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The uncertainty quantification (UQ) related to the self-noise prediction
based on a Reynolds-Averaged Navier-Stokes (RANS) flow computa-
tion of a low-subsonic axial fan has been achieved. As the methodology
used for fan noise prediction is based on airfoil theories, the uncertainty
quantification of a low-speed Controlled-Diffusion (CD) airfoil has been
first considered. For both applications, deterministic incompressible flow
solvers are coupled with a non-intrusive stochastic collocation method,
found to be two orders-of-magnitude more efficient than a classical Monte
Carlo simulation for the same accuracy. In the case of airfoil UQ, the
effective flow angle is used as a random variable. Two wall-pressure
reconstruction models are used to obtain necessary inputs of Amiet’s
trailing-edge noise model: Rozenberg’s model has larger uncertainties at
high frequencies because of the uncertainty on the wall-shear stress pa-
rameter required in the method, and Panton & Linebarger’s model is less
accurate at low frequencies because of the slow statistical convergence of
the integration involved in the model. Similar behaviours are observed
in the fan UQ involving the volume flow-rate and the rotational speed
as random variables. The stochastic mean sound spectra are found to
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2 Uncertainty Quantification in Computational Science

be dominated by the tip strip and compare well with experimental data.
Larger uncertainties are seen in the hub and tip regions, where large flow
detachment and recirculation appear. The known uncertainties on flow
rate yield larger uncertainties on sound than those on rotational speed.

1. Introduction

In modern rotating machines, significant effort has been put to reduce an-

noying tonal noise, either by passive devices or by active noise control. The

next challenge is then to reduce the broadband contribution to decrease

the overall noise level and meet increasingly stringent environmental noise

regulations. A key source of broadband noise is the trailing-edge noise or

self-noise, caused by the scattering of boundary-layer pressure fluctuations

into acoustic waves at the trailing edge of any lifting surface. In the ab-

sence of any interaction noise source, it represents the dominant source of

noise generated by rotating machines such as low-speed fans, high-speed

turboengines,1 wind turbines2 and other high-lift devices.3 However, an

accurate prediction of the sound by a rotating system still remains a daunt-

ing task by a direct computation (a compressible Large Eddy Simulation

(LES) for instance). A hybrid approach combining a near-field turbulent

flow simulation and an acoustic analogy for the sound propagation in the

far-field is therefore preferred. Such a method has been thoroughly val-

idated for broadband noise prediction on multiple airfoils in various flow

conditions including blowing.4–13 The computational cost associated with

unsteady turbulent flow simulations still limits most numerical studies to

simpler geometries such as airfoils,8 even with sophisticated non-boundary-

conforming methods such as the Lattice Boltzmann method and Immersed

Boundary method,4,14 or the use of unstructured grid topologies.5 To meet

industrial design constraints of rotating machines, approaches that model

the pressure and velocity fluctuations needed for an acoustic analogy from

steady RANS are often used.15–18 These methods add further levels of

modeling and the associated uncertainties grow, which may make the final

acoustic prediction of fan broadband self-noise inaccurate and unreliable.

To illustrate this point, some of the aleatory uncertainties associated

with the prediction of trailing-edge noise are considered, first for the wall-

bounded canonical case of airfoil noise as measured in an open-jet wind

tunnel,6,19 and then for the actual complex case of a low-speed automotive

engine cooling fan as tested in a reverberant wind tunnel.20 For the former

the uncertainty propagation from uncertain inlet velocity profiles caused by
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inaccurate knowledge of the jet deflection induced by the airfoil is studied.

For the latter the uncertainty propagation from uncertain operating condi-

tions (both volume flow-rate through the fan and rotational speed) mainly

caused by industrial process issues is considered. In doing so, two represen-

tative wall-pressure models derived from steady RANS are dealt with, and

compared with direct unsteady LES predictions of the trailing-edge noise

for the airfoil case. The sensitivity of the RANS and LES solutions to inlet

conditions and the uncertainty introduced by wall-pressure models coupled

with RANS on the prediction of the noise sources and the far-field pressure

are then assessed. The difference is made here between uncertainties in the

physical inputs to the problem (aleatoric uncertainties) and the constants

or variables of the model used to solve for the flow, for instance all con-

stants used in the turbulence modeling, or for the far-field noise (epistemic

uncertainties).21

The methodology for uncertainty quantification based on simulations

of either a standard experimental setup for trailing-edge airfoil noise or a

wall-mounted fan in a standard interface is presented in Sec. 2. The present

stochastic approach is outlined in Sec. 3. The sound prediction methods

are then presented in Sec. 4. The next two sections, Secs. 5 and 6, show the

uncertainty quantification for the airfoil and the fan cases respectively. For

both examples the deterministic flow simulations are briefly outlined, the

random variables are described, and the stochastic aerodynamic and acous-

tic results are compared with the available experimental data. Conclusions

are finally drawn in Sec. 7.

2. Uncertainty Quantification Methodology

The methods involved in the fan noise prediction rely on airfoil aeroacoustic

models,22 and the uncertainty related to such models is first assessed. The

approaches to compute airfoil or fan trailing-edge noise are illustrated in

Fig. 1.1. The directions of the arrows outline the logical sequence of the

method. Starting from the fan blade geometry (grey square box), two

different methodologies based on similar computational methods are used

to study trailing-edge noise in the case of airfoil or fan applications.

