
Nonlinear dynamics of atmospheric regime
transitions

Niet-lineaire dynamica van atmosferische regime-overgangen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Uni-
versiteit Utrecht op gezag van de Rector Magnificus,
Prof. dr. W. H. Gispen, ingevolge het besluit van het Col-
lege voor Promoties in het openbaar te verdedigen op vrijdag
17 januari 2003 des middags te 12.45 uur

door
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Introduction

Some think a scientists job is done once the laws governing a system have been written
down. Others have a different opinion. Among them are those dealing with fluid dynamics.
Their work started, rather than ended, when in 1822 Claude-Louis Navier published his
version of the natural law that describes the temporal evolution of a fluid or gas. Now
known as the Navier-Stokes equations to acknowledge the contribution of George Stokes,
the laws of fluid motion have a misleadingly simple appearance, in sharp contrast with the
variety and complexity of the phenomena described by them. The Navier-Stokes equations
are nonlinear, implying all kinds of feedback effects that are hard to understand. The
nonlinearity is responsible for the situation that, although the laws of fluid motion have
been known now for almost two centuries, many major questions concerning systems
governed by these laws are still unanswered.

I.1 Atmospheric low-frequency dynamics: regime be-

haviour

This thesis deals with a notorious example of a fluid dynamical system: the atmosphere of
planet earth. The main focus will be on the low-frequency behaviour of the extratropical
planetary-scale atmospheric flow, i.e. on the behaviour of flow characteristics of over 5000
km. of spatial extent, outside the tropics, on timescales of a week or longer. A major
role in that behaviour is played by so-called regimes: preferred patterns of the planetary-
scale atmospheric circulation. Regimes can capture the atmospheric flow for some time
(typically one or two weeks), after which the flow makes a transition to another regime.
The planetary-scale flow pattern is more or less frozen when the atmosphere is caught
in a regime. It sets the large-scale boundary conditions for the advection (horizontal
transport) of smaller scale (so-called synoptic scale) atmospheric phenomena, such as
depressions, that on their turn determine day-to-day weather conditions.

Atmospheric Low-Frequency Variability (LFV) is the name for variations in the at-
mosphere on timescales of a week or longer (see Haines (1994) for a review). Variations
on timescales beyond several months are gathered under the name Ultra-Low Frequency
Variability (ULFV). The switching back and forth between regimes dominates the vari-
ability of the midlatitude (i.e. non-tropical) planetary-scale flow at the intraseasonal
timescale (weeks to months). The central role of regimes in atmospheric LFV is reflected
in the teleconnection patterns, correlation patterns relating geographical regions all across
the northern hemisphere (Wallace and Gutzler, 1981). The two most prominent telecon-
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nection patterns, the North Atlantic Oscillation (NAO) pattern and the Pacific/North
American (PNA) pattern, are also found in the regimes. The standing wave oscillations
assumed to underlie these teleconnections can be interpreted as transitions between dif-
ferent regimes.

The notion of atmospheric circulation regimes found its first articulation in studies like
Baur (1947), Namias (1950) and Rex (1950a,b). Based on the experience of synoptic me-
teorologists, it was recognised that the atmospheric flow over the North-Atlantic possessed
two states in which it could be caught for some time: a zonal state of strong west-to-east
flow, and a blocked state characterised by weak zonal flow and large wave amplitudes, re-
sulting in more meridionally (north-south) oriented flow. The alternation, or vacillation,
between those two states has been called the index cycle. Later on, the notion of zonal and
blocked flow over the Atlantic evolved into the concept of regimes that are of hemispheric
extent. For the study of regimes, meteorological intuition was replaced by statistical
techniques, such as probability density estimation used on observational datasets. Since
Benzi et al. (1986) and Sutera (1986), this approach has been increasingly successful in
identifying preferred states of the large-scale Northern-Hemisphere (NH) flow. Moreover,
the results of different regime studies have become more and more similar to each other,
see e.g. Cheng and Wallace (1993), Kimoto and Ghil (1993a), Smyth et al. (1999) and
Monahan et al. (2001).

An important step towards a better understanding of the dynamics that drive regime
behaviour and LFV was made by Charney and DeVore (1979). They suggested that
regimes correspond with equilibrium solutions (steady states, fixed points) of the equations
describing the evolution of the large-scale flow. Their study made clear that in a severely
truncated model of midlatitude flow over topography (“mountains”), multiple equilibria
can exist that represent different flow regimes. The existence of more than one equilibrium
is due to the presence of topography in the model and the nonlinearity of the model
equations. This multiple equilibria theory triggered and inspired numerous subsequent
studies. In particular, a connection was made with the mathematical theory of dynamical
systems. The recognition that a finite-dimensional set of ordinary differential equations,
embodying an atmosphere model, can be viewed as a dynamical system opened up a
whole new class of concepts and techniques of considerable mathematical sophistication.
In particular the technique of (numerical) bifurcation analysis turned out to be useful
in the search for a better understanding of atmospheric flow dynamics, and has been
used by Vickroy and Dutton (1979), Källén (1981, 1982), Legras and Ghil (1985), Yoden
(1985a,b), De Swart (1988a,b, 1989), Itoh and Kimoto (1996, 1999) and many others.

I.2 Meteorology and dynamical systems

The connection between dynamical systems theory and meteorology starts, some time
before the emergence of the multiple equilibria theory, with the much celebrated work by
Lorenz. His milestone 1963 article Deterministic nonperiodic flow, on a highly simplified
model for convection in the atmosphere, showed that the difference between two model
simulations starting from almost identical initial states grew very rapidly. Also, the
model did not evolve towards an equilibrium state or towards a (quasi-)periodic solution,
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although it was entirely deterministic. It took several years before these results, published
in a journal on meteorology, got through to the mathematics community, but eventually
they turned out to connect with mathematical ideas on nonlinear systems, as developed
by e.g. Smale (1963) and Shil’nikov (1965). The extreme initial state sensitivity, and the
nonperiodicity of the bounded asymptotic solution became the hallmarks of systems that
behave, in a mathematical sense, chaotic. From the many other results and models put
forward by Lorenz, the model presented in Lorenz (1984) is in particular worth mentioning.
It describes baroclinic instability of a zonal flow in a highly simplified atmospheric context,
and has been analysed thoroughly from a dynamical systems perspective by Shil’nikov et
al. (1995) and Van Veen (2002a,b). Broer et al. (2002) couple the model to a periodic
forcing, representing seasonal variations of the solar forcing, and analyse it in great detail.

In meteorology, the initial state sensitivity (also referred to as exponential error
growth) has important consequences for weather prediction. The inevitably limited knowl-
edge of the exact state of the atmosphere, needed to specify an initial state for weather
prediction models, means that the model simulation and the real atmosphere will evolve
differently after some time. This limits the prediction of weather: the predictive power
of model results, even at the high level of resolution and sophistication of present day
models, is close to zero for predictions more than, roughly, ten days ahead. This fact has
been the center of much research effort over the years. However, the focus of this thesis
lies elsewhere. The presumed chaotic nature of atmospheric flow, and its implications for
predictability, is not the main theme here. The central issue will be regime behaviour and
atmospheric LFV.

Although a lot of information has been gathered on atmospheric LFV, the under-
standing of the dynamical structures and mechanisms that play a role in the generation
of LFV is still limited. For the development of such understanding, the theory of dynam-
ical systems can be of great use, as it allows to single out specific dynamical mechanisms
and study them in detail. The availability of advanced numerical analysis techniques is
particularly helpful in this respect. It is known that the low-frequency behaviour of the at-
mosphere is dominated by a rather small number of variability patterns (see e.g. Kimoto
and Ghil, 1993a). Moreover, these patterns are almost equivalent barotropic (Wallace
and Blackmon, 1983), which means that they have no vertical variations in the direction
of the horizontal air flow. As a consequence, the role of baroclinic processes is possibly
of secondary importance in the low-frequency behaviour. Baroclinic instabilities may be
merely a trigger for low-frequency variability, without playing a major role in determining
the structure of the low-frequency dynamics. The small number of variability patterns
that dominate atmospheric LFV and the role of regimes give the strong suggestion that
it must be a rather simple dynamical structure, consisting of e.g. only a few steady states
and periodic orbits, that generates the core of atmospheric low-frequency dynamics. The
analysis of atmospheric LFV from a dynamical systems perspective is the most natural
way to uncover this structure.
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I.3 Regime transitions

The application of dynamical systems theory on models of atmospheric flow has pro-
vided a lot of information on the structure of (model) circulation regimes. However,
the phenomenon of regime transitions has so far not been satisfactorily explained. If, à la
Charney and DeVore, regimes are associated with stable fixed points, or with other simple
attracting invariant sets such as periodic orbits or tori, one encounters the problem that
a system will not leave an attracting solution whereas the real atmosphere continously
hops from one regime to another. Therefore, a stochasticity assumption is often invoked
to explain regime transitions. Noise, representing the effect of physics and dynamics (e.g.
baroclinic processes) not included in a model, can kick that model out of the basin of
attraction of one regime and into another. This has been studied, by adding stochastic
perturbations to a low-order model, in e.g. Egger (1981), Benzi et al. (1984), De Swart
and Grasman (1987) and Sura (2002). However, the addition of noise is not necessary to
trigger regime transitions. Even in deterministic low-order models transitions can occur.
Examples are the model of De Swart (1988), with 10 variables, and that of Legras and
Ghil (1985) with 25 variables. Even the model of Charney and DeVore can be brought
to regime transitions without noise when the zonal forcing profile is taken more general
than in the original Charney and DeVore study, as will become clear in chapter three of
this thesis. It is therefore worthwhile to consider how transitions can be generated by the
internal, deterministic dynamics of a system, in the absence of noise.

From statistical studies of model data as well as observational data, it has been known
for some time that transitions between regimes are not an entirely random process. In Mo
and Ghil (1987, 1988), Molteni et al. (1990) and Kimoto and Ghil (1993b), up to seven
regimes/clusters are identified in various datasets (both from observations and models).
By counting the transitions between the various regimes, these studies made clear that
not only preferred flow regimes exist, but also preferred transitions between (some of)
the regimes. Plaut and Vautard (1994), studying the interplay between low-frequency
oscillations and regimes, also found that transitions are not purely random.

Itoh and Kimoto (1996, 1997, 1999) propose chaotic itinerancy as an explanation
for the preferences and inhomogeneities in regime transitions. Using multi-layer quasi-
geostrophic models of moderate complexity (L2T15 and L5T21), they detect multiple
attractors that are identified as regimes. By changing a parameter (horizontal diffusivity
or static stability), these attractors lose their stability one by one, thereby admitting
regime transitions. When all attractors have lost their stability, the model shows irregular
transitions between the remnants of the former attractors, and thus between the regimes.
This behaviour is called chaotic itinerancy. The preferred order of the transitions is
related to the order in which the attractors lost their stability. This interesting result
once more emphasizes the inhomogeneities in regime transitions, which must be due to
the nonlinear nature of the system under study. However, it does not provide much
insight in the dynamics that determine the transitions, as the loss of stability of the
various attractors is not analysed. It remains unknown what dynamical processes cause
and drive the transitions.
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I.4 Heteroclinic connections

The deterministic view leads to the interpretation of regime transitions as manifestations
of heteroclinic connections. Heteroclinic connections (or orbits) are solutions of (deter-
ministic) model equations that connect one invariant set, e.g. a steady state solution, with
another. Homoclinic orbits connect an invariant set with itself. Hetero- resp. homoclinic
bifurcations are bifurcations in which such connections are created. They are mentioned
a few times in the literature as a possible mechanism for transitions between regimes.
Legras and Ghil (1985) use a 25-dimensional equivalent-barotropic model, perform a bifur-
cation analysis of its steady states and find, by numerical integration, transitions between
regimes. Heteroclinic orbits as a possible explanation are mentioned, but not expanded
on. Kimoto and Ghil (1993b) and Weeks et al. (1997) also suggest the possibility that
regime transitions are related to heteroclinic connections. However, no studies have been
performed yet which focus on the role of heteroclinic connections in atmospheric regime
behaviour. To my knowledge, this thesis is the first study which explicitly adresses this
issue.

A set of fixed points and heteroclinic connections forming a closed loop is called a
heteroclinic cycle. Such a cycle would correspond to a cycle of regime transitions. In
model studies, the existence of a heteroclinic cycle is usually related to the presence of
symmetry in the model. In the most general situation, several parameters of a model
must be tuned in order to create a closed cycle of heteroclinic connections. The number
of parameters that must be tuned is called the codimension. The lower the codimension
of a phenomenon, the greater the chance to encounter that phenomenon in practical
situations. When symmetries are present in a model, they can reduce the codimension of
a heteroclinic cycle. Symmetries can even make cycles generic (i.e. no parameters need
to be tuned). In such a case, a cycle will persist under perturbations that respect the
symmetries of the model equations. The cycle is then said to be robust. A review of the
theory on robust heteroclinic cycles is given in Krupa (1997).

The source of symmetry in the large-scale atmospheric flow system is not a priori
clear. One could argue that the real atmosphere possesses no symmetry and that the role
of a heteroclinic cycle in atmospheric dynamics is therefore questionable. However, that
would be premature. Even when a cycle is broken its remnants may still influence the
system dynamics. Therefore, the behaviour of a system with perturbed symmetry can
still show signs of a heteroclinic cycle. In fact, since regime behaviour is irregular, the
atmosphere system cannot be exactly on a heteroclinic cycle – some kind of perturbation
must be present. One can think of several near-symmetries in the atmosphere system. The
topography could be considered as a perturbation of the axisymmetry. In the northern
hemisphere, where the symmetry-breaking due to topography is more severe than in the
southern hemisphere, the topography has an important wavenumber two component,
implying a (nearby) Z2 symmetry. Moreover, the laws governing the atmosphere can
posses symmetries not yet uncovered. See e.g. Blender and Névir (1991), who find a new
symmetry when studying the Lie-symmetries of the quasi-geostrophic potential vorticity
equation on a β-plane without topography.

In the fluid dynamics community, the possibility of heteroclinic connections as an ex-
planation for transitions between steady states has been recognised before. Examples were
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found in e.g. Rayleigh-Benard convection (Proctor and Jones, 1988) and the turbulent
boundary layer (Aubry et al. (1988), Armbruster et al. (1988), Holmes et al. (1996,1997)).
Knobloch and Moehlis (2000) provide an overview of mechanisms that produce bursting
in hydrodynamical systems (sudden transitions from and to regular, repeatedly realized
states); again, heteroclinic connections play an important role. They interpret transi-
tions between different types of behaviour as a form of bursting. Although no examples
are mentioned from geophysical fluid dynamics, such a concept of bursting could equally
well apply to the case of regime-transitions in atmospheric dynamics. The methods and
concepts used in the study of these fluid-dynamical examples could be very useful in the
investigation of regime behaviour and low-frequency variability of the atmosphere.

I.5 What lies ahead

The four chapters following this introduction reflect a conceptual development stretch-
ing several years. Insights gained in later papers were, obviously, not yet available when
starting the research leading up to this thesis. As a result, chapter one is not yet focused
on regime transitions but rather on a general view of the dynamics driving a simple at-
mosphere model. Previous studies of low-order atmosphere models investigated specific
mechanisms playing a role in atmospheric dynamics, such as topographic or baroclinic
instability. The low-order model considered in chapter one tries to capture the behaviour
of the global atmosphere, covering the two hemispheres including the tropics. The inter-
action between two (slowly) oscillating modes, both with mainly Northern Hemispheric
variability, was found to be able to reproduce the main features of the model dynamics:
growth and decay of turbulent kinetic energy. This behaviour was related to the presence
of a homoclinic orbit of double-focus type, nearby in parameter space. The orbit, con-
necting a steady state of mainly zonal circulation with itself, generates chaotic behaviour
which can explain the nonzero variability on ultra-long timescales. A brief inspection of
the behaviour of a moderately complex, barotropic model of Northern Hemisphere flow
showed similar behaviour.

A closer investigation of the same hemispheric model in chapter two resulted in a
more subtle picture of the dynamics. The Probability Density Function (PDF) of the
two most dominant patterns of variability showed two preferred states, or regimes. A
numerical calculation of steady states made clear that these regimes could be associated
with the dynamically most important steady states of the model equations. Heteroclinic
connections between these steady states were approximated numerically using a new algo-
rithm. The algorithm is based on adjoint modelling techniques which stem from 4D-VAR
data assimilation in weather forecasting. The approximated (remnants of) connections
match well with statistically found phase space preferences of the model during regime
transitions.

The hypothesis that remnants of heteroclinic connections guide regime transitions,
inspired the model investigation in chapter two, but was itself left without firm math-
ematical support. In chapter three such support is searched by analysing a low-order
model of atmospheric flow at midlatitudes. Regime transitions have been observed in
different barotropic models, in which only topographic and barotropic instabilities are
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present. Therefore, the simplest model possible that combines these two instability mech-
anisms is used in chapter three. Such a model is provided by De Swart (1988a,b, 1989),
a six-variable model that is essentially the same as the model of Charney and DeVore
(1979), also studied by Yoden (1985), except for a more general zonal forcing profile. By
parameter tuning, the Hopf bifurcation corresponding to barotropic instability can be
made to coincide with one of the saddle-node bifurcations that are due to the topography
in the model. This coincidence is called a fold-Hopf bifurcation. In the unfolding of the
the truncated normal form of the fold-Hopf bifuraction, a heteroclinic cycle is present
that connects two steady states associated with different regimes. In the full model, this
cycle is perturbed, leaving orbits homoclinic to one of the equilibria.

Having studied the deterministic aspects of regime transitions in models, in the fi-
nal chapter the attention is shifted to the real atmosphere. The behaviour of the real
planetary-scale atmospheric flow is driven both by noise, stemming mainly from synoptic-
scale, high-frequency atmospheric processes, and by the internal nonlinear dynamics of the
planetary-scale flow system. An attempt is made to isolate the latter influence from the
former, in an analysis of observational data of the atmosphere system during winter. The
data are projected onto the unit sphere in a reduced 3-dimensional phase space, spanned
by the leading three preferred variability patterns (Empirical Orthogonal Functions, or
EOFs; see section 1.2 for a short explanation or Preisendorfer (1988) for a detailed ac-
count). The probability density function (PDF) associated with the data on the unit
sphere shows clear maxima that correspond with flow regimes also found in previous
studies. Concepts from the theory of Markov chains and phase space partitions are used
to bring out the non-diffusive, reversible dynamics of the large-scale atmospheric flow. It
is found that the role of such dynamics is small but becomes increasingly important in
low-pass filtered data, i.e. in the low-frequency behaviour of the atmosphere. By inspect-
ing the asymmetries of transitions between different phase space cells, a preferred path
over the unit sphere of the reduced phase space is detected. This path connects regimes
of zonal and blocked flow in the Atlantic sector. The analysis of observational data thus
confirms the point of view, adopted throughout this thesis, that deterministic dynamical
processes play a role in the low-frequency dynamics of the planetary-scale atmospheric
flow, in particular in the regime behaviour.

The results presented in this thesis have been submitted for publication:

Chapter one: D.T. Crommelin, Homoclinic dynamics: a scenario for atmospheric ultra-
low-frequency variability, J. Atmos. Sci. 59 (2002), 1533-1549.

Chapter two: D.T. Crommelin, Regime transitions and heteroclinic connections in a
barotropic atmosphere, J. Atmos. Sci, accepted for publication.

Chapter three: D.T. Crommelin, J.D. Opsteegh, F. Verhulst, A mechanism for atmo-
spheric regime behaviour, J. Atmos. Sci, submitted for publication.

Chapter four: D.T. Crommelin, Observed non-diffusive dynamics in large-scale atmo-
spheric flow, J. Atmos. Sci, submitted for publication.
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Chapter 1

Homoclinic dynamics: a scenario for
atmospheric ultra-low-frequency
variability

Abstract. In this paper, a link will be established between atmospheric ultra-low-
frequency variability (ULFV) and the occurrence of homoclinic dynamics in models of large-
scale atmospheric flow. It is known that uncoupled atmosphere models possess significant
variability on very long timescales (years to decades), which must be generated by inter-
nal atmospheric dynamics. The mathematical structure of this long-timescale variability is
investigated, using a global two-layer atmosphere model formulated in terms of preferred
flow patterns (EOFs). Due to its efficient formulation, this model can simulate an atmo-
spheric flow with realistic features, using only a small number of degrees of freedom. The
10-dimensional version of the model possesses both nonzero ultra-low-frequency variability
and several realistic short timescales. The essence of the ultra-long-timescale behaviour of
the 10D model, which manifests itself as bursting in the atmospheric turbulent energy, can
be represented by a 4-dimensional subsystem. In this subsystem, strong evidence for the
existence of a homoclinic orbit is found. The chaotic dynamics generated by the homo-
clinic orbit explains the occurrence of ultra-long timescales in the model. It is argued that
hints of homoclinic dynamics can also be found in more complex models. As an example, a
T21 barotropic atmosphere model (231 dimensions) of the northern hemisphere is shown to
possess behaviour that suggests the existence of a homoclinic orbit.

1.1 Introduction

Atmospheric variability on very long timescales, purely generated by its own internal dy-
namics, is not a very well understood feature of the atmosphere. The short timescales (up
to a week) are the classical subject of meteorological research, since they are within the
typical reach of weather prediction. Changes in the atmosphere on timescales from a week
to a few months, often identified as “Low-Frequency Variability” or LFV, have been stud-
ied rather intensely over the last decades, using and studying concepts such as blocking,
multiple equilibria and teleconnection patterns. In contrast, atmospheric behaviour on
timescales beyond several months (also called Ultra-Low-Frequency Variability or ULFV)
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has hardly received any attention apart from the context of coupled models: atmospheric
ULFV is usually associated with other, “slower” components of the climate system (e.g.
the oceans) and is therefore mostly studied in models in which the atmosphere is cou-
pled to the oceans, to sea-ice, etc. The ULFV of the atmosphere in itself, of its internal
dynamics has been ignored for a long time.

The limited number of papers that have been devoted to the ULFV generated by the in-
ternal dynamics of realistic atmosphere models mostly have a descriptive/phenomenological
content: using models of varying complexity, powerspectra of the frequency domain are
calculated, showing nonzero variability on very long timescales (years and longer). James
and James (1989) use a 5-level, T21 primitive equation model with both constant and
periodic forcing to arrive at powerspectra most of which show peaks at decadal periods
over a red-noise type background. James and James (1992), using the same model, find
maximum variability in a broad frequency-band, roughly between 5 and 40 years. They
also investigate the spatial structure of the ULFV in their model, using EOFs of the
zonal-mean zonal flow. From this information, they hypothesize that the interactions
between zonal flow and baroclinic waves induce the long timescale behaviour. This hy-
pothesis is further investigated (and supported) in James et. al. (1994). Pielke and
Zeng (1994) run the Lorenz 1984 model for 1100 years and find nonzero spectral power
for periods longer than a year. Kurgansky et al. (1996) use a low-order (8 components)
hemispheric, baroclinic model and find maximum variability between 3 and 44 years from
a 1100 years integration. Dethloff et. al. (1998) run a 20-dimensional baroclinic model
with orography for 10 000 years, thus obtaining results with better statistical reliability
than in previous studies. They find significant variability at ultra-low frequencies, with a
maximum at a period of about 10 years. Handorf et. al. (1999), as part of their study
of a coupled atmosphere-ocean model, run a moderately complex atmosphere model with
prescribed, seasonally varying sea surface temperatures for 1000 years and find modes
that are strongly peaked at 9 years.

The above studies follow roughly the same strategy: a relatively simple atmospheric
model, which allows for computationally cheap and fast integrations of considerable
length, is integrated for a very long time (up to 10 000 years). The data thus obtained is
used to calculate powerspectra of various quantities, such as spectral components. They
all show significant spectral power on very long timescales, orders of magnitudes longer
than the typical response timescale of the atmosphere.

In this paper, another approach is followed. Rather than aiming at more detailed
information about the precise spatio-temporal structure of the atmospheres ultra-low-
frequency variability, we want to focus on the mathematical structure and mechanism(s)
underlying the ultra-long timescale behaviour of atmospheric models. Using techniques
and concepts from dynamical systems theory we shall try to gain more insight into the
generation of ULFV in the atmosphere. This goal puts us in the middle of the gap
between mathematics/dynamical systems on the one hand and meteorology/climatology
on the other hand. In order to be analysable for mathematicians, nonlinear systems must
be low-dimensional; however, in order to be somewhat realistic, atmosphere models cannot
be that low-dimensional. The famous Lorenz models of 1963 and 1984, for instance, are
often thought of as metaphors of the real atmosphere. However, even though these models
are inspired by meteorological problems, they are not even remotely capable (nor meant)
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to describe global atmospheric dynamics. The (many) results that are known by now on
the creation of chaos and strange attractors in these models are not necessarily valid for
global atmospheric models, and the insights the Lorenz models provide should therefore
only be applied with great care to the global atmosphere. The mechanisms and sources
of chaos and long timescales can be totally different in global models.

In order to combine a small number of variables with an acceptable degree of realism,
we have turned towards the efficient model of Achatz and Branstator (1999): an atmo-
spheric model formulated in terms of Empirical Orthogonal Functions (EOFs), closed
with an empirical closure scheme. From a General Circulation Model (GCM) dataset
(NCAR CCM version 0B) EOFs were calculated and used as basis functions for a two-
layer model based on filtered (quasi-geostrophic-, or QG-like) equations. After truncation
of this model, an empirical closure scheme was applied in which forcing and linear terms
of the model equations were changed in order to minimize tendency errors (errors in the
time derivative) produced by the model. With as few as 30 degrees of freedom, the re-
sulting model has a remarkably good performance when it comes to climate simulation.
We shall work with the 10-dimensional version of this model, as it is a low-dimensional
version which still shows both nonzero variability on ultra-long timescales and several
realistic short timescales. The 10D model will be analysed in order to find out what
mechanism(s) and source(s) create chaos and long timescales (in other words: ultra-low-
frequency variability). Due to the degree of realism of the 10D model, and its derivation
from a GCM, the results obtained on the creation of chaos and ULFV are more likely to
represent realistic atmospheric characteristics than the results on the Lorenz models (or
any other model analysis we know of). To our knowledge, no attempt has been made
before to gain more insight into the creation of chaos in an atmosphere model that is
designed to be global and realistic, rather than to be merely a metaphor.

This paper is organised as follows. In section 2, the derivation and formulation of
the EOF-model is briefly described. In section 3 we compare the 10 EOF model with
the 30 EOF model and the GCM, in order to get an impression of its degree of realism.
Section 4 contains an analysis of the 10 EOF model. We will show that the essence of
the long timescale behaviour can be represented by a 4-dimensional subsystem of the
10D system; this is discussed in section 5, which also contains results of the analysis of
the 4D subsystem. In section 6 we will discuss to what extent the obtained results and
insights can be expected to be valid for more complex models, such as the 30 EOF model
and the GCM. In section 7, the output of an entirely different model, a T21 standard
barotropic model, will be used to further support the relevance of the results for more
complex models. Section 8 concludes the paper with a summary and outlook.

1.2 Model formulation

The atmosphere model we wish to analyse has to meet two conflicting requirements: the
model must be low-dimensional, and it must be realistic. Although it is impossible to
resolve this conflict entirely, one can at least chose to work with a model that uses its few
degrees of freedom as efficiently as possible, thereby providing an acceptable compromise.
Such efficiency can be created by describing atmospheric flow in terms of preferred flow
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patterns rather than in terms of spherical harmonics. The model formulated by Achatz
and Branstator (1999, AB hereafter) employs Empirical Orthogonal Functions (EOFs) as
its basis functions. Such a basis captures a maximum amount of atmospheric variability
with a limited number of basis functions. In combination with an empirical closure scheme,
a highly efficient model is obtained. This model will be the subject of our investigation;
its derivation will be described briefly in this section. For more detailed information on
the derivation the reader is referred to AB.

