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Abstract. A wavelet analysis of a signal can separate information present at 
different scales. Moreover, wavelet bases are orthonormal. Therefore, the wavelet 
transformation can be used to remove redundancy from a signal. In this paper, 
it is demonstrated how the wavelet transform can be used for image compression. 

§1 Introduction to data compression 

Image compression techniques and, in general, data compression techniques are 
techniques for storing or sending images using as few bits as possible for encoding 
a complete image. A compressed image can either be exactly equal to the original 
image, or differ from it in a limited and controlled way. An image typically consists 
of 256 x 256 pixels, each having an 8-bit grey value. Images produced by satellites 
can be much larger and contain more bits per pixel. The number of possible images 
of the mentioned format is (28 ) 256 X 256 . A straightforward coding of such an image 
would require 524288 bits. The images one usually comes across can be coded in a 
much smaller number of bits. This is due to the fact that natural images contain a 
large amount of structure, making pixel values predictable. 

The idea that predictable information can be coded more efficiently than ran
dom information is due to Shannon [5]. 

Predictable information can be coded in fewer bits than unpredictable informa
tion. This can be seen from a simple example. Suppose that one wants to encode a 
message which is either A, B, C, or D. There are four possible messages, and these 
can be coded in two bits per message, for example using the identifications A +-> 00, 
B +-+ 01, C ..... 10, D ..... 11. 
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Suppose that it is known that some messages are to be sent more frequently 
than others, for example: 

A with relative frequency 1/2, 

B with relative frequency 1/ 4, 

C with relative frequency 1/8, 

D with relative frequency 1/8. 

Message A will be sent relatively often. Therefore, it pays to give A a shorter code, 
while giving the messages which occur less frequently a longer code. A possible 
coding scheme is A +-+ 0, B ..... 10, C +-+ 110, D +-+ 111. Note that no code word 
is equal to the first part of another code word. Therefore it is possible to send 
code words of different length without separators. The average number of bits per 
message is now: 

1 1 1 1 
2 x 1 + 4 x 2 + 8 x 3 + 8 x 3 = 1. 75. 

Although the length of some code words is longer than 2, the net effect of the 
alternative coding scheme is the use of fewer bits per message. It is of course 
necessary that the receiver knows the code, but this has to be sent only once. 
Therefore this coding is efficient if a large number of messages is to be sent. 

Suppose that there are n possible messages having relative frequencies CP1, ... , 
Pn)· It can be shown [5] that the number of bits per message required by any coding 
scheme is at least H(p1, ... ,p,.), where 

" 
H(p1, ... ,p,.) = - LP; log pi, 

i=l 

(log is the base-2 logarithm). If each relative frequency is of the form p/2q, a coding 
scheme can be designed in which each message has its own code word such that the 
optimal compression rate is indeed achieved. If the relative frequencies are not 
of such a special form, the optimal compression rate can not be achieved if each 
message is to be given its own code word, but it can be approximated arbitrarily 
close if messages are sent in groups and each group is given its own code word. The 
quantity H is called the entropy of the sequence p1, ... , p,.. The entropy is maximal 
if all messages are equally probable, i.e., Pi= 1/n for each i. If the distribution of 
the messages is very peaked, the entropy is small. 

If some grey values occur more often than others in an image, a coding scheme 
as described above can be used to compress the image. The design of the code is 
based on the relative frequencies of the grey values, which can be derived from the 
histogram. The compression achieved by this method is not very large. The bit 
rate for some typical images is about 7.5 bits per pixel (bpp) instead of 8 bpp if no 
compression is done. 
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§2 Image decomposition using multiresolution analysis 

