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1. Introduction 

1 

Biologically speaking the basic reproduction ratio Ro is the expected number of secondary cases 
caused by one typical infected individual during its entire period of infectiousness, in a population 
consisting of susceptibles only. In [2] it was shown that the mathematical counterpart of this 
biological 'definition' is the spectral radius of a certain operator that describes the transmission 
dynamics of the disease as a discrete process relating subsequent generations of infected individuals 
(in most, if not all, cases Ro can equivalently be characterized as the dominant eigenvalue of this 
'generation-operator'). 

For sexually transmitted diseases it has been advocated by Dietz and Hadeler [6] that a 'real­
istic' model should take into account the fact that individuals form partnerships for non-negligible 
periods of time. During that time period the two partners only have contacts with each other 
and in this way they are, momentarily, not in danger of receiving the infection from individuals 
outside the pair. In [2] the possibility of pair formation and separation was not incorporated. Two 
assumptions underlying the 'construction' of the generation-operator fail if we allow individuals to 
form pairs and this entails that we cannot incorporate pair formation by a direct generalization of 
the generation-operator. Implicitly it was assumed that every contact an infected individual has, is 
with a 'new' susceptible, which is by definition no longer true in the pair formation case. Explicitly 
it was assumed that the only relevant "output" of an individual (i.e. that what one has to know of 
an infected individual to determine its influence on the spread of the infection) was the expected 
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infectivity A (where the average is taken over all possible sample paths of disease progress). As 
a consequence, an age representation for the expected infectivity status of an individual could be 
used. In other words, in a sufficiently large population, A can be considered as a deterministic 
function of r, where T measures the time that has passed since the individual became infected 
(for homogeneous populations this is the approach of [7]). In the case of pair formation a second 
output quantity, survival, comes into play. Of course the survival of an infected individual is always 
important, since it influences its infectivity, and as such needs to be incorporated in A. Within the 
context of pair formation models, however, the survival of the partner has a second influence on 
the spread of infection: if your partner dies, you yourself become available for new contacts. For 
models incorporating pair formation an equivalent age representation of disease-state is not always 
possible. 

However, we can make use of the ideas underlying the Ro calculation in [2]. We can still 
construct an operator that describes the transmission dynamics as a discrete process on generations 
of infected individuals. In tl1is paper we show what this operator looks like in the case of pair 
formation if we recognize an arbitrary but finite number of possible disease-states {1, ... , n} which 
are passed through sequentially, always starting in state 1. The disease-state of an individual 
determines its current infectivity level and probability of dying. For the pair formation processes 
we practically follow the simplest model described in [5,6]. The difference is that in [5,6] a pair 
starts, by definition, with a sexual contact. In this paper we take a 'period of courtship', in which 
the pair is not yet sexually active, into account. 

In section 2 we describe the model assumptions, explain the ingredients that are necessary for 
determining Ro and give the 'algorithm' for its calculation. The generation operator turns out to 
be an m X m-matrix, where mis the number of disease-states with positive infectivity, and Ro will 
be the dominant eigenvalue of this matrix. These results are generalized in section 3 to include 
arbitrary heterogeneity (in susceptibility) among the individuals in the population. As an example 
we treat the characteristics male/female. In section 4 we briefly consider the results of various limit 
procedures applied to the present pair formation model. Among other things it is shown how the 
appropriate models that neglect pair formation can be obtained as limiting cases. 

This paper treats a pair formation analogue of a multi-stage variable infectiousness model 
developed by Blythe and Anderson [1] and is therefore a generalization of the results in [5], where 
the cases of one and two disease-states were considered. Part II (in preparation) will be concerned 
with quantitative results. 

2. Description of the model and calculation of Ro 

In our model we distinguish two classes of pairs: those who are in a courtship period, and 
those that are in the sexually active phase. The courtship period is characterized by the absence 
of sexual contacts. So individuals in a courtship are, just as single individuals, not at risk of either 
receiving or transmitting the infection. Individuals only have sexual contacts in the sexually active 
phase of a partnership. 

In addition to the courtship label, we recognize the following characteristics of an infected 
individual: 

disease-state: i E {1, ... , n} 
partnership-state: j E {-1, 0, 1, ... , n }. 

