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1. INTRODUCTION 

Suppose one is given a sequence XI>X2 , ••• of i.i.d. observations from some distribution function F. 
Suppose for some constants a,.>0 and b,. and some yEIR 

. max(X1>Xi, ... ,Xn)-b,. 
lim P{ ~x} = G.,(x) (1.1) 

n4-00 an 

for all x where Gy(x) is one of the extreme-value distributions 

Gy(x) = exp - (1 +yx)- 11Y. 

Here y is a real parameter (interpret (1 +yx)- 11Y as e-x for y=O) and x such that 1 +yx>O. 
We consider the estimators (based on the order statistics {X(i,n)}f=i) 

~(I) (l 2)-ll X(n-k+l,n)-X(n-2k+l,n) 
Yn : = og og 

X(n -2k + l,n) - X(,. -4k + l,n) 

and 

y~2): =M~1) + 1 - l/2{1-(M~1))2 I M~2)}- 1 • 
with for j = 1,2 

. 1 k -1 . 
MWl:=- ~ {log X(n-i,n)-log X(n-k,n)}1 

k i=O 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

for y . . DEKKERS and DE HAAN (1989) and EINMAHL, DEKKERS and DE HAAN (1989) proved that 
. VkcY~) -y) has asymptotically a normal distribution (for j = 1,2) under some conditions on k =k(n) 

including k(n)~oo,k(n)ln-'>0 (n~oo), provided the second order condition ("second order" relative 
to the domain of attraction condition) 

li (tx) 1-YU'(tx)-t 1-yU'(t) +I f all o (1.6) m ( ) = _ og x or x > 
t-+oo a t 

hold. Here U: = { 11(1-F)} <- (inverse function ). 
If k (n) is of smaller order than a given sequence k 1 (n) (depending on the distribution), then the 
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asymptotic distribution of Vk{n}(y~) -y) .has mean zero. One would like to take k(n) as large as 
possible since the asymptotic variance of .y~> decreases with k(n). If k(n)""'c.k 1(n) (n-oo) then there 
is an asymptotic bias depending on c (DEKKERS and DE HAAN: Remark 2.5 & EINMAHL, DEKKERS 

and DE HAAN: Remark at the end of section 3). 
We consider the asymptotic second moment of y~) -y and choose k(n) such that this expression is 

minimal by balancing the variance and bias parts. This value of k will be denoted by k 0 =k0(n). It 
will be proved that under a third order condition for this optimal choice of k the bias is of larger 
order than the variance so that there is no longer asymptotic normality (Section 2). The given third 
order conditions are in general hard to verify in this case - much harder than the second order condi­
tions since the latter can be given in terms of the distribution function while for the former a formula­
tion in terms of the distribution function seems difficult. The point is that the given third order condi­
tions are natural, so that the described behaviour is "usual". 

In DEKKERS and DE HAAN (1989) and EINMAHL, DEKKERS ~nd DE HAAN {1989) also an alternative 
second order condition is given for asymptotic normalib) of y n) in case y ¥= 0. Since the full range of 
y's is missing here anyway, we simplify the estimator Yn under these conditions in two different ways 
according to y>O or y<O. For y>O this leads to a variant of the well known Hill estimator. Here 
again we consider minimizing E(Y~) -y)2 and prove that under a third order condition the optimal 
choice of k leads to an asymptotic normal distribution with known mean ¥= 0. We show how to esti­
mate the mean in a consistent way {Section 3). 

Our results are illustrated by two examples: the normal and Cauchy distributions. 

2. OPTIMAL CHOICE OF k 
(first case) , 

2.a. Pickands estimator ~ 

The following theorem shows that under a natural strengthening of the conditions of th. 2.3 from 
DEKKERS and DE HAAN (1989), the optimal choice for k(n) does not lead to a limiting distribution for 
y~1) that is useful for the construction of a confidence interval. 

THEOREM 2.1 Let R(x): =logr-o-e-x). Suppose (1.6) holds, limR"(t)IR'(t)=O and 
1-+00 

-+ R"Qogt) 
- R'Qogt) Err. 

