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Abstract 

We consider multiple-server polling systems, in which each of the servers visits the queues according to its own cyclic 
schedule. Such systems appear to completely defy the derivation of exact waiting-time results, which motivates the search 
for accurate approximations. In the present paper, we derive waiting-time approximations for asymmetric systems with 
the exhaustive and gated service discipline. The approximations are tested for a wide range of parameter combinations. 
0 1998 Elsevier Science B.V. 
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1. Introduction 

A multiple-server polling system is a multiple-queue system attended by multiple servers, which visit the 
queues according to some routing mechanism. There are hardly any exact results known for these systems, 
apart from some mean-value results for global performance measures like cycle times. Motivated by the 
mathematical intractability, we derive in the present paper waiting-time approximations for systems with 
the exhaustive and gated service discipline, in which each of the servers visits the queues according to its 
own cyclic schedule. 

An example of a multiple-server polling system is a distributed system, consisting of a number of 
computers, interconnected by a communication medium, that cooperate as follows in sharing the load 
offered to the system, cf. [28]. The jobs entering the ‘front-end’ systems (corresponding to the queues) are 
picked up in batches by the ‘back-end’ systems (corresponding to the servers) according to some cyclic 
schedule. As soon as a batch is served, the back-end system picks up the jobs from the next front-end 

system. 
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Examples also arise in communication networks, like the underlying communication medium in the 
above-mentioned distributed system (cf. also Takagi [32]). Consider e.g. a local area network (LAN), 
consisting of a number of stations, interconnected by a transmission ring. There are various protocols known 
for the medium access control in a LAN with a ring architecture. One variant is the slotted ring, i.e., the ring 
is subdivided into time slots of the size of a single packet, circulating at constant speed. Occupying a slot 
corresponds to utilizing a server. Another medium access variant that may lead to multiple-server polling, 
is the multiple-token ring, i.e., there are multiple rings, each with a token circulating on it, representing the 
right of transmission on that particular ring. Holding the token corresponds to utilizing the server. 

Multiple-server polling systems have received remarkably little attention in the vast literature on polling 
systems (cf. Takagi [31] for a comprehensive survey). One of the first studies is Morris and Wang [28] in 
which the servers are assumed to be independent, i.e., to visit the queues independently of each other, each 
server according to some cyclic schedule. A very interesting phenomenon observed by Morris and Wang is 
the tendency for the servers to cluster if they follow identical routes, especially in heavy traffic, cf. also [25]. 
Numerical experiments indicate that the bunching of servers is likely to deteriorate the system performance. 
Obviously, the bunching of servers is alleviated if they follow different routes. Therefore, Morris and Wang 
advocate the use of ‘dispersive’ schedules to improve the system performance. Levy et al. [22] propose 
bang-bang policies to avoid the bunching of servers. 

Levy and Yechiali [23] and Kao and Narayanan [20] study a Markovian multiple-server queue, where the 
servers individually go on vacation when there are no waiting customers left. Mm-any and Avi-Itzhak [27] 
and Neuts and Lucantoni [29] analyze a Markovian multiple-server queue, where servers break down at 
exponential intervals and then get repaired. 

In [6,19,21,30], mean response time approximations are developed to analyze the performance of LANs 
with multiple-token rings. Mean response time approximations oriented to LANs with a multiple-slotted 
ring are contained in [5,6,24,33]. Ajmone Marsan et al. [24] derive the mean cycle time and bounds for the 
mean waiting times in symmetric systems for the exhaustive, gated, and l-limited service discipline. In [l] 

they illustrate how Petri-net techniques may be used to study Markovian multiple-server polling systems. 
Browne and Weiss [ 131 is one of the few studies in which the servers are assumed to be coupled, i.e., to 

visit the queues together. They obtain index-type rules for determining the visit order that minimizes the 
mean cycle length. Browne et al. [ 1 l] examine a completely symmetric two-queue system with an infinite 
number of coupled servers and deterministic service times. Browne and Kella [12] consider a two-queue 
system with an infinite number of coupled servers, exhaustive service, and deterministic service times at 
one queue and general service times at the other. Borst [7] explores the class of systems that allow an exact 
analysis in the case of coupled servers. Van der Mei and Borst [25] show how a broad class of multiple-server 
polling systems may be analyzed numerically by means of the power-series algorithm (PSA). 

The above-mentioned studies unanimously point out that multiple-server polling systems are extraordi- 
narily hard to analyze. Only the studies [20,23,27,29], considering single-queue systems, and [7,1 l-131, fo- 
cusing on a limited class of models with coupled servers, present any exact results. To the best of the authors’ 
knowledge, there are no exact results known for models with independent servers, apart from some mean- 
value results for global performance measures like cycle times. Motivated by the mathematical intractability, 
we derive in the present paper waiting-time approximations for asymmetric systems with the exhaustive and 
gated service discipline, in which each of the servers visits the queues according to its own cyclic schedule. 

The remainder of the paper is organized as follows. We present a detailed model description in 
Section 2. In Section 3, some preliminary results are obtained for the mean interarrival times of the var- 
ious servers at the various queues, which will be repeatedly used throughout the subsequent sections. In 
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Sections 4-6, we dlerive waiting-time approximations for asymmetric systems with the exhaustive and 
gated service discipline. Considering the merits and drawbacks of existing approximations, we intend to 
(i) use pseudo-conservation law-like concepts, which have proven to be a very useful instrument in the 
single-server case, and (ii) take into account the visit orders of the servers, which in the multiple-server 
case, through the clustering effects, appear to have a major impact on the waiting times. In Section 7, the 
approximations are tested for a wide range of parameter combinations. In Section 8, we conclude with 
some remarks and suggestions for further research. 

2. Model description 

The model under consideration consists of II queues Q 1, . . . , Qn, each of infinite capacity, attended by 

m identical servers ,Sl, . . . , Sm. Customers arrive at the queues according to independent Poisson processes. 
Customers arriving at Qi will be referred to as type-i customers, i = 1, . . . , n. Denote by hi the arrival rate 
at Qi,i = l,..., II. The total arrival rate is h := Cy=“=, hi. Type-i customers require service times with 

first moment pi and second moment By’, i = 1, . . . , n. All service times are assumed to be independent. 
Definetbetrafficintensityat Qi aspi :=hiBi,i = l,..., IZ. The total traffic intensity is p := Cy=‘=, pi. 