Here '-1' means that the individual is single (no partner at the moment of observation); '0' means 
that the individual is paired with a susceptible; j E {1, ... , n} means that the individual is paired 
with an infected individual that has disease-state j. Together the two characteristics determine 
the type (i,j) of an infected individual. Types of individuals in a courtship period are indicated 
as (i,j)c. For the moment we assume that all individuals are equally susceptible (so we disregard 



3 

any heterogeneity other than the single-pair dichotomy). 
As we are only interested in Ro, we assume that every new partner of a single infected indi­

vidual is necessarily a susceptible (in [2] the invasion-linearization background of thjs assumption 
is explained). The consequence of this is that the only courtshlp-types that we have to consider 
are ( i, O)c, for i E {1, ... , n }, where the infected individual has a susceptible partner. We assume 
that all pairs start with a courtship phase. 

Let A:= {(i,j) : 1 $ i $ n, -1 $ j $ n} U {(i,O)c : 1 $ i $ n} be the set of all possible 
types. I A I= n( n + 3) and consequently our type-space is JR n(n+3

). Let E := {1, 2, ... , n( n + 3)}. 
We will call Ethe state space of infectives and the elements of E are called states. Let L: A - E 
describe the lexkographic ordering on A, with the side condition that a courtship-type precedes 
the corresponding sexually active type, i.e. 

L(i,j) < L(i',j') -¢=> {i < i'} V {i = i', j < j'}, 

L(i,-1) < L(i,O)c < L(i,O), 1 $ i $ n. 

We make the following assumptions: 

1. The disease-states are passed through in natural order. In particular a freshly infec­
ted individual starts its life (in disease sense) with type {1,j) for some j E {1, ... , n }. 

2. Given that the infected individual does not die, the time that its disease-state is i is 
exponentially distributed with parameter 0i (where 0n = 0, i.e. disease-state n is 
retained until death). 

3. The infectivity in disease-state i is described by the probability Pi :2'.: 0 
that a sexual contact with a susceptible leads to transmission. 

4. µo is the death-rate of susceptibles, µi is the death-rate of an infected individual 
with disease-state i. 

5. Every single individual has a constant probability p per unit of time to become a 
member of a courtship-pair. The divorce-rate is <le in the courtship phase, and a in 
the sexually active phase. 

6. A pair always starts with a courtship phase. The length of this phase 
is, conditional on the survival and no divorce of the two partners, exponentially 
distributed with parameter a. By definition the sexually active phase starts 
with one sexual contact. 

7. During the sexually active phase, the partners have /3 sexual contacts per unit 
of time. 

The graph in Figure 1 traces the possible changes in the type of an infected individual of fixed 
disease-state i, as long as it does not die. Note that the only two types of individual that can cause 
an infection are (i,O)c (first contacts), and (i,O), i E {l, ... ,n}. 

Define a matrix M : JR n - IR n with elements mij as follows: 

mij is the sum of the expected number of type-transitions (i,O)c - (i, 1), and 
(i,O)--+ (i, 1), of an individual that just became type {1,j), during its entire 
remaining life, (1 $ i,j $ n). 

The matrix Mis the next-generation operator, mapping a generation of infectives, distributed with 
respect to the disease-state of the partner at the moment infection took place, onto the next such 
generation. Or, in other words, M yields the next generation, given the present one, while keeping 
account of the state at 'birth'. As was shown in [2] we have to carry out the right averaging over 
the ffiij to arrive at Ro: Ro is the dominant eigenvalue of the matrix M. 
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a+µ1 a+µ2 

\ 
I!.!.! (i, 1) ~ (i, 2) (i, n) 

Figure 1. Graph of possible type-changes of an infected individual with fixed disease-state i. 

In the following we determine the precise nature of M on the basis of the assumptions listed above. 
It is convenient to work both with types in A (in cases where we use the interpretation to 

make inferences) and with states in ~ (if we just do straightforward linear algebra), and we will 
accordingly choose the representation that is the easiest in a given situation. 