For most classes of images, individual pixel values can be predicted not only by 
considering the histogram of the complete im~ge, but also by looking at the val
ues of neighbouring pixels. A much more efficient coding scheme can therefore be 
designed by taking into account the spatial correlations which occur in natural im
ages. In order to use the spatial correlations, the image must be transformed or 
decomposed in such a way that the correlation between the parameters describing 
the image is removed. A good image compression scheme requires a good 
image decomposition scheme. Image decomposition can be done as follows: 
the image is split into a low resolution part, which can be described by a smaller 
number of samples than the original image, and a difference signal, which describes 
the difference between the low resolution image and the actual image to be coded. 
Due to the correlations in natural images, the low resolution version will be a good 
prediction of the true image; the difference signal will have a histogram which is 
peaked around zero. As a result of this, the difference signal can be coded with a 
relatively small number of bits per pixel. The low resolution image can be described 
by a smaller number of samples than the original image. Thus the total number 
of bits required to encode the image is smaller than the original number of bits to 
describe the whole image. The low resolution image will still contain spatial corre
lations. Therefore, this image is also decomposed into a low resolution image and 
a difference image, thus making more efficient coding possible. This decomposition 
is repeated several times, such that a hierarchical image decomposition is created. 

In the classical image decomposition scheme of Burt and Adelson [l], a low 
resolution image is calculated by applying a low pass filtering, followed by subsam
pling. Only a quarter of the pixel values in the filtered image are stored. Thus, 
the low resolution irriage has only half the size of the original image. This reduced 
image is expanded to the original image size and subtracted from the original image. 
The result is the detail image. The detail image has the same size as the original 
image. Therefore, the detail image and the reduced image together contain more 
pixels than the original image. Yet the entropy of the detail images is so low (for 
natural images) that compression can be achieved with this scheme. 

We now come to the description of an efficient decomposition scheme based 
on multiresolution wavelet bases. For a comprehensive discussion of multiresolution 
wavelet techniques, the reader is referred to Heijmans [3]. First the one dimensional 
case is described. The two dimensional case is a straightforward extension of the 
one dimensional case. Image compression using wavelets is described by Mallat 
[4] and has been worked out by Daubechies [2]. We will follow the treatment and 
notation of Daubechies. 

Let if> be the generator of a multiresolution wavelet basis. We put: 

tf>mn(x) = rm12tf>(rmx - n). 

The spaces Vm span{tf>mnln E L'Z} correspond with the different resolution 
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levels of our decomposition. There is a function 'if; such that the space Wm 
span{ i,bmnln E 2'l} with 'if;mn = 2-m/2 '1j;(rmx - n) satisfies 

Ym-1 = Vm Ell W,.,... 

Let Pm and Qm denote the orthogonal projections on Vm and Wm, respectively. 
Let the sequence (Cn)nE7l E £2('ll) be the signal we want to compress. It will be 
convenient to define a sequence (c~)nE'.ll with c~ = c.,.. With this sequence we 
associate a function f E Vo defined by: 

f(x) = L c~c/>on(x). 
n 

A multiresolution analysis is applied to f. We can write: 

The first term is the low resolution representation of f, contained in Vi, whereas 
the second term is the difference signal, contained in W1 . We can write: 

Then Cf = (Pif, 4>1k) = (f, </>lk) = L:n c~ (c/Jon, cP1k) = L:n c~hn-2k where 

hn = T 112 j 4>(~)</>(x - n)dx. 

We can also write: 

n 

As shown in Heijmans [3], it is possible to choose 'I/; in such a way that 9n 
(-rhi-n· As we will choose</> to be real valued, this implies 9n = (-)nhi-n· 

By repeating this procedure N times we arrive at the decomposition 

where 
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and 

Qnf = L <f:k1/Jnk· 
k 

The coefficients ck and <f:k can be calculated from the recursion 

where 

c1 = Hd- 1 

di= Gd- 1 

n 

(Ga)1c = L9n-2kan. 
n 

85 

These operations can be performed easily and are suitable for implementation 
in hardware. After a number of iterations, the original sequence c0 is decomposed 
into a lowest resolution signal cN and difference signals dN, dN -l, ... , d1 of finer 
and finer resolution. The original image can be reconstructed by repeated use of 
the relation 

n n 

This implies 
d.,- 1 = (Pj-if, fj-1,n) 