The servers move from queue to queue in a cyclic manner. Server j visits the queues in the order 

Qrrg), . . ., Qrj(n), with (nj(l), . . . t nj(n)) apermutationof (1,. . . , n), j = 1,. . . , m.Movinginto Qi,a 

server incurs a switch-over time with first moment si and second moment si ‘2),i = 1 . . 3 n. All switch-over 
times are assumed to be independent. Note that the total switch-over time incurreihuring a cycle has the 

same distribution for each server, with first moment s := CF=“=1 si and second moment st2) := Cy=, si(2) + 

Cifk I k* s-s The arrival, service, and switch-over processes are assumed to be mutually independent. 
The servers visit the queues independently of each other, under the restriction that at most mi servers 

may visit Qi simultaneously. In view of the latter restriction, a server arrival will be called effective if there 
are less than mi other servers already busy at Qi. If an arrival at Qi is not effective, then the server starts 
switching to the next queue immediately. If an arrival at Qi is effective, then the server starts serving type-i 
customers (possibly none), as prescribed by the service discipline at Qi . At each queue, the service discipline 
may either be exhaustive or gated. Under the exhaustive service discipline, a server leaves the queue when 
there are no waiting customers left. Under the gated service discipline, a server leaves the queue when there 
are no waiting customers left whose arrival occurred before the last server arrival. In other words, at each 
server arrival an imaginary gate opens to let waiting customers pass through. At each queue, customers are 
taken into service in order of arrival. As soon as the server finishes serving type-i customers, as prescribed 
by the service discipline at Qi, it starts switching to the next queue, as specified in its schedule. 

Finally some words on the stability conditions. Necessary conditions are of course that p < m, pi -c mi, 

i = l,..., n. We strongly conjecture that these conditions are also sufficient for service disciplines, 
like exhaustive and gated, that do not impose any (probabilistic) parametric restriction on the number of 
customers served during a server visit. Throughout the paper, the stability conditions are assumed to hold. 

3. Server interarrival time 

In this section, we derive some preliminary results for the mean interarrival time of the various servers 
at the various queues, which will be repeatedly used throughout the subsequent sections. We first introduce 



I66 S.C. Bout, RD. van derMei/Peflormance Evaluation 31(1998) 163-182 

some notation. Define rij as the load carried by Sj at Qi, i.e., the fraction of time that Sj is busy at Qi, 
i = l,..., 12, j = l,..., m. The total load carried by Sj is rj = Cy=‘=, rij. In general, the fractions 
rij are unknown. However, the balance between carried and offered load at Qi implies ~~=1 rij = pi, 
i = l,...,n. 

Denote by Aij (A$) the interarrival (effective interarrival) time of Sj at Qi, i.e., the time between 
two consecutive arrivals (effective arrivals) of Sj at Qi, i = 1, . . . , n, j = 1, . . . , m. Denote by pij the 
probability that an arbitrary arrival of Sj at Qi is effective, i.e., the probability that at an arbitrary arrival 
of Sj, there are less than rni other servers already busy at Qi, i = 1, . . . , n, j = 1, . . . , m. Obviously, for 
mi = m, pij = 1; for rni < m, the probabilities pij are however not known. 

Applying a traffic balance argument, 

EAij = A, 
1 - rj 

independent of i. Since pij = EAij /EAG , 

(1) 

slPij 
EATj = -. 

1 - rj 

(2) 

A question that arises here quite naturally is whether or not all the servers will carry the same load. If two 
servers follow the same visit order, then by symmetry considerations both should carry the same load. In par- 
ticular, if all the servers follow the same visit order, then rij = pi /m , j = 1, . . . , m . Numerical experiments 
indicate that, even when the servers follow different visit orders, at each individual queue the load carried by 
each of the servers tends to differ only marginally, although in case of highly asymmetric system configura- 
tions, the differences may slightly increase. However, as observed in [25,28], even in case of highly asymmet- 
ric system configurations, the total load carried by each of the servers does not appear to differ significantly. 

The above observation may be explained as follows. Suppose that the total load r1 carried by St is larger 
than the total load r-2 carried by S2. So by (1) the mean interarrival time EAi 1 of Sl is larger than the mean 
interarrival time EAi2 of S2. In other words, S2 visits the queues more frequently than St, so that S2 is likely 
(but not absolutely sure) to meet more work at the queues than St. So the total load r2 carried by S2 is likely 
to be larger than the total load rt carried by Sl, in contradiction with the initial supposition. The above 
explanation does not rule out that some minor differences may occur in the total load carried by each of the 
servers. However, the reasoning supports the observation that such differences cannot grow dramatically. 

Denote by Ai (AT) the server interarrival (effective server interarrival) time at Qi, i.e., the time between 
two consecutive server arrivals (effective server arrivals) at Qi , i = 1, . . . , n. Denote by pi the probability 
that an arbitrary server arrival at Qi is effective, i.e., the probability that at an arbitrary server arrival, there 

are less than mi other servers busy at Qi, i = 1, . . . , n. Obviously, for mi 
probabilities pi are however not known. 

The Ai (At) process is the superposition of the Aij (Arj) processes. So 

i = 1,. . . , n. 

= m, pi = 1; for mi -C m, the 

So, from (l), 

EAi = 2, 
m-_p 

(3) 
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which is again like (1) independent of i . Moreover, the mean server interarrival time is completely insensitive 
to how the total load is divided among the individual servers. Since pi = EAi /EAT, 

S/Pi EAT = -- 
m - p’ 

i=l V-+*1 Iz. (4) 

Note that the mean-value results obtained here for the (effective) server interarrival time also hold for 
the (effective) server interdeparture time. (A departure is called effective if it corresponds to an effective 

arrival.) 

4. Waiting time 

In this section, we derive waiting-time approximations for systems with the exhaustive and gated service 
discipline. We first introduce some notation. Denote by Wi the waiting time of an arbitrary type-i customer, 
i = l,..., it. For any non-negative continuous stochastic variable X, denote by RX a stochastic variable 
with as distribution. the residual-lifetime distribution of X, i.e., 

t 

Pr(RX < t} == & 
s 

(1 - Pr{X < u})du, t > 0. 

u=o 

For reference, we first briefly review the single-server case. The usual approach to obtain waiting-time 
approximations may be outlined as follows. To start with, one derives an (approximative) relationship of 
the form 

EWi e YiERCi, i = 1,. . . , n, (5) 

with Ci either the interarrival or the interdeparture time at Qi, depending on the service discipline at Qi. 
The symbol yi represents some coefficient in terms of the system parameters, which reflects the influence 
of the service discipline at Qi . 

For the exhaustive service discipline, 

EWi = (1 - ,oi)ERDi, i = 1,. . . ,T.z, (6) 

with Di the server interdeparture time at Qi, cf. [16,18]. (An alternative relationship for the exhaustive 

service discipline is EWi = iipy’/2(1 - pi) + ERIi, with Ii the intervisit time at Qi, cf. [15].) 
For the gated service discipline, 

EWi=(l+pi)ERAi, i=l,..., rz, (7) 

with, as before, Ai the server interarrival time at Qi , cf. [ 16,181. 
To proceed, one turns to approximating ERCi . Since ERCi = E(CF)/2ECi, where ECi = s/( 1 - p), 

it remains to approximate E(CF) by using some ‘additional’ information. (Similarly, ERIi = E(If)/2EIi, 
where EIi = (1 - /3i)S/( 1 - p).) One approach, followed by Bux and Tmong [ 151 in the case of exhaustive 
service and deterministic switch-over times, is to derive an exact formula for E(Iy) in the case of two queues, 
subsequently applying a ‘heuristic extrapolation’ to the case of an arbitrary number of queues. Another 
approach, proposed by Everitt [ 161, and further elaborated on by Groenendijk [ 181, is to approximate ERCi 
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in a direct manner, by invoking a so-called pseudo-conservation law, which provides an exact explicit 
expression for a weighted sum of the mean waiting times, typically J& P~EW~, cf. [9,10]. Substituting (5) 
into a pseudo-conservation law, assuming ERCi x ERC, yields an approximation for ERCi . Note that the 

the approximation is exact for completely symmetric systems. For asymmetric systems, the approximation 
is asymptotically correct in heavy traffic, cf. Van der Mei and Levy [26]. 