The recipe used by AB in order to make their model efficient consists of three steps.
First, streamfunction EOFs are calculated from GCM data. Then the expansion coef-
ficients of these EOFs are used as the variables of a two-layer filtered (QG-like) model.
After truncating this EOF-based model, an empirical closure scheme is applied in which
the linear and constant terms of the filtered equations are modified such that the resulting
set of equations minimizes the tendency error for states in the GCM dataset.

The GCM data used are two 50 000 day integrations (half daily output), under per-
petual January conditions, performed with version 0B of the NCAR Community Climate
Model (an R15 model with nine levels in the vertical). Timeseries describing the stream-
function at 200 and 700 mb are extracted from the data; the atmospheric state at time
t is now represented by a 990-dimensional vector X(t), which contains the spectral co-
efficients of the streamfunction at both 200 and 700 mb. In the 990-dimensional state
space in which X(t) lives, the vector which describes the direction of the largest variance
of the data points (using a total energy metric M to calculate “distance” in state space)
is identified as the first EOF. The second EOF is the vector which describes the direction
of the second largest variance and which is orthogonal to the first EOF. And so on: the
EOFs are all orthogonal to each other and are arranged, in descending order, according
to the amount of variance (in this case total energy variance) explained by each of them.

EOFs can be computed by solving the eigenvalue problem

C Mpi = λ2
i pi (1.1)

in which pi is the EOF with index i; the state vector X and pi live in the same vector
space: X,pi ∈ R990. M is the total energy metric, the total energy of a state X is given
by XT MX. λ2

i is the fraction of the variance explained by pi. Finally, C is the lag zero
covariance matrix (overbars denote time averages):

C = (X−X)(XT −XT) (1.2)

In summary: the EOFs are calulated from the timeseries {X(t)} using a total energy norm,
yielding a set of patterns {pi}, i = 1, . . . , 990. Each EOF corresponds to a streamfunction
anomaly pattern at both 200 and 700 mb. The EOF spectrum is rather flat: about 500
EOFs are needed to explain 90% of the total energy variance.

The two-layer filtered model used by AB was derived by Lorenz (1960); it is essentially
the same as a classical quasi-geostrophic model. Projection of the (discretized) model
equations onto the EOFs, i.e. replacing the state vector X(t) by X +

∑
i ai(t)p

i, yields
an equation for a, the 990-dimensional vector containing the EOF expansion coefficients
ai:

ȧ = Fa + La a + N(a, a) (1.3)
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with time-independent forcing Fa, linear operator La and quadratic nonlinearities N(a, a).
This system is truncated, leaving an m-dimensional set of ODEs prescribing the time-
evolution of a = (a1, . . . , am)T

Finally, Fa and La are replaced by new operators F and L, which were determined such
that the resulting set of equations produces tendencies ȧ which resemble the corresponding
tendencies in the GCM data as closely as possible. This empirical correction of F and
L accounts for the effect of unresolved physics and dynamics on the explicitly described
patterns, e.g. the effect of the EOFs that were lost in the truncation, or dynamical
processes in the tropics which are not captured by the QG equations (thereby making the
model more realistic than ordinary QG models). The final result is an m-dimensional set
of ODEs:

ȧ = F + L a + N(a, a) (1.4)

Note that (1.4) models the time-evolution of deviations of the atmosphere from the GCM
mean state X. Anomalous, not total flow is described; the “background” flow X is given
and constant. The atmospheric mean state resulting from the model (1.4) can be different
from the mean state in the GCM, so

∑m
i=1 ai p

i can be nonzero.
A last remark on the energy in the model: the total turbulent energy (the phase space

distance to a = 0 using the total energy norm) is equal to the sum of squares of the EOF
coefficients, i.e. E = a · a (Euclidean inner product). This is due to the use of the total
energy norm in the calculation of the EOFs. E is unaffected by the nonlinear terms,
which means that a · N(a, a) = 0. The nonlinear interactions redistribute energy but do
not change the overall energy in the system (this is a common property of fluid dynamical
models – the advection terms conserve energy).

1.3 The 10D model

The performance of the empirical EOF model was tested in various ways by AB, e.g.
by inspecting the climatology of the 500 EOF model, by comparison with an optimized
standard spectral model and by calculation of tendency errors for EOF model versions
of varying dimension (using the GCM data as reference). The last test showed that
the relative tendency error was quite large (0.9 - 0.4) but monotonically decreasing for
increasing number of dimensions. In contrast, the relative first moment error and relative
second moment error showed minima (O(10−2)) in the range between roughly 30 and 70
dimensions. For higher dimensions, these error measures increased. Apparently, quite
simple EOF models (e.g. 30-dimensional), although not describing the instantaneous
tendency very well, can capture a lot of the dynamics on longer timescales (reflected in
the low first and second moment errors). This feature makes these models suitable for
studying (ultra-)low-frequency variability of the atmosphere.

The analysis in this paper will focus on the 10-dimensional EOF model. The relative
tendency error and the relative first moment error of the 10D model are comparable to
those of the 30D model; its relative second moment error is substantially larger. The
total energy variance explained by the first 10 EOFs is 21.7 % ; 30 EOFs explain 34.9 % .
Integrations of the 10D and 30D models and inspection of the timeseries of the turbulent
energy resulting from these integrations shows (figure 1.1) that both models exhibit large
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Figure 1.1: Timeseries of turbulent energy in GCM, 30D and 10D models (note the dif-
ferent timescales).

variations in energy: periods of relative quietness (low energy) and sudden outbursts of
energy during which the atmosphere is highly active. The same phenomenon can be seen
in the GCM data if we restrict ourselves to the large spatial scales, i.e. to the leading
EOFs. In figure (1.1) the turbulent energy of the GCM data projected onto the first 30
EOFs is shown. The bursting-like behaviour is the dominant aspect of the long timescale
behaviour of all three models. The energy-bursts become further apart in time and more
pronounced, compared to the GCM, in the 30D model and especially in the 10D model.
One could say that the strong, characteristic bursts in the 10D model are schematized,
overpronounced versions of the bursts in the 30D model and the GCM. Their heights,
however, are of the same magnitude.

Powerspectra of the turbulent energy of the 30D and 10D models, calculated from
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Figure 1.2: Powerspectra of turbulent energy in 30D and 10D models

integrations of 3×106 days length (8×103 years), are provided in figure 1.2. No turbulent
energy spectrum of the GCM data is shown, due to the limited time span of that data.
The spectrum of the 10D model clearly shows nonzero variability at very low frequencies.
It also shows a strong peak at a frequency of about 0.15 cycles per year (i.e. a period
of about 6.7 years); this peak is due to the bursting behaviour of the model. The 30D
model spectrum has the same characteristics: nonzero ULFV and a maximum at periods
slightly less than 10 years (although this maximum is much less pronounced than in
the 10D model). Apparently, the strong 6.7 year peak in the 10D model is much too
pronounced but not unrealistic, since its frequency matches both with the 30D model and
with peaks in the frequency spectra of previous studies: Handorf et. al. (1999) find a
peak of 9 years, Dethloff et. al. (1998) find a decadal peak, and both James and James
(1989, 1992) and Kurgansky et. al. (1996) find maximal variability at decadal periods.

The 10D model not only possesses nontrivial long timescale behaviour, it also repro-
duces some essential features of the GCM and the 30D model on shorter timescales. In
figure 1.3 powerspectra of the EOF1-coefficient are shown for the GCM, the 30D EOF
model and the 10D model. The complex spectrum stemming from the GCM gets more
and more simplified when going to the simpler models. The spectrum gets ‘stripped down’
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to its most essential features: peaks at periods of about 20, 30, 65 and 190 days (and
nonzero variability at ultra-low frequencies). In fact, the spectrum of the 30D model
shows 5 dominant “short” (< 1 yr) periods. To reproduce these in a simpler model one
needs at least 10 dimensions. The 10D model under consideration indeed reproduces those
5 periods: the above-mentioned 4, and a fifth (of 14 days) which isn’t very well visible in
the EOF1 spectrum but which is nevertheless present in the model (as will become clear
in the next section).

The above observations suggest the validity of using the 10D EOF model for studying
the mechanisms of atmospheric ULFV. It is simple and yet describes global atmospheric
dynamics; it has some degree of realism due to its derivation from a GCM. The model
possesses “short” timescales that are also prominent in the 30D model and the GCM; on
long timescales it shows nonzero variability associated to bursting behaviour also present
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Figure 1.3: Powerspectra of EOF1 in GCM, 30D and 10D models



23

in both the 30D model and the GCM. Furthermore, its dimension is low enough to allow
for the use of (some) techniques and concepts from dynamical system analysis.

1.4 Analysis of the 10D model

In the previous section, it was already noted that the 10D model behaviour is marked by
outbursts of turbulent energy: phases with rather regular behaviour and low turbulent
energy (so-called laminar phases) are followed by phases with chaotic behaviour and high
turbulent energy, as can be seen in figure 1.1. The regularity of the behaviour at low
energies indicates the presence of an unstable equilibrium solution of the model equations
(1.4) close to a = 0.

The equilibrium (or fixed point) can be found by continuation (starting at a = 0,F =
0), using e.g. the continuation software-package AUTO (Doedel and Wang (1995)), or
using a rootfinder. With both methods the equilibrium point aeq is easily found. Lineari-
sation shows that it is a saddle-type fixed point, with 1 unstable and 4 stable complex
pairs of eigenvalues. In table 1.1 the eigenvalues are listed, together with their associated
periods 2π/|Im λi| and e-folding times 1/|Re λi|. The periods of the five eigenmodes ex-
plain most of the peaks in the EOF1 powerspectrum (figure 1.3): those at frequencies of
2.0, 5.8, 11.5 and 18.6 cycles per year match very well with the periods of modes 5, 4, 3
and 2, respectively. The period of mode 1 is not visible in the EOF1 powerspectrum but
can be observed in the powerspectra of most other EOFs (not shown).

The atmospheric patterns associated to the eigenmodes are shown in figure 1.4. Mode
1 is a northern hemispheric wavenumber 5 zonal wave at mid-latitudes. Modes 2 and 3 are
equatorial waves; they are manifestations of the models’ representation of the Madden-
Julian Oscillation (MJO), also known as the 30-60 day tropical oscillation. Mode 2 has
wavenumber 2 (an aspect of the MJO that has been observed before (Lau and Peng (1987),
Salby and Hendon (1994)) but that is less well-known than the wavenumber 1 pattern of
the MJO); it also shows some north-pacific activity. Mode 3 is a wavenumber 1 equatorial
wave, the most famous aspect of the MJO (see Von Storch et. al. (1988)). Modes 4
and 5 are both largely northern-hemispheric; they resemble the Pacific/North-American
(PNA) pattern. Mode 5 also shows an alternation between blocked and zonal flow in the
north-atlantic region.

The e-folding times of the 5 eigenmodes may seem somewhat strange. They are one
to two orders of magnitude larger than the most commonly known timescales associated

no. eigenvalue period e-folding time
1 – 0.00272154 ± 0.438839 i 14.3 days 367.4 days
2 – 0.00223039 ± 0.319469 i 19.7 448.4
3 – 0.00168416 ± 0.198707 i 31.6 593.8
4 – 0.00286361 ± 0.0976673 i 64.3 349.2
5 0.00165548 ± 0.0353438 i 177.8 604.1

Table 1.1: Eigenvalues of linearised 10D EOF model
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mode 1

Figure 1.4: Eigenmodes of the 10D EOF-model linearised around the equilibrium state.
Shown are eigenmode patterns (200 mb) at the start (left) and at a quarter (right) of one
complete cycle. Contour intervals are 0.05 in non-dimensional units.
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to the growth and decay of atmospheric perturbations (typically a few days to a few
weeks). This is due to the empirical nature of the model under consideration. Growth
and decay cannot be attributed to physical processes (such as baroclinic instability or
Ekman dissipation) anymore; rather, they combine the cumulative effect of many such
processes. The empirical closure scheme applied by AB results in a model that describes
the net effect of many different physical processes on the resolved patterns.

Another peculiarity of the model stems from the fact that it describes deviations from
the mean flow instead of total atmospheric flow. By shifting the variables, say ψ, to
ψ′ = ψ − ψ (with ψ the mean state), the quadratic nonlinearities (advection terms)
N(ψ,ψ) split into a nonlinear part N(ψ′,ψ′), a constant part N(ψ,ψ) and a linear part
2 N(ψ,ψ′). The latter is added to the ‘old’ linear operator, which contained e.g. Coriolis
terms, friction and dissipation. The new linear operator can have growing eigenmodes,
whereas the old operator was purely dissipative. The energy transfer between the mean
flow and its disturbances, which is modelled with nonlinear terms in total flow models,
turns into a linear effect in the model of anomalous flow. As said, the linear operator
of the anomaly-model can be unstable, i.e. can have eigenvalues with positive real part.
This is the case for the 10D EOF model that is used here.

We rewrite the model equations (1.4) in terms of the eigenmodes of aeq, yielding a
system of 5 growing/decaying oscillations that are only nonlinearly coupled. Substituting
a = aeq + Sx in (1.4) results in

ẋ = Bx + Ñ(x,x). (1.5)

The (non-orthogonal) matrix S was chosen such that the new linear operator B is block-

diagonal: its only nonzero elements are five blocks

(
ρi −ωi

ωi ρi

)
on the diagonal, with ρi

and ωi the real and imaginary parts of the ith eigenvalue pair. The variables x and the
parameters of the equation are all real; the jth eigenmode is spanned by x2j−1 and x2j.
Turbulent energy in terms of x reads E = (aeq + Sx)T (aeq + Sx) 6= xT x + aT

eq aeq.
Numerical integration of the model reveals that the linear terms Bx dominate the

behaviour of the model. The full model ẋ = Bx + Ñ(x,x) can be seen as a simple,
linear system ẋ = Bx perturbed by relatively small nonlinear terms Ñ(x,x). Averaged in
time, the quantity |Ñ(x,x)|/|Bx| is about 1/4. The unperturbed (linear) system already
explains much about the intrinsic frequencies of the full (i.e. perturbed) system. However,
it does not explain the spectral peak at a frequency of about 0.15 cycles per year. This
peak is apparently due to the nonlinear nature of the full model. We therefore need to
consider the full nonlinear model in order to understand the ultra-low frequencies that
are generated.

A clue as to what is determining the global dynamics of the full model is provided by
figure 1.5, in which the squared norm |x|2 is plotted against time during an integration of
the full 10D model. This quantity is comparable, but not equal, to the turbulent energy.
It can be seen that the system approaches the point x = 0 (i.e. the equilibrium aeq when
using a as a variable) very closely, time and again. Such behaviour suggests the existence
of a homoclinic orbit: a phase space trajectory which connects an (unstable) equilibrium
point with itself. The presence of such an orbit would provide a good explanation for the
departure from and return to (the vicinity of) the equilibrium point by the system, as is
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Figure 1.5: Timeseries of squared norm (|x|2) of phase space distance to equilibrium point

visible in the 10D model, but also, less pronounced, in the 30D EOF model and in the
GCM.

We shall investigate the hypothesis that the global, long timescale behaviour of the
10D model is governed by the presence of a homoclinic orbit in the following section, after
providing some theory on homoclinic orbits. We do not attempt to detect this homoclinic
orbit in the 10D model (this is a very hard task in 10 dimensions), but rather we focus
on a 4D subsystem of the 10D system which contains the essence of the long timescale
dynamics of the 10D model.

1.5 A 4D chaos generator

Given a set of ODEs ẏ = G(y, µ) with µ denoting the vector of parameters, a homoclinic
orbit yho(t) is the projection onto phase space of a non-trivial solution of the ODEs which
asymptotically approaches a fixed point y0:

lim
t→+∞

yho(t) = lim
t→−∞

yho(t) = y0 (1.6)

With yho(t) being non-trivial we mean that yho(t) 6= y0 for some values of t. A heteroclinic
orbit (or connection) yhe(t) approaches in forward and backward time two different fixed
points y+ and y−(6= y+):

lim
t→+∞

yhe(t) = y+, lim
t→−∞

yhe(t) = y− (1.7)

A heteroclinic cycle is a set of heteroclinic orbits forming a closed loop. The simplest
version consists of two heteroclinic orbits: one running from one fixed point y− to another
y+, the second running from y+ back to y−. Strictly speaking, homoclinic and heteroclinic
orbits can also exist between other solutions than fixed points (e.g. periodic solutions,
invariant tori etc.), but we will not treat those possibilities here.

Let us focus on the homoclinic case and assume that yho(t) exists for the value µ = µho

of the parameter(s). Generically (assuming nondegenerate and nonzero eigenvalues), there
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are three possibilities for the leading eigenvalues of the system linearised around y0:

1. Two reals: (λ1, λ2) with λ1 < 0 < λ2 (the saddle case)
2. One real, one complex pair: (λ1, λ2± iω2) with either λ1 < 0 < λ2 or λ2 < 0 < λ1 (the
saddle-focus case)
3. Two complex pairs: (λ1 ± iω1, λ2 ± iω2) with λ1 < 0 < λ2 (the double-focus or bifocal
case)
In our 10D model, the eigenvalue spectrum of the fixed point consists exclusively of com-
plex pairs, so the eventual homoclinic orbit connected to this fixed point should be of the
bifocal type. For the bifocal case it is known that at the bifurcation point µho, as well as
in a parameter neighbourhood of µho, a countable infinity of periodic orbits (up to arbi-
trarily high periods) and an uncountable number of aperiodic orbits exist. All these orbits
are of saddle-type (i.e. unstable in some phase-space directions). A horseshoe-mapping
can be constructed, which means that a chaotic invariant set (consisting of the collection
of unstable (a)periodic orbits) is created. In our case, the unstable eigenvalues lie closer
to the imaginary axis than the stable eigenvalues and most evidence from dynamical sys-
tems suggests that the chaotic invariant set is then attracting. In other words, from the
eigenvalue-spectrum and the (conjectured) existence of the homoclinic orbit, it can be
inferred that a chaotic attractor exists for the model under consideration. More detailed
information on bifocal homoclinic orbits can be found in Fowler and Sparrow (1991),
Glendinning (1997) and Laing and Glendinning (1997). For a more general treatment of
homoclinic and heteroclinic bifurcations, see e.g. Kuznetsov (1995) or Wiggins (1988).

It must be stressed that a homoclinic bifurcation is a codimension 1 phenomenon,
which means that in general one parameter of the system must be tuned in order to
arrive at the bifurcation point. The homoclinic orbit exists exactly at this bifurcation
point. Away from this point, the homoclinic orbit disappears, but its influence can still
be felt by the system. Relating the behaviour of a system to homoclinic dynamics must
therefore be understood as identifying a homoclinic bifurcation point at parameter values
close enough to the values one is interested in, so that the influence of the homoclinic
orbit is still present.

Returning to our 10D atmosphere model, it can be seen that the interpretation of its
long timescale behaviour in terms of homoclinic dynamics is rather natural: the model
possesses a saddle fixed point and returns to this point time and again. In more physical
terms, one could characterise the long timescale behaviour as follows: the system comes
close to the fixed point x = 0; the unstable eigenmode starts growing. Once it has
acquired substantial energy, this energy is transferred, via nonlinear interactions, to other
modes. Eventually these other modes dissipate their energy until the system is back in
the vicinity of the fixed point. Then the whole cycle more or less repeats itself. Both the
growth and the decay take place in an oscillating manner.

We wil try to represent the crucial aspects of this scenario (2-dimensional oscillating
growth – transfer of energy – 8-dimensional oscillating decay) by a lower-dimensional
system. The minimum that is needed for such behaviour must be 4 dimensions: 2 to
produce a growing oscillation, 2 for a decaying oscillation. Such a system can be derived
from the 10D system in a crude way by replacing the 4 dissipating modes by just one: we
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can isolate a 4D subsystem from the 10D model, consisting of mode 5 (the only growing
mode) and one of modes 1-4, and their linear and nonlinear (self-) interactions. The effect
of the dissipating mode has then to be identified with the cumulative effect of modes 1-4
in the 10D model; mode 5 is of course identified with itself. It is not necessary to restrict
ourselves to triad interactions (as in spectral models) since each interaction between two
EOFs already involves many triad interactions between spectral modes.

The choice of the dissipating mode is nontrivial. From the point of view of dynamical
systems theory, selecting the leading eigenmodes, hence modes 3 and 5, would be the
most natural choice, since the leading eigenmodes determine the geometry of the (phase
space) flow close to the fixed point. However, the system consisting of modes 3 and 5 and
their interactions doesn’t yield interesting behaviour - numerical integration reveals that
it ends up in a nontrivial stable fixed point. The combinations 1-5 and 2-5 don’t work
either: the former also goes to a nontrivial fixed point, the latter goes to unphysically high
turbulent energy (a factor 105 too high). The only combination that gives similar results
as the 10D model is that of modes 4 and 5. The 4D model of these two modes and their
interactions reproduces the cycle of growth-transfer-decay; it returns to the fixed point in
the origin of phase space, again and again, just like the 10D model. Figure 1.6 makes clear
how the total energy is distributed over the dissipating and the growing modes during a
burst, both for the 10D model and the 4D model.

Several reasons can be given why the selection of mode 4 gives good results and the
selection of the leading stable eigenmode (mode 3) doesn’t. A physical argument is that
modes 4 and 5 are both mainly northern-hemispheric modes, in contrast, mode 3 is mainly
tropical. This makes the interaction between 4 and 5 easier than between 3 and 5. From
a more mathematical point of view one can observe that the frequencies of modes 4 and
5 are rather close to a 1:3 resonance (i.e. strong resonance) whereas the frequencies of
modes 3 and 5 tend towards 1:6, i.e. weak, resonance. Strong resonances can be essential
for the dynamics of a system. From the theory of nonlinear resonant interactions it is
known that, in general, couplings of modes at (or near) low-order (i.e. strong) resonance
are the most efficient interactions (see e.g. Arnol’d (1983)). A precise clarification of the
influence of the 1:3 resonance is outside the scope of this paper; given the small real parts
of the eigenvalues, such a clarification would require knowledge, currently unavailable, of
the unfolding of a double Hopf-bifurcation at 1:3 resonance (see e.g. LeBlanc (2000) and
Kuznetsov (1995)).

An inspection of the amplitudes of all 5 modes from an integration of the 10D model
(not shown) makes clear that mode 4 plays an important role: in the onset of each burst
it is the first of the stable modes to be excited by the unstable mode 5. Apparently, the
latter transfers its energy more easily to mode 4 than to modes 1,2,3. In the decaying
phase of each burst, the decay timescale cannot be clearly associated with the stable
eigenvalues: the decay is much faster than one would expect from the real parts of the
eigenvalues. During the bursts the system is probably too far away from the fixed point
for the linear regime to be valid. Further experimentation confirms that mode 4 is crucial
in the maintenance of the energy cycle (growth-transfer-decay): the 8D system of modes
1,2,3,5 does not reproduce the cycle (integration results not shown), the 4D system of
modes 4 and 5 does.
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The 4D subsystem is given by

ẋ7 = ρ4x7 − ω4x8 + N7(x7, x8, x9, x10)
ẋ8 = ρ4x8 + ω4x7 + N8(x7, x8, x9, x10)
ẋ9 = ρ5x9 − ω5x10 + N9(x7, x8, x9, x10)

ẋ10 = ρ5x10 + ω5x9 + N10(x7, x8, x9, x10)

(1.8)

x7, x8 correspond to mode 4 and x9, x10 to mode 5. The nonlinearities Ni consist again
only of quadratic terms. All parameters of the above equations are numerically fixed, due
to the empirical nature of the EOF-model. If we want to perform a bifurcation analysis
we will have to pick our own bifurcation parameter, since common parameters like the
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Figure 1.6: Typical cycle of growth-transfer-decay in 10D model (top) and 4D model (bot-
tom). Plotted are the squared norms of all modes together (normal line), of the growing
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Ekman damping rate or orographic scale height are not available anymore. We make the
choice of altering ω5, which has the effect of altering the frequency resonance relation
between the two modes. There is no clear physical effect associated with such a change
(because of the empirical nature of the model, any chosen parameter will be difficult to
interpret physically); however, a changing frequency-ratio is likely to cause changes in the
model behaviour, thereby providing a better understanding of that behaviour (it must be
mentioned that a frequency-altering parameter also appears as one of the three unfolding
parameters for the strongly resonant double Hopf-bifurcation in LeBlanc (2000)).

Phase portraits (projected onto the (x9, x10) plane) of numerical integrations with
varying ω5 are shown in figure 1.7 (leaving out initial transient motion). The upper left
panel shows the behaviour at ω5 = 0.0353438, the original value coming from the EOF
model. In figure 1.8 timeseries of the squared L2-norm, |(x7, x8, x9, x10)|2, are shown at
the same parameter values. Both chaotic and rather regular (even completely periodic)
behaviour is found. To get a more detailed picture of the behaviour at various values of
ω5, Poincaré-sections were made in the halfplane (x9 < 0, x10 = 0). A plot of the x9-value
of the intersection points with varying ω5 (a so-called limit-point diagram, see fig. 1.9)
exhibits the existence of both chaotic and periodic windows.

The most interesting region of parameter space is the region of decreasing ω5, i.e.
ω5 < 0.0353438. The model behaviour starts to show more and more pronounced bursts,
with long periods in between, during which the systems resides very close to the fixed
point in the origin (the squared phase space norm dropping below 0.005, see figure 1.8).
The behaviour stays chaotic but nevertheless becomes very structured. The recurrence
of the system, after each burst, to the fixed point in the origin, and the very long time
spent extremely close to this fixed point, provides strong evidence for our hypothesis that
a homoclinic orbit underlies the observed model behaviour.

By carefully inspecting figure 1.9 it was possible to identify an attracting periodic
orbit, at ω5 = 0.0290188. This orbit, phase-space projections of which are shown in figure
1.10, has a period of 3394 days; it provides a good approximation to the homoclinic orbit.
A 1-parameter continuation of the periodic orbit, using AUTO, in order to find the precise
location of the homoclinic bifurcation (the point in parameter space where the period of
the periodic solution approaches infinity) failed to be conclusive, probably because of
numerical problems due to the complex shape of the periodic solution.

The shape of the periodic orbit of figure 1.10 hints at the existence of a second fixed
point. This point indeed exists; it has coordinates (x7, x8, x9, x10) = (0.413562, -0.650201,
1.64348, 1.09727) when ω5 = 0.0290188 and is unstable. Its existence and location raise
the question whether it is a heteroclinic cycle instead of a homoclinic orbit that structures
the system behaviour. There are two reasons to hold on to the hypothesis of homoclinic
dynamics. First, the time spent near the fixed point in the origin is many times longer
(and the proximity many times closer) than the time spent near the second fixed point.
At the point ω5 = 0.0353438 in parameter space, the fixed point in the origin clearly still
plays an important role for the behaviour of the system, whereas there seems to be no trace
of the other fixed point in the model behaviour. Second, since a heteroclinic cycle involves
two connections between fixed points, two parameters must in general be tuned in order
to arrive at a heteroclinic cycle, rather than one, as is the case for a homoclinic orbit (a
heteroclinic cycle is a codimension 2 phenomenon, a homoclinic orbit codimension 1). It
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Figure 1.7: Phase plots (x9 versus x10) of 4D model at different values of bifurcation
parameter ω5: 0.0353438 (a), 0.0343438 (b), 0.0333438 (c), 0.0323438 (d), 0.0313438
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Figure 1.8: Timeseries of squared phase space norm (|(x7, x8, x9, x10)|2) of 4D model at
different values of bifurcation parameter ω5 (see figure 1.7 for numerical values). Integra-
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is therefore improbable to have encountered a heteroclinic cycle, since only one parameter
was varied. It is possible for a heteroclinic cycle to become a codimension 1 phenomenon
in a system which possesses symmetry, but our 4D model doesn’t appear to have any
symmetry. Nevertheless, it is possible that our model is close to some symmetry that
decreases the codimension of a heteroclinic cycle. Breaking such a symmetry can very
well break the heteroclinic cycle and produce a homoclinic orbit instead. This interesting
possibility lies, however, beyond the scope of this paper.