On the one hand, a mid-span cut of an automotive cooling fan is per-

formed to obtain a two-dimensional profile, and used to study uncertainty

for airfoil trailing-edge noise. As in previous studies4–13 the same validated

numerical method for predicting trailing-edge noise is used. A computa-

tion of the complete experimental setup of the large anechoic wind tunnel
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Fig. 1.1. Uncertainty quantification methodology: the solid-line rectangular boxes refer to the different computational steps in the
hybrid methodology, the dashed-line rectangular boxes denote the main inputs and the dash-dotted-line boxes denote the outputs at
each step and the arrows indicate the various possible workflows to yield the final acoustic pressure. The round box refers to the point
where uncertainty quantification is introduced.
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in Ecole Centrale de Lyon (LWT), including the nozzle and part of the

anechoic chamber is first done in order to capture the strong jet-airfoil in-

teraction and its impact on airfoil loading.23 The input parameters for this

computation, termed “wind tunnel” in Fig. 1.1, are the wind tunnel veloc-

ity Ut, air density ρ, and kinematic viscosity ν. The computational setup,

defined by the nozzle and the airfoil geometries as well as the position of

the airfoil in the wind tunnel and its geometrical angle of attack αw with

respect to the nozzle axis,23 is directly taken from measurements on the

experimental setup, and is therefore considered as a minor source of pos-

sible error on the final sound prediction results. Similarly, the uncertainty

on the air density ρ and kinematic viscosity ν, obtained from the experi-

ments ambient conditions, are also neglected. Once a value for the wind

tunnel velocity Ut is selected, a RANS computation is run on the com-

plete setup and boundary conditions are extracted (U and V profiles) for a

smaller domain, termed “restricted domain” in Fig. 1.1, embedded in the

jet potential core as shown in Fig. 1.2(a). The final sound prediction is

obtained by two different procedures, both producing a wall-pressure fre-

quency spectrum Φpp used in Amiet’s theory to predict the far-field sound

spectrum Spp. In the first approach, which is simpler and more intuitive but

also more computationally expensive, an unsteady LES on the restricted

domain with the steady velocity profiles extracted from RANS is used to

obtain a direct prediction of the trailing-edge wall-pressure spectrum. In

the clean inflow of the jet potential core, no perturbations are introduced at

the inlet of the computational domain. The second approach, which is less

expensive but requires more modelling, uses steady RANS computations on

a two-dimensional slice of the restricted domain, with the same boundary

condition profiles as for the LES. From this RANS computation, the prim-

itive variables (U1 and U2, velocity components parallel and perpendicular

to the wall surface respectively, and k and ω or ε depending on the RANS

turbulence model) are extracted through a boundary-layer profile at the

trailing edge of the airfoil. Those variables are then used in the two wall-

pressure models investigated in the present study. The first model is that

of Rozenberg et al.17 (termed YR), who proposed a model only based on

global boundary-layer parameters from the boundary-layer profile, namely

the external velocity Ue, a boundary-layer thickness δ or instead the dis-

placement thickness δ∗, and the wall shear stress τw. The second model

by Panton & Linebarger24 (termed PL) uses local parameters i.e. the wall

parallel velocity profile U1(y) and the wall perpendicular velocity fluctua-

tion profile u′
2(y). For validation purposes, LES output quantities would be
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also used in the wall-pressure models, as illustrated in a previous study.18

The uncertainty is introduced in both velocity components (U and V ), as

shown in Fig. 1.1 by the UQ box, correlated via the non-uniform inlet flow

angle at the inlet boundary condition on the restricted computational do-

main as described in Sec. 5. It not only represents the actual experimental

uncertainty but also the uncertainty in the prediction of the flow deflection

induced by the airfoil-jet interaction by various turbulence models in the

RANS simulation of the whole wind tunnel.23 The introduction of uncer-

tainty is investigated through approaches, using LES to directly obtain the

trailing-edge wall-pressure spectrum and using RANS and wall-pressure

spectrum models. A direct comparison of all the methods of prediction

of wall-pressure spectrum can then be achieved in terms of mean values

and uncertainty bars. These uncertainty bars refer to the numerical re-

sults (either RANS or LES) only, and they come from the propagation of

all the considered uncertainty introduced on the inlet velocity components

to the final aerodynamic and aeroacoustic numerical predictions. When

possible, the different steps of the methodology are compared with avail-

able experimental measurements and the RANS intermediate results are

compared with data obtained directly from the LES. Other possibilities to

introduce uncertainty, not shown in Fig. 1.1 and not applied in the present

work, would be to perturb the wind tunnel velocity Ut used in the com-

putation of the complete wind tunnel setup, leading to negligible effects

on the far-field sound spectrum, or on the boundary-layer parameters used

in the wall-pressure reconstruction models, which does not allow a direct

comparison between LES and RANS prediction methods.

On the other hand, the approach to UQ to compute fan trailing-edge

noise is also illustrated in Fig. 1.1. As in Christophe et al.,25 a RANS

computation of flow in a blade passage of the fan is first performed. The

input parameters for this computation are the volume flow rate Q̇ and the

rotational speed Ω. Both parameters are considered as main parameters for

the uncertainty quantification on fan operating conditions (solid circle in

Fig. 1.1). These uncertainties actually correspond to the dispersion found

in engine cooling modules induced by the process scattering of electrical

motors (scatter in rotational speed) and heat exchangers (scatter in flow

rate). In a blade-to-blade plane at a given radius, the speed triangles yield

similar velocity components as in the airfoil case, which relate both uncer-

tainty quantification studies. The computational setup, defined by the fan

and tip gap are directly taken from the design of the experimental setup,

and is therefore considered as a minor source of possible error on the final
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sound prediction results. From this RANS computation, the primitive vari-

ables are extracted through a boundary-layer profile at the trailing-edge of

the fan blade, at five radial positions along the blade span. Those variables

are then used to reconstruct wall-pressure fluctuation spectra Φpp, using

similar reconstructions methods as for the airfoil application. Finally, the

latter power spectral densities provide the far-field sound spectrum Spp in

the extended Amiet’s theory,26 applied in rotation as explained below in

Sec. 4.

3. Stochastic Method

Classical methods for stochastic differential equations rely on Monte Carlo

(MC) simulations that prescribe ensemble random inputs to these equations

and then collect their ensemble solution realizations. They only require run-

ning a deterministic solver repetitively and do not depend strongly on the

stochastic dimensionality of the problem; however, they suffer from a slow

convergence rate and require a large number of samples, which is prohibitive

for turbulent flow realizations. An example of this method is presented be-

low in the airfoil case. Alternative methods are sensitivity methods based

on the moments, perturbation methods where all stochastic variables are

expanded in Taylor expansions around their mean,27,28 stochastic colloca-

tion methods, and spectral or Galerkin projection methods.29–31 The first

two methods either strongly depend on the modeling assumptions or are

limited to small variations. As existing flow solvers are used, non-intrusive

stochastic methods are preferred, which means that projection is not ap-

plied to the Navier-Stokes equations directly, but rather to its inputs and

outputs. Among the various projection methods, the Stochastic Collocation

expansion (SC) is selected as it has proved its efficiency for flow simulations

in various regimes.32–34

In this framework32–34 the vector of random input parameters is given

by 	ξ ∈ Ξ, with Ξ the underlying parameter space and probability density

fξ(	ξ). The objective of UQ is to compute the probability distribution and

the moments μXi
of output of interest X(	ξ) defined as

μXi
=

∫
Ξ

X(	ξ)ifξ(	ξ)d	ξ. (1.1)