We now return to the multiple-server case. The usual approach to obtain waiting-time approximations 
may be sketched as follows, cf. [6,19,21,28,30]. Like in the single-server case, one starts by deriving an 
(approximative) relationship of the form 

EWi =yyiERC;, i=l,..., n, (8) 

with Cr either the effective server interanival or interdeparture time at Qi . At that stage, the complications 
start, since for most service disciplines at best a very rough approximation for yi can be found. Next, like 
in the single-server case, one proceeds by approximating ERCT . The complications then grow even worse, 
since there is very little ‘additional’ information available that can be used, neither in the form of any exact 
results for special cases, nor in the global form of a pseudo-conservation law. Thus, one typically considers 
the CT-process as resulting from the Ci-process after a ‘filtering’ with probability pi (the probability of an 
arrival at Qi being effective), and then the Ci-process in its turn as the superposition of the Cij-processes, 
with the subscript j referring to Sj. Subsequently, one approximates pi and fits some distribution to the 
C!ij -processes, assuming that the Cii-processes are independent and identically distributed. The motivation 
for fitting some particular distribution to the Cij-processes is at best questionable, but is usually even 
completely lacking. What is worse, however, is that the assumption that the Cii-processes are independent 
and identically distributed completely ignores the tendency for the servers to cluster, which immediately 
explains why the resulting approximations only appear to be reasonably accurate for dispersive schedules 
or under conditions (like mi = 1, or l-limited service) with dispersive effects, cf. [6,19,21,28,30]. 

We now describe an alternative approach to derive waiting-time approximations. From now on, we focus 
on the case mi = m, which we consider to be the most interesting case; in the last section of the paper we 
briefly discuss the case rni = 1. Considering the above-mentioned objections, we intend 
(i) to take into account the visit orders of the servers, which in the multiple-server case, through the 

clustering effects, appear to have a major impact on the waiting times; 
(ii) to avoid considering cycle time processes, instead using pseudo-conservation law-like concepts, which 

have proven to be a very useful instrument in the single-server case. 
Denote by qi the steady-state probability that at least one of the servers is busy at Qi. In general, the 

probabilities qi are unknown. However, pi/m 5 qi 5 min{pi, I}. To derive an approximative relationship 
of the form EWi x yiERCi, we assume that the customers experience the presence of multiple servers as 
if there were a single server processing at speed ai = pi /qi , the exact average processing speed at Qi . 

For the exhaustive service discipline, we then obtain from (6), replacing pi by pi /cx~, 

EWi % (1 -qi)ERDi, i = 1, . . . . IZ, (9) 

with Di the server interdeparture time at Qi . 
Similarly, we obtain from (7) for the gated service discipline, 

EWi x (1 +qi)ERAi, i = 1, . . . . n, 

with Ai, as before, the server interarrival time at Qi . 

(10) 
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In the multiple-server case, it is no longer reasonable to assume that the residual server interdeparture 
(interarrival) times are approximately equal, since the degree of clustering may differ significantly from 
queue to queue. Instead, we assume that the residual server interdeparture (interarrival) times are propor- 
tional to the average processing speed CX~ = pi /qi, which may be seen as a measure for the degree of 

clustering at Qi, i.e., 

ERDi x ERDpi/qi , i = 1, . . . , n, (11) 

and 

ERAi X ERApi/qi, i = 1, . . . ,TI, (12) 

with ERD and ERA unknown constants. Note that in case m = 1, qi = pi, so that (11) and (12) reduce to 
ERDi M ERD and ERAi z ERA, respectively, the usual assumptions in the single-server case. 

From (9)-( 12) we obtain 

pi (1 .- qi) EWi x -- C;,l P~EW~ 

C&t Pi(l - CM/@ ’ 
(13) 

4i 

and 

pi(l + qi) 
EWi x -- Xi=1 P~EW~ 

4i c”,=, P;u + 4h)l@I 
(14) 

for the exhaustive and gated service discipline, respectively. Thus, to complete the derivation of the 
approximations, it suffices to (i) find an expression for the weighted sum Cy=t P~EW~ and (ii) determine 
the probabilities qi , which we will do in Sections 5 and 6, respectively. 

5. Approximating the weighted sum Cyz”=l P~EW~ 

In this section, we describe a method for approximating Cy=‘=, P~EW~. Denote by V the steady-state total 
amount of work in the system. Applying Brumelle’s formula [ 141, 

epiEWi = EV - ; &?!2’. 
i=l 1=1 

(15) 

So to find an expression for CF=t P~EW~, it suffices to find an expression for the mean amount of work 
EV. For reference, we first briefly review the single-server case, where the crucial property that facilitates 
the determination Iof EV is work decomposition, which in its turn builds on the fundamental property of 
work conservation. To illuminate these concepts, denote by V” the steady-state total amount of work in 
the ‘corresponding M/G/l system’. The ‘corresponding M/G/l system’ is a single-server system with 
similar traffic characteristics, but with zero switch-over times, i.e., without any interruptions by the switch- 
over process. Denote by Y the steady-state amount of work in the original system in a switching interval. 
Then the following work decomposition property holds, cf. [9,10]: 

v:vc+y, (16) 
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with d indicating equality in distribution. When the amount of work in a switching interval is always zero, 
we may recognize in (16) the underlying property of work conservation, which in fact holds even in a 
sample-path sense. Note that EV” is simply known from the Pollaczek-Khintchine formula. For a broad 
class of service disciplines, including gated and exhaustive, EY may be determined along the lines of [9,10]. 
Taking expectations in (16), substituting into (15), then yields a so-called pseudo-conservation law for the 
mean waiting times. 

We now return to the multiple-server case, where deriving a pseudo-conservation law in an exact way 
involves serious complications. A simple interchange argument shows that a strict work conservation 
property in a sample-path sense only holds if all the customers have the same (deterministic) service time. 
A weaker work conservation property in stochastic sense only holds if all the customers have the same 
service time distribution and the service discipline is regardless of the actual service times. Hence, since 
work conservation may be seen as the basis for work decomposition, it is not very likely that a property 
like (16) holds in the multiple-server case. Even if it were, we would face the problem that EV” is generally 
not known, not to mention the problem of determining EY, so that the chances of deriving a pseudo- 
conservation law in an exact way appear to be negligible. Instead, we therefore derive an approximative 
pseudo-conservation law. Although a work decomposition property probably does not hold, we can always 
write 

EV=EV’+EY 

with V” denoting the steady-state total amount of work in the ‘corresponding M/G/m system’, and Y 
representing a stochastic variable whose mean satisfies the above equality, but which further remains 
unspecified. (The ‘corresponding M/G/m system’ is defined analogously as in the single-server case.) To 
approximate EV, we consider two auxiliary single-server systems with similar characteristics, for which 
the work decomposition property does hold, viz: 
(i) the 'A/m system’, i.e., a single-server system with identical characteristics, but with the arrival rate 

decreased by a factor m; 
(ii) the ‘#l/m system’, i.e., a single-server system with identical characteristics, but with the service rate 

increased by a factor m. 
For these auxiliary systems, we adopt the notational convention introduced for the original system. Applying 
(16) to the two auxiliary systems, 

VA/In i VT,, i- Yk/Fn, Vb/m =$ Viirn + Y/l/m. 