L k ( ) b th al . . . . th . d f A(l) d I A(I) et 0 n e e v ue numlillZlilg e asymptotic secon moment o y n - y an et y n. 0 

corresponding estimator. Then 
• ~ A(l) 
y11.o\nJ(Yn,o-y) + bn 

(2.1) 

be the 

(2.2) 

has asymptotically a normal distribution with mean zero and variance 
Z(y):=y2~+1)/{2(2Y-I)log2}2, where bn is an unbounded sequence of real numbers 
(bn=o(\Jko(n)), n-oo). · 

REMARK. Write 
2 

R(t +x) = R(t) + xR'(t) + ; R"(t) + .. 

R"(t)=o(R'(t)) (t-oo) is a natural condition for 

lim R(t +x)-R(t)-xR'(t) x 2 

1-+oo R "(t) 2 
(2.3) 

(DEKKERS and DE HAAN (1989), discussion before theorem A6). Now (2.3) implies 
R'Qogt)Eil(R"(logt)). Hence R"(Iogt)!R'(logt)ERV0 • The present condition is slightly stronger. We 
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shall show that the condition holds for the normal distribution. 

PROOF. We shall give the proof for the upper sign in (2.1) and use the notation of DEKKERS and DE 

HAAN (1989) freely. The proof of theorem 2.3, DEKKERS and DE HAAN, contains the following state­
ment: 

n 
N ,B(log-) 

.y~l) -y--"- + (I +o(l)). 2k 
Yk V'(log 2!_) 

2k 

with N,, asymptotically N(O,Z(y)). Hence the asymptotic second moment of y~1) -y is 

n 
7'"'' ,B(log 2k) 

.:::::..llL + { } 2 = 
k V'(log ;k) 

r2Z(y) + T(r) 
n 

with r:=n/(2k) and T(r):={,8(logr)/V'(logr)}2 • We consider 

Tc(n): =inf[ r 2Z(y) + T(r)]. 
r n 

(2.4) 

(2.5) 

Since rY,B(t) is the auxiliary function of t-YV'(t)eII, we have lim,B(t)/V'(t)=O. Hence the infimum 
1400 

exists for sufficiently large values of n. The third order condition (2.1) implies that for some function 
q>O 

lim T(tx )-T(t) = _ log x, 
1400 q(t) 

(2.6) 

i.e. -Tell. 
Now we proceed in a way similar as in GELUK and DE HAAN (1987), p. 61 sqq. with respect to the 

complementary convex function. When disregarding terms of lower order we may (and do) assume 
(GELUK and DE HAAN (1987) lemma 1.23) that T has a continuous strictly decreasing derivative 
s eR V _ 1• Further it is straightforward to see that, when disregarding terms of lower order, in (2.5) 
one may as well take the infimum over all positive real values of r (instead of 2rln eN). We thus con­
sider 

Tc(n): =inf { x 2Z(y) + js(u)du} 
x n x 

(cf. lemma 2.7, GELUK and DE HAAN (1987), p. 64). Hence the optimal choice of x is s ...... (~) and 
n 

2s .... (~)Z(y) co ~ 
Tc(n) = : + J s(u)du = J s.._(v)dv 

s-(1™_) 0 

" 
From s eR V _ 1 it follows that 
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lim s<-(tx) = x -1 

t.j,O s<--(t) 

and hence for all x>O 

lim Tc(tx)-Tc(t) 
----- = - log x. 

Hoo t- 1s<-(t- 1) 

Recall that k0(n)-n/{2s,_(~)} (n~oo). Hence 
n 

n 
P(log 2ko(n)) 

{~ } 2 ~ ko(n). 

V'(log 2k~(n)) 

00 

f s(u)du 

00 

f s(u)cry 
00 2Z r_,1 2Zt-v\ 

= { J s(u)du}l{2s,_(~n )In}= Z(y) ~-- withy:=s,_(~). 
s-(~) 

n 

y s(y) n 

Since sERV _i. the latter expression tends to infinity as y~oo i.e. as n~oo (cf. GELUK and DE 
HAAN (1987), remark 1 following Cor. 1.18). The proof is complete. 