= L l{ (fjk, fj-1,n) + L di (1/Jjki fj-1,n) 
k k 

= L 0,hn-2k + L di9n-2k· 
k k 

The reconstruction algorithm can therefore be described by the recursion 

where 

The result of the recursion is 

(H*a)n = L hn-21ca1c, 
k 

(G*a)n = L9n-21ca1c. 
k 

N 

c0 = L(W)i- 1G*dJ + (H*)NcN. 
j=O 
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A two-dimensional multiresolution representation can be reconstructed using prod
ucts of the functions defining the one dimensional multiresolution representation. 
The linear space of functions defined on 'll2 is the tensor product of two spaces of 
functions on 'll: 

v. •. = v<"'J ® v<Yl. 
' ' 

The one dimensional decomposition can be used to construct a two dimensional 
decomposition: 

V (x) '°' V(y) - (V(x) "'W(x)) '°' (V(y) "' W(y)) -
i "" i - i+l <:v i+l "" i+l <:v Hl -

The different resolution spaces are : 

VN = span{<PNn(x)efiNm(y)\m,n E ?l}. 

The orthogonal complements are spanned by three types of functions: 

WN = span{<PNn(x)lJiNm(y), 'l!JNn(x)<PNm(y), 'l!JNn(x)'l/JNm.(Y)\m, n E 22}. 

The multiresolution decomposition is described by the recursions 

mn 

mn 

The coefficients can be found by the recursion relations 

c;i+1 = HxHyd, 

d(x)i+l = G:z:Hyd, 

d(Y)i+l = H:z:Gyd, 

d(:z:y)i+l = G,,Gyd. 

The operators Hx, G,, and Hy, Gy act on the first and second indices, respectively. 
One has for example: 

n 

In two dimensions, the size of a low scale image is a quarter of the size of the 
original image. Hence the number of coefficients needed to describe the difference 
signal is three times as large as the number of coefficients needed to describe the low 
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resolution image. The signal &+ 1 is the coarse scale information. There are three 
different signals: d(:r)j+l indicates small scale variations where the signal varies in 
the x-direction, but not in they-direction. Thus a high value of d(:z:)i+l indicates the 
presence of a vertical edge in the image. Likewise, a large value of d(y)J+l indicates 
the presence of a horizontal edge and a large value of d(:z:y)j+ 1 indicates the presence 
of a corner point. 

The reconstruction algorithm is defined by the recursion 

d- 1 = H*H*d + G*H*d(x)i + H*G*d(Y)i + G*G*d(:cy)j x y x y x y :r y • 

Images are defined on a regular grid. Most often the grid is a square, the 
length of the edge being a power of 2. The initial sequence c0 therefore has a finite 
number of non.zero entries. In order to be able to perform the calculations, one 
must choose </> in such a way that only a finite number of the coefficients fin have 
a nonzero value. If such a choice is made, the total number of nonzero coefficients 
in the sequences cj+l, d(:c)J+l, d(Y)J+i, and d(:z:y)J+l is only slightly larger than the 
number of non.zero coefficients in the sequence & . The increase is caused by edge 
effects. If it is assumed that the image is periodic across the boundaries, the edge 
effects are elirn.inated and there is no increase in the number of coefficients to be 
stored after each iteration. 

The multiresolution decomposition described above depends on the choice of 
an appropriate function <fa. Yet the algorithm uses only the coefficients hn and 9n· 
Daubechies has derived conditions that the hn and 9n must satisfy in order to make 
the algorithm -vvork, without any reference to the function <fa. These conditions are: 

n n 

L {hn-2khn-2l + 9n-2k9n-2l} = Dkli 
n 

L hn-2k9n-2l = O; 
n 

L9n =o. 
n n 

The second and third conditions guarantee that the original image can be recon
structed from the decomposition and that the decomposition contains ~o redundant 
information. The fourth conditions indicates that H acts as an averagmg operator, 
while G acts like a local detail filter. 
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§3 Compression rate and reconstruction errors 

It has been argued before that the possibility of image compression is due to the pre

dictability of natural images, or to be more precise, the fact that spatial correlations 

between pixel values exist. In order to achieve sufficient compression, the low level 

resolution functions must be a good prediction for the true image. This means that 

images which contain only energy at the higher levels must be sufficiently regular. 