From the Pollaczek-Khintchine formula, 

1 c;=‘=1 &si’2’ 
EVyim = EV;,m = - 

m 2(1 - 6) ’ 

with 6 = p/m. From [9,10], 

1 _S(2) s 
EYA/rn = ;EY/?/m = /I% + 

20 - L9 
b2 - c ;i” + c bi” 

iCE icG 1 
with ci = pi/m. The symbols E and G indicate the index sets of the queues with the exhaustive and gated 
service discipline, respectively. 
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To approximate EV’, we assume that the ratio of the mean amount of work in a multiple-server system 
and a single-server system with similar characteristics and proportional load is rather insensitive to the 
service time distribution, i.e., 

EV” EV” 
~ = -- z J/(p) 

EVF,, EVi,m 

with y (p) denoting the known value of the ratio in question in case of identically exponentially distributed 
service times. In other words, 

EVo = y(p)E,V:,, = Y (p)EV;,, 

with 

To approximate EY, we assume 

with (II indicating whether the comparison with the ‘h/m system’ or with the ‘B/m system’ is more 
appropriate. The interpretation of the coefficients ~~~~ (p) and <,ylrn (p) is similar to that of the factor y(p) 
introduced above. 

If the server clustering is strong, which will occur especially in heavy traffic if the servers follow identical 
routes, then the system will tend to behave as the ‘/3/m system’, i.e., o t 1 for a high degree of clustering. 

It also suggests choosing {,slrn(p) = 1 (note from (17) that v(p) 4 1 when p f m). On the other hand, 
if the server clustering is weak, which will occur in light traffic, or if a dispersive schedule is used, then 
the comparison with the ‘A/m system’ is probably more appropriate, i.e., a! 4 0 for a low degree of 
clustering. Choosing {A/,,,(P) in this case is however not so easy. In light traffic, the switch-over times 
will tend to dominate the behavior of the system. If the total switch-over time incurred during a cycle 
is deterministic, then EWi 4 s/(m + 1) for p _1 0 (denoting that EWi decreases to s/(m + 1) as p 
decreases to 0). If the total switch-over time during a cycle is exponentially distributed, then EWi j, s/m 
for p _1 0. Interpolating, we obtain EWi 4 (m + sc2)/s2 - l)s/m(m + 1) for p 4 0, implying that 
EY = p(m+s 1s (2) ’ 2 - l)s/m(m + 1) + 0(p2) for p J. 0. Note that EYA/, = pd2)/2ms + O(p2) for 
p J 0. so 

EY/EYA/, -+ 
(m + d2)/s2 - l)s/m(m + 1) 

sc2)/2ms 
= 2(1 + (m - l)s2/s(2))/(m + 1) for p _1 0. 

In other words, <A/~(P) + 2(1 + (m - l)s2/s(2))/(m + 1) for p J, 0. On the other hand, in heavy traffic, 
the switch-over tim.es occupy only a negligible fraction of time, implying that <h/,,,(p) -+ y(p) for p t m . 

Interpolating, we obtain ~~~~ (p) z 2(p/m)(l + (m - l)s2/s(2))/(m + 1) + y(p)(l - p/m). 
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To choose a, we consider again ai = pi /qi, the average processing speed at Qi , as a measure for the 
degree of clustering at Qi . We define 

1 n 
c 

ai - Pi/ (1 - (1 - b/m>“> 
Cy=- 

n i=l m - pi/ (1 - (1 - h/m)“>. 
(18) 

Note that for a high degree of clustering, i.e., qi $ Pi/m, we obtain a f 1. On the other hand, for a low 
degree of clustering, i.e., qi 1‘ 1 - (1 - pi/m)“, we obtain cx _1 0. 

Concluding, 

EV x v(p> Xl:=“=, hiB,‘2’ + 

2(1 - 6) ( ( 

(1 _ aj 2p l + (m - 1)s2/s12) 

m m m+l 
+h+~))+am) 

;* 
icE icG I) (19) 

with y (p) and c~ as in ( 17) and ( 18), respectively. Substituting ( 19) into ( 15) yields an approximative pseudo- 
conservation law. Subsequently substituting (15) into (13) and (14) yields waiting-time approximations, 
still containing the probabilities qi, which we will determine in Section 6. Note that the approximation is 
exact for completely symmetric systems with exponential service times and zero switch-over times. 

6. Approximating the probabilities qi 

In this section, we describe a method for approximating the probabilities qi that at least one of the 
servers is busy at Qi, i = 1,. . . , n. We first introduce some notation. Denote by Hj(t) the entry in 
the polling table of Sj at time t. Indicate by Zj(t) whether Sj is switching (Zj(t) = 0) or serving 
(Zj(t) = 1) at time t. SO, if (Hi(f), Zj(t)) = (h, 0), then 5” is switching to Qni(h) at time t; if 
(Hi(r), Zj(t)) = (h, l), then Sj is serving at Qnj(h) at time t. Denote by (H, Z) a pair of stochastic 
variables with as joint distribution the joint stationary distribution of (H(t), Z(t)), with (H(t), Z(t)) = 

(HI(~), . . . , H,(t), G(t), . . ., &n(t)). 
We now describe a method for approximating the distribution of (H, Z). Note that the probabilities q; 

follow immediately from the distribution of (H, Z) as 

qi = 1 - Pr{(nj(Hj), Zj) # (i, 1), j = 1, . . . , m}. (20) 

It is not difficult to approximate each of the marginal distributions of (Hi, Zj), j = 1, . . . , m. As observed 
in Section 3, at each individual queue, the load carried by each of the servers tends to differ only rather 
slightly,i.e.,rij~:i/m,i=l,..., Iz,j=l,..., m.So 

Pr{(Hj, Zj) = (h, 1)} = rrj(h)j e - 
m * 

Also, from (1), 

Pr{(Hj, Zj) = (h, 0)} = g 
J 

(21) 

(22) 

with EC, denoting the mean cycle time of Sj . 
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It is considerably harder, however, to approximate the simultupzeous distribution of (H, Z) = (HI, . . . , 
H,,Zl,..., Z,) which is actually needed in (20). There are three types of transitions in (H, Z). 

First, 

(h, Z) + (h l t,ej,Z - ej>, Zj = 1, (23) 

representing a departure of Sj from Q,(hj), which does not result from an instantaneous passage; here ej 
represents the jth nr-dimensional unit vector; hj + 1 is to be understood as (hj mod n) + 1. 