In conclusion, the existence of a homoclinic orbit of the bifocal type in the 4D model
explains the chaotic behaviour and the occurrence of very long timescales in the system.
The structure of the orbit also explains the observed cycle of growth, transfer and decay
in the system: it is the cycle of the homoclinic orbit which starts at the origin, moves
away and eventually returns to the equilibrium point. The attractor generated around
the homoclinic solution will possess roughly this same structure, so the behaviour of the
system, as it evolves on the attractor, will be marked by the growth-transfer-decay cycle.
This is in agreement with our earlier observations (e.g. figure 1.6).

1.6 Homoclinicity in complex models

A natural question to ask is whether the ULFV-producing mechanism found for the
low-order model (generation of chaos due to a bifocal homoclinic orbit attached to an
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equilibrium state close to the climate mean state) will play a role in more complex mod-
els. Will the 30-dimensional version of the empirical EOF-model and the GCM possess
such an orbit? Obviously, establishing direct numerical evidence for such a conjecture is
hardly possible. Nevertheless, the situation for the 4D model is quite generic. The model
describes deviations from an equilibrium state close to the atmospheric mean state. The
equilibrium is of saddle type, it has both growing and decaying eigenmodes. This mixed
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stability does not depend on the complexity of the model. Moreover, an atmospheric
system linearised around the equilibrium point will generically have complex pairs of
eigenvalues, which will cause an eventual homoclinic orbit connected to this equilibrium
to be of the bifocal type. Unlike the other two cases (the saddle case and the saddle-focus
case), where certain conditions on the eigenvalue-spectrum have to be met in order to
create chaotic dynamics, the bifocal case of homoclinic orbits always involves the gener-
ation of a chaotic invariant set. If this set is attracting, the system will possess chaotic
dynamics and nontrivial behaviour on timescales of arbitrary length.

The existence of a homoclinic orbit for a model describing anomalous atmospheric flow
remains, obviously, the pièce de résistance of this analysis. Proving, even numerically,
the existence of a homoclinic orbit is a very hard task even in three- or four-dimensional
models; for high-dimensional models such as GCMs it is virtually impossible. But carefully
looking at the outcome of such complex models may provide some circumstantial evidence.
Timeseries of the turbulent energy of the GCM in the first 30 EOFs (figure 1.1) clearly
show significant changes in the distance of the system to the origin of phase space, i.e. to
the mean state. The recurrence of the system to the vicinity of this mean state (which
is likely to be close to some equilibrium solution) hints at the presence of a homoclinic
connection. The simple fact that the system moves away from the fixed point due to
growing perturbations on the mean flow, but eventually returns to the vicinity of the
fixed point, already suggests homoclinicity – it is the only known dynamical mechanism
of moving away and returning back to some equilibrium state (disregarding here, for
brevity’s sake, the possibility of a heteroclinic cycle). We therefore expect the creation
of chaotic behaviour in the atmosphere due to homoclinicity to be a general mechanism,
not an artefact of the model used.

However, we do not want to state here that homoclinic orbits are likely to be existent in
truly high-dimensional, complex, realistic atmosphere models, which contain considerable
small-scale detail. Rather, we hypothesise that it is the large-scale atmospheric circulation
which is marked by homoclinic behaviour. The smaller-scale processes in the atmosphere
are likely to destroy the supposed homoclinic connection, but the large-scale behaviour
will still show traces of the homoclinic dynamics. This interpretation is supported by the
comparison of the 10D and 30D EOF models and the GCM. The 10D model shows most
clearly the characteristics of homoclinic dynamics; adding smaller-scale patterns obscures
this behaviour, as can be seen in the 30D model. The GCM still shows large variations
in turbulent energy and recurrence to the vicinity of the time mean state if its data is
projected onto only the first 30 EOFs (i.e. the largest spatial scales). This recurrence is
less clear if all resolved scales are taken into account. In short: the small spatial scales
provide perturbations, “noise”, which affect (disturb) the homoclinic behaviour of the
large-scale atmospheric circulation.

Such interpretation is supported by the results of two previous studies, in which signs
of homoclinic behaviour can be identified. James et. al. (1994) run their T21L5 model for
100 years and calculate EOFs of the zonal-mean zonal wind. Then, using an integration
with imposed seven-fold symmetry in meridional direction (only wavenumbers 0, 7 and
14 are retained), phase-space projections onto the plane of the first two Principal Com-
ponents are made which clearly show that the model returns time and again to the same
neighbourhood (small positive PC1, PC2 almost zero). Note that this neighbourhood, at
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least in that particular projection, is close to the time-mean state, just as in our results.
Moreover, projection onto the first two EOFs implies a selection of large spatial scales.
Such a selection, or filtering, is likely to enhance the visibility of the homoclinic behaviour.

In an entirely different study, directed at the existence of free modes, Branstator and
Opsteegh (1989) find orbits recurring to one point in phase space when integrating the
barotropic vorticity equation with forcing and dissipation, at T15 resolution. The point
to which the system returns is a numerically approximated solution (i.e. equilibrium) of
the free (unforced, nondissipative) barotropic vorticity equation. The system seems to be
further influenced by another equilibrium state, but it doesn’t approach this second fixed
point as close as it approaches the first fixed point. This is reminiscent of our findings
for the 4D model and raises again the question to what extent the supposed homoclinic
behaviour is related to an eventual heteroclinic cycle between two equilibrium states.

It must be stressed that the above studies have a different focus than the one presented
here. One major difference lies in the complexity of the models used. Therefore, our
interpretation of certain results of James et. al. and Branstator and Opsteegh as signs
of homoclinic behaviour does not necessarily imply that the same physical mechanism(s)
can be associated with all three cases of supposed homoclinic dynamics. Rather, we want
to draw attention to a mathematical structure which seems to be also present in other
(and more complex) atmospheric models than the low-order EOF model of Achatz and
Branstator. The physical properties associated with this mathematical structure need to
be further elucidated.

1.7 A T21 barotropic model

To further support the hypothesis that homoclinic behaviour is a generic aspect of mod-
els of large-scale atmospheric flow, a standard barotropic spectral model is taken as an
example. This model, truncated at T21, describes the winter circulation of the northern
hemisphere and possesses a realistic climate and reasonable low-frequency variability. The
model has 231 dimensions, due to its restriction to one hemisphere. Detailed information
on the model can be found in Selten (1995). Here, we only mention the presence of Ekman
damping, hyperviscosity (i.e. scale-selective damping) and orography in the model. The
model is forced by a constant vorticity forcing which has been tuned in order to get a
realistic climate mean state and realistic low-frequency variability.

The model has been integrated for 10 000 days, using a Runge-Kutta fourth-order rou-
tine with a 30 minutes timestep and daily output. The timescale of the Ekman damping is
set to 15 days; the hyperviscosity is set such that the damping timescale for wavenumber
21 is 3 days. The time mean was calculated and subtracted from the output, resulting in
timeseries containing deviations of spectral coefficients from their time mean value. Using
these data, we followed essentially the same steps as previously for the EOF-model. A
kinetic energy metric was used to calculate the turbulent energy of the model run (i.e.
the phase space distance to the climate mean state was calculated using an energy norm).
The timeseries of the turbulent energy is shown in figure 1.11. As before, large variations
in turbulent energy can be seen to occur. The model returns, time and again, to the
vicinity of the climate mean state.
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Furthermore, phase plots were made from one segment of the data: between day 1550
and day 2000, clear transitions in turbulent energy can be observed (also shown in figure
1.11). A projection of the phase space orbit of the model onto the plane spanned by the
real parts of the Y 2

3 and Y 2
5 spectral coefficients (picked, somewhat arbitrarily, to focus
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on large-scale patterns) is shown in figure 1.12. To further clarify what is happening,
the segment has been cut in three: days 1550-1680 (high turbulent energy), days 1680-
1850 (low turbulent energy) and days 1850-2000 (again high turbulent kinetic energy).
The projection of these three separate segments are also shown in figure 1.12. The plots
clearly show a “trapping” of the system in a rather small region close to the origin (the
climate mean state) during days 1680-1850, indicating the presence of a fixed point near
which orbits remain for some time. Also, the other two segments (days 1550-1680 and
1850-2000) show large excursions in one specific direction of phase space. Apparently,
the excursions are not completely arbitrary but somehow structured; a homoclinic orbit
could explain such structure.

The overall picture suggests the influence of a homoclinic orbit in this T21 model
of barotropic flow, supporting our hypothesis that the presence of homoclinic dynamics
in models of large-scale atmospheric flow is a robust feature, not a model artefact. We
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expect to report in more detail about the dynamics of the T21 model in the near future.

1.8 Conclusion

We have studied the dynamics of an efficient 10-dimensional EOF model describing global
atmospheric behaviour, and found the dynamics on long timescales to be essentially driven
by the presence of a homoclinic orbit connecting the equilibrium state close to the climate
mean state with itself. The orbit lies at the core of the growth-transfer-decay cycle ob-
served in the model. This cycle is overpronounced in the model used (due to its simplicity)
but is likely to be also present in more complex models of atmospheric flow. Circumstan-
tial evidence for this conjecture can be found in some previous studies, as well as in the
observed variances in atmospheric turbulent energy in the 30-dimensional version of the
EOF model and in the GCM the EOF model is based on. Further support for these find-
ings comes from an integration of a T21 standard (forced, dissipative) barotropic model
for northern hemisphere atmospheric flow. Both phase space projections and timeseries
of turbulent energy from this model show signs of homoclinic behaviour.

The existence of a homoclinic orbit of the described type (bifocal) always entrains
the creation of chaotic behaviour, and could thereby explain the ultra-low frequency vari-
ablity (ULFV) present in “stand-alone” atmospheric models (without coupling to oceans
or other slow climate components).

The analysis and results obtained in this study raise some interesting issues that
warrant further study. More evidence for the presence of homoclinic orbits in complex
models would support the relevance of our results. The typical cycle of growth-transfer-
decay, associated to the homoclinic orbit, has a period of about 6.7 years in our model.
The existence and the period of such a cycle in more complex models are also interesting to
consider. The period of 6.7 years is comparable to periods of ultra-low-frequency maxima
found in previous studies, but it is unclear whether the atmospheric patterns associated
with these peaks are of the same type as the patterns in the 10D EOF model.

Other issues arise out of the observed mathematical structures in the model: the role
of the 1:3 resonance in the formation of the homoclinic connection isn’t resolved yet, nor is
the possible link with the existence of a heteroclinic cycle. Such cycles have been observed
by Aubry et. al. (1988) in the context of efficient models of a fluid-dynamical problem (see
also Holmes et. al. (1997) and references therein). Heteroclinicity is generally associated
with symmetries in the model; one can wonder whether atmosphere models like the one
that was the subject of this paper are close to such a symmetry, and whether it could be
connected with the existence of heteroclinic cycle(s). Finally, since not many examples of
bifocal homoclinic bifurcations are known in applications, more numerical details of our
example would be of interest.

Continuation of the present work can be envisioned in two directions. Firmer and
more rigorous mathematical support for the conjecture of the influence of homoclininc
dynamics in atmosphere models is one path to be taken. The other one should head for a
clarification of the physical phenomena that are connected to the homoclinic behaviour,
and for an understanding of the effect of perturbations (caused by e.g. small-scale atmo-
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spheric processes) on this behaviour. We intend to work in both ways.
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Chapter 2

Regime transitions and heteroclinic
connections in a barotropic
atmosphere

Abstract. By interpreting transitions between atmospheric flow regimes as a determin-
istic rather than a stochastic phenomenon, new insight is gained into the phase-space char-
acteristics of these transitions. The identification of regimes with steady states should be
extended with the association of transitions with nearby heteroclinic connections between
steady states, as known from the theory of dynamical systems. In the context of a T21
barotropic model of the northern hemisphere, which possesses regime behaviour, steady
states are found that correspond with regimes, and heteroclinic connections are approxi-
mated using a new algorithm based on adjoint modelling techniques. A 200 year dataset
generated by the model is shown to posses spatial preferences in its transitional behaviour
that match well with the approximated heteroclinic connections.

2.1 Introduction

The concept of atmospheric circulation regimes is an old idea that is still much studied
in meteorology and climate science. The interest in the notion that the atmosphere can
be caught, for some time, in particular flow configurations has far from subsided. Apart
from the relevance for meteorological studies, the concept of regime behaviour now also
draws attention from studies of climate variability and predictability. This is due to the
belief that climate variability is related to changes in the probabilities of regime visits
(Corti et al. 1998, Palmer 1999). Many studies have been devoted to the question if
and where regimes exist in observations and in complex atmosphere/climate model data.
Also, the connection of regimes to known (but still ill-understood) climate variability
patterns, such as the North-Atlantic Oscillation (NAO), the Arctic Oscillation (AO) and
the Pacific/North American (PNA) pattern, is a much debated issue. Surprisingly, the
investigation of the dynamical origin of regime behaviour seems to have slowly moved out
of sight.

The concept of global bifurcations is an instrument that may enable us to get a bet-
ter grip on the phenomena of regime behaviour and low-frequency variability and their
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underlying dynamical nature. The notion that individual regimes can be associated with
separate (simple) attracting structures in the phase space of atmospheric flow exists since
Charney and Devore (1979). They identified stable equilibria (steady states, fixed points)
with regimes, a hypothesis that was followed and expanded on by e.g. Reinhold and Pier-
rehumbert (1982), Legras and Ghil (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto
(1996). Even though some of these studies speculate on periodic solutions or tori to be the
underlying mathematical structures of regimes, the basic idea remains the same: regime
behaviour can be identified with temporary stays on or near simple attractors, followed
by irregular transitions between these attracting sets.

The multiple attractors have been shown to be amenable to bifurcation analysis by
e.g. Legras and Ghil (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto (1996).
Continuation and bifurcation software packages such as AUTO (Doedel, 1986) are able to
follow steady states and periodic solutions through parameter space. They were used to
shed light upon the creation and structure of the simple solutions identified with regimes
in low-order atmosphere models. Much more difficult however are the mechanisms of
transitions between these solutions. That may be the reason that the, from a dynamical
systems point of view most natural possibility of global bifurcations, i.e. of determinis-
tic connections being created between different solutions (or from a solution to itself),
hasn’t gotten much attention yet. The most common transition mechanism invoked is
stochasticity: transitions induced by stochastic perturbations in the model equations. In-
troducing such perturbations is usually motivated by referring to physics and dynamics
(e.g. small-scale, high frequency motions or convection) that are not explicitly resolved
in the relatively simple models used for bifurcation studies in relation to regime transi-
tions. However, introducing stochastic terms or interpreting small-scale, high-frequency
behaviour in complex, deterministic atmosphere models as noise is not entirely satisfying.
Ignoring the deterministic origin of such stochasticity may obscure relevant information
about regime behaviour. In this paper we will hold on to this deterministic nature, and use
the notion of heteroclinic connections to get a better understanding of regime transitions.

Heteroclinic orbits are solutions of (deterministic) model equations that connect one
invariant set, e.g. a steady state solution, with another. Homoclinic orbits connect an
invariant set with itself. Hetero- resp. homoclinic bifurcations are bifurcations in which
such orbits, or connections, are created. They are mentioned a few times in the literature
as a possible mechanism for transitions between regimes. Legras and Ghil (1985) use a
25-dimensional equivalent-barotropic model, perform a bifurcation analysis of its steady
states and find, by numerical integration, transitions between regimes. Heteroclinic orbits
as a possible explanation are mentioned, but not expanded on. In De Swart (1988a,b,
1989) a 6-component spectral model was found to possess multiple attractors, some of
them with chaotic windows (parameter intervals with chaotic behaviour), that could be
identified with regimes. However, transitions between these attractors (vacillation) were
not observed. By adding stochastic perturbations, a transition mechanism was created
(De Swart and Grasman, 1987). Also, by increasing the number of spectral components to
10, the model could be brought to vacillatory behaviour, without stochastic perturbations.
But no attempt was made to find heteroclinic orbits. Itoh and Kimoto (1996,1997,1999)
perform bifurcation analyses of a two-layer T15 model and of a five-layer T21 model.
They find multiple attractors as well as wandering between different attractor ruins, and
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call this wandering an example of “chaotic itinerancy”. It is not made clear if and how
this chaotic itinerancy is related to the concept of homo- and heteroclinic connections.

The notion that regime transitions are not entirely random is recognised in, amongst
others, Mo and Ghil (1988), Kimoto and Ghil (1993b) and Itoh and Kimoto (1996, 1997,
1999). These studies identify more than two regimes and point out that some transitions
between regimes are more probable than others. Using this statistical approach, cycles
of most probable transitions are identified; these are called “preferred transitions”. Itoh
and Kimoto (1997) refer to the notion of “explosive bifurcations”, but they don’t try
to locate heteroclinic connections, nor do they mention them. In the present study,
something different is meant with the notion “preferred transitions”: it refers to the
idea that transitions between regimes tend to follow certain routes through phase space;
routes that can be associated with approximate heteroclinic connections. The focus is on
preferences of the behaviour during the transitional episodes, not on the most probable
order of regime visits without looking at characteristics of the transition phases, as in Mo
and Ghil (1988), Kimoto and Ghil (1993b) and Itoh and Kimoto (1997).

The study by Plaut and Vautard (1994) shows, performing Multichannel Singular
Spectrum Analysis (MSSA) on observational data, that regime behaviour is connected
to the existence of low-frequency oscillations (LFOs) in the atmosphere. LFOs influence
regime behaviour but not in a systematic way; rather, the interaction between two Atlantic
sector LFOs (one of 70 days and one of 30-35 days) seems to be one mechanism, among
others, that can produce high-amplitude anomalies (regimes). It remains unclear, though,
whether these anomalies correspond to (quasi-) stationary states (thus, if the system
evolution slows down). The authors hypothesize that LFOs should be associated with
the presence of unstable periodic orbits in phase-space. An important conclusion is that
regime transitions, at least in the Atlantic sector, are not produced randomly by synoptic
transients. This supports the choice for the deterministic (instead of stochastic) point of
view taken in the current paper.

In Crommelin (2002), the appearance of homoclinic dynamics in an atmosphere model
gets more detailed attention. In this paper, a two-layer model is analysed which uses Em-
pirical Orthogonal Functions (EOFs) instead of spherical harmonics as its basis functions
(see Achatz and Branstator (1999) for the derivation and formulation of the model). With
10 EOFs, some realism was still retained and at the same time it was possible to find
evidence for the occurrence of homoclinic dynamics. The dynamics on long timescales
turned out to be dominated by a homoclinic orbit of the bifocal type: an orbit attached
to a steady state with two complex pairs as its leading eigenvalues. A glimpse of a het-
eroclinic connection between two equilibria was also found, but the role of one of the
equilibria could only be made visible for small parameter regions. The other equilibrium,
very close to the climatic mean state, is prominent in the model behaviour over large
parameter ranges. The behaviour was therefore identified as driven by a homoclinic, not
a heteroclinic connection.

In the fluid dynamics community, the possibility of heteroclinic connections as an ex-
planation for transitions between steady states has been recognised before. Examples were
found in e.g. Rayleigh-Benard convection (Proctor and Jones, 1988) and the turbulent
boundary layer (Aubry et al. (1988), Armbruster et al. (1988), Holmes et al. (1996,1997)).
Knobloch and Moehlis (2000) provide an overview of mechanisms that produce bursting
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in hydrodynamical systems (sudden transitions from and to regular, repeatedly realized
states); again, heteroclinic connections play an important role. They interpret transi-
tions between different types of behaviour as a form of bursting. Although no examples
are mentioned from geophysical fluid dynamics, such a concept of bursting could equally
well apply to the case of regime-transitions in atmospheric dynamics. The methods and
concepts used in the study of these fluid-dynamical examples could be very useful in the
investigation of regime behaviour and low-frequency variability of the atmosphere. This
paper is partly inspired by these examples.

The order of things to come in this paper is as follows. In section 2 the barotropic
model that was used will be described. The model shows bimodality and regime behaviour,
treated in section 3. The regimes can be associated with steady states; this is described
in section 4. In section 5 the role of heteroclinic connections will be explained. A new
algorithm, based on adjoint modelling techniques, to calculate approximations of such
connections will also be presented in this section, together with its results. Section 6
contains a discussion and summary.

2.2 A barotropic model

For this study a barotropic spectral model was used. It is the same model that was used
in Selten (1995), a standard model with realistic orography (“mountains”) and a forcing
that was calculated from observations in order to get a realistic climate mean state and
realistic low-frequency variability.

The model is based on the barotropic vorticity equation, and reads:

∂

∂t
ξ = −J (ψ, ξ + f + h) + k1ξ + k2∆

3ξ + ξ∗ (2.1)

This partial differential equation describes the temporal evolution of the relative vorticity
field ξ(t, λ, φ), a scalar field, on the sphere. The spatial coordinates are the longitude λ and
latitude φ. The streamfunction ψ(t, λ, φ) is related to the vorticity via ξ = ∆ψ (= ∇2ψ).
The terms multiplied by k1 and k2 are damping terms (Ekman friction resp. scale-selective
damping); f denotes the Coriolis parameter and h is the (nondimensional) orographic

height. J denotes the Jacobi operator, which reads J (A, B) = 1
cos φ

(
∂A
∂λ

∂B
∂φ
− ∂A

∂φ
∂B
∂λ

)
.

The (time-independent) vorticity forcing ξ∗ is based on observations:

ξ∗ = J (ψcl, ξcl + f + h)− k1ξcl − k2∆
3ξcl + J (ψ′, ξ′). (2.2)

This procedure was proposed by Roads (1987). It involves the use of the observed climate
mean states at 500 hPa of the winter season ξcl and ψcl. The last contribution to the
forcing, due to the transient eddy forcing, is calculated using (winter) anomalies of the
10-day running mean at 500 hPa, ξ′ and ψ′. The overbar denotes, as usual, time average.

Equation (2.1) is projected onto spherical harmonics and triangularly truncated at
wavenumber 21 (i.e. T21), yielding a coupled set of nonlinear ordinary differential equa-
tions for the time-dependent spectral coefficients. By discarding all modes with zonal
wavenumber plus total wavenumber being even, a model of hemispheric flow is obtained
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mean
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Figure 2.1: Top: time mean of the 500 hPa geopotential height Z500 as produced by the
T21 barotropic model. Contours are drawn every 100 meter. Bottom: Z500 rms of the
T21 model. Contour interval is 10 meter.
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with a total number of 231 variables. It will serve to describe the (barotropic) atmo-
sphere of the northern hemisphere. For more detailed information on the formulation of
the model the reader is referred to Selten (1995).

The model has been integrated for 73 000 days (200 years), using a Runge-Kutta
fourth-order routine with a 30 minutes timestep and daily output. The initial state was a
realistic flow field, so no spin-up time was needed. The timescale of the Ekman damping
was set to 15 days; the scale-selective damping was tuned such that the damping timescale
is 3 days for wavenumber 21. Figure 2.1 contains the time-mean and variability (root mean
square, or rms) of the thus obtained 200 year dataset. Shown are the mean and rms of the
500 hPa geopotential height Z500, which is calculated from the streamfunction (at 500 hPa)
using the so-called linear balance equation g0∇2Z500 = ∇ · (f ∇ψ), g0 = 9.80665 m s−2

(see Holton, 1992). The mean resembles the mean field of the real atmosphere quite
closely. The rms is not as close to the observations, but still quite realistic considering the
model resolution. Most notable are the unrealisticly high variability above the north pole
and the location of the rms-maximum over Europe, which should be over the north-east
Atlantic. For a more detailed comparison with observations, see Selten (1995). The 200
year dataset will be analysed in order to get a better understanding of its low-frequency
aspects.

2.3 Bimodality

EOFs of the streamfunction data are calculated; in figure 2.2 the streamfunction patterns
corresponding to the leading four EOFs are shown. For the calculation, the time mean
state was subtracted from the data; the norm chosen was the kinetic energy norm (see
appendix 2.A). The amount of kinetic energy variance represented by EOFs 1–4 is 18.3,
9.8, 6.8 and 6.0 percent, respectively; together these four represent 40.9 %. The principal
components (PCs) were calculated by projecting the (spectral) data onto the EOFs.

The shape of the two-dimensional Probability Density Function (PDF), made from
the projection of the full 73000 days dataset onto the PC1,PC2–plane, reveals a bimodal
structure with a main maximum at PC1 ≈ 0.0055 (MAX1) and a second maximum
at PC1 ≈ −0.0089 (MAX2). The PDFs made from projections onto the PC2,PC3–,
the PC2,PC4– and the PC3,PC4–plane (not shown) yielded unimodal distributions; the
bimodal structure mainly projects onto EOF1. Figure 2.3 (dashed lines) shows the PDF
in the PC1,PC2-plane; the various symbols in the figure will be explained later. The PDFs
were calculated by collecting the projected datapoints in 15 × 15 bins and calculating the
corresponding histogram.

The locations of the two maxima of the two-dimensional PDF were estimated in all 231
PCs by first identifying the PC1 values of the two maxima. Then, two sets of datapoints
were created by selecting all datapoints with their PC1 value in a small band around
the two maxima. For all higher PCs two one-dimensional PDFs and their maxima were
calculated, thus giving estimates for the location of the two maxima in all PCs. The Z500

patterns corresponding to the maxima are shown in figure 2.4 (note that these patterns
consist of contributions of all 231 PCs). The distances to these two maxima during the
model run were calculated, using again the kinetic energy norm. For a segment of the
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EOF 4

Figure 2.2: EOFs 1-4 calculated from the 200 year dataset produced by the T21 barotropic
model. The kinetic energy norm was used for the calculation.
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Figure 2.3: PDF and steady states in PC1,PC2–plane. The dashed lines are the contours
of the PDF (contour distance: 200 datapoints per bin, number of bins: 15 × 15). Top:
steady states with number of unstable eigenvalues nu ≤ 6 (•); 7 ≤ nu ≤ 10 (¡); nu >
10(×). Bottom: steady states with ratio of projection onto the leading 2 EOFs R2 >
0.5 (•); 0.35 < R2 < 0.5 (¡); R2 < 0.35(×).
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MAX1

MAX2

MAX1

MAX2

Figure 2.4: Patterns corresponding to the maxima of the PDF. Top: MAX1, bottom:
MAX2 (see text). Shown left are patterns of the 500 hPa geopotential height field Z500

(contour interval 100 m). On the right are the corresponding Z500 anomalies (contour
interval 30 m).
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data, the timeseries of these distances are shown in figure 2.5. They show persistent
periods close to the maxima as well as rapid transitions between them.

The PDF-maxima MAX1 and MAX2 can be interpreted as flow regimes, the tran-
sitions between them as vacillatory behaviour. The flow-pattern (figure 2.4) of MAX1
represents a situation of intensified zonal flow, the pattern of MAX2 shows a blocked flow
over Europe (a split jetstream and a positive anomaly, or “high”, over Europe). Both
regimes have previously been found to correspond with steady states in low-order mod-
els (Charney and DeVore (1979), Legras and Ghil (1985)). With this correspondence in
mind, one might expect the presence of (saddle) equilibria at or near MAX1 and MAX2
in our T21 model as well. In the next section, the presence of equilibria in the model will
be investigated. The clear transitions between MAX1 and MAX2 suggest the influence
of two heteroclinic connections between these assumed equilibria. After all, the model
is completely deterministic; it does not contain any stochastic process that could have
induced the transitions. Moreover, from the swiftness of the transitions and the persis-
tence of the regimes it can be seen that the system evolution slows down near MAX1
and MAX2. The possibility of unstable periodic orbits being present in phase space that
pass both MAX1 and MAX2 still leaves the question why the motion slows down near
these maxima. The influence of heteroclinic connections can provide an explanantion,
since such connections always end with a slowing down of the system evolution, due to
the approach of a fixed point at the end of each connection.

