21) holds, The set {xi Ix~<u ,, x> O} 
' 1 Cl -

is a proper subset of' ,, since otherwise there would exist a supporting hyper-

plane of' Aa, at a distance smaller than ua , from the origin and the test would have 

a size larger than a.'. 

Fig. 2.4.1. 

0 

Common boundary points of AR , and ·-Lt ,a , inside G. 
q 
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() * <*,) 1. * (4) Hence by i ALR , c U A , , 2 6 , the 2 6 -neighborhood of A , . Therefore 2. . 21 
,a a a 

implies the existence of a point P 1 = (x1, ... ,~) in the pod ti ve orthant on the 

boundary of Aa, at a distance pk ,a, + d > pk ,a, +o from the . Let 1 1 be the 

line through the origin O and P 1, and let P2 be the point of intersection of 1 1 
-><-

and the boundary of ALR , . Define the region G by 
,a q 

k 
G "' {xi l 

q_ i=1 

2 2 (x. - x'.) - < q_ } • 
l l 

We shall show that the boundaries of Aa, and A1R ,a, have no common points in the 

set G • For suppose to the contrary that such a point would exist, say . 'I'his 
q_ 

would imply P 2 e: Gq and hence d < q. Denote the line through P 1 and P 3 by 12 and 

let V be the plane through the points P 1 , P2 and P3 ; then the origin O also lies 

in V (see 2.4.1). Furthermore let i;; denote the positive acute angle between 12 
and the line of support of AIR , in V through P 0 .Finally let L be the line through O ., ,a ,_ 3 
orthogonal to 1 2 in V and let P4 be the point of intersection of 1 2 and 1 3 . Then 

Since 

we have by (i) and (ii) 

(2.4.22) 

Since P 1 , P3 and are collinear and P3 is situated between and P4, P4 lies 

outside Aa, or on its boundary. This follows from the fact that Aa, is convex 

and that P 1 and P3 are boundary points. Therefore OP4 .:._ ua'' contradicting (2.4.22). 

Hence the assertion that Aa' and ALR,a' have no common bound.ary points in Gq_ is 

proved. 

It follows that (G - ALR , ) ::i (G - A , ) and that (G - A1R , )-(G - A , ) 
q_ ,a q_ a q_ ,a q a 

contains a sector Cd of a hypersphere with centre and radius d 

Taking µ 1 ;;. 

k 
C "' {xi I 

d i,;;1 

x' , the definitions of' s , q_ and G imply 
q_ 

X < x'} 
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> P (:l!:c € cdl µ') - e 

-k k 2 2 
> 2 P( I x. <o I µ = o) - e = e. 

i=1 --i 

Hence R ,(µ')> e, contradicting (iii), which proves that (2.4.19) implies (2.4.20). 
a. 

To prove the converse, suppose to the contrary that ( 2. 4. 20) holds and that sequences 
( . ) ( . ) 

{a.} and{µ J } exist such that lim a.= O, µ J ·..:". O for all jcc:1,2, ... and 
J j->= J 

(2.4.23) R 
(l, 

J 

for j=1,2, ... , 

where e: is some positive number. Defined> 0 by 

(2.4.24) 
k 2 1 

P( I x. > d Iµ::: 0)::: 4 € 
i=1 --i 

and let 

(2.4.25) 

Furthermore, let D. be the intersection of C. and the symmetric difference of 
J J 

Aa. and ALR . Then 
J 

lim A (D.) ::: 0, 
j-+<» J 

where A denotes k-dimensional Lebesgue measure. Relation (2.4.26) is obvious from 

(2.4.20) if C. (and hence D.) is a subset of the positive orthant. But the uniform 
J J 

convergence of the boundary of A to the boundary of A1 R in the positive orthant 
aj ,aj 

also ensures uniform convergence within the larger set {xix.> -d, i=1,2, ... ,k}. 
i-

This may be verified by the same line of argument that we used in the first part 

of the proof to show that G contained no common boundary points of A, and A___R ,. q a -1 ,a 

Hence by (2.4.24) through (2.4.26) 

for all sufficiently large j. Since by lemma 2,1.,2 



lim 
j-;-00 

( 2. 4. 27) contradicts ( 2. 4. 23) , showing that ( 2. Lf. 20) indeed (2.4. 9). 

Q.E.D. 

A well-known family of tests satisfying condition (2.4.20) of theorem 2.4.2 

are FISHER's combination procedures which 

k 
11 

i=1 
< 

ect H if 

where ck,a"' exp (- ~ X~k,a). 

denoted by R 

The shortcoming of E'ISHER' s size-a test will be 

F,a 

Lemma 2.4.3 

l!"ISHER' s combination procedure ( 2. 4. 28) is admissible and its shortcoming R1_, 
',a 

attains its absolute maximum exclusively on the edges of the parameter space. 

Moreover, 

lim 
a-•O 

RF, (µ)=0 ,a 
uniformly for µ • > 0. 

We write the acceptance region A_ of FISHER's size-a test as 
-1<', Cl 

where (omitting the index kin 
,a 

) 

k 
/ IT ¢ ( )), 

i=2 

1 denoting the inverse function of cjJ, This :i.s legitimate, since the test 1.s ob­

viously monotone. Furthermore it follows from the celebrated. inequality 

1 - ¢(z) < ~(z)/z for z > 0 

that log <1>(-z) is concave in z and hence 

k 
TI 

i=1 
qi(-x!) > C 

i - a 

k 
TI <!>(-x!') > c 

' :i_:::cj l. - (1 



imply 
k 
IT 

i==1 

90 

<P(- yx! -(1-y)x!') > c 
l l - a 

for O < y < 1. 

Thus AF' is monotone and convex, and the admissibility follows from lemma 1. 4, 6. 
,a 

Of course is also symmetric. 
,a 

.Now consider the function (cf. (2.3,9)) 

aa(x2,···•~) 

k 
Let x3 ,x4, ••. •~ be fixed, denote 

x 3 ,xl , . , . •~ in the notation for 
- ~ 1 1 

c / 11 ¢( 
Cl 3 

g. We shall 

) by d. and. suppress the variables 

show that g( x 2 ) < 0 for - 00<x2 < x 0 , 

where x0 :::: - ¢- (d 2 ). We have 

¢ -1 ( d/ <Ji ( -x2) ) 
g( X ) = X + d -------':C........--

2 2 ¢( (d/¢(-x2))) {q,(-x )}2 
2 

As A_ is convex and monotone, the (x3 , ••• ,x_ )-section of AF is also convex and --F,a k . ,a 
monotone, implying that a a( , .•. ,~) is a non-increasing and concave function of 

1'he symmetry of AF,a then implies that -1<3 aa(x2 , ... ,~)/3x2 < 0 for all x2< x0 • 

With the aid of this relation and 

it is easily verified that g(x2) is 

our attention to the 

sufficient to prove 

to we obtain 

+ 2d 

case where XO 
that g' (x ) > 

2 

H(x2 ) 

{w(-x2)}3 

> 

0 

negative 

0 and 0 

for 0 < 

for x2 < min(O ) . Hence we 

< X < XO. Since g(xo) ·- o, it 
- 2 
x2 < x0 .Differentiating g with 

2 
{ ¢ (x2)} 

{<!>(-x2)} 4 
+ 

<I> -1 ( d/ <I> ( -x2) ) 

¢( (d/w(-x2 ))) 

Consider some fixed x2 , 0 < x2 < x0 , and write z 

restrict 

is 

respect 
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Then 

z < <!> -1c d/<P ( -x0 ) ) = -x0 < 0 

and d = <!>(z) <1>(-x2 ). In this notation 

(2.4.31) 

We need the following inequalities 

(2.4.32) for y > 0 

(2.4.33) for y > 0. 

<!>( z) ~ } 
~ · 2z • 

is due to Z. W. BIRNBAUM [ 6] , the second inequality may 

be derived from the inequality 

by L.R. SHENTON [48]. Application of (2.4,32) to the expression between 

braees in (2.4.31) yields 

'l'he 

2 
, z <I> ( z ) r q, ( x2) J 

g (x2) > 1 + ~(z) l_w(-x2) 

between braces in the right-hand member is positive and hence, 

( 2. 4, 30), 

The last expression of the right-hand member is positive by (2.4,33) and hence 

g'(x2 ) > O, implying g(x2 ) < 0 for - 00 < x 2 < x0 , Then, by lemma 2,3.2, RF',a 

assumes its absolute maximum only on the edges of' the parameter space. 
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Assume a<;. Introducing polar coordinates r,w1 , ... ,ll\:t-l in x-space, the 

boundary of ¾,,a may be written as r = ba (w 1 , ••• ,wk_ 1 ). As , ... ,¾) < 0 

for -oo < x2 < x0 (x3 , ... ,¾) and ¾,,a is symmetric, ba(tu 1 , ... ,wk_ 1 ) attains its 

maximum in the ~osi ti ve orthant for ~ 1 = w 2 = wk_ 1 = l1r and its minimum for 
-- -- 1 

w1 = arc cos k 2 , w2 = arc cos(k-1) 2 , ••• , wk-l = arc cos 4 TI. We denote 

these values by w 1, w 2, .. , ,wk_ 1 respectively. Now consider the function 

(2.4.34) !::,a == ba(h, ... ,h) - ba(w,, ... ,wk-1) 

= ¢-l(c 1/k)k~ _ w-1(2k-1c ). 
a a 

From (2.4.30) we have 

for v > 1, 

hence 

and therefore 

( 2. I+. 35) 
1 

¢-\w) > -(-2 log w) 2 

Let Ebe an arbitrary positive number. Then (2.4.32) yields 

""('-v·) , v "( ) -Hv+d 2 
"' •• 1 +v2 ,, v > e 

for all v > v O ( E). Hence 

(2.4.36) 

Combining ( 2. h. 34) through ( 2. !r. 36) we obtain 

6" < { -2 log (2k-\ )}~ -{ 2 log c }J < E k1 
~ a. - k a 

for all sufficiently small ca, i.e. for all a< a 0 (E). Hence 

(2.4.3'7) 

Furthermore 

lim 
a-+o 

<b(' ''J< ua a w1•···•~-1 Pk,a 

where the last inequality is motivated by the fact that otherwise ALR would be ,a 
strictly contained in ¾,,a. Hence, because of' ( 2 .4. 17), ba (w 1 , ... wk_ 1) - tends 
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to zero for o: + 0 and consequently (2.4.37) implies that condition (2.4.20) of 

theorem 2.4.2 is satisfied. Application of this theorem completes the proof, 

Q.E.D. 

The usefulness of asymptotic optimality for a + 0 of families of combination 

procedures, like the LR tests and the o=ibus tests of FISHER, of course depends 

on the rate of convergence of the maximum shortcoming to zero. In this connection 

the following theorem is enlightening. 