2.b. Moment estimator 

THEOREM 2.2. Suppose that the conditions of th. 3.1, EINMAHL, DEKKERS and DE I-lAAN (1989) hold and 
condition (2.1). Let k 0(tc) be the value minimizing the asymptotic second moment of y~2) -y and let y~% 
be the corresponding estimator. Then 

~6'~%-y) + dn 

has asymptotically a normal distribution with variance 

W(y): = {
1, 

(l-y)2(1-2y){4-8..!..=lr. + (5-lly) (l-2y)} 
1- 3y (I- 3y) (1-4y) ' 

y;;;;.O 

y<O 

where dn is an unbounded sequence if real numbers (dn=o(~), n~oo). 

PROOF. We shall give the proof for y = 0 and the upper choice of the two signs in (2.1 ), DEKKERS and 
DE HAAN (1989) and (2.1), present paper. The other cases are similar. We shall use the notation of 
EINMAHL, DEKKERS and DE HAAN (1989) without comment. Since 

lim logU(tx)-logU(t)-a(t)logx = (logx)2 

1->oo a 1 (t) 2 ' 
(2.7) 

we get as in the proof of theorem 3.1 (EINMAHL, DEKKERS and DE HAAN (1989)) 

I d 1 k-I Y(n-in) 
M}.l=a(Y(n-k,n))P1(0) + a(Y(n-k,n)){k ~ log( y .· ) - P1(0)} 

1=1 (n-k,n) 
(2.8) 

a (0) Y I k - 1 y . + a1(Y(n-k,n))T + a1( (>r~k,n)) {k ~[log( Y(n-l,n) )]2 - a 1(0)} 
i=O · (n-k,n) 

plus a term of lower order where {Y(i.n)H=i are n-th order statistics from the distribution function 
1-1/x (x;;;;. l), with p1(0)= 1 and 
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00 d 
a1 (0): = j (logx)2 ---f = 2. 

I X 
d 

Now by the law of large numbers and {Ycn-i,n/Ycn-k,n)}f=-:01 ={Yck-i,k)}f=-:01, the last term of the 
rig!!t hand side of (2.8) is of lower order than the previous one. The second term, multiplied by 
Vkla(Ycn-k,n)) is asymptotically normal and the third term represents the bias. Similarly, since by 
(2.7) 

(logx)4 
{log U(tx) - log U(t)}2 ~ a 2(t)(logx)2 + at(t) 4 

+ 2a(t)a 1(t) (Io1x)3 ~ a 2(t)(logx)2 + a(t)a 1(t)(Iogx)3 

(disregarding terms of lower order), hence 

2 .:!.._ 2 2 1 k-I Ycn-i,n) 2 
M~>-{a(Y(n-k,n))} P2(0) + {a(Y(n-k,n))} {k .~[log( y )] - P2(0)} 

1 =O (n -k,n) 

+ a(Y(n-k,n>).a1(Y(n-k,n))a2(0) + a(Y(n-k,n)).a1(Y(n-k,n)). 

1 k-1 y . 
·{- ~[log( (n-1,n) )]3 - a2(0)} 

k ; =O Yen -k,n) 

plus terms of lower order, with p2(0)=2 and 

00 . d 
02(0) = j (logx)3---f = 3! 

I ~ X 

Again by the law of large numbers the last term is of lower order than the previous one. The second 
term is again connected with the asymptotic normality and the third represents the bias. 

It follows that (disregarding terms of lower order and writing a for a(Ycn -k,n)) etc.) 

y~2) :=~I)+ l _ ~{1-(M~1>)2/M~2)}-I ~1-~{1-(~1))2;AfC,,2l}-I 

M~2l 12- (M~1l)2 

M~2) -(M~1))2 

56{2a 2 +a 2·Qn1 Vk +a.a 13!}-{a2 +2a 2 P,,I Vk +2a.ai} 
~ 

2a 2 +a 2 Qn1Vk +a.a 13!-a 2 -2a 2Pn1 Vk-2a.a1 

n 
a1(k) 

a(!!_) 
k 

The last (approximate) equality is valid since by (2.1) the function a 1 (t)/ a (t) is the class II and 

lim .!. Yen -k.n) = 1 in probability. Since a EII(a 1), clearly 
n->OO n 
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The rest of the proof is more or less the same as the proof of theorem 2.1. 