The difference between MAX1 and MAX2 is largely spanned by EOF1, which resem-
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Figure 2.5: Phase space distances to two maxima MAX1 (solid) and MAX2 (dotted) during
a data segment of 2500 days. Distances are given as differences in turbulent kinetic energy;
horizontal axis denotes time in days.
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bles the AO pattern (Thompson and Wallace, 1998). From a phase space point of view,
the AO pattern in this model seems to be the direction, or phase space vector, connecting
the two regimes. The blocking-character of the MAX2-regime is a regional aspect of a
hemispheric pattern that resembles one of the phases of the AO. Long timescale variability
of the AO should be related to the dynamics created by, or associated with, the near-
presence (in parameter space) of a heteroclinic cycle (connection back and forth). In this
perspective, variability of the AO has its dynamical origin in the (ultra-)low-frequency
aspects of the dynamics of regime transitions. A better understanding of the dynamical
mechanism(s) of regime transitions will help to better understand climate variability pat-
terns such as the AO.

2.4 Equilibria

For models like the one under investigation there are two different (numerical) techniques
available to find equilibrium solutions (fixed points). One is continuation: starting from
a known steady state at specific (often unrealistic) parameter values, it is in principle
possible to follow this steady state as parameter values are changed, toward realistic
values. For an atmosphere model, one may think of starting at zero flow in the absence
of forcing, and gradually turning on the forcing to a realistic intensity. A drawback
of the continuation method is that it is hard, sometimes impossible, to find different
(disconnected) branches of fixed points. Using continuation one easily (if not: generally)
misses equilibria.

The other, less elegant method, used in the current study, is a way of “brute force
calculation”: bluntly calculating zeroes of the set of model-ODEs. For low-order models
one can think of a Newton-like rootfinding algorithm; for larger models some sort of
minimization-technique can be used (direct rootfinding in large models often doesn’t work
because of the presence of many local minima in phase space that are not solutions). For
this study, a method was chosen that minimizes a scalar function, given its gradient. It
was used before by Branstator and Opsteegh (1989). The squared norm of the vorticity-
tendency ∂ξ/∂t served as the scalar function (denoted F ); it is clear that a zero of this
function is both a necessary and sufficient condition for the existence of a fixed point.
The precise definition of F and the derivation of the gradient of F with respect to the
model variables can be found in appendix 2.B. The algorithm used comes from the NAG
software library (routine E04UCF); it is a quasi-Newton method.

Many different states, sampled from all over the model attractor, need to be used
as initial guesses for the minimization routine, in order to find as many different steady
states as possible. This was done by starting the minimization from 5000 datapoints
taken from the 200 year model integration, each 10 days apart. This set of 5000 points
is assumed to give a reasonable coverage of all regions of the attractor. Not all 5000
minimizations converged to points with acceptably small F : about 1000 converged to
points with F ≤ 10−14, giving 68 different fixed points in total. For comparison: the
values of F before minimization were of order 10−4.

It must be stressed that we do not claim to have found all the equilibrium solutions
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of the model. However, it appears we have found the most relevant equilibria, namely
those fixed points located in or near the two maxima of the PDF. We will apply two
(dependent) criteria to assess the importance of the various fixed points for the large-
scale, low-frequency dynamics of the barotropic model. One is the number nu of unstable
eigenvalues of the fixed points: fewer unstable eigenvalues suggests that the equilibrium
is “more attracting” and therefore more likely to attract and influence the system as
it evolves in time. We have calculated the eigenvalue-spectrum of each fixed point by
evaluating the Jacobian matrix (see Appendix 2.B) and calculating its eigenvalues. The
result is shown in figures 2.6 and 2.3, which will be discussed later.

If the fixed points with the least unstable eigenvalues are indeed most likely to influence
the dynamics, they can be expected to project strongly onto the leading EOFs. This
should be visible using the second criterion: the extent to which each equilibrium state
projects onto the leading EOFs. The behaviour of the dominant EOFs is most likely
to be influenced by equilibria that strongly project onto them. Fixed points that lie far
outside the subspace of the leading EOFs, and hence project relatively strongly onto the
trailing EOFs, are less likely to be very relevant for the large scale dynamics of the model.
Projecting each equilibrium onto the EOFs gives a vector (a1, a2, . . . , aN)T of coefficients
ai. The total number of EOFs, N , equals 231. By calculating the ratio

RM =
M∑
i=1

a2
i /

N∑
i=1

a2
i (2.3)

for low values of M , one gets an impression of the contribution of the dominant EOFs
to the equilibrium flow patterns. In fact, since the kinetic energy norm was used in the
calculation of the EOFs, RM equals the fraction of the turbulent energy contained in the
first M EOFs.
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Figure 2.6: Number of unstable eigenvalues nu versus ratio R2 of projection onto the
leading 2 EOFs (see text) for each steady state of the barotropic model.
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Figures 2.6 and 2.3 contain the results of the calculations. Figure 2.6 shows a scatter
plot of R2 versus nu, the number of unstable eigenvalues. There is a clear correlation
between the two, which confirms the intuitive picture described earlier: the lower nu, the
more the equilibrium influences the dynamics of the system and hence the stronger it
projects onto the leading EOFs (as was pointed out by one of the reviewers, figure 2.6 is
in fact a test of the validity of applying the first criterion). Figure 2.3 shows the location
of all the fixed points when projected onto the PC1,PC2 plane. Different symbols have
been used in order to show the locations of the equilibria with low nu (top) and high
R2 (bottom). Also shown are the contour lines (dashed) of the PDF. Applying the two
criteria, low nu and high R2, gives a selection of five steady states: the ones with nu ≤ 6
(they all belong to the group with highest R2 as well). One of the equilibria is located
near MAX2, the second PDF-maximum; three are near the first maximum MAX1. The
hypothesis that these maxima are related to the near-presence of relatively stable fixed
points is thus supported. Note that the instability of the fixed points, although weak,
makes it unlikely for them to be located exactly in the maxima of the PDF of the entire
231-dimensional phase space (after all, the system can never be exactly at an unstable
fixed point). The fifth steady state lies rather eccentric to the PDF. We do not know why
this is so.

2.5 Heteroclinic connections

The transitions between atmospheric flow regimes are usually thought of as stochastically
induced phenomena. However, taking into consideration that in our model flow regimes
can indeed be associated with steady states and that the model doesn’t contain stochastic
terms, it is, from a dynamical systems point of view, more natural to think of regime
transitions as manifestations of heteroclinic behaviour. We hypothesize that the model
is not very far (in parameter-space) from a situation in which there is one (or several)
phase-space orbit(s) going exactly from a steady state associated with one regime to a
steady state associated with another regime, and another orbit going back. Although such
a situation requires the tuning of several parameters, and is thus unlikely to be exactly
realised with the parameter setting that was chosen for the model, we expect that the
influence of the connections is still felt by the system and manifests itself as transitions
between regimes. In this section we will first describe in more mathematical detail what
a heteroclinic connection is, and what the bifurcation scenario could be in which these
connections are broken but still play a role. Then we both present evidence to support the
hypothesis and show that the regime transitions in the model have a tendency to follow
paths that are approximations of heteroclinic connections.

2.5.1 A bifurcation scenario

A heteroclinic connection, or heteroclinic orbit, is the phase space projection of a solution
of the model equations that connects one invariant set with another. The invariant sets
can be steady states, periodic solutions, tori, etc. In what follows we will only consider
heteroclinic connections between steady states.
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Let us put these notions in more formal terms. Let ẏ = G(y, α) be a set of ordi-
nary differential equations with parameter-set α. A heteroclinic connection ỹ(t) is the
projection onto phase space of a solution that asymptotically approaches in forward and
backward time two different steady states y− and y+:

lim
t→+∞

ỹ(t) = y+, lim
t→−∞

ỹ(t) = y− (2.4)

A set of heteroclinic connections forming a closed loop is called a heteroclinic cycle; a het-
eroclinic connection going from a steady state back to itself (i.e. y− = y+) is called a ho-
moclinic orbit. For general background information on heteroclinic orbits, see Kuznetsov
(1995). A detailed review of the theory of heteroclinic cycles is provided in Krupa (1997).

Our hypothesis is that regime behaviour, or vacillation, is eventually generated by
heteroclinic connections going back and forth between invariant sets which are associated
with regimes (i.e. a simple heteroclinic cycle). As previously mentioned, in this study
we will assume the invariant sets to be steady states. The presence of this structure
of two connections is not generic; in general, one or more parameters must be tuned in
order to create the two connections. It is difficult to estimate a priori the number of
parameters that must be tuned (the codimension). However, looking at the dimensions of
the involved stable and unstable manifolds can give us some information. We choose the
steady state near MAX1 with 4 unstable eigenvalues as the first fixed point y1 and the
steady state near MAX2, which has 6 unstable eigenvalues, as the second fixed point y2.
Both fixed points are hyperbolic. W u(yi) denotes the unstable manifold of yi, W s(yi) the
stable manifold. A single heteroclinic connection from y1 to y2 must lie entirely in both
W u(y1) and W s(y2). Since dim(W u(y1))= 4 and dim(W s(y2))= 225, and since in general
3 parameters must be tuned in order for a 4-dimensional (4-d) manifold and a 225-d
manifold to have a 1-d intersection in a 231-d space , the creation of the 1-d intersection
of W u(y1) and W s(y2) in the 231-d phase-space has codimension 3.

To formulate the argument in more precise terms, we need some definitions, taken
mainly from the book by Guckenheimer and Holmes (1983). First of all, the transversality
theorem tells us that the intersection of two manifolds of dimensions m1 and m2 in an
n-dimensional space has, generically, dimension m1 + m2 − n. If m1 + m2 < n there
is in general no intersection. Second, a transversal intersection of two manifolds in an
n-dimensional space is an intersection in which the tangent spaces of the two manifolds in
the intersection point(s) span the total n-dimensional space. A transversal intersection is
persistent under small perturbations of the two manifolds. Finally, the codimension of a
bifurcation can be defined as the smallest dimension of a parameter space which contains
the bifurcation in a persistent (structurally stable) way. From these definitions follows that
the creation of a 1-dimensional intersection of two manifolds M1 and M2 of dimensions
m1 and m2 in an n-dimensional space with m1 + m2 < n (which is a nontransversal
intersection) has codimension p = n + 1−m1−m2, since in the space Rn×Rp (variables
plus parameters) the two manifolds M1 and M2 (now of dimensions m1 + p and m2 + p)
have in general a transversal intersection of dimension (m1 + p) + (m2 + p)− (n + p) = 1.
Applying this to the situation at hand shows that the 1-d intersection of a 4-d manifold
with a 225-d manifold in a 231-d space happens in a persistent way in a parameter space
of (at minimum) 3 dimensions. Thus, the codimension of the bifurcation in which this
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intersection is created is 3. For a more detailed treatment of these issues the reader is
referred to Guckenheimer and Holmes (1983) and Kuznetsov (1995).

Unfortunately, other invariant objects than the two fixed points can make the situation
more complicated. W u(y1) and W s(y2) can also intersect with the stable and unstable
manifolds of e.g. another fixed point, or periodic orbit. As for the reverse connection,
from y2 to y1: W u(y2) and W s(y1) generically have a 2-d (transversal) intersection, so
this reverse heteroclinic connection at least seems to be more generic than the y1 to
y2 connection. The dimensionality of W u(y2) and W s(y1) would even allow for a 2-d
connecting surface rather than a single, 1-d heteroclinic connection. But again, other
invariant objects can complicate the situation.

In other physical systems in which heteroclinic cycles play an important role in the
dynamics, the existence of such cycles is usually connected to the presence of symmetries
in the system. Symmetries induce the presence of invariant subspaces in phase-space,
which can make the existence of a heteroclinic cycle generic, without needing to tune
parameters (as is needed to create a heteroclinic cycle in a nonsymmetric system). Such a
cycle will be robust for perturbations that preserve the symmetry, as these perturbations
leave the invariant subspace structure intact. See Krupa (1997) for a detailed account.
Fluid-dynamical examples of heteroclinic cycles have been found in e.g. Rayleigh-Benard
convection (Proctor and Jones, 1988) and the turbulent boundary layer (Holmes et. al.
(1996, 1997) and references therein). At this stage we can only speculate about the (near-)
presence of symmetries in the barotropic model, and their possible role in the formation
of a heteroclinic cycle. In this context, it is interesting to note that the two PDF-maxima
(and their corresponding steady states) are located roughly symmetric around the time
mean state (where all PCs are zero). This can also be seen in the right panels of figure
2.4: the anomalies corresponding to MAX1 and MAX2 have roughly the same structure,
but opposite sign. Another source of symmetry could be the dominant wavenumber 2
contribution to the orography. The question of symmetry, although impossible to answer
at this moment, is of interest because a symmetry could be the common source of regime
behaviour in different atmosphere models (e.g., if a certain (idealised) orography implies
a symmetry that favors the creation of a heteroclinic cycle corresponding to regime tran-
sitions, it could explain the occurrence of regime behaviour in various atmosphere models
with similar orography).

As mentioned previously, we hypothesize a point to be present in parameter space
where a heteroclinic cycle exists between two fixed points corresponding to different
regimes. Moving away from this bifurcation point (to more realistic physical conditions)
one, or both, of the heteroclinic connections is almost certainly broken. If indeed a sym-
metry is related to the existence of the cycle, leaving the bifurcation point will probably
perturb the symmetry (forced symmetry breaking). The phase-space structure that is left
is expected to still bear traces of the former cycle, since it generates regime behaviour
in the system. The structure should somehow account for the asymmetry of the regime
behaviour, the fact that the zonal regime is visited more often than the blocked regime –
the PDF is bimodal but not symmetric (in other studies, e.g. Itoh and Kimoto (1999),
asymmetric PDFs have also been found). A possible explanation is that a homoclinic orbit
connected to the zonal fixed point could be created when the cycle is broken. This would
explain the findings in Crommelin (2002) where such a homoclinic orbit was detected. In



56 Regime transitions and heteroclinic connections in a barotropic atmosphere

that study, the possibility of heteroclinic behaviour was also mentioned. The behaviour of
the current T21 model was very briefly studied there, and related to homoclinic dynamics;
the heteroclinic influence was not detected due to the briefness of the inspection of the
T21 model there.

It is known that the multiple equilibria associated with regime behaviour are the
result of orographically induced saddle-node bifurcations that make the sheet of fixed
points “fold” in parameter space, see Charney and DeVore (1979). Furthermore, Hopf-
bifurcations due to barotropic instability occur naturally in barotropic models, see e.g.
Legras and Ghil (1985) and De Swart (1988a, 1988b, 1989). Among the phenomena
involved in the simultaneous occurrence of a Hopf- and a saddle-node bifurcation, a so-
called fold-Hopf (or zero-Hopf) bifurcation, are heteroclinic connections, and homoclinic
orbits resulting from perturbations, see Kuznetsov (1995). Thus, a scenario is possible in
which orography and barotropic instability result in regime behaviour which originates
from a heteroclinic cycle and which is deformed into more homoclinic-type behaviour,
favoring the zonal regime, due to forced symmetry breaking. We hope to report on
this bifurcation scenario in a future paper. Let us furthermore mention that homoclinic
bifurcations produce periodic orbits; in the cases of a Shilnikov-type or a bifocal-type
homoclinic bifurcation an infinite number of (unstable) periodic orbits are generated.
This could be related to low-frequency oscillations found by Plaut and Vautard (1994).
However, much more study will be required to sort this out.

The regime behaviour in the barotropic model is clearly visible. Moreover, the regimes
were found to correspond with nearby steady states. Having the above bifurcation scenario
in mind, this means that the model cannot be too far from the point in parameter space
where the heteroclinic cycle exists. The heteroclinic connections are most likely broken,
but there will still be orbits that approximate the former connections and thus go from
the vicinity of one steady state to the vicinity of the other. These approximations are
what we will focus at in the next section. We will not attempt to prove the validity of the
bifurcation scenario just sketched in the context of the barotropic model; such an attempt
must start with the investigation of low-order models and of possible symmetries.

2.5.2 Numerical approximation

It is known that a heteroclinic connection from one steady state A to another B should
start in the unstable manifold W u(A) of state A and end in the stable manifold W s(B)
of state B. Furthermore, it takes infinitely long to follow the entire connection, from its
starting point A to its end point B. In practice a heteroclinic connection is therefore
approximated as a (finite time) connection starting in the linear approximation Eu(A) of
W u(A) at small but finite distance εA from point A and ending at distance εB from point
B in the linear approximation Es(B) of W s(B) (with 0 < εA,B ¿ 1). A more detailed
account is given in e.g. Doedel and Friedman (1989).

As said, it is unlikely that we are exactly in the bifurcation point and hence unlikely
that exact heteroclinic connections exist; however, we can expect that there are still phase
space orbits running from the immediate vicinity of one fixed point to the immediate
vicinity of the other. To verify this, we took the most stable fixed point (nu = 4) near the
main PDF maximum (MAX1) as point A and the (only) fixed point near the submaximum



57

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

-0.015 -0.01 -0.005 0 0.005 0.01
-0.01

-0.005

0

0.005

0.01

PC2

PC3
↑−→ PC2

PC3
↑−→

PC1

PC3
↑−→ PC1

PC3
↑−→

PC1

PC2
↑−→ PC1

PC2
↑−→

A

B

↙

↗

AB ↙↘

AB
↙↘

Figure 2.7: Projection of transition orbits onto planes of PC1,PC2 (top), PC1,PC3 (mid-
dle) and PC2,PC3 (bottom). Left: orbits starting close to steady state A near MAX1.
Right: orbits starting close to steady state B near MAX2. Also shown are the contourlines
(dashed) of the PDF of the 200 year dataset and the locations of the 5 selected steady states
(see text). The locations of A and B are indicated in the left panels.
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(MAX2) as point B, and performed 2 series of 500 integrations of 100 days each. The
integrations of the first series all started in Eu(A); the initial states were arbitrarily chosen
using a random number generator, with the restriction that the distance of each initial
state to A was fixed: if ψi denotes an initial state, the restriction was ||ψi−A|| = c ||A−B||,
with ||.|| = < . , . >

1/2
1 , the square root of the kinetic energy inner product, and c = 0.15.

This moderately small choice for c ensures that the model doesn’t stay in the linear regime
of A for too long, thereby keeping the total computation time within reasonable limits.
During each integration the distance to B was monitored and the minimum distance to B
was noted. These minimum distances showed large variances: using again the square root
of the kinetic energy distance between A and B as unit, the minimum distances varied
between 1 and 0.59. In the panels on the left of figure 2.7 the eight orbits that came closest
to B (minimum distances between 0.59 and 0.67) are plotted in several projections onto
the leading EOFs. They clearly show a preference for a specific region of phase space.

The 500 integrations of the second series were started from arbitrarily chosen initial
states in Eu(B) at fixed distance to steady state B. The distances to A were monitored
and the minimum distances to A varied between 1 and 0.43. The eight orbits coming
closest to A (minimum distances between 0.43 and 0.5) are plotted in the right panels of
figure 2.7. Again, they follow roughly similar trajectories. Comparing the left and right
panels of figure 2.7 shows marked differences between orbits going from A to B on the one
hand and those from B to A on the other hand. In particular PC3 shows a separation: it
is mainly negative during the transition from A to B and positive when switching back
from B to A.

Although the projections of figure 2.7 suggest that the plotted orbits end up quite
close to one fixed point or the other, the numbers show otherwise: the end distances are
still of the order of half the distance between A and B. In order to find orbits that end
up close to the desired fixed point, we have developed a new algorithm which makes uses
of adjoint techniques, stemming from 4D-VAR data assimilation in weather forecasting.

The algorithm is an iterative method. From a given orbit a correction step for the
starting point of the orbit is calculated. Applying this correction to the initial state should
result in a new orbit ending up closer to the fixed point than the previous one. Suppose
we want to find an orbit starting close to A and ending up close to B, and suppose we
have a “first guess” orbit ψ̄(t) with t ∈ [0, T ]. Let

ψ′f = B− ψ̄(T ) (2.5)

and
G =< ψ′f , ψ

′
f >1 , (2.6)

with < . , . >1 the kinetic energy inner product. The smaller G is, the closer the orbit
ends near B, so we want to minimize G. Writing the model equation (2.1) in terms of
streamfunction ψ and linearising it around states from the orbit ψ̄(t) yields the tangent
linear model, which describes the linear evolution of perturbations ψp of ψ̄(t):

ψ̇p = L(ψ̄(t)) ψp (2.7)
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A second orbit ψ̃(t) of the full nonlinear system (2.1), starting in ψ̃(0) = ψ̄(0) + ψ′(0),
will end in ψ̃(T ) = ψ̄(T ) + ψ′(T ). If ψ′(0) is small enough, ψ′(T ) will approximately be
the result of the tangent linear model (2.7) integrated over time T with initial state ψ′(0).

The formal solution of the tangent linear model can be written using the resolvent
R(t1, t2) and reads

ψp(t2) = R(t1, t2) ψp(t1) (2.8)

If we consider ψ′f to be a perturbation of the orbit ψ̄(t) at its end-point we can relate it to
a perturbation ψ′i at its starting point by substituting ψp(t1) = ψ′i and ψp(t2) = ψ′f in the
above equation, giving ψ′f = R(0, T ) ψ′i. Writing shortly R for R(0, T ) and substituting
in equation (2.6) yields

G = < ψ′f , R ψ′i >1 = < R∗ ψ′f , ψ
′
i >1 = − < ∆R∗ ψ′f , ψ

′
i >0 (2.9)

in which R∗ is the adjoint of R with respect to < . , . >1 (note that the adjoint depends
on the inner product) and < . , . >0 is the squared norm inner product (see appendix
2.A). For more information on the adjoint, in particular on the adjoint of the tangent
linear barotropic model with respect to the kinetic energy inner product, see Talagrand
and Courtier (1987) and Barkmeijer (1992).

We can now relate a change in the initial state of the orbit ψ̄ to a change in the
distance between the end point of ψ̄ and the fixed point B:

δG

δψ′i
= −∆R∗ ψ′f (2.10)

This gives us the recipe to improve on the orbit ψ̄: calculate the difference vector ψ′f ,
integrate this vector using the adjoint of the tangent linear model and let the Laplace

��

��

ψ′f

∆ψ′i

B

A

ψ̄(t)

ψ̃(t)

Figure 2.8: Schematic representation of the adjoint method to find approximate hetero-
clinic connections. The vector ψ′f pointing from the end point of the orbit ψ̄(t) to the
fixed point B is integrated with the adjoint of the tangent linear model, resulting in ψ′i. By
moving the initial state in the direction of ∆ψ′i a new orbit (of the full nonlinear system)
ψ̃(t) is obtained ending closer to B.
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operator ∆ act on the resulting vector R∗ ψ′f . Shift the initial state ψ̄(0) in the direction

of −∆R∗ ψ′f . The orbit ψ̃, that results from integrating the nonlinear system (2.1) with
this new initial condition, should end up closer to the desired fixed point. See figure 2.8
for a schematic representation of the procedure. The method is applied iteratively under
the constraint that the initial point of the orbit at each iteration step stays both in the
linear approximation of the unstable manifold and at a fixed, small distance to the steady
state.

The time-length T of the orbit ψ̄ hasn’t been considered yet. As was mentioned
previously, a genuine heteroclinic orbit stretches over an infinite amount of time; however,
the approximation of the connection, from Eu(A) to Es(B), takes a finite amount of time.
This time-length is not known a priori, so the algorithm just described, which tries to find
the approximation, must allow for the possibility to adapt the interval T . This is taken
care of by starting with a relatively small T and extending the length if at the previous
iteration step the algorithm could only marginally improve on the orbit (that is, when
the relative decrease of G1/2 drops below, say, 1%).

To initialize the algorithm the 2 sets of eight “optimal” initial states, described previ-
ously, were taken from the 2 sets of 500 integrations. The “initial guess orbits” were set
to a length of 25 days, starting from the two times eight initial states. The magnitude
of the correction steps made to the initial states was initially set to a length of 0.1 times
the distance between the initial point and the nearby steady state; this magnitude was
decreased when lengthening the time interval T .

From both sets we present the orbits showing the best results (that is, the orbits coming
closest to the fixed points while the algorithm couldn’t improve on them anymore): 2 of
the A to B (zonal to blocked regime) orbits have end distances to fixed point B of 0.35
(length: 167 days) and 0.37 (183 days). Compared to the earlier results with minimum
distances to B between 0.59 and 0.67, this is a considerable improvement. It must be
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Figure 2.9: Approximations of nearby heteroclinic connections between regimes. Left:
zonal to blocked, right: blocked to zonal. Shown is the projection of the orbits onto the
PC1,PC3-plane.
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mentioned here that in the 200 year dataset there are only 9 events in which the distance
to B is less than or equal to 0.37; the absolute minimum in the whole dataset is 0.30. For
the reverse case (B to A) we have 3 orbits, with end distances to A of 0.15 (173 days),
0.13 (121 days) and 0.11 (217 days). The 200 year dataset has an absolute minimum of
0.11 and 2 events below 0.15. It must be stressed that all 5 orbits are solutions of the full
nonlinear model (2.1), integrated with the same integration routine as was used to create
the 200 year dataset.

The projections of the 5 orbits onto the PC1,PC3 plane are shown in figure 2.9.
The characteristics already apparent in figure 2.7 show up again for these 5 orbits. The
numbers show that the B to A orbits come much closer to fixed point A than the A to
B orbits come to B. Moreover, the latter two are very similar to each other whereas the
former three have clearly distinct trajectories (see figure 2.9). This supports the argument,
given earlier on in this section, that the B to A connection is probably more generic (and
could even be a 2-dim surface rather than a single curve) than the reverse connection.

2.5.3 Data interpretation

The dynamical structure that emerges by accepting the hypothesis that regime behaviour
is linked to heteroclinic dynamics has its consequences for the behaviour of the barotropic
model. We have seen that the approximations of the (nearby) heteroclinic connections
travel through certain regions of phase space during transitions from one regime to the
other. If the full barotropic system, as described by equation (2.1), really is influenced by
these heteroclinic connections, this should be visible in the data as well. More specifically,
the system should show in its data a tendency to have a negative PC3 anomaly when going
from the zonal regime MAX1 to the blocked regime MAX2, and a positive PC3 anomaly
when returning from the blocked to the zonal regime, since this is how the heteroclinic
connections travel. Furthermore, during transitions from MAX1 to MAX2 the found
orbits stay closer together than during transitions in the other direction. One would
therefore expect the data of the MAX2 to MAX1 transitions to be more scattered than
the data for the reverse transitions. Finally, the region with strongly positive PC2 and
weakly negative PC1 anomalies is visited during MAX1 to MAX2 transitions but not
during MAX2 to MAX1 transitions.

These assumptions can be checked using the 200 year dataset discussed earlier. Let us
define the two regimes in a very coarse way, thereby including probably too many states
in these regimes: all states with PC1 > 0.004 count as states in the zonal regime, all
states with PC1 < -0.008 are said to be in the blocked regime. All transitions, i.e. all
the segments of the data for which -0.008 < PC1 < 0.004, are divided in four categories:
transitions from the zonal to the blocked regime (z → b), from blocked to zonal (b → z),
from zonal back to itself (z → z) and from blocked back to itself (b → b). The beginning
and ends of the transition segments are determined by PC1 crossing the value of 0.004
or -0.008. The duration of the transitions is not taken into account here. From the four
different datasets that result PDFs are made. The number of datapoints ending up in
each dataset is as follows: z → b: 10548; b → z: 6648; z → z: 26398; b → b: 2894. The
projections of the PDFs of the b → z and z → b segments onto the planes of the leading
three EOFs is shown in figure 2.10. The EOFs that are used are those of the full 200yr
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dataset. The PDFs show that the data indeed possesses the transition-characteristics
that could be predicted from the trajectories of the near-heteroclinic orbits in figures 2.7
and 2.9. PC3 is negative during z → b and positive during b → z transitions. The region
with weakly negative PC1, strongly postive PC2 is often visited during z → b but hardly
during b → z transitions. The PDFs of the z → b transitions are more confined than
those of the b → z transitions (more specifically: the maxima of the z → b PDFs are
much more pronounced, showing that these transitions are more confined than the b →
z ones).