Theorem 2. l+ • 3 

For lt ·+ 0 anti fixed k > 2 

Proof: 

R ( \.l) "' LR,o: 

=(211)-~u: 1{(k-1) log uo: -j(k-1) log 2 + hog·rr -logr(½)-f(k-1)} + 

+Co/( u-21og u ) • 
0: 0: 

By lemma 2.4.2 the maximum shortcoming of the LR test is assumed at a point 

µa = ( µ ,O, ~ & ~ ,O), <where µ depends on a 0 First we consider 
0: 0: 

p2 
- 1\,R,o:(µa) "' f a <!>( {p! - t} ~ - µo: )dF'(t), 

o-

where Fis the distribution function 

again omit the index k of p1 ) • We split the 
~ ,a 

f , d~f ~ 2 I (. ) d "! ( 
o i LR - l ,!i (O oo) ¾ un er, we 

2 ' 
region of integration [ 0 ,P ! ] 

. r;; ( 2 2 )-"1 ( ( 2 2) 2) into two parts: L.9, 2 p~ - ua ~ and 2 pa - ua, po:, and denote the corres-

ponding integrals by J. 1 and J·2 respectively. From ( 2. 4. 11) we derive 

-1 
2(k-1) log u + 2a + Co/(u ) 

a a for a ➔ 0, 

where a "' - i(k-1) log 2 + ~ log ·11 -logr (k/2). Hence, ·by an obvious modification 

of (2.4.16), P(_:\;_LR > 2(p!- u!)) = &(u:2 ) and therefore 

J 2 "' CS( u:2) for a -+ 0. 

If' 0 < t < 2( P~ - u~), then it is easily verified that for a -+ O 

(P~ - t)J -ua = (k-1)u: 1 log ua + au: 1-;u: 1t + cY(u: 1 log uo:) 
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and hence 

Since 

To determine the integral appearing in the right-hand member, we note that 

2 2 2(p -u) 
a a 

f tdF(t) 
o-

=Et' - f2 2tdF(tL 
-LR 2(p -u ) 

a a 
- 1 t 1(k-3) 

By (2.4.12) and (2.4.13)F'(t)-=O(e 2 t 2 )fort-+ 00 and hence 
-2 ( 2. lf. 39) yields that the last integral rn Co/ ( u log u ) . 
a a 

Moreover 

Et' "' -LR 

Therefore, for a-+ 0 

application of 

'.J:'his expression is maximized as a function of µa if µa satisfies µa 

Substitution immediately yields the desired result. 

It follows from this theorem that the leading terms of' the maximum shortcoming 
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of the LR test become small only for extremely small values of o. , because the 
-5 rate of increase of u for a+ 0 is very low (e.g. for a= 10 

Cl 
we have u "'4.26). 

0. 

Hence the practical value of the asymptotic optimality for a + 0 of the LR tests 

remains somewhat dubious. 

In this respect FISHER's omnibus tests do not behave any better. On the 

contrary, comparison of the acceptance regions of the LR tests and. FISHER' s 

tests suggests that on the edges of the parameter space FISHER's tests are 

slightly less powerful than the LR tests. Since both families of tests attain 

their maximum shortcoming on the edges of the parameter space, it may be ex­

pected that FISHER's tests have a larger maximum shortcoming that the LR tests. 

In fact, if the acceptance regions {A} of a family of admissible tests 
Ci. 

with shortcoming {R} do not approach the acceptance regions of the LR tests 
Cl 

sufficiently fast for a+ O, the LR tests have the smaller maximum shortcoming 

for small values of a. '.l'his refinement of theorem 2. 4. 2 is established in the 

following lemma., The set A* again denotes the intersection of a set A and the 

positive orthant, and U(A,d the E-neighborhood of A. 

Lemma 2.4.4 

For any k .::.. 2 there exists a positive number a 0 (k) with the following property. 

If for some a< o. 0 (k) the condition 

(2.11.40) 

is not satisfied, then 

Proof: 

sup 
µ,.::._o 

R ( µ) 
a 

> sup 
µ • .::._o 

We only give a sketch of the proof and 

be a point in A* at a distance u + p 
a a a 

Let C 
Ci. 

be the half-cone with vertex P 

(the origin) and radius u 
0. 

11' "' x' , then 

, and let r; 

R (µ). 
LR,a 

omit some technical details. Let P=(x1 , ... ,~ 
from the origin; we assume that u + p > pk 

a o. ,a 
tangent to the hypersphere S with centre 0 . a 
be its semi-angle. Consider the alternative 

where e denotes the power function of the test with acceptance region A and 
a o. 



To estimate S (µ') we remark that the convex hull of P and S is a subset of 
CY. CY. 

A 
CY. 

since A 
CY. 

is convex, S c A and PE A • However, C is not necessarily a subset 
CY. CY. CY. CY. 

c,f A 
CY. 

let G 
a 

. Let T 
CY. 

be the hypersphere with centre P and radius ( u + p ) cos I; , and 
CY. CY. 

be the set C 
CY. 

-(S vT) (see fig.2.4.2). Then A ::> C 
a a a a 

S (µ') = - P(A I µ') < 1 - P(C - GIµ') = 
CY. CY. CY. CY. 

"'1 - P(C Iµ')+ P(G Iµ'). 
CY. Cl. 

0 

- G and hence 
CY. 

fig. 2. 4. 2. The acceptance region Aa of the test in lemma 2. 1r )1 for k=2, 
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'l'he solid angle subtended by C (i.e. the surface area of the unit hypersphere 
a 

with centre P intercepted by C) i.s equal to 
Cl 

B . 2 <k;1 ,-½). 1lHk-1) /r( (k-1 )/2), 
Sl.n I;; 

where the first factor is the incomplete beta function 

ain2c; 

f y~(k-3)(1-y)-~dy. 
0 

Since the surface area of a unit hypersphere in Ek is equal to 211~k/f(k/2), 

we find that 

Evaluation of the incomplete beta function yields that for O < 1; < h 

where 

(2.4.42) 2 -2 ;\ 2 l -1 -1 ~ cos(;= {1-u (u +p) } =(2u p +p ) 2 (u +p) < (2p u )-. 
a a a a a a a a · a a 

Moreover, it can be shown that 

P ( G I µ ' ) "' Co/ ( u - 2 log u ) for u ➔ 00 

a a a a 

( this probability only depends on ua and Pa , not on A0 ). Let 

1 1 3/2 -1 1 
d "'P +-11 2 (k+1)' u (logu) 2 

a k,a 3 a a 

- u 
Ci 

Then, by lemma 2.lr, 1, 

-1 1 ~ 3/2 -1 i -1 
pN"' (k-1)u log u +-3 1r (k+1) u (log u )' + O'(u ) 
~ a a a a a 

for ua + oo, and hence, from (2.4.41) and (2.l+.42), 

R (µ') > (2n)-~p - (8n)-;p3 --61 (k+1)(2pu-1);\-P(G Iµ') 
(l Cl Cl Cl Cl C( 

> (2n)-i(k-1)u- 1 log u + -3
1 2-~(k+1) 312u-\J.og u )~ + 

a a a a 
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; -1 
.(log u) + O(u ). 

Ct Cl 

Hence, by theorem 2.4.3, 

F'or sufficiently large i.e. for sufficiently small et, the right-hand member 

is positive. Let a0 (k) be a positive number such that it is positive for all 

a<a0(k). 

Suppose condition (2.4.lro) is not satisfied for some a < a 0(k). Then there 

exists a point Pi;: A°',_ at a distance d from the origin, where d is defined by 
a a a 

(2.1L43). It follows that R (µ') - RLR (µ') > 0 and the lelll!lla is proved. Q.E.D. 
a ,a 

It turns out that FISHER's omnibus procedures do not satisfy condition (2.h.!io) 
of lemma 2.4.4, Hence the maximum shortcoming of FISHER's tests is indeed larger 

than that of the LR procedures for sufficiently small values of a. A proof of 

this assertion is omitted because of the rather complicated natut'e of the conr 

putations involved, 

We now turn to other combination procedures for testing H 

we consider the exponential procedures of theorem 2.3.1 

K. First 

By lemma 2.2.1 the parameter r(a) of these exponential procedures satisfies 

r( a) > u and hence r( a) ··>- 00 for a •>- 0, implying c (a) -> 00 for a -+ 0. The boundary 
a 

of the acceptance 

and cuts the line x 1 = 

= --1- log(c(a) - k+1) r(o,) 

at 

1 
= r(o:) log (c(a)/k). 
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Taking the limit a-+ 0 we find that the difference of the expressions in the 

right-hand members converges to zero. Hence, recalling that Aa is symmetric, 

convex and monotone, we conclude that for a-+ 0 the exponential procedures 

approach TIFPETT's procedures which reject H for large values of the statistic 

TIPFETT's test is admissible according to lemma L4.6; however, by theorem 2.2.1 

it is not Bayes. As the exponential procedures of theorem 2. 3. 1 have a maximum 

shortcoming tending uniforrnJ.y to one for a -+ 0 on every half-line through the 

origin in the positive orthant bounded away from the edges ( corollary 2. 4. ·1), 

the same holds for TIPPETT' s procedures. The exponential procedures of theorem 

2. 3. 1 have uniformly· vanishing shortcoming for a -+ O on the edges of the para­

meter space,becau.se they are MS tests of H against D t (c±'.(2.3.3)) and hence 
res r 

their maximum shortcoming on n t is smaller than that of the LR tests which tendi 
res r 

to zero for ex -+ O. It follows that 'rIPPETT' s tests also have uniformly vanishing 

shortcoming on nrestr 

Next we consicler linear combination procedures which reject H if 

where v"' (v 1 , ... ,vk) ·.:.. 0. As the test (2.4.45) is Bayes against any simple 

alternative on the half-line L : µ. = pv. (i='l,2., ... ,k), p > O, this test has 
\! l l 

for a .. , 0 limiting maximum shortcoming one that is reached on every half-line 

through the origin in the positive orthant with the exception of\> (cf.theorem 

2, l+, 1). On Lv the shortcoming is of course identically eg_ual to zero for all a. 

In particular this J.s true for symmetrie linear combination: reject H if 

( 2. L,, 46) 
k 
I x. > u ✓k. 

i=1 ·-1 - a 

For reasons of symmetry the maximum shortcoming of this test is smaller than that 

of' any other linear combination procedure, Obviously the maximum shortcoming is 

reached on the k edges of the parameter space. Symmetric linear combination has 

been strongly advocated by SCHAAFSMA ( [45] , [l>6]), who calls ( 2 .4 ,46) the most 

stringent somewhere most powerful (MSSMP) size-a test. 
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Finally we consider the weighted FISHER procedures that re,iect H if 

(2.4.4'7) 
k 
TI 

i=1 

V. 

[1 - <!>(x. )J l < C 
-i - a 

where v 1 , v 2 , ... ;vk are non-identical positive constants. 'l'hese tests have been 

considered by I.J. GOOD [18] who derived a method for determining the critical 

value c in the case where all v. are different. Proceeding as in the proof of 
a l 

lemma 2.4.3 it can be shown that these tests are admissible. One would expect 

that the shortcoming of these tests is reached on one (or more) of the edges 

of the parameter space, but this is not easily proved since lemma 2.3.2 does 

not apply. However that may be, we shall show that the maximum shortcoming of 

the test (2.1..47) tends to one for a ➔ o. 
To simplify the notation, we assume without loss of generality that Iv.= 1 

l. 

and that v 1 > 1!2 > 0. The boundary of the acceptance region of the test ( 2. ~. ~-7) 

cuts the x.-axis at 
J 

2 
,a 

Hence, applying ( 2. Jr. 3'.5) and ( 2. ~-. 36) with E"' ·1 , we find 

·I-v 1/v 1 
,a"' q,-1( [ c,l 1J 1)- <P-1( [ ca2 X -2,a 

for sufficiently small c . Since c -+ 0 for a ➔ o, the leading term of the last a a 
1 1 1 1 

expression is 2 2 (v; 2 - v~ 2 )(- Jog ca) 2 and consequently x2 ,a-

As x 1 > u , it follows that x -u ➔ "' for a + O. Let p(a),. 
,a a 2,a a 

where JJ "' ~ + x2 ) • 'l'hen it is easily verified that the a _,a 
(a) 

of (2.l+.47) at µ "' µ tends to one for a -+ O. 