3. OPTIMAL CHOICE OF k 
(second case) 

a. y>O: Hill's estimator 

THEOREM 3.1. Suppose (I.I) holds with y>O and for some p,c>O (cf. DEKKERS and DE HAAN 1989, 
Th. 2.5) 

1I+llyF'(t) - cE+RV _plr 

Determine k 0(n) such that the asymptotic second moment of M~1l-y is minimal. The optimal version 
of Hill's estimator will be called Af~U0 • Then 

Yko0)(~~)0 -y) 

. . all al "th -1- y(p+ l) 2 1s asymptotic y norm w1 mean _ 112 312 and variance y . 
2 p 

REMARK. This theorem is related to CsoRGO, DEHEUVELS and MASON (1985) and SMITH (l 987). 

PROOF. Suppose tl+lly.F'(t)-cE-RV_P1Y;lhe other case is similar. Define c 1:=cYyY. Since for 
x>O (cf. proof of Th. 2.5, DEKKERS and DE HAAN (1989)) 

lim logU(tx)-logU(t)-ylogx = l-x-p 
t-?oo IogU(t)-ylogt-Iogc 1 ' 

we have (proceeding as in the proof of theorem 2.2) 
d k-1 y 

(!) _ J.. "1 l (n -i.n) _ _ 
Mn -y k i~O og( y(n-k,n)) + [logU(Y(n-k.n)) ylogY(n-k,n) logci]. 

l k-1 y . 
·{l-- ~( (n-1,n))-P} 

k i=O Y(n-k,n) 

plus terms of smaller order, i.e. by the law of large numbers and 
d 

{ Y(n -i,n)/ Y(n -k,n)}7 ;;;OI = { Y(k -i,k)}7 ;;;J · 

1 k-I Yen-in) n n 
M~1>-y = y{- ~ log( · )-1} + [logU(-)-ylog--logci]. 

k i=O Ycn-k,n) k k 

·joo(l-x-P)dx 
x2 

I 

plus terms of smaller order 

= :y.P,.!Vk +a( kn)._!!_ 
p+l 

where Pn is asymptotically standard normal and a(t):=logU(t)-ylogt-IogcERV _p· When 
neglecting terms of lower order we may assume (cf. GELUK and DE HAAN (1987) lemma 1.23) that a 2 

has a continuous decreasing derivative s ER V _ 2P_ 1• We are interested in (with r: = n I k) 

rv2 p2 
Pc(n): =inf{ ..:_t_ + a2(r) } 

r n (p+ 1)2 



which is attained for r = r 0 = s <-( y2(p +/ )2 ). The infimum itself is 
n.p 

() P2 {y2(p+l)2s.-("2(p+I)2) + 
Pc n = 2 2 2 

(p+ 1) np np 

(p+ 1)2. 

r'<o+ n' 
n/ 
j s<--(u)du. 
0 

Further, with k 0 =n!r0 , 

'.,/k;(M';,1) - y) = yP11 + 

Now s ERV - 2p-I hence 
00 

J s(u)du 

lim -'---- = (2p )- I 
y.s(y) y->oo 

00 

J s(u)du} 

s~(~) 
np 

i.e. the last term of the righthand side of (3.1) converges to y(p+ I) 
2l/2.p3/2 . 

It follows that for the choice k = k 0 

'.,/k;(M';,I) - y) 

7 

(3.1) 

is aymptotically normal with mean y(p+ l) and variance y 2 • Next we show how to estimate the 
2112.p311 

unknown parameter p. 

THEOREM 3.2. Suppose that the condition of theorem 3.1 are fulfilled. Define 

L ·= logX(n-k,n)-IogX(n-2k.n) 
n· log2 

Then 

(~1))2 _ M(2) /2 
Ii II n 

m = 
n->ao M~I) - L,. 

y(3p+4) (1- _l_)-l 
p+ 1 log2 

in probability for sequences k =k(n) satisfying Vka( ~ )-HlO (n~oo). 

REMARK. Note that in theorem 2.3 of DEKKERS and DE HAAN (1989) the condition Vka( Z ) ...... o is 

used. Hence for estimating the bias many more observations should be used than for estimating y. A 
similar situation seems to occur in density estimation. 