Second, 

(h, Z) + (h, z + ej), Zj =O, 

representing an arrival of Sj at Qrj(hj), which does not lead to an instantaneous passage. 
Third, 

(24) 

(h,z) + (h -t.ej,z), Zj =O, (25) 

representing an instantaneous passage of Sj at Q, (hj). 
Note that {(H(t), Z(t)), t > 0) is not a Markov process, since the transitions are not independent of the 

past. To approximate the simultaneous distribution of (H, Z), we will however deal with the process as if 
it were Markov, i.e., as if the transitions in (H, Z) occur at a constant rate, independent of the past. The 
distribution of (H, Z) may then be determined as soon as the transition rates ~~~(h,~)+,(h~,~~) are specified, 
which we might do as follows. 

First, 

P(h,z)+(h+ej,7-ej) = Cm - P)/(P?rj(hj)s)9 Zj = l3 (26) 

i.e., a departure of Sj from Q,(hj) (which does not result from an instantaneous passage) occurs at a rate 
reciprocal to the approximate mean visit time of S’ at Qxj(hj) (i.e., r,rj(hj),~EAni(hj),j x pnj(hj)s/(m - p)). 

Second, 

P(h,z)+(h,z+e,) = l/s~j(hj)t Zj = O, (27) 

i.e., an arrival of Sj at Qrci(hj) (which does not lead to an instantaneous passage) occurs at a rate reciprocal 
to the mean switch-over time into Q, (hj). 

Third, 

CL(h,Z)+(h+ej,Z) = Of Zj = O, (28) 

i.e., an instantaneous passage of Sj at Q, (hi) (only occurring when there are no waiting customers at Q, (hj 1, 

which cannot be deduced from (H, Z)) does not occur. Note that in light traffic instantaneous passages in 
fact do frequently occur, since a server arrival is likely to lead to a concurrent server departure, which might 
suggest replacing (28) by 

P(h,Z)-t(h+ej,Z) = 11s?Tj(hj)3 Zj = Ot (29) 

when p J, 0. However, when p J, 0, combining (27) with (26) has a similar effect as using (29) would have. 
Because of the homogeneity in the transition rates, we would obtain from (26)-(28) 

Pr{(H, Z) = (h, z)} = fi Pr((Hj, Zj) = (hj, Zj)}, (30) 
j=l 
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where Pr{ (Hj, Zj) = (hj, zj)} satisfies (21) and (22). In other words, we would obtain complete indepen- 
dence in the server position distribution, while we attempted to capture the tendency for the servers to cluster. 

The driving force behind the tendency for the servers to cluster is that the time that a server visits a queue 
depends on the time that the queue has not been visited by one of the other servers, so that the servers, 
somewhat depending on the visit orders, tend to be driven together. Once driven together, the servers do 
not disperse as long as the visit orders do not direct them to different queues. To capture these phenomena, 
we slightly modify the transitions for the states in which more than one server is busy at the same queue 
simultaneously. For these states, we replace the transitions where ~lze server leaves the queue by a single 
transition of the same rate where all the visiting servers leave the queue simultaneously, reflecting that 
actually all the servers will tend to leave relatively shortly after one another. 

The transition rates being specified, the distribution of (H, Z) may then be determined by solving the bal- 
ance equations, supplemented with the normalization condition. Because of the inhomogeneity introduced 
in the transition rates, it is no longer possible to give the simultaneous distribution as explicitly as in (30), 
but it is easily verified from the balance equations that the marginal distribution Pr{(Hj, Zj) = (hi, zj)} 
still satisfies (21) and (22). 

More detailed clustering measures 

Remember that we approximated the distribution of (H, Z) to determine the probabilities qi that at least 
oneoftheserversisbusyat Qi,i = l,..., n. In their turn, we used the probabilities qi to determine 

ai = pi/qi, the av erage processing speed at Qi, as a measure for the degree of clustering at Qi. Having 
approximated the simultaneous distribution of (H, Z), we may however refine the latter estimate for the 
degree of clustering. In the remainder of the present section, we briefly discuss the definition of those 
alternatives. In Section 7, when testing the resulting waiting-time approximations, we will examine the 
impact of implementing these alternatives. 

Denote by P,s”’ (h, z) and #’ (h, z) the conditional probability that (H, Z) = (h, z) just after an arrival 
of Sj at Qi and after a departure of Sj from Qi, respectively. These conditional probabilities follow 

immediately from the distribution of (H, Z). Denote by T!o’(hj, zj) and T!r’(hj, zj) the entrance time into 
(Hi, Zj) = (hj, zj) just after an arrival of Sj at Qi and ader a departure f;‘f 5” from Qi, respectively. The 
mean values of these entrance times are given by 

ET@)@. z .) = ‘iis 
1-1 - b) + ij I’J 

.I 

r7cj(k)js 

‘nj(k) + l_r 
j 

+ Snj(hj)Zj 

M pis(1 - b) + 

m-_p 

b = 0, 1, with k = nj’(i) such that nj(k) = i. For given (h, z) = (ht, . . . , hm, 21, . . . , zm). let 

ET!b)(h. z,) 1 = 1 zji II’ Jl ’ m-3 m, be the mean entrance times ETiF)(hj, zj), j = 1, . . . , m, ordered in 

decreasing magnitude.‘let A,‘:‘& z) = (ET!:!, (h jl-1, zjl_i) - ET~~‘(hj~, zj,)), 1 = 1, . . . , m, with 

ET$(hj,,zj~) = EC, EC = S/( m - p). For given (h, z), A$’ (h, z) represents the mean of the Zth 
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of the m most recent server inter-arrival (b = 0) or interdeparture (b = 1) times at Qi, 1 = 1, . . . , m. Denote 

Alb’(h, z) = C~=t~(A~~‘(h, z))*. The ordinary sum of A$‘(h, z), I = 1, . . . , m, being always equal to EC, 
the sum of the squtzres provides a good indication for the spacing of the server arrivals at, or departures 
from Qi. Having this in mind, we define 

Si(b) = 2 c $)(h, z)Ai(b’(h, z)/(EC)* 
j=l (h,z) 

(31) 

for b = 1 and b == 0 as a measure for the local degree of clustering at Qi under the exhaustive and 
gated service discipline, respectively. If the degree of clustering at Qi is high, then for the states (h, z) 

with large Pi(Q)@, i:), one of the A$‘@, 2)‘s is approximately equal to EC, while all the other A$‘@, z)‘s 

are approximately ‘equal to 0, so that $b) z m. On the other hand, if the degree of clustering at Qi is 

low, i.e., the A$‘(lr, z)‘s are the distances between approximately homogeneously distributed points on 

[0, EC], then 6jb’ :* mtc, with tc = ~~=XOl.._lX,_O C;“=r (xi-1 - xl)* d_~t . - - dx,_r . If the servers even 

tend to repel each other, i.e., all the A,(;’ (h, z)‘s are approximately equal to EC/m, then Sy’ % 1. 
We may also refine the measure (18) for the global degree of clustering. In the spirit of (3 1), we define 

Note that for a high degree of clustering, i.e., A;lhj,(h, z) x 1 for the states (h, z) with large Pr{(H, Z) = 

(h, z)}, we obtain tS t 1. On the other hand, for a low degree of clustering, i.e., Pr{(H, Z) = (h, z)} x 

nyCI Pr{(Hl, Zl) == (hl, zl)], we obtain 6 J 0. 