➔oo for a -+ 0. 
,a 
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2,5, NUMERICAL COMPARISON OF SOME COMBINATION PROCEDURES 

In this section we study the shortcoming of so.me combination procedures 

for testing H against K in the normal case. 'rhe section is concluded with two 

remarks concerning more general combination methods, The procedures to be 

considered are 

(i) the MS exponential procedures (2,3.4), 

(ii) the LR tests (2.4.10), 

(:i.:i.i)FISHER's omnibus procedures (2.4.28), 

(iv) symmetric .linear procedures ( 2. 4. 46) . 

All computations were performed on the EL-X8 of the Mathemat:i.sch Centrum, with 

programs written :i.n ALGOL 60. The figures were drawn by a plotter attached to 

the EL-X1. 

First we make some remarks on the determination of the parameters r(a) and 

c of the exponential procedures of theorem 2.3.1. 

For k=2 we used the following method. For any given values rand c of the 

parameters the power function S (or its derivative) in any given point was r,c 
computed with the aid of a numerical integration procedure based on SIMPSON's 

rule. The repeated integrals were reduced to single integrals by direct 

approximation to the standard normal distribution function iJ). Suppose the 

significance level a is given. Then for any given r the corresponding critical 

value of the test was determined as the zero of the function 13 ( 0 ,O) - a r,c 
(considered as a function of c) by an iterative procedure. Finally r(a) was 

found as the unique zero of the function 

where R r denotes the shortcoming of the exponential procedure with para-

meters rand er.This process could easily be executed with high precision, 

Having found the parameters r( a) and c( a), it is very simple to compute the 

maximum shortcoming on the half-lines µ2=o,µ 1 > 0 and µ 1 =µ 2 > O. 

For k=3 a more delicate approach was necessary, since the computation 

of the power functions and their derivatives involves repeated numerical 

, which is rather time-consuming if good precision is wanted. 
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In this case a stepwise procedure was used, approximating r(a) a.nd c(a) step 

by step and simultaneously modifying the tolerances of the numerical inetegration 

procedures at each step. Once r(a) and c(a.) are determined, it is relatively 

easy to compute the maximum shortcoming on the three half-lines µ2=µ 3=o,µ 1 > O; 

µ2:µ3 > O, µ1=0 a.nd µ1:µ2:µ3 > O. 

As was already mentioned in section 2.3, exponential combination turned 

out to be MS for k=2, a> a 0 ~ 0.043 and for k=3, a=o.1, but not for k=3, ~=0.05. 

For k=2, a=0.1 or a=0.05 and for k=3, a.=0.1 the MS procedures are given by (2.3.14), 

(2.3,15) and (2,3.17) respectively. 

The computation of the (maximum) shortcoming of the combination procedures 

(ii), (iii) and (iv) is much easier, because the test statistics do not depend 

on a.. 

The boundaries of the acceptance regions of the four tests for k=2 and a=0.05 

and a'-"0,001 are sketched in fig. 2.5.1 and fig 2.5.2 respectively; in the latter 

case exponential combination is omitted because it is not MS for a.=0,001. 

In table 2.5.1 the maximum shortcoming of the four tests on the half-lines 

µ2=o, µ 1 > 0 and µ 1=µ2 > 0 is given for k=2 and a number of signifance levels a., 

Table 2,5,2 shows the maximum shortcoming of these tests on the half-lines 

µ2=µ 3= O, µ 1 > 0 and µ 1=µ 2=µ 3 > 0 for k=3 and some values of a. 

Exponential combination is onl~ included for those values of a for which the pro­

ce.dure is MS. We recall that the procedures ( i) , (ii) and (iii) assume their 

maximum shortcoming on the edges of the para.meter space (cf. section ~.4); 

whenever exponential combination is MS it also assumes its maximum shortcoming 

on this set (cf.section 2.3). 

To obtain a better impression of the performance of the four tests than by 

their maximum shortcoming alone, the shortcoming of the tests has also been 

sketched with the aid of lines of equal shortcoming in the figures 2,5,3 through 

2.5.6 for k=2 and a=0.05 and in the figures 2,5,7 through 2.5.9 for k=2 and 

a=0.001 (exponential combination was again omitted in the latter case). 

More numerical details about symmetric linear combination and exponential 

combination are given in a report(TW-40 (1967), University of Groningen) by 

H.J. VAN LINDE, W. SCHAAFSMA and D. VELVIS. 

Inspection of table 2.5.1 and the figures 2.5,3 through 2.5,9 permits us to 

draw the following tentative conclusions for the case k=2. 
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4 

3 

4 

Fig. 2.5.1, Boundaries of the acceptance regions of 

4 symmetric tests; size a= .05, 

Fig. 2.5.2. Boundaries of the acceptance regions of 

3 symmetric tests; size a= .001, 



size a 

• 1 

.05 

.025 

.01 

.005 

.001 

.0001 

104 

exponential LR FISHER's symmetric 

half-line combination test procedure linear comb , 

µl'o, µ >0 .108 .108 • 121 .213 
1 

µ1"'µ2 >0 .068 .059 .022 0 

µ2=0, µJ >0 .107 • 110 .130 ,255 

µ1=µ2 >0 .099 .064 .025 0 

µ2==0, µ1>0 • 110 .136 .292 

µ1=µ2 >0 .068 .028 0 

112=0' µ1>0 .109 , 1 li 1 ,33J+ 

µ1:::µ2 >0 .072 .030 0 

µ,,=o, 1.11>0 .108 • 143 .363 
<. .. 

µ1=µ2 >0 .073 .032 0 

µ2::::0, µ 1 >0 .105 • 1J+6 ,l+22 

ll{'l/2 >Q .075 .035 0 
------

µ2=0, µ 1 >0 .100 • 1 l+6 .491 

µ1=µ2 >0 .075 .037 0 

Table 2. 5. 1 . Maximum shortcoming of 4 symmetric combination procedures 

for k=2 on the half-lines i12"'o, µ 1 > 0 and µ 1=µ 2 > O. 

}
4 or moderate values of a the maximum shortcoming of the LR procedure is barely 

larger than the shortcoming of the MS (exponential) test. For alternatives in the 

central part of the parameter space the LR test is slightly more powerful than the 

113 test for a=. 1 and . 05. As the LR test approaches the MS test for a -+ 0 ( theorem 

2 ,l+. 2, cf. also lemma 2. 4. 4) , we expect that the maximum shortcoming of the LR test 

will remain close to the minimax shortcoming for small values of a,, Hence the LR test 

may as well be applied as the more complicated MS test if a small maximum shortcoming 

is wanted. FISHER's test is somewhat more powerful than the LR test against alternati­

ves in the central part of the parameter space and somewhat .less powerful against 

alternatives along the edges. 



size 

• 1 

.05 

.025 

.01 

.005 

.001 

105 

exponential LR F'ISHER's symmetric 

half-line combination test test linear comb. 

µ2=113=0, µ1 >O • 167 .170 • 193 ,327 

µ 1 "'112 =µ 3 >O • 112 .085 .031 0 

, )J 1 >0 .175 .209 .389 

)J 1=112=113 >o .094 .035 0 

µ2"'\J3"' 0 • )J 1 >O • 176 .220 .441 

µ1"'\.12"')J3 >O • 101 ,039 0 

)J2"')J3"'0 ' )J 1 >O , 176 .229 .500 

\.11"'\.12"'\.13 >O , 108 .043 0 

JJ2"'JJ3"'0, )J 1 >O , 175 .234 ,539 

µ 1"'JJ/"ll3 >O , 111 .oh6 0 

\.I =11 =O, 
2 3 µ1 >O • 172 .240 .615 

µ ·i"'J.12"'µ3 >O • 116 .050 0 

'rable 2. 5. 2. Maximum shortcoming of 4 symmetric combination procedures 

for k=3 on the half-lines µ 2=µ 3=o µ 1>0 and µ 1=µ 2=µ 3>0, 

In section 2. 4 it was shown that the maximum shortcoming of both FISHER I s and 

the LR test tends to zero for ti + 0; the numerical results indicate that this con­

vergence is very slow (cf. lemma 2.4.3), Since the maximum shortcoming of both 

tests is not very large at the usual significance levels (about 11% for the LR 

procedure and 12-14% for FISHER' s test)• they appear to be satisfactory combination 

procedures for k=2 if no prior information about the alternatives is available. 

The shortcoming of the symmetric linear procedure shows a quite different pattern; 

this test is of course very powerf1.Ll against alternatives in the central part of 

the parameter space but rather insensitive to alternatives close to the edges, 

especially for small values of o: (cf. section 2,4). 'l'his suggests that symmetric 

linear combination should only be applied if there is some prior information indi-

that i1 1 and are not widely different, 
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4 

3 

2 

Fig. 2,5,3, Lines of equal shortcoming of the exponential 

procedure (in percents); size a= .05 and k = 2. 

4 

3 

2 

Fig. 2.5.4. Lines of equal shortcoming of the LR test 

(in percents); size a= ,05 and k = 2. 



tµ 
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Fig. 2.5.5, Lines of equal shortcoming of FlSHER's test 

(in percents); size a= ,05 and k = 2. 

Fig. 2.5.6. Lines of equal shortcoming of the symmetric 

linear test (in percents); size a= .05 and k = 2. 
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Fig. 2.5.7. Lines of equal shortcoming of the LR test 

(in percents); size a= .001 and k = 2. 

L----.....I..--L--.I-Ll-..L...L._.;;......1.....:::=-....:l!....,;:,.._:..,...l.,_..)J!➔µ, 

Fig. 2.5.8. Lines of equal shortcoming of FISHER's test 

(in percents); size a= .001 and k = 2. 
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tµ,:, , __ 

4 38 
32 

26 
20 

1 I+ 

L ___ _j_.L-l....l.....LLU.L.LU..""~C.L.::...::...:::::;;_J...::::::,..,;a,.,;:"""',..,,. +p 1 

Fig. 2.5,9, Lines of equal shortcoming of the symmetric 

linear test (in percents); size a= ,001 and k = 2. 

For k=3 numerical evidence is scarcer. It is seen from table 2,5,2 that in 

this case the maximum shortcoming of the tests considered is much larger than for 

k"'? Nevertheless, in the absence of prior information the LR test and FISHER's 

test seem to ·be good combination procedures, FISHER's test being more 

powerful against alternatives in the central part of the parameter space and less 

powerful against alternatives near the edges, 

For k>3 numerical data about FISHER's test and the LR procedure are not avail­

able. However, we expect that for increasing k the maximum shortcoming of these 

tests ( and of any other test) will increase rapidly (cf, [4~ th. 5), and hence the 

advantage of a relatively small maximum shortcoming of the LR test and F'ISHER' s 

test will diminish accordingly, One might say that, the larger k, the more impor-

tant it is to have some prior knowledge about most alternatives. 