We regard the changes in disease-state and partnership-state of an individual as a Markov 
process on the state space ~- Let a matrix G : Illn(n+3 ) - Illn(n+3) describe the transition 
probabilities per unit of time between the states, i.e. 9kl gives the rate of leaving state l E ~ to go 
to state k E ~ (note that in the probabilistic literature on Markov processes it is usually the other 
way around), and 911 = - L,k#t9kl - rate of dying. If we let P(r): Illn(n+3

) - Illn(n+3
) be the 

matrix containing the probabilities Pk1(r) of being in state k and alive at timer after starting in 
state l at time zero, then we have 

The interpretation of the mij tells us that for their calculation we need to know the probability 
that a freshly infected individual, 'born' in state L(l,j), is still alive at timer after the infection 
occured and that its state is L(i,O)c or L(i,O) at that time. Then, 

(2.1) 

or, in other words, the expected number of times that an infected individual becomes of type (i, 1), 
given that it is 'born' with type (1,j), is 

(2.2) 

for 1 ~ i,j ~ n. 
The next task is to specify G and to calculate the right elements of c-1 • The structure of G 

is determined by the assumption that all infected individuals start their 'infected life' with disease­
state 1 and that their disease-state from there on rises from time to time by one up to n, as long as 
the individual does not die 'along the way'. Exploiting the structure we can explicitly write down 
the inverse of G in a very simple way. 
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Example 1: 

We work out the case with three disease-states, n = 3, because this is a prototype for all n ~ l. 
We have I: = {1, ... , 18} and 

lJ 
where 'O' is the 6 x 6 zero-matrix, Di= diag(0j) = 0jld, and A;, i E {1,2,3} is given by 

a1 ( i) µo + ac µo + a µ1 + (1 µ2 + (1 µ3 + (1 

p a2 ( i) 0 0 0 0 
0 (1 - Pi)o: a3 ( i) 0 0 0 
0 p;o: Pi/3 a4 ( i) 0 0 
0 0 0 81 as( i) 0 
0 0 0 0 82 a6 ( i) 

where a1(i) = -µ; - 0; - p; a2(i) = -µ; - µo - 0; - ac - a; a3(i) = -µ; - µo - 0; - a - p;{3; 
a4(i) = -µ; - µ1 - 0i - 81 - a; as(i) = -µ; - µ2 - 0; - 82 - a; a6(i) = -µi - µ3 - 0; - a. It 
is easily verified that c-1 can be expressed in the 6 x 6 matrices that constitute Gas follows 

0 
Az- 1 

D A -1A -1 
- 2 3 2 

The matrix M can now be determined. Let us consider the special case pz = 0. The assumption 
that individuals with disease-state 2 are not infectious implies both that no individual in state 
L(2,0), or L(2,0)c, can infect its partner and that the individual itself cannot have been 'born' 
in the state L(l, 2). We find that 

(

mu 
M= 0 

m31 

0 m13) 
0 0 . 
0 m33 

The dominant eigenvalue of this matrix equals the dominant eigenvalue of 

M' = (mn 
m31 

m13). 
m33 

In terms of the elements of c- 1 we can write 

m11 = -p1f3(G-1)L(1 ,0)L(l,1) - p10:(G-1)L(l,O)cL(l,l) = -p]/3(C-1)3 ,4 - p10:(G- 1)z,4 

m13 = -p1f3(G-1)L(1 ,0) L(1 ,3) - p10:(G-1)L(l,O)cL(l,3) = -ptf3(G-1)J,6 - p10:(G- 1)z,6 

m31 = -p3/3(G-1)L(3,0)L(l,1) - p30-(G-1)L(3,0)cL(l,l) = -p3/3(G-1)15 ,4 - p30-(G-1)14 ,4 

m33 = -p3{3(G-1)L(3,0)L(1,3) - p30-(G-1)L(3,0)cL(l,3) = -p3{3(G-1)is,6 - p30-(G-1)14,6 

Finally we find that 

(mu+ m33) + J(mn - m33)2 + 4m31m13 
Ro= 

2 
. 