7. Numerical results 

We now present an overview of the numerical experiments that we have performed to test the accuracy of 
the waiting-time approximations. The reader is referred to [8] for a more extensive discussion of the numeri- 
cal results. We reemphasize that multiple-server polling systems are very complex, containing single-server 
polling models and1 ordinary multiple-server models as special cases, with the visit order constituting an 
additional complicating factor. The accuracy of the approximations should be judged from this perspective. 

We have focused on four-queue two-server models with exponentially distributed service and switch-over 
times. Limited numerical experience (which is however not reported in any further detail below) suggests 
that the approximations perform similarly for non-exponentially distributed service and switch-over times. 
In order to test the accuracy of the approximations for a wide range of parameters, we have considered 
several variants of a set of models in which the ratios between the arrival rates, (;11 : A2 : A3 : A4) and the 
mean service times (/St, 82, 83, /34), respectively, are given as follows: 

I. (1 : 1: 1: 1); (I-0, 1.0, 1.0, l.O), 
II. (1:1:3:3);(:1.0,1.0,1.0,1.0), 
III. (2: 2: 5 : 5); (l.0, 1.0,0.4,0.4), 
IV. (1: 1 : 1 : 1); (0.5,0.5, 1.5, 1.5), 
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Table 1 
The mean waiting times for Model I with s = 0.0; exhaustive service 

P n2 (1,2,3,4) (1,2,4,3) 

0.8 Exact (0.19,0.19,0.19,0.19) (0.19,0.19,0.19,0.19) 
a (0.19,0.19,0.19,0.19) (0.19,0.19,0.19,0.19) 
6 (0.19,0.19,0.19,0.19) (0.19,0.19,0.19,0.19) 

1.6 Exact (1.78, 1.78, 1.78, 1.78) (1.78, 1.85, 1.74, 1.74) 
o! (1.78, 1.78, 1.78, 1.78) (1.76, 1.93, 1.71, 1.71) 
s (1.78, 1.78, 1.78, 1.78) (1.78, 1.92, 1.71, 1.71) 

1.8 Exact (4.26,4.26,4.26,4.26) (4.41,4.66, 3.98, 3.98) 
(Y (4.26,4.26,4.26,4.26) (4.19,4.77,4.04,4.04) 
s (4.26,4.26,4.26,4.26) (4.25,4.71,4.04,4.04) 

(L4,3,2) 

(0.19,0.19,0.19,0.19) 
(0.19,0.19,0.19,0.19) 
(0.19,0.19,0.19,0.19) 

(1.78, 1.78, 1.78, 1.78) 
(1.78, 1.78, 1.78, 1.78) 
(1.78, 1.78, 1.78, 1.78) 

(4.26,4.26,4.26,4.26) 
(4.26,4.26,4.26,4.26) 
(4.26,4.26,4.26,4.26) 

Table 2 
The mean waiting times for Model I with s = 1 .O; exhaustive service 

P x2 (1,2,3,4) (1,Z 4,3) (1,4,3,2) 

0.8 

1.6 

1.8 

Exact (0.77,0.77,0.77,0.77) (0.77,0.77,0.77,0.77) (0.76,0.76,0.76,0.76) 
CY (0.78,0.78,0.78,0.78) (0.78,0.78,0.77,0.77) (0.78,0.78,0.78,0.78) 
s (0.78,0.78,0.78,0.78) (0.77,0.78,0.77,0.77) (0.77,0.77,0.77,0.77) 

Exact (3.29, 3.29, 3.29, 3.29) (3.24, 3.39, 3.09,3.09) (3.16,3.16, 3.16,3.16) 
a! (3.36, 3.36, 3.36,3.36) (3.14, 3.43, 3.05,3.05) (3.12,3.12,3.12,3.12) 
6 (3.52, 3.52, 3.52,3.52) (3.24, 3.49, 3.11,3.11) (3.14,3.14,3.14,3.14) 

Exact (7.55,7.55,7.55,7.55) (7.52,7.86,6.38,6.38) (6.87,6.87,6.87,6.87) 
a (7.58,7.58,7.58,7.58) (6.79,7.72, 6.54,6.54) (6.75, 6.75,6.75,6.75) 
s (7.87,7.87,7.87,7.87) (7.09, 7.85,6.74,6.74) (6.83, 6.83,6.83,6.83) 

v. (1 : 1 : 3: 3); (0.5, 1.5,0.5, 1.5), 
VI. (1 : 1 : 9: 1); (0.5,0.5,0.5, 2.5). 
By convention, the queues are numbered such that 7t1, the visit order of S1, is always (1,2,3,4). The visit 
orderofSzisconsideredforthecasesn2=(1,2,3,4),n2=(1,4,3,2),andrc2=(1,2,4,3).Foreachof 
the models, all switch-over times are assumed to have mean s/n = s/4 with either s = 0.0 or s = 1 .O ’ . The 
value of the total loadis either p = 0.8, p = 1.6, or p = 1.8. In all consideredcases, we assume mi = m = 2. 

For the models listed above, Tables 1-4 show the results for exhaustive service at each of the queues. Ta- 
bles 5 and 6 show the results for systems with gated service. The rows indicated by ‘a’ contain the approxima- 
tions obtained with ai = pi /qi as a measure for the local degree of clustering at Qi , and a as in (18) as a mea- 
sure for the global degree of clustering. The rows marked with ‘6’ give the approximations with (Iii replaced 

by S,(l) as in (3 1) for exhaustive service or Sy) for gated service, and o! replaced by 6 as in (32). The rows indi- 
cated by ‘exact’ contain the ‘exact’ mean waiting times obtained from either the PSA (for exhaustive service) 
or simulation (for gated service) 2 . The truncation error in the PSA (the width of the confidence interval in the 
simulation) is typically less than 1%. For compactness of the presentation, the confidence regions have been 

’ In evaluating the approximations, we actually took s = 10e6, since the formal definition of (H, Z) is restricted to the case 
of non-zero switch-over times. 