In section 1.6 linear combination procedures were considered for some well­

known non-normal combination problems, It was asserted (cf. page 41) that the test 

based on the sum of the standardized individual test statistics is optimal in some 

sense among all linear combination procedures in the large sample case. 
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The individual test statistics considered in the examples of section 1.6 are 

asymptotically normal and hence, for increasing sample sizes, the shortcoming 

of the linear procedures is asymptotically equal to the shortcoming of the corres­

ponding tests of H against Kin the normal case by the theory of section 2.1. The 

test based on the sum of the standardized individual test statistics corresponds 

to the symmetric linear combination procedure (2.4.46) for testing H against K. 

It follows that in the large sample case the test based on the sum of the standard­

ized test statistics has a smaller maximum shortcoming than any other linear com­

bination procedure. This property holds quite generally whenever the individual 

test statistics are asymptotically normal. 

J. HEMELRIJK [21] suggested a different general approach to the combination 

problem if the densities of the individual test statistics t. belong to an ex-
-:i. 

ponential family of the form (1.6.2) and are based on samples of observations of 

size ni (i=1,2, •••• k). The parameter e 1, ••• , ek being unknown, estimators 

,i1, •••• 1k of the parameters may be obtained from the respective samples and the 

optimal test of H against 8=(e 1 , ••• ,0k) may be constructed (cf.(1.6.3)). The 

resulting combination procedure (with ! 1 , •••• ~ considered as random variables 

and due modification of the critical value) may be expected to possess good power 

properties in the large sample case if the method of estimation is efficient. 

Curiously enough it turns out that, for fixed a, the maximum shortcoming of such 

procedures does not necessarily tend to zero for n.+ 00 (i=1,2, ••• ,k). In fact, the-
i 

se tests are often equivalent to LR tests. 

Example 2.5. 1 

Let x., 1 • • ' ' •X.1 ; • ' ' ; y_ 1 • ' ' • ·~ • ,n, ""11:, •~ 

be k samples of independent observations with normal N(µ. ,1) distributions 
i 

(i=1,2, ••• ,k). The sample means :£.,.••·••~.constitute a set of sufficient statistics 

and the MP test of H: µ = 0 against a simple alternative µ 1 .> O rejects H for 
1 -

large values of the statistics l n~ µ!~. Substitution of the maximum likelihood 
• A ., i 1 1. ~. ., • 

estimators : !:!· "'v. if v. >0 • µ. = 0 if v . .::_ 0 (i==1,2,.,. ,k) yields the 
i """J., -i. -:1 """1, 

test that rejects H for large values of the statistic 

~ .n. 
i 

i.e. the LR test of H against K: µ .> O. Its maximum shortcoming is equal to 

that of the LR test (2.4.10). 
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CHAPTER 3. COMBINATION OF ONE SAMPLE t-TESTS 

3.1. OBSERVATIONS WITH EQUAL VARIANCES 

Let 

Z.1 1 '' ' • ,X1 ; • ' • ; ;y_k 1 ' •• ' '~ , ,n1 , ,nk 

be k samples of independent observations with normal N(v. ,er?) distributions 
i i 

(i=1,2, ..• ,k). In this section we assume 

One wishes to test the hypothesis 

* 0 
H : v "' ( v 1 ' • ' ' 'vk) "' v 

against the one-sided alternative 

0 
\) 

2 
(J > o. 

Here v0 is a given vector and cr2 an (unkno,m) nuisance parameter. 

Then 

and 

2 s = 

-1 
n. 

i 

k 

.l 
1.=1 

constitute a set of sufficient statistics. Putting 

(~. 
0 

/n. x. "' - \).) i=1,2, ••• ,k 
-:i l i 

( \). 0 In. :i.=1,2, ••• ,k µ. "' - \). ) 
l i i i 

k 
N= l (n. - 1 ) 

' :i.::::1 J. 

we obtain the following canonical form of' the combination problem. 

The random variables ~ 1 , ~, ..• •~ are independent and normally distributed 
. . 2 . . 82 . 

with common variance a and expectations E~ = µi .:::._ 0 for 1=1,2, .•. ,k, _ is 

independent of the .!.j_ and is distributed as o2~ , where ~ has a chi-sg_uare 

distribution with N degrees of freedom. The hypothesis to be tested is 
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against 

K µ .> O. 

In section 2,1 (example 2.1.1) the large sample approach to this combination 

problem was considered. In the large sample case we may apply one of the com­

bination methods of section 2.5 to the t-statistics 

(3,1.1) i=1,2, ••• ,k 

because the are asymptotically normal and independent for N + "'• In this 

section we study the small sample case. 

Let 

nH"' (µ,o) 

~"" { (µ,o) 

µ=0,o>O}, 

µ =µ. ;:::_ 0, CJ > O} 

and consider the group G of transformations g of the sample space 

g 
➔ 

, C > 0, 

This group induces a group G of transformations g of' the parameter space 

( µ 1 ''' '' µk ,o) 
g 
+ 

which leaves QH and QK invariant. Obviously 

is a maximal invariant under G. The power function of any test based on this 

maximal invariant depends only on 

the maximal invariant und.er G (cf.section 1.3), 

It is well-known that the envelope power is a function of the maximal 

invariant under G only. Moreover, the envelope power remains unchanged if we 

test H against the extended alternative 

2 
K' : µ :¢ 0 , a > O. 

Since this testing problem is invariant under the group of orthogonal trans-
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formations applied to µ 1/a, .•. ,µk/0, the envelope power is a function of the 

maximal invariant 

of this group only. 

The envelope power can be determined by the same line of argument that 

E.L LEHMANN and C.M. STEIN [32] used to derive the most powerful test of H 

against a simple alternative for k=1. It turns out that for a < ; the most 

powerful size-a test of H against the simple alternative (µ,cr) rejects H if 

where 

f [ x. - 1µi {1 + (1 + 4(N + k)a2cr2M- 1)~} ] 2 + '§.2 < 
i= 1 --'l. 

k 
M:::: \' l 

i=1 

2 
jl. 

1. 

and a and b are positive numbers, depending on N + k and a, determined by the 

relations 

where 

Q(a,b) :::: sup Q(a' ,b) "' a 
a 1 >0 

b < N + k, 

k 
Q(a,b) = P( l 

i=1 

2 2 
(u. - a) < (N + k - b)a) 

--:L -

and E:, •.l½• ... ,~ are independent and normally N(O, 1) distributed, Hence, for 

a<~, the envelope power is equal to 

( (µ,a)"' 

"'P(x• 2 < (1 - b(N + kf 1 )M cr-2 {1+(1 + l+(N + k)a2a~- 1 )~}2 ), 
-N+k -

where ~!k has a non-central chi-square distribution with NH: degrees of freedom 

and non-centrality parameter 

The complicated nature of the emrelope power function suggests that without 
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further restrictions combination methods with attractive theoretical pro­

perties will be hard to find. 

In many testing problems the class of tests to be considered is restrict-

ed to unbiased, similar or invariant tests. In this connection it is enlightening 

to note that by lemma 1.3.1 a MS test for testing H against K exists that is 

invariant under G.As our interest is focussed on tests with a small maximum 

shortcoming, this result suggests a restriction to tests which are invariant 

under G. At this point the g_uestion arises whether the shortcoming of an in­

variant test with respect to the envelope power (3.1.2) is still an adequate 

measure of its performance. It seems more natural to measure the shortcoming 

of invariant tests with respect to envelope invariant power, i.e. with respect 

to the supremum of the power taken over all invariant size-Cl tests. 

Henceforth we shall restrict our attention to invariant tests,Le. to tests 

based on the statistics 11 ,~, ... ,ik, and measure their performance by the 

shortcoming with respect to the envelope invariant power function. Without 
2 loss of generality we assume that o =1. The parameter space then reduces to the 

set {µI µ .::_ 0 } . The joint density of :t_1 ,~, ••• ,4 is easily derived from the 

joint distribution of l'c1 •½, ... '~k and Ji ; in the general case we find 

(3. 1.3) 

f 
0 

(N+k-2) [ v ~ 
exp - 2 - 2N l 

i=1 

where the integral can also be written as 

(3,1.4) 1 k 2 1 k 2 -1(N+k) 
exp(- 2 l µ. ) • [ 1 + N l t. J 

i=1 i i= 1 i 

00J ~(N+k-2) [ 
V exp 

0 

Under H this density reduces to 

( 3. 1 • 5) 

Y.. + 
2 

k 

I 
i=1 

dv, 

F'irst we determine the most powerful invariant size-a test of' H against a 

simple alternative, 
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Lemma 3,1.1 

The most powerful invariant size-a test of H against a simple alternative 

µ rejects H if 

k 
( 3. 1.6) I 

i=1 

where 

(3. L'r) 

and t denotes the upper a-point of the t-distribution with v degrews of freedom. v;a 

Proof: 

From the NEYMAN-PEARSON lemma and (3.1,3) through (3.1,5) we find that the most 

powerful (MP) invariant size-Q!. test of H againstµ rejects H for large values 

of the statistic 

00f HN+k-2) [ V + (N + ¥ t2)-! ~ f J d V exp - :3" l . V l µ.t. v, 
- i=1 7 - i==1 l.."""'.I. 

0 
2 1 

that is, for large values of (N+I t. r2 LJJ.t .• To determine the critical value 
---i 1---i 

, we note that un.der H the distribution of the vector i is rotation in-

variant (cf. 1 . 5) ) . Hence 

k 
P( I 

i=1 
µ.t.(N + 

1.---i 

* \ 2 -~ . where d "' d ( l µ. ) • SJ.nee the event 
a, Ci, • 1. 

is equivalent to 

and hence to 

1. k 
(N + l t~)-i > a.* 

t (N + 
-1 

i,;;1 -1. a, 

> d 
- a, 

I H) 

> a* I H), 
Ci, 



116 

2 k 2 _1 * ¾-f' 
(_S + ' x.) 2 > d (1-d ) 

.!1 i ;;2 ---i - a a 

d*- obviously must be solved from the eq_uation 
a 

-, 

(N+k-1)-~tN+k-1;a 

'rhis immediately yields ( 3. 1 . 7). Q.E.D. 

The class of MP invariant size-a tests has also been obtained in a 

different notation) by W. SCRA.AFSMA [45] (cf, also [44] ) , who proved that the 

tests (3.1.6) are in fact the MP similar size-a tests of H against simple al­

ternatives. 

Performing an orthogonal transformation of the sample space it is easily 

verified 
\ 2 . l µ. and . ]. 
l 

(3.L8) 

+ that the envelope invariant power function 13 . 
a,inv 

is equal to 

,inv 
( µ) = P( t I > 

-N+k-1 -- 1 ;a) ' 

only depends on 

where 1i1♦ k-l has a non-central 

and non-centrality parameter (z 
l 

The critical region of the 

t-distribution with N+k-1 degrees of freedom 
2 1 

µ. ) 2. 
l 

test (3,1,6) is, for a<~, one solid sheet 

of a hyperbole of revolution int-space. The tangent half-cone of this sheet 

has vertex O (the origin), an axis orthogonal to the hyperplane lµ.t. "'0 
. l l 

and semi-angle ]. 