Remember that (in one dimension) the reconstruction equation reads: 

N 

co= 'l::CH*)j-1G*dj + (H*)N CN. 
j=O 

We are therefore interested in sequences of the form (H*)N e where e has only one 

nonzero entry. These sequences must be sufficiently regular for high values of N. 

In stead of looking at the sequences themselves, we will study the functions 

defined by 
r]l(x) = (TkX[-1/2,1;2i)(x), 

where X is the indicator function and the operator Ty is defined by 

n 

Thus problems with the spacing between the grid points at different resolution are 

avoided. Moreover, this way of looking at things makes it possible to use the concept 

of continuity of functions. By taking the Fourier transform one gets: 

where H(() = r 112 Ln h,.,ei~. Daubechies has proven the following 

Theorem 3.1. Let hn, H(O and 1)1 be defined as described above. Suppose that 

H(() has the form 

H(() = [~(1 + ei~)r Lfneine 
n 

such that Ln lfnllnl' < oo for some e > 0 and sup I Ln fnei~I = B < 2N-1. Then 

1)1 converges pointwise to the continuous function 1)00 defined by 

00 

iioo(() =IT H(rj(). 
j=l 
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It can be shown that 

00 

IT H(rj~) = 0((1+1rnN-1ogs). 
j=l 

This implies that the regularity of T'/oo can be increased if one succeeds in choosing 
hn such that log B - N is sufficiently large. Daubechies has been able to construct 
in this manner a family of wavelets of arbitrarily high regularity and with compact 
support. 

Exact reconstruction of the image is only possible if the decomposition coeffi
cients are known exactly. As the coefficients are not integers, this is not possible. 
In practice, a quantisation of the coefficients is necessary. As the wavelet basis is 
orthonormal, the root-mean-square (RMS) error in the reconstructed image can be 
expressed as 

€ = [1:1,r + ~ [(€%)2 + (t:~)2 + (t:Y)2]] l/
2 

Here £%, €~, and 1::Y are the errors in the difference signals and the €N is the error 
in the lowest resolution image (tJv = 'E(c{;(true) -cij(quantised))2). The higher 
levels contain less coefficients than the lower levels, but the coefficients on the higher 
levels tend to be larger than those on lower levels. Therefore the different levels 
make a contribution to the overall error of comparable magnitude. 

Quantisation is a subject by itself. It stretches too far to treat it in this 
chapter, but we will make a few remarks. The true coefficients are real numbers. 
Quantisation can be done by selecting a finite number of reals which form a so
called quantisation grid. Each coefficient is then replaced by the nearest point in 
the grid. The most straightforward way of choosing the grid is taking all grid points 
evenly separated. A more sophisticated choice is motivated by the fact that most 
coefficients in the detail signal have values near 0. Therefore, choosing the grid 
points not equally spaced, but closer together near 0 can reduce the total error. For 
some coefficients far away from 0, the error can become larger and this can cause 
typical artefacts in the reconstructed image. 

A different approach to data reduction is to send only those coefficients whose 
value is large. Small coefficients contribute only very little to the signal and can be 
deleted without causing a large error. 

We have implemented a quantisation scheme using grids with equally separated 
grid points. The grid point separation is the same on all levels of the decomposition. 
Even with such a simple quantisation scheme, bit rates as low as 0.4 bits per pixel 
can be achieved while the quality of the reconstruction is still sufficiently high. 
Due to the localisation of the low level basis functions, small details in the image, 
like small bright or dark spots, are preserved better than in most other image 
compression schemes. 
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Figure 1. Results from the compression method. 

The pictures show an example. The original image is shown in the upper left 
hand corner. The upper right hand corner represents the coefficients of the decom
position. The lower left hand quarter, the upper right hand corner and the lower 
right hand corner of the image show the coefficients d(:z:)ij, d(y)ij, and d(:z:y)ij, respec
tively. The upper left hand corner shows the decomposition of the low resolution 
image. This low resolution image is decomposed in the same way as the original 
image and this procedure is repeated recursively, giving a nested decomposition. 
The lower left hand image shows the reconstructed version. The lower right hand 
image shows the difference between the original image and the reconstruction. This 
image is rescaled for display purposes. In this example, a data reduction of 95% 
(0.4 bpp) has been achieved. 
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