2 We implemented the PSA only for Bernoulli service, including exhaustive service as a special case, but in principle the 
method may also be used for gated service. 
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Table 3 
The mean waiting times at Ql for Models II-VI with s = 0.0; exhaustive service 

P x2 

exact 
0.8 cr 

6 

1.6 Exact 
ff 
s 

1.8 Exact 

(Y 
s 

(1,2,3,4) (1,4,3,2) 
I:[ III IV V VI II III IV V VI 

X21 0.13 0.25 0.27 0.21 0.21 0.13 0.26 0.27 0.23 

0.20 0.13 0.25 0.27 0.24 0.20 0.13 0.25 0.26 0.24 

0.21 0.13 0.26 0.29 0.26 0.21 0.13 0.26 0.27 0.26 

2.24 1.25 2.79 3.24 2.96 2.17 1.21 2.74 3.02 3.13 
2.03 1.24 2.53 2.75 2.45 2.00 1.24 2.50 2.59 2.48 
2.18 1.24 2.72 3.20 2.94 2.08 1.24 2.60 2.65 2.76 

5.51 3.01 7.00 8.26 7.94 5.11 2.94 6.38 7.12 8.05 

5.06 2.98 6.33 7.01 9.14 4.86 2.98 6.08 6.36 8.50 

5.41 2.98 6.68 7.97 10.44 5.04 2.98 6.30 6.50 9.39 

Table 4 
The mean waiting times at Q 1 for Models II-VI with s = 1 .O; exhaustive service 

P x2 (1,2,3,4) 
TI III 

(1,4,3,2) 
IV V VI II III 

0.8 Exact 0.83 0.72 0.87 0.91 0.84 0.81 0.70 
CY 0.82 0.72 0.87 0.89 0.86 0.81 0.71 

6 0.86 0.72 0.91 0.98 0.95 0.83 0.71 

1.6 Exact 3.98 2.80 4.56 5.12 4.69 3.69 2.59 

(;Y 3.72 2.83 4.23 4.43 4.05 3.43 2.59 

6 4.23 2.98 4.78 5.43 5.19 3.65 2.61 

1.8 Exact 9 04 6.43 10.55 11.94 11.44 7.73 5.55 
CY 8 69 6.30 9.95 10.59 13.91 7.54 5.47 

s 9 60 6.59 10.93 12.56 16.66 8.06 5.55 

IV V VI 

0.86 0.89 0.86 
0.86 0.88 0.86 
0.89 0.91 0.93 

4.28 4.58 4.93 
3.93 3.99 3.93 
4.17 4.19 4.55 

9.04 9.88 10.96 
8.75 8.95 11.99 
9.32 9.43 13.94 

omitted in the presentation of the numerical results. If we denote the ‘exact’ value of a performance measure 
by zexact and the approximated value by zaPP, then the relative error is defined by (zapp -zexacr)/zexact x 100%. 

Table 1 shows the mean waiting times at each of the queues for Model I for the case s = 0.0, and Table 2 
gives the results folr s = 1 .O. 

Tables 1 and 2 show that the approximations for Model I are very accurate, with relative errors typically 
well below 5%. In particular, Table 1 confirms that for completely symmetric systems (including ‘symmet- 
ric’ visit order combinations, i.e., rr;! = (1,2,3,4) or n2 = (1,4,3,2)), the approximations are exact for 
exponentially distributed service times and zero switch-over times. 

Tables 3 and 4 present the results for Models II to VI, for s = 0.0 and s = 1 .O, respectively. For ease of 
the presentation, only the mean waiting times at Q 1 are presented here; the accuracy of the approximations 
at the other queues is similar. 

The numerical results presented in Tables 3 and 4 lead to a number of conclusions. First, the results are 
still accurate when the arrival rates are fairly asymmetrical, even for heavily loaded systems (Model II), 
with relative errors typically less than 10%. For the cases considered for Model III, the arrival rates and the 
service rates are rather asymmetrical, but the load offered to each of the queues is the same. By construction, 
the approximated r,atios of the mean waiting times only depend on the Ai ‘s and /?i ‘s through the pi ‘s. As the 
pi’s are all equal here, the approximated mean waiting times are also all equal for ‘symmetric’ visit order 
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combinations, i.e., rc2 = (1,2, 3,4) or 772 = (1,4, 3,2). The numerical results show that the true ratios of 
the mean waiting times do depend on the individual hi ‘s and /Ii ‘s, but that the accuracy of the approximated 
mean waiting times is still acceptable, with relative errors typically less than 10%. In Model IV, the service 
times are asymmetrical, whereas the arrival rates are the same. The presented results indicate that the 
accuracy of the approximations is still acceptable, even in heavily loaded systems. In Model V, the arrival 
rates as well as the service times are asymmetrical. In these cases, the approximations are less accurate 
than in the cases considered above, but still acceptable. In Models I-IV, both approximations yielded 
similar results, but here the d-approximation tends to outperform the cr-approximation. Apparently, the 
latter fails to detect the clustering at the lightly loaded queues that are visited after the heavily loaded ~24. 
Model VI is a typical example of a very asymmetrical system. In such cases, the accuracy of all waiting-time 
approximations in the literature degrades significantly, even in single-server systems. Tables 3 and 4 show 
that the accuracy of the waiting-time approximation presented in this paper also degrades somewhat when 
the model is very asymmetrical, but remains acceptable as long as the load is not too high. 

We have also checked the accuracy of the approximation for multiple-server systems with gated service 
at all queues. As a typical example, we present the results for Model II. Tables 5 and 6 present the results 
for s = 0.0 and s = 1 .O, respectively. 

Tables 5 and 6 show similar results as for the corresponding models with exhaustive service: the accuracy 
is acceptable for systems which are not too asymmetrical, even for heavily loaded systems in which the 
switch-over times are significant. 

Table 5 
The mean waiting times for Model II with s = 0.0; gated service 

P (1,2,3,4) (1,2,4,3) (1,4,3,2) 

0.8 

1.6 

Exact 
u 
6 

Exact 
Cz 
s 

1.8 Exact 
LY 
6 

(0.18,0.17,0.19,0.20) (0.18,0.17,0.19,0.20) (0.18,0.18,0.19,0.19) 
(0.16,0.16,0.20,0.20) (0.16,0.16,0.20,0.20) (0.16,0.16,0.20,0.20) 
(0.17,0.17,0.20,0.20) (0.17,0.17,0.20,0.20) (0.17,0.17,0.20,0.20) 

(1.54, 1.52, 1.82, 1.85) 
(1.38, 1.33, 1.90, 1.94) 
(1.56, 1.54, 1.84, 1.87) 

(3.60, 3.59,4.34,4.40) 
(3.40,3.28,4.53,4.61) 
(3.72,3.67,4.43,4.48) 

(1.46, 1.51, 1.85, 1.86) 
(1.29, 1.32, 1.94, 1.94) 
(1.44, 1.53, 1.88, 1.88) 

(3.22, 3.42,4.46,4.46) 
(3.03,3.16,4.65,4.65) 
(3.36,3.63,4.52,4.52) 

(1.46, 1.46, 1.86, 1.86) 
(1.29, 1.29, 1.94, 1.94) 
(1.44, 1.44, 1.89, 1.89) 

(3.29,3.29,4.47,4.47) 
(3.03,3.03,4.67,4.67) 
(3.36,3.36,4.56,4.56) 

Table 6 
The mean waiting times for Model II with s = 1 .O; gated service 

P 

0.8 

1.6 

1.8 

x2 

Exact 
(Y 
6 

Exact 
(Y 
6 

Exact 

: 

(1,2,3,4) 

(0.84,0.83,0.91,0.92) 
(0.75,0.75,0.95,0.96) 
(0.83,0.82,0.94,0.95) 