1 
arc tn { (N+k-1) 2 /tN+k-l ;a } , 

SCHAAFSMA has shown that the symmetric test which rejects !-I if 

k k 
t~)-~ (3. 1.9) I (N + I > 

i=1 -J 

is MB among the class of tests (3, ·1.6); he calls it the MBSMP similar size-a 

test. !-le also demonstrated that a urdg_ue MSSMP similar size-a test exists if 

and only if the condition 

(3.L10) ) > 
2 

1 ) t 
N+k-1 ;a 
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is satisfied; if not, the solid tangent half-cone of the critical region 

defined by (3.1.9) is a proper subset of the positive orthant and the maximum 

shortcoming of every MP invariant size-a test is equal to one. In applications 

a will not often be so small that the inequality (3.1.10) is not satisfied. 

Nevertheless, compared with the symmetric linear size-a test procedure (2.4.46) 

in the normal case with unit variances, the test (3,1.9) undoubtedly has a 

stronger tendency to concentrate its power on alternatives near the central 

half-line µ 1 = l.! 2 = ••• = µk > O of the positive orthant and hence it does not 

appear to be very satisfactory from an overall point of view (SCHAAFSMA does 

not share this opinion, cf. [45] ch.4). 

In the case of known variances treated in chapter 2 the admissible tests 

for the one-sided. combination problem were characterized as the tests with a.e. 

convex and monotone acceptance regions (cf. lemma 1.4.6). This result does 

not immediately extend to the present problem, as is demonstrated by the Bayes 

tests (3,1.6) whose acceptance regions are neither convex nor monotone, However, 

by applying the transformation 

(3.L11) 

we obtain a theorem result. We note that under this 

transformation (N + ~ 

of the transformatiofi 

similar to BIRNBAUM's 

t~) transforms ( 'I' z2.) - 1 into N 1 - l and that the Jacobian 
1. 

is equal to 
1k k 2 

N2 ( 1 - L z. ) 
i==1 1 

i 1. 

Hence we find from (3.1,3) and (3.1.4) that in the general case the density 

of , .. , ,~ is given by 

(3.1.12) 

k 
I;' for l 

i:::: 1 
< 1 and O elsewhere, where 

(N+k-2) [ v 
exp - 2 + 

k 
l µ. z.J dv 

i=1 1 1 
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We note that the MP invariant size-o. tests ( 3. 1 . 6) transform into linear 

procedures in z-space which reject H if 

(3.1.13) 

Theorem 3.1.1 

The class W 
a 

k 

I 
i=1 

µ, z, > d 
l-:1. - a 

of size-a tests of H with a.e. convex and monotone acceptance 

regions in z~space is minimal complete for testing H against K among invariant 

size-a tests. 

Proof: 

To prove the theorem we essentially use BIRNBAUM's approach (cf. [5]). The 

proof is given in several steps; technical details are omitted. (i)Since 

f(z;µ)/f(z;O) is convex in z and f(z;µ) has strict MLR in z, theorems 1.4.1 

and 1. 4. 3 imply that W is essentially complete. (ii) The class W is complete. 
a a 

To prove this property it is convenient to return to the class of all, not 

necessarily invariant,si.ze-a tests and to the original parameter space (with 

a2 > 0). The joint density of E.1 '½, . .. ,~, '§.2 is an exponential family with 

parameters µ,;c/,µ 2/c/, ... ,µk/a 2 and 1/a2 . Since such a family is boundedly 

complete, equality of the power functions of two size-a tests implies equality 

of their critical functions a. e. As the invariant tests are a s1ibclass of all 

size-a tests, essential completeness of W implies completeness of' W. 
a a 

(iii) The class Waminimal complete.Since thesample space is the solid unit hyper-

sphere and hence bounded, the same argument that .BIRNBAUM used to prove theorem 

3 of [5] can be adapted to prove minimal completeness of W. BIRNBAUM's 
a 

assumption that the distributions of the statistics constitute an exponential 

family is not satisfied by the joint distribution of .&1 , ••• ,~ but their 

distribution possesses all the properties that are required in BIRNBAUM's 

proof'. Q.E.D. 

In chapter 2 it was shown (theorem 2.2.2) that in the case of exponential 

family distributions under some mild conditions the shortcoming of every ad­

missible test has a unique maximum on each half-line through the origin in the 

para.meter space. Since the proof of theorem 2.2.2 on the independence of 

the random variables, it cannot be adapted to the present problem and it is 
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still unknown whether the shortcoming of admissible invariant procedures has 

unique maxima on half-lines through the origin in the parameter space. This 

implies that the construction of MS tests by the method of section 2.3 cannot 

be justified here. 

However, a lemma similar to lemma 2.3.2 does hold for the present combination 

problem. 

Lemma 3.1.2 

Let A be the acceptance region of an invariant test i5 int-space satisfying 

the following conditions: 

(i) the set A is symmetric in t 1 ,t2 , ••• ,tk; 

(ii) the set A is monotone; this implies the existence of a function a such 

that A can be written as 

(iii) the function a d.efined in (ii) has continuous first order partial deri­

vatives on the interval where a is finite. 

Let the functions g and t 0 be defined by 

cl 
g(t2,···,tk) "'t2 + a(t2•···,tk). at2 a(t2•···,tk) 

a ( t O ( t 3 , ... , tk ) , t J , ... , tk) = t O ( t 3 '° "' , t k) • 

Then, if g is nonpositive on the interval - 00 < t 2 < t 0 (t3, ... ,tk) for all 

t 3 , ••• ,tk for which g is defined, the maximum shortcoming of o can only be 

attained on the edges of the parameter space, i.e. on the set Q t defined res·r 
by (2.3.3). 

Proof: 

Since the envelope invariant power function is constant on hyperspheres 
2 ?µi = constant, the method of proof of lemma 2.3,2 carries over to the present 

~roblem, The joint density ( 3, 1 , 3) of t 1 •-½,. , . ,.:!q,_ looks very much like a 

jointly normal density if we disregard the integration with respect to the 

variable v, As we can perform all the operations of the proof of lemma 2.3,2 
1 

under this integral sign and the factors v 2 arising f'rom differentiation 

and partial integration cancel out in the f'inal expression corresponding to 

(2,3,10), the desired result follows by similar arguments, Q,.E.D, 
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Hence the computation of the maximum shortcoming of a test satisfying 

the requirements of this lemma is relatively easy. 

In chapter 2 we found that the LR test and FISHER' s combination pro­

cedure are rather satisfactory combination methods in the case where the 

variances are known. FISHER's procedure cannot be applied to the present 

problem, because the statistics !,1 •~, ..• ,~ are not independent. However, 

the LR test can easily be obtained. Starting from the joint d:i.str:i.but:i.on 
2 ( 2 ) . of ~ 1 ,J½, . .. •l!":i, and _§_ with 0 > O , we frnd that the LR test rejects H if 

(3.1.14) 

or equivalently, if 

k 
{ I 

i=1 

82 + 

where T > 0 is a constant such that the size of the test is a. We note that 
Cl 

the LR test exists only for a < 1 - , since the acceptance region A1 R ,a in 

t-space of the test ( 3. ·1. 15) strictly contains the negs.ti ve orthant. In the 

positive orthant the region ALR,a is bounded by a hypersphere with radius 

IN and centre O. 

As the test (3.1.15) is a function of !,1,~,·•·,~ only, it is invariant. 

In z-space the acceptance region assumes the form 

.A = LR,a 

(cf. ( 2. !1 .• 10)), and since the region is convex and monotone, the LR test is an 

admissible invariant test by theorem 3.1.1. Moreover, the LR test satisfies 

the conditions of lemma 3,1,2 and hence its maximum shortcoming is attained 

on the edges of the parameter space. 

To determine the critical value , 2 of the size-a LR test we consider 
a 

(3.1.14). the test statistic in (3,·1.·14) by 1-rn we have under H 

2 
a = P(!rn .:.. Ta) 

k l 2 
l (J:)P(!_LR.:.. TD:1~1>0, ••• 

j=1 
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. P(x1>o, ... ,x.>O,x.+1<o, ... ,x. <O) 
- -J -J - 71.-

(3. L 16) 
k 
1 (~) ( N+k-~ 2) 
l p £J· ,N+k-J . .:::_ J. 'a ' 

j=1 ,1 

where E.j,N+k-j has an F-distribution with j and N+k-j degrees of' freedom. 
2 the aid of a computer ,: can easily be solved from equation (3, 1.16). 

2 a 2 
Since §. /N converges in probability to a for N -=, the LR test a.ppr 

2 . 
for N + 00 the LR test in the case of knmm a . In particular, 

lim 
N-+-00 

With 

ches 

where p!,a is the critical value of the LR test 2in the case of unit variances 

(cf.(2.4.1Q)). In table 3,1.1 some values of Ni: are shown. 
Ct 

We note that HEMELRLJK' s suggestion (cf'. section 1. 5) to insert efficient 

estimators of the µ. in the MP invariant test ( 3. 1 • 6) again leads to the LR 
i 

test if theµ. are estimated by maximum likelihood. 
1. 

In section 2.h it was shown that the LR test for the problem of testing 

H against K with o2 known is asymptotically optimal for a+O, i.e. its shortcoming 

tends Wliformly to z,ero for a + O. This property does not extend to the present 

bl 't• 2 t' f f" d N d k ' . h t pro em w1. · n o unknown; on ,1e contrary, or 1xe an . . t,1e maximum s or -

coming of the LR test tends to one for o. + O on each half-line through the 

origin in the parameter space. We shall not prove this assertion but a more 

general result showing that for sufficiently small values of a: the maximum 

shortcoming of every combination procedure is close to one. 

Theorem 3,1.2 

For a:+ 0 and N and k fixed the maximum shortcoming (with respect to envelope 

invariant power) of the MS invariant si:z,e-o. tests of H against K tends to one. 

Proof: 

First we derive an asymptotic expression fort f'or a+ O. Omitting 
N+k-1 ;o. 

the index N+k-1, we find from the definition of the t-distribution 
1 00 2 '( ) 

a= { B(N+2k' _21)} -l(N+k-1)-2 f(1+ __:L_..)-2.N+k dt 
t N+k-1 

Cl, 
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C! 

N .2 • I • I) 5 .025 . 01 .005 .001 

2 2.240 5,414 11.434 

4 1. 981 4.010 6.886 10.922 18.836 27.66 64.28 

6 1. 896 3,623 5,839 8.641 13.489 18.259 34,56 

8 1. 853 3,443 5,381 7,708 11.485 14.978 25.82 

10 1 .827 3,339 5. 126 7,203 10.451 13,343 21.82 

12 1.810 3,272 4.963 6.888 9.823 12.370 19.563 

15 1. 793 3.205 4.806 6.589 9.240 11.484 17,590 

20 1. 776 3,140 4.654 6.305 8.697 10.670 15.838 

30 1. 759 3,076 4.508 6.036 8. 194 9,929 14.307 

1. 725 2.952 4.231 5,537 7.289 8.628 1 L 763 

•ra.ble 3.1.1. 2 2 
Some values of NT 00 fork"' 2, where ta is the 

critical value of the LR test (3,1,15). 
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for ➔ oo (i,e, for a ➔ o), and hence 

(3.L17) t 1 ) ) for a ➔ O, 
a 

where y N,k only depends on N and k. 