PROOF. With the notation and convention of the previous proof we have 

M(I) ::::.-:; y + yP I Vk + a(!!_)_P_ 
n " k p+ I' 
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(M(1))2 ~ y2 + 2y2 p I y'k + 2 a(E_)_:tp_ 
n n . k p+ 1, 

M';,2) ~ 2y2 + y2Qn1Yk +2.a(kn ).y j (logx)(l-x~P) ~. 
1 X 

Hence, since v'k.a( ~ )-oo, 

(M';,1))2 - M~2) 12 -y{2-p- - 1 + 1} = yp(3p + 4) 
a(E..) p+ I (p+ 1)2 (p+ 1)2 

k 

in probability (n-oo). Moreover 

_ Y(n-k,n) 
Ln - {logU( y .Y(n-2k,n))-logU(Ycn-2k,n))}l(Iog2) 

(n -2k,n) 

Yen-kn) n j"" dx 
~ {ylog y ' + a(k). (l-x-P)-2 }/(log2) 

(n-2k,n) I X 

~ y+yRnl{v'2k.Iog2} + a(~).pfJ/(log2) 

with Rn asymptotically standard normal (DEKKERS and DE HAAN (1989) lemma 2.1). Hence, since 

v'k.a( ~ )-oo (n-oo), 

M en L n - n p 1 
a(E..) - p+ 1 {I- log2} 

k 

in probability (n-oo). 

b. y<O: Moment estimator 

THEOREM 3.3. Suppose y<O and for some Po >0 

+{t- l-lly.F'(U( oo)-t- 1)-c0 } ERV -p,· 

Determine k 0 (n) such that the asymptotic second moment of .Y?l -y is minimal. Here 

.Y?): = 1-1/2{1-(H~1))2/H~2)}-1 

with for j= 1,2 
] k - I 

H (j).-_"" {X -X }i 
n · - k i~O (n -i,n) (n -k,n) · 

, o A (3) A (3) 
Denote the optimal version of Yn by Yn,O· Then 

\/ko(;;)(Y~~)o -y) 

is asymptotically normal with mean 

c<)Y(-y)-y+J 1 I I 
{ [l ---+ ]+ (-2p0y) 112 (1-y}y2 - 1-y - 1-y+p I-2y+p 

2(p-y) 
(1-y)(l-2y)(-y)(1-y+ p)} 
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and variance 

2 l-2v (5- l ly)(l-2y)} (1 - y) (1 - 2y){ 4- 8-=---..=-L + ...... ____ ....,__,,___ __ ,_,._ 
1-3y (1- 3y)(l - 4y) . 

PROOF. Suppose {t-l-llrp(U(oo)-t- 1)-co}ERV _Po" 

Then 11-r U'(t)-c0'Y(-y)-r+J ERVP.r and hence 1-r { U(oo)- U(t)}-c0'Y(-y)-r ERVp.r· It follows 

that 

lim U(tx)-U(t)-ct+'Y(l-x'Y) = l-x-Px'Y 
t-+oo t'Y a (t) 

for x>O where c:=c0'Y(-y)-r+ 1,p:= -p0y and a(t):=t-r{U(oo)-U(t)}-c. Hence 

H(t) I k-1 y . 
n ~ _c __ ~ {l-( (n-1.n) )'Y} 

(-y)(l!.)'Y (-y) k i=O Y(n-k.n) 

k 
n 

a(-k) 1 k-1 y . + ___ ~ {1-( (n-1,n) )r-P} 
-y k i=O Y(n-k.n) 

c Pn n 
~c. P1('Y) + -· _ r. +a(-k)a1('Y,P) 

-y vk 

with P1(y): =-1-1-, 
-y 

a1(y,p): = (-y)(l--yy+ p), 

__ /, l k-1 Y(n-i,n) 
P,,:-vk{-k .~{1-(Y( -k ))'Y}-p1('Y)}. 

i=O n ,n 

We also need 

Similarly 

H~2> Q n 
----- ~P2('Y) + _2 ___ nr;-k + 2c- 1.a(k)a2('Y,p) 
c2{-y(l!.)r}2 T VIC 

k 

with P2h): = (l-y)~l - 2y) , 

l 1 1 1 
02(y,p):=-::T{l--1-- 1 + +I 2 + } T -y -y p - 'Y p 

l k-1 y . 
Q,,: = Vk { _ ~ (l -( (11-1,n) )'Y)2 _ p2(y)}. 

k ; =O Y(n -k,n) 

Combination gives as in the proof of EINMAHL, DEKKERS and DE HAAN (1989), Cor. 3.2 

(3.2) 

(3.3) 
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A(3) 2 -2 P1(Y) Qn Pn 
Yn - YR:: P1(y){p2(Y) - (P1(Y)) } (-2- yVk - P2(Y) (-y)Yk 

+ c- 1 a(~){P1(Y)a2(Y,P) - P2(y)a1(r,p)}). 

Hence the asymptotic second moment of Yn -y is 

CJ n 
k + C2'T(k-) 

with T(t): = { a(t) }2 

c 1:=(1-y)2(1-2y){4-8.!=£l + (S-lly)(l- 2y) }. 
1-3y (1-3y)(l-4y) 

c2: =c-2{P1 (y)a2(y,p)-p2(y)a1(y,p)}2. 

We are interested in (with r:=nlk) 

We now proceed as in the proof of theorem 3.1. Since 'TERV -ip(p>O), we can assume (neglecting 
terms of smaller order) that 'T has a continuous derivative - s ER V _ ip- I ( cf. GEL UK and DE HAAN 

- c c 
(1987) Lemma 1.23). The optimum is then attained for r0 =s--(-1 ) i.e. k 0 =nls.-(-1 ), and 

nc2 nc2 

_ r,:-(A(3) _ ) ,,,., ( ){ ( ) _ (p ( ))2}-2 ( P1(Y) Q. _ P2(Y) p) 
V "O Yn : '"'"' PI Y P2 Y I Y 2y n (-y) n 

_ r- 00 CJ CJ + v c2 [ j s(u)dul{-.s--(-)}]112• 
nc2 nc2 

s-(~) 
nc2 

Now s ERV - 2p- i. hence 
00 

j s(u)du 

lim = 
y .... oo y.s(y) 2p 

i.e. the last term at the righthandside of (3.1) converges to ( ~~ )112 • It remains to estimate the param­

eters c and p figuring in the expression for c 2 • 

THEOREM 3.4. Under the conditions of theorem 3.3 
H(I) 

lim _n_ = C • ...::::1_ 
n .... oo (!!..yr 1-y 

k 

in probability and 

(H~1>)2-(Pi(Y))2c2{-y(!!..}Y}2 
lim k 

n->oo H~2) _ p2(y)c2{ -y( ~ )Y}2 

in probability. 

(3.4) 

PI (y)a1 (y,p) 
(3.5) 



PRooF. The statements follow directly from (3.2) and (3.3). 

4. APPUCATIONS 

Normal distribution. 

11 

Let F(x): = _ b- f e- 1' 12dt and write P: = -log(l-F). Let Q be the inverse function of P. One sees 
V2'1T -co 

from BALKEMA and DE HAAN (1988), Proposition 4.2 or by direct computation that 

1 
Q'(t) - Q(t), 

Q"(t) -1 
,..., {Q(t)}3, 

Q"'(t) ,..., 3 t -oo 
{Q(t)}5, 

(in general QV>(t)-(- l)i+ 1(2} -3)(2j-5) ... l/ {Q(t)}2i- 1, t_,,.oo, j= 1,2, ... ). Now R =logQ hence 

and 

R"(t) = Q"(t)Q(t)-{Q'(t)}2 -2 (t-oo) 
{Q(t)}2 {Q(t)}4 

R"'(t) = Q"'(t){Q(t)}3 - 3Q"(t)Q'(t){Q(t)}2 + 2{Q'(t)}3Q(t) 
{Q(t)}4 

(t-oo). 
Since clearly 

R" <R1Y(t +x) 

R" 
( R' )'(t) 

lim 
1->CO 

= 1 

. R"(logx) 
for x elR, 1t follows that R'(logx) ell. 

Note that 

ko(n)- _2r,; (logn)3 

3 v3 

for the optimal sequence k 0 in this case. 

Cauchy distribution. 
For Cauchy's distribution 

we have 

i.e. 

1 
F(x ): = 112 + -arctg x 

'IT 

t2 F'(t) = _!__t_2 -, 
.,, I +t2 

1 I - - t 2F'(t),..., -. 
'IT '1Tt2 

7 
{Q(t)}6 
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Hence the conditions of theorem 3.1 are satisfied with p = 2. 
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