The statistical moments such as the mean and standard deviation can then

be calculated. The SC method solves this problem by approximating the

functional relationship between the outputs of interest X(	ξ) and the ran-

dom inputs 	ξ using an expansion in Lagrange polynomials. This results in
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the one-dimensional case with one uncertain input parameter ξ,

X(ξ)i ≈
N∑
j=1

X(ξj)
iLj(ξ), (1.2)

with Lj(ξ) the Lagrange polynomials defined as

Lj(ξ) =

N∏
k=1
k �=j

ξ − ξk
ξj − ξk

, (1.3)

such that Lj(ξk) = δjk with δjk the Kronecker delta. The coefficients

X(ξj) are solutions of the aeroacoustic problem for the realization ξj for

the random input parameter ξ.

The deterministic sampling points ξj in the SC method are usually

chosen to be numerical quadrature points, because they are accurate for

computing the integrals (Eq. (1.1)). Standard Gauss-quadrature requires

recomputing each modal coefficient in Eq. (1.2) each time N is increased,

which is prohibitive for LES. In the present study, we use the Clenshaw–

Curtis35 (CC) quadrature points for the sampling points ξj given by ξ ∈
[−1, 1]

ξj = −cos

(
π(j − 1)

N − 1

)
. (1.4)

The points are linearly scaled for input parameters on other ranges. These

points are nested in the sense that all points ξj are re-used when increasing

the quadrature level l, allowing to keep the abscissae when N is increased,

with N = 2l + 1 for l > 0 and N(0) = 1. Substituting Eq. (1.2) into

Eq. (1.1) leads to the approximation

μXi
≈

N∑
j=1

X(ξj)
iwj , (1.5)

with integration weights wj

wj =

∫
Ξ

Lj(ξ)fξ(ξ)dξ. (1.6)

The SC method can be extended to multiple independent input uncer-

tainties using the following isotropic full tensor product extension into nξ

dimensions 	ξ = {ξ1, . . . , ξnξ
}

μXi
=

N∑
j1=1

· · ·
N∑

jnξ
=1

X(ξj1 , . . . , ξjnξ
)iwj1 · · ·wjnξ

. (1.7)



Uncertainty Quantification Applied to Aeroacoustics of Wall-Bounded Flows 9

The stochastic input 	ξ or output X(	ξ) can also depend on other parameters

such as spatial coordinates (velocity profiles and maps, pressure coefficient)

or frequency (wall-pressure and far-field acoustic pressure power spectral

density (PSD)). The final value of the stochastic expansion of the analyzed

variable (maximum value of N) is termed P .

4. Sound Prediction Methods

As shown by Roger & Moreau,26 the trailing-edge noise can be obtained

by iteratively solving scattering problems at the airfoil edges. The main

trailing-edge scattering obtained by Amiet36 has been corrected by a

leading-edge back-scattering contribution that fully accounts for the finite

chord length. The random predicted sound field at a given observer loca-

tion x = (x1, x2, x3) and for a given radian frequency ωf (or wavenumber

kf ) then reads

Spp(x, ωf ) =

(
ωfCx3

2πc0S2
0

)2
L

2
|L|2Φpp(ωf )ly(ωf ), (1.8)

where Φpp is the wall-pressure power spectral density and ly the spanwise

correlation length near the trailing edge assumed to be deterministic. The

radiation integral L of which parameters are both the free stream velocity

U∞ and the convection speed can be found in Roger & Moreau.26

In case of rotation, the far-field noise PSD of a low solidity fan with B

independent blades is given by an integration over all possible azimuthal

positions22 of the single airfoil formulation (1.8)

Spp(X, ωf ) =
B

2π

∫ 2π

0

(
ωe(Ψ)

ωf

)2

SΨ
pp(x, ωe)dΨ. (1.9)

The factor ωe(Ψ)/ωf accounts for Doppler effects caused by the rotation

(ωe emission angular frequency). The fan noise predictions therefore rely

on a strip theory combined with an acoustic analogy,37 originally developed

by Schlinker & Amiet22 for helicopter rotor’s trailing-edge noise, and ex-

tended to finite chord lengths and general three-dimensional gusts by Roger

& Moreau,26 and applied to low speed fans by Moreau & Roger.38 Recently

Sinayoko et al. has shown that this approximation of locally translating air-

foils is accurate except at transonic speeds.39 In order to take into account

the variation of the flow along the blade span, the latter is split into 5 equal

segments from hub to tip as in Christophe et al.,25 and the total radiated

sound is then the summation of the sound emitted by each airfoil strip.
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When an unsteady LES computation is used, the wall-pressure spectra

Φpp at the trailing edge is directly extracted from the simulations. In the

RANS simulations, all variables are time-averaged and the wall-pressure

fluctuations are reconstructed from the mean flow. Two such models are

considered.

The YR model only uses integral boundary-layer parameters and reads

Φpp(ωf )Ue

τ2w δ
=

0.78 (1.8ΠβC + 6)
(

ωfδ
Ue

)2

[(
ωf δ
Ue

)0.75

+ 0.5

]3.7
+
[
1.1

(
ωf δ
Ue

)]7 , (1.10)

where Clauser’s parameter is βC = (Θ/τw)(dp/dx) and Coles’ parame-

ter Π is given by the implicit law of the wake:40 2Π − ln (1 + Π) =
κUe

uτ
− ln

(
δ∗ Ue

ν

)
− κC − lnκ (Θ the momentum thickness, κ the von

Kármán constant and C a constant in the log law). For Eq. (1.10), the

original expression41 based on δ has been preferred to the formulation re-

cently proposed by Rozenberg et al.17 based on δ∗, as it provides a better

agreement with the experimental data for the CD airfoil.8,23,42 As explained

by Rozenberg et al.,17 the friction velocity uτ is obtained from extended

Clauser plots rather than direct upwind finite-difference estimates. Simi-

larly the wake law is also verified graphically by comparing the model with

the measured dimensionless velocity log plots (u+, y+).