C . d . 1 lt . (a) ( ) Th onsi. er a simp ea .ernative µ = µ 1 , o, ... ,o ,.,c,"u·""' on a, e 
,Ci 

MP invariant size-a test of H against this alternative ects H if (cf. (3, 1.6)) 

or equivalently, for a< ~' if 

where by ( 3. 1 • ·7) 

Since under the alternative 

that 

(3. L 18) 

if and only if 

or equi v-alently, by 

lim 
o,;➔Q 

(3.1.17), 

has a normal 

"' 00 

if and only if' 

(3,1,19) lim l.l 1 ,a 
1/(N+k-1) 

a = co 

a➔O 

Also 

( 3. 1 . 20) lim 
,inv 

(µ(a)) = 0 
a➔O 

if and only if' 

(3.1.21) lim µ 1 ,a 
1/(N+k-1) 

"' o. a 
a➔O 

µ 1 , 1) distribution, it follows 
,a 

We recall that the critical int-space of the MP invariant size-a 
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test against a simple alternati'lre is one solid sheet of a k-dimensional 

hyperbole of revolution, whose tangent half-cone has a semi-angle 
1 3 

arctn { (N+k-1) 2 /t } • Since arctn z = z + (J ( z ) for z + O, we obtain from 
a 

(3.1. 17) 
1 

arctn { (N+k-1) 2 /t } = 
a 

Hence, for sufficiently small a, there exist at least 

( 3. 1 .22) m 
Ct 

K -1/(N+k-1)} 
= entier{ 5 YN,k a 

half-lines in the parameter space through the origin, 1 1 , •. ,,L say, 
,a ma,a 

such that the critical regions int-space of the MP invariant si.ze-o: tests 

against alternatives on these half-lines are disjoint. Let T. be the 
J,Ct 

critical region of the MP invariant size-a test against alternatives on 

L. (j=1,2, ••• ,m ), and let TMS denote the critical region of the MS 
J ,a a ,a "' 

invariant size-a test. Furthermore let T _. a = T. f\ T'""" , ,2, ..• ,!lb, 
,] , J ,a ~= ,a 

Then there exists an index j=ja such that 

(3.1.23) P(~. I H)< 
J a 
a' 

Now choose an . -(a) al.ternat1.ve \J on 

(3.1.24) 

From (3. 1.23) we find 

a/ma. 

L. whose coordinates satisfy 
Ja,a 

[a1 + 1/{2(N+k-1 )}] -1/(N+k-1) 

where a'"' and is the critical region of the MP in variant size-a' 

test against ~ ( aJ. As the envelope invariant power function is invariant under 

rotations inµ-space, it follows from (3.1.18),(3.1.19) and (3.1.24) that 
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and from f3.1.20), (3.1.21) and (3.1.24) that 

',inv 

Hence 

lim 
a:➔O 
r(T. 1-(a)) 

J (J µ 
a' 

- P(TMS I µ ,a 
Q.E.D. 

As a simple consequence of theorem 3.1.2 we find that the max.imum short­

coming of every invariant size-a test tends to one for a-+ O. Of course it is 

rather unrealistic to let a tend to zero for fix.ed N. If we let N tend to in­

finity (a: fix.ed) the shortcoming of the MS invariant size-a tends to the short­

coming of the MS size-a test in the case where o2 is known and this short­

coming is uniformly small for small values of a (cf.section 2.4). Nevertheless 

theorem 3.1.2 indicates that the invariant combination procedures will have 

larger (maximum) shortcoming in the case where o2 is unknown than in the case 
'l 

where a'° is known. 

We note that the MS invariant size-a tests of the theorem, which are MS 

relative to envelope invariant power, do not necessarily coincide with MS size-a 

tests of the original testing problem unrestricted by invariance (although there 

exist such tests which are invariant!), since these tests are MS with respect 

to different risk functions. However, as the shortcoming with respect to envelope 

power is larger than the shortcoming with respect to envelope invariant power 

for all invariant tests and all alternatives in the original parameter space, 

theorem 3,1.2 also holds for the shortcoming with respect to envelope power 

of the MS tests of the testing problem unrestricted by invariance. 

'l'he simplest invariant combination procedure for testing H against K is of 

course the symrnetric linear procedure that rejects H if 

k 
(3.1.25) I 

i= 
t. > 
···-1. 

This test is admissible by theorem 3.1.1 and assumes its maximum shortcoming 

on the edges of the para.meter space by lemma 3. 1 • 2. Compared with the LR test 

it is more powerful for alternatives near the central half-lineµ ··•"'\Jk > 0 

and less powerful for alternatives near the edges of the parameter space, but; 

not in such a marked degree as the MSSMP test (3,1,9). For N --,.oo and f':i.xed a the 
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MSSMP test tends to the test (3.1 .25), 

Finally we mention the STUDENT t-test that arises if all the original 

observations in the k samples are pooled and a2 is estimated from the pooled 

sample. Obviously this test is the MP invariant test of H against alternatives 

with equal vi - v~ , or equivalently, against alternatives where µi=yln. ,Y >O 
l. 

( i== 1 ,2, ... ,k). Its maximum shortcoming heavily depends on the ratio's of the 

In. and its power is relatively small for alternatives with widely different 
l. 

v. - v?. Hence this test should only ·be applied if prior information indicates 
l. ]. 0 

that the vi - vi are nearly equal. 

Although numerical comparison of different invariant combination procedures 

is hardly feasible because of the complicated nature of the non-central dis­

tribution of !_1 ,12 , ... ,ik, we feel that if no prior information regarding the 

true means is available the LR test is the most adequate procedure for testing 

H against K since it gives the best protection against all alternatives 

simliltaneously. 

3. 2. OBSERVATIONS WI'.J:'H UNEQUAL VARIANCES 

In this section it will be assumed that 

Y..1 1 ' ' ' ' ,Y..1 , ,n 1 

are k samples of independent observations with normal N( v. ,o~) distributions 
l. l. 

(i=1,2, ... ,k). Then 

and 

n. 
l. 

I Li ,J· ' 
j=1 

. - v. 
,J --i. 

i=1,2, ... ,k, 

)2 
i=1,2 ... ,k, 

constitute a set of sufficient statistics. Setting 

(½. 
0 In., "' - v.) i=1,2, •.• ,k, 
l. l. 

"' ( V. - In. i=1,2, ..• ,k, 
l l. 

m. = n. - 1 
' i= ,2,. , . ,k, 

l l. 

the problem of testing against may be formulated as follows. 
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The random variables ~ 1 ,~2 , ... ,~ are independent and normally distributed 

with expectations Ex. = µ. > 0 and variances o~ for i=1 ,2, ... ,k, the random 
2 0 -i 2 :i.- l 

variables .§.1 , ~' , , • , ,~ are independent of each other and of the ~ and are 

distributed as o~ JS. 2 (i=1,2, ... ,k). 
l ID. 

]_ 

The hypothesis to be tested is 

H 

against 

2 
a.> 0 (i::::1,2,,..,k) 

l 

2 
a.> 0 (i=1,2, ... ,k). 

l 

In applications this testing problem is of more importance than the problem 

discussed in the preceding section (with equal o~). Unfortunately it turns out 

that the present problem is essentially more difficult and our attempts to obtain 

theoretical properties of combination procedures were defeated. There are two 

reasons for these difficulties: the fact that we have k (instead of one) nuisance 

parameters (1~, ••• ,o! and the untractabl.e form of the non-central t-distributions; 

the independence of the t-statistics is of little help. 

The testing probJ.em remains invariant under the group G of scale transforma­

tions g 
g 

(~1'''''~' £1•··,,~) ➔ (C1-2f.1•···,ck~'C1£1•···,ck~), 

where c 1 , ••• ,ck are positive. A maximal invariant under G is the set of' inde-

pendent t-statistics 

1 1 

( 3, 2. 1) 11 "' m~ ~/2-1 ' " · ' ~ "' rn: ~/~t · 

The power of any invariant test, i.e. any test based on 1 1 , ••• ,~, depends only 

on the parameters 

a maximal. invariant under the induced group G. 

Restricting our attention to invariant tests, we may assume without loss 
2 2 . . . . 

of generality that cr 1 "' ••• "'crk = 1. Each statistic~ has in the general. case 

a non-central t-distribution with m. degrees of freedom; the density function is 
l 

(3.2.2) p. (t. ;µ.) "' 
i l i 

acm.+1) , 1 
"" { 2 i ( 1Tm. ) 2rOm. )} -

l l 

00 Hm.-1) [. -, , ] 
l V 1 2 22 f v exp - - - -(t.v - µ.m.) 

0 __ 2 2mi l J. l 
dv, 
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where the integral may also be written as 

Application of the NEYMAN-PEARSON lemma yields that the MP invariant size-a: test 

of H against a simple alternativeµ rejects H if 

k 
II 

i::::1 
f 
0 

(mi-1) [ vi 2 -~ ~ J exp - -2 + (m.+t.) v. µ.t. dv 
. .. l l l ll 

where c is a suitable constant. Ifµ. > O and 
a l 

0 for ,i ;ti , this test reduces 

to the test 

reject H if 

But in general the critical value of the test (3.2.3) cannot easily be determined 

and hence it is virtually impossible to obtain the envelope invariant power 

function, except on the edges of the parameter space. 

We have not been able to characterize the admissible invariant test of H 

against K (cf. theorem 3.1.1); the class of invariant tests with a.e. monotone 

acceptance regions in t-space is essentially complete by theorem 1. 4. 3, but 

this class is suspected to contain many inadmissible procedures. 

The LR test of H against K is invariant and re,jects H if 

k -1 2 
' (m.+1) log {1 + m. t. I(O )(t.)} > c , 

i~ 1 l l -:1. ,"' -:1 -- a 
(3.2.4) 

where c is an appropriate constant. For not too small values of them. this test 
0: l 

is approximately equivalent to the test that rejects H if 

k 

J1 ~ I(O,co) (:q) ~- ca 

(cL (2.4.10)). Although in principle the critical value of this test can be 

computed, this test does not have much practical value because c depends on 
a 

m1 ,m2 , •.. ,D\_ and a and extensive tables would. be necessary. 

Linear combination of the gives rise to. the same difficulties; computation 

of the critical values is again a tedious affair since the convolution of (central) 

t~distributions does not have a nice form. 

Hence it appears that FISHER' s combination procedure applied to :t1 ,~, ... ,~ 
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is the only exact combination method that is readily available. The results 

of chapter 2 suggest that this might be a reasonable solution to the com­

bination problem. 

In the large sample case we have of course more vv~~~u~~~ ; symmetric 

linear combination of the ~ and the (approximate) LR test ( 3. 2. 5) with c ,/' p! ,a 

are then competitors of FISHER's procedure. 
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CHAPTER l,. RELATED ASYMPTOTIC RESUL'rS 

1+. 1. A GENERAL ASYMPTOTIC APPROACH 

In the preceding chapters we studied two asymptotic approaches to combination 

problems. 