The b → b and z → z transitions have not been discussed yet. The former has not
enough realisations to be really interesting, but the latter does have many realisations.
Although these transitions don’t involve transitions from one regime to another but rather
from the zonal regime back to itself, the concept of global bifurcations can still shed some
light on these transitions. If the hypothesis is correct that the z → b → z heteroclinic
cycle gets broken and results in a homoclinic z → z connection, one would still expect
this homoclinic connection, and hence the data from the z → z transitions, to show traces
of the original cycle. The preference for certain phase space regions during the first half
(leaving the zonal regime) and second half (returning to the zonal regime) of the z → z
transition may still be somewhat similar to the preferences of the z → b resp. the b → z
transition. In order to check this, all segments of the z → z transitions were cut in two.
All datapoints of the first half of each z → z segment were collected in one dataset, the
points of the second halves in another. The PDFs of these two datasets are shown in figure
2.11. The projection on the PC1,PC2-plane doesn’t show the characteristics anymore, but
the other two projections do: the PC3 anomalies still show the characteristics described
earlier: negative when leaving the zonal regime, positive when returning.

The very coarse way in which the two regimes were defined above, and in which the
transitions were counted, has the consequence that the “heteroclinic characteristics” that
are found back in the data are not very detailed. We could improve on this by selecting
the data more precisely, e.g. by defining the regimes more strictly and by imposing a
maximum time limit in which the transition from one regime to the other should be
completed. However, such stricter selection would obscure the very general influence of
the heteroclinic behaviour. The coarse definition and selection of regime- and transition
states shows that the heteroclinic characteristics are visible not only for those transitions
that run precisely between narrowly defined regimes, but also for a much broader category
of states, namely the large majority of transitions between only crudely defined regimes.
From the 46488 states that were counted as transitional states, 43549 (93.7%) fell in
either the z → b, b → z or z → z cases, which were shown to possess on average the
characteristics of heteroclinic transitions.

2.6 Discussion

Looking at the regime behaviour, displayed by the barotropic model, from a dynamical
systems point of view gave a new perspective on the dynamics of regime transitions.
The thought that these transitions should be related to heteroclinic connections, since
the model is entirely deterministic, guided us to the notion that the transitions must be
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structured in phase space. The transitions from the zonal to the blocked regime will, on
average, follow paths through different regions of phase space than the transitions from
the blocked to the zonal regime. The 200 yr model dataset indeed shows clear differences
between the two transitions, even with a coarse filtering; these differences match well
with the approximations of (the ruins of) the hypothesized heteroclinic connections. A
few remarks must be made to conclude this paper:
• The new algorithm, presented in this study, to approximate the ruins of the heteroclinic
connections was able to improve on the optimal transition orbits that resulted from choos-
ing many arbitrary initial states in (the linear approximation of) the unstable manifolds
of the two steady states. Nevertheless, the algorithm still needs improvement in order to
make it work more easily and probably with better results, in different model contexts. In
particular, the handling of the time-interval and the choice of the length of the correction
step can be more sophisticated. However, such improvement is beyond the scope of this
paper.
• The difference between the two regimes mainly projects onto EOF1, which resembles
the Arctic Oscillation pattern. The difference between the z→b and b→z transitions
is most clearly visible in EOF3, which projects strongly onto the North Atlantic Oscil-
lation pattern (with positive PC3 corresponding to the negative NAO-phase and vice
versa). Combining these findings in one picture results in figure 2.12, a highly simplified,
schematic picture of the dynamics of regime behaviour, NAO and AO in the barotropic
model. Starting in the zonal regime, which shows a polar vortex that is weaker than

B Z

EOF3 ∼ – NAO

EOF1
∼ – AO

Figure 2.12: Schematic representation of the interrelationships of regime behaviour, NAO
and AO, as emerging from the barotropic model. B denotes the blocked regime, Z the
zonal regime. Negative PC1 corresponds to a stronger polar vortex (positive AO phase),
negative PC3 corresponds to the positive NAO phase.
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average, the model evolves via a positive NAO phase to the blocked regime. The blocked
regime is characterised by a blocking over Europe and, on a larger scale, a strong polar
vortex. Leaving the blocked regime, the block persists for a while but shifts to the west,
to the North-Atlantic. This transition phase thereby gets the features of a negative NAO
phase. Finally, the model atmosphere is back in the zonal regime.
• The great (phase space) variety of the b → z transition orbits compared to their z
→ b counterparts (which showed up both in the data and in the approximations to the
heteroclinic connections, and which can be explained partly by looking at the dimensions
of the stable and unstable manifolds of the involved fixed points) raises interesting ques-
tions about the formation and destruction of blockings in our model. There seems to be
less freedom in the ways blockings can be created than there is in the ways blockings are
destroyed. The breaking up of the zonal regime should follow a rather specific scenario
for the system to evolve to a blocking situation within a certain amount of time (say two
months).
• This conclusion cannot end without pointing out that the model used in this study, a
T21 barotropic model with realistic forcing, obviously has its limits: the spatial resolu-
tion is rather coarse, it is limited to northern hemisphere flow, and baroclinic dynamics
is absent (but note the implicit presence of the time-averaged impact of neglected (e.g.
baroclinic) processes in the forcing). Nevertheless, the bimodality and regimes observed in
this model have several realistic aspects. Blocked flows, variations of the polar vortex and
the NAO are all known features of the atmospheric flow. The details may be inaccurate
but in essence these phenomena of the barotropic model are realistic. The regimes MAX1
and MAX2 resemble the AO in its negative and positive phase, respectively (Thompson
and Wallace, 1998). They combine a weakening resp. strengthening of the wintertime
polar vortex with anomalies of the same sign (but opposite to the polar anomaly) over
Europe and the North-Pacific (see figure 2.4). In the real atmosphere, the anomaly over
Europe stretches towards North-America. This stretching is absent in the regimes of the
barotropic model, but somewhat present in our EOF1. Our regimes can also be compared
to the clusters found by Corti et. al. (1999). Their clusters D and B resemble our MAX1
and MAX2. Furthermore, the pattern of their cluster A is comparable to a negative PC3
anomaly of our model: positive NAO-phase, negative anomaly over the North-Pacific,
positive anomaly over North-America. These similarities beg the question whether tran-
sitions from cluster D to B have a tendency to go via cluster A, which would be the same
order as we found in the barotropic model. In our model data no regime was found that
corresponds to cluster A. However, the preferred transition routes have a small “loop” at
the midpoint of the MAX1 to MAX2 transition (figure 2.9). This extra curvature may
result in a local PDF maximum in time-averaged data (note that Corti et. al. use monthly
mean data, whereas we have used daily data). The PDFs for the z → b transitional states
(figure 2.10) have indeed a maximum at the location of the small loop. This observation
suggests that there may be two types of regimes: one type associated with (marginally
unstable) equilibria of the large-scale flow, the other type induced by local curvatures of
the preferred transition orbits. Finally, the resemblance of cluster C and our positive PC3
anomaly is less strong (although not completely absent), so the return transition from B
to D via C may be less clear. This could be related to our findings that in the barotropic
model the MAX2 to MAX1 transitions are less confined than the reverse ones.
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We have argued that the regime behaviour of the barotropic model is quite realistic in its
qualitative aspects. The concept of heteroclinic connections gave a new perspective on
the regime behaviour in the model. It was shown that these connections have important
implications for the details of the regime transitions, an aspect which has been largely
ignored in the literature. This perspective can very well be used for further, more detailed
studies of transitions in both models and observations.
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2.A Appendix: The inner product

The inner product used throughout this paper is the kinetic energy inner product, defined
by

< ψ1, ψ2 >1=
1

2

∫
(∇ψ1) · (∇ψ2) dΩ (2.A.1)

The integral is taken over the entire sphere; dΩ denotes a volume element on the sphere.
ψ1 and ψ2 are streamfunction fields on the sphere. For the barotropic model, the kinetic
energy of a state with streamfunction ψ is given by < ψ, ψ >1. The kinetic energy inner
product belongs to a class of inner products

< ψ1, ψ2 >k =
1

2

∫
(∇kψ1) · (∇kψ2) dΩ, k ∈ N (2.A.2)

It is easy to show that < ψ1, ψ2 >1 = − < ξ1, ψ2 >0, where ξ1 = ∆ψ1, the vorticity field
associated with ψ1.

2.B Appendix: Gradient and Jacobian

The scalar function F to be minimized in section 2.4 is the discretized version of the
functional F , which is defined as the squared norm of the vorticity tendency integrated
over the sphere:

F =

∫
( ξ̇ )2 dΩ. (2.B.1)

All integrals in this appendix are assumed to be taken over the sphere; dΩ denotes again
a volume element on the sphere. Using the definition δF(ξ) = F(ξ + δξ) − F(ξ) and



68 Regime transitions and heteroclinic connections in a barotropic atmosphere

substituting equation (2.1) gives:

δF = 2

∫
ξ̇ (δξ̇) dΩ

= 2

∫
ξ̇ (J(δξ, ψ)− J(δψ, ξ + f + h) + k1∆δψ + k2∆

4δψ) dΩ

= 2

∫
δψ (J(ξ̇, ξ + f + h) + ∆J(ψ, ξ̇) + k1∆ξ̇ + k2∆

4ξ̇) dΩ (2.B.2)

The above derivation uses δξ = ∆δψ, as well as the following identities:
∫

η (∆ζ) dΩ =

∫
ζ (∆η) dΩ (2.B.3)

∫
η J(ζ, ν) dΩ = −

∫
ν J(ζ, η) dΩ (2.B.4)

These identities stem from the identity
∫ ∇ · A dΩ = 0, which is valid for any smooth

vector field A since the integration runs over the sphere.
From equation (2.B.2) follows

δF
δψ

= 2
(
J(ξ̇, ξ + f + h) + ∆J(ψ, ξ̇) + k1∆ξ̇ + k2∆

4ξ̇
)

(2.B.5)

Discretizing the equations, i.e. expressing all fields in terms of a finite number of spher-
ical harmonics, yields the approximation F of F ; ψ is replaced by (ψ1, . . . , ψN)T. The
functional derivative (2.B.5) becomes the vector ∂F/∂ψi, i = 1, . . . , N : the gradient of F
with respect to (ψ1, . . . , ψN)T. This is the gradient needed for the minimization algorithm.

An expression for the Jacobian, the matrix that describes the model linearised around
some state, can be derived in a similar way as the expression of the gradient above. The
Jacobian (denoted by L) is defined as

Lij =
∂ψ̇i

∂ψj

(2.B.6)

which may be thought of as a series of gradients of scalars ψ̇i. Define

Di = ψ̇i =

∫
Y ∗

i ψ̇ dΩ (2.B.7)

in which Y ∗
i is the complex conjugate of the spherical harmonic with (multi-)index i; the

gradient can be shown to be

δDi

δψ
= J(∆−1Y ∗

i , ξ + f + h) + ∆J(ψ, ∆−1Y ∗
i ) + k1Y

∗
i + k2∆

3Y ∗
i (2.B.8)

Discretizing in spherical harmonics gives the Jacobian:

Lij =

(
δDi

δψ

)

j

(2.B.9)
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Chapter 3

A mechanism for atmospheric
regime behaviour

Abstract. Adopting the viewpoint that atmospheric flow regimes can be associated with
steady states, we investigate the hypothesis that regime transitions in deterministic atmo-
sphere models are related to the existence of heteroclinic connections between these steady
states. We study a low-order barotropic model with topography, in which topographic and
barotropic instabilities are the mechanisms dominating the dynamics. By parameter tuning,
the Hopf bifurcation corresponding to barotropic instability can be made to coincide with
one of the saddle-node bifurcations that are due to the topography in the model. This coin-
cidence is called a fold-Hopf bifurcation. Among the dynamical structures related to such a
bifurcation are heteroclinic connections and homoclinic orbits, connected to the equilibria.
A heteroclinic cycle back and forth between the equilibria, present in the unfolding of the
truncated normal form of the fold-Hopf bifuraction, will be perturbed in the full model, leav-
ing orbits homoclinic to one of the equilibria. The impact of these mathematical structures
explains several characteristics of regime behaviour known from previous model studies.

3.1 Introduction

More than fifty years after the first reports on the topic, the regime behaviour of the
atmosphere remains an enigma. The considerable attention that has been devoted to
the hypothesis that atmospheric low-frequency variability is affected by the existence of
preferred flow regimes has not yet resulted in a fully conclusive picture. Nevertheless, the
detection of regimes in the observational data of the atmosphere has progressed a lot in
the last two decades. Starting with Benzi et al. (1986) and Sutera (1986), the somewhat
intuitive notion of regimes, developed since the works of Namias (1950) and Rex (1950a,b),
was put on a firmer basis using concepts and techniques from modern probability theory.
In papers such as Cheng and Wallace (1993), Kimoto and Ghil (1993a,b), Smyth et al.
(1999) and Monahan et al. (2001), the use of these techniques has resulted in growing
evidence for the existence of regimes in northern hemispheric atmosphere data. Moreover,
the regimes found in these papers, using different techniques, are strikingly similar.

Accepting the existence of regimes still leaves us with the question which dynamical
processes are responsible for this behaviour. An important contribution regarding this
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issue was made by Charney and DeVore (1979, CdV from now on), who stated that flow
regimes should be identified with equilibrium solutions of the equations describing the
evolution of large scale atmospheric flow. Their hypothesis, supported by the study of a
low-order model for barotropic flow over topography, was taken up and expanded on by,
among others, Reinhold and Pierrehumbert (1982), Legras and Ghil (1985), Källén (1981,
1982), Yoden (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto (1996, 1999).

Although the above model studies unveiled much about the structure of the (model)
regimes, the observed regime transitions have so far not been satisfactorily explained.
From statistical studies of model data as well as observational data, it has been known for
some time that transitions between regimes are not an entirely random process. In Mo
and Ghil (1987, 1988), Molteni et al. (1990) and Kimoto and Ghil (1993b), up to seven
regimes/clusters are identified in various datasets (both from observations and models).
By counting the transitions between the various regimes, these studies made clear that
there exist not only preferred flow regimes, but also preferred transitions between (some
of) the regimes. Plaut and Vautard (1994), studying the interplay between low-frequency
oscillations and regimes using MSSA, also found that transitions are not purely random.

Itoh and Kimoto (1996, 1997, 1999) propose chaotic itinerancy as an explanation
for the preferences and inhomogeneities in regime transitions. Using multi-layer quasi-
geostrophic models of moderate complexity (L2T15 and L5T21), they detect multiple
attractors that are identified as regimes. By changing a parameter (horizontal diffusivity
or static stability), these attractors lose their stability one by one, thereby admitting
regime transitions. When all attractors have lost their stability, the model shows irregular
transitions between the remnants of the former attractors, and thus between the regimes.
This behaviour is called chaotic itinerancy. The preferred order of the transitions is
related to the order in which the attractors lost their stability. This interesting result
once more emphasizes the inhomogeneities in regime transitions, which must be due to
the nonlinear nature of the system under study. However, it does not provide much
insight in the dynamics that determine the transitions, as the loss of stability of the
various attractors is not analysed. It remains unknown what dynamical processes cause
and drive the transitions.

Often a stochasticity assumption is invoked to explain regime transitions. Noise,
representing the effect of unresolved physics and dynamics, can kick a system out of the
basin of attraction of one regime and into another. This has been studied, by adding
stochastic perturbations to a low-order model, in e.g. Egger (1981), Benzi et al. (1984),
De Swart and Grasman (1987) and Sura (2002). However, the addition of noise is not
necessary to trigger regime transitions. Even in deterministic low-order models transitions
can occur. It is therefore worthwhile to consider how transitions can be generated by the
internal, deterministic dynamics of a system, in the absence of noise.

Our hypothesis will be that barotropic flow over topography is not only sufficient to
create multiple equilibria (as in CdV), but can also generate transitions between those
equilibria, resulting in regime behaviour. This is based on the fact that transitions have
been observed in various barotropic models. Examples are the 25-variable model used
by Legras and Ghil (1985), the 10-dimensional model used by De Swart (1988a,b), and
the T21 model studied in Crommelin (2002b). The presence of baroclinic processes is
apparently no conditio sine qua non for regime transitions. Recently, even in laboratory
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experiments designed to mimic as closely as possible the situation of barotropic flow over
topography in the atmosphere, regime behaviour was observed (Weeks et al. 1997, Tian
et al. 2001). Thus, the transitions in those truncated barotropic models cannot simply
be discarded as model artefacts.

In Crommelin (2002b) strong numerical evidence was found in support of the hypoth-
esis that remnants of heteroclinic connections are responsible for the transitions between
flow regimes. The regimes were found to correspond with steady states, in accordance
with the paradigm introduced by CdV, and are likely to have deterministic connections
running back and forth between them for nearby parameter values. An attempt was made
to find the trajectories of the connections, and the result of that attempt was shown to be
consistent with the phase space preferences of regime transitions during a 200 year model
integration. In spite of the numerical evidence, analytical, or at least more rigorous math-
ematical support is still lacking for the hypothesis that regime transitions are related to
heteroclinic connections (a hypothesis also mentioned by Legras and Ghil (1985), Kimoto
and Ghil (1993b) and Weeks et al. (1997)). In this paper we want to provide such
support, by studying a low-order model of the atmospheric flow at midlatitudes. We
hypothesize that the combination of topographic and barotropic instability is sufficient to
create multiple equilibria corresponding to regimes as well as connections between these
equilibria, and we therefore take the simplest model possible that combines these two
instability mechanisms. Such a model is provided by De Swart (1989, DS from now on), a
six-variable model that is essentially the same as the model of CdV, also studied by Yoden
(1985), except for a different scaling and a more general zonal forcing profile. We will
use this model to study the interaction between topographic and barotropic instability,
in order to see if and how the combination of these instability mechanisms can generate
connections between steady states, resulting in regime behaviour.

The study of this interaction can provide a first step towards a better understanding
of the mechanisms playing a role in the phenomenon of regime transitions. Although
the model that will be used is probably too simple to arrive at conclusions that pertain
immediately to the real atmosphere, the insights it provides may guide the investigation
of more complex models, or even observational data.

3.2 Derivation of the low-order model

The starting point for this study is the hypothesis that the combination of topographic
and barotropic instability is sufficient to generate regime behaviour. Notably, baroclinic
processes are not considered to be truly necessary for regime transitions to occur. Thus,
we consider a model without baroclinic dynamics and without stochastic terms supposed
to represent the effect of baroclinic processes. Instead, we wish to study the simplest
deterministic model possible that combines the mechanisms of barotropic and topographic
instability. Therefore we use the model presented in DS, a slightly different version of
the CdV model. It can have multiple equilibria, caused by topography, and is forced by
a zonal flow profile that can be barotropically unstable.

The model is obtained by a Galerkin projection and truncation of the barotropic
vorticity equation (BVE) on a β-plane channel. The BVE, a partial differential equation,
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reads
∂

∂t
∇2 ψ = −J (ψ,∇2 ψ + f + γh)− C∇2 (ψ − ψ∗). (3.1)

Time (t), longitude (x) and latitude (y) can take on values (t, x, y) ∈ R× [0, 2π]× [0, πb].
The parameter b = 2B/L determines the ratio between the dimensional zonal length L
and meridional width B of the channel. The streamfunction field ψ(t, x, y) is periodic in x:
ψ(t, x, y) = ψ(t, x+2π, y). The restriction to the beta plane implies that at the meridional

boundaries y = 0, π both ∂ψ/∂x = 0 and
∫ 2π

0
(∂ψ/∂y)dx = 0. The Coriolis parameter f

generates the beta-effect in the model. Orography enters with h, the orographic height,
and is scaled with γ. The Jacobi operator J acts on two fields, say A(x, y) and B(x, y), as
follows: J (A,B) = ∂A

∂x
∂B
∂y
− ∂A

∂y
∂B
∂x

. Finally, the model is driven by a Newtonian relaxation
to the streamfunction profile ψ∗, with damping coefficient C.

To arrive at a finite-dimensional model, the BVE is projected onto a set of basis
functions which are eigenfunctions of the Laplace-operator ∇2. On the chosen rectangular
domain, with the abovementioned boundary conditions, these functions are double Fourier
modes:

φ0m(y) =
√

2 cos(my/b)

φnm(x, y) =
√

2 einx sin(m y/b)

(3.2)

in which |n|, m = 1, 2, . . .. The streamfunction and the topographic height are expanded
in this basis:

ψ(t, x, y) =
∑
n,m

ψnm(t) φnm, h(x, y) =
∑
n,m

hnm φnm, (3.3)

The six-dimensional model is obtained by truncating the expansion after |n| = 1 and
m = 2, so the only remaining basis functions are φ01, φ02, φ11, φ−11, φ12 and φ−12. The
time-dependent variables ψ01, ψ02, ψ±11, ψ±12 are transformed to real variables:

x1 = 1
b
ψ01, x2 = 1

b
√

2
(ψ11 + ψ−11), x3 = i

b
√

2
(ψ11 − ψ−11),

x4 = 1
b
ψ02, x5 = 1

b
√

2
(ψ12 + ψ−12), x6 = i

b
√

2
(ψ12 − ψ−12).

(3.4)

The topography h is chosen to have a (1,1) wave profile:

h(x, y) = cos(x) sin(y/b) (3.5)

so the only nonzero topographic expansion coefficients are h11 = h−11 = 1/(2
√

2). The
forcing profile ψ∗, finally, is purely zonal, i.e. ψ∗ = ψ∗(y). For the 6D model this means
that the only forcing terms will be x∗1 and x∗4 .

The set of ordinary differential equations describing the temporal evolution of the xi

is of the form ẋ = F + Ax + B(x,x), with energy- and enstrophy-preserving quadratic
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nonlinearities. In detail it reads:

ẋ1 = γ∗1 x3 −C (x1 − x∗1)
ẋ2 = −(α1 x1 − β1) x3 −C x2 − δ1 x4 x6

ẋ3 = (α1 x1 − β1) x2 − γ1 x1 −C x3 + δ1 x4 x5

ẋ4 = γ∗2 x6 −C (x4 − x∗4) + ε (x2 x6 − x3 x5)
ẋ5 = −(α2 x1 − β2) x6 −C x5 − δ2 x4 x3

ẋ6 = (α2 x1 − β2) x5 − γ2 x4 −C x6 + δ2 x4 x2

(3.6)

The various coefficients in these equations are given by

αm =
8
√

2

π

m2

4m2 − 1

b2 + m2 − 1

b2 + m2
, βm =

βb2

b2 + m2
,

δm =
64
√

2

15π

b2 −m2 + 1

b2 + m2
, γ∗m = γ

4m

4m2 − 1

√
2b

π
, (3.7)

ε =
16
√

2

5π
, γm = γ

4m3

4m2 − 1

√
2b

π(b2 + m2)
.

In the equations, the terms multiplied by the αi model the advection of the waves by
the zonal flow. The βi-terms are due to the Coriolis force; the γ-terms are generated by
the topography. The C-terms take care of the Newtonian damping to the zonal profile
x∗ = (x∗1, 0, 0, x

∗
4, 0, 0). The δ- and ε-terms describe the nonlinear triad interaction between

the zonal (0,2) mode and the (1,1) and (1,2) waves. This triad is responsible for the
possibility of barotropic instability of the (0,2) mode.

The number of free parameters in the model equations is six: the damping coefficient
C, the forcing parameters x∗1 and x∗4, the length-width ratio of the beta-channel, b, the
Coriolis parameter β and the scaling of the topographic height γ. In the analysis of this
paper we will most of the time use the ratio r between x∗4 and x∗1 as a free parameter
instead of x∗4 itself. This is done by putting x∗4 = r x∗1.

The model parameters x∗1, x
∗
4 (or r) and γ will be varied throughout this study. The

remaining parameters β, b and C will be kept fixed. The choice β = 1.25 corresponds
to a channel centered around a latitude of 45◦, see also DS. The channel width-length
ratio b will be set to 0.5, which is different from the value taken throughout most of the
study of DS. In there, b = 1.6 was chosen. However, at that value the model contains
pitchfork bifurcations that create additional branches of equilibria. Since we want to
isolate the mechanisms of barotropic and topographic instability in their simplest form,
such additional bifurcations are unwanted. By choosing b = 0.5 (i.e. reducing the north-
south extent of the channel from 80% to 25% of its east-west extent) these extra pitchfork
bifurcations do not occur. In DS, C was furthermore set to 0.1, corresponding to a
damping timescale of 10 days (the nondimensional time in the equations was scaled such
that ∆t = 1 corresponds to roughly one day). We will adopt the same value for C.

3.3 Topographic and barotropic instability

Nonzero topography may introduce a mechanism of instability in the system. The inter-
action between the zonal flow and the topography can generate standing wave solutions.
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The (0,1) zonal flow component will excite a wave with the same wavenumber as the
topography, in this case the (1,1) wave. The effect of the topography doesn’t end there;
as can be seen in the equations, the (1,2) wave mode is coupled to the (0,2) zonal mode
via the topography. It must be pointed out that the topography does not create an os-
cillatory mode (as is usually the case with instabilities), but rather a resonant response
curve which corresponds to a parameter range with multiple equilibria. These equilibria
are associated with three different ways in which the advection of relative vorticity, the
advection of planetary vorticity and the vortex stretching caused by flow over topography,
can balance. One of the equilibria is unstable. Since the instability of this steady state
is entirely due to the topography, and not to other mechanisms such as barotropic insta-
bility or wave instability, the effect of the topography here has been given a new name,
topographic instability.

The barotropic instability is an instability mechanism in the more common sense of
the word, as it refers to a situation where a steady state (a mainly zonal flow) loses its
stability while a (stable) oscillatory wave mode (a travelling wave) is created. The zonal
flow profile must obey certain conditions for this instability to be possible, see e.g. Kuo
(1949) and Cushman-Roisin (1994). In particular, the profile must have at least one
inflection point (a change in the sign of the total vorticity) in meridional direction. For
that reason it is necessary to have more zonal modes resolved in the model, since the (0,1)
zonal mode can never be barotropically unstable by itself (it does not obey the inflection
point condition). The (0,2) zonal mode can become unstable, though only when b2 < 3,
due to Fjørtofts theorem (see DS). Our choice of b = 0.5 clearly satisfies this condition.

The effect of the two mechanisms is shown in figure 3.1. On the left is a curve of
fixed points depicted in the situation without either mechanism playing a role. This was
achieved by putting γ = x∗4 = 0, so that topography is zero and the zonal flow profile
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Figure 3.1: Continuation of fixed points. Solid lines denote stable branches and dashed
lines unstable branches. On the left, barotropic instability is not possible and topography is
zero (r = γ = 0). On the right, topography is nonzero (γ = 1), generating two saddle-node
bifurcations (sn1 and sn2). The three branches of equilibria are denoted by eq1, eq2 and
eq3. The Hopf bifurcation hb (¥) is due to barotropic instability (r = −0.4).
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cannot be barotropically unstable. The response of the model to varying x∗1 is a shift
of the steady state such that x1 = x∗1. On the right, both mechanisms are present.
The deformation of the straight curve on the left to the S-shaped curve on the right,
involving two saddle-node bifurcations (sn1 and sn2), is the result of non-zero topography
(γ = 1). The (supercritical) Hopf-bifurcation on the upper part of the branch represents
the barotropic instability, which was triggered by non-zero x∗4. To be able to perform fixed
point continuations starting with zero flow (all xi = 0) at zero forcing, x∗4 is scaled with
x∗1, by putting x∗4 = r x∗1 and fixing r at some value (thus, r then controls the shape of
the forcing profile while x∗1 determines its strength). This scaling will be used throughout
this paper. In the right panel of figure 3.1, r = −0.4 was taken. The continuations were
carried out using the software package AUTO (Doedel and Wang, 1995).