(3.85,3.79,4.56,4.61) 
(3.25,3.12,4.47,4.58) 
(3.95,3.88,4.66,4.73) 

(8.38, 8.31, 10.15, 10.22) 
(7.69, 7.42, 10.23, 10.42) 
(8.91, 8.81, 10.62, 10.74) 

(1,2,4,3) 

(0.83,0.83,0.91,0.91) 
(0.75,0.75,0.95,0.95) 
(0.80,0.81,0.93,0.93) 

(3.27,3.44,4.28,4.28) 
(2.80,2.88,4.21,4.21) 
(3.22,3.43,4.22,4.22) 

(6.47.6.88, 9.33,9.37) 
(6.00,6.26,9.22,9.22) 
(6.96,7.53, 9.37,9.37) 

(1,4,3,2) 

(0.83,0.83,0.91,0.91) 
(0.75,0.75,0.95,0.95) 
(0.80,0.80,0.93,0.93) 

(3.35,3.35,4.35,4.35) 
(2.80, 2.80,4.21,4.21) 
(3.22,3.22,4.21,4.21) 

(6.94,6.94, 9.84, 9.84) 
(5.96,5.96,9.19,9.19) 
(6.89,6.89,9.37,9.37) 
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Discussion of the numerical results 

As discussed extensively in Sections 4-6, the waiting-time approximations presented in this paper are 
based on a series of assumptions, each of which, by definition, forms a potential source of inaccuracy. The 
first source of inaccuracy stems from the estimation of the ratios between the mean waiting times which, 
in turn, is composed of a number of approximations for (i) the mean waiting times in terms of the mean 
residual cycle times (cf. (9) and (lo)), (ii) the ratios between the mean residual cycle times (cf. (11) and 
(12)), and (iii) the value of qi (cf. (20)). The second error source is the estimation of the mean amount of 
work in the system (cf. (19)). Extensive simulation experiments have been performed to check the impact 
of each of these error sources on the error in the approximated mean waiting times. 

Inspection of the numerical results has revealed that the estimation of the mean amount of work in the 
system, EV, accord:ing to (19), is rather accurate. The error in the estimation of EV is typically less than 5% 
in fairly symmetrical systems, even in heavy traffic, and remains well below 10% for rather asymmetrical 
systems, even when the offered load is high. 

The main source of inaccuracy stems from the estimation of the ratios between the mean waiting times. 
The approximation of qi, i.e., the probability that at least one of the servers is busy at Qi , is quite accurate 
in many cases, also when the clustering effect is significant, with errors typically below 10%. We found that 
4i is underestimated in most of the cases. This is probably due to the fact that the clustering effect in the 
approximative approach is somewhat exaggerated, because of the assumption that all the visiting servers 
depart from a queue simultaneously. The approximation of qi may become inaccurate for very asymmetrical 
systems under a heavy-traffic scenario. Other inaccuracies stem from the approximation of the mean waiting 
times in terms of the mean residual cycle times (cf. (9) and (10)). For systems with the exhaustive service 
discipline, the mean waiting times are usually underestimated according to (9) (where qi and ERDi are 
taken to be their respective true (simulated) values), whereas in case of the gated service discipline, the 
mean waiting times are somewhat overestimated according to (10). Apparently, in the case of exhaustive 
service the approximation (9) is too optimistic and, in the case of gated service, the approximation (10) is 
rather pessimistic. However, in both cases the ratios between the overestimated mean waiting times appear 
to be rather robust with respect to these errors, so that the errors resulting from (9) and (10) only have a 
marginal impact on the waiting-time approximations. The ratios between the mean residual cycle times 
are estimated by the ratios between the estimated average processing rates according to (11) and (12). 
Numerical experim.entation has indicated that the quality of these estimations is quite good, with errors 
typically below lo%, except for very asymmetrical systems in heavy traffic. 

In the general approach developed in Sections 4-6, we used Lyi = pi/qi as a measure for the local 
degree of clustering and o in ( 18) as a measure for the global degree of clustering, where both degrees of 
clustering are based on estimation of the average processing speed. However, for situations in which the 
average processing speed does not provide a good indication for the degree of clustering, we defined in 
the second part of Section 6 alternative clustering measures, viz., sum-of-square-like spacing measures for 
the positions of the servers in the system (cf. (3 1) and (32)). Comparing the accuracy of the waiting-time 
approximations based on both clustering measures (in the tables indicated by (;II and 6) has not indicated a 
clear superiority of one of the two measures; the o-approximation is 122 out of the 468 times more than 
10% off; the b-approximation 96 times. 

Summarizing, in general the approximations presented in this paper lead to fairly accurate results when 
the system load is not too high and the system parameters are not too asymmetrical. Apparently, the 
approximations cover the main characteristics of the extremely complicated behavior of multiple-server 
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polling systems. When the system is very asymmetrical and the offered load is very high, the accuracy of 
the approximations may however degrade somewhat. 

8. Concluding remarks and suggestions for further research 

We have presented waiting-time approximations for asymmetric multiple-server polling systems with 
the exhaustive and gated service discipline, in which each of the servers visits the queues according to its 
own cyclic schedule. In these systems, the servers have the tendency to coalesce, especially in heavy traffic 
when the servers follow the same route. While most of the existing waiting-time approximations completely 
ignore the clustering effects, we have explicitly taken the server bunching into account by approximating 
the evolution of the joint server-position (H, Z) as a continuous-time Markov process. The approximations 
have been tested for a wide range of parameters, and have been found to be fairly accurate in the vast 
majority of the cases. 

In the present paper, we have focused on the case mi = m, i.e., all the m servers may visit Qi simulta- 
neously. It would be interesting to derive waiting-time approximations for the case mi < m, in particular 
for rni = 1. In some respects, the analysis will be somewhat facilitated then. Formulae (9) and (10) e.g. are 
exact for mi = 1. Also, the probabilities qi that show up in these formulae are simply known to be pi for 
mi = 1. In certain other respects, however, the analysis will be more complicated. The average processing 
speed ai = pi/qi will always be equal to 1 for mi = 1, so that it can no longer be used as a measure for the 

degree of clustering at Qi . The more detailed measures Si(b) can still be used. It will be harder, however, to 
approximate the simultaneous distribution of (H, Z), needed to determine these measures, since for rni < m 

there are also instantaneous passages through states with more than mi servers at Qi . The derivation of an 
approximative pseudo-conservation law will also be considerably harder. 

In the present paper, we have considered systems in which each of the servers visits the queues cyclically, 
in a fixed order, and where the switch-over times only depend on the next queue to be visited. It would be 
interesting to explore the same ideas to derive approximations for the mean waiting times in multiple-server 
polling systems with a non-cyclic polling table, with probabilistic server routing, or where the switch-over 
times also depend on the previous queue visited. 

The ultimate goal of performance evaluation is efficient operation and optimization. The development 
of accurate waiting-time approximations may be very useful in solving a variety of optimization problems 
for multiple-server polling systems, opening up a very interesting area for further research. 
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