Using the PL model,24 Remmler et al.18 derived an expression for the

wall-pressure spectrum

Φpp(ωf ) = 8ρ2
∫∫∫ ∞

0

k1f (ωf )
2

kf (ωf )2
exp−kf (ωf )(y+ŷ) ...

S22(y, ŷ, ωf )
∂U1

∂y

∂U1

∂ŷ
dydŷdk3f (1.11)

with the energy spectrum of the vertical velocity fluctuations:

S22(y, ŷ, ωf ) =
ū′
2(y)ū

′
2(ŷ)

π2
Λ2

∫∫ ∞

0

R22...

cos(αk1f (ωf )r1) cos(αk
3
fr3)dr1dr3. (1.12)

The model therefore uses the wall parallel velocity profile U1 and the wall

perpendicular velocity fluctuation profile u′
2. Following the procedure out-

lined by Remmler et al.,18 both velocities and the velocity correlation length

scale Λ are calculated from the RANS outputs and the velocity correlation
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(a) (b)

Fig. 1.2. (a) Parameterization of inlet boundary condition (solid line) and velocity
magnitude contours (dash line), levels 0–1.7 with increment 0.1. (b) Parametric inlet
velocity profiles: (plain) streamwise velocity U , (dash) crosswise velocity V and (dash-
dot) uncertainty bounds around inlet profiles.

function R22 and the scale anisotropy factor α are modelled. No quadra-

tures are used to calculate the quintuple integral in Eq. (1.11) as they would

require prohibitive memory. The integration is performed with a Monte

Carlo method using importance sampling for enhancing convergence. More

details on this model can be found in Remmler et al.18

5. Controlled-Diffusion Airfoil

5.1. Deterministic flow simulations

The present computations consider the Controlled-Diffusion (CD) airfoil

studied previously.4–9 This profile corresponds to the mid-span section of a

typical automotive cooling fan with 9 symmetric blades, the H380EC1 fan

blade considered in Sec 6.43 It has a 4% relative thickness and a leading-

edge camber angle of 12◦. The airfoil chord length is C = 0.1356 m. It

is set at a geometrical angle of attack of αw = 8◦. The reference velocity

is U0 = 16 m/s, yielding a Reynolds number based on the airfoil chord

length ReC=1.6×105. Further details on the experimental setup and flow

conditions can be found in Moreau et al.23

The RANS computations are obtained with the Ansys Fluent 12 solver

using the Shear-Stress-Transport (SST) k − ω turbulence model.44 Unlike

several k − ε models, the SST model was shown to properly capture the

laminar recirculation bubble on this airfoil.23 Second-order schemes are

used for spatial discretization of all variables. The RANS computations
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use a no-slip boundary condition on the airfoil surface, a convective outflow

boundary condition at the exit plane, and velocities (U and V ) from the

wind tunnel computation at the inlet. RANS simulations were run until a

convergence to machine accuracy was reached.

The LES are based on the spatially filtered, incompressible Navier-

Stokes equations with the dynamic subgrid-scale model.45,46 These equa-

tions are solved using energy-conserving non-dissipative central difference

schemes for spatial discretization and the fractional-step method for time

advancement,47 leading to the control-volume solver CDP originally de-

veloped by Mahesh et al.,48 for hybrid unstructured grids. Details on the

numerical schemes for the current unstructured solver can be found in Ham

& Iaccarino.49 The mesh taken from Moreau et al.5 and labelled CDP-B is

similar to the structured mesh of Wang et al.8 but a spanwise grid coarsen-

ing proportional to the distance from the airfoil is performed to reduce the

overall number of nodes to 1.5 million. The spanwise extent of the computa-

tional domain is again taken to be 10% of the chord length, which is enough

to capture the experimental correlation length for this flow condition.8,42

CDP-B LES results were shown to compare very well with both experi-

mental wall-pressure and wake-velocity data.5 Except in the vicinity of the

leading edge, the near-wall grid resolution on the suction side is Δx+ ≤ 34,

Δy+ ≤ 1, and Δz+ ≤ 20 in wall units, which is adequate for LES.50 On

the pressure side, the resolution is coarser because the boundary layer is

laminar. The same inflow/outflow conditions as for the RANS are used.

Periodic boundary conditions are applied in the spanwise direction. For

the LES simulations that were run, a dimensionless time step of 2.5 · 10−4,

normalized by the chord C and the reference velocity U0, is used leading

to a CFL smaller than one in the whole domain. After a steady state was

reached, airfoil trailing-edge surface pressure and flow statistics were col-

lected for 50 flow-through times to simultaneously yield a sufficiently high

spectral resolution (10 kHz) and a good statistical convergence of the low

frequency spectral components (down to 100 Hz).

5.2. Characterization of the random variables �ξ

Figure 1.2(a) shows iso-contours of velocity magnitude from a RANS com-

putation on the full wind tunnel configuration (LWT). The wind tunnel

velocity was set to the nominal value Ut/U0 = 1. On the same figure, the

boundary of the restricted computational domain is represented, showing

that the restricted domain is fully embedded in the inviscid jet potential
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core between the nozzle shear layers. The velocity components (U and V )

from this simulation are interpolated on the boundaries of the restricted do-

main and are used as inlet conditions of the following steps for the method-

ology described in Sec. 2. The averaging along the curvilinear abscissa s

of the inlet velocity profiles shown in Fig. 1.2 (b) provides an inlet velocity

vector as shown in the sketch in Fig. 1.3. A corresponding inlet flow angle

relative to the airfoil chord αe (see definition in Fig. 1.3) can be computed

and is found as 4◦ for the reference numerical deterministic case having a

geometrical angle of attack of 8◦. The physical variations observed in the

experimental flow measurements are taken into account by selecting a 2.5%

uncertainty bound on the streamwise velocity U and a 10% uncertainty

bound on the crosswise velocity V that include the short-scale fluctuations

seen in the experimental profiles. Further details on the selection of the

uncertainty bounds can be found in Christophe et al .6 These conservative

uncertainty ranges for both velocity components are also consistent with the

observed variations found in the RANS simulations with different turbu-

lence models.23 The corresponding bounds of inlet flow angle αe are [6
◦, 2◦],

and the relative angular variation Δαe with respect to the above reference

case (αe = 4◦) or simulation #5 is then [2◦,−2◦] (see Table 1.1). The same

computational mesh is used for all computations as only the inlet flow angle

αe is varied through the boundary conditions while the geometrical angle of

attack αw is kept constant. Furthermore, due to the small variations of the

inlet flow angle, the airfoil wake angle remains close to the reference case

for all computations and therefore the same grid extent can be used for all

computations without having any interaction with the domain boundary

conditions. The upper and lower bounds of the velocity profiles are shown

in Fig. 1.2, together with the deterministic profiles. Both components U

and V , and consequently the inlet flow angle αe, are assumed to be random

variables (	ξ(γ) ≡ (U(γ), V (γ)) or ξ(γ) ≡ αe(γ)) with uniform distribution

ζ of the random perturbation parameter γ within their interval of variation.

From those bounds, a set of 17 velocity inlet profiles (P=17 in Eq. (1.2))

are determined using a Clenshaw-Curtis quadrature.35 A total of 17 corre-

sponding RANS computations are run showing a sufficient convergence of

the stochastic collocation method for 9 samples, as explained in Sec. 5.3.2,

and only 9 LES computations are then run (P=9 in Eq. (1.2)). Table 1.1

summarizes the inlet flow angle variation for the 9 samples with γ. MC

simulations of the RANS case have also been achieved to check the accu-

racy of the SC and demonstrate its efficiency. In the selected interval about

a thousand samples are needed to statistically converge (maximum number
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Table 1.1. Variation of the geometrical angle of attack αw and the inlet flow

angle αe with the random perturbation parameter for 9 samples.

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9

γ −1 −0.93 −0.71 −0.38 0 0.38 0.71 0.93 1
αw 8 8 8 8 8 8 8 8 8
αe 6 5.86 5.42 4.76 4 3.24 2.58 2.14 2
Δαe 2 1.86 1.42 0.76 0 −0.76 −1.42 −1.86 −2

Fig. 1.3. Isosurfaces of the {Q factor (QC2/U2
0 = 2000) coloured by velocity magnitude

for inflow conditions corresponding to LES computations # 1,5,7,9.

of samples P = 1000), which makes the stochastic collocation based on

Clenshaw-Curtis quadrature method about two orders of magnitude faster

for the present study, as it will be illustrated later.

5.3. UQ results

5.3.1. Flow topology

Changes in flow kinematics with the inlet flow angles αe are described by

iso-surfaces of Q factor in Fig. 1.3. This second invariant of the velocity-

gradient tensor helps define vortices and visualize the turbulence develop-

ment. In LES #1 and #5 (reference), the flow around the airfoil is found

similar as in previous studies.5,6 Small instabilities form close to the reat-

tachment point of the laminar recirculation bubble that trigger transition.

The flow tends to re-laminarize toward mid-chord due to the favourable

pressure gradient (less turbulent structures and thinner boundary layer).

When this gradient becomes adverse at mid-chord, the turbulent boundary

layer thickens again and larger turbulent structures appear near the trailing

edge. With the increase of the inlet flow angle, more intense structures are
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formed after the recirculation region at the leading edge; those structures

being then convected along the blade chord. In LES #7, the acceleration

around the leading edge still yields a weak flow separation at the leading

edge, which is not strong enough to trigger transition over the whole span

(the Kelvin-Helmholtz instability and roll up has disappeared). Turbulence

only develops over a narrow strip and only the adverse pressure gradient

after mid-chord triggers transition and the turbulence development over

the whole span. In LES #9, the acceleration around the leading edge is no

longer strong enough to trigger a flow separation at the leading edge and

no transition occurs before mid-chord. Flow separation occurs beyond mid-

chord that triggers the transition close to the trailing edge. Instabilities are

observed in the recirculation region beyond mid-chord but do not cause any

transition in the boundary layer due to their low intensity. Finally, weak

vortex shedding is seen in the near-wake on the pressure side for all cases.

Figure 1.4 shows iso-contours of velocity magnitude for the computation

#5 (deterministic reference computation) and for the mean and standard

deviation from the 9 samples used in the SC method for both RANS and

LES computations. These maps are obtained by applying Eq. (1.2) for the

time-averaged velocity at each grid point from all the different determinis-

tic computations. Only views around leading and trailing edges are shown

since main variations of the flow occur in those regions. For both regions,

the flow is found globally similar between the deterministic solution and the

mean solution for both RANS and LES computations, and similar between

the LES and RANS computations. In the leading-edge region, a larger

and thicker recirculation zone is observed in the LES computations, for

the deterministic computations #5 and the mean solution. A larger local-

ized production of standard deviation is present in the recirculation region

of the RANS computations, caused by a larger variation of the recircula-

tion zone with the inlet flow angle compared with the LES computations.

This observation is consistent with the variation of the length and position

of the leading-edge recirculation bubble that can be determined from the

wall-friction coefficient, as reported in Christophe et al .6 The RANS com-

putations show a monotonic decrease of the size of the recirculation bubble

at the leading edge with the decrease of the inlet flow angle from computa-

tion #1 to #7, while no systematic decrease of the size of the recirculation

bubble is observed in LES computations. In the trailing-edge region, the

main difference is appearing beyond mid-chord and before the trailing edge,

where a region of higher standard deviation is observed in the LES compu-

tations and is not present in the corresponding RANS computations. This
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(a) (b)

Fig. 1.5. Mean wall-pressure coefficient −Cp (U0 = 16 m/s, ReC=1.6×105). Experi-
ment42 (square). (a) Comparison of RANS UQ based methods: SC (plain line and small
uncertainty bars) and MC (dashed line and large uncertainty bars). (b) Comparison of
flow prediction method using SC: RANS computations (plain line and small uncertainty
bars) and LES computations (dashed line and large uncertainty bars).

is caused by the presence of a secondary recirculation zone appearing in the

LES computations #8 and #9, and not observed in RANS computations.

It should be stressed that this transition in the LES occurs suddenly for a

very small variation of incidence in the last two runs (LES #8 and #9).

The differences observed between the RANS and LES computations

highlight the complexity of the present problem and the influence of the

physical model on the flow topology. The present RANS computations in-

volve fully turbulent flows and therefore cannot correctly take into account

laminar and transition regions whereas LES calculations with the present

dynamic SGS model do, at least for the location and the early stage of

transition.51

5.3.2. Wall-pressure coefficient

The UQ results on the wall-pressure coefficient −Cp are shown in Fig. 1.5

and compared with experimental results42 in terms of the mean coefficient

(lines) and the intervals, which represent the propagation of 100% of the

considered input uncertainty. They are obtained by applying Eq. (1.2) to

the wall-pressure distribution. The minimum and maximum of the uncer-

tainty bars are obtained from the minimum and maximum of the response

surface from Eq. (1.2). Since the airfoil has a geometrical angle of attack,

the chordwise coordinate xc = x/ cosαw is used to represent data along the

blade chord. Using this coordinate system, the leading edge is located at
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xc/C = −1 and the trailing edge is at xc/C = 0. In Fig. 1.5(a), the two

stochastic methods are compared using the RANS data set. Both MC and

SC methods agree very well yielding the same mean solution and almost

identical uncertainty bars. They both show larger uncertainty bars in the

leading-edge region and particularly on the suction side in the recirculation

bubble. Even though the uncertainty bars are smaller at the trailing edge

because of the low value of the mean Cp, the local coefficient of variation

is significant. In Fig. 1.5(b), the SC for both RANS and LES are com-

pared. Again, for both RANS and LES computations, larger uncertainty

bars are observed in the leading-edge region. Main differences are appear-

ing in the aft region where the second laminar recirculation bubble occurs

for the lowest incidences in the LES computations, and not observed in

the corresponding RANS computations. If the last two LES results (#8

and #9) were to be removed, the LES would clearly be comparable to the

RANS calculations. This shows the complexity of the problem and the

large range of flow topologies appearing in the present LES that cannot be

captured by the RANS computations due to the simpler RANS model used,

as described in the previous section. In regions where the mean simulation

result shows a larger difference with respect to the experimental data, the

uncertainty bars are also relatively large and account to a large extent for

this difference. Both RANS and LES stochastic data sets compare quite

well with experiments. The convergence of both stochastic methods for the

RANS computations was assessed on this −Cp profiles in Christophe et al.6

The convergence rate of the MC method is found to be O(N−1) while the

SC method is found to be O(N−4), which stresses the efficiency of the SC

method for a limited number of uncertain variables (curse of dimensional-

ity). Lower convergence rate of the SC method using LES computations is

observed because of the large range of flow topologies found in these com-

putations. Similar UQ results for the streamwise boundary-layer velocity

profiles, in terms of uncertainty bars and convergence, at the last remote

microphone probe (RMP #25, xc/C = −0.02) where the sources of trailing-

edge noise are mainly concentrated, can also be found in Christophe et al.6

From these boundary-layer velocity profiles, the necessary boundary-layer

parameters for the consequent models of the wall-pressure spectra can be

inferred.
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(a) (b)

(c) (d)

Fig. 1.6. Wall pressure frequency spectra (pref = 20 mPa) in the trailing-edge area
(xc/C = −0.02, RMP # 25) using (a) YR and (b) using PL model for all RANS
computations. (c) LES wall-pressure spectra. (d) Comparison of wall-pressure spectra
based on RANS and LES inputs in terms of mean and uncertainty bars, YR model
(dash-dot and large uncertainty bars), PL model (plain and small uncertainty bars),
LES (dash and medium uncertainty bar). Experiment (thin plain).

5.3.3. Wall-pressure statistics near the trailing edge

The corresponding trailing-edge spectra of the two methods described above

are shown respectively in Figs. 1.6(a) and 1.6(b) for the 9 samples used for

SC. A similar behaviour is found for both models where the higher spec-

trum amplitude at low frequencies corresponds to computation #1 (high

inlet flow angle) and the lower one corresponds to computation #9 (lower

inlet flow angle). At high frequencies, a reverse behaviour of the models is

observed. For both models, a monotonic variation of the wall-pressure spec-

trum appears going from computation #1 to #9. For both models, a similar
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crossing is identified around 1 kHz. The YR model presents large variations

of the various spectra at high frequencies due to the large uncertainties in-

volved in the wall shear-stress determination, from which the model derives

information about the high frequency content. The PL model, not based

on the wall shear-stress variable, shows less variations of the wall-pressure

spectrum at high frequencies. Yet, at low frequencies, they are larger mainly

caused by the slow statistical convergence of the Monte-Carlo integration

technique used to integrate the boundary-layer profiles in Eq. (1.11). The

corresponding LES spectra for the 9 samples are shown in Fig. 1.6(c) and

two groups of LES results are obtained. On the one hand, the LES #1 to

#6 are similar as the reference calculation (LES #5) and show similar vari-

ations as the RANS reconstructed spectra. On the other hand, the LES #7

to #9 show larger pressure fluctuations for all frequencies due the recircu-

lation bubble close to the trailing edge triggering a more intense turbulent

boundary layer than in other cases.

The wall-pressure PSD Φpp is now used as the stochastic variable in

Eq. (1.2). Figure 1.6(d) shows the comparison of all methods with the mea-

sured one at RMP #25, in terms of mean and the confidence interval, which

represents the propagation of 100% of the considered input uncertainty.

Good agreement with experiments is found on the mean wall-pressure spec-

trum for both methods using RANS information. Larger uncertainty bars

are found at high frequencies using the YR model and at low frequencies

using the PL model, following explanations given previously. The higher

spectra obtained in LES #7 to #9 cause the mean pressure spectrum of

the LES to be shifted to higher levels by about 8 dB. Consequently, the

LES uncertainty bars are also found to be larger than those of the RANS

computations and could be more comparable if the last two simulations

were discarded.

5.4. Stochastic acoustic predictions

The corresponding sound results are reported in Fig. 1.7, together with

the experimental measurements (their uncertainty is ±1 dB). The far-field

acoustic-pressure PSD Spp is the stochastic variable of interest in Eq. (1.2).

Mean sound predictions obtained from RANS reconstructed spectra com-

pare favourably with the experimental far-field sound. Similar uncertainty

differences between the two RANS-based models YR and PL are observed

due to the direct propagation of the uncertainties seen in the trailing-edge

wall spectra. Larger uncertainty bars are found at high frequencies using
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Fig. 1.7. Means and uncertainty bars of far field acoustic spectra (pref=20 mPa) for
the different prediction methods, in the mid span plane above the airfoil (θ = 90◦) at
R = 2 m from the trailing edge. YR model (Dash-dot and large uncertainty bars — red),
PL model (plain and small uncertainty bars — blue), LES (dash and medium uncertainty
bar — green). Experiment (Square).

the YR model and at low frequencies using the PL models. Again, the

LES presents an overestimate compared with the experiments caused by

the over-prediction of the wall-pressure spectrum. The corresponding un-

certainty bars are then also propagated through the acoustic method.

6. Low-Speed Axial Cooling Fan

6.1. Deterministic flow simulations

As mentioned above the low-speed fan considered here is the H380EC1 de-

signed for a best efficiency point at a volume flow-rate Q̇ of 2500 m3/h

at a rotational speed Ω of 2500 rpm.15,38,43,52 The rotor is flush mounted

on a plenum walls from which the static pressure rise across the fan Δp

is measured. The available experimental data mostly include overall per-

formances and acoustic power measurements at several flow-rates and ro-

tational speeds obtained in a reverberant wind tunnel. The plenum is

assumed axisymmetric so that a single blade passage, including the actual

tip gap, is modeled and matching nodes are used at the periodic bound-

ary conditions.52 The flow is modelled with RANS computations using the

Shear-Stress-Transport (SST) k− ω turbulence model in the ANSYS CFX

14 solver. The mesh has a total of 5.1 million hexahedral elements, and

is refined in the boundary-layers around the blade to reach dimensionless
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distances to the wall y+ less than 5 in the trailing-edge region, where

presently most of the sound production occurs. The volume flow-rate is

set on the inlet surface of the plenum. The average pressure on the outlet

surface is set to the reference pressure. Low-dissipation second-order nu-

merical schemes are used for the flow variables (velocity and pressure), and

a first-order scheme for the transport of turbulent quantities. To yield re-

peatable and consistent results, once the maximum convergence is reached,

solutions are averaged over the last 500 iterations.

6.2. Characterization of the random variables �ξ

As introduced above, only the parameters defining the operating conditions

are considered for uncertainty quantification in a first step. The volume flow

rate is defined with a 5% error bound around 2500 m3/h. The variation of

this variable mainly depends on discrete events, such as dirt in the upstream

heat exchanger, quality and nature of the fan, and cooling module assem-

bly and manufacturing. A uniform probability density function (PDF) is

therefore considered. The variation of rotational speed mainly depends on

the motor manufacturing quality and is thus defined by a Gaussian PDF

as fit on the manufacturing lines. A usual process dispersion for automo-

tive electrical motors is ±100 rpm. The rotational speed is thus defined

with a 4% error bound around 2500 rpm. For those two variables con-

sidered independently, a set of nine RANS computations are determined

using a Clenshaw-Curtis quadrature that provides similar convergence as

the midspan CD airfoil described in Sec. 5.3.2. For the two-dimensional

uncertainty quantification involving both variables, a full tensor grid of 81

RANS computations is used.

6.3. UQ results

6.3.1. Wall-pressure distribution and fan performance

One dimensional (1D) results on the operating conditions are first analyzed

in Fig. 1.8 showing the iso-contours of the standard deviation from the 9

samples used in the SC method for each variable (volume flow rate and

rotational speed), on the suction and pressure sides of the blade. The two

considered parameters are influencing different zones of the blade surface.

For the volume flow rate, a large standard deviation is observed on the

suction side of the airfoil, especially at the tip of the blade near the trailing-

edge region, due to large variations of the recirculation zone under the
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Fig. 1.8. Iso-contours of the standard deviation of the static pressure on (top) suction

side (contour levels [0:2:40]) and (bottom) pressure side (contour levels [0:1:20]). (Left)

Variation of the volume flow rate and (right) variation of the rotational speed.

rotating ring, as it has been already highlighted in the URANS and SAS

simulations on this fan.52 A second zone of large standard deviation is

also observed at the hub on the pressure side corresponding to the flow

detachment at the blade leading edge created by the blade cusp. In case of

rotational speed variations, the standard deviation of the pressure presents

large amplitudes on a broader part of the blade, on both sides, around the

leading edge up to mid-chord. The volume flow rate thus mainly influences

the size of the recirculation zones while the rotational speed modifies the

complete blade pressure distribution.

A comparison of the fan overall performances with the error bar em-

phasizing the uncertainty interval in case of Q̇ variations is presented in

Fig. 1.9 for the pressure rise. Two experimental curves are provided as

they represent the maximum experimental range of variations obtained on

this fan between the many mock-ups and prototypes tested. It should be

stressed that the error range on the volume flow rate was chosen to cover

the experimental uncertainty, and the resulting uncertainty range on the

pressure rise matches the experimental scattering well.
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Fig. 1.9. Fan performance.

6.4. Stochastic acoustic predictions

In Figs. 1.10–1.12, the spectra of the total simulated sound PoWer Level

(PWL) for both YR and PL models are compared with two sets of experi-

mental data, one collected on an engine cooling module in a semi-anechoic

chamber38 and one collected in a reverberant wind tunnel.53 Both models

yield good agreement with the experimental broadband spectra stressing

the significant contribution of this noise mechanism at design condition.

The PL model presents a small under-prediction of about 3 dB over the

whole frequency range, but a better overall shape especially at low frequen-

cies compared with the reverberant wind tunnel data.

Figure 1.10 provides the 1D UQ results for a variation of Q̇ for the

YR and PL models respectively. The simulated PWL corresponding to

the different strips discretizing the blade are shown together with their

uncertainty bars. As shown in Moreau et al.,52 the obtained sound spectra

have similar shapes, amplitudes and uncertainties than the trailing-edge

wall-pressure spectra, showing a direct propagation of the amplitudes and

uncertainties through the noise propagation model. Larger uncertainties

are obtained in the hub and tip regions as observed previously. The largest

uncertainty bars at low frequencies in the tip region correspond to the

large standard deviations seen in Fig. 1.8 and are related to the local large-

scale flow separation under the fan ring. In the PL model, some lack of

convergence in the integration of Eq. (1.11) by a Monte Carlo method could

also contribute. At the hub, the largest uncertainties could be traced to the

small scale structures created by the blade cusp. The total sound radiated
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(a) (b)

Fig. 1.10. 1D UQ on Q̇: (a) YR model and (b) PL model. Total sound (solid bold),
strip 1 (dash), strip 2 (dash-dot), strip 3 (dot), strip 4 (long dash), strip 5 (dash-dot-dot),
experiment38,53 (symbols). pref = 20 mPa.

by the complete blade is mainly caused by the noise emitted by the tip strip

#5 with almost similar mean amplitudes. At high frequencies, strip #4 also

contributes to the total sound spectrum for the YR model while almost all

blade strips contribute for the PL model. Moreover, the uncertainty bars

for the complete blade are reduced compared with those of the tip strip.

The complete fan noise spectrum is thus dominated in amplitude by the tip

region while the uncertainty bars are related to uncertainties observed along

the complete blade span. A proper control of the flow along the complete

blade span is then necessary to reduce the uncertainties on the radiated

sound. Finally, the PL model seems to yield lower overall uncertainty than

the YR model.

Figure 1.11 shows the corresponding 1D UQ results for a variation of

Ω for both YR and PL models. The same mean total spectrum dominated

by the tip strip is obtained. The uncertainties (less than 1 dB) are how-

ever much smaller than for a variation of flow rate. Therefore the process

dispersion on the rotational speed does not trigger significant uncertainties

on the fan trailing-edge noise.

Figure 1.12 shows the corresponding 2D UQ results for variations of

both Q̇ and Ω for the YR and PL models respectively. A similar mean

total spectrum dominated by the tip strip is again obtained. The uncer-

tainty bars for both models now lie in between both 1D UQ results on each

separate performance parameter, yielding 2 to 6 dB for the YR model and

3 to 4 dB. The PL model therefore gives smaller uncertainties than the YR
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(a) (b)

Fig. 1.11. 1D UQ on Ω: (a) YR model and (b) PL model. Total sound (solid bold) and
experiment38,53 (symbols). pref = 20 mPa.

(a) (b)

Fig. 1.12. 2D UQ: (a) YR model and (b) PL model. Total sound (solid bold) and
experiment (symbols). pref = 20 mPa.

model, more uniformly spread over the whole frequency range.

7. Conclusions

The uncertainty quantification (UQ) related to the self-noise prediction

based on a RANS flow computation of a low-subsonic axial fan has been

achieved. As the methodology used for fan noise prediction is based on

airfoil theories, the uncertainty quantification of a low-speed Controlled-

Diffusion (CD) airfoil has been first considered. In both applications, the
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noise predictions are obtained using Amiet’s theory requiring the wall-

pressure spectrum near the trailing-edge, provided by two distinct represen-

tative models reconstructing the wall-pressure spectra from RANS inputs:

the deterministic YR model directly based on the integral parameters of

the boundary layer and the PL statistical model based on the velocity field

in the boundary layer.

In the airfoil case, the uncertainty is introduced as random velocity com-

ponents at the inlet of a restricted computational domain, embedded in the

jet potential core of the full anechoic wind tunnel. These random variables

are intended to model the actual experimental uncertainty in the probe po-

sition and in the measurement of the reference velocity, and the numerical

inaccuracies in the prediction of the jet development and deflection. To

investigate the accuracy of the RANS based method, fully converged un-

steady turbulent flow predictions are also provided by incompressible LES.

Two deterministic incompressible flow solvers have then been coupled with

a non-intrusive stochastic Galerkin method based on a SC to propagate

these aerodynamic uncertainties. The flow topology associated with both

types of simulations has revealed several noticeable differences. Only in the

LES, at the lowest inlet flow angles, the laminar recirculation bubble at

the leading edge disappears and a new one forms in the aft of the airfoil.

The latter triggers an 8 dB increase in the wall-pressure spectra near the

trailing edge. Such a flow bifurcation evidenced by LES could explain the

noise increase of similar low-Reynolds number thin airfoils at low inlet flow

angles and the noise increase of low-speed fans at high flow rates.54 As a

consequence, the LES-SC has larger uncertainty bars than the RANS-SC in

the wall-pressure spectra and consequently in the far field noise over most

frequencies. The RANS-UQ does not provide the good trend with incidence

and misses the flow bifurcation and the shift of the recirculation bubble to

the aft of the profile. When comparing both RANS-SC, both YR and PL

models yield very small uncertainty bars around 1 kHz. The YR model has

large increasing uncertainty bars at high frequencies caused by its strong

dependence on the random wall shear-stress that has a broad probability

density function and carries large uncertainties. On the contrary, the PL

model has much smaller uncertainty bars at high frequencies but carries

more uncertainty at the low frequencies caused by the slow convergence of

the Monte Carlo technique used in this model.

In the fan case, realistic 5% and 4% errors about the mean are in-

troduced on the volume flow-rate and the rotational speed respectively to

account for the actual experimental and process scattering. The RANS
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simulations of the fan mounted on a typical industrial test plenum have

been run for each parameter yielding a total of 81 calculations. The re-

sulting uncertainty bars obtained on the overall pressure rise match the

experimental scattering quite well. By looking at the flow topology and

particularly at the wall-pressure field, the variations are mainly located in

the hub and the tip region under the fan rotating ring, resulting in large

error bars on the corresponding wall-pressure spectra caused by the local

flow separations. The final noise spectra of the complete fan are domi-

nated in amplitude by the tip region while the uncertainty bars are related

to uncertainties observed along the complete blade span. A proper con-

trol of the flow along the complete blade span is then necessary to reduce

the uncertainties on the radiated sound. The uncertainties introduced by

the variations on volume flow rate are much larger than those given by the

rotational speed, and the combined effect of both fan parameters yield a

2-6 dB uncertainty on the far-field noise, with larger variations obtained

with the YR model.

The convergence of the SC based on the RANS data set has been verified

for both airfoil and fan cases by extending the number of terms in the

Curtis-Clenshaw sparse quadrature and by comparing with a Monte Carlo

simulation. In the airfoil case, the efficiency of the SC method is clearly

demonstrated as it provides the same accuracy as the Monte Carlo approach

with a limited number of terms (9) and is two orders of magnitude faster.
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