The flow patterns corresponding to the three different fixed points existing at x∗1 =
6 in figure 3.1 are shown in figure 3.2. As was already known from previous studies
(e.g. DS), the upper branch eq1 corresponds to equilibria with largely zonal character.
The other two are dominated by topographically excited standing wave patterns, one
superresonant (eq2), the other subresonant (eq3). The former has a slightly stronger
zonal flow component than the latter. The phases of their wave components with respect
to the topography are somewhat different: the wave pattern of eq2 is a bit more upstream
than that of eq3. The phase difference goes to zero when moving towards sn2.

eq3eq2eq1

Figure 3.2: Streamfunction patterns corresponding to the equilibria at x∗1 = 6, r =
−0.4, γ = 1. On the left and the right are the stable equilibria, in the middle the un-
stable one. Thick lines are streamfunction lines (contour interval 1 in nondimensional
units), thin lines are topography contours (interval 0.25 km). Dashed contours are for
negative values, solid contours for zero or positive values.

The subresonant solution eq3 is usually the one that is identified as the regime of
blocked flow. The main reason for that seems to be the fact that in the simplest setting
(that is, topographic instability being the only physical mechanism present) eq3 is the sta-
ble solution, whereas eq2 is unstable. Nevertheless, eq2 also possesses the characteristics
of a blocked flow regime. To call eq2 an intermediate solution only because it is unstable
in the simple setting seems premature. Eventually, all equilibria have to be unstable for
regime transitions to occur in a model without stochastic terms. We see no a priori reason
to exclude eq2 as a candidate for the blocked regime.
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3.4 The merging of two instabilities: a fold-Hopf bi-

furcation

3.4.1 Instabilities and bifurcations

The two instabilities are, mathematically, represented by saddle-node- and Hopf-bifurcations.
The locations of these bifurcations depend on the parameters of the model. Figure 3.1
already gave an idea of this dependence. The straight curve of fixed points, where the
equilibrium is such that the dissipation and the forcing of the first zonal mode are in bal-
ance, gets deformed by increasing the amplitude of the topography above some threshold
value. At the threshold value, the two saddle-node bifurcations sn1 and sn2 coincide.
Thus, the threshold is a cusp-bifurcation. The cusp is a codimension two bifurcation
(two parameters, say x∗1 and γ, must be tuned for this bifurcation to occur) and can be
continued adding a third parameter, say r. This means that the value of γ for which
the cusp occurs changes when altering the shape of the zonal forcing. A curve show-
ing the γ-location of the cusp for varying r is drawn in figure 3.3. It must be stressed
that the value of x∗1 for which the cusp occurs also changes along the curve: it decreases
monotonically from x∗1 = 1.992 at γ = 0.3198 to x∗1 = 0.3320 at γ = 3.0×10−12. The con-
tinuation of the cusp was performed using the continuation software package CONTENT
(Kuznetsov and Levitin, 1997). Note that if the zonal forcing profile has the right shape
and strength (x∗1 = 0.3320, r = −0.861467), the influence of the topography is even felt
when its amplitude is infinitesimally small (γ approaching zero).
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r
↓

Figure 3.3: Location of cusp bifurcation for varying γ and r. The value of x∗1 also changes
along the curve but is not shown.

The Hopf-bifurcation is the dynamical expression of barotropic instability. Since the
(0,2) zonal mode can become barotropically unstable but the (0,1) mode cannot, it can
be expected that the bifurcation occurs at smaller x∗1 values if |r| is increased. By doing
so, the Hopf bifurcation will approach the saddle-node sn1, and at some point coincide
with it. This simultaneous occurrence of a saddle-node- (or fold) and a Hopf bifurcation
is called a fold-Hopf bifurcation, and has codimension two.

Let us investigate what happens when this fold-Hopf bifurcation occurs (i.e. when the
two instability mechanisms merge). The description of the various dynamical phemonena
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and structures that emerge out of this codimension two point in parameter space, the
so-called unfolding of the bifurcation, is given in Kuznetsov (1995). We will briefly review
it here.

3.4.2 The fold-Hopf bifurcation: some theory reviewed

The occurrence of a bifurcation of a fixed point can be read off from the eigenvalue-
spectrum of the fixed point. In a saddle-node- (or fold-) bifurcation, one eigenvalue is
exactly zero, all the others have non-zero real parts. In a Hopf-bifurcation, one complex
conjugated pair of eigenvalues has real part zero (and imaginary part non-zero); again, all
other eigenvalues are bounded away from the imaginary axis. It will come as no surprise
that a fold-Hopf bifurcation is characterised by a fixed point eigenvalue spectrum with
one zero and one purely imaginary pair (i.e. λ1 = 0, λ2,3 = ±iω) as its only eigenvalues on
the imaginary axis. The fold-Hopf bifurcation is sometimes also referred to as zero-Hopf,
zero-pair or Gavrilov-Guckenheimer bifurcation.

Suppose we have a n-dimensional system depending on p parameters

ẋ = f(x, µ), x ∈ Rn, µ ∈ Rp, (3.1)

with fixed point x = x0 at µ = µ0 (so f(x0, µ0) = 0). If µ0 is a fold-Hopf bifurcation point,
the eigenvalue spectrum contains n− eigenvalues λ−i with negative real part, n+ eigenvalues
λ+

i with positive real part and finally one zero and one imaginary pair: Re λ−1 , . . . , λ−n− <

0 < Re λ+
1 , . . . , λ+

n+
; λ0

1 = 0, λ0
2,3 = ±iω. Clearly, n− + n+ + 3 = n. We will denote

the linear eigenspaces corresponding to the three groups {λ−i }, {λ+
i }, {λ0

i } by E−, E+

and E0, respectively: the stable, the unstable and the center eigenspace. The Center
Manifold Theorem states that there exists a (only locally defined) 3-dimensional invariant
manifold W c that is tangent to E0 in x0. The only interesting dynamics of the system
in the neighbourhood of x0 takes place on W c. Away from W c, the system is either
exponentially fast repelled from W c (along the unstable manifold) or attracted towards
W c (along the stable manifold), and thus “trivial”. W c is called the center manifold.

The dynamics of the system around x0 can be described (apart from the exponentially
fast repelling and/or attracting to W c) by the dynamics on the center manifold. Thus, to
understand the (local) behaviour of the system in and near a fold-Hopf bifurcation, we can
restrict ourselves by looking at the center manifold dynamics. A nonlinear, parameter-
dependent transformation of variables allows us to isolate the description of the system on
W c (a so-called center manifold reduction). The equations describing the evolution on W c

can be cast in a standardized form; this is called the normal form. We will not discuss the
way to calculate the normal form and the center manifold reduction, see Kuznetsov (1995,
1999) for a detailed discussion. Instead, we only give the normal form of the fold-Hopf
bifurcation:

ẏ = ρ1 + y2 + s |z|2 +O(|y, z, z̄|4)
ż = (ρ2 + i ω1) z + (θ + i ϑ) y z + y2 z +O(|y, z, z̄|4) (3.2)

Here, y ∈ R and z ∈ C. ρ1 and ρ2 are called the unfolding parameters, ω1, θ and ϑ are
coefficients whose values depend on ρ1 and ρ2, and s = +1 or –1. We assume θ 6= 0 when
ρ1 = ρ2 = 0. The fold-Hopf bifurcation point is at (ρ1, ρ2) = (0, 0). There, the normal
form equations have a fixed point y = z = 0 with eigenvalue spectrum 0,±i ω1.
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Truncating the normal form after the cubic terms and transforming z to polar coor-
dinates, z = u eiφ, yields

ẏ = ρ1 + y2 + s u2

u̇ = (ρ2 + θ y + y2) u (3.3)

φ̇ = ω1 + ϑ y

This system is called the truncated normal form. As can be seen, the equations for y
and u do not depend on φ. Moreover, in the neighbourhood of the fixed point, φ̇ ≈ ω1,
due to small y. The bifurcations in the above system can therefore be understood by
only studying the equations for y and u, the so-called (truncated) amplitude equations.
Note that the truncated amplitude equations are Z2-symmetric, as they are invariant
under u → −u. See Kuznetsov (1995) for a discussion. This symmetry is related to the
S1-symmetry (invariance under φ → φ + φc for arbitrary constants φc) of the truncated
normal form.

Qualitatively, the bifurcation diagram near the origin in the (ρ1, ρ2) plane is determined
by the signs of s and θ. There are four different cases, or unfolding scenarios. Which
scenario applies to our situation can be deduced from the fact that in our system the
Hopf-bifurcation, when it is located on the upper, stable branch, is supercritical: the
stable equilibrium loses its stability while a stable periodic solution is created. It leaves
the scenario with normal form coefficients s = 1, θ < 0 as only possibility. This can be
checked by continuation of the Hopf bifurcation using (a not yet publicly available version
of) CONTENT, which calculates the normal-form coefficients when the Hopf bifurcation
curve crosses a fold-Hopf point. Indeed it is found that s = 1, θ < 0.

We will not discuss all four unfolding scenarios but restrict ourselves to the one relevant
for this study. The bifurcation diagram for the truncated normal form in case s = 1, θ < 0
is shown in figure 3.4, together with phase portraits in the (u, y) plane for the various
regions of the diagram. In origin of the (ρ1, ρ2) plane we find the fold-Hopf point. From the
origin, a saddle-node line sn (ρ1 = 0) and a Hopf curve hb (ρ1 = −ρ2

2/θ
2 +o(ρ2

2)) emanate.
For ρ1 > 0 no equilibria or periodic orbits exist. When crossing sn, two equilibria are
created. The invariance of the line u = 0 (or, equivalently, z = 0) in the truncated normal
form guarantees the existence of a heteroclinic connection on the y-axis between the two
equilibria.

When crossing hb, one of the equilibria (which one depends on the sign of ρ2) undergoes
a Hopf-bifurcation. The periodic orbit born on the Hopf curve encounters a Neimark-
Sacker bifurcation (also called torus bifurcation) when crossing the line ρ2 = 0, ρ1 < 0.
The Neimark-Sacker line, denoted ns, also emanates from the origin of the parameter
plane. Note that in the truncated amplitude equations a Hopf-bifurcation actually appears
as a fixed point moving into the u > 0 plane. A fixed point of the truncated amplitude
equations with u > 0 corresponds to a periodic orbit in the truncated normal form. In
the same spirit, a Neimark-Sacker bifurcation and a torus in the truncated normal form
equations appear as a Hopf-bifurcation resp. a periodic orbit in the truncated amplitude
equations.

The invariant torus, created when the periodic orbit crossed the ns curve, blows up
and eventually touches both equilibria. This happens on the curve hc (see figure 3.4),
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Figure 3.4: Bifurcation diagram of the truncated amplitude equations of the fold-Hopf
bifurcation with s = 1, θ < 0. The various lines and curves in the diagram are denoted hb
for Hopf bifurcation, hc for heteroclinic cycle, ns for Neimark-Sacker bifurcation and sn
for saddle-node bifurcation. The seven phase portraits a – f and hc show the dynamics in
the (u, y)-plane.
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and creates a second heteroclinic connection between the equilibria. The second connec-
tion corresponds to a sphere-like surface in the full (truncated) normal form. Together
with heteroclinic connection on the y-axis, it forms a heteroclinic cycle between the two
equilibria. In figure 3.5, this cycle is drawn in three dimensions.

Figure 3.5: Left: Sphere-like heteroclinic cycle between two equilibria. The cycle exists
on curve hc of the truncated normal form (3.4). Right: One of the homoclinic orbits
remaining after adding perturbative higher order terms to the truncated normal form.

The bifurcation scenario sketched in figures 3.4 and 3.5 is valid for the truncated
normal form equations (3.4). Since in practice we always deal with systems in which
higher order, perturbative terms show up when carrying out the normalization, the effect
of such perturbations (the O(|y, z, z̄|4) terms in equation (3.2)) must be considered. The
perturbations do not affect the local bifurcations (saddle-node, Hopf, Neimark-Sacker)
but they perturb the heteroclinic connections. For instance, the connection on the y-
axis is due to the invariance of that axis, since in the truncated normal form (3.4) u̇ is
proportional to u. However, the higher order perturbations can contain terms proportional
to y4+l, l ∈ N, that destroy the invariance and thereby the connection. In other words,
the perturbations break the symmetry of the truncated normal form.

The heteroclinic cycle will, in general, be destroyed by the perturbations, leaving
instead a transversal heteroclinic structure and two homoclinic orbits. These latter two
are attached to either one of the two fixed points and stretch towards the other equilibrium.
An example is shown in figure 3.5. The homoclinic orbit resembles the former heteroclinic
cycle but does not reach all the way to the second equilibrium. The other orbit, attached
to the lower equilibrium and stretching towards the upper one, is not shown. In some cases
the homoclinic orbits can be of the Shil’nikov type, implying the presence of a chaotic
invariant set. As the issue of chaotic behaviour is not our focus here, we do not explore
this possibility.
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3.4.3 Numerical bifurcation analysis

Figure 3.6 shows the results of the numerical bifurcation analysis of the model equations
(3.6). The calculations were done using AUTO. The orographic height was decreased to
γ = 0.2 for the calculation, corresponding to a topography amplitude of 200 meter (instead
of 1 km when γ = 1). This is more realistic than γ = 1, since the individual spectral
components (see section 2) of realistic topography will have amplitudes (much) smaller
than the original topography itself (see e.g. Charney et al. (1981), where topographic
maxima of about 2 km result in spectral amplitudes of a few hundred meters or less).
Moreover, a decrease of γ will shift the region of multiple equilibria to more realistic
physical values. We will come back to this in the next section. A value of 0.2 for γ
results, as could have been predicted from figure 3.3, in a cusp bifurcation (c) at (x∗1, r) =
(1.178645,−0.4965761), in which the two saddle-node bifurcation curves (sn1 and sn2)
coincide. This implies that when γ = 0.2, only one equilibrium is found if there is no
forcing in the second zonal mode (i.e. r = 0).

The numerical analysis recovers the theoretically predicted phenomena sketched in the
previous section. The Hopf curve (hb) becomes tangent to sn1 in the fold-Hopf bifurcation
point fh at (x∗1, r) = (0.783324,−0.821677). The eigenvalue spectrum at this bifurcation
point is (0,±i 0.293756,−0.103994,−0.248003± i 0.206738). Thus, locally in phase space
the system is attracted towards the center manifold associated with the fh bifurcation.
From the fh point the Neimark-Sacker curve (ns) can be seen to originate (figure 3.6,
bottom). The ns curve ends on the curve of the first period-doubling bifurcation (pd).
This pd curve is not predicted by the unfolding of the fold-Hopf bifurcation, as it is
not in the immediate parameter neighbourhood of the fh point. The period doubling is
encountered when following the periodic orbit born on the hb curve into the parameter
plane. It is the first of what is probably a cascade of period doublings. In Shil’nikov
et al. (1995) and Van Veen (2002), similar (but more detailed) bifurcation analyses are
presented in the context of the Lorenz 1984 baroclinic model.

As has been explained, the unfolding of the truncated normal form of the fold-Hopf bi-
furcation contains a heteroclinic bifurcation curve on which a heteroclinic cycle exists that
connects the two equilibria eq1 and eq2. The cycle will be broken under perturbations,
leaving homoclinic orbits that are nearly heteroclinic cycles. One of these orbits is found
numerically by continuation of the periodic orbit created on the curve hb. Starting the
continuation in r of the periodic orbit born on hb at x∗1 = 0.9, the orbit becomes homo-
clinic to the upper equilibrium eq1 at r = −1.188582. During the continuation, the first
period-doubling curve pd is crossed twice. By continuation of the homoclinic bifurcation,
a curve is obtained that winds in towards the point fh. In figure 3.6 this curve is denoted
ho. Note that part of the curve falls beyond the limits of the upper figure. The two seg-
ments in the figure are connected via a turning point at (x∗1, r) = (1.806245,−0.5173513).
When the curve approaches the fh point, its windings are very close to each other and cal-
culation becomes increasingly harder. Therefore, the continuation of the ho curve doesn’t
reach all the way to the fh point, although that is were the curve can be expected to really
end. The second homoclinic curve, not shown in figure 3.6, also winds in towards the fh
point. It intersects the first homoclinic curve ho infinitely many times near fh. The orbits
on this second curve are homoclinic to eq2.
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Figure 3.6: Bifurcation diagram with fold-Hopf bifurcation (fh) as guiding center. Shown
are the saddle-node bifurcation curves sn1 and sn2 (coming together in the cusp bifurcation
c), the Hopf bifurcation curve hb and the period doubling curve pd. The thin solid line
winding in towards the fold-Hopf point is the homoclinic bifurcation curve ho. Finally, in
the magnification (bottom) the curve of the Neimark-Sacker (or torus) bifurcation ns is
visible: it emanates from the fh point and ends on the pd curve. The homoclinic orbits
from three locations on the curve ho, indicated by •, are shown in figure 3.7.
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Figure 3.7: Homoclinic orbits at various points on the homoclinic curve ho. The orbits
are all attached to the zonal equilibrium eq1 and can be seen to approach the wave-like
equilibrium eq2 when moving along the curve ho towards the fold-Hopf point.
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In order to show that the homoclinic orbits indeed become nearly heteroclinic cycles
near fh, three orbits taken from curve ho are depicted in figure 3.7 (see also figure 3.6,
where the three locations on the ho curve are indicated by •). The first is the orbit
that exists at (x∗1, r) = (0.8738674,−0.8815827). This is still quite far from the fold-Hopf
point. The orbit is attached to the zonal equilibrium eq1 and can be seen to tend towards
the second, wave-like equilibrium eq2, but doesn’t come very close to it. The second
orbit, with (x∗1, r) = 0.9037240,−0.7474002), tends more clearly to eq2. The third orbit,
(x∗1, r) = 0.7991501,−0.8128589), comes very close to the second equilibrium and almost
forms a heteroclinic cycle. In figure 3.8, this nearly heteroclinic cycle is plotted in various
projections. They suggest that one part of the cycle runs over a sphere-like surface, while
the other part is approximately an axis through the middle of that sphere. This is in
agreement with the theoretical picture, see figure 3.5. A similar structure showed up in
an EOF-based atmosphere model studied in Crommelin (2002a).

The structure of fixed points, periodic orbits and connections arising out of the fold-
Hopf bifurcation induces several periodicities in the system. The unstable and stable
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Figure 3.8: Nearly heteroclinic cycle in variour projections.
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leading complex eigenmodes of eq1 resp. eq2 each have an oscillation period. These
oscillations are not related to periodic orbits (although it is possible that in a more
complex situation periodic orbits will be thrown off by eq1 or eq2, due to new Hopf
bifurcations). Also, the primary periodic orbit born on the Hopf curve hb is an essential
element in the unfolding of the fold-Hopf bifurcation. Furthermore, the torus created
in the Neimark-Sacker bifurcation is characterized by a second period (the first being,
initially, the period of the primary periodic orbit just mentioned). This second period is
likely to be highly variable in parameter space, as the torus may be destroyed or touch
the equilibria. Finally, the orbits homoclinic to eq1 and eq2 will give rise to either an
infinity of periodic orbits (in case of a Shil’nikov type homoclinic bifurcation) or one
unique periodic solution (in the other case). For mathematical details of the periodic
orbits generated by homoclinic bifurcations, see Kuznetsov (1995). See also Van Veen
(2002) for a detailed analysis of the relation between the homoclinic bifurcation and the
period doubling cascade. In Tuwankotta (2002) heteroclinic behaviour is analysed in a
general 3-dimensional system with quadratic, norm-preserving nonlinearities.

3.5 Bimodality

Numerical integration of the system, in order to see the influence of the fold-Hopf bifurca-
tion, is complicated by the presence of the stable equilibrium eq3. In the parameter range
under consideration (see figure 3.6), this fixed point doesn’t become unstable. However,
if we inspect the behaviour just beyond the second saddle-node curve sn2, eq3 doesn’t
exist anymore but its former presence still generates a stagnation point for the system.
If we integrate the system at (x∗1, r) = (0.95,−0.801), a point in parameter space close
to the homoclinic bifurcation curve ho and just beyond sn2 (which is at x∗1 = 0.945
when r = −0.801), regime behaviour is visible. That is, the system alternately visits the
neighbourhoods of eq1 and (the former location of) eq2/eq3.

The results of an integration of 4000 time units (equivalent to 4000 days) are shown
in figure 3.9. Plotting x1 versus time, we see lingering around and transiting between
eq1 on the one hand and the former location of eq2/eq3 on the other hand. Also shown
is a projection of the integration orbit onto the (x1, x4) plane. Comparing with figure
3.8 one sees that the trajectories of the system have grown in phase space extent, but
still follow roughly the same route as the nearly heteroclinic cycle in figure 3.8. The
probability density function (PDF) of the distribution of states in the (x1, x4) plane shows
two maxima towards the far ends of the elongated structure. This is the imprint of the
regime behaviour on the PDF. The high phase speed of the system during its oscillating
transition from the zonal to the wave-like equilibrium has the effect that states from these
transitions are hardly visible in the PDF.

The system trajectory can be seen to turn around before really reaching the fixed
points. It causes the PDF maxima to lie closer to the time mean state of the system
than the fixed points. This has been observed elsewhere (Reinhold and Pierrehumbert,
1982; Achatz and Opsteegh, 2002): the anomaly patterns of the regimes are similar to
those of the fixed points, but the amplitudes of the regime anomalies are smaller. In
figure 3.10, the flow patterns corresponding to eq1 at (x∗1, r) = (0.95,−0.801) and to
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Figure 3.9: Results of a 4000 days integration at (x∗1, r) = (0.95,−0.801). Top: x1 versus
time. The x1-values of eq1 and of the previous location of eq2/eq3 (see text) are indicated.
Bottom, left: projection of integration data onto (x1, x4) plane. Bottom, right: PDF in
(x1, x4) plane calculated from integration data.

eq2,3 at (x∗1, r) = (0.945,−0.801) (the saddle-node bifurcation point sn2, where eq2 and
eq3 collide) are shown. In dimensional units (using a wind speed scaling U0 = 10 m/s,
related to a channel length of 2π × 103 km), the zonal wind speed reaches a maximum
of about 30 m/s in the jet of the eq1 pattern. In the eq2,3 pattern it is about 25 m/s.
These are surprisingly realistic values, especially when compared to the jet speed maxima
of 150 m/s or more, usually seen for this type of model. It results from the decrease of the
topographic height (0.2 instead of 1.0 km), which causes the region of parameter space
with multiple equilibria to be located at more realistic values of the forcing parameters.
Thus, the almost classical objection of unrealisticly strong jets, raised against CDV-like
studies in e.g. Tung and Rosenthal (1985), does not hold for our choice of parameters.

To get an impression of the strength of the forcing the model is exposed to in the above
integration, the forcing profile ψ∗ corresponding to (x∗1, r) = (0.95,−0.801) is converted to
the zonal velocity forcing profile u = −∂ψ∗/∂y. The resulting dimensional profile, using
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eq1 eq2,3

Figure 3.10: Flow regimes corresponding to eq1 (left) at (x∗1, r) = (0.95,−0.801) and
to eq2,3 (right) at the point where they collide (the saddle-node point sn2 at (x∗1, r) =
(0.945,−0.801)). Thick lines are streamfunction lines (contour interval 0.2 in nondimen-
sional units), thin lines are topography contours (interval 0.05 km). Dashed contours are
for negative values, solid contours for zero or positive values.

again the scaling of U0 = 10 m/s, is shown in figure 3.11. Also plotted there is the forcing
profile corresponding to the fold-Hopf bifurcation point (x∗1, r) = (0.783324,−0.821677).
The maximum velocity in the jet in the northern half of the domain is about 30 m/s for
the forcing used in the integration, and 25 m/s for the forcing in the fold-Hopf bifurcation.
These values are in the range of the velocities reached by the tropospheric jet in the real
atmosphere.

In the previous section, the occurrence of several periodicities, associated to the un-
folding of the fold-Hopf bifurcation, was discussed. For the integration parameter set-

-20 -10 0 10 20 30 40-20 -10 0 10 20 30 40
u (m/s)

y = 0

y = πb

Figure 3.11: Meridional dependence of forcing profile ψ∗, converted to zonal wind speed u
in m/s. Solid line: profile corresponding to (x∗1, r) = (0.95,−0.801), used for the forward
integration in section 3.5. Dashed line: profile corresponding to fold-Hopf bifurcation point
at (x∗1, r) = (0.783324,−0.821677).
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tings, (x∗1, r) = (0.95,−0.801), the zonal equilibrium eq1 has a complex pair (0.247140±
i 0.315545) as its only unstable eigenvalues. The oscillation period corresponding to this
eigenvalue pair is about 20 days. The period related to the stable leading eigenmode of
eq2 just before sn2 at (x∗1, r) = (0.945,−0.801), is about 9 days. The principal periodic
orbit, born on the curve hb, has a period of 18 days at (x∗1, r) = (0.95,−0.801). The
second period of the torus is not recognisable; the torus may very well not exist anymore
for these parameter values. A typical period associated with the switching between the
regimes does not exist anymore, due to the irregular nature of the regime switching.

3.6 Conclusion

By the simultaneous occurrence of barotropic and topographic instability in a fold-Hopf
bifurcation, phase space connections are created that allow for deterministic transitions
between flow regimes. The normal form equations, associated with the fold-Hopf bifurca-
tion, describe the dynamics of the system restricted to the center manifold. Truncating
the normal form equations after their cubic terms yields a system which needs the tuning
of only one parameter to have a heteroclinic cycle among its solutions. The truncated
normal form equations are S1-symmetric, which explains the low codimensionality of the
cycle (see Krupa (1997) for the relation between symmetries and heteroclinic cycles).
This symmetry (or near-symmetry, for the non-truncated system) is made explicit by the
normalisation.

The heteroclinic cycle consists of connections back and forth between two steady states.
For the model studied in this paper, one of these steady states represents a situation of
dominant zonal flow, the other an equilibrium flow with a mainly wave-like character. The
fold-Hopf bifurcation and its unfolding thus provide a scenario in which regime transitions
can be related to heteroclinic connections.

Since in a natural system perturbative terms will always be present in the model
equations, the heteroclinic cycle will be broken. Two homoclinic orbits are left, each
attached to one of the involved equilibria. The curves of the two homoclinic bifurcations
extend quite far into parameter space. Their existence is not limited to the immediate
parameter neighbourhood of the fold-Hopf point. Near the fh point the homoclinic orbits
are nearly heteroclinic cycles, further away they still tend towards the unconnected second
fixed point without coming really close. This dynamical configuration can explain why
regime behaviour often tends to favor one regime over the other, an explanation previously
speculated on in Crommelin (2002b).

The crucial ingredients for the dynamical structure described in this paper are saddle-
node- and Hopf-bifurcations. The occurrence of such bifurcations are certainly no model
artefacts, but on the contrary very generic features in atmosphere models. In the model
studied here, the presence of topography creates saddle-node bifurcations, whereas Hopf
bifurcations are the result of barotropic instability. In more complex models, the number
of bifurcations will increase, not decrease, as e.g. many more topographic spectral compo-
nents will be present, and the inclusion of baroclinic dynamics will add to the instabilities
and thus to the number of Hopf-bifurcations. In complex models, fold-Hopf bifurcations
are therefore likely to be present. The behaviour of these models will nevertheless be
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complicated by many other phenomena, so the central role of fold-Hopf points in more
complex models remains to be assessed. In this study, we have isolated the dynamics
associated with a fold-Hopf bifurcation, in order to uncover the presence of phase space
connections that can generate deterministic regime transitions.