In the first place we reduced quite general combination problems to the 

simpler problem of combining k independent normal random variables with unit 

variances. This was accomplished by letting the sample sizes tend to infinity 

for a fixed significance level a and relying on the asymptotic normality of many 

test statistics (section 2.1). 

Secondly we studied in section 2.4 and section 3.1 the shortcoming of test 

procedures for the normal combination problem and the combination oft-tests res­

pectively if the significance level a tends to zero. In the normal case we found 

that the shortcoming of the LR test tends uniformly to zero for a-+ O. If we 

have k samples from normal distributions with known variances (cf. example 2.5.1), 

this property of the LR test continues to hold. In some other combination problems 

the maximum shortcoming of the LR test also tends to zero for a -+ 0 . and fixed 

sample sizes. As an example we mention the combination of k tests of the hypothe-

S = SO . t S < S? ( . 1 2 k) h th 13 th 1 t ses i i agaJ.ns i 1 i= , , ••• , , w ere · e i are e sea e parame ·ers 

of gamma distributions with known shape parameters and sample of size from 

each of the k populations are available (cf. example 2.2,3), However, it was 

shown in chapter 3 (theorem 3,1.2) that if one-sample t-tests are to be combined, 

the maximum shortcoming of the LR combination procedure tends to one for a ➔ 0 

and fixed sample sizes. 

However, it does not seem to be very realistic to let a. tend to zero for 

fixed sample sizes ni (i=1,2, ... ,k). It is more natural to let the sample sizes 

tend to infinity and the significance level to zero simultaneously. In this setup 

both the probabilties of errors of the first and second kind tend to zero, More­

over, it is then possible to study the perormance of test procedures for non­

local alternatives, as opposed to the classical NEYMAN-PEARSON approach which 

prov-ides information on the power functions for near alternativ-es only. Of course 

one has to decide on the choice of a as a function of' the sample sizes and this 
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may be a difficult decision since simple rules of thumb are not (yet) available, 

One would expect that if the test statistics are asymptotically normal and 

the rate of convergence of a to zero as a function of the sample sizes is re­

latively slow, then the maximum shortcoming of the LR combination procedure 

will tend to zero as in the normal case. However, if the rate of convergence 

of a to zero is fast, the exi;reme tails of the distributions become essential 

and here the asymptotic normality breaks down. A different analysis is then 

necessary. 

In fact, W. HOEFFDING ( [2J] , [24] ) used this general asymptotic approach 

to study a quite different testing problem. He investigated the performance of 

the LR procedure for testing a hypothesis in multinomial distributions against 

general alternatives. He found that if the significance level ctN tends fast 

to zero as a function of the sample size N, the LR test is considerably more 

powerful than any other test which is sufficiently different from the LR test. 

For a more precise formulation we refer to [23] (cf. also [22] and [l.i-3] ) . 
In section 4.2 it will be shown that the maximum shortcoming of the LR test 

of a simple hypothesis :rn a multinomial distribution tends to zero if aN tends 

to zero slowly for N + 00 This property is based on the fact that the multi­

nomial distribution is asymptotically normal for N + 00 • 

The same kind of argument that we shall use to prove this result can also be 

applied to show that the LR procedure for combining k binomial tests of the 

hypotheses pi = p~ against pi > p~ (i"'1 ,2, ... ,k) has uniformly vanishing short­

coming if the sample sizes tend to infinity and ct tends slowly to zero as a 

function of the sample sizes. The proo:f of this property is more or less parallell 

to the proof of theorem 4,2.1 for multinomial distributions and is omitted because 

of its technical character. 

The study of the LR test in multinomial distributions is motivated by our 

feeling that in this case the LR test has a uniformly vanishing shortcoming 

for o.N + 0 not only if aN converges slowly but also if aN tends fast to zero, 

Further work on this subjec:t is in progress, 

4. 2, THE LIKELIHOOD RATIO TEST IN MULTINOMIAL DIS'rRIBUTIONS 

Let E.1 ,,!2 , .•. ,~ have a multinomial distribution with parameters p 1 ,p2 ,,., ,Pk, 



(4.2.1) 

where N is the sample 

point in the simplex 

(4.2.2) 

size, x + x + 
1 2 
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N! 

••• + ~ = N and p = ( 

k 
I I Yi= 1, Yi> 0 for i=1,2, ... ,k}. 

i== 1 

Let po be an arbitrary point of the set 

(4.2.3) 

We consid.er tests of the simple hypothesis 

H : p == 

against the composite alternative 

0 
K : p '-· 0. - {p } 

y. > O for i=1,2, ... ,k} 
l 

It is assumed that the significance level aN depends on Nin such a way that 

The s1 LR test of H against K rejects H if 

k 

I 
i=1 

possibly with randomization on the boundary of the critical region. The MP 

size- aN test of H against a simple alternative p = p' <:: rejects 

H if 

possibly with randomization on the boundary of the critical region. The critical 

value dN depends not only on N but also on the alternatives p' considered. 

Let s;(p) and SLR,N(p) denote the envelope power function and the power 

function of the L,.'9. test respectively for a given N ( we omit the subscript aN 

because it is a function of N). The shortcoming of the LR test for a given N is 

then denoted by 
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(4.2.6) 

We shall often make use of the notation vN"' wN' meaning that vN/wN ➔ 1 for 

N ·+ 00 • In the sequel the alternatives considered will usually depend on N. Never­

theless we shall often write p' instead of p' ). 

First we determine the size-aN envelope power function for values of ciN 

converging slowly to zero. 

Lemma 4.2.1 

Let p be any fixed positive function of N satisfying 

(4.2,'7) 

and 

(4.2.8) 

we have 

(lL2.10) 

lim Nyp(N) "' 0 
N-+co 

1 . N1/6 
1.ID p 

N+oo 

for N + 00 uniformly for all p '€. Q • 

Proof: 

Let 

(4.2.11) £ "' .l 
2 

min 
1<i<k 

0 
p. 

J. 

for some y > 0 

(p! 
1. 

- p?)2 
1. 

0 
:I\ 

J\ + C5'(1) 

since > 0 (i=1,2, .• ,,k) we also haves> O. For each N we divide the parameter 

space Q into three parts: 

ri (!l= { P' I 

ri(3l"' { ri' I 
N 

min 
i 

' < £ } , 

maxlp! 0 p. 
. J. J. 
J. 

m1;-xlp2 
0 

- pi 
1. 

> ' min > E } , 
i 

-1/6 
min p! } ' < N ' > E 

i ]. 

We shall prove uniform convergence for each of these three subspaces. 
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. l t I • I (,..,(2) First we assume t:ia p -~- E, i.e. p E: "'N u 3 )). We denote the test 

statistic of the MP test of H against p' by 

k 0 
t' L x. log (p!/p.). 

i=1 -i 1 i 

For general p this statistic is the sum of N independent identically distributed 

random variables a. (j=1,2, ••. ,N), where the distribution of 
-J 

is given by 

Hence 

and 

(4.2.13) 

k 
E(!:.'lp) "'N l 

i=1 

N 
k 

I 
i== 1 

l 2( '/ 0) p. og p. p. -
1 i 1 

Moreover, the central lim.:i.t theorem implies that 

(4.2. 14) > 
~ - I IP) 

Ip) -1 + <Jl ( 0 (!:., I p) ) ➔ O for N ➔ 00 

uniformly for all and all p' ::_ E, p ::_ E. The uniformity in p' and pis a 

consequence of the fact that the characteristic function of 

tends Ul the characteristic function of the standard normal distribution 

uniforwiy for all p' ::_ E and all p ::_ E . 

:l!~rom theorem 3 of YU.V.LINNIK ( [33] ,I) we derive that 

0 '¾'I - E(i_' IP ) 
o (.t..' I l 

uniformly for all and p' ::_ E satisfying 

I Q 

(4.2.15) 

Hence, if 

~ - E(i_ IP ) 
I o 

o(!:.' IP ) 

is given by (4.2.9) we find that under H 

0 
~ - E(!' IP ) 

CJ I Ill 

) for N -,, = 

for N -+ 00 , 
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(4.2. 16) 
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2 p! 
log _:I;_ -

0 
pi 

p! 
i 

log O, 
p. 

i 

-2 ! 
where cw ( u - ) does not depend on the particular choice of p . From ( 4. 2. 14) we 

. a.N . . 
obtain that under the alternative p = p' 

P(!_' > 
~ - E(i' IP') 

Ip' ) "' 1- qi ( 0 (i' IP, ) ) + & ( 1) for N + "' 

uniformly for all p' _::_ c, where~ is given by (l+.2.16). By (l+.2.12) and (~.2.13) 

the argument of qi in the right-hand member is equal to 

I p! 2 
., 

- 0 pi 
{LP? 2 p~ -[ ~p~ 

2 -1 1 

log log -i] } u ( 1 + CY(u )) - N2 L(p!-p. )log -
. l aN a.N . i i 0 i p. i p. i p. 

l l i 
I p! 2 2 pi_ [ 

2 
log h! log ~ ] } 0 . l p. i pi l 

This expression tends uniformly to - 00 for N + 00 and all p ' ,;: rl~ 2 ) . 

It follows from (1,.2. 17) that in this case (4.2. 10) is uniformly satisfied. 

Now let us assume that p' a ri~3) and define 

(4.2.18) 

-1/6 
then O < ;:;N ::_ N . By expansion of the logarithm it is shown that for 

N -► o::i 

0 2 
p! (p! - p?)2 

C1 (;:;ii)' z log i 
~ 

i i 
+ pi -"' 0 0 

i p. :l p. 
l l 

(4.2.19) 

[~ 0 
p! 2 

0 ( ;:;~) p. log ~] "' :l 
:l pi 

0 2 p! 
1 

(p! - p.) 
(,; (I;~). ? Pl_ log _:i,_ ? l. l 

+ "" -0 2 0 
l p. l p. 

]. l 
- 0)2 (p ! 

z ' - log :::, z l pi 
+ \ 

0 ; ' 
l i p. 

:l 
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2 PJ_ (p ! - p?)2 
3 I p! ? l l log -:.:: + Cf ( i;;N)' 

i J. 0 0 p. J. p. 
J. l 

[i 
p! 2 4 p! log ~] CT(i;N). 

J. 
pi 

Substitution of these relations yields that the argument of 1? in the right-hand 

member of (4.2. 17) is equal to 
0 2 ~ 1[ (p! -p.) ] 

_ N2 I l l } 
. 0 
l pi 

. -2 
( 1 + C) ( c;N ) ) ( 1 + er( u ) ) 

ClN 

for N + 00 , and hence (4.2.10) is uniformly satisfied J.n this case also, 

It remains to consider the case where p' E: n(;). Without loss of generality 

we assume that Pi < E • Hence by definition pi < 1 0 
2 P 1 • Consider the test oN that 

rejects H for small values o.f By the same line of argument that we used be-

fore its critical value gN is equal to 

-2 (1+cr(u )), 
a. N 

provided (4.2.9) is satisfied, and its power against p' is equal to 

g - Np' 
1 _ 1?( N 1 

N2 {p1 ( 1-p1 )} 
for N ➔ 00 , 

where 1 ) does not depend on p 1 ( if' p 1 =O, the power is obviously equal to 

1+ er( 1). It is easily verified that the argument of c!> tends 1miformly to - 00 for 

p 1 < E, and hence the power of oN tends uniformly to one for all p' e: :J~ 1), 

Since the MP test against p' has a power which is at least equal to that of liN' 

it follows that the power of the MP test also converges uniformly to one for 

all p' e: :J~ 1 ) , in accordance with ( 4. 2. 1 O), and the proof of the lemma is 

complete. Q.E.D. 