/Ill 
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In the general case G will be a n(n + 3) x n(n + 3) matrix of the following form (where the 
Ai, Di, and Oare (n + 3) X (n + 3) versions of their namesakes from example 1) 

A1 0 0 

D1 A2 
G= 0 

0 
0 0 Dn-1 An 

One checks easily that 
A-1 

1 0 0 

A-1 
2 

c-1= 

Brs 0 
A-1 

n 

where the r,s th -matrix below the diagonal, Brs (r > s), is given by 

B rs = (-1y+sDsDs+1 ···Dr-1A;1A;!1 ·--A_;- 1
. 

Note that we only need to know the inverse of every Ai in order to calculate c-1 • 

Remark 1. As we have seen in Example 1 the analysis is simplified if some of the p;'s are zero. If 
m of the Pi 's are non-zero then M' becomes a m x m matrix. 

Example 2: 

We elaborate our result for the case of one disease-state and then compare it with the expression 
given in [5]. For n = 1 we have 

(

-µ1 - p 

G= P 
0 
0 

µo + <7c 

-Jlo - µ1 - <7c - a 
(1 - p)a 

pa 

µo + a 
0 

-µo - µ1 - a - p{J 
p{J 

and Ro is given by 

p{J 1o= PL(l,O)L(1 ,l)(r)dr + pa 1o= PL(1,0)cL(l,1)(r)dr = -p{J(G- 1)3,4 - pa(G- 1)2 ,4. 

Explicitly we find 

(2.3) 

with 

Ro= p{Ja(µ1 + a)(l - p)p + ppa(µ1 + µo +a+ p/3)(µ1 +a)_ 
µ1(x + y) 

x = (µo + /L1 +a+ p/3)(2111 + a)(µo + 111 + p + <7c + a), 

y = pa(pJLo + (2 - p)µ1 +a+ p{J). 

In [5] the courtship period is infinitely short. If we let the rate a of entering the sexually active 
phase tend to infinity (i.e. the average length of a courtship period tends to zero), we get from 
(2.3) 

(2.4) Ro = pp(µ1 + a)(µo + µ1 +a+ /3) 
JL1(JL0 +/LI+ a+ p{J)(21t1 + p +a)+ µ1(1 - p)p(Jt1 - JLo) 
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which is exactly expression (12) from [5] (with appropriate renaming of parameters). 

/Ill 
Remark 2. If we choose a= (3 and ac = a and we 'lump' the types (i,O)c and (i,O), for each 
i E {1, ... , n }, we are in a situation similar to the one described in [5] but with the difference that 
a pair does not necessarily start with a sexual contact. Let us consider the case n = 1. Then G is 
a 3 x 3-matrix given by 

and Ro= -p(J(G-1)2,3, or explicitly 

µo + a 
- µo - µ1 - a - pf] 

pf] 

(2 5) Ro = pf3p(µ1 + a) 
· µ1(µ0 + µ1 +a+ p + pf3)(2µ1 +a)+ ppf3µ1 

3. Incorporating heterogeneity in susceptibility 

If we want to incorporate heterogeneity among the individuals in the population we have to 
specify not only the characteristics (called h-state) of an individual itself but also those of its cur­
rent partner (if the individual is not single) because the h-state of the partner can influence the 
death-rate and in this way the probability that the original individual becomes single. The charac­
teristics can take discrete or continuous values and the h-state of an individual can be constant in 
time or dynamic. Among the most important characteristics to be incorporated in the context of 
sexually transmitted diseases are age, sexual activity level, male/female, homo-/bi-/heterosexual, 
and behavioural traits such as condom use. 

Let, in general, a variable ~ represent the heterogeneity characteristics of an individual; ~ is 
assumed to take values in some set n. The type of a sexually active individual in a pair is now 
represented by 

(i,j;~i,~j), iE{l, ... ,n}, jE{O, ... ,n}, li,ljEn, 

while ( i, -1; l;) denotes a single infected individual, and ( i, O; ~i, fo )c describes the relevant types of 
infected individuals in the courtship phase of a partnership. Suppose we have an individual, say x, 
that was infected by an individual with disease-state j and Ji-state v. Suppose x itself had Ji-state 17 
at the moment of infection. Then x was 'born' with type (l,j;7J,v). As time progresses, assuming 
that x stays alive, x will become separated from its original partner, the Ji-state of x will change 
to, say, 0, and x will form a pair with a suceptible with h-state, say, f Analogously to the case 
without heterogeneity in section 2, we want to evaluate the expected number of type-transitions 