Acknowledgments. Lennaert van Veen is kindly thanked for useful suggestions. D.T.C.
is financially supported by the Netherlands Organization for Scientific Research (NWO).
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Chapter 4

Observed non-diffusive dynamics in
large-scale atmospheric flow

Abstract. The behaviour of large-scale atmospheric flow is driven both by noise, stem-
ming mainly from small-scale, high-frequency atmospheric processes, and by the internal
nonlinear dynamics of the flow system. In this study an attempt is made to isolate the lat-
ter influence from the former, in an analysis of observational data of the atmosphere system
during winter. The data is projected onto the unit sphere in a reduced 3-dimensional phase
space of dominant variability patterns. The probability density function (PDF) associated
with the data on the unit sphere shows clear maxima that correspond with flow regimes
also found in previous studies. Concepts from the theory of Markov chains and phase space
partitions are used to bring out the non-diffusive, conservative dynamics of the large-scale
atmospheric flow. It is found that the role of such dynamics is small but becomes increas-
ingly important in low-pass filtered data of the atmosphere. By inspecting the asymmetries
of transitions between different phase space cells, a preferred, closed path, with a preferred
direction, over the unit sphere of the reduced phase space is detected. This path, or cy-
cle, connects regimes of zonal and blocked flow in the Atlantic sector. It is reminiscent of
the remnants of a heteroclinic cycle found to guide regime transitions in a model study in
Crommelin (2002b).

4.1 Introduction

Among climate scientists a renewed interest is growing in the phenomenon of large scale
atmospheric flow regimes. The work of Palmer (1999) and Corti et al. (1999) indicates
that climate change does not so much induce new patterns of atmospheric circulation,
but rather causes changes in the occupation statistics of naturally occurring circulation
regimes. These regimes can capture the atmosphere system for, typically, one or two
weeks. Compared with the 1950s and 60s, some regimes have been visited more frequently
in the 1970s and 80s, others less frequently. This change is thought to be due to the overall
change of climate over the last 50 years. Such a perspective on climate change clearly calls
for a better understanding of the mechanism(s) that causes the atmosphere to switch from
one circulation regime to another. It is the sensitivity of such a mechanism to changing
climate parameters that will eventually determine which regime transitions will change
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(become more or less likely), and thus which regimes will be visited more or less often.
Unfortunately, the question what determines regime transitions is still largely unanswered.

An important contribution to the understanding of regime behaviour came from Char-
ney and DeVore (1979, CDV from now on). They suggested that regimes correspond with
equilibrium solutions of the equations describing the evolution of the large-scale flow.
Their study made clear that in a severely truncated model of midlatitude flow over topog-
raphy, multiple equilibria can exist that represent different flow regimes. The nonlinearity
of the atmosphere system and the presence of topography make the existence of several
equilibrium states and hence several regimes possible. In many different atmosphere mod-
els (often of low order) multiple equilibria were indeed found. However, a major problem
was posed by the (linear) stability of these equilibria (or fixed points). Once in a stable
equilibrium the system will never leave it – an unrealistic situation, as the real atmosphere
continuously hops from one regime to another. The easiest way out of this problem is to
associate regimes with stable (hence attracting) equilibria of the large scale flow system,
and to think of transitions as being induced by noise: stochastic perturbations force the
system out of the basin of attraction of one regime and into the basin of another. The
noise is assumed to be caused by small scale processes in the atmosphere.

Another interpretation is possible, though. One can take the dynamical systems view
of CDV one step further and interpret regimes and the transitions between them as
deterministic instead of stochastic phenomena. Several low-order models have been shown
to generate regime transitions without adding noise. Examples are the model of De Swart
(1988), with 10 variables, and that of Legras and Ghil (1985) with 25 variables. Even the
CDV model can be brought to regime transitions without noise when the zonal forcing
profile is taken more general than in the original CDV study, see Crommelin et al. (2002).
Holding on to the deterministic perspective has several advantages over taking recourse
to the stochastic option. First, if regime transitions can be produced even by simple
deterministic models, they can apparently be generated by internal large scale atmospheric
flow dynamics, and should thus be treated as such. Second, adding noise may obscure
details of regime transitions that have to do with deterministic dynamics.

In a previous study (Crommelin, 2002b) it was investigated what the deterministic
nonlinear perspective can reveal when analysing the behaviour of an atmosphere model
of moderate complexity without noise. With 231 variables, this barotropic model with
topography and realistic forcing showed qualitatively realistic dynamics, with regime be-
haviour as its most prominent feature. The probability density function (PDF) of the
two most dominant patterns of variability (the first two empirical orthogonal functions
or EOFs) was shown to have a bimodal structure. The two PDF maxima correspond to
situations of zonal resp. blocked flow. Furthermore, it was shown that the regimes can
be associated with the dynamically most important steady states of the model equations.
These steady states were calculated numerically.

The deterministic view leads to the interpretation of regime transitions as manifes-
tations of heteroclinic connections, an interpretation also mentioned by Legras and Ghil
(1985) and Kimoto and Ghil (1993b). Such connections (or orbits) are deterministic tra-
jectories through phase space that connect one equilibrium with another. A web of these
orbits, linking equilibria with each other, may very well be the dynamical structure that
underlies regime behaviour. Such a structure (a so-called heteroclinic cycle) generates
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regime transitions without needing noise. Moreover, the equilibria in this dynamical web
should be unstable, which is the most realistic situation. In Crommelin et al. (2002) the
combination of topographic and barotropic instabilities was found to be able to create
such a heteroclinic cycle.

The heteroclinic connections follow certain paths through phase space, and the system
can be expected to roughly follow these paths when switching from one regime to another.
Since the connection from the zonal regime to the blocked regime takes a different path
than the connection from the blocked back to the zonal regime, this should be visible in
the behaviour of the system. The phase space region the system tends to occupy during
one transition will on average be different from the region through which the transition
back takes place. This was shown to be indeed the case for the moderately complex model
used in Crommelin (2002b). Numerically calculated approximations of connections were
found to be consistent with the average phase space preferences of the model during
regime transitions.

In the present study we will investigate if similar behaviour can be detected in the real
atmosphere. In order to do this we have taken the NCEP Reanalysis data (1948-2000) of
the Northern Hemisphere (NH) and used daily fields for the 500 hPa geopotential height
for our analysis. As is usual for studies of regime behaviour, we only look at (extended)
winter data, that is, November to April.

It is to be expected that preferences and inhomogeneities in the regime transitions of
the real atmosphere will not be as clear and prominent as the preferences found in e.g. the
barotropic model studied in Crommelin (2002b). The low-frequency dynamics of the real
atmosphere is covered under a lot of noise and thus hard to detect. We will therefore make
use of an approach put forward by Pasmanter and Timmermann (2002), who use phase
space partitions and Markov chains to study ENSO dynamics. This approach allows to
distinguish between the purely diffusive (irreversible) dynamics in a system, which has an
inherently stochastic nature, and the non-diffusive (conservative, reversible) dynamics in
the system. The influence of dynamical structures such as periodic orbits, or preferred
paths due to heteroclinic or homoclinic connections, should be visible in the latter part of
the dynamics. We will use this approach to study the observational data of the NH flow.

In section 2 the preparation of the NCEP observational data, to make it suitable for
analysis, is summarized. In section 3 a somewhat novel way to calculate the probability
density function (PDF) is described. The datapoints in the normalized reduced phase
space of the first three Principal Components (PCs) are projected onto the unit sphere.
The PDF of the projected data is calulated on the sphere, making the non-Gaussianity of
the data-distribution, and the flow regimes present, clearly visible. In section 4 some the-
ory on Markov chains, phase space partitions and doubly stochastic matrices is reviewed.
In section 5 these concepts are used to analyse the flow of the atmospheric system through
the reduced phase space, or more precise, on the unit sphere. A conclusion follows in sec-
tion 6.
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4.2 Data

The data used are the 1948-2000 NCEP Reanalysis data for the Northern Hemisphere
(17.5N-87.5N). Since we are interested in large scale flow characteristics, a resolution of
5◦ of the latitude-longitude grid will be sufficient, giving 1080 grid points in total. The
500 hPa geopotential height field (Z500) is a good representative of the planetary scale
midlatitude flow. As regime behaviour mainly plays a role during the winter season, we
perform our analysis on the data from the winter half year, which we define to be the
181 days starting at November 1. Thus, the dataset used consists of 52 winters of each
181 days long, the first winter starting on 1 November 1948, the last winter ending on 29
April 2000. To prepare the data for analysis we remove the seasonal cycle: if Z(d, i) is
the field at day d of winter season i, we subtract from it the average Zav(d),

Zav(d) =
1

31× 52

d+15∑

d′=d−15

52∑
i=1

Z(d′, i). (4.1)

This gives the anomaly for each day with respect to the long term mean of the 31-day
time segment centered around day d of the season. At the beginning and end of each
winter 15 days are lost this way, leaving us with 151 daily data points for each winter.
As a last step, the data is low-pass filtered by taking n-day means (several values of n
will be used). The number of filtered datapoints per winter then is 151/n, truncated to
integer value. From the resulting dataset Empirical Orthogonal Functions (EOFs) and
their corresponding Principal Components (PCs) are calculated. The increasing density of
gridpoints at higher latitudes is taken into account in the EOF calculation by multiplying
each gridpoint value with the square root of the cosine of the gridpoint latitude. Note
that no detrending was performed on the data.

In figure 4.1 the flow patterns corresponding to the first 3 EOFs calculated from 5-day
means (i.e. n = 5) are shown, with the standard deviation of their respective PCs as
amplitudes. EOFs 1 and 2 closely resemble those of Kimoto and Ghil (1993a, KG1). The
amount of variance accounted for by each EOF is 10.6%, 9.1% and 7.8%, respectively.
The patterns of the first three EOFs are hardly different when calculated from daily data,
3- or 10-day means, but the variance spectrum changes. The variance associated with
EOFs 1, 2 and 3 together ranges from 22.0% for n = 1 to 31.2% for n = 10.

We will restrict our analysis to the reduced phase space spanned by the first three
EOFs, instead of the full 1080-dimensional phase space. A justification for this restriction
comes from the fact that the low-frequency behaviour of the large-scale atmospheric flow
is dominated by the leading EOFs. In KG1 it is found that this low-frequency behaviour
is largely captured in the leading 8 EOFs. However, as is also discussed there, the limited
amount of data in practice prevents a study of the dynamics in the subspace of the first
8 EOFs. E.g., for a reliable PDF estimation in 8 dimensions, over 40000 (independent)
datapoints are necessary. Even more data will be needed for a study of transitions and
phase space motion in 8 dimensions. The restriction to the first 3 EOFs is a compromise
between dimensional requirements on the one hand and limited sample size on the other
hand. The effect of the adddition of more dimensions can only be studied thoroughly
with a long model dataset.
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EOF1 EOF2

EOF3

Figure 4.1: EOFS 1, 2 and 3 of the 500 mb geopotential height field, calculated from 5-day
means of the 1948-2000 November to April data of the Northern Hemisphere. Associated
variances: 10.6 %, 9.1 % and 7.8 %. The EOFs have been multiplied by the standard
deviation of their respective PCs. Contour interval is 15 m., solid contours are positive,
dashed contours negative (zero contour not drawn).
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In what follows we will mainly deal with the timeseries of the PCs normalized by their
respective standard deviations. These normalized PCs will be denoted by a1, a2 and a3.
The corresponding normalized reduced phase space will be denoted by P .

4.3 A spherical PDF

In studies of atmospheric regime behaviour it is rather common to focus on the projection
of the data (either from observations or from model simulations) onto the plane spanned
by the first two EOFs, i.e. the (a1, a2) plane. In this study we will use a different
projection of the data onto a 2-dimensional surface: a spherical projection. This involves
a coordinate transformation, from the Cartesian coordinates (a1, a2, a3) to the spherical
coordinates (ρ, θ, φ) according to

a1 = ρ cos θ sin φ

a2 = ρ sin θ sin φ (4.1)

a3 = ρ cos φ

with 0 ≤ ρ, 0 ≤ θ < 2π, 0 ≤ φ ≤ π. By projecting onto the unit sphere, more informa-
tion about the structure of the flow patterns is retained than in the (a1, a2) projection.
However, information on the amplitudes (ρ) of flow patterns is ignored: two flow patterns
that have spatial correlation 1 (as far as the restriction to the first 3 EOFs is concerned),
but different amplitudes, i.e. ρ1 6= ρ2, project onto the same point (θ, φ). As a measure
of distance between two points on the sphere we can use the angle between the two lines
that connect those two points with the center point of the sphere (that is, with the origin
of P). The cosine of this angle equals the correlation between the two points.

Using the (arccosine of the) correlation as a measure of distance has been used before,
e.g. by Mo and Ghil (1988) for a cluster analysis of NH atmospheric flow data, and
by Kimoto and Ghil (1993b) for the calculation of 1-dimensional Probability Density
Functions (PDFs) of the large-scale NH flow in the Atlantic resp. the Pacific sector. As
is remarked in the latter paper, “the larger significance attached to the pattern relative
to the magnitude of the anomaly is in concert with usual meteorological intuition”. In
this view, projection onto the unit sphere gives more information than projection onto
the (a1, a2) plane. The calculation of a PDF on the sphere can be seen as a 2-dimensional
version of the 1-dimensional angular PDFs by Kimoto and Ghil (1993b).

The spherical PDF is estimated using kernel density estimation with an Epanechnikov
kernel (Silverman, 1986). The estimated PDF f(θ, φ) is a summation of the contributions
f i(θ, φ) from each datapoint i with coordinates (ρi, θi, φi), or equivalently (ai

1, a
i
2, a

i
3).

Each contribution f i(θ, φ) is an Epanechnikov kernel on the sphere, centered at (θi, φi),
with smoothing parameter σ. The total PDF f(θ, φ) gives the probability per unit area
sin φ dθdφ. Thus,

f(θ, φ) =
1

c

N∑
i=1

f i(θ, φ), f i(θ, φ) =

{
1− (αi/σ)2 if (αi/σ)2 < 1

0 otherwise
(4.2)

in which αi is the angle spanned by the points (θ, φ), the center of the sphere, and (θi, φi).
It is easily evaluated as αi = arccos(vTvi) with v = a/ρ and vi = ai/ρ, the unit length
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Figure 4.2: Spherical PDF of data (5-day means) in normalized reduced phase space P,
calculated with bandwidth parameter σ = π/6. Shown is f(θ, φ)/fG, the PDF divided
by the (constant) probability density fG(θ, φ) = 1/4π of a spherically symmetric (e.g.
Gaussian) distribution. A value higher (lower) than 1 indicates higher (lower) probability
than Gaussian. Top: rectangular projection, (θ, φ) ∈ [0, 2π) × [0, π]. Bottom: NP (left)
and SP (right) stereographic projections, (θ, φ) ∈ [0, 2π)× [0, π/2] resp. (θ, φ) ∈ [0, 2π)×
[π/2, π]. Contour interval is 0.05. The letters A-F indicate six main maxima in the PDF;
their corresponding flow patterns are shown in figure 4.3.
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vectors in P pointing to (θ, φ) and (θi, φi) on the sphere. The normalisation constant c
guarantees that the integral of the PDF over the sphere equals one:

∫
dθdφ f sin φ = 1.

We do not use an adaptive kernel estimator (as is done in e.g. Kimoto and Ghil 1993a),
since the projection on the sphere does not give a distribution with low-probability tails,
as one would have when considering the distribution in P . As we will see, the difference
between the minimum and the maximum values of the estimated spherical PDF is less
than a factor two for our choice of σ. An estimation method designed to handle long tails
is therefore not considered necessary here.

In figure 4.2, the estimated PDF of the 5-day means dataset (N = 1560) is shown
with bandwidth parameter σ = π/6. The value of the PDF at each point was divided
by fG(θ, φ) = 1/(4π). This is the value of the PDF all over the sphere in case of a
perfectly spherically symmetric distribution (e.g. a Gaussian distribution) of datapoints
in P . Thus, it is very easy to see that the PDF in figure 4.2 is not spherically symmetric.
Several areas of maximal probability can be identified, as well as regions of minimal
probability. Figure 4.2 shows a “lat-lon” rectangular projection of the sphere, as well as
“north pole” and “south pole” stereographic projections (NPS resp. SPS) of the upper
half and the lower half of the sphere. We define the north pole of the sphere to be the
point φ = 0 and the south pole the point φ = π. The NPS and SPS projections show
a somewhat U-like shape of the area of increased probability, wrapped around a region
of minimal probability at θ ≈ 3

2
π. This shape is reminiscent of the shape of the leading

pattern resulting from the nonlinear principal component analysis performed by Monahan
et al. (2001), also on NH winter data.

The number of PDF maxima depends, as usual, on the value of the bandwidth param-
eter. We refrain from investigating the statistical confidence levels to be associated with
the various maxima, as the identification of flow regimes is not our main purpose. Whether
or not the probability of an area on the sphere deviates significantly from a spherically
symmetric probability distribution (e.g. a Gaussian distribution) depends both on the
value of the deviation and on the magnitude of the surface of that area. We haven chosen
σ = π/6, such that (most of) the small-scale PDF maxima have been smoothed out while
still retaining some detail in the PDF. The flow patterns corresponding to the six main
maxima visible in the PDF with σ = π/6 (figure 4.2), indicated by the letters A-F, are
shown in figure 4.3. Their amplitudes correspond with points on the unit sphere in P , i.e.
ρ = 1. The maxima of the PDF were identified by visual inspection; no bump-hunting
scheme was used.

The six flow regimes in figure 4.3 are in reasonable correspondence with the results
of earlier studies, such as Mo and Ghil (1998, MG), Cheng and Wallace (1993, CW),
Kimoto and Ghil (1993a, KG1), Smyth et al. (1999, SIG), Corti et al. (1999, CMP) and
Monahan et al. (2001, MPF). Our regime A resembles the R-regime of CW, also found
by MPF and SIG, the PNA (Pacific/North American) regime of KG1, and MG’s cluster
1. Regime B, with clear zonal NAO (North Atlantic Oscillation) character, does not have
a counterpart in the A-R-G classification of CW, but corresponds with the ZNAO regime
of KG1. CMP’s cluster A is in between our A and B. Our regime C can be seen to
correspond well with SIG’s and MPF’s regime A, MG’s cluster 2 and CMP’s cluster B.
CW’s regime A looks more like our D. KG1’s RNA pattern as well as CMP’s cluster C
resemble both C and D. Next, regime E, the reverse of C, has no close resemblance with
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Figure 4.3: Regime anomalies corresponding to six maxima in the spherical PDF (see
figure 4.2). All maxima are taken to be on the unit sphere in P, so ρ = 1. A: (θ, φ) =
(0.88, 0.94), B: (θ, φ) = (1.91, 1.65), C: (θ, φ) = (2.75, 2.22), D: (θ, φ) = (4.00, 1.44), E:
(θ, φ) = (5.70, 0.79), F: (θ, φ) = (5.91, 2.17). Contour interval is 15 m, zero contour not
drawn.
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any previously found regime. Its best match would be KG1’s PNA pattern. Note that it
is the least prominent of our six regimes (figure 4.2). Its PDF maximum easily merges
with that of A when increasing the bandwidth σ. Finally, regime F can be identified as
the G- (CW, SIG, MPF) or BNAO regime (KG1), also dubbed cluster D by CMP.

Of course, for changing n and σ the results of the PDF calculation, and the correspond-
ing regimes, will differ somewhat. For instance, E will merge with A for increasing σ and
is absent when n = 1. Regime D is almost absent when n = 10, but prominent for lower
n. Regimes A and C stay in place when changing n, whereas F moves towards somewhat
lower θ when increasing n. Regime B moves to slightly higher φ when increasing n, and
starts to merge with C for n = 10.

4.4 Phase space partitions and Markov chains

The PDF reveals the preferred flow patterns, or more generally the regions of increased
and decreased probability. However, it does not tell much about the dynamical behaviour
of the system under consideration, since the PDF presents a rather static view. It shows
the stationary distribution of states (assuming stationarity of the system), but not the
flow of the system through phase space. In order to get an idea of this phase space flow, we
will divide the normalized, reduced phase space P in cells and consider the probabilities
of transitions between the various cells.

The description of the time evolution of a system as a probability vector p(t) (assigning
a probability to each cell) at time t, which is multiplied by a matrix M of transition
probabilities to arrive at the next timestep, i.e. p(t+∆t) = M p(t), is known as a Markov
chain description. It has been used in the past to model atmospheric regime behaviour
by Spekat et al. (1983), Mo and Ghil (1987, 1988), Molteni et al. (1990) and Kimoto
and Ghil (1993b). These studies determine a number of regimes and calculate transition
matrices by counting regime transitions. During the transitions the system is assumed to
be in a transient state that is not classified. Thus, not the entire (reduced) phase space
is studied, but (transitions between) a few bounded regions of it. In this manner, certain
preferred orders of transitions between regimes are found, see Mo and Ghil (1987, 1988)
and Kimoto and Ghil (1993b).

In this section, we will not limit ourselves to certain phase space regions identified as
regimes, but rather divide all of P into cells. The transition matrix associated with such
a partition can reveal information on preferences and inhomogeneities of the flow of the
system through P . More specifically, we will partition P into cells all containing an equal
number of datapoints, as was done in e.g. Pasmanter and Timmermann (2002). We shall
refer to such a partition into cells all with an equal amount of data as an equipartition. The
transition probability matrix M associated with an equipartition has the useful property
that the sum over each row or column of the matrix equals one. Thus, if the Markov
chain description is

pi(t + ∆t) =
∑

j

Mij pj(t) (4.1)
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the matrix M satisfies

Mij ≥ 0 ∀ i, j, (4.2)

∑
i

Mij = 1 ∀ j, (4.3)

∑
j

Mij = 1 ∀ i. (4.4)

The first two properties are common to all transition probability matrices, not only those
associated with an equipartition. Matrices satisfying them are called stochastic matrices.
The third property is typical for matrices belonging to equipartitions. Matrices satisfy-
ing all three properties are called doubly stochastic matrices. A detailed treatment of
equipartitions and (doubly) stochastic matrices in a geophysical context can be found in
Pasmanter and Timmermann (2002, PT from now on). We will review some of the theory
and results presented there.

Let us consider an equipartition of Nd datapoints into k cells with each Nc points, i.e.
Nd = kNc. The k× k transition probability matrix associated with this partition is again
denoted by M . The k-dimensional probability vector

p0 =




1/k
...

1/k


 (4.5)

describes the stationary probability distribution. It is called the Perron vector, and is a
(right) eigenvector of M with eigenvalue 1. All other eigenvalues λj of M satisfy |λj| ≤ 1.
In case of M being a primitive matrix all these other eigenvalues satisfy |λj| < 1. If
there is one unique attractor in phase space, M is irreducible and the Perron vector p0

is unique. Thus, there is only one stationary probability distribution if M is irreducible.
Moreover, in case of irreducibility p0 is the only eigenvector with all positive elements,
and all non-Perron eigenvectors either have positive and negative elements or they are
complex. We will assume M to be irreducible from now on. Furthermore, in practice we
will only encounter matrices M that are primitive.

The non-Perron eigenvectors, denoted by pj, j = 1, . . . , k − 1, do not describe proba-
bility distributions by themselves (since their elements can be negative or complex), but
rather anomalies (or deviations) from the stationary distribution p0. Recall that the time
evolution of any probability distribution is determined by repeated multiplications with
M , so p(t+n∆t) = Mn p(t). Since Mn pj = λn

j pj, there are two possibilities for the time-
evolution of a probability anomaly associated with a non-Perron eigenvector pj. If pj and
λj are real, the anomaly will disappear in time because 0 ≤ λj < 1. Thus, at each time
step the anomaly will become smaller, but its pattern does not change. Such an eigenmode
is said to be purely dissipative (or diffusive), and to have a lifetime, or e-folding time,
1/ ln |λj| (in time units ∆t, the timestep between the consecutive datapoints). If pj and
λj are complex, they will always be accompanied by a complex conjugate eigenvector and
eigenvalue. The probability anomaly associated with a complex pair is p̃ = cj pj + c∗j pj∗,



102 Observed non-diffusive dynamics in large-scale atmospheric flow

with cj some complex constant. Writing λj = |λj|eiψj , the time evolution of the anomaly
can be expressed as Mnp̃ = |λj|n (cj einψjpj + c∗j e−inψjpj∗). Thus, the time evolution of
p̃ is a damped oscillation in the plane spanned by Re(pj) and Im(pj), with oscillation
period 2π/ψj and, again, lifetime 1/ ln |λj|. Obviously, the oscillation period can never be
smaller than the unit time step (reflected in the fact that ψj ∈ [0, 2π]). For a reasonable
description of the oscillation the period should of course be several times larger than the
unit time step.

Let us formulate a null-hypothesis for the transition matrix M and thereby for the sys-
tem flow through P . Our null-hypothesis will be the assumption that M is symmetric.
It corresponds to the situation in which the system described by the Markov chain is in
detailed balance. This means that each transition i → j is as probable as its reverse tran-
sition j → i, i.e. Mjip

0
i = Mijp

0
j (no summation), where p0 is the stationary probability

distribution. If the partition of P is an equipartition, detailed balance takes the form
Mij = Mji, since in an equipartition p0

i = p0
j ∀ i, j by construction.

Clearly, it is the antisymmetric part of M that determines to what extent the null-
hypothesis will be violated. If M is symmetric there will be no net probability current.
In PT, the matrix M is split up in its symmetric part MS and antisymmetric part MA

in order to distinguish between the diffusive or dissipative part of the dynamics (called
irreversible) and the non-diffusive or conservative part (called reversible). MS is again
doubly stochastic, MA is not. A system with purely dissipative dynamics has zero MA.
In contrast, MS is still nonzero in case of purely conservative dynamics. PT calculate
〈∆I〉, the average information loss, or entropy production, associated with the system
p(t + ∆t) = Mp(t). Two contributions to the information loss can be distinguished:

〈∆I〉 = −1

k

k∑
i=1

k∑
j=1

Mij ln Mij = 〈∆I〉S + 〈∆I〉A/S,

〈∆I〉S = −1

k

k∑
i=1

k∑
j=1

MS
ij ln MS

ij ,

〈∆I〉A/S = −1

k

k∑
i=1

k∑
j>i

MS
ij ln


1−

(
MA

ij

MS
ij

)2

 + MA

ij ln

(
MS

ij + MA
ij

MS
ij −MA

ij

)
.

(4.6)

〈∆I〉S is the information loss one would have in a purely diffusive system p(t + ∆t) =
MS p(t). Both 〈∆I〉 ≥ 0 and 〈∆I〉S ≥ 0. In contrast, 〈∆I〉A/S ≤ 0, so the total in-
formation loss in a system is decreased by the presence of conservative dynamics. The
most extreme example of a conservative system (the case in which M is a permutation
matrix) is characterised by 〈∆I〉 = 0, even though MS is nonzero. 〈∆I〉 is bounded
from above: 〈∆I〉 ≤ ln(k). The upper bound is reached when the equipartition is such
that Mij = 1/k, ∀ i, j. The information I(t) of a probability distribution p(t) lies in its
deviation from the stationary distribution p0,

I(t) =
k∑

i=1

pi(t) ln(pi(t)/p
0
i ), (4.7)



103

and gets lost because repeated multiplications by M make p(t) evolve in time towards p0.
The information is bounded: I(t) ≤ ln(k). If the system is with certainty in cell j, so
that pi(t) = δij, the information is maximal: I(t) = ln(k).

The statistical significance test for regime transition matrices described by Vautard et
al. (1990) is not useful for the transition matrices we are studying here. As was pointed
out in that paper, the fact that some regimes have higher probability than others makes
the assumption that all transitions are equally probable unfit as a null-hypothesis to test
the transition matrix. As an alternative Vautard et al. present a way to test statistical
significance, using Monte-Carlo simulations, that takes into account the unequal regime
sizes. When using, as we do, an equipartition, the problem of unequal regime (or cell) sizes
disappears. Moreover, even with cells of equal size the assumption of equally probable
transitions is far from what we can expect. Since we partition all of P , including the
regions of transient motion, the system will usually not jump from one cell to another all
across phase space (unless it is close to the origin of P). The vast majority of transitions
will be to neighbouring cells (or from a cell back to itself), maybe some will skip one
or two cells. Testing the hypothesis of equally probable transitions between all cells is
therefore hardly informative in our situation, as it will certainly be rejected.