Next we study the power of the size-aN LR test for slowly to 

zero. To this end we need an asymptotic expression for the critical value of the 

size-aN LR test (4.2.4) 

Lemma 4.2.2 

Let X 2 
k-1; 

denote the upper of the chi-square distribution with k-1 
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degrees of freedom. Then, if the condition 

(4.2.20) for N + 00 

is satisfied, we have 

(4.2.21) 

rr22f: 
Throughout 

1 2 
c = - xk_ 1 . (JI, + er( 1 ) 

N 2 , N 
for N + 00 , 

the proof we assume that the hypothesis H holds true. Since 

x. 
log ...:::L.. 

0 
Npi 

0 x.-Np. 
= log ( 1 + :::1....__!_) = 

0 
Npi 

0 0 2 
x. - Np. 1 (x. - Np.) 3/2 == _-:i. __________ J. -:i. 1 + C, ( N - ) 

Np~ 2 (Np~)2 p 

for N + 00 , the test statistic of the LR test can be written in the form 

k x. k O ~ k O x:. 
l x. log -:i. 0 = l (x:.-Np.) log --0 + N l pi log -:i. 0 == 

i=1-i Npi i=1 -:i. 1 Npi i=1 Npi 

1 k 

= 2 J1 
It is well-known (cf. W. RICHTER [41] ) that for N + oo 

(4.2.22) 
k 

P( l 
i==1 

0 2 (x:. - Np.) 
-:i. J. 

0 Np, 
J. 

if~ ==~(N 116 ). Moreover, it can be shown as in section 20.6 of H, CRAMER (8] 
that 

P( 1 I 
2 i=1 

0 2 (x. - Np.) 
-i J. 

0 
Npi 

0 2 (x. - Np.) 
-:i. J. 

0 
Npi 

if cN =O'(N 116 ), The assertion of the lemma is now an immediate consequence of 

assumption (4,2.20) and (4.2.22) 

Lemma 4.2,3 

Let T be any fixed positive function of N satisfying 



Then, if 

(4.2.23) 

we have 

(4.2.24) 

lim .(N) = 0 
N..-

138 

for N -,. "" uniformly for all p' e: Q. 

Proof: 

lim N1/ 6 ,(N) = oo. 

N..-

We start by remarking that from (2.4.13) and (2.4.15) 

(4.2.25) "' (X2 ) ~ 
k-1 ;aN for N -,. ""· 

Let e: again be defined by(4.2.11)and let p' denote the true parameter value. For 

each N we divide the parameter space Q into four parts: 

Q ( 1) 
"' {p' I min p! < e:} 

' N • J. 
1 

Q(2) {p' I IP! 0 -1/5 min p! > e:} = max - p. I > N 
' N i J J • J. -

1 

Q(3) {p' I 0 .'.:._(e:/k)~N-5/12 ,~(N), min p! "' max IP! - P· 1 :::.. E}, N J J . 1 i 1 

(4) 
{p' I (e:/k)~ N-5/12,~(N) < 0 -1/5 

QN "' max IP! - P· 1 < N 
i J J 

min p! 
. 1 :::.. e:} 
1 

We shall again prove uniform convergence for each of these subspaces. 

First we assume that p' > £• Since -
p! p! x. 2 x. x. - Npi 1 

(x. - Np!) 
+ C,p(N-3/2) log ::::1._ = log++ log ::::1,_ "' 

1 --:J. --:J. 1 

0 
Npi 

log O + 
Np! 2 (Np! )2 Npi p. p. 

1 1 1 1 
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for N + 00 uniformly fen- p' 

written in the form 

..... 
.:.. E, the test statistic .1 of the LR test can be 

x. x. x. 
.1* I x. log -:L I (x. - Np!) log :::3:-- + N I p! 1 og :::3:-- == == -= 

• -:L 0 i -:L i 0 i 1 0 
1 Npi Npi Npi 

2 p! (4.2.26) pi 1 (x. - Np!) 

~ (x. - Np!) I -:i. i + N I p! 1 
== log o + 2 . Np! 

log 0 + 
-:L 1 i 1 

1 p. 1 1 p. 
1 1 

, 
cr -~ + p(N ). 

By writing 

k p! p! p! 
I p! 

1 
log ~ == p! 

p. J 
log ~ + Jj p! 

1 
log ....1. 

0 
(j E: { 1 ,2, ... ,k}) 

i== 1 pj p. 
1 1 

0 and minimizing the last expression in the right-hand member for fixed p! and p 
J 

with the aid of Lagrange multipliers ( the stationary point is a minimum because 

the function }:p! log (p!/p?) is convex in p' on n), we find 
J. J. J. 

k p! 
l p! log ....1. > p! 

i==1 1 p? - J 
J. 

p! 
log =-fr + 

p. 
J 

( 1-p !) 
J 

1-p! 
log ---=..J.. 

0 1-p. 
J 

for any j E {1,2, ... ,k} It is now easily verified that 
0 

k p! p! - p. 
l p ! log ....1. > l ( p ! - p?) log ( 1 + l 1 •1 ) 

i=1 1 0 - 2 J J 2 0 
pi pj 

(4.2.27) 

Hence, if p' e n~2 ), we find that 

for all suffiently large N (independent of p') and the third term in (4.2.26) 
is of larger order (in probability) than the first two terms. It follows that 

the probability 

.... 2 I ==P(i>~_,.N +0'(1) p')= 
,~N 

== P(.1*>N116-c(N) +c:,'(1)lp') 

converges uniformly to one for all p' ~ n~2) , in accordance with (4.2.24). 
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Henceforth we assume that 

Bi,j ( 1+. 2. 13) and ( 4. 2. 19) the variance of the first term in the right-hand 

member of ( )-1, 2, 26) is equal to 

(p.' - p?)2 
(4.2.28) NI i O i (1 + )) for N ➔ 00 

i pi 

Suppose that p' <£ n~3), Le. 

Then for sufficiently large N (independent of p') the ex1Jression (11.2.28) is 

smaller than¾ N 116 T(N) and we deduce from (4.2.25) and lemma 4.2.1 that 
+ . ( 3) 

SN(p') and hence SLR N(p ') converges uniformly to zero for all p' € QN , in 

accordance with (4. 2: 24) , 
I (lf) 

Next we consider the case where p 11:. QN • In this case the variance (!1.2.28) 

tends uniformly to for N ➔ 00 , implying (cf. ( 4. 2. 26)) 

P(!.* _:_cN IP') = P(L log(pUp~) .:.. cNIP') + c.r( 1) 

uniformly in p' for N ➔ 00 • From (4.2.14) and (4.2.19) we derive that 

P(i* IP'l = 

(p! - 0)2 
2 - 1 N 

p. 
I i i + 0-(1) 1 Xk-1 2 . 0 

2 i pi 
"' 1 - cp ( + Ci'( ) 

[z 
(p! _ p?)2] 2 

i i + Cl'( 1) 
0 

i p. 
i 

· f ml f ll d 1 ( 4) · · · · · J a ( 4 21 ) uni or y .. or i ·➔ 00 an p € QN , which J.mmedJ.ately yie __ .s . 2, __ r • 

It remai. ns t . d ·i ( 1 ) W. th t 1 f' 1 · t th t o consi er IN . 1 - ou: . oss o genera i -y we assume a 

' < s, From (4.2.26) and (ir.2.27) with p' replaced by _!IN and j""1 we find 

that with probability one 

1 
+ -

2 

~l -N Pf 
---) 
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Hence it is easily verified that P(}.* > c IP') tends uniformly to one for N ➔ 00 

and p' e: rl( 1 ) , which completes the proof of' the lelllllla. Q.E.D. 
N 

From the lellllllata 4.2.1 and 4.2.3 we derive 

Theorem !+,2.1 

Let aN be a function of N satisfying lim aN = 0 and 
N➔oo 

(li.2.29) log == G"(N 1/ 6 ) for N ➔ 00 , 

Then 

lim RLR N (p) "' 0 uniformly for all p ~ Q • 
N-+ oo , 

f.:r.£.of: 

To prove this theorem we need a more precise relation between u and x2 
°'N °"N 

( we omit the subscript k-1) than ( lr, 2. 25). Since for N -+ 00 

and 

we find that for N --> 00 

and hence 

(.4. 2. 30) for N + 00 , 

Moreover, it is seen that if' condition ( l+. 2. 29) holds, then the conditions of the 

lemmata ~-. 2. 1 and 4.2.3 are also satisfied. We define 

(4.2.31) 
1 k (pl! -0 pQ1• )2]; 

"' N2 [ l 
i=1 pi 
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and divide the parameter space n for each N into three parts, 

{ p ' I - log ua < 
N 

{ p' Ju - ~ < - log u } , 
ClN °'N 

n~ 3 ) = { p ' I u - ~ > log u } • 
°'N ClN 

F'irst we consider alternatives p' E. nt 1). From ( 4. 2. 1 O) and ( 4. 2. 24) we obtain 

for N ➔ 00 , where <Y( 1) does not depend on p' . We consider the difference of the 

arguments of both funetions ijl, By (4.2.30) we have 

for N ➔ 00 and hence the difference of both arguments tends uniformly to zero, im-
( 1 ) 

plying that RLR ,N tends uniformJ.y to zero for p' c rlN • 

Next we suppose that p' €. nt 2 ). In this case we have 

SLR,N(p') "' - <J>({X2 - ~ }/2~) + Cl°(1) 
ClN 

"" - <J>({u.2 +U(log u ) - ~ }/2~) + 
ClN °'N 

r.r( n 

> 2 
- <Ji({~ - 2~ log u + C) 2 2 

(log uaN) - ~} /2~) 
ClN 

- <Ji( - log u 
-1 1 2 )) + C:Y( 1) '" + O(u og u. 

ClN Cl N ClN 

+ 

and hence SLR ,N tends to one for N ➔ "' uniform_ly for all p' E rit2 ), implying 

&( 1) 
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lmiform convergence of RLR,N on this set also. 
+ Finally, it is obvious that SN and hence RLR ,N converges uniformly to z,ero 

for N ·+ oo and all p' E'.. S"l~3 ). Q.E.D. 

Although at first sight (4.2.29) seems to include very high rates of con­

vergence of aN to zero, it can easily be deduced from the preceding lemmata that 

under condition (4.2.29) the error of the second kind of the LR test (or of the 

MP test) for any fixed alternative tends much faster to zero than aN. Hence 

higher rates of convergence of aN to zero are also of interest. However, the work 

of RICHTER [l+ 1] shows that for higher rates of convergence of aN the normal 

approximation to the multinomial distribution cannot be used to derive critical 

values of the LR test. Moreover, it is apparent from the work of LINNIK ( [33] I,III) 

that the envelope power function cannot be obtained as before, since the critical 

value of the MP test statistic cannot be found by normal approximation as in 

lemma 4.2.1 if log aN is not of order o-(N113) for N + 00 • Hence a different approach 

is necessary if faster rates of convergence of aN are to be considered. 
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