(i,O;0,~)c--+ (i,1;0,fl 

(i,O;0,fl--+ (i,1;0,fl, 

i.e. partner infections, of our individual x during its entire remaining life. In analogy with the 
notation of section 2 we denote this number by m;j(l, 0; 17 , v). Let the current infectivity of x 
towards its partner be described by the probability p;(l,0), the rate of entering the sexually active 
phase by a(~,0), and let (3(~,0) be the number of sexual contacts per unit of time within the 
sexually active phase of a partnership. Generalizing the expressions from section 2 we find 

m;j(C 0; 1}, v) = p;(l, 0)/3(~, 0) fo 00 

PL(i,O)L(1,j)(r,~, 0; 1}, v)dr 

+ Pi(~, 0)a(~, 0) 1= PL(i,O)cL(l,j)(T, ~. 0; 17, v)dr, 
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where PL(i,O)L(l,j)(r,(,0;17,11) denotes the probability that at timer after x became infected as 
type (l,j;17,11) it is still alive and has currently type (i,O;O,(). The analogous quantity with index 
c has a similar interpretation. 

Let <P = </J(j; 17, v) be the distribution of just infected individuals over the space { 1, ... , n} X n x n. 
We call this a generation. The next generation consists of all individuals that are infected by the 
members of this generation </J. Just as in [2] we can write down an expression for the next generation: 

(3.1) (K</J)(i;(,O) = t J miJ((,0;17,11)</J(j;17,v)d17dv. 
J=l nxn 

We regard the next-generation operator ]( as an operator mapping L 1 ( { 1, ... , n} x n x n) into 
itself. As shown in [2], !lo is the spectral radius of the operator K. 

Remark 3. It could prove to be no more than an academic exercise to work at this level of 
generality because it will be rather involved to determine analytically the probabilities P in the 
case of a dynamic continuous h-state like for example age. Instead of solving a coupled set of 
ODE's, which is basically what happens in section 2, one has to solve a coupled system of PDE's. 
See [8] for a different approach in the case of age as h-state, but however with much more restrictive 
assumptions. 

Example 3. 

We discuss the simplest example: let n = {1, 2} where '1' represents females, '2' represents 
males, and take only heterosexual contacts into account. The next-generation operator J( is 
in this case a 2n x 2n matrix of the following form 

where K1 = (mij(l,2;2,l))t~;,j~n and K2 = (m;j(2,1;1,2))1 ~i,j~n• For the spectral radius 
r(A) of an operator A we have that r(Ak) = r(A)\k ~ 1; furthermore, if B is another 
operator, then r(AB) = r(BA). Since 

we find 

Note that, because we only look at heterosexual contacts, the probabilities PL(i,O)L(l,j)(r) and 
PL(i,O)cL(l,j)(r) can be calculated in a way that is completely analogous to the example in 
section 2, with the only difference that death-rates, infectivities in each disease-state, and the 
rates of change in disease-state are allowed to depend on the h-state of the individuals in the 
pair. Let us treat the case of n = 1 in somewhat more detail. Let the male parameter-set 
be given by {µ 1 ,µ 0 ,p,/3,a,p,a} and the female set by {µ~,µ~,p',/3,a',p',a}, where pis the 
probability that a male infects a female. Note that there will be consistency requirements 
involving the pair formation parameters. 
The transition matrix G is given by 

(

a12 
G-- 0 
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where G12 (G21 ), which describes how the types of a female (male) individual change, 1s 
essentially the matrix from example 2 with appropriate placing of accents. We find 

I(i = mn(l,2;2,1) = -p,B(G21
)3j- pa(G21

)2J 
K2 = m11(2, 1; 1,2) = -p',B(G12 )3,! - p'a(G12

) 2,! 

and Ro=~-

//// 
For arbitrary heterogeneity one can derive an explicit formula for Ro in the very special case 

that the next-generation operator J( has a one-dimensional range. If we assume 

(3.3) 

the only eigenvalue of J( is 

In [2] assumption (3.3) is called separable infectivity and susceptibility, or separable mixing. If 
the functions a and b are equal up to a multiplicative constant, then the assumption is known as 
proportionate mixing [2]. Somewhat less restrictive than separable mixing is the assumption 

(3.4) 

which leads to a next-generation operator with n-dimensional range, where n is the number of 
disease-states. We then have, [2], that the eigenvalues of J( are equal to those of an n x n matrix 
E = (e;i) with 

Ro is then the dominant eigenvalue of E. Assumption (3.4) is called local separable infectivity 
and susceptibility, or local separable mixing, in [2]. 

4. Various limit procedures 

In this short section we show how various limit procedures can lead to interesting expressions 
for R0 • We restrict ourselves to the case of one disease-state. The Ro for this case is explicitly 
given in equation (2.3) in example 2. First we 'collapse' the sexually active period of a partnership 
to a point event . We write ,B = ka + 0(1) and let a -t oo. Then 1 + k is the average number of 
sexual contacts during one partnership with a sexually active phase and (2.3) simplifies to 

( 4.1) Ro = pap(l + k) 
µ1(1 + pk)(µo + µ1 + p + ac + a) 

The interpretation of (4.1) is as follows: a is the rate of becoming sexually active, given that 
one is in the courtship phase; p/(µ 1(µ 0 + µ1 + p + ac + a)) is the expected time that an infected 
individual will have a susceptible partner,i.e. the expected time spent in courtship (the product of 
this term with a gives the expected number of sexual partners); p(l+k)/(l+pk) is the success-ratio 
per sexual partner (this identical to the formula on page 405 of [4]). Note that (4.1) also covers the 
case where ,B remains bounded (simply put k = 0, this means that there are only 'first contacts'). 
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To completely eliminate pair formation from our model we still have to let o: -+ oo in ( 4.1 ), 
or, in other words, we have to let the length of the courtship period tends to zero. We then find 

( 4.2) Ro = pp(l + k) . 
µ1(1 + pk) 

This gives Ro = pp/ µ 1 for k = 0, which can be found immediately from the appropriate non pair 
formation model by looking at the interpretation of the parameters. 

If, instead of o:, we let p----+ oo in (4.1), we are in the situation where the individual is constantly 
in the courtship phase, 

Ro = ap(l + k) . 
µ1(1 + pk) 

Remark 4. In the case without pair formation the formal route to Ro would be to specify the 
infectivity A as a function of disease-age T and calculate, [3,7], Ro = fa°° A(r)dr. Under our 
assumptions, listed in section 2, A(r) has a special form A(r) = ppe-µ 1 7, and this leads once more 
to (4.2) with k = 0. In the case of n possible disease-states, A(r) involves an expectation for 
an infected individual to have a certain disease-state. The limit procedure to eliminate the pair 
formation completely is essentially the same as above: let a ----+ oo, o: ----+ oo and take k = 0. 

In the heterogeneous case we conjecture that a similar limit argument collapses the spectral 
radius of the next-generation operator (3.1) into the spectral radius of the operator 

(K</>)(f) = fnfo 00 

A(r,f,'f/)dr</>(r,)dr, 

from [2], but with a special form for the infectivity kernel A. As an illustration we look at the case 
where we recognize male and female individuals and allow only heterosexual contacts ( example 3). 
In the situation without pair formation we have, [9], · 

(4.3) Ro= 
pp'pp' --,. 
µ1µ1 

Ro for the pair formation case, from example 3, transforms into ( 4.3) if we let a, a' and o: tend to 
infinity. 

In Part II of this paper (in preparation) the theory developed in Part I will be used to derive 
quantitative results which are relevant in the context of HIV/ AIDS. Among other things we will 
discuss there the influence on Ro of (i) the pair formation parameters, (ii) changes in behaviour, 
and (iii) testing for sero-positivity. 

Acknowledgement: The authors would like to thank Denis Mollison and Paolo Scalia-Tomba for 
organizing the very stimulating 1990 workshop in Skokloster. 
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