Nevertheless, another significance test is possible. If the assumption that the flow
through P is purely diffusive (irreversible) is correct, pairs of transitions i → j and j → i
should be equally probable, so the transition probability matrix M should be symmetric.
Therefore, it makes sense to test whether the nonzero elements of MA are statistically
significant.

From the equipartition of P in k cells with each Nk datapoints the transition matrix
T can be calculated, counting the number of transitions between cells. The transition
probability matrix M is derived from T by M = N−1

k T . Their respective symmetric and
antisymmetric parts have the same relation: MS = N−1

k T S, MA = N−1
k TA. If the system

dynamics is driven by MS, we expect the Nk transitions from cell j to other cells to result
in T S

ij = NkM
S
ij transitions to cell i. T S

ij is the expectation value from Nk independent
binomial Bernoulli trials with at each trial a probability MS

ij of “success” (transition to
i) and a probability 1−MS

ij of “no success” (transition to any other cell). The standard

deviation associated with the binomial distribution is Sij = (MS
ij(1 − MS

ij)Nk)
1/2. For

large enough Nk the binomial distribution can be approximated by the normal distribution
(Feller, 1968). Tij will therefore with 68.3% certainty lie in the interval (T S

ij−Sij, T
S
ij +Sij),

with 95.4% certainty in the interval (T S
ij − 2 Sij, T

S
ij + 2 Sij), etcetera.

Since by construction TA
ij = −TA

ji , we only have to calculate the significance of TA
ij

in order to assess the significance of the asymmetry inherent to a transition pair i → j,
j → i. Tij lies with 95% certainty between T S

ij ± 1.96 Sij, so TA
ij is significant at the 95%

confidence level if |TA
ij | > 1.96 Sij. To be significant at the 90%, 80% and 70% confidence

level, |TA
ij | must exceed 1.64 Sij, 1.28 Sij resp. 1.04 Sij. Note that it is TA rather than MA

which is tested, since a small but nonzero element of MA may very well be significant if
Nk is large enough, whereas a large element of MA can be insignificant if Nk is small.
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4.5 Results

4.5.1 Conservative versus diffusive dynamics

In order to make use of the special properties of doubly stochastic matrices, described
in the previous section, we will divide P in such a way that we have an equipartition.
Regarding k, the number of cells, PT use as a rule of thumb k2 ≤ Nd, so that in principle
each transition can occur at least once. From the 5-day means we have Nd = 1560, so
k ≤ 39. In general, the lower k, the lower the information loss 〈∆I〉 but also the larger
the ratio between 〈∆I〉 and 〈∆I〉S, indicating a more dominant role of the diffusive part
of the dynamics. PT present µ = 1 − k−1

∑
i,j |MA

ij | as a measure of the purely diffusive

dynamics inherent to M , ranging from 1 (totally diffusive, all MA
ij are zero) to 0 (totally

conservative, M is a permutation matrix). It can be shown that 1 − µ is a measure for
the fraction of non-symmetric transitions: 1− µ = (

∑
i,j |TA

ij |)/(
∑

i,j Tij). The measure µ
is also seen to increase for lower k.

We will partition P such that the cell boundaries only depend on θ and φ. The
partition can be drawn on the unit sphere on which the PDF was calculated, thereby
enabling an easy visualisation and interpretation of probability flows. First we draw
boundaries of constant φ, dividing the unit sphere in P into zonal bands. These bands
are then each divided into cells, by drawing boundaries of constant θ within each band
(starting with θ = 0). More cells are created when the band is near φ = π/2; the zonal

n k geometry of partition Nk 〈∆I〉 〈∆I〉S 〈∆I〉A/S µ

1 12 1-2-6-2-1 654 1.25 1.25 -0.006 0.95
1 24 1-6-10-6-1 327 1.54 1.55 -0.01 0.93
1 36 1-7-10-10-7-1 218 1.76 1.79 -0.03 0.89
1 48 1-9-14-14-9-1 163 1.91 1.95 -0.04 0.87
1 84 1-15-26-26-15-1 93 2.28 2.35 -0.07 0.79

3 12 1-2-6-2-1 216 1.90 1.92 -0.02 0.89
3 24 1-6-10-6-1 108 2.31 2.36 -0.05 0.81
3 36 1-7-10-10-7-1 72 2.53 2.63 -0.10 0.74
3 48 1-9-14-14-9-1 54 2.68 2.83 -0.15 0.67

5 12 1-2-6-2-1 130 2.12 2.14 -0.02 0.86
5 24 1-6-10-6-1 65 2.55 2.64 -0.09 0.74
5 36 1-7-10-10-7-1 43 2.71 2.89 -0.18 0.61

10 12 1-2-6-2-1 65 2.28 2.33 -0.05 0.78
10 24 1-6-10-6-1 32 2.63 2.79 -0.16 0.64

Table 4.1: Examples of different equipartitions of P. Data from n-day means are divided
in k cells with each Nk datapoints. The total information loss 〈∆I〉 is the sum of the
information loss 〈∆I〉S, due to diffusive dynamics, and the (negative) information loss
〈∆I〉A/S, produced by conservative dynamics. µ is a measure of the relative importance of
the diffusive dynamics, see text.
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bands at the top and the bottom of the sphere will not be divided anymore, but they will
each be one cell. E.g., we draw boundaries of constant φ to divide zonal bands with Nk,
6Nk, 10Nk, 6Nk and Nk datapoints each, and subsequently divide these bands into 1, 6,
10, 6 and 1 cell, respectively. The total number of cells is k, the number of datapoints
used is kNk. A possible remainder of Nd − kNk points at the end of the dataset is not
used. Once the partition is made, M is calculated by counting transitions. Transitions
from the last datapoint of one winter to the first datapoint of the next winter are left
out, thereby introducing an unavoidable but (very) small deviation of M from the precise
properties of doubly stochastic matrices (equations (4.3) and (4.4)). This deviation will
be ignored.

In table 4.1 results are given for several examples of partitions of the daily data
(Nd = 7852), the 3-day means (Nd = 2600), the 5-day means (Nd = 1560) and the 10-
day means (Nd = 780). They show that the conservative dynamics become increasingly
important for low-pass filtered data. This is in agreement with the general intuition that
high-frequency motion in the atmosphere is very noisy, but low-frequency dynamics are
more structured and less noisy. For instance, a 1-6-10-6-1 partition of the 10-day means
data, i.e. a partition in k = 24 cells, gives µ = 0.64 whereas the same partition gives
µ = 0.93 for the daily data. Even a 1-15-26-26-15-1 partition of the daily data still gives
µ = 0.79. In contrast, the finest partitions of the 5- and 10-day means can make µ drop
to 0.61 resp. 0.64 (it must be admitted that the statistical significance of these differences
has not been tested).

4.5.2 Significant transition asymmetries

By inspecting MA (or equivalently TA), it is possible to get an impression of the net
probability current at each timestep. Significant inhomogeneities and structures in the
flow of the system through P should be visible in this current, provided the partition of
P allows for these structures to be seen. Also, if the timestep of the dataset is too large,
the sampling may be too coarse to follow the flow induced by the conservative dynamics
underlying MA. This makes the use of the 10-day means less suitable.

In the previous section, a way to assess the statistical significance of the elements of
MA or TA was discussed. We still have to decide which number of datapoints can be
considered large enough for the normal distribution to be an acceptable approximation
of the binomial distribution. We will choose T S

ij ≥ 10, i.e. the number of symmetric
transitions j → i must be at least 10 for TA

ij to be potentially significant at all. This will
in practice limit the number of cells, k. We will use the daily data in order to be able
to find significant asymmetries without having to decrease k too much. In that way the
resolution of the partition will not be too coarse.

We have partitioned the daily data in three different ways (1-4-6-4-1, so k = 16, Nk =
490; 1-4-6-6-4-1, with k = 22, Nk = 356; 1-4-10-10-4-1, with k = 30, Nk = 261) and
analysed the transition asymmetries by inspecting the associated matrices TA. The results
are shown in figure 4.4. The cells, as well as the significant transition asymmetries,
are drawn in the (θ, φ)-plane of the rectangular projection of the sphere. Transition
asymmetries (i.e. elements from TA) significant at a confidence level of at least 70% are
drawn solid, transition asymmetries just below 70% but occurring often (T S

ij ≥ 20) are
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→ θ

↓
φ

Figure 4.4: Three different equipartitions of the daily data, in 16 (top), 22 (middle) and 30
(bottom) cells. Solid arrows indicate transition asymmetries significant at 70% or more.
Dotted arrows indicate asymmetries occurring frequently (T S

ij ≥ 20) but just below 70%
significance. The partitions show a preferred path of transition asymmetries, from φ ≈ 0
along θ ≈ 0.67 π to φ ≈ π and back along θ ≈ 1.9 π to φ ≈ 0. Thin lines are contours of
the scaled spherical PDF f(θ, φ)/fG of the daily data (contour interval 0.05, solid contours
for values ≥ 1, dashed contours for values < 1).
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dotted. To make comparisons with the PDF for the daily data easy, the contours of the
scaled spherical PDF F (θ, φ)/fG of the daily data are also drawn (cf. figure 4.2).

A preferred path of transition asymmetries can be seen in the partitions of figure 4.4:
from φ ≈ 0 along θ ≈ 0.67 π to φ ≈ π and back along θ ≈ 1.9 π to φ ≈ 0. Some segments
of this path can be just below 70% significance, and one segment is missing in the k = 16
partition. However, all segments are significant in at least one of the three partitions
shown. Moreover, some segments are highly significant: 15 → 11 → 5 at 90% for k = 16
and 17 → 11 at 95% for k = 22. For k = 30 transitions 19 → 27 and 25 → 15 are
asymmetric at 95% significance, and 9 → 19 and 30 → 29 at 90%. The fact that the
same path is found in all three partitions (as well as in other partitions not shown) also
illustrates its robustness.

4.5.3 A preferred cycle connecting regimes

In figures 4.5 and 4.6 the evolution of the atmospheric flow along the preferred path
is presented. The flow patterns are 500 mb geopotential height anomalies, with ρ = 1
chosen as amplitude. The evolution shows an alternation between episodes of mainly
zonal anomalies (φ ≈ 0.5π) and episodes of more meridionally oriented anomalies (φ ≈
0, π). The negative anomalies over the North Atlantic and the Pacific, present when
φ = 0, start to merge, and form one large negative arctic anomaly when φ ≈ 0.5π (and
θ = 0.67π). Further down the path, this negative anomaly gets elongated meridionally
over the Eurasian continent and the westcoast of North America. Over the North Atlantic
and the North Pacific, it is replaced by positive anomalies. Reaching the bottom of the
unit sphere, φ = π, the pattern consists again of mainly meridionally oriented anomalies.
The second half of the cycle, along θ = 1.9π, shows a reverse evolution: positive North
Atlantic and Pacific anomalies merge, forming a positive arctic anomaly with negative
anomalies surrounding it (φ ≈ 0.5π). In the last part of the cycle, the arctic anomaly
again stretches southward, and at φ = 0 the anomaly pattern is back in its meridional
state.

The preferred path can be seen to pass along several flow regimes. At (θ, φ) =
(0.67 π, 0.35 π) it leads through the zonal NAO regime, and at (θ, φ) = (0.67 π, 0.75 π)
it comes near the A regime of the CW classification. Somewhat further, at (θ, φ) =
(1.9 π, 0.6 π) the path encounters the G or blocked NAO regime. The regimes of zonal
and blocked NAO have a mainly zonally symmetric character, in particular the latter.

One can wonder whether the temporal evolution along the path slows down in or near
the regimes. This would be reflected in the diagonal matrix elements Mii, as they give the
probabilities of transitions from each cell back to itself. If the atmosphere tends to persist
for a while in a certain regime, the corresponding cell (or cells) is likely to have a relative
large probability of transitions back to itself. A problem here is posed by the fact that the
regimes can be spread out over several cells. Nevertheless, for the three partitions shown
in figure 4.4, the corresponding transition probability matrices have maximal diagonal
elements for cells in or near the blocked NAO regime. For the k = 16 partition, 0.55 ≤
Mii ≤ 0.64, with M10,10 = M11,11 = 0.64 and M5,5 = M15,15 = M16,16 = 0.63. The
k = 22 partition gives 0.50 ≤ Mii ≤ 0.60, with M11,11 = M16,16 = 0.60, M21,21 = 0.59 and
M10,10 = M17,17 = 0.58. The k = 30 partition has a clear maximum, M25,25 = 0.57, with
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φ = 0 φ = 0.1 π φ = 0.2 π

φ = 0.3 π φ = 0.4 π φ = 0.5 π

φ = 0.6 π φ = 0.7 π φ = 0.8 π

φ = 0.9 π φ = π

Figure 4.5: Evolution of the atmospheric flow (500 mb geopotential height anomaly) during
the first half of the preferred path through the reduced phase space P (see figure 4.4).
Spherical coordinates are ρ = 1, θ = 0.67 π and φ varying from 0 to π in steps of 0.1 π.
Contour interval is 15 m.
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φ = π φ = 0.9 π φ = 0.8 π

φ = 0.7 π φ = 0.6 π φ = 0.5 π

φ = 0.4 π φ = 0.3 π φ = 0.2 π

φ = 0.1 π φ = 0

Figure 4.6: Evolution of the atmospheric flow (500 mb geopotential height anomaly) during
the second half of the preferred path through the reduced phase space P (see figure 4.4).
Spherical coordinates are ρ = 1, θ = 1.9 π and φ varying from π to 0 in steps of 0.1 π.
Contour interval is 15 m.
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other values varying between 0.42 and 0.54.
The absence of maximal diagonal elements in or near other regimes than blocked NAO

may have to do with the earlier mentioned problem that regimes found as PDF maxima
are often spread out over several cells. Note, however, that increased persistence, or quasi-
stationarity, of regimes has been detected before in observational data. Kimoto and Ghil
(1993a) find increased persistence for their PNA and zonal NAO regimes when inspecting
phase speeds. Their PDF of quasi-stationary states has a main maximum at the location
of the blocked NAO regime, and submaxima (or ridges rather than maxima) in the other
regimes. Monahan et al. (2001) find minima of the mean absolute height tendency in
their A, R and G regimes.

The dynamical structure of a preferred path connecting different regimes was stud-
ied in Crommelin (2002b) in the context of a barotropic model of northern hemisphere
flow. The model generated regime behaviour, involving two preferred states of mainly
zonally symmetric anomalies: an arctic anomaly surrounded by reverse sign anomalies.
These flow regimes were found to correspond with steady states of the model equations, in
agreement with the multiple equilibria concept put forward by CDV. Furthermore, tran-
sitions between the regimes were shown to be guided by preferred paths through phase
space, between the regimes. The preferred paths were interpreted as remnants of a hete-
roclinic cycle, a cycle of connections back and forth between steady states. In Crommelin
et al. (2002) the interaction between barotropic and topographic instabilities is shown to
be able to generate such a heteroclinic cycle in a simple (CDV-like) barotropic channel
model. The results of the present study indicate that the dynamics associated with a het-
eroclinic cycle may also play a role in the regime behaviour of the real atmosphere. The
assumption that only noise, due to high-frequency atmospheric motion, is responsable for
regime transitions seems unable to explain the cycle of significant transition asymmetries
detected here.

Following the preferred paths for regime transitions in Crommelin (2002b), a positive
(negative) phase of the Arctic Oscillation (AO) is preceded by a positive (negative) phase
of the North Atlantic Oscillation (NAO). Comparing with figures 4.5 and 4.6 of the
present study, a similar sequence can be seen to take place along the preferred cycle in
the observations. The states of mainly zonally symmetric anomalies (near φ ≈ 0.5π) are
preceded by dipoles in the North-Atlantic region. These dipoles are characteristic for
the NAO. Again, a dipole corresponding to a positive (negative) NAO phase is followed
by a rather zonally symmetric state resembling a positive (negative) AO phase. In both
model and observations, the regimes encountered along the preferred cycle consist of
arctic anomalies surrounded by reverse sign anomalies (note that in the model study
these regimes were interpreted as phases of the AO, whereas in observational studies they
are often referred to as zonal or blocked NAO regimes. We leave this ambiguity, as we
do not want to go into the heathed AO-or-NAO debate here). The episodes of the cycle
with Atlantic (NAO-like) dipole anomalies have, again both in model and observations, a
more transient character.

A final word on the timescale associated with the preferred path identified in the daily
data. A rough estimate of the time needed to travel the complete path can be made on
the basis of the transition probabilities. Since the timestep of the dataset is one day,
each transition from a cell to another one takes place in one day. We have to add time
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for the tendency to stick around in a cell. If the system is in cell i with “self-transition”
probability Mii, the expectation value for the time of residence in cell i is ln 0.5/ ln Mii.
In the k = 16 partition, the preferred path passes through 8 cells and the average value
for Mii is about 0.6, resulting in an expected residence time of 1.4 days for each cell. The
expected total time needed for the path thus comes down to 8 × (1 + 1.4) = 19.2 days.
For the k = 22 and k = 30 partitions the expectation times are 21.6 resp. 20.0 days.

Somewhat hidden under the noisy, diffusive behaviour of the atmospheric flow, an
unstable periodic orbit can be imagined to exist which generates certain inhomogeneities
and preferences in the large-scale flow dynamics. A similar conclusion is drawn by Sel-
ten and Branstator (2002) on the basis of a model study of northern hemisphere flow.
The periodic orbit may well be a remnant of a heteroclinic cycle connecting large-scale
flow regimes. This dynamical possiblity, also hypothesized by Kimoto and Ghil (1993b),
was explored in Crommelin (2002b) and Crommelin et al. (2002). It can provide an
explanation for the slowing down of the flow evolution near the regimes.

4.6 Conclusion

It has been known for some time that the distribution of observational atmospheric flow
data, in a reduced phase space spanned by the leading EOFs, tends to show preferred
phase space regions. Such regions, or regimes, can be hard to make visible. In this study,
the projection of the data onto the unit sphere in the space of the leading (normalized)
three PCs resulted in a PDF in which regions of increased probability were clearly visible.
The atmospheric circulation regimes associated with these regions correspond with earlier
found flow regimes. All the regimes presented in previous studies such as CW, KG1, SIG,
CMP and MPF are found in the spherical PDF.

Since a probability distribution does not provide information on the dynamics of the
system under study, the reduced phase space was divided into cells, all with an equal
number of datapoints. The transition probability matrix M , describing (probabilities
of) transitions between cells, reflects the effect of the dynamical processes governing the
system behaviour, in particular the regime transitions. Contributions to M come from
both diffusive, irreversible dynamics (e.g. noise-driven motion in a potential field) and
conservative, reversible dynamics (generated by e.g. periodic orbits or tori in phase space).
The diffusive dynamics add to the symmetric part MS of M , whereas the antisymmetric
part MA is in principle generated by the conservative dynamics. A statistical significance
test of the elements of MA (to select elements unlikely to be due to finite sample size)
left us with a set of transition asymmetries forming a closed path or cycle over the unit
sphere in the reduced phase-space.

It is improbable that this preferred path can be accounted for by some form of diffu-
sive dynamics, such as noise-induced transitions between the attraction basins of regimes.
Instead, it may reflect the presence of an unstable periodic orbit in the (reduced) phase
space of the large-scale atmospheric flow system. The evolution of the atmospheric flow
pattern along the preferred path shows an alternation between anomaly states with con-
siderable zonal symmetry (zonal and blocked NAO) and states with mainly meridionally
oriented anomalies.
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The evolution of the large-scale atmospheric flow is known to be relatively slow in the
regimes, a result partially recovered in this study. The preferred path crosses the regimes
of zonal and blocked NAO, and this led us to interpret the path as the manifestation of
a heteroclinic cycle, a closed loop of connections in phase space between steady states
associated with regimes. The role of this dynamical structure in regime behaviour was
studied before in models of low order (Crommelin et al. 2002) and of moderate complexity
(Crommelin, 2002b). In the latter study, regime transitions were found to be guided by
remnants of heteroclinic connections. It resulted in a preferred path through phase space
reminiscent of the path found in the current study, as it also connects regimes whose
anomalies are dominated by zonal symmetry.
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Samenvatting

Het gedrag van de grootschalige luchtstroming in de atmosfeer wordt gedomineerd door
het bestaan van een klein aantal voorkeurspatronen voor de atmosferische circulatie. Zulke
voorkeurspatronen heten regimes. Veranderingen in de atmosferische stroming op een
ruimtelijke schaal van duizenden kilometers, op een tijdschaal van een week tot een paar
maanden, bestaan voor een belangrijk deel uit zogeheten regime-gedrag: de atmosfeer is
tijdelijk “gevangen” in een regime, maakt een transitie naar een ander regime, verblijft
daar ook weer enige tijd, maakt weer een transitie, enzovoorts. De grootschalige stroming
bepaalt hoe weersystemen (bijv. depressies) zich bewegen, en is daarmee van belang
voor het weertype in bijvoorbeeld Nederland. Bevindt de atmosfeer zich gedurende de
winter bijvoorbeeld in een regime met zonale (d.w.z. oostwaarts gerichte) stroming boven
de Atlantische Oceaan, dan zal het weer in Nederland overwegend zacht en regenachtig
zijn, omdat vooral relatief warme en vochtige lucht van boven de oceaan aangevoerd
wordt. Gedurende een geblokkeerd regime daarentegen, waarin de west-oost stroming (de
straalstroom) boven de oceaan geblokkeerd is door een groot hogedrukgebied en daarom
deels “omgeleid” wordt over Groenland en Scandinavië, zal het in Nederland eerder koud
en droog zijn door de aanvoer van polaire lucht.

De laatste jaren zijn aanwijzingen gevonden dat mondiale klimaatveranderingen sa-
menhangen met veranderingen in het regime-gedrag. De regimes zelf veranderen niet
zozeer, maar wel de frequentie waarmee het atmosfeersysteem ze bezoekt. In de jaren
vijftig en zestig van de 20e eeuw kwam het hiervoor beschreven geblokkeerde regime bij-
voorbeeld vaker voor dan in de decennia daarna. In dit licht valt te begrijpen waarom
men verwacht dat de huidige en toekomstige klimaatveranderingen ten gevolge van het
broeikaseffect zullen resulteren in zachtere en nattere winters in noord-west Europa.

Onderzoek van langjarige reeksen van meetgegevens van de atmosferische circulatie is
redelijk succesvol geweest in het identificeren van regimes. Echter, een eenduidige ver-
klaring van de mechanismen en processen die regime-gedrag veroorzaken ontbreekt nog.
Een eerste belangrijke stap werd gezet in een artikel uit 1979 van Charney en DeVore. Zij
suggereerden dat regimes geassocieerd zijn met evenwichtstoestanden van de grootschalige
atmosferische stroming. De wiskundige vergelijkingen die het gedrag van de grootscha-
lige stroming beschrijven hebben wellicht evenwichtsoplossingen die overeenkomen met
regimes. Ze lieten zien dat dit inderdaad het geval is in een sterk vereenvoudigd dyna-
misch model voor de atmosfeer. Het feit dat dit model meerdere evenwichtsoplossingen
heeft voor een en dezelfde instelling van de fysische parameters (bijv. wrijving), heeft te
maken met de aanwezigheid van gebergten (“orografie”, of “topografie”) in het model en
met het niet-lineaire karakter van de modelvergelijkingen.

De wiskundige vergelijkingen voor de atmosferische stroming zijn afgeleid van de
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Navier-Stokes vergelijkingen: de algemene natuurwet die het stromingsgedrag van gassen
en vloeistoffen beschrijft. De Navier-Stokes vergelijkingen, en daarmee alle eruit afge-
leide vergelijkingen voor speciale stromingssystemen zoals de atmosfeer, zijn niet-lineair.
Dat wil zeggen dat er allerlei (positieve en negatieve) terugkoppelingseffecten kunnen
optreden. Het resultaat van die terugkoppelingsmechanismen is meestal moeilijk te door-
gronden. Een van de mogelijkheden is dat het systeem zich chaotisch, d.w.z. intrinsiek
onvoorspelbaar, gedraagt. De atmosfeer is, met aan zekerheid grenzende waarschijnlijk-
heid, chaotisch (een keihard wiskundig bewijs is erg moeilijk te geven), met als gevolg
o.a. de beperkte geldigheid van weersvoorspellingen. Het deelgebied van de wiskunde
dat zich bezig houdt met niet-lineaire systemen, is dat der dynamische systemen, ook wel
niet-lineaire dynamica (en in populair-wetenschappelijke artikelen soms “chaostheorie”)
genoemd. In dit proefschrift wordt het regime-gedrag van de atmosfeer geanalyseerd aan
de hand van technieken en concepten uit de theorie van dynamische systemen.

De associatie van regimes met stabiele evenwichtsoplossingen, zoals voorgesteld door
Charney en DeVore, werpt nog geen licht op de overgangen tussen de regimes. Immers, als
het atmosfeersysteem zich in stabiel evenwicht zou bevinden, vergelijkbaar met een slinger
die recht naar beneden hangt, kan het dit evenwicht niet meer verlaten. Meestal is over
regime-transities nagedacht als veroorzaakt door ruis: kleinschalige processen in de at-
mosfeer werken effectief als ruis op de grootschalige stroming, waardoor het grootschalige
evenwicht verloren kan gaan. Echter, het is ook mogelijk dat de grootschalige stroming
eigenhandig, zonder de invloed van ruis, regime-overgangen kan maken. De transities wor-
den in dat geval voortgebracht door de interne niet-lineaire dynamica van de grootschalige
atmosferische stroming. Deze tweede mogelijkheid wordt in dit proefschrift uitgewerkt.

Het concept uit de theorie van dynamische systemen dat de transities tussen voor-
keurstoestanden in essentie zou kunnen beschrijven, is dat van de zogenaamde heterocliene
connecties. Dat zijn verbindingen tussen evenwichtstoestanden in de toestandsruimte (een
“ruimte” waarin ieder punt overeenkomt met een aparte toestand van de atmosferische
stroming). Als regime-overgangen inderdaad te maken hebben met dergelijke heterocliene
connecties, zullen de overgangen niet geheel willekeurig verlopen maar daarentegen be-
paalde voorkeursbanen volgen door de toestandsruimte.

In hoofdstuk een wordt de algemene dynamica van een eenvoudig atmosfeermodel
geanalyseerd. De ideeën die hieruit voortkwamen gaven de inspiratie tot de specifieke
benadering en analyse van het regime-gedrag, die in de hoofdstukken twee, drie en vier
centraal staan. Statistische analyse van transities in een model (hoofdstuk twee) en in
de echte atmosfeer (hoofdstuk vier) wijst uit dat de transities inderdaad voorkeursbanen
vertonen. In de echte atmosfeer zijn die voorkeuren moeilijk zichtbaar te maken omdat
ze vertroebeld worden door de aanwezige ruis. In het in hoofdstuk twee geanalyseerde at-
mosfeermodel zijn de voorkeuren duidelijk te zien. Een benadering (m.b.v. de computer)
van de heterocliene connecties in dit model laat een goede overeenkomst zien tussen de
gevonden connecties en de statistisch bepaalde voorkeuren van de transities. In hoofd-
stuk drie wordt een sterk vereenvoudigd model geanalyseerd om meer duidelijkheid te
krijgen omtrent het wiskundige scenario dat de heterocliene connecties mogelijk maakt.
De aanwezigheid van zulke connecties is namelijk niet vanzelfsprekend. Echter, twee ele-
menten die altijd in atmosfeermodellen voorkomen (de aanwezigheid van bergen, en een
“instabiele” straalstroom) blijken voldoende te zijn om de connecties mogelijk